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ABSTRACT 

 

Brine is a by-product of oil and gas extraction that can have profound impacts on soil 

chemistry and vegetation assemblages when discharged onto the soil surface. Brine spill 

remediation aims to remove or minimize the saturated paste electrical conductivity (ECe) to 

levels suitable for plant growth. My research focused on evaluating ECe and plant parameters on 

topsoil excavation and chemical amendment sites, and examining brine thresholds of several 

native grasses. Halophytic grasses had a higher brine threshold between 18.6 and 34.6 dS m
-1

 

whereas glycophytic grasses exhibited a lower threshold (9.70 and 18.6 dS m
-1

). Halophytes 

examined in this study may aid in revegetating salt-affected sites. Soil ECe was not different (p ≥ 

0.05) between remediation techniques to the 60 cm depth. Functional plant groups were also not 

different (p ≥ 0.05) between remediation techniques. Both techniques were successful at 

reducing soil ECe to facilitate natural and assisted vegetation recovery. 
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PREFACE 

 

  The first chapter is a general literature review detailing concepts and justification for 

chapters two and three, and follows the style and format for Rangeland Ecology and 

Management Journal. Chapters two and three are independent manuscripts prepared for 

submission to peer-reviewed journals, both chapters follow the style and format for the 

Rangeland Ecology and Management Journal. 
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GENERAL INTRODUCTION 

 

Oil and gas production can increase the presence of anthropogenic surface salinity 

through accidental or deliberate discharge of oil-produced water (i.e. brine) onto the soil surface. 

Brine is a by-product of oil and gas extraction process and contains high concentrations of 

sodium chloride (NaCl) salts that overwhelm plants’ ability to process large quantities of salt 

ions and maintain a favorable cell-water gradient in the presence of osmotic stress. High 

concentrations of NaCl lead to ion toxicity, cell dehydration and plasmolysis that ultimately 

result in plant death. Brine negatively influences vegetation as it lowers the osmotic potential in 

soil water, which makes it difficult for plant roots to extract water and essential nutrients from 

the soil matrix. Excess Na
+
 ions impede vegetation establishment by weakening aggregate 

stability and reducing hydraulic conductivity. Brine spill remediation through topsoil excavation 

(ex situ) or chemical amendment (in situ) techniques aim to remove or minimize the abiotic 

stressor to levels suitable for plant growth. The establishment of halophytes post remediation 

may provide additional protection from the rise of salt-laden water and continuous vegetation 

cover on remediated brine spill sites. 

Halophytes represent a unique group of plant species that can tolerate high salt 

concentrations (≥ 15 dS m
-1

; Keiffer and Ungar 2001), — concentrations that would otherwise 

kill 99% of neighboring species (Flowers and Colmer 2008). Salt-rich environments exert high 

selection pressures and enable halophytes to develop morphological and anatomical 

characteristics to cope with salt stress (Flowers et al. 2010). However, abrupt increases in soil 

salinity, such as brine spills, overwhelm both glycophytes’ and halophytes’ ability to cope with 

large amounts of salt at one discrete time. These brine salts kill plants shortly after coming into 

contact with live plant parts (Murphy et al. 1988; Aschenbach 2006; Aschenbach and Kindscher 
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2006). Plants die because they are unable to maintain favorable cell-water relations (i.e. turgor) 

and transport salt ions at a fast enough pace into plant cell vacuoles at high salt concentrations 

(Flowers et al. 1977; Shavrukov 2013). Brine spill remediation aims to remove or minimize the 

amount of brine salts to facilitate establishment of plant species. Assisted reintroduction of 

halophytic species through reseeding treatments on remediated brine spill sites may stabilize soil 

and provide continuous vegetation cover in the presence of recalcitrant brine salts.  

Remediation is essential for improving the physico-chemical properties of contaminated 

soil to enhance growing conditions for plants (Wong 2003), and it should occur as soon as 

possible to prevent contaminants from permeating through soil layers (Harris et al. 2005). 

Topsoil excavation is an ex situ method that permanently reduces the amount of contaminated 

soil onsite by moving it to a new location, such as a landfill. Alternatively, environmental 

consultants and oil and gas personnel use chemical amendments, such as calcium-based salts, 

with water to displace sodium (Na
+
) and allow for its leaching to lower soil depths. However, 

this method, without a supplemental water source, is often intensive and ineffective in semi-arid 

to arid climates (Jury and Weeks 1978; Keiffer and Ungar 2001; Ammari et al. 2013), where 

limited precipitation prevents ions from leaching below the plant root zone (Keiffer and Ungar 

2002). Unfortunately, the majority of high oil-producing regions are located in semi-arid and arid 

regions in the Great Plains of North America (Keiffer and Ungar 2001), such as western North 

Dakota. My research aims to evaluate brine thresholds of northern mixed-grass prairie species 

and evaluate efficacy of ex situ and in situ remediation techniques. 
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CHAPTER 1: LITERATURE REVIEW 

 

Natural Abiotic Stressors and Biotic Disturbances 

 

Natural abiotic and biotic factors exerted strong selective pressure on grassland flora that 

contributed to spatial and temporal heterogeneity in the northern mixed-grass prairie (NMGP) 

(White 1979; Sousa 1984; Pickett and White 1985). The most influential abiotic factors affecting 

vegetation composition and productivity in grassland biomes are temperature and precipitation 

gradients (Mitchell and Csillag 2001; Fredlund and Tieszen 1994). Additionally, small-scale 

factors such as soil texture, hydrology, nutrients, and natural salt deposits are important for the 

separation of distinctive plant groups that occupy a variety of microhabitat niches (Keith 1958; 

Barnes and Harrison 1982; Tilman 1994). The historic presence of biotic disturbances such as 

fire and grazing, altered vegetation structure to maintain a grassland dominated ecosystem 

(Collins and Barber 1986; Fuhlendorf and Engle 2004; Davies et al. 2009). The long-term 

influence of both abiotic and biotic environmental factors resulted in the natural selection of 

different plant strategies to persist in these habitats (White 1979; Fuhlendorf et al. 2009; Bui 

2013).  

The vegetation within the NMGP evolved under a system of frequent fires and herbivore 

grazing (Axelrod 1985; Collins and Barber 1986; Fahnestock and Detling 2002; Janis et al. 

2002). Biotic disturbances, such as fire and grazing, resulted in subtle or abrupt changes in 

ecosystem structure and community. These historic disturbances were beneficial to grassland 

ecosystems because they removed stagnant biomass, thus stimulating forage regrowth (Johnson 

and Matchett 2001). Higher forage quality after a burn attracted bison and other herbivores to 

these areas (Bonham and Lerwick 1976; Coppedge and Shaw 1998). The patchiness of fire 

followed by grazing created a shifting mosaic of vegetation patches, which provided habitat to a 
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variety of prairie fauna (Vinton et al. 1993; Fuhlendorf and Engle 2004; Fuhlendorf et al. 2009). 

These keystone processes were largely removed from grassland ecosystems following the 

European settlement (Knapp et al. 1999; Fahnestock and Detling 2002). Native plants did not 

evolve at a fast enough pace to effectively compete or survive in these human-altered 

ecosystems. This human-plant relationship is particularly apparent when examining plants’ 

response to anthropogenic soil salinity. 

Saline Seep Formation 

 

The European settlers converted productive grasslands into agriculture farmland by the 

late 1800’s. The change in historical land cover increased the evapotranspiration rate near the 

soil surface, which consequently increased the development of saline seeps throughout the 

northern Great Plains (Miller et al. 1981; van Schilfgaarde 1981; Timpson and Richardson 

1986). The natural salt deposits in saline seeps are common abiotic stress in semi-arid climates 

where evaporation exceeds precipitation (Brown 1971; Miller et al. 1981). Saline seeps develop 

when water carrying dissolved salts from weathered geologic materials, predominantly mixed 

Na-Mg-Ca-(SO4) minerals, percolate through the soil profile until it reaches impermeable soil 

layers (rock or limestone; Miller et al. 1981; van Schilfgaarde 1981; Timpson and Richardson 

1986; Timpson et al. 1986). The layers restrict downward water movement, allowing soluble 

salts to only travel laterally with subsurface water and accumulate in depositional areas (Miller et 

al. 1981). The soluble salts gradually seep towards the surface through capillary action, 

especially during dry summer months when soil water travels upward to meet atmospheric 

evaporative demands (Miller et al. 1989). Furthermore, natural precipitation is limited in semi-

arid and arid regions (< 25 cm yr.
-1

) (Keiffer and Ungar 2001; Keiffer and Ungar 2002). This 

prevents soluble salts from leaching to depths below the root zone. Wet and dry cycles increase 
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salt accumulation near the soil surface, which accelerate saline seep formation and intensify soil 

salinity. Plants negatively respond to high concentration of salts in the center of saline seeps by 

decreasing plant growth and future plant recruitment, which lead to increases in bare soil spots.  

Salt Stress 

 

Germination is the most critical growth stage in a plants life cycle (Macke and Ungar 

1971). Reducing salt concentrations in the top 15 cm of soil is a prerequisite for successful plant 

germination on salt-affected soils (Chapman 1942; Pujol et al. 2000). Surface salts retard 

germination of many native plant seeds, especially during periods of water scarcity when salts 

accumulate on the soil surface. Salts influence plant germination by decreasing the osmotic 

pressure of the soil, which make it increasingly difficult for seeds to extract water from the soil 

matrix (Ayers 1952; Ungar 1978). The lack of available water leads to permanent damage of 

seed embryos or osmotic induced dormancy (Ayers 1952; Ungar 1978; Ungar 1995; Keiffer and 

Ungar 1997). Surges in soil moisture are a dormancy-release factor (Badger and Ungar 1989), 

creating suitable places for seedlings to emerge on salt-affected sites, such as saline seeps. 

Therefore, germination typically occurs in early spring or late fall when water is more available 

to dilute salt concentrations on the soil surface (Chapman 1942, Ungar 1978; McMahon and 

Ungar 1978). This strategy enables plants to complete critical growth stages during times of 

reduced soil salinity prior to periods of increased salt stress (Singh et al. 1983; Schwarz and 

Redmann 1990; Keiffer and Ungar 2002).  

Excessive soluble salts in the soil medium restrict plant growth at the cellular and whole 

level (Hasegawa et al. 2000). Salts within the root zone induce osmotic stress, disrupt metabolic 

homeostasis and ion distribution (Serrano et al. 1999; Zhu 2001), and damage important plant 

tissue through cell plasmolysis (Shavrukov 2013), which can all decrease plant productivity or 
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induce plant death. Salt affected soils impact vegetation by altering the osmotic gradient between 

soil and plants. Lower osmotic potential in soil water increases the hydraulic gradient towards 

salt-rich areas and away from plant roots (Bernstein and Hayward 1958; Shavrukov 2013). 

Additionally, the decline in osmotic potential alters the uptake and transport of water and 

essential plant nutrients (NO3
-
, H2PO4, K

+
, Ca

2+
) through the cell membrane of plant roots, 

leading to nutrient deficiencies and ion imbalances (Munns and Termaat 1986; Hu and 

Schmidhalter 2005). Plants that exhibit salt stress may attempt to regulate water loss by closing 

stomata cells to limit gas diffusion (carbon dioxide (CO2)) through plant leaves, preventing 

photosynthesis from occurring (Longstreth and Nobel 1979; Chaves et al. 2009). Prolonged salt 

stress prevents plants from re-opening stomata cells and taking in CO2, which is necessary to 

produce photosynthetic energy to sustain metabolic activity, leading to plant death. However, 

some plant species are less sensitive to increases in soil salinity (Bernstein and Hayward 1958; 

Ungar 1995; Pujol et al. 2000).  

Halophytes 

 

Scholars have recognized salt tolerance as a plant trait for more than 200 years (Flowers 

et al. 1986). Flowers et al. (2010) estimates there are over 350 salt tolerant plant species (i.e. 

halophytes) that can complete their lifecycle in at least 20 dS m
-1

 (Flowers et al. 2010). 

Halophytic species evolved in salt-rich environments (e.g., saline seeps, coastal wetlands, and 

salt plains) where they developed morphological and anatomical characteristics to cope with salt 

stress (Flowers et al. 2010). Halophytes are able to exclude, regulate, or transport salt ions to 

maintain homeostasis and ion distribution in the presence of salt stress (Flowers et al. 1977; Salt 

et al. 1998; Zhu 2003). Plants can survive salt stress by remobilizing water and nutrients to 

younger leaves and by storing salt ions in older, less productive leaves to complete their life 
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cycle (Munns 2002; Munné-Bosch and Alegre 2004; Munns 2005). Older plant leaves are also 

more susceptible to salt accumulation in leaf vacuoles because they have been transpiring longer, 

thus bringing salt ions into leaf vacuoles, and reaching storage capacity sooner than younger 

plant leaves (Munns 2002). Exceeding the storage capacity in plant cell vacuoles can cause these 

vacuoles to rupture and leak salt ions into the plant cytoplasm where they become toxic to plant 

cell enzymes, and/or build up in the surrounding plant cell wall, leading to cellular dehydration 

(Munns and Passioura 1984; Yeo and Flowers 1986; Munns 2002). Compared to younger plants, 

older plant species have more plant tissues to transport and store salt ions in leaf vacuoles, which 

is generally why salt tolerance generally increases with age of plant. However, salt sensitivity 

can also increase right before reproductive stages when plant resources are allocated to support 

reproductive structures (Läuchli and Grattan 2007; Oliveira et al. 2013). Some plant species may 

attempt to accelerate phenological development or switch between sexual and asexual 

reproduction as a last effort to pass on genetic material (Adams 1990; van Zandt et al. 2003). 

This survival tactic may produce sterile offspring, reducing the long-term sustainability of their 

population in salt-affected areas. 

Halophytes stabilize and desalinate soils and may act as ecological proxies to replace salt 

sensitive species (i.e. glycophytes). Native halophytes are preferable over exotic halophytes 

because native halophytes are usually restricted to native habitats and are adapted to colonizing 

and completing their cycle in hypersaline environments, such as saline seeps (Flowers et al. 

2008; Flowers et al. 2010). Halophytes can remove and contain salt ions and other industrial 

solutes (e.g., boron (B), cadmium (Cd
2+

), zinc (Zn
2+

), lead (Pb
2+

), and copper (Cu
+
 & Cu

2+
; 

Rozema et al. 1992; Manousaki and Kalogerakis 2011) by metabolizing them in plant tissues 

(Salt et al. 1998). These plants can accumulate contaminants in plant roots and shoots, but 
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removal usually only occurs for the above ground portion (Keiffer and Ungar 2002). Harvesting 

halophytes above ground biomass at the end of the growing season can permanently reduce soil 

contaminants to create a conducive environment and favor the establishment of less salt tolerant 

plant species (i.e. glycophytes) (Salt et al 1995; Salt et al. 1998; Manousaki and Kalogerakis 

2011). Most importantly, halophytes stabilize soil in salt-rich environments to prevent further 

degradation. Belowground roots play an important role in increasing hydraulic conductivity and 

providing a surface area for microbial communities (Anderson et al. 1993; White et al. 2003). 

Halophytes are preferential for revegetating salt-affected sites because they provide 

additional protection from the gradual rise of salt-laden water during periods of dryness (Barrett-

Lennard, 2002; Rabhi et al. 2009; Lokhande and Suprasanna 2012). Although halophytes are 

beneficial for restoring the biotic processes in salt-affected areas, they are less adaptive to sudden 

increases in soil salinity (Shavrukov 2013). Plants are not likely to recover even if removal of 

salts occurred shortly after introduction into the growing medium (Shavrukov 2013). Oil-

produced water (i.e., brine) spills from oil and gas development occur suddenly and result in 

unprecedented amounts of anthropogenic surface salts throughout the Great Plains (Aschenbach 

and Kindscher 2006). 

Anthropogenic Salinity: Brine 

 

Improvements in oil and gas technology have increased access to shale reservoirs and 

consequently these improvements have increased the amount of brine produced in North 

America (Rahm 2011; Mason 2012; Brantley et al. 2014). Hydraulic fracturing— also known as 

hydrofracturing — is a process in which water, sand, and additive chemicals travel at high 

pressure through an underground wellbore, creating micro fractures in the permeable rock, 

releasing trapped oil and gas (Brantley et al. 2014). Sand particles prop-open crevices in the 



9 
 

shale, allowing water and solvents to travel through the permeable shale rock. The shale 

formation contributes large amounts of dissolve salts (Meissner 1978; Whittig et al. 1982). These 

salts mix with water to create brine that travels back to the soil surface during oil and gas 

production (Harkness et al. 2015). Brine is a regulated waste by-product of the oil and gas 

extraction process. Brine is usually stored in tank battery containers where it is recycled, 

transported, or permanently re-injected into underground storage facilities (Brittingham et al. 

2014). 

Brine spills are arguably the most environmentally destructive and controversial aspect of 

the oil and gas extraction process (Jager et al. 2005; Aschenbach and Kindscher 2006). Sodium 

chloride (NaCl) comprises 90% of brine salts and can have a saturated paste electrical 

conductivity (ECe) magnitude (≤ 200 dS m
-1

) higher than saline seep concentrations (≥ 15 dS m
-

1
) (Merrill et al. 1990; Jong 1982; Keiffer and Ungar 2002; Aschenbach and Kindscher 2006). 

Brine contamination occurs when there is a tank battery overflow, pipeline leak, or migration of 

salts from a reserve pit (Keiffer and Ungar 2002; Sublette et al. 2007). These types of 

uncontrollable releases leave permanent marks on the landscape (Jager et al. 2005), which can 

persist for decades in semi-arid to arid regions in the absence of remediation techniques.  

Brine spills are a severe abiotic site modification that can have long lasting impacts on 

soil and vegetation parameters. Salts from brine spills are considered especially problematic 

because they are both saline and sodic (ECe ≥ 4 dS m
-1

 and SAR > 13) (USDA 1954). Excessive 

Na
+
 ions can lead to dispersion of clay particles on soil aggregates, thus weakening soil structure 

and resulting in reduced hydraulic conductivity. Additionally, salts near the soil surface sterilize 

the soil seed bank and prevent successful plant migration from nearby propagules (Ungar 1978; 

Keiffer and Ungar, 1977; Ungar 1995; Ungar 2001; Keiffer and Ungar 2002). The high 
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concentrations of salts in brine require an active approach to speed-up natural processes towards 

a predefined state. Brine spill remediation aims to remove or minimize the abiotic stressor to 

increase the success rate of both natural and assisted plant reintroduction. The goal of 

remediation is to reinstate some ecological processes to assist in the long-term sustainability of 

the site. Reduction of salt concentrations through ex situ and in situ remediation techniques is the 

first step towards creating a more conducive environment for soil and plant organisms.  

Ex-Situ and In-Situ Brine Spill Remediation 

 

Topsoil excavation (ex situ) permanently reduces the volume, toxicity, and mobility of 

contaminants (Steele and Pichtel 1998). The physical removal of contaminants to an approved 

disposal location decreases off-target effects and future liability (Steele and Pichtel 1998). 

Although this technique is effective in reducing the inhibitory effect of brine salts and other 

industrial effluents, the removal of soil contaminants and introduction of replacement soil 

destroys thousands of years of soil development (Bradshaw 1997). Replacement soil also poses 

its own ecological implications because it may unintentionally contain exotic seeds in the soil 

seed bank that may germinate and spread into the surrounding area. Furthermore, new topsoil 

may differ in soil chemical and physical properties (e.g. soil texture, nutrients, organic matter) 

and may yield a different plant community than what previously existed before the spill. The 

permanent loss of the original soil source and lack of adequate soil structure associated with the 

topsoil excavation technique increases soil erosion and decreases soil porosity when replacement 

soil is mechanically compressed (Stylinski and Allen 1996; Angers and Caron 1998), which can 

negatively influence plant root growth (Milchunas et al. 1999; Stylinski and Allen 1996; Pagliai 

et al. 2004). Roots unable to grow and develop lead to declines in microbial activity, nutrient 

reserves, and moisture availability (Bronick and Lal 2005). The lack of plant inputs reduces 
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overall soil fertility. The loss of original soil structure is defendable only when contamination 

poses a significant threat to human and/or environmental health (Wilson and Jones 1993; 

Efroymson et al. 2004). 

Alternatively, chemical amendments (in situ) are a common practice to remediate salt-

affected soils and minimally disrupt soil integrity. The minimal disruption of the original soil has 

a greater public acceptance among soil and ecologists because it does not transport contaminated 

soil from one place to another (Khan et al. 2000). Chemical amendments are typically calcium 

(Ca
2+

) based salts, such as gypsum (CaSO4
2-

 • 2H2O) and calcium chloride (CaCl2), to replace 

sodium (Na
+
) ions from soil exchange sites and move them from upper to lower soil depths 

(Gharaibeh et al. 2009; Mahmoodabadi et al. 2013; Ammari et al. 2013). Calcium based salts 

differ from Na
+
 based salts because they flocculate clay particles (Peterson 1948), as opposed to 

Na
+
 ions, which disperse clay particles. Divalent cations (Ca

2+
) replace monovalent cations like 

Na
+
 ions because they have a higher affinity to bond with negatively charged sites on soil 

particles (Alva et al. 1991; Gharaibeh et al. 2009). This technique requires water to facilitate Na
+
 

exchange because it favors the adsorption of Ca
2+

 ions to displace and leach Na
+
 ions (Reeve and 

Bower 1960). Preliminary studies estimate a 100:1 dilution ratio of fresh water to brine salts to 

permit plant growth on brine-affected soils (Munns and Stewart 1989). Jury and Weeks (1978) 

estimate that the leaching process for chemical amendments can take upwards of 3,000 years 

depending upon soil texture and exchangeable sodium percentage (Jury and Weeks 1978; Atalay 

et al. 1999; Harris et al. 2005). The process in which chemical amendments displace lower 

valence cations (Na
+
) with higher valence cations (Ca

2+
) can lead to a reduction in soil EC and 

sodium adsorption ratio (SAR) (Reeve and Bower 1960; Hamza and Anderson 2003; Hanay et 
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al. 2004). The rate of Na
+
 displacement depends upon soil structure, activity of Ca

2+
 in the soil 

matrix, and electrolyte concentration of water (Reeve and Bower 1960; Gharaibeh et al. 2009).  

Although chemical amendments are effective at displacing unwanted salt ions, they may 

also indiscriminately leach macro and micronutrients to lower soil depths where they are 

inaccessible to plant roots (Yazdanpanah et al. 2013). This remediation technique is not suitable 

in the presence of a shallow water table, where displaced salt ions and additive brine chemicals 

can inadvertently contaminate groundwater. Furthermore, chemical amendments such as gypsum 

are only effective at the depth of application, requiring some surface disruption to incorporate the 

amendment to lower soil depths (Jong 1982; Robbins 1986). 

Organic materials serve a dual purpose by providing protection from erosional processes 

and improving the soil conditions for revegetation of salt-affected soils (Wong 2003; Tejada et 

al. 2006; Tejada et al. 2009). Organic materials are organic waste products from living organisms 

such as plants and/or animals. Coupling organic amendments with remediation techniques 

reduces erosional hazards on newly disturbed soil and increases the efficacy of Na
+
 leaching. A 

study using a subsurface draining system and hay decreased brine salts (NaCl ) by an average 93 

and 78% after a four year period, with hay playing an important role in limiting the rate of 

evaporation from the soil surface to enhance salt leaching (Harris et al. 2005). Several other 

studies observed similar results using organic materials to desalinate surface salts (Dorado et al. 

2003; Wong 2003, Zhang et al. 2008). Organic materials increase percent organic matter that 

binds humic colloids together (Dorado et al. 2003), promoting microbial activity and soil 

structure formation (Roldán et al. 1996; Bulluck et al. 2002; Liang et al. 2003; García-Orenes et 

al. 2005; Tejada et al. 2006; Tejada et al. 2009; Diacono and Montemurro 2010). Additionally, 

organic amendments replenish nutrients lost by leaching to improve soil fertility and facilitate 
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revegetation of saline-sodic soils (Liang et al. 2003; Tejada et al. 2009; Yazdanpanah et al. 

2013). Organic additions, such as wood chips, hay, mulch, straw, wattles, and biodegradable 

netting my accelerate plant succession by ameliorating edaphic conditions to stimulate 

succession of human-disturbed sites.  

Brine is an abiotic stress (i.e. soil salinity) that exerts a continuous negative impact on 

soil and plant parameters when spilt on the soil surface during the growing season. Remediation 

via chemical amendments and topsoil excavation are two common remediation techniques to 

lower soil salinity. Remediation attempts to lower soil salinity to facilitate revegetation efforts, 

however, physical disturbances surrounding oil and gas activities further weaken intact plant 

communities and can delay plant recovery on post-remediated spill sites. Anthropogenic 

disturbances associated with oil and gas development include roads, vehicle movement, tilling, 

and trampling (Larson 2003; Efroymson et al. 2004). These disturbances occur daily in the oil 

fields and can have negative effects (Rapport and Whitford 1999; Borics et al. 2013) on nearby 

remediated brine spill sites by preventing the plant community from returning to pre-spill 

conditions. Anthropogenic disturbances disrupt the soil surface to expose available plant 

resources (e.g., water, light, nutrients, and space resources) that inhibit the establishment of later 

successional species and promote the continual dominance of early successional species (Grime 

1977; Grubb 1977; Daehler 2003). 

Plant Succession 

 

Early successional species, such as ruderals and exotics, tend to have small seeds, high 

dispersal capabilities, and rapid growth (Huston and Smith 1987; Eriksson and Eriksson 1997). 

All of these strategies enable early successional species to move and quickly establish on 

disturbed sites. Common early successional species in the NMGP include foxtail barley 
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(Hordeum jubatum L.), curlycup gumweed (Grindelia squarrosa (Pursh) Dunal), field brome 

(Bromus arvensis L.), eastern daisy fleabane (Erigeron annuus (L.) Pers.), and annual sunflower 

(Helianthus annuus L.). These early successional species are likely to dominate disturbed sites 

until later competitive, successional species become established (Mcintyre et al. 1995). 

Succession is the change in vegetation overtime (Huston and Smith 1987). However, the rate of 

replacement and facilitation of vegetation, such as early successional species by later 

successional species, may occur more slowly in the presence of soil salinity or when topsoil has 

been removed (Keiffer and Ungar 2002; Prach and Pyšek 2001).  

Short-lived ruderal and exotic species may be benign and even beneficial in the early 

stages of the reclamation process. Early successional species provide plant nutrients through high 

species turnover and stabilize lose soil to rebuild soil structure, which facilitate the replacement 

of later successional species (Tansley 1935; D’Antonio and Meyerson 2002; Ewel and Putz 

2004). Later successional species do not readily establish on disturbed sites because they are 

slower growing and primarily reproduce by vegetative means (Eriksson and Jakobsson 1998). 

Later succession species also tend to have heavier seeds (Leishman 1999) that are less likely to 

reach disturbed sites as compared to lighter, smaller seeds of early successional species (Primack 

1987; Reader 1993). Differences in plant life histories may create distinct contrasts in plant 

community assemblages on the bordering edge of native prairie and disturbed sites.  

Successional trends on remediated brine spill sites are largely unknown, and perpetual 

disturbances surrounding these areas can lead to permanent shifts in vegetation cover. Exotics 

are detrimental to disturbed sites if they are long-lived colonizers that persist in plant 

communities, ultimately becoming invasive (D’Antonio and Meyerson 2002). Invasive plant 

species are difficult to eradicate because they compete for the same resources as native plant 
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species, but aggressively take over and create monotypic stands of only a few species (Lesica 

and DeLuca 1996; Henderson and Naeth 2005; Murphy and Grant 2005; DeKeyser et al. 2015). 

Common invasive species in the NMGP include Kentucky bluegrass (Poa pratensis L.), crested 

wheatgrass (Agropyron cristatum (L.) Gaertn.), Canada thistle (Cirsium arvense (L.) Scop.), and 

leafy spurge (Euphorbia esula L.). The long-term occupancy of these invasive species 

irreversibly change plant community assemblages and make it difficult to reach reclamation 

objectives (Brandt and Rickard 1994; Stylinski and Allen 1996). Residual brine salts also alter 

successional sequences by exerting a strong abiotic gradient (i.e. soil salinity) that inhibits salt 

sensitive species from successfully establishing on these sites. Assisted revegetation using native 

halophytic species (e.g., Pascopyrum smithii (Rydb.) Á. Löve, Puccinellia nuttalliana (Schult.) 

Hitchc., Sporobolus airoides, Distichlis spicata, and Hordeum jubatum) are desirable because 

they grow naturally in the NMGP and are commercially available (Dodd and Coupland 1966; 

Braidek et al. 1984). These grass species are also more aesthetically pleasing than early 

successional species, and the establishment of native halophytic grasses on remediated brine spill 

sites may help land managers achieve reclamation goals.  

Characterizing plant community assemblages and quantifying plant productivity on 

remediated brine spill sites is useful for determining if remediation was successful at restoring 

the plant community to pre-spill conditions (Halvorson and Lang 1989). Our research aims to 

investigate plant community responses to different levels of salinity through a greenhouse study 

and to quantify residual brine salts and plant establishment on remediated sites in a field study. 

The objectives of our greenhouse study were to determine brine/plant survival thresholds of nine 

plant species at five brine-derived soil saturated paste extract (ECe) levels, and evaluate plant 

sensitivity at seedling and late vegetative — pre-boot growth stages. Our research will help 
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establish ECe benchmarks as well as identify suitable species for reclamation of remediated 

brine spill sites for oil and gas personnel and environmental consultants. The objective of the 

field study was to compare efficacy of the two soil amendment techniques by evaluating 

remaining brine salts and quantifying plant establishment on remediated spill sites to determine 

which method is more appropriate for the environmental conditions in semi-arid rangelands.  
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CHAPTER 2: OIL-PRODUCED WATER THRESHOLDS ON RANGELAND PLANT’S 

SURVIVAL UNDER GREENHOUSE CONDITIONS 

Abstract 

 

Oil and gas production activities in western North Dakota increased the presence of 

anthropogenic surface salinity in the Northern Mixed Grass Prairie (NMGP). Oil-produced water 

(i.e. brine) is a regulated waste product of oil and gas extraction that can kill actively growing 

plants shortly after coming into contact with plant leaves and roots when discharged onto the soil 

surface. We conducted a non-leaching greenhouse experiment on nine plant species at five brine-

derived saturated paste electrical conductivities (ECe; 2, 4, 8, 16 and 32 dS m
-1

) at seedling 

(SDLG) and late vegetative — pre-boot (LV) growth stages. Concentrated brine (210 dS m
-1

) 

was diluted with distilled to create five ECe concentrations, with no added brine as the control, 

and applied to five pots per ECe treatment in a loam soil. We then collected survival and biomass 

data on greenhouse plants and analyzed with regression. Halophytic and glycophytic plants 

exhibited increased mortality at ECe greater than 9.7 dS m
-1

. Above and belowground biomass 

declined with each additional ECe level for all species at both growth stages. Decreases in 

aboveground biomass ranged from 4 to 60% whereas belowground biomass declined by 4 to 

50% when compared to the control treatment for each species across all ECe levels. Halophytic 

species exhibited a brine threshold between 18.6 and 34.2 dS m
-1

, whereas glycophytic species 

exhibited a lower ECe survival threshold (9.70 and 18.6 dS m
-1

). We did not identify brine 

thresholds (> 34.2 dS m
-1

) for Hordeum jubatum and Puccinellia nuttalliana. The halophytic 

species examined in this paper have different vacuole capacities and transpiration rates as well as 

different salt tolerance mechanisms to revegetate salt-affected areas. The halophytic species 
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examined in this greenhouse experiment are suitable candidates to diversify oil and gas 

reclamation seed mixes.  

Introduction 

 

Soil salinity is a major limiting factor to plant productivity, affecting approximately 7% 

of the earth’s land surface (Ghassemi et al. 1995). Both natural and human-induced processes 

cause soil salinity. Oil and gas production activities, such as the oil production in the Northern 

Plains, increased the presence of anthropogenic salinity in the Northern Mixed Grass Prairie 

(NMGP) region with over 78 million liters of oil-produced water (i.e. brine) spilled in North 

Dakota since 2001 (ND DOH 2015). Accidental or deliberate discharges of brine adversely 

affect soil and vegetation parameters, and in the absence of remediation can create areas that are 

unable retain soil resources to support vegetation (Jager et al. 1995). Salt tolerant plant species 

(i.e. halophytes) aid in the amelioration of salt-affected sites, but their value as possible 

candidates to revegetate remediated brine spill sites on western rangelands has not been 

evaluated in a greenhouse experiment (Aschenbach and Kindscher 2006). This study examines 

the ability of halophytic and glycophytic cool and warm-season grasses to grow and survive 

under non-leaching greenhouse conditions at two growth stages.  

High salt concentrations impede plant recovery in semi-arid to arid climates where 

limited precipitation restricts downward leaching of salt ions below the plant root zone. Leached 

salt-laden water travels upward to the soil surface via capillary action during hot, dry months 

(Thimm 1990), preventing plant seeds from germinating, and killing seedlings (Ungar 1978; 

Keiffer and Ungar 1997). This salt migration and subsequent reduction in plant establishment 

will result in the need for additional soil treatments and reseeding applications. Salt tolerant plant 

species are better equipped to handle gradual changes in soil salinity. Halophytes have evolved 
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under natural saline environments such as saline seep formations, allowing them to develop 

morphological and anatomical characteristics to deal with salt stress (Flower et al. 2010). 

Halophytes maintain plant performance in salt-rich environments (≥ 15 dS m
-1

; Keiffer and 

Ungar 2001) by closing stomata cells and accumulating salt ions in leaf vacuoles. Leaf vacuoles 

will accumulate salt ions until they reach capacity causing them to rupture and leak salt ions into 

the cell cytoplasm and cell wall, thus leading to cellular dehydration (Munns 2002; Munné-

Bosch and Alegre 2004; Munns 2005). Salt tolerance generally increases with age of plant even 

though older plants have been transpiring for longer and have brought in more salt ions through 

plant roots (Munns 2002; Munné-Bosch and Alegre 2004; Munns 2005). Mature plants can 

survive in the presence of salt stress through senescence of older plant leaves first and 

remobilization of water and nutrients to younger photosynthetically active leaves (Munns 2002; 

Munné-Bosch and Alegre 2004; Munns 2005). However, salt sensitivity can increase right before 

maturity when plants allocate resources to support reproductive structures (Läuchli and Grattan 

2007; Oliveira et al. 2013). Although halophyte species exhibit higher salt tolerances than less 

salt tolerant plant species (glycophytes), halophytes are less equipped to handle large doses of 

salt at one discrete time, leading to cell plasmolysis (Shavrukov 2013). 

Cell plasmolysis is the process in salt concentrations build-up to toxic levels in the 

cytoplasm and leak into the plant cell wall. Cell plasmolysis occurs when there is an abrupt 

increase in salinity in the growing medium that leaves plants unable to mobilize available 

resources and initiate survival mechanisms fast enough to combat changing soil conditions 

(Shavrukov 2013). Plant survival mechanisms include accumulation of ions, solutes, and 

carbohydrates to aid in osmotic adjustment as well as salt ion exclusion and 

compartmentalization to maintain ion homeostasis (Munns 2002; Shavrukov 2013). Fortunately, 
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plants rarely experience sudden increases in soil salinity in field conditions (Shavrukov 2013), 

with the exception of low quality irrigation water and brine spills. Brine (90% NaCl) is a 

regulated waste product of oil and gas extraction process that contains salt concentration 

magnitudes higher than natural saline environments (McMillion 1965). Accidental and deliberate 

discharges of brine kill actively growing plants shortly after coming into contact with plant parts 

(Murphy et al. 1988; Aschenbach and Kindscher 2006). The loss of stabilizing root structures 

and protective plant cover leave soil susceptible to erosional hazards. Salts from brine spills also 

have long-term impacts on soil and vegetation parameters because they alter the osmotic 

potential energy of soil water making it difficult for plants to colonize brine-affected sites 

without some type of soil amelioration technique.  

Brine spill remediation techniques can remove or minimize the abiotic stressor (salt) to 

levels suitable for plant growth. Although brine spill remediation can reduce the overall 

concentration of brine salts, recalcitrant salts can resurface during dry months and result in plant 

death (Thimm 1990). Halophytes provide short-term protection from the rise of salt-laden water 

by up-taking salt ions to create a more conducive environment that facilitates the establishment 

of less salt tolerant plant species (Barrett-Lennard 2002; Manousaki and Kalogerakis 2011). 

Harvesting of aboveground parts of halophytes at the end of the growing season can also 

permanently decrease salt concentrations. Additionally, some halophytes can also uptake ions 

that exceed plant nutrient requirements from industrial solutes containing boron (B), cadmium 

(Cd
2+

), zinc (Zn
2+

), lead (Pb
2+

), and copper (Cu
+
 & Cu

2+
; Rozema et al. 1992; Manousaki and 

Kalogerakis 2011). Halophytes are desirable for reclaiming salt-affected sites because they are 

naturally present in the environment and commercially available (Aschenbach and Kindscher 

2006: Manousaki and Kalogerakis 2011). 
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Evaluation of salt tolerance includes examining plant survival and growth at different 

saturated paste electrical conductivity (ECe) levels. Identifying plant survival thresholds of salt 

tolerant and sensitive NMGP species at seedling and pre-mature growth stages along an ECe 

gradient may provide insight into acceptable ECe ranges and the type of species that would 

succeed on newly remediated brine spills in western rangelands. Objectives of this study were to 

1) determine plant survival thresholds of nine plant species treated with five brine-derived soil 

ECe levels and 2) evaluate plant sensitivity at seedling (SDLG) and late vegetative—boot stage 

(LV) stages. We hypothesized that plants will exhibit salt sensitivity at concentrations greater 

than 2 dS m
-1

, as suggested by preliminary greenhouse trials. We expected plant mortality to 

increase with each additional brine concentration for SDLG and LV growth stages. Halophytic 

plant species (Pascopyrum smithii (Rydb.) Á. Löve, Puccinellia nuttalliana (Schult.) Hitchc. 

Sporobolus airoides, Distichlis spicata (L.) Greene, and Hordeum jubatum L.) are likely to 

display higher EC thresholds than less salt tolerant species in this experiment due to salt ion 

accumulation and avoidance mechanisms. 

Materials and Methods 

 

We conducted a greenhouse experiment at the North Dakota State University 

Agricultural Experiment Station Research Greenhouse Complex in Fargo, North Dakota, USA to 

evaluate brine thresholds of nine NMGP species. Greenhouse conditions were with a 14:10 hour 

day:night cycle and a constant temperature (25°C). The growth medium for plants in the 

experiment was topsoil from a Williams Soil Series (34% clay, 22% silt, 44% sand, and 0.38 dS 

m
-1

 ECe). The Williams Series is a moderately, well-drained soil that is the most extensive soil 

series in western North Dakota and is a suitable soil to study brine and plant relationships. The 

brine used to derive the soil EC’s was collected from a wellhead near the Wiley field in 
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Maxbass, North Dakota. This brine had a 210 dS m
-1

 EC, and sodium (74, 930 parts per million 

(ppm)), chloride (149,908 ppm), potassium (2,809 ppm), calcium (2,140 ppm), sulphate (1,540 

ppm), magnesium (602 ppm), and boron (81.7 ppm) levels (Midwest Laboratories, Inc., Omaha, 

Nebraska). The plants used to test brine thresholds in this experiment are all native to the NMGP 

with the exception of Kentucky bluegrass (Poa pratensis L.) (Table 1). 
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Table 1: Reported survival and/or biomass electrical conductivities of saturated paste extract (ECe) thresholds                  

(dS m
-1

) of nine Northern Mixed-Grass Prairie species at germination, seedling, and mature growth stages.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

†
 = Halophytic species 

G = Germination, S = Seedling, M = Mature 

 

 

 

EC Threshold 

(dS m
-1

) 
Reference 

Cool Season (C3) 

Grasses 
  

Pascopyrum smithii 
†
 10

G
 & 58

S 
(Moxley et al. 1978; Aschenbach 2006) 

Poa pratensis 
22

S
, 3

S
 & 5-6

M
, 

23
S
, & 8

S
 

(Kenkel et al. 1991; Carrow and Duncan 1998; Alshammary et al. 

2004; Gilbert and Fraser 2013; Hu et al. 2015) 

Hordeum jubatum
†
 26

S
 & 22

S
 (Badger and Ungar 1990; Kenkel et al. 1991) 

Nassella viridula 9-10
G 

(Ries and Hofmann 1983) 

Puccinellia 

nuttalliana
†
 

22
S
, 19

G
, 23

S (Kenkel et al. 1991; Tarasoff et al., 2007b; Gilbert and Fraser, 

2013) 

Warm Season (C4) 

Grasses 
  

Distichilis spicata
†
 

42
M

, 66
M

, 23
M

, & 

35-41
M

 

(Ungar 1966; Ungar 1969; Hansen et al. 1976; Alshammary et al. 

2004) 

Bouteloua gracilis 31
G 

& 16
G 

(Zhang et al. 2012; Dudley et al. 2014) 

Schizachyrium 

scoparium
†
 

9-10
G 

& 3-16
G 

(Ries and Hofmann 1983; Dudley et al. 2014) 

Sporobolus airoides
†
 11-25

G
 & 9-10

G
 (Hyder and Shamsa 1972; Ries and Hofmann 1983) 
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We air-dried field soil and sieved it through a 16 mm mesh to remove rocks and debris, 

then mechanically ground the soil before transferring into 15.2 x 10.8 cm pots (1,450 g per pot) 

lined with plastic to prevent leaching. Seed germination occurred in vermiculite, and then 

transplantation of seedling to pots occurred between 7 and 14 days post-germination. Each pot 

contained two seedlings with five pots per EC treatment for all nine species. Target brine-derived 

soil ECe treatments were 2, 4, 8, 16, and 32 dS m
-1

.  The control treatment for each species was 

no brine (0.38 ECe). We determined the initial brine-derived soil ECe by estimating field capacity 

of the soil using particle size analysis, bulk density, and a pedotransfer function to determine the 

proportion of concentrated brine (210 dS m
-1

) to add to each deionized water solution (Saxton 

and Rawls 2006). The differences in target versus actual soil ECe (3.3, 5.8, 9.7, 18.6, and 34.6 dS 

m
-1

) are attributed to the fact that brine is not a uniform solution but a mixture of petroleum 

hydrocarbons, industrial effluents, and other soluble salts. Additionally, the ECe values from the 

soil do not include ions exchanged onto the mineral surface complexes.  

Application of brine-derived soil ECe concentrations occurred at two different growth 

stages for each plant species and included 1) seeding stage (SDLG) and 2) late vegetative—pre-

boot (LV) growth stage. Assessment of plant survival occurred 30 days after brine application. 

Survival assessment of individual plants included visually examining green plant parts and 

creasing plant leaves to observe water transport via xylem to aerial plant parts. Shortly after 

visual assessment, aboveground and belowground biomass were harvested, separated and oven 

dried (49 °C) to a constant weight. Data analysis included linear regression models for brine 

survival thresholds done in SAS
®
 (version 9.3, SAS Institute, Inc., Cary, NC). We then 

compared first-order regression models (linear, exponential decay, power, growth, sigmoidal, 

and logistic) using a small-size corrected version of Akaike information criterion (AIC) to select 
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the best model for above and belowground biomass weights in SAS
®
 (version 9.3, SAS Institute, 

Inc., Cary, NC; Hurvich and Tsai 1989). Significance for all regression models were based on an 

alpha p < 0.05.  

Results 

 

Halophytic and glycophytic plant species exhibited salt sensitivity at soil EC’s greater 

than 8 dS m
-1

 under greenhouse conditions (Figure 1 & 2).The two growth stages of halophytic 

plant species played a minimal role in plant survival at the respective brine-derived soil EC’s (p 

≥ 0.05). The most resilient halophytic species in this experiment were Hordeum jubatum, 

Distichlis spicata, Puccinellia nuttalliana and Sporobolus airoides with no tolerance thresholds 

up to 34.6 dS m
-1 

detected at one or both growth stage(s) (Figure 1 & 2). Pascopyrum smithii had 

approximately 50% and 75% survival at SDLG and LV growth stages at 34.6 dS m
-1

 and less salt 

tolerant plant species, such as Poa pratensis, Nassella viridula (Trin.) Barkworth, Bouteloua 

gracilis (Willd. ex Kunth) Lag. ex Griffiths, and Schizachyrium scoparium (Michx.) Nash 

exhibited no plant mortality at soil ECe less than 9.70 dS m
-1

.  

Aboveground biomass for SDLG and LV growth stage treatments declined by 4 to 60%, 

with each treatment increase in soil EC for all plant species when comparing differences among 

treatments as opposed to differences between treatments. Glycophytic species (Poa pratensis, 

Nassella viridula, Bouteloua gracilis, and Schizachyrium scoparium) experienced a 45 to 100% 

reduction in overall biomass between the 18.6 and 34.6 dS m
-1

 treatments for both growth stages 

when compared to the control treatment (Figures 3 & 4). Halophytic species also showed a 

gradual decline in aboveground biomass, but much less than glycophytic species. Overall 

biomass reduction was higher for Pascopyrum smithii at the SDLG growth (84%) than at the LV 

growth stage (72%) between 34.2 dS m
-1

 as compared to the control treatment. This trend was 
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also similar for overall biomass production of Hordeum jubatum (70% (SDLG) & 40% (LV)), 

Puccinellia nuttalliana (77% & 30%), Distichilis spicata (49 & 42%), and Sporobolus airoides 

(74%; SDLG only stage) with the largest reduction occurring between 18.6 and 34.6 dS m
-1

 

treatments. However, there was no relationship (p ≥ 0.05) between increasing soil EC and 

biomass reduction of Sporobolus airoides at the LV growth stage.  

Belowground biomass for SDLG and LV plants were slightly less than aboveground 

biomass, declining by 4 to 50%, when comparing differences among treatments as opposed to 

differences between treatments. Roots exhibited less of a decline with each increase in soil ECe 

at both the SDLG and LV growth stages when compared to the aboveground portion (i.e. leaves 

and stems). Reductions in overall belowground biomass for halophytes and glycophytes mirrored 

that of aboveground biomass with the lowest difference in reduction occurring between the 

control (0.38 dS m
-1

) and 3.30 dS m
-1

 treatment and the largest difference between ECe 18.6 and 

34.6 dS m
-1

 treatments, respectively. SDLG survival and biomass weights was lower than LV 

plants. The reduction in biomass between the control treatment (0.38 dS m
-1

) and 34.6 dS m
-1

 

was 100% for SDLG and 97% for LV glycophytes. Halophytes exhibited lower biomass 

reduction between 18.6 and 34.6 dS m
-1

 for SDLG (75%) and LV (50%) plants. The results of 

this greenhouse experiment support our initial hypotheses.  
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Figure 1: Percent survival of seedlings on an ECe gradient with piecewise-linear regression  

models, r
2
,pvalue, brine application days after emergence (DAE), and days harvested after  

emergence (HAE); plants starting from the upper left-hand corner are Pascopyrum smithii  

(PASSMI), Poa pratensis (POAPRA), Hordeum jubatum (HORJUB), Nassella viridula  

(NASVIR), Puccinellia nuttalliana (PUCNUT), Distichlis spicata (DISSPI), Bouteloua  

gracilis (BOUGRA), Schizachyrium scoparium (SCHSCO), and Sporobolus airoides  

(SPOAIR). 
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Figure 2: Percent survival of late vegetative — pre-boot plants on an ECe gradient with  

piecewise-linear regression models, r
2
, pvalue, brine application days after emergence (DAE),  

and days harvested after emergence (HAE); plants starting from the upper left-hand corner  

are PASSMI, POAPRA, HORJUB, NASVIR, PUCNUT, DISSPI, BOUGRA, SCHSCO,  

and SPOAIR. 
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Figure 3: Above (closed circles & solid line) and belowground (open circles & dashed line)  

biomass weights of seedlings on an ECe gradient with regression model equations, r
2
, pvalue,  

brine application days after emergence (DAE), and days harvested after emergence (HAE);  

plants starting from upper left-hand corner are PASSMI, POAPRA, HORJUB, NASVIR,  

PUCNUT, DISSPI, BOUGRA, SCHSCO, and SPOAIR. 
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Figure 4: Above (closed circles) and belowground (open circles) biomass weights of late  

vegetative — pre-boot plants on an ECe gradient with linear and exponential decay regression  

equations, r
2
, pvalue, brine application  days after emergence (DAE), and days harvested after  

emergence (HAE); plants starting from upper left-hand corner are PASSMI, POAPRA,  

HORJUB, NASVIR, PUCNUT, DISSPI, BOUGRA, SCHSCO, and SPOAIR. 



 

46 
 

Discussion 

 

The salt ions in the brine limit plants’ ability to function properly, requiring immediate 

human action to reduce ion toxicity and osmotic stress in the soil root zone. This greenhouse 

study identified potential survival threshold windows (between 9.70 and 18.6 dS m
-1

) for 

rangeland plants to determine abiotic levels for revegetation. The five halophytic species 

(Pascopyrum smithii, Hordeum jubatum, Distichlis spicata, Puccinellia nuttalliana, and 

Sporobolus airoides) in this study exhibited higher salt tolerance above 18.6 dS m
-1

 when 

compared to survival threshold of glycophytes, with all but two halophytes displaying 

differences in percent survival at the two growth stages along the soil ECe gradient. Cool-season 

grasses Hordeum jubatum and Puccinellia nuttalliana exhibited 100% survival at the SDLG and 

LV growth stage along the soil ECe gradient. The brine thresholds of less salt tolerant plant 

species (Poa pratensis, Nassella viridula, Bouteloua gracilis, and Schizachyrium scoparium) 

suggest the unlikelihood of natural or artificial reintroduction of these species on salt-affected 

sites with ECe above 9.70 dS m
-1

.  

Percent survival of the less salt tolerant plant species, Bouteloua gracilis, Nassella 

viridula, and Schizachyrium scoparium, increased at the LV growth stage. The observed 

differences between percent survival and biomass reduction of NMGP species at the two growth 

stages are likely a result of increased ion transport and storage of salt ions in leaf vacuoles 

(Munns and Tester 2008). The results of this experiment were similar to other studies that found 

seedlings were sensitive to increases in soil salinity than at older growth stages (Chartzoulakis 

and Klapaki 2000; Heo et al. 2007). Mature plants are generally better at regulating water intake 

and loss, as well as partitioning Na
+
 ions  to prevent salt accumulation in the cytoplasm and cell 

wall (Munns 2002; Munné-Bosch and Alegre 2004; Munns 2005). The majority of species 
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observed in this experiment with the exception of Poa pratensis, exhibited increased salt 

tolerance at the older growth stage. Poa pratensis responded the same to soil salinity levels 

regardless of growth stage, which may indicate similar physiological restrictions occur at both 

stages. Along with physiological traits, salt tolerance is also associated with grass morphology as 

it relates to water uptake and plant establishment processes (De Jong 1978; Schwarz and 

Redmann 1990; Flowers et al. 2010). 

Cool-season (C3) grasses tend to dominate the plant community during the early spring 

and late fall portion of the growing season in the NMGP when lower temperatures and 

evaporation rates occur (Barnes et al. 1983). The survival of these halophytes in salt-rich 

environments may be due to their ability to cease tiller development in late-May before salts rise 

to the soil surface to meet the evaporative demand of the soil surface, which can inhibit plant 

growth (Singh et al. 1983; Schwarz and Redmann 1980; Tarasoff et al 2007b). The initial 

development of roots and access to valuable plant resources can potentially make them more 

competitive and less sensitive to salinity than warm season grasses (Mahall and Park 1976; Tiku 

1976). Cool-season halophytic grasses in this experiment were Hordeum jubatum, Puccinellia 

nuttalliana, and Pascopyrum smithii. Pascopyrum smithii was the least salt tolerant of the three 

with a survival threshold between 18.6 and 34.6 dS m
-1

.  

Pascopyrum smithii is the most widely used native halophyte in seed mixes for 

reclamation in western rangelands (Richards et al. 1998). The species’ survival and biomass 

production were more affected at the SDLG growth stage than at the LV growth stage in this 

experiment, which may pose long-term problems for plant establishment and recruitment if 

salinity levels remain high (> 9.70 dsm
-1

). Differences between SDLG and LV percent survival 

and productivity may depend upon osmotic adjustment of cell-sap molarities to maintain turgor 
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and cell volume during salt stress (Bernstein 1961; Munns 1988), and selective uptake and 

transport of potassium (K
+
) ions over sodium (Na

+
) ions (Apse and Blumwald 2007; Guo et al. 

2015) at different growth stages. Additionally, Pascopyrum smithii may lose the ability to 

selectively uptake K
+
 over Na

+
 ions and transport them into plant tissues at high salinity levels 

(Munns and Tester 2008; Guo et al. 2015), such as concentrations (ECe 18.6 and 34.6 dS m
-1

) 

tested in this experiment. 

Short-lived halophytic grasses circumvent osmotic stress to some extent by fast tracking 

their life cycle to avoid costly plant inputs. Hordeum jubatum, ruderal halophyte, exhibited 100% 

survival at both growth stages up to ECe of 34.6 dS m
-1

. Hordeum jubatum, is successful in 

saline environments because it can selectively uptake potassium (K
+
) and calcium (Ca

2+
) ions to 

young plant shoots, while reducing Na
+
 and Cl

-
 uptake and storing salt (NaCl) ions into above 

and belowground vacuoles (Badger and Ungar 1990; Keiffer and Ungar 2001; Keiffer and Ungar 

2002). This mechanism is beneficial for temporarily reducing soil salinity in the growth medium 

to facilitate the reintroduction of less salt tolerant plant species as soil salinity decreases (Keiffer 

and Ungar 2001; Keiffer and Ungar 2002). However, harvesting aboveground biomass is 

necessary to permanently remove salt ions stored in leaf vacuoles and prevent long-term salt ion 

cycling in the soil matrix. Biomass production of seedlings were more sensitive to soil salinity 

than at the older growth stage and is comparable to observed field conditions (Cords 1960; 

Badger and Ungar 1989). Hordeum jubatum compensates for this failure by maturing early, 

which allow brittle heads to break away from the rachis and disperse seeds across the landscape 

(Cords 1960; Best et al. 1978). These seeds then germinate shortly after dispersal or during 

periods of reduced soil salinity to yield monotypic stands (90 to 100%) of Hordeum jubatum on 

salt-rich areas (Badger and Ungar 1989; Badger and Ungar 1994). Although Hordeum jubatum 
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can readily inhabit these types of habitats, it is a poor competitor with perennial, deep-rooted 

plants at lower salinities (Cords 1960; Wilson 1967: Best et al. 1978). The results of this 

greenhouse experiment display the potential use of Hordeum jubatum as a field indicator species 

to identify problematic salt-affected areas on remediated brine spill sites. 

Puccinellia nuttalliana is a perennial bunchgrass that provides ground cover, forage 

resources, and wildlife habitat once established (Liu and Coulman 2015). Similar to Hordeum 

jubatum, Puccinellia nuttalliana was unaffected at the higher EC treatments, making it a more 

desirable and competitive species as compared to shallow rooted, short-lived Hordeum jubatum. 

However, the specific salt tolerant mechanism of Puccinellia nuttalliana is unknown (Tarasoff et 

al. 2007a; Tarasoff et al. 2010), and reportedly does not store salt ions in above or belowground 

plant parts (Tarasoff et al. 2007a; Tarasoff et al. 2010). Puccinellia nuttalliana may use salt-

avoidance strategies, such as delaying germination at high salinities, excluding salt ion uptake at 

the root interface, and ceasing tiller development before salt-laden water rises when the soil 

becomes dry and moves towards the soil surface (Schwarz and Redmann 1990; Tarasoff et al. 

2007b). The high salt tolerance of Puccinellia nuttalliana at early growth stages, as indicated by 

this greenhouse experiment, may enable this plant to establish in salt-rich areas and take 

advantage of plant resources (e.g., water, nutrients, light, and space) that glycophytes are unable 

to access (Macke and Ungar 1971; Tarasoff et al. 2007; Gilbert and Fraser 2013). Although we 

did not assess the competitive ability of Puccinellia nuttalliana in this experiment, this plant is a 

deep-rooted, perennial halophyte that can stabilize soil to minimize wind and water erosion on 

salt-affected areas (Kenkel et al. 1991; Gilbert and Fraser 2013). 

Warm-season (C4) grasses, to some extent, are salt tolerant in order to survive in semi-

arid to arid climates where drought and salinity often coincide (Bromham 2015). These two 
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abiotic stressors behave similarly by activating and regulating different stress response 

mechanisms to cope with a reduction in total soil water potential energy in the growing medium 

(Wang et al. 2003; Hu and Schmidhalter 2005). Warm-season grasses differ from cool-season 

grasses in that they can better regulate water intake and loss during periods of drought and salt 

stress (Barnes et al. 1983; Schwarz and Redmann 1990; De Jong 1978). Warm-season halophytic 

grasses in this experiment were Distichlis spicata and Sporobolus airoides, each with a detected 

brine threshold between 18.6 and 34.6 dS m
-1

 at the LV and SDLG, respectively.  

Distichlis spicata and Sporobolus airoides both belong to the Chloridoideae subfamily 

and are salt accumulating halophytes (Marcum 1999). Salt accumulating halophytes 

compartmentalize salt ions in leaf vacuoles, utilizing specialized glands to excrete salt (Na
+
 & 

Cl
-
) ions to outside the plant (Hansen et al. 1976; Marcum 1999). Salt accumulating halophytes 

reportedly recover faster from high concentrations of salts in growing medium than salt-

excluding halophytes that tend to grow better at lower soil ECe levels (Greenway 1968). 

Distichlis spicata was slightly more salt tolerant at the LV growth stage than at the seedling 

stage, and was the only species to display this relationship in our study. Increased mortality at the 

LV growth stage is likely associated with the divergence of resource allocation to support 

reproductive structures and lower salt-accumulation at high salinity levels (Marcum 1999). 

Sporobolus airoides differed from Distichlis spicata in having a lower brine threshold at the 

SDLG growth stage (between 18.6 and 34.6 dS m
-1

) and no response at the LV stage (> 34.6 dS 

m
-1

) and vice versa. Sporobolus airoides and Distichlis spicata can accumulate and 

compartmentalize brine salts (Na
+
 & Cl 

-
) in plant tissues (Hansen et al. 1976; Marcum 1999), 

allowing for the harvesting of aboveground plant growth and permanently reducing salt ions in 

the plant root zone. 
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Management Strategies 

 

The native halophytes examined in this project are viable options for reclaiming salt-

affected rangelands, while providing food and cover to wildlife species and forage for livestock. 

Distichlis spicata and Pascopyrum smithii provide high crude protein (CP) content (CP; 15.0 and 

18.5%, respectively) during early spring when high quality forage is necessary for maintenance 

of lactating mammals (Hart et al. 1963; Hansen et al. 1976). In addition to forage value, 

Sporobolus airoides grows tall and dense, providing shelter and camouflage for wildlife species 

(Hickey and Springfield 1996). These native halophytes are preferable over non-native 

halophytes because they facilitate the reintroduction of less salt tolerant grasses and forbs to 

increase biodiversity and are less likely to create monotypic communities. Dominance of non-

native halophytes, such as Agropyron cristatum (L.) Gaertn., and Bassia scoparia (L.) A.J. Scott, 

on salt-affected soils prevent ecosystem recovery and delay the bond release process for 

remediated brine spill sites. Reclaiming recently remediated brine spill sites with native 

halophytes may increase the success rate of reseeding applications and possibly reduce exotic 

halophyte establishment.  

Conclusions 

 

Evaluation of native halophytic plant species through greenhouse and field studies creates 

new science for improving remediation techniques on land affected by natural and anthropogenic 

surface salinity. The halophytes in this greenhouse experiment exhibited a brine threshold 

between 18.6 and 34.6 dS m
-1

 ECe, which was higher than the brine threshold of glycophytes 

(9.70 and 18.6 dS m
-1

 ECe). Hordeum jubatum and Puccinellia nuttalliana exhibited 100% 

survival up to 34.6 dS m
-1

 at both SDLG and LV growth stages, indicating a higher brine 

threshold. SDLG percent survival and biomass production was lower than the LV growth stage, 
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with increasing soil salinity. Since plant mortality and biomass production declined with plant 

age, it may be beneficial to transplant seedlings to promote plant establishment and growth 

during periods of increased soil moisture sooner, before the soil dried out, to circumvent 

scorching of newly established seedlings when salt-laden water rises from deeper to upper soil 

horizons. Unfortunately, many of the native halophytic species discussed in this paper are not 

widely used in oil and gas reclamation seed mixes. Pascopyrum smithii is the most popular 

halophyte species for revegetating western rangelands due to its availability and moderate price 

(Richards et al. 1998). The results of this paper provide an opportunity for oil and gas personnel 

to diversify their native seed selection by selecting native halophytes (e.g., Distichlis spicata, 

Puccinellia nuttalliana and Sporobolus airoides) to increase plant establishment and future 

recruitment on salt-affected sites. Hordeum jubatum is a ruderal halophyte that is likely to 

revegetate salt-affected sites without artificial assistance and replaced by perennial, deep-rooted 

species when ECe levels decline to acceptable levels for glycophytes. Selection of halophytes 

with different salt tolerant mechanisms and life histories are important for ensuring permanent 

vegetation cover on salt-affected sites.  
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CHAPTER 3: EVALUATION OF SOIL TREATMENT TECHNIQUES ON 

REMEDIATED BRINE WATER SPILL SITES IN SEMI-ARID RANGELANDS 

Abstract 

 

Oil-produced water (i.e. brine) is a waste product of oil and gas extraction that can cause 

severe changes to soil chemistry and plant communities when discharged onto the soil surface. 

Brine spill remediation through topsoil excavation (ex situ) or the addition of chemical 

amendments (in situ) aims to remove or minimize the abiotic stressor to levels suitable for plant 

growth. We quantified residual brine salts and plant establishment on 10 chemical amendment 

and 11 topsoil excavation sites in semi-arid rangelands of western North Dakota. Paired 

reference and remediated sites had similar soil texture and landscape position. We hypothesized 

no difference in soil and plant parameters between remediation techniques. Results concluded 

electrical conductivity (ECe) was not different (p > 0.05) between remediation treatments for all 

three depths. Overall plant productivity was different (p ≤ 0.05) between remediated and 

reference sites, but not between remediation techniques (p > 0.05). Remediation techniques 

successfully lowered ECe to facilitate natural and assisted revegetation. Species composition and 

diversity on remediated sites were different (p ≤ 0.05) between remediated and reference sites, 

indicating that remediated sites are undergoing succession and not yet similar to neighboring 

plant communities. Based on our findings, chemical amendments are the preferred remediation 

technique on small brine spill sites because they are less invasive and a more sustainable option 

than topsoil excavation. 
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Introduction 

 

Global oil and gas exploration and extraction contributes to environmental degradation 

(Asif and Muneer 2007), loss of ecosystem services (Allred et al. 2015), and the development of 

novel rangeland ecosystems when abiotic and biotic properties are altered (Hobbs et al. 2006; 

Hobbs et al. 2009). Oil and gas development increase human access to once remote areas (Finer 

et al. 2008), and weaken the structure and function of ecosystems by introducing a suite of new 

species (i.e. exotics; Hobbs and Huenneke 1992). While surface disturbances from oil and gas 

development disrupt the biotic component of ecosystems, contaminants from these human-

induced activities change the abiotic properties of soil, making it increasingly difficult for plants 

to survive in these areas (Murphy et al. 1988; Keiffer and Ungar 2001). Discharges of oil-

produced water (i.e. brine) and hydrocarbons can contain salt concentrations that kill vegetation 

and change plant community assemblages. Brine contaminated land, if left untreated, can create 

novel ecosystems that put additional pressure on intact remnant communities, requiring human-

intervention to lessen the negative impacts caused by surface contamination and disturbance.  

Oil-produced water (i.e. brine) spills are arguably the most environmentally destructive 

contaminant and controversial aspect of the oil and gas extraction process (Jager et al. 2005; 

Aschenbach and Kindscher 2006). Brine can contain up to 90% NaCl salts (McMillion 1965; 

Merrill et al. 1990) and can induce soil electrical conductivities (EC) much higher (≤ 200 dS m
-1

) 

than natural salinity (Jong 1982; Keiffer & Ungar 2002). Spills may occur when there is a tank 

battery overflow, pipeline leak, or migration of salts from a reserve pit (Murphy et al. 1988; 

Sublette et al. 2007). Accidental or deliberate releases of brine can have long lasting impacts on 

soil and vegetation parameters. 
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Sodium from spills weaken soil aggregate stability by dispersing clay particles and 

plugging soil pores and thus reducing hydraulic conductivity (Jager et al. 2005; Leskiw et al. 

2012). Releases of brine onto the soil surface overwhelm a plants’ ability to cope with large 

quantities of salt at one discrete time, leading to ion toxicity (Munns and Termaat 1986; 

Halvorson and Lang 1989; Munns 2002). Brine salts also impede future plant establishment and 

recruitment by decreasing the soil water osmotic potential (Harris et al. 2005; Jager et al. 2005; 

Leskiw et al. 2012), requiring plants to expend more energy to extract water and nutrients from 

the soil matrix. 

The severity of brine spills depends on the environment in which they occur. Brine in 

semi-arid to arid climates (≤ 25 cm year 
-1

) tend to have long-term impacts due to low moisture 

and soil leaching (Keiffer and Ungar 2001; Keiffer and Ungar 2002). Increases in soil moisture 

during months with ample precipitation lead to vertical and horizontal expansion of brine salts 

(brine plumes; Murphy et al. 1988), which can resurface during dry months when leached soil 

water rises to the soil surface via capillary action to meet atmospheric demand (Thimm 1990). 

Natural processes do not lessen the negative effects of brine salts over a reasonable management 

timescale. A legacy non-remediated brine spill sites (> 60 year-old) in western North Dakota had 

a saturated paste electrical conductivity (ECe) value of 126 dS m
-1 

(Klaustermeier et al. 2016), 

which is 30 times higher than what the USDA classifies as saline-sodic soils (ECe of 4 dSm
-1

; 

USDA 1954). Brine spill remediation through soil treatment techniques such as topsoil 

excavation (ex situ) and leaching with calcium amendments (in situ) are used to ameliorate site 

conditions and increase the success rate of both natural and assisted plant reintroduction towards 

a predefined state. 
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Traditional remediation techniques aim to reduce adverse effects on human health or 

ecological risks associated with brine contamination. Topsoil excavation (ex situ) removes the 

impacted soil to the depth of infiltration and introduces replacement soil. This method 

permanently reduces the quantity of brine salts but requires a source for the replacement soil. 

The most common in situ method involves divalent (Ca
2+

) based salts, primarily gypsum 

(CaSO4
2-

) and calcium chloride (CaCl2), to displace monovalent sodium (Na
+
) ions from soil 

cation exchange sites and move them from upper to lower soil depths (Jong 1982; Halvorson and 

Lang 1989; Atalay et al. 1999). Differences in soil and vegetation parameters between 

remediation techniques may play an important role in determining plant community assemblages 

long after completion of remediation. 

Brine spills can create novel ecosystems when remediation techniques do not return soil 

and plant parameters to pre-spill conditions. Chemical amendments are often preferred over 

topsoil excavation as they minimize the disruption of the soil structure when reducing soil ECe 

levels, allowing plant roots to penetrate deeper into the soil profile to extract water and nutrients. 

However, the application of this technique indiscriminately discharges desirable plant nutrients 

below the plant root zone where they are inaccessible to plant roots, thus reducing soil fertility 

and reducing plants ability to propagate these sites. Topsoil excavation invokes a different 

strategy by rapidly reducing soil contaminants all at once. However, replacement soil has less 

soil structure due to the multiple disturbances needed to collect, haul, and replace soil. Soil with 

less structure will influence plant composition and abundance by restricting plant roots from 

entering soil pores that are smaller than their diameter (Wiersum 1957), resulting in slower root 

growth (Pardo et al. 2000; Bronick and Lal 2005). The loss of plant productivity can lead to 

patches of bare soil that are susceptible to erosional processes, reducing soil fertility and 
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preventing plant establishment and recruitment. Given the variability in performance between 

remediation techniques, an assessment is necessary to determine how each remediation technique 

affects soil and plant parameters under a semi-arid climate. 

Current remediation practices aim towards reducing the amount of time, money, and 

energy spent at each contaminated site. However, “fast and effective” do not always complement 

each other, and sites may require additional follow-up treatments to finalize the remediation 

process. A formal assessment of these two traditional remediation techniques (leaching with 

chemical amendments and topsoil excavation) across a variety of ecological sites is necessary to 

determine which method is more appropriate for the environmental conditions in semi-arid 

rangelands. The objective of this field study was to compare the efficacy of the two soil 

remediation techniques (in situ & ex situ) by evaluating residual brine salts and quantifying plant 

establishment on remediated brine spill sites on semi-arid rangelands. We hypothesize no 

difference in soil and plant parameters between reference sites and respective remediation 

techniques. 

Materials and Methods 

 

The study area was located on the Little Missouri National Grasslands (LMNG) in 

western North Dakota, USA. The LMNG is primarily managed for cattle grazing and wildlife 

habitat (Reeves et al. 2006), but is experiencing an increase in oil and gas development in the last 

decade (NDIC-OGD 2016). The dominant soil types in this area include well-drained loams, clay 

loams, and sandy loams (Setter and Lym 2013). Climate is continental and semi-arid, with mean 

temperatures ranging from -15 °C in winter to 23 °C during the growing season (April-

September), and a mean annual precipitation and potential evaporation of 425 and 3.81 mm, 

respectively (NDAWN 2016), with 70% of precipitation occurring between May and September. 
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Historic natural vegetation includes western wheatgrass (Pascopyrum smithii (Rydb.) Á. Löve), 

blue grama (Bouteloua gracilis (Willd. ex Kunth) Lag. ex Griffiths), needle and thread 

(Hesperostipa comate (Trin. & Rupr.) Barkworth subsp. comata), green needlegrass (Nassella 

viridula (Trin.) Barkworth), prairie junegrass (Koeleria macrantha (Ledeb.) Schult.), and 

threadleaf sedge (Carex filifolia Nutt.) (Reeves et al. 2006; Setter and Lym 2013). Plant 

nomenclature follows the USDA Plants Database (USDA 2016).  

We sampled 10 chemical amendment and 11 topsoil excavation sites in the summer of 

2015 across seven ecological sites. Sites varied by time since remediation (2007-2014), size (14 

× 14 m
2
 to 45 × 45 m

2
), and amount of brine split (3 to 690 bbls; Appendix A). We used a 

paired-plot design, paring each remediated brine spill site with a nearby reference site similar in 

soil texture and landscape position. We also compared our reference sites to random sites located 

within the LMNG to determine if our reference sites represent the current state of the grasslands 

across sampled ecological sites. These random sites are a more accurate representation of the 

plant community and productivity of the LMNG because data collection occurred at a minimum 

distance of 200 m from anthropogenic structures, such as fences, roads, and water sources.  

Since brine spills are irregular in size, the number of data frames collected from each site 

reflected the size of the remediated brine spill area (250 frames/ha
-1

). Soil samples were 

collected at three depths (0-15, 15-30, and 30-60 cm) along two intersecting transects at each 

site. We analyzed subsamples of remediated and reference sites for topsoil excavation sites at the 

0-15 cm depth for soil texture using the pipette method (Black 1965).  

Preparation of soil samples followed guidelines for 1:1 soil-to-water suspensions (EC1:1) 

as described in Handbook 60 of the United States Department of Agriculture (USDA 1954). The 

EC1:1 were then converted to saturated paste extract (ECe) values as described by Klaustermeier 
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et al. (2016). We converted our EC1:1 to ECe because ECe naturally simulates saturated soil 

conditions to predict plants’ response to soil salinity (Zhang et al. 2005). Statistical analysis for 

soil data included one-tailed t-tests at a specified value of zero to compare the mean differences 

in ECe between reference and remediated sites and two-tailed t-tests between remediation 

techniques.  

Visual estimation of plant cover occurred in 1×1 m frame using a modified cover class 

method (0-1%, 1-2%, 2-5%, 5-10%, 10-20%, 20-30%, 30-40%, 40-50%, 50-60%, 60-70%, 70-

80%, 80-90%, 90-95%, 95-98%, 98-100%) (Daubenmire 1959) and using the midpoint values 

for each class for statistical analysis. We harvested and separated plants into native and non-

native life form groups (forb, grass, and shrub) in the 1×1 m frame and oven dried (48 °C) them 

to a constant weight. Statistical analysis included two-tailed t-tests to compare the mean 

difference between reference and remediated sites, and between remediation techniques to 

analyze biomass and ground cover parameters. Ground cover parameters included visual 

estimation of basal and canopy cover of bare ground and litter (plant residue and man placed 

plant materials). Data analysis included subtracting the mean differences between reference and 

remediated sites in the same direction each time. Mean differences of values are either positive 

or negative to reflect changes in plant productivity among ecological sites. We compared plant 

productivity of paired reference sites with data collected from random sites in the summer of 

2013 and 2014 on the LMNG using similar ecological sites. Sites were analyzed using 

Nonmetric Multidimensional Scaling (NMS) ordination in PC-ORD  vs. 6.0 multivariate 

statistical software program.  

The Relative Sørensen Dissimilarity Index was used to determine contrast differences in 

species proportions between remediated reference sites (McCune and Grace 2002). We also used 
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PC-ORD to compare differences between reference and remediated sites using the 

PerMANOVA function and to compute diversity indices. Statistical analysis of diversity indices 

and Sørensen dissimilarity index include one-tailed t-tests at a specific value of zero and two-

tailed t-tests. 

Results 

 

The mean soil ECe difference was not different (P ≥ 0.05) between remediation 

techniques (Figure 5) for all three depths. Soil ECe had the lowest values for both remediation 

techniques at the 0-15 cm depth, with chemical amendment sites (-2.96 ± 1.07 dS m
-1

) having a 

slightly higher ECe than topsoil excavation sites (-2.08 ± 0.69 dS m
-1

). Electrical conductivity at 

the 15-30 cm depth for chemical amendments and topsoil excavation sites were -4.14 ± 1.42 and 

-2.76 ± 1.88 dS m
-1

, respectively. The highest soil ECe for both chemical amendments (-4.45 ± 

1.52 dS m
-1

) and topsoil excavation sites (-2.64 ± 2.25 dS m
-1

) occurred at the 30-60 cm depth. 

The soil ECe values were different (P < 0.05) between remediated and reference sites for all three 

depths at the specified value of zero.  

The mean percent difference for bare ground was different (P   0.05) between chemical 

amendment (-15.6 ± 5.99%) and topsoil excavation sites (-55.0 ± 7.18%), and between 

remediated and reference sites (Figure 6). Chemical amendments (18.3 ± 6.19%) had less bare 

ground than topsoil excavation (58.7 ± 6.67%) sites, and was more similar to reference sites 

(2.68 ± 0.91 and 3.62 ± 1.45%, respectively). Litter was not different (P ≥ 0.05) between 

chemical amendment sites (-1.77 ± 5.12%) and topsoil excavation sites (8.22 ± 2.54%), but was 

different (p < 0.05) between remediated and reference sites (Figure 6). Litter was higher on 

chemical amendment (13.0 ± 3.12%) than on topsoil excavation sites (1.54 ± 0.57%), and was 

more similar to reference sites (11.2 ± 2.61 and 9.75 ± 2.53%). 
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Figure 5: Significant mean difference of soil ECe between remediated and reference sites at a 

specified value of zero are indicated by an asterisk (*), and between chemical amendment and 

topsoil excavation techniques (X’s) at 0-15, 15-30, and 30-60 cm across seven ecological sites on 

the Little Missouri National Grasslands in western North Dakota.  
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Figure 6: Percent mean difference in basal and canopy cover between remediated and reference 

sites. Significant differences between remediated and reference sites are indicated by an asterisk 

(*) and between chemical amendment and topsoil excavation techniques (X’s & Y’s) for bare 

ground and litter across seven ecological sites on the Little Missouri National Grasslands in 

western North Dakota.  
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Native grass biomass was not different (P ≥ 0.05) between chemical amendment (2.76 ± 

25.5 g) and topsoil excavation sites (54.5 ± 15.1 g), but was different (P < 0.05) between 

remediated and reference sites (Figure 7). Native grass biomass was considerably higher on 

chemical amendment (63.8 ± 34.6 g) than topsoil excavation (10.0 ± 2.86 g) sites, as compared 

to reference (60.6 ± 17.0 and 64.5 ± 16.0 g) sites. Exotic grass biomass was not different (P ≥ 

0.05) between chemical amendment (-10.4 ± 21.1 g) and topsoil excavation (20.6 ± 16.5 g) sites, 

or between remediated and reference sites (Figure 7). Exotic grass biomass on chemical 

amendment (32.1 ± 14.4 g) and topsoil excavation sites (14.7 ± 6.70 g) were similar to exotic 

grass biomass on reference sites (19.7 ± 10.0 and 35.3 ± 14.3 g).  

Native forb biomass was different (P < 0.05) between chemical amendment (7.66 ± 2.24 

g) and topsoil excavation sites (-7.65 ± 5.85 g), and between remediated and reference sites 

(Figure 7). Chemical amendments sites (2.29 ± 0.89 g) had a lower native forb biomass than 

topsoil excavation sites (13.0 ± 6.12 g), with topsoil excavation sites more closely resembling 

reference sites (9.08 ± 2.17 and 5.39 ± 1.20 g). Exotic forb biomass was not different (P ≥ 0.05) 

between chemical amendment (-29.2 ± 14.8 g) and topsoil excavation sites (-29.5 ± 10.9 g), but 

was different (P < 0.05) between remediated and reference sites (Figure 7). Chemical 

amendment (32.4 ± 15.6 g) and topsoil excavation sites (29.8 ± 10.9 g) had higher exotic forb 

biomass as compared to reference sites (3.01 ± 1.57 and 0.31 ± 0.19 g).



 

71 
 

Figure 7: Significant mean differences in biomass between remediated and reference sites are 

indicated by an asterisk (*), and between chemical amendment and topsoil excavation techniques 

(X’s & Y’s) for native grass, exotic grass, native forb, exotic forb, and native shrub across seven 

ecological sites on the Little Missouri National Grasslands in western North Dakota.  

 

 

 

 

 

  



 

72 
 

Native shrub biomass was not different (P ≥ 0.05) between chemical amendment (15.6 ± 

20.1 g) and topsoil excavation sites (12.1 ± 6.25 g), but was different (P < 0.05) between 

remediated and reference sites (Figure 7). Chemical amendment sites (18.5 ± 10.1 g) had higher 

native shrub biomass than topsoil excavation sites (2.15 ± 2.15 g), with chemical amendment 

sites more closely resembling native shrub biomass of reference sites (31.1 ± 16.8 and 14.2 ± 

5.98 g).  

We observed 140 species across remediated, reference, and random sites. Species 

richness did not differ (P ≥ 0.05) between remediation techniques (6.90 ± 1.52 and 5.55 ± 1.84) 

(Figure 8). However, species richness was different (P < 0.05) between remediated and reference 

sites at a specified value of zero. Species evenness were not different (P ≥ 0.05) between 

remediation techniques, or between remediated and reference sites (Figure 8).  
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Figure 8: Significant mean differences in diversity indices between remediated and reference 

sites are indicated by an asterisk (*), and between chemical amendment and topsoil excavation 

techniques (X’s & Y’s) for species richness and evenness, and Simpson’s diversity across seven 

ecological sites on the Little Missouri National Grasslands in western North Dakota.  
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The remediated brine spill sites were different (P < 0.05) from the reference sites as 

indicated by the PerMANOVA (Figure 9). The NMS ordination diagram separates Axis 1 and 

Axis 2, with Axis 1 corresponding to cover of early successional and exotic species across 

remediated and reference sites (Figure 9). Axis 1 (25%) represents the majority of variation in 

the dataset, whereas Axis 2 represents 15% and Axis 3 (not shown) represents 11% of the 

variation in the dataset. The three axes explain 51% of the total variation with a final stress of 14. 

Nineteen reference sites were located on the left side of the ordination axis, correlating with 

native grass species such as blue grama, green needlegrass, and prairie junegrass as well as the 

majority of native forb species. Nine remediated sites were located on the right side of the 

ordination axis, correlating with ruderal and exotic plant species, such as such as field 

pennycress (Thlaspi arvense L.), annual sunflower (Helianthus annuus L.), wormwood 

(Artemisia absinthium L.), and kochia (Bassia scoparia (L.) A.J. Scott). The middle of the 

ordination where reference (one site) and remediated (eight sites) sites overlap correlated with 

salt tolerant plant species (e.g. western wheatgrass, foxtail barely (Hordeum jubatum L.), crested 

wheatgrass (Agropyron cristatum (L.) Gaertn). Percent dissimilarity was not different (P ≥ 0.05) 

between chemical amendment (0.76 ± 0.08 %) and topsoil excavation sites (0.87 ± 0.04 %) 

(Figure 10).  

The reference sites were not different (P ≥ 0.05) from the random sites as indicated by the 

PerMANOVA (Figure 11). Axis 1 (29%) and Axis 2 (20%) explained almost 50% of the 

variation of the dataset, with early successional and exotic species corresponding to Axis 1 

(Figure 11). The two dimensional solution comprise a final stress of 20 (Figure 11). Forty-two 

random sites concentrated around native grasses, such as sideoats grama (Bouteloua curtipendula 

(Michx.) Torr.), little bluestem (Schizachyrium scoparium (Michx.) Nash), inland saltgrass 
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(Distichlis spicata (L.) Greene), and blue grama as well as the majority of native forb species 

(Figure 11). 
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Figure 9: Non-metric multidimensional scaling ordination (NMS) displaying species and site 

scores on axis 1 and axis 2 across seven ecological sites on the Little Missouri National 

Grasslands in western North Dakota. Ovals circle reference (grey) and remediated (black) sites 

on the NMS graph. The area where the two ovals overlap include several halophytic species 

(e.g., PASMI, HOJU, and AGCR).  
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Figure 10: Sørensen dissimilarity index comparing plant cover between chemical amendment 

and topsoil excavation techniques across seven ecological sites on the Little Missouri National 

Grasslands in western North Dakota.  
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Figure 11: Non-metric multidimensional scaling ordination (NMS) displaying species  

and sites scores on axis 1 and axis 2 across seven ecological sites on the Little  

Missouri National Grasslands in western North Dakota. Ovals circle random (left -side) and 

reference (left-side) sites on the NMS graph. 
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Discussion 

Discharges of brine onto the soil surface can create novel ecosystems in the absence of 

remediation techniques. Chemical amendment and topsoil excavation techniques aim to lower 

the abiotic gradient to levels suitable for plant growth. Therefore, we evaluated residual brine 

salts, and plant composition and productivity to determine the preferred remediation technique 

for semi-arid rangelands. The US Forest Service expects that after four years post-remediation of 

brine-impacted sites, the soil ECe levels should be comparable to reference sites and plant 

community is comprised of 70% native species. Our study confirmed that both remediation 

techniques were successful at lowering soil ECe to facilitate natural and assisted vegetation 

recovery, however, vegetation on the remediated sites were not similar to reference plant 

communities.  

 Since our sampled sites were small (≤ 45 × 45 m
2
), the bordering edge of remediated and 

native prairie played an important role in species recruitment and migration. We would expect 

secondary succession to occur at a faster rate on smaller sites because they are in closer 

proximity to seed sources of intact plant communities as compared to larger sites that are further 

away from prairie edges (Prach and Pyšek 2001; Limb et al. 2010). 

Vegetation composition and productivity mirrored ECe data, with vegetation being 

similar between remediation techniques, however, vegetation was different between remediated 

and reference sites. A study examining soil and vegetation on a chemically remediated (CaCl2) 

brine spill site in western North Dakota found that native plant establishment was higher on the 

remediated brine spill portion than on the non-remediated brine spill portion, but was not as 

diverse as the nearby reference site (Halvorson and Lang 1989). Residual brine salts attributed to 

differences in vegetation with the lowest ECe being on the reference site and highest ECe on the 
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non-remediation portion (Halvorson and Lang 1989). Our results were consistent with other 

findings that showed chemical amendments coupled with water effectively remediated brine-

affected sites (Jong 1982; Halvorson and Lang 1989; Merrill et al.1990). Though chemical 

amendments were effective in these studies (Jong 1982; Halvorson and Lang 1989; Merrill et 

al.1990), topsoil excavation is the fastest method for reducing soil contaminants (Steele and 

Pichtel 1998). However, there is limited research examining soil and plant recovery on ex situ 

remediated brine spill sites. Soil removal and introduction of replacement soil rapidly transforms 

surface soils from once vegetated areas into bare ground areas (Um and Wright 1999). Our 

topsoil excavation sites had three times more bare ground than chemical amendment sites 

because they started with bare substrate.  

Life history characteristics of grassland species play an important role in species 

migration and propagation of disturbed grassland sites (Mcintyre et al. 1995). Succession on bare 

substrate is likely to start with early successional species, such as ruderals and exotics, because 

the environmental conditions favor their establishment (Prach and Hobbs 2008). These species 

usually reproduce by seed and have high dispersal capabilities, which enable them to establish on 

disturbed soil and take advantage of available resources first (e.g., water, light, nutrients, and 

space resources), outperforming later successional species (Grime 1977; Prach and Pyšek 2001).  

Later LMNG successional species (e.g. blue grama, sideoats grama, western wheatgrass, little 

bluestem, and threadleaf sedge) primarily reproduce by vegetative means (Eriksson and 

Jakobsson 1998), which allow grass species to fill both above and belowground gaps in 

grassland communities given sufficient time (Karl et al. 1999). Soil quality tends to drive early 

succession, whereas nutrient dynamics and life histories drive later succession stages (Gleeson 

and Tilman 1990). The distinction between these succession phases may explain why native 
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grasses establishment was six times higher on chemical amendments than on topsoil excavation 

sites when compared to reference sites. 

Natural and/or assisted perennial grass establishment is the first step in revegetating 

disturbed grassland communities followed by the expected natural migration of native forb 

species (Romo and Grilz 2002). Interestingly, native forb biomass was six times higher on 

topsoil excavation sites than on chemical amendment sites when compared to reference sites due 

to the presence of annual sunflower (Helianthus annuus L.) and curlycup gumweed (Grindelia 

squarrosa (Pursh) Dunal) (Limb et al. 2010). These two native annual forb species were not 

present on chemical amendment sites. Annual sunflower and curlycup gumweed produce greater 

aboveground biomass than the native forb species found primarily on the chemical amendment 

sites, which included wooly plantain (Plantago patagonica Jacq.), upright prairie coneflower 

(Ratibida columnifera (Nutt.) Wooton & Standl.), purple coneflower (Dalea purpurea Vent.), 

groundplum milkvetch (Astragalus crassicarpus Nutt.), white heath aster (Sympyotrichum 

ericoides (L.) G.L. Nesom), and prairie sagewort (Artemisia frigida Willd.). Annual sunflower 

and curlycup gumweed are better at colonizing contaminated soils as opposed to characteristic 

LMNG forb species (Olson and Fletcher 2000; Alexander and Schrag 2003). 

Native shrub patches, similar to the reproductive strategies of perennial graminoid 

species, can migrate laterally from prairie edges to colonize disturbed sites (Romo and Grilz 

2002). Silver sagebrush (Artemisia cana Pursh) and western snowberry (Symphoricarpos 

occidentalis Hook.) comprised 87% of native shrub biomass across all sites. Chemical 

amendment sites had approximately nine times higher native shrub biomass than topsoil 

excavation sites when compared to reference sites. Silver sagebrush and western snowberry 

resprout by vegetative means, enabling these shrubs to occupy both undisturbed and disturbed 
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sites (Pelton 1953; Wambolt et al. 1990). Similarly, native shrubs can suppress perennial grass 

establishment and vice versa through competition of plant resources (Köchy and Wilson 2000; 

Peltzer and Köchy 2001). 

Exotic species are highly resilient to human-disturbances and can readily invade sites, 

leading to potential permanent conversions of plant communities (Stylinski and Allen 1996; 

DeKeyser et al. 2015). Invasive species, such as crested wheatgrass and Kentucky bluegrass, are 

notorious invaders of North America grasslands, creating monotypic stands and displacing native 

prairie species (Henderson and Naeth 2005; DeKeyser et al. 2015). Kentucky bluegrass was 

present on 17 of the 21 study sites, and comprised 58% of our exotic grass biomass. The 

presence of Kentucky bluegrass is the reason why there was no difference in exotic grass 

biomass between remediated and reference sites. Exotic forb biomass on both chemical 

amendment and topsoil excavation sites were similar due to the presence of kochia (Bassia 

scoparia (L.) A.J. Scott) and Canada thistle (Cirsium arvense (L.) Scop.). Kochia and Canada 

thistle are both considered halophytic species and can germinate and establish under high saline 

(NaCl) conditions (Evetts and Burnside 1972; Wilson 1979), which enable these species to 

invade areas where recalcitrant brine salts are present. The presence of exotic species can stymie 

the reclamation project and make it difficult to reach management objectives. Stylinski and Allen 

(1996) found that exotic species on excavated and filled disturbed sites in California shrublands 

prevented plant communities from recovering to their pre-disturbed states (25 years; Stylinski 

and Allen 1996). 

Plant establishment on remediated brine spill sites is a combination of both natural and 

assisted vegetation. The United States Forest Service (USFS) seed mix used for oil and gas 

reclamation includes four LMNG species (e.g., western wheatgrass, green needlegrass, prairie 
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sandreed (Calamovilfa longifolia (Hook.) Scribn.), and Canada wildrye). Green needlegrass and 

prairie sandreed were located on the left side of Axis 1 in closer proximity to reference sites 

(Figure 9). Western wheatgrass and Canada wildrye were located directly in the middle of Axis 1 

and Axis 2 (Figure 9). Ideally, we would expect all four native species from the USFS seed mix 

to reside in the middle of the ordination. However, a variety of other species propagated our 

remediated sites indicating that natural revegetation exerted a stronger influence than assisted 

vegetation on remediated brine spill sites. The results of this study were similar to Robson et al. 

(2004) observations of natural migration and propagation of plant species such as, foxtail barley, 

western wheatgrass, kochia, annual sunflower, and curly cup gumweed, on hydrocarbon and 

brine contaminated sites in a semi-arid grassland.  

Remediation helped to restore both the abiotic and biotic component of brine-affected 

sites in our study, but there are some pitfalls associated with each technique to consider before 

selecting a final remediation technique. Even though topsoil excavation and introduction of 

replacement soil does not fix the root of the problem but simply transfers it to a new location. 

Soil removal is an invasive method that destroys thousands of years of soil development 

(Bradshaw 1997), which is why in situ remediation has a general higher public acceptance 

among soil and plant ecologists than ex situ remediation (Khan et al. 2000). Heavy machinery 

associated with topsoil excavation can lead to soil compaction (Stylinski and Allen 2000), 

especially on soil that lacks adequate stability to resist change during mechanical compression 

(Angers and Caron 1998). Soil compaction further reduces soil porosity for water, gas, and 

nutrient fluxes to occur (Angers and Caron 1998; Bronick and Lal 2005), and prevent plant roots 

from penetrating through soil layers (Milchunas et al. 1999; Stylinski and Allen 2000). 

Replacement soil may also differ in soil properties (e.g., soil texture, organic matter, and nutrient 
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status) from the surrounding area and yield a different plant community than what previously 

existed. Soil texture influences plant and soil water relationships and is the primary factor in 

defining rangeland plant communities (Barnes et al. 1983; Milchunas et al. 1999). Soils 

dominated with coarser particles (i.e. sand) have larger soil pores and lower water holding 

capacity to support deep-rooted C4 species (Barnes and Harrison 1982). Whereas, soils 

dominated by finer, textured particles, such as silt and clay, have smaller soil pores and display 

higher water holding capabilities that benefit shallow-rooted C3 species (Barnes and Harrison 

1982).  

Soil replacement may also unintentionally contain an exotic seed bank, introducing new 

species that can germinate and migrate into the surrounding area. Replacement soil from a local 

or nearby source is desirable because it reduces the likelihood of introducing new species. 

However, excavation for replacement soil on public land is illegal, requiring replacement soil to 

come from private sources. Transportation and disposal of brine-contaminated soil can lead to 

social and ecological challenges, by requiring designated hazardous waste landfills to be within 

close proximity to excavated sites. The two designated hazardous waste landfills in North Dakota 

are not equipped to handle the high influx of soil contaminated by oil and gas activities, which 

has led to the illegal dumping of contaminated soil in municipal landfills. These illegal dumpings 

could lead to the migration of brine-contaminants from these landfills into adjacent areas. 

Despite its ecological implications, topsoil excavation is a common remediation technique even 

though it is an unsustainable method.  

Alternatively, chemical amendments rely on intact soil structure to displace Na
+
 ions on 

soil cation exchange sites and replace it with Ca
2+

ions. The main pitfalls to chemical 

amendments is that they are often intensive and ineffective without a supplemental water source 
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in semi-arid to arid climates (Jury and Weeks 1978). Leached brine salts can also travel upward 

during periods of dryness, leading to resalinization of surface soil (Thimm 1990; Harris et al. 

2005), or perched salt-laden water may travel laterally with the curvature of the landscape and 

resurface in a new location (Murphy et al. 1988; Harris et al. 2005). However, these pitfalls are 

less cumbersome than trying to overcome the loss of original soil and/or mixing of soil horizons 

that occurred during topsoil excavation. Soil structure is important for plant productivity because 

it influences root distribution (Pardo et al. 2005). Plant roots that are able to penetrate through 

soil layers to extract water and nutrients from the soil matrix will continue to grow and develop, 

whereas compacted soil layers restrict plant roots from accessing water and nutrients (Bronick 

and Lal 2005). Most importantly, both above and belowground plant parts protect soil from 

erosional hazards, while contributing organic materials via species turnover to improve site 

conditions and increase soil fertility. We would expect plant succession to occur at a slower rate 

on soil that lacks adequate soil structure and presents an additional barrier for plants to 

overcome. Soils that start with bare substrate also tend to be nutrient poor due to lack of 

nitrogen, which limits plant productivity and is more in line with early succession processes 

(Gleeson and Tilman 1990). Additionally, external calcium (Ca
2+

) may facilitate higher 

potassium (K
+
) selectivity over sodium (Na

+
) ion uptake in the soil matrix, which can help plants 

gradually adapt to salt stress (NaCl) (Liu and Zhu 1997).  

Conclusions 

 

Successful brine spill remediation removes the majority of brine salts from the plant root 

zone to facilitate plant establishment. Since natural attenuation in semi-arid to arid areas is not 

effective, remediation via chemical amendments and topsoil excavation can ameliorate site 

conditions. Both remediation techniques were successful at lowering ECe levels to allow 
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vegetation establishment to occur in semi-arid rangelands. Since soil ECe was not a delimiting 

factor between remediation techniques in this study, we believe the use of chemical amendments 

are the preferable remediation option on small spill sites because it maintains soil integrity and 

does not generate soil waste. Although there are some pitfalls to this technique, chemical 

amendments isolate the problem on sites as opposed to topsoil excavation that translocate 

contaminated soil to a disposal location, where it can potentially have negative effects on the 

surrounding ecosystems. Efficiency and sustainability are two factors to consider before 

selecting a remediation technique.  

Succession on oil and gas contaminated sites is slow in semi-arid to arid climates, where 

limited precipitation and hot temperatures can delay plant recovery on remediated brine spill 

sites. Ruderal and exotic species are likely to dominate remediated brine spill sites during early 

successional stages, especially on topsoil excavation sites that start with bare substrate. Some of 

these early successional species help stabilize soil and improve site conditions via species 

turnover to facilitate the establishment of later successional species. However, the presence of 

exotic species such as, Kentucky bluegrass, crested wheatgrass, and Canada thistle, can lead to 

permanent changes in plant cover and prevent the site from returning to pre-spill conditions. 

Although the act of brine discharged onto the soil surface is usually one discrete event, returning 

native plant productivity to these remediated brine spill sites is slow and in some cases highly 

unlikely. Future work should focus on preventing brine spills as opposed to reacting to them.  
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GENERAL CONCLUSIONS 

 

Brine spills can create novel ecosystems in the absence of remediation techniques. 

Natural attenuation does not lessen the negative impacts of brine overtime in semi-arid to arid 

regions, at least not on a practical timescale. Limited precipitation in these regions prevents the 

downward leaching of salt ions below the plant root zone. Human intervention through topsoil 

excavation and chemical amendments is necessary to remove/lower the amount of brine salts to 

levels suitable for plant growth. Salt tolerant species (i.e. halophytes) are desirable for 

revegetating remediated brine spill sites because they are naturally present in the environment 

and can uptake residual brine salts through plant roots during dry periods when salt-laden water 

moves from upper to lower soil depths via capillary action to meet atmospheric demand.  

Halophytes are adapted to completing their lifecycle in the presence of salt stress, and can 

desalinate and stabilize soil to restore the biotic component of salt-degraded sites. The results of 

the greenhouse experiment display the potential of salt sensitive species (i.e. glycophytes) and 

salt tolerant species (i.e. halophytes) for revegetating remediated sites. Glycophytes (e.g., Poa 

pratensis, Nassella viridula, Bouteloua gracilis, and Schizachyrium scoparium) exhibited lower 

brine thresholds 9.70 and 18.6 dS m
-1

) than known halophytic species (18.6 and 34.6 dS m
-1

; 

e.g., Pascopyrum smithii, Hordeum jubatum, Puccinellia nuttalliana, Distichilis spicata, and 

Sporobolus airoides). We detected no brine threshold for two halophytes (Hordeum jubatum L. 

and Puccinellia nuttalliana (Schult.) Hitchc.) at both growth stages in this greenhouse 

experiment. Declines in above-and-belowground weights mirrored increases in soil ECe 

concentrations, with lower biomass weights observed at the seedling stage for both halophytes 

and glycophytes. The results of the greenhouse study aid oil and gas personnel and 

environmental consultants in identifying ECe benchmarks for plant growth. Additionally, the 
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native halophytes examined in this study are suitable species for revegetating remediated brine 

spill sites and diversifying oil and gas reclamation seed mixes.  

Brine spill remediation techniques may attribute to differences in plant community 

assembly and affect how sites undergo secondary succession. Our study concluded there was no 

difference (p > 0.05) in soil ECe between chemical amendments and topsoil excavation 

techniques to the 60 cm depth. Bare ground cover was different (p < 0.05) between remediation 

techniques, but litter cover was not different between (p ≥ 0.05) remediation techniques. Biomass 

for all functional plant groups with the exception of native forbs was not different (p ≥ 0.05) 

between remediation techniques. Species richness and evenness, and Simpson’s diversity was 

not different (p ≥ 0.05) between remediation techniques. Additionally, the Sørensen Dissimilarity 

Index was not different (p ≥ 0.05) between remediation techniques. Exotic species establishment 

was more prevalent on remediated brine spill sites as indicated by the NMS ordination and 

PerMANOVA. Native species comprised higher proportions of reference and random sites, 

random sites were more diverse than references sites likely because they were further away from 

oil and gas related disturbances.  

Our field study determined that chemical amendments and topsoil excavation are both 

effective techniques to remove/minimize brine salts across seven ecological sites with different 

soil properties (e.g., texture, nutrient status, and organic matter). Additionally, our research 

identifies ruderal and exotic species that are likely to establish on remediated brine spill sites and 

several invasives species (e.g., Poa pratensis, Agropyron cristatum, and Cirsium arvense) that 

may stymie the reclamation process. We also discuss some of the pitfalls associated with each 

remediation techniques so that oil and gas personnel and environmental consultants can 
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effectively evaluate each remediation technique and choose a remediation technique based on 

efficacy and sustainability.  
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APPENDIX A. CHAPTER 2 TABLES 

 

Table A1: List of sampled remediated brine spill sites on the Little Missouri National Grasslands 

in western North Dakota in the summer of 2015; list includes spill date, cause of spill, quantity 

of brine spilt (bbls), respective remediation techniques, data of remediation, and if reseeding 

occurred. 
Remediated 

Site  
Spill Date Cause of Spill Quantity (bbls) 

Remediation 

Technique 

Remediation 

Date 

Reseeding 

Yes or No 

1 11/4/2007 
Tank Battery 

Overflow 
60 

Chemical 

Amendment 
11/5/2007 

No 

2 Unk.†  Pipeline leak Unk. 
Chemical 

Amendment 
6/14/2012 Yes 

3 3/21/2008 
Tank Battery 

Overflow 
100 

Chemical 
Amendment 

7/22/2008 Yes 

4 9/22/2008 Pipeline leak 690 
Chemical 

Amendment 
9/22/2008 Yes 

5 4/14/2010 Pipeline leak Unk. 
Chemical 

Amendment 
4/16/2010 Yes 

6 9/1/2011 Pipeline leak 40 
Chemical 

Amendment 
9/2/2011 Yes 

7 3/21/2011 
Tank Battery 

Overflow 
70 

Chemical 

Amendment 
3/28/2011 Yes 

8 Unk. 
Tank Battery 

Overflow 
Unk. 

Chemical 

Amendment 
9/22/2014 No 

9 10/23/2013 Pipeline Leak 150 
Chemical 

Amendment 
10/26/2013 Yes 

10 12/14/2011 
Tank Battery 

Overflow 
220 

Chemical 
Amendment 

07/21/2011 No 

11 12/14/2011 
Tank Battery 

Overflow 
Unk. Topsoil Excavation 07/21/2011 No 

12 06/22/2014 
Tank Battery 

Overflow 
10 Topsoil Excavation 6/30/2014 Yes 

13 10/6/2011 Pipeline leak 3 Topsoil Excavation 10/08/2011 Yes 

14 12/17/2011 Pipeline Leak 60 Topsoil Excavation 4/28/2012 Yes 

15 

8/24/2009 

11/26/2008 

11/26/2008 

Pipeline Leak 

22 

11 

5 

Topsoil Excavation 

8/27/2009 

6/02/2009 

6/02/2009 

Yes 

16 6/2/2013 
Tank Battery 

Overflow 
15 Topsoil Excavation 7/31/2013 Yes 

17 

4/22/2007 

10/7/2009 
10/31/2013 

8/18/2014 

Pipeline Leak 

40 

100 
70 

65 

Topsoil Excavation 

5/01/2007 

10/09/2009 
11/05/2013 

8/19/2014 

Yes 

18 1/28/2013 
Tank Battery 

Overflow 
13 Topsoil Excavation 1/28/2013 Yes 

19 11/25/2013 Pipeline Leak 16 Topsoil Excavation 11/27/2013 Yes 

20 11/5/2012 
Tank Battery 

Overflow 
299 Topsoil Excavation 7/19/2013 Yes 

21 10/23/2013 Pipeline Leak 150 Topsoil Excavation 12/01/2015 No 
†
=Unk. =Unknown information 
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Table A2: USDA soil texture classifications for topsoil excavation sites (REM) and the paired 

reference sites (REF) across seven ecological sites on the Little Missouri National Grasslands in 

western North Dakota. 

 Percent Sand Percent Silt Percent Clay USDA Textural Class
† 

Site  REF
‡ 

REM REF REM REF REM REF REM 

11 48.0 30.3 32.4 38.7 19.6 31.0 Loam Clay Loam 

12 22.3 20.3 51.3 73.3 26.4 6.4 Silt Loam Silt Loam 

13 5.9 34.1 64.1 32.9 30.0 33.0 Silty Clay Loam Clay Loam 

14 25.4 58.6 52.8 25.2 21.8 16.2 Silt Loam Sandy Loam 

15 13.3 23.6 60.9 50.6 25.8 25.8 Silt Loam Silt Loam 

16 55.1 35.0 32.5 33.0 12.4 32.0 Sandy Loam Clay Loam 

17 5.8 52.5 56.0 28.3 38.2 19.2 Silty Clay Loam Sandy Loam 

18 38.5 13.1 43.9 49.9 17.6 37.0 Loam Silty Clay Loam 

19 10.8 22.5 57.6 53.9 31.6 23.6 Silty Clay Loam Silt Loam 

20 68.2 20.2 24.8 53.6 7.0 26.2 Sandy Loam Silt Loam 

21 40.7 30.5 39.5 47.9 19.8 21.6 Loam Loam 
†
= Black, 1965 

‡
= REF= Reference site, REM= Remediation site 
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Table A3: Saturated Paste extract (ECe) electrical conductivity for topsoil excavation sites 

(REM) and the paired reference sites (REF) across seven ecological sites on the Little Missouri 

National Grasslands in western North Dakota. 
  ECe

§
 (dS m

-1
) 

Treatment Site ID 0-15cm 15-30cm 30-60cm 

Chemical 

Amendment 

REF 1
‡
 0.69

†
 2.12 2.73 

REM 1
‡
 0.68 0.97 3.19 

Chemical 

Amendment 

REF 2 1.30 1.15 2.94 

REM 2 1.58 1.43 1.71 

Chemical 

Amendment 

REF 3 0.87 0.75 6.21 

REM 3 1.68 3.68 6.33 

Chemical 

Amendment 

REF 4 0.94 0.97 3.88 

REM 4 1.78 2.49 8.39 

Chemical 

Amendment 

REF 5 0.65 0.54 0.97 

REM 5 3.91 6.48 8.95 

Chemical 

Amendment 

REF 6 0.78 0.78 3.54 

REM 6 8.89 15.2 12.8 

Chemical 

Amendment 

REF 7 0.88 0.68 0.65 

REM 7 1.69 1.48 1.83 

Chemical 

Amendment 

REF 8 0.97 2.43 6.93 

REM 8 4.93 6.76 8.85 

Chemical 

Amendment  

REF 9 0.30 0.24 0.21 

REM 9 2.14 5.31 13.7 

Chemical 

Amendment 

REF 10 0.90 1.18 2.51 

REM 10 10.6 8.40 9.40 

Topsoil 

Excavation 

REF 11 0.90 1.18 2.51 

REM 11 2.51 4.08 8.34 

Topsoil 

Excavation 

REF 12 1.41 9.13 18.5 

REM 12 8.00 18.1 25.6 

Topsoil 

Excavation 

REF 13 1.23 1.25 6.65 

REM 13 1.62 3.67 6.77 

Topsoil 

Excavation 

REF 14 0.46 3.79 27.1 

REM 14 3.90 5.95 14.5 

Topsoil 

Excavation 

REF 15 1.86 2.19 8.17 

REM 15 1.48 3.28 9.15 

Topsoil 

Excavation 

REF 16 0.31 0.34 0.98 

REM 16 2.32 5.58 3.14 

Topsoil 

Excavation 

REF 17 0.85 0.80 1.58 

REM 17 1.48 1.41 1.34 

Topsoil 

Excavation 

REF 18 0.85 0.84 0.85 

REM 18 3.51 6.79 7.13 

Topsoil 

Excavation 

REF 19 0.85 0.77 1.23 

REM 19 4.53 2.12 3.33 

Topsoil 

Excavation 

REF 20 0.38 0.79 3.17 

REM 20 4.19 13.1 21.6 

Topsoil 

Excavation 

REF 21 3.63 19.0 28.7 

REM 21 2.14 6.40 27.6 
                                        §

= Electrical conductivity from a saturated paste extract 
                                        †

= Klaustermeier et al. 2016 
                                       ‡

= REF= Reference site, REM= Remediation site 
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Table A4: Biomass and ground cover data for topsoil excavation sites (REM) and the paired 

reference sites (REF) across seven ecological sites on the Little Missouri National Grasslands in 

western North Dakota. 

Treatment Site ID 
Native 

Grass 

Exotic 

Grass 

Native 

Forb 

Exotic 

Forb 

Native 

Shrub 
Litter 

Bare 

Ground 

  ----------------------kg/ha---------------------- ------%------ 

Chemical 

Amendment 

REF 1
‡
 473 38.2 123 0.60 110 7.40 0.9 

REM 1 80.2 42.4 87.8 4.20 740 9.00 33.5 

Chemical 

Amendment 

REF 2 149 123 130 11 204 7.53 6.13 

REM 2 5.25 517 6.2 1040 5.65 16.0 7.28 

Chemical 

Amendment 

REF 3 965 46.9 76.3 30.4 75.1 2.13 2.13 

REM 3 112 867 38.6 130 156 16.6 3.56 

Chemical 

Amendment 

REF 4 860 297 28.1 0.00 0.00 11.7 8.97 

REM 4 833 2.33 22.13 0.00 6.20 1.2 35.7 

Chemical 

Amendment 

REF 5 326 0.00 234 0.00 1853 3.85 0.50 

REM 5 1224 212 4.70 0.80 23.6 22.0 0.50 

Chemical 

Amendment 

REF 6 967 0.00 16.2 0.00 400 10.0 4.00 

REM 6 478 0.00 2.40 492 102 8.60 51.0 

Chemical 

Amendment 

REF 7 16.3 99.4 117 129 704 30.0 0.50 

REM 7 0.00 162 46.6 205 821 3.63 9.75 

Chemical 

Amendment 

REF 8 87.1 1099 55.5 138 23.9 19.8 0.50 

REM 8 30.0 1.53 0.60 1365 0.00 0.50 40.4 

Chemical 

Amendment 

REF 9 1037 4.30 173 1.30 48.4 6.94 0.63 

REM 9 97.6 1338 20.0 4.6 0.00 28.2 0.75 

Chemical 

Amendment 

REF 10 1780 453 41.3 18.4 0.00 12.8 2.54 

REM 10 3523 62.8 0.00 2.33 0.00 24.2 0.50 

Topsoil 

Excavation 

REF 11 1780 453 41.3 18.4 0.00 12.8 2.54 

REM 11 75.1 65.8 615 414 0.00 4.50 41.7 

Topsoil 

Excavation 

REF 12 110 858 4.40 2.80 0.00 8.10 0.50 

REM 12 0.20 0.00 0.00 75.4 0.00 0.50 90.4 

Topsoil 

Excavation 

REF 13 507 10.0 54.0 0.00 259 1.70 15.2 

REM 13 1116 4950 3248 1458 0.00 0.50 37.0 

Topsoil 

Excavation 

REF 14 0 1208 58.8 0.00 42.6 24.0 0.50 

REM 14 23.0 116 0.00 258 0.00 0.50 72.7 

Topsoil 

Excavation 

REF 15 1007 53.2 69.8 0.00 174 7.70 1.70 

REM 15 49.0 647 15.4 8.20 237 5.40 12.9 

Topsoil 

Excavation 

REF 16 1154 4.30 106 0.00 18.3 1.30 4.85 

REM 16 198 30.2 204 381 0.00 1.20 54.0 

Topsoil 

Excavation 

REF 17 301 175 42.6 1.50 683 6.46 0.75 

REM 17 35.3 0.25 0.75 1215 0.00 0.50 57.3 

Topsoil 

Excavation 

REF 18 510 24.2 139 0.00 97.2 5.40 0.50 

REM 18 117 5.60 271 614 0.00 1.10 58.7 

Topsoil 

Excavation 

REF 19 848 1.10 29.0 0.00 145 6.79 2.50 

REM 19 199 41.7 0.00 155 0.00 0.50 64.6 

Topsoil 

Excavation 

REF 20 725 6.63 42.1 12.0 142 6.00 10.3 

REM 20 292 0.00 3.75 0.63 0.00 0.50 73.8 

Topsoil 

Excavation 

REF 21 157 1093 6.40 0.00 3.60 27.0 0.50 

REM 21 0.00 217 0.00 8.60 0.00 1.70 82.1 
‡
= REF= Reference site, REM= Remediation site  


