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ABSTRACT

We consider a wireless communication scenario with two transmit-receive pairs

where each of the transmitters has a message for its corresponding receiver and only

one of the receivers face interference from the undesired transmitter. In our research,

we focused on devising optimal ways to manage this undesired interference and

characterize the best communication rates for both transmit-receive pairs. Currently,

this problem of interference is dealt with by restricting the two communications in

different frequency or time bands. We explore the possibility of achieving better rates

by allowing them to operate in the same band. Such channels were identified about

4 decades ago, but the maximum rate of communication when the transmitters have

a power constraint is still unknown. In this work, we characterize the best rates for

this channel under a reasonable practical constraint of using Gaussian signals at both

the transmitters.
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CHAPTER 1. OVERVIEW

We consider the scenario where two users try to communicate with another two

users, but they face interference from each other. If only one of the two channels

face interference from the other channel, then we call such a channel a Z-Interference

Channel.

Before we describe the problem, we will first go through the basics and address

questions like what is information. Chapter 1 introduces the reader to information

theory and related concepts of entropy and mutual information. Proper definitions

for all related entropy terms, mutual information and the capacity of the channel are

provided. It also discusses the concept of Rate-Distortion theory, which will be used

later in our work.

Then, we introduce the Interference channel and provide the motivations for

investigating into such channels in Chapter 2. We familiarize ourselves with the

current state of knowledge by reviewing various ongoing research projects in this

field. We define our notations and lay the background for our work on Z-Interference

Channel.

Next, we define the Z-Interference channel in details in Chapter 3. We are

interested in the weak interference regime and we discuss the best known achievable

region for such channels.

Now that we have defined the Z-Interference channel and seen achievable regions,

we try to derive an upper bound for such channels. We analyze the derived upper

bound and find that the bound is actually loose. Based on the intuitions gained from

the derivation, we derive another bound for the Z-Interference channel and with a

specific example show that this outer bound matches with the best known achievable

scheme. Thus, we show the optimality of the known achievable schemes, which was

previously unknown.
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Finally, we conclude this work by discussing related problems to the Z-

Interference channels. The Appendix shows the proofs that we skipped in our main

work.
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CHAPTER 2. INTRODUCTION

Information theory answers two fundamental questions in communication the-

ory: What is the ultimate data compression (answer: entropy), and what is the

ultimate transmission rate of communication (answer: channel capacity). Information

theory has relations to physics (statistical mechanics), mathematics (probability

theory), electrical engineering (communication theory), and computer science (al-

gorithmic complexity). But. here we talk about it in the aspect of communication

theory.

In the early 1940s it was thought to be impossible to send information at a pos-

itive rate with negligible probability of error. Shannon surprised the communication

theory community by proving that the probability of error could be made nearly zero

for all communication rates below channel capacity. The capacity can be computed

simply from the noise characteristics of the channel. Shannon further argued that

random processes such as music and speech have an irreducible complexity below

which the signal cannot be compressed. This he named the entropy, in deference to

the parallel use of this word in thermodynamics, and argued that if the entropy

of the source is less than the capacity of the channel, asymptotically error-free

communication can be achieved.

Before we go into formal definitions, we first need to understand what informa-

tion is. When a person hears something and learns something new, then he gained

some information. However, if it did not convey anything new, then he did not gain

any information. This suggests that information conveys something that was not

known. Therefore, stating the obvious does not count as giving information. If any

outcome is deterministic, then it does not contain information. On the other hand,

consider the toss of a fair coin, the outcome could not be known with certainty before

the coin is tossed. As a result, knowing the outcome of the coin toss reveals some

3



information about the random experiment of tossing the coin. Hence, information is

always accompanied by some amount of uncertainty to the event of interest.

The best way to model uncertainty is through Random Variables (RV). Infor-

mation content of a RV is related to the uncertainty present in the RV. A continuous

random variable is described by its probability distribution function (PDF) and a

discrete random variable is described by its probability mass function (PDF) . Now

let us see how to characterize the uncertainty in a RV from its PDF/PMF by a

quantity called entropy.

We will now define the required terms formally and take a detailed look at

Shannon’s theory. The definitions and notations of the information-theoretic terms

those we state here are taken by [1]. All the logarithms are taken with respect to

base 2.

2.1. Entropy

Let X be a discrete random variable which can take values from the set X . Let

the PMF of X be denoted by p(x) = Pr{X = x}, x ∈ X .

Definition 1. The entropy H(X) of a discrete random variable X is defined by

H(X) = −
∑
x∈X

p(x) log p(x) (2.1)

If the logarithm is to the base 2, then the unit of entropy is bits. If the base of

the logarithm is e, then entropy is measured in nats.

Let us go back to the example of tossing a coin. If we model this by a random

variable X then X will be a binary random variable taking values from {heads, tails}.

If we represent the probability of getting heads by p, i.e Pr(X = heads) = p, then

Pr(X = tails) = 1− p.
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The entropy of X is given by,

H(X) = −p log p− (1− p) log(1− p) (2.2)

Now, let us look at the case when p = 1. Then the entropy is,

H(X) = −1 log 1− (1− 1) log(1− 1) = 0

where we have used the fact that 0 log 0 = 0, which is justified by the fact that

limx→0 x log(x) = 0bits.

So, we see that when p = 1, i.e. when the event is deterministic, the entropy is

zero. Thus, we see how entropy represents the randomness present in a RV. p = 1 or

p = 0 implies zero randomness and for such a X, we have h(X) = 0.

It is easy to show that the expression in (2.2) is maximized when p = 1
2
.

Now, intuitively as well, the RV has maximum randomness when both outcomes

are equally likely. Thus, we see that entropy is maximized when the randomness of

RV is maximum. This maximum value is given by

H(X) = −1

2
log

1

2
− (1− 1

2
) log(1− 1

2
) = 1bits

So, entropy is a measure of randomness of a RV. We have seen it for the case of

discrete RV. Now, let us generalize it to the case of continuous RV - the differential

entropy.
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Definition 2. The differential entropy h(X) of a continuous random variable X with

PDF fX(x) is defined as,

h(X) = −
∫
S

fX(x) log fX(x)dx (2.3)

where S is the support set of the random variable X.

Now, let us turn our attention to the randomness in a pair of random variables.

We can extend the concept of entropy to joint entropy and conditional entropy. Later,

we shall see that joint entropy can be expanded using chain rule and can be written

as a sum of conditional entropy terms. The relationship between joint entropy and

conditional entropy will play an important role later on. Here, we define them in

terms of discrete random variables, but the extension to continuous random variables

follows naturally.

Definition 3. The joint entropy H(X, Y ) of a pair of discrete random variables

(X, Y ) with a joint distribution p(x, y) is defined as,

H(X, Y ) = −
∑
x∈X

∑
y∈Y

p(x, y) log p(x, y) (2.4)

where X and Y take values from X and Y respectively.

Definition 4. If X and Y are two random variables with joint distribution p(x, y),

then the conditional entropy of Y given the random variable X, denoted by H(X, Y ),

is defined as,

H(Y |X) = −
∑
x∈X

p(x)H(Y |X = x) =
∑
x∈X

p(x)
∑
y∈Y

p(y|x) log p(y|x) (2.5)

where X and Y take values from X and Y respectively.

6



The relation between joint entropy and conditional entropies is given by the

Chain rule of entropy.

Chain Rule of Entropy: Let X1, X2, ..., Xn) be drawn according to

p(x1, ..., xn). Then,

H(X1, ..., Xn) =
n∑
i=1

H(Xi|Xi−1, ..., Xn) (2.6)

For two random variables X and Y , we can relate entropy, conditional entropy

and joint entropy by using chain rule of entropy:

H(X, Y ) = H(X) +H(Y |X) = H(Y ) +H(X|Y ) (2.7)

This equation can be interpreted as the fact the entropy of a pair of variables

is the sum of entropy of one RV and the conditional entropy of the other, given the

first one.

Now, we define the information content in one random variable regarding

another random variable though mutual information. We will soon see that mutual

information between two random variables is the maximum possible rate of informa-

tion transfer without any error.

2.2. Mutual Information

Mutual information between two random variables is the amount of information

one variable carries about the other. It is the reduction in the uncertainty of one

random variable due to the knowledge of the other. Again, we define it first with

respect to discrete random variables and the extension to continuous random variables

follows naturally.

Definition 5. If X and Y are two random variables with joint distribution p(x, y)

and marginal distribution p(x) and p(y) respectively, then the mutual information

7



I(X;Y ) is given by,

I(X;Y ) = −
∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
(2.8)

Note that the definition is symmetric with respect to X and Y , i.e. I(X;Y ) =

I(Y ;X). Thus, X has as much information about Y as much Y has about X.

Now let us see how mutual information is related to entropy.

2.3. Relationship between Entropy and Mutual Information

We can write mutual information I(X;Y ) as,

I(X : Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X) (2.9)

This equations shows that mutual information can be interpreted as the reduc-

tion in the uncertainty of one random variable due to the knowledge of the other

random variable.

It follows the definition of mutual information that,

I(X;Y ) ≤ H(X), I(X;Y ) ≤ H(Y ), and I(X;Y ) ≥ 0

Also, note that,

I(X;X) = H(X)−H(X|X) = H(X) (2.10)

This shows that the entropy of X is the amount of information that X carries

about itself. For this reason, entropy is sometimes called self-information.

Mutual information between the input X and the output of the channel Y is

actually the rate of information transfer on a channel. To see this, consider the

situation when X is exactly conveyed to the output without any distortion, i.e. Y =

8



X. Then,

I(X;Y ) = H(Y )−H(Y |X) = H(X)−H(X|X) = H(X)

Now, H(X) is the amount of information in X and when Y = X all of the information

is obtained at the output. Mutual information gives us exactly this quantity.

If Mutual information does indeed give us the rate of information transfer on

a channel, then it leads us to think that the maximum possible mutual information

will actually be the maximum rate of information transfer on that channel, or the

capacity of the channel. So, let us first define capacity of the channel.

2.4. Channel Capacity

Definition 6. The information channel capacity of a channel is defined as,

C = max
p(x)

I(Xn;Y n) (2.11)

where the maximum is taken over all possible input distributions p(x).

Shannon, in his celebrated paper, showed that it was possible to send informa-

tion reliably, i.e. Pr(error) = 0, if the rate of transfer was less than or equal to the

capacity. If the rate of communication is higher than the capacity of the channel,

then there would be an non-zero probability of error. For a detailed proof, see [1], ch

7.

2.5. Rate Distortion Theory

Now we consider the problem of representing a random variable using fewer bits

than is required to represent the random variable completely. Since, we are using

fewer bits, the constructed random variable will be a little distorted (or quantized)

version of the original random variable. The problem is how to efficiently use the

given bits to come as close as the original version.
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We first consider the problem of representing a single sample from the source.

Let the random variable be represented be X and let the representation of X be

denoted as X̂(X). If we are given R bits to represent X, the function X̂ can take

on 2R values. The problem is to find the optimum set of values for X̂ (called the

reproduction points or code points) and the regions that are associated with each

value X̂. But in order to measure how good our representation is, we need to define

some way to measure how close our approximation is, which leads us to distortion

function (or distortion measure).

Definition 7. A distortion function or distortion measure is a mapping d : X ×

X̂ → R+ from the set of source alphabet-reproduction alphabet pairs into the set

of nonnegative real numbers. The distortion d(X, X̂) is a measure of the cost of

representing the symbol X by the symbol X̂.

Examples of common distortion functions are:

Hamming distortion The Hamming distortion is given by,

d(x, x̂) =


0 if x = x̂

1 if x 6= x̂

(2.12)

which results in a probability of error distortion, since E[d(X, X̂)] = Pr(X 6= X̂)

Squared-error distortion The squared-error distortion is given by,

d(x, x̂) = (x− x̂)2 (2.13)

This is the most popular distortion measure used for continuous alphabets because

of its simplicity and its relationship to least-squares prediction.

10



So far, we have defined the distortion measure on a symbol-by-symbol basis.

We now extend the definition to sequences by using the following definition:

Definition 8. The distortion between sequences xn and x̂n is defined by

d(xn, x̂n) =
1

n

n∑
i=1

d(xi, x̂i) (2.14)

So the distortion for a sequence is the average of the per symbol distortion of

the elements of the sequence.

Definition 9. A (2nR, n)-rate distortion code consists of an encoding function,

fn : X n → {1, 2, ..., 2nR} (2.15)

and a decoding(reproducing) function,

gn : {1, 2, ..., 2nR} → X n (2.16)

The distortion associated with the (2nR, n) code is defined as,

D = E[d(Xn, gn(fn(Xn)))] (2.17)

where the expectation is with respect to the probability distribution on X.

The set of n-tuples gn(1), gn(2), ..., gn(2nR) are denoted by X̂n(1), ..., X̂n(2nR).

Definition 10. A rate distortion pair (R,D) is said to be achievable

if there exists a sequence of (2nR, n)-rate distortion codes (fn, gn) with

limn→∞ E[d(Xn, gn(fn(Xn)))] ≤ D.

Definition 11. The rate distortion region for a source is the closure of the set of

achievable rate distortion pairs (R,D).

11



Now, for a Gaussian source with N (0, σ2), the rate-distortion function with

squared-error distortion is given by (see [1], theorem 10.3.2),

R(D) =


1
2

log
(
σ2

D

)
, 0 ≤ D ≤ σ2

0, D > σ2

(2.18)

When D ≤ σ2, then we have R(D) = log
(
σ2

D

)
and we can achieve this rate

distortion pair if we choose a joint distribution,

X = X̂ + Z, X̂ ∼ N (0, σ2 −D), Z ∼ N (0, D) (2.19)

where X̂ and Z are independent. It is easy to that I(X; X̂) = log
(
σ2

D

)
and thus the

bound in (2.18) is achieved. If D > σ2, then we can choose X̂ = 0 with probability

1, achieving R(D) = 0. Therefore, we can have the quantized version of a Gaussian

random variable as another Gaussian random variable with variance less than that

of the original random variable. We will use this important fact later in our analysis.

Figure (1) illustrates this.

Figure 1. Quantization of Gaussian Random Variable

With this background in mind, we now define the Interference Channels in

Chapter 2.
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CHAPTER 3. INTERFERENCE CHANNEL

In this chapter, we define the Interference Channel and provide the motivations

to study such channels. We discuss the previous works in this field and provide the

current state of knowledge about Interference Channels.

The situation often occurs where several sender-receiver pairs share a common

communication channel so that transmission of information from one sender to its

corresponding receiver interferes with communications between the other senders and

their receivers. In radio communications, for example, since the electromagnetic

spectrum is a limited resource, frequency bands are often simultaneously used by

several radio links that are not completely isolated. A communication channel that

is shared in this manner is called an interference channel.

A more general concept, the interference network, is defined as a communi-

cation network with M senders, or input terminals, respectively, with alphabets

X1,X2, ...,XM ; N receivers, or output terminals, with alphabets Y1,Y2, ...,YM ,

respectively; and a collection of conditional probability measures on the set of output

signals, given the input signals.

An interference channel is an M -to-M network (i.e., an interference network

with the same number M of senders and receivers) where a one-to-one correspondence

exists between senders and receivers such that each sender communicates information

only to its corresponding receiver. Thus, an interference channel has M principal links

(between its corresponding terminals) and M(M − 1) interference links.

There are several motivations to study such kind of channels. Usually, when

we don’t want any interference, we would use multiplexing of some kind, such as

frequency division multiplexing where we give separate bandwidth to the different

users so that they don’t interfere with each other. However, there may arises scenarios

where such complete bandwidth separation might not be possible or too expensive to
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implement. For example, consider the situation where we have 10 kHz of bandwidth

available for communication, but we have multiple links of voice communication.

Since speech requires 10 kHz of bandwidth, there is no choice other than having the

transmitter-receiver pairs to face interference from each other. In such a scenario,

in order to maximize our communication rates, we need to know the capacity of the

interference channel.

Another motivation to study the interference channel is the fact that we can

increase our rate of communication if, instead of allowing users to transmit in their

own frequency range we make them transmit in the same frequency band (thereby

increasing the frequency band for each transmitter-receiver pair) and have interference

with other. This can be seen from the point of view that whatever can be achieved

by the users, while using their own frequency, can also be achieved from interference

channel point of view - by simple frequency division multiplexing to avoid interference.

Thus, the achievable rate of communication in the case of interference channel is

a super-set of the rate of communication that is achievable when we remove the

interference by frequency division multiplexing. This motivates us to characterize the

capacity region of the interference channels in the hope that we can strictly improve

our rate of communication by allowing users to interfere. Etkin et al [2] already

showed that this is indeed true and we can actually strictly improve our rate of

communication by allowing users to interfere. Therefore, our study of interference

channels will lead to development of better rate of communications.

An interference channel has M principal links (between corresponding termi-

nals) and M(M − 1) interference links. So, the capacity region of the interference

channel is M -dimensional.

The capacity region C of an interference channel is the closure of the set of

rate vectors R = (R1, R2, ..., RM) for which jointly reliable communications are
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possible over the M principal links, with independent information sources at the

input terminals.

Before we continue, we will first define the notations used here. We denote

n−letter random variables by capital letters, as in X. Also, we introduce the notation

ã = 1
a
. All logarithms are taken with respect to base 2. I represents the unitary matrix

of dimension n. N (p, q) represents a random variable with Gaussian distribution with

mean p and variance q.

The general interference channel with M users is complicated and we consider

a simpler case when M = 2. This kind of channel is called the two-user interference

channel. When the added noise at the receivers is Gaussian, then the channel is called

Gaussian two-user interference channel.

For the two-user interference channel, a rate pair (R1, R2) is said to be achievable

if there exists a sequence of (d2nR1e, d2nR2e, n) codes, such that P
(n)
e,1 → 0 and P

(n)
e,2 → 0

as n→∞, where P
(n)
e,i represents the n-letter probability of error of transmission for

user i, and i ∈ {1, 2}. The rates are expressed in terms of bits per channel use.

A two-user Gaussian Interference Channel in standard form is defined as,

Y1 = X1 +
√
aX2 + Z1, a ∈ R+

Y2 =
√
bX1 + X2 + Z2, b ∈ R+

where Zu ∼ N (0, I), tr
(
E[|Xu|2]

)
≤ Pu, u = {1, 2}

(3.1)

As figure 2 illustrates, a is a dimensionless number that determines the in-

terference strength. It may seem that we lose generality by considering only those

channels with transmission coefficients and unit noise power as shown in (3.1), but as

Carleial showed [3], [4], we can always apply a scaling transformation to a Gaussian

interference channel with arbitrary transmission coefficients and noise powers and

reduce it to an equivalent channel in this restricted class. A Gaussian interference
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Figure 2. Gaussian Interference Channel

channel in standard form is completely specified by its interference coefficients a and

b and by its available powers P1 and P2.

We say that the Gaussian Interference Channel has strong interference if a ≥ 1

and b ≥ 1, mixed interference if a ≥ 1 and b < 1, or a < 1 and b ≥ 1, and weak

interference if a < 1 and b < 1. If a = 0 or b = 0, then the channel is referred to a

Z-Interference Channel. If ab = 1, the channel is referred to a degraded Interference

Channel.

Since in this paper we will mainly deal with the Z-Interference Channel, let

us see a practical example of this channel in daily life and motivate ourselves to

study this channel. Consider wireless mobile communication, where a mobile user

communicates to a cellphone tower. Near the boundary of a tower’s allotted area

(called cell), a mobile user will start feeling the effect of the other nearest tower

as well (figure 3). However, another user close to the other tower communicates

with that tower and receivers almost no interference from the first tower (since

the towers are far apart). Thus only one user receives interference from the other

communication link and we have a Z-Interference Channel.
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Figure 3. Z-Interference Channel example

This model is usually studied in its discrete-time form. Results obtained for the

discrete-time version can be readily extended to its continuous time, band-limited

counterpart in much the same way as we can obtain the capacity of continuous-time,

band-limited Gaussian Shannon channels from the capacity of discrete-time Gaussian

Shannon channels [5].

3.1. Literature Review

The study of this kind of channel was initiated by C. E. Shannon [6] , and

furthered by R. Ahlswede [7], who gave fundamental inner and outer bounds to the

capacity region.

In 1975 Carleial [3] demonstrated the striking fact that very strong interference

is same as no interference. He showed that if a ≥ 1 + P2 and b ≥ 1 + P1, then

the capacity region of the Gaussian interference channel is the full rectangular region

described by

0 ≤ R1 ≤ C1 ,
1

2
log(1 + P1)

0 ≤ R2 ≤ C2 ,
1

2
log(1 + P2)

(3.2)
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The reason behind this counter-intuitive fact is that the interfering signals are

so strong in this case that the receivers may decode them reliably even if they consider

their intended signals as noise. Having decoded the interfering signals, the receivers

may clean their channels by subtracting out the interference.

Later Carleial [4] established a considerably improved achievable rate region for

the memoryless interference channel by applying the superposition coding technique

of T. M. Cover [8] which was originally devised to study the capacity region of the

broadcast channel. On the other hand, H. Sato [9] obtained various inner and outer

bounds by transforming the problem to one for the associated multiple-access or

broadcast channel. By 1981, Han and Kobayashi [10] and Sato [11] found the capacity

region for the strong interference case, where a ≥ 1 and b ≥ 1. They showed that for

interference parameters in this range both receivers would be able to reliably decode

both messages, regardless of the particular coding technique being used. Thus the

capacity region can be defined as the intersection of the capacity regions of the two

multiple-access channels embedded in the interference channel. This region is the

subset of rate pairs (R1, R2) of the rectangle given by (3.2) for which,

R1 +R2 ≤ min

{
1

2
log(1 + aP1 + P2),

1

2
log(1 + P1 + bP2)

}
(3.3)

In 1981, Han and Kobayashi [10] also came up with their achievable scheme,

on which even the current achievable schemes are based. The key ideas behind the

Han Kobayashi scheme are: rate-splitting, superposition coding and jointly decoding.

Each user spits its message into two parts Wu = (Wu0,Wuu), u ∈ 1, 2, where Wu0 −

the common message − is to be decoded at both receivers, while Wuu − the private

message− is to be decoded at intended receiver only. At the encoder side, the common

and the private messages are encoded by superposition. At the decoder side, the two

common messages and the intended private message are jointly decoded. However,
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they did not specify the optimal power split between common and private messages

and we generally express the achievable rate as a union over all possible power division

between common and private parts. The computation of the full Han-Kobayashi

achievable rate region for a general discrete, memoryless Interference Channel is, in

general, prohibitively complex, because of the huge number of degrees of freedom

which are involved in the computation of its sub-regions.

By 1985, the problem of specifying a computable expression of the capacity

region for the general interference channel was still open, although it had been solved

for some very special cases (Carleial [3], Benzel [12]).

In 1985, Costa [13] considered the two-user Gaussian Interference Channel

under weak interference and established the optimality of two extreme points in the

achievable region of the general Gaussian interference channel. He proved that the

class of degraded Gaussian interference channels is equivalent to the class of Z (one-

sided) interference channels.

Kramer [14] derived two outer bounds on the capacity region of the two-user

Gaussian interference channel. The idea of the first bound was to let a genie give

each receiver just enough information to decode both messages. He showed that the

outer bound derived from the genie-aided decoding strategy, unified and improved the

best known outer bounds of Sato and Carleial. The second bound followed directly

from existing results of Costa and Sato and possessed certain optimality properties

for weak interference.

Igal Sason [15] came up with an achievable rate region for this channel, which can

be achieved by time/frequency division multiplexing (TDM/ FDM). It also included

the rate region which is obtained by time sharing between the two rate pairs where

one of the transmitters sends its data reliably at the maximal possible rate (i.e., the

maximum rate it can achieve in the absence of interference), and the other transmitter
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decreases its data rate to the point where both receivers can reliably decode its

message. They showed that their suggested rate region is easily calculable, though

it is a special case of the celebrated achievable rate region of Han and Kobayashi

whose calculation is, in general, prohibitively complex. In addition, they obtained

the sum-capacities of the degraded and one-sided Gaussian Interference Channels.

By 2008, the capacity of the two-user Gaussian interference channel had been

open for 30 years. The understanding on this problem was been limited. The best

known achievable region was due to Han and Kobayashi, but its characterization was

very complicated. It was also not known how tight the existing outer bounds were.

Chong et al [16] derived a simplified description of the HanKobayashi rate region

for the general interference channel. They established that their recently discovered

ChongMotaniGarg rate region is a new representation of the HanKobayashi region.

Then Etkin, Tse, and Wang [2] showed that the existing outer bounds can in fact

be arbitrarily loose in some parameter ranges. By deriving new outer bounds, they

showed that a very simple and explicit HanKobayashi type scheme can achieve to

within a single bit per second per hertz (bit/s/Hz) of the capacity for all values of the

channel parameters. Furthermore, they showed that the scheme was asymptotically

optimal at certain high signal-to-noise ratio (SNR) regimes.

In 2010, Shang, Chen, and Kramer [17] considered the vector, or multipleinput

multipleoutput, Gaussian interference channels and established the capacity regions

for very strong interference and aligned strong interference. Furthermore, the sum-

rate capacities were established for Z interference, noisy interference, and mixed

(aligned weak/intermediate and aligned strong) interference. These results generalize

known results for scalar Gaussian interference channels.

People began to suspect that the best achievable scheme known, the Han-

Kobayashi scheme, was indeed the capacity region of the Z Interference Channels.
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But in 2011, Costa [18] proposed an efficient scheme to transmit information over a Z

Gaussian interference channel. The scheme used the concept of water filling to provide

optimal power sharing among orthogonal dimensions. In the proposed solution,

the notion of noisebergs (noise icebergs) arises, where noise power floats above

signal power in a water filling representation of the problem, providing an improved

allocation of power and degrees of freedom. The solution is best characterized by a

graphical representation. We will discuss his coding scheme more in the next section.

On the other hand, M. Vaezi and H. Vincent Poor [19] showed with an

explicit counterexample that the restriction to Gaussian distributions in the limiting

expression for the capacity region of memoryless Gaussian interference channel falls

short of achieving capacity, in general. This underlies the fact that there is something

wrong with just mathematically trying to derive a upper bound for the Z-Interference

channel. A similar result was shown by Verdu [20] - the restriction to Gaussian inputs

in the limiting expression for the capacity regions of memoryless Gaussian interference

and multiple-access channels falls short of achieving capacity even if the inputs are

allowed to be dependent and non-stationary. This result of Vaezi and Poor just shows

the complications of finding the outer bound of the Z Interference Channel.

In early 2016, M. Vaezi and H. Vincent Poor [21] now showed that with Gaussian

codebooks, timesharing can strictly improve the HK achievable region. They showed

that time-sharing with power allocation over two dimensions is enough to achieve the

border of the HK inner bound, for these channels.

We summarize the current knowledge of the Z-Interference channel in the figure

4. It is clear from the foregoing discussion that, capacity region of the ZIC is known

only for the scenario when the interfering link’s channel gain is larger or equal to one,

i.e., a ≥ 1, which is typically referred to as the strong interference regime. It is well

known that the optimal input distribution for strong interference channel is Gaussian.
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In contrast, the capacity region of the ZIC with weak interference is not known till

date. In the light of the optimality of Gaussian input for the strong interference

channel, its only reasonable to think that Gaussian distribution might turn out to

be optimal for weak interference channel as well. However, characterization of the

capacity region of ZIC, restricted to Gaussian inputs has been a challenging problem

as well. In this thesis, we solve the later problem completely, i.e., assuming that

the input is Gaussian, we characterize the capacity region of the ZIC with weak

interference.

Figure 4. Current knowledge on Z-Interference Channel

In the next chapter we show how to model the Z-Interference Channel and we

provide the best known achievable scheme [18].
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CHAPTER 4. THE Z-INTERFERENCE CHANNEL

In this chapter we define the Z-Interference Channel in its standard form

and convert it into a form that is more convenient for us. Then we describe the

achieveability scheme of Costa [18] and take a deeper look at the time-sharing present

in the scheme and notion of noisebergs.

The Z-Interference Channel in its standard form (see figure 5) is given by,

Y ′1 = X ′
1 +
√
aX ′

2 + Z ′1, (4.1a)

Y ′2 = X ′
2 + Z ′2, (4.1b)

where, tr
(
E(X ′2

1 )
)
≤ nP ′1, Z

′
1 ∼ N (0, I)

tr
(
E(X ′2

2 )
)
≤ nP ′2, Z

′
2 ∼ N (0, I), a ∈ R+

Figure 5. Z-Interference Channel in the standard form

We consider the problem under the weak interference regime, i.e. a ∈ (0, 1).

Furthermore, we restrict the input to be Gaussian distribution only.
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First, we convert this channel into an equivalent channel (as shown in figure 6)

by dividing both sides of (4.1a) by
√
a. We have,

Y1 =
Y ′1√
a

= X1 + X2 + Z1 + Z2 (4.2a)

Y2 = Y ′2 = X2 + Z2 (4.2b)

tr
(
E(X2

1)
)
≤ nP ′1

a
= nP1, Z1 ∼ N

(
0, (ã− 1)I

)
tr
(
E(X2

2)
)
≤ nP ′2 = nP2, Z2 ∼ N (0, I), a ∈ R+

where X1 =
X′

1√
a

and X2 = X ′
2.

Here have used the fact that the sum of two independent Gaussian random

variables is another Gaussian random variable with variance the sum of the variances

of the Gaussian random variables, i.e. if A ∼ N (O, σ1) and B ∼ N (O, σ2) with

C = A+B, then C ∼ N (O, σ1 +σ2). Using this we split the noise of variance ãI into

two independent noise of variances I and (ã − 1)I. Note that this split is possible

because a ≤ 1

Figure 6. The degraded Z-Interference Channel
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4.1. Achievable Rate

Before we derive any outer bound to the Z-Interference channel, let us take a

closer look at the Han-Kobayashi based achievable scheme of Costa ([18]).

The scheme divided the channel use into two different bands, with different

powers of X1 and X2 in different bands. Then, the concept of water filling was used

to provide optimal power sharing among orthogonal dimensions. It turns out that

the notion of noisebergs (noise icebergs) arises, where noise power floats above signal

power in a water filling representation of the power distribution.

In band 1, let m1 be the fraction of time we transmit according to band 1

scheme, m1q1 be the power of X1 , and m1P2a be the power of X2. In band 2, let

m2 be the fraction of time we transmit according to band 1 scheme, and m2P2b be

the power of X2. Note that X1 has no power in band 2. When the height of band

2 is close to that of band 1, then there is no overflow of power into band 1. This

situation is described by the non-overflow region and is illustrated in figure 7. At

receiver one, in band 1 if we treat m1P2a as noise, then we can achieve

R1 =
1

2
log
(

1 +
q1

ã+ P2a

)
and R2 =

1

2
log
(

1 + P2a

)
(4.3)

In band 2, we can achieve:

R1 = 0 and R2 =
1

2
log
(

1 + P2b

)
(4.4)
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Figure 7. Non-overflow region

Since band 1 is used for m1 fraction of time and band 2 is used for m2 fraction

of time, we have m1 +m2 = 1 and therefore m2 = 1−m1. Thus, the achievable rate

is,

R1 =
m1

2
log
(

1 +
q1

ã+ P2a

)
and R2 =

m1

2
log
(

1 + P2a

)
+

1−m1

2
log
(

1 + P2b

)
(4.5)

However, when the height of band 2 is much higher than that of band 1, then,

due to water filling, excess power from band 2 overflows into band 1, giving rise to

the picture in figure 8. At receiver one, in band 1 if we treat m1P2a as noise, then we

can achieve

R1 =
1

2
log
(

1 +
q1

ã+ P2a

)
and R2 =

1

2
log
(

1 + P2a

)
+

1

2
log
(

1 +
P2c

ã+ q1 + P2a

)
(4.6)
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In band 2, we can achieve

R1 = 0 and R2 =
1

2
log
(

1 + P2b

)
(4.7)

Overall, the achievable rate is,

R1 =
m1

2
log
(

1 +
q1

ã+ P2a

)
and

R2 =
m1

2
log
(

1 + P2a

)
+
m1

2
log
(

1 +
P2c

ã+ q1 + P2a

)
+

1−m1

2
log
(

1 + P2b

)
(4.8)

Figure 8. Overflow region

Varying m1, q1, P2a, P2b and P2c, under the constraints,

0 < m1 ≤ 1; m1q1 =P1; m1(P2a + P2c) + (1−m1)P2b = P2; and

P2c = max{0, P2b − P2a − ã− q1} (4.9)

we get a set of possible achievable rates. Taking the union over these rates gives us

an achievable boundary, as shown in figure 9.
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Figure 9. The Han-Kobayashi region with band splitting (top) as compared to the
naive or single band Han-Kobayashi region (bottom)

Now that we have seen the best achievable scheme, we will now try to derive an

upper bound for the Z-Interference Channels in the next chapter.
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CHAPTER 5. UPPER BOUND FOR THE Z-INTERFERENCE

CHANNEL

In this chapter, we first derive an outer bound to the Z-Interference channel. We

analyze the derived outer bound and show that the bound is actually loose. Based

on the intuitions gained from the derivation, we derive another bound for the Z-

Interference channel and with a specific example show that this outer bound matches

with the best known achievable scheme. The tightness of the upper bound shows the

optimality of the known achievable scheme, which was previously unknown.

Theorem 1. If R1 and R2 are achievable rates in the Z Interference Channel, then

R1 ≤
1

2
log(1 + P1) (5.1a)

R2 ≤
1

2
log(1 + P2) (5.1b)

R1 + ωR2 ≤ max
λi,qi,mi

4∑
i=1

mi

[
(1− ω)

2
log
(
ã+ qi + λi

)
+
ω

2
log
(

1 + λi

)
−1

2
log
(
ã+ λi

)]
+
ω

2
log
(
ã+ P1 + P2

)
(5.1c)

subject to
4∑
i=1

miqi ≤ P1 (5.1d)

4∑
i=1

miλi ≤ P2 (5.1e)

4∑
i=1

mi = 1; λ1 = q4 = 0 (5.1f)

ã+ qi + λi = ã+ qj + λj, i, j ∈ {1, 2, 3} (5.1g)

ã+ qi + λi ≤ ã+ λ4, i ∈ {1, 2, 3} (5.1h)

Proof. Let us define U as a quantized version of X2 (i.e. U = X̃2), such that

I(U ;X2) ≤ I(U ;Y1) (5.2)
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Note that intuitively U represents the portion of X2 which is decodable at

receiver one.

Let the set of all such possible U be U, i.e. U = {U : U is a quantized version

of X2}.

For a given X2, note that all quantized versions of X2 (i.e. all U ∈ U) does not

satisfy this property. We will only consider those which satisfy the constraint. Let U

be the set of all U which satisfy the constraint, i.e.

U(X2) = {U : I(U ;X2) ≤ I(U ;Y1)} (5.3)

Also, since Y2 = X2 + Z2, and we have a Markov chain from U → X2 → Y2.

we can write (see [1]),

I(U ;Y2) ≤ I(U ;X2) (5.4)

Combining (5.2) and (5.4), we get,

I(U ;Y2) ≤ I(U ;Y1) (5.5)

Now, for a given U ∈ U(X2), we have,

nR1 ≤ I(X1;Y1) ≤ I(X1,U ;Y1) ≤ I(X1;U) + I(X1;Y1|U ) (5.6a)

⇒ nR1 ≤ I(X1;Y1|U) (5.6b)

(5.6a) follows from the Chain rule for Mutual Information (see [1]), and (5.6b)

follows from the fact I(X1;U) = 0 (since U is independent of X1).

Similarly, by Chain rule for Mutual Information,

nR2 ≤ I(X2;Y2) ≤ I(X2,U ;Y2) ≤ I(U ;Y2) + I(X2;Y2|U) (5.7)
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Combining (5.6b) and (5.7), we get for any ω,

n(R1 + ωR2) ≤ max
X1,X2

I(X1;Y1|U) + ω
(
I(X2;Y2|U) + I(U ;Y2)

)
(5.8a)

≤ I(X1;Y1|U) + ωI(X2;Y2|U) + ωI(U ;Y1) (5.8b)

≤ (1− ω)h(Y1|U) + ωh(X2 + Z2|U) + ωh(Y1)− h(Y1|U ,X1)

(5.8c)

≤ (1− ω)h(Y1|U) + ωh(X2 + Z2|U)− h(Y1|U ,X1)

+
nω

2
log
(
ã+ P1 + P2

)
(5.8d)

where (5.8c) follows from (5.5) and (5.8d) follows from the fact that,

h(Y1) ≤ n
2

log
(
ã+ P1 + P2

)
.

Now, we have the following lemma,

Lemma 1.

h(X2 + Z2|U) =
1

2
log |KX2|U + I| (5.9a)

h(Y1|U ,X1) =
1

2
log |KX2|U + ãI| (5.9b)

h(Y1|U) =
1

2
log
∣∣∣KX1 +KX2|U + ãI

∣∣∣ (5.9c)

Proof. See appendix A.1

Using (5.9a), (5.9b) and (5.9c) we can write (5.8d) as,

n(R1 + ωR2) ≤
(1− ω)

2
log
∣∣∣ãI +KX2|U +KX1

∣∣∣+
ω

2
log
∣∣∣I +KX2|U

∣∣∣
− 1

2
log
∣∣∣ãI +KX2|U

∣∣∣+
nω

2
log
(
ã+ P1 + P2

)
(5.10)
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Since (5.10) holds for all distributions of X1,X2 and all U ∈ U(X2), we can

write,

n(R1 + ωR2) ≤ max
X1,X2

U∈U(X2)

(1− ω)

2
log
∣∣∣ãI +KX2|U +KX1

∣∣∣+
ω

2
log
∣∣∣I +KX2|U

∣∣∣
− 1

2
log
∣∣∣ãI +KX2|U

∣∣∣+
nω

2
log
(
ã+ P1 + P2

)
(5.11a)

subject to tr(KX1) ≤ nP1 (5.11b)

tr(KX2) ≤ nP2 (5.11c)

Now we drop the restriction U ∈ U(X2) and allow U ∈ U. Relaxing the

constraints can only increase our upper bound. For any U , we have tr(KX2|U ) ≤ nP2

and therefore we can write our maximization problem as,

n(R1 + ωR2) ≤ max
X1,X2
U∈U

(1− ω)

2
log
∣∣∣ãI +KX2|U +KX1

∣∣∣+
ω

2
log
∣∣∣I +KX2|U

∣∣∣
− 1

2
log
∣∣∣ãI +KX2|U

∣∣∣+
nω

2
log
(
ã+ P1 + P2

)
(5.12a)

subject to tr(KX1) ≤ nP1 (5.12b)

tr(KX2|U ) ≤ nP2 (5.12c)

Since KX2|U is a positive semi-definite matrix, we can decompose KX2|U as

V ΛV †, where Λ is a diagonal matrix with diagonal elements λi and V is a unitary

matrix.
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We have,

log |I +KX2|U | = log |1 + Λ| =
∑
i

log(1 + λi) (5.13a)

log
∣∣∣ãI +KX2|U

∣∣∣ = log
∣∣∣ã+ Λ

∣∣∣ =
∑
i

log
(
ã+ λi

)
(5.13b)

log
∣∣∣ãI +KX2|U +KX1

∣∣∣ = log
∣∣∣ãI + V ΛV † +KX1

∣∣∣ (5.13c)

= log

∣∣∣∣(V †[KX1 + V ΛV † + ãI]V )

∣∣∣∣ (5.13d)

= log

∣∣∣∣(V †KX1V + Λ + ãI)

∣∣∣∣ (5.13e)

where (5.13a) and (5.13b) follows from the fact that det(I+AB) = det(I+BA)

and (5.13d) follows from the fact that det(AB) = det(BA).

Since V is a unitary matrix, if we define K̃X1 = V †KX1V , then K̃X1 and KX1

will have the same trace constraint. If qi are the diagonal elements of K̃X1 , then we

have
∑

i qi ≤ nP1. By Hadamund’s inequality, we can write,

log
∣∣∣ãI +KX2|U +KX1

∣∣∣ = log

∣∣∣∣(V †KX1V + Λ + ãI)

∣∣∣∣ ≤∑
i

log
(
ã+ qi + λi

)
(5.14)

With (5.13a), (5.13b) and (5.14), we can write (5.12) as,

n(R1 + ωR2) ≤ max
qi,λi

n∑
i=1

[
(1− ω)

2
log
(
ã+ qi + λi

)
+
ω

2
log
(

1 + λi

)
− 1

2
log
(
ã+ λi

)]
+
nω

2
log
(
ã+ P1 + P2

)
(5.15a)

subject to
n∑
i=1

qi ≤ nP1 (5.15b)

n∑
i=1

λi ≤ nP2 (5.15c)
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To solve this new optimization problem, we use Lagrange Multipliers, and the

study the Lagrangian,

L =
∑
i

[
(1− ω)

2
log
(
ã+ qi + λi

)
+
ω

2
log
(

1 + λi

)
− 1

2
log
(
ã+ λi

)]

+
nω

2
log
(
ã+ P1 + P2

)
+ α(nP2 −

∑
i

λi) + β(nP1 −
∑
i

qi) +
∑
i

αiλi +
∑
i

βiqi

(5.16)

Because of the inequality constraints, we need to apply the Karush-Kuhn-Tucker

(KKT) conditions. The KKT stationary and complementary slackness constraints are

given by,

(1− w)/2

ã+ qi + λi
− β − βi = 0 (5.17a)

(1− w)/2

ã+ qi + λi
+

w/2

1 + λi
− 1/2

ã+ λi
− α + αi = 0 (5.17b)

α(nP2 −
∑
i

λi) = 0 (5.17c)

β(nP1 −
∑
i

qi) = 0 (5.17d)

αiλi = 0 ∀ i (5.17e)

βiqi = 0 ∀ i (5.17f)
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Now, we have the following lemma,

Lemma 2. The solution to the optimization problem ( 5.15), can be written as,

R1 + ωR2 ≤ max
λi,qi,mi

4∑
i=1

mi

[
(1− ω)

2
log
(
ã+ qi + λi

)
+
ω

2
log
(

1 + λi

)
−1

2
log
(
ã+ λi

)]
+
ω

2
log
(
ã+ P1 + P2

)
(5.18a)

subject to
4∑
i=1

miqi ≤ P1 (5.18b)

4∑
i=1

miλi ≤ P2 (5.18c)

4∑
i=1

mi = 1; λ1 = q4 = 0 (5.18d)

ã+ qi + λi = ã+ qj + λj, i, j ∈ {1, 2, 3} (5.18e)

ã+ qi + λi ≤ ã+ λ4, i ∈ {1, 2, 3} (5.18f)

Proof. See appendix A.2

Thus, in (5.15), we only need to consider four different values of qi and λi

satisfying the constraints given in the lemma above. This is summarized in the figure

10.
This completes the proof of the theorem 1.

From the outer bound given in the form of (5.1), it is not clear whether this

outer bound is tight or not, i.e. whether we can achieve this rate or not.

We numerically evaluate the outer bound and compare it to the achievable region

of Costa, as described earlier, for P1 = 2, P2 = 2, a = 0.5 and P1 = 2, P2 = 4, a = 0.8.

They are shown in figures 11 and 12 respectively. The difference between upper

bounds and achievable rates show that our outer bound is not tight.
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Figure 10. The four band partition: The height of the first three bands are the same
and are less than or equal to the height of the last band.

Figure 11. The achievable rate (black line) as compared to outer bound (red cross)
for P1 = 2, P2 = 2, a = 0.5.

Now, in equation 5.8d, we maximized h(Y1) separately from the rest of the

terms in the equation. Since simultaneous maximization always leads to a maximum
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Figure 12. The achievable rate (black line) as compared to outer bound (red cross)
for P1 = 2, P2 = 4, a = 0.8.

value which is less than or equal to individual maximization value, perhaps we can

improve this upper bound by simultaneously maximizing all the terms in equation

(5.8c).

This motivates us to find the outer bound again, keeping h(Y1) = n
2

log
∣∣∣ãI +

KX1 +KX2

∣∣∣. This is done in Theorem 2, which we now describe.
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Theorem 2. If R1 and R2 are achievable rates in the Z Interference Channel, then

R1 ≤
1

2
log(1 + P1) (5.19a)

R2 ≤
1

2
log(1 + P2) (5.19b)

n(R1 + ωR2) ≤ max
λi,qi,ki,mi

4∑
i=1

mi

[
(1− ω)

2
log
(
ã+ qi + λi

)
+
ω

2
log
(

1 + λi

)
− 1

2
log
(
ã+ λi

)
+
ω

2
log
(
ã+ qi + λi + ki

)]
(5.19c)

subject to
4∑
i=1

miqi ≤ nP1 (5.19d)

4∑
i=1

mi(λi + ki) ≤ nP2 (5.19e)

4∑
i=1

mi = 1; λ1 = q4 = k4 = 0 (5.19f)

k1 = k2 = k3 (5.19g)

ã+ qi + λi + ki = ã+ qj + λj + kj, i, j ∈ {1, 2, 3} (5.19h)

ã+ qi + aλi + ki ≤ ã+ λ4, i ∈ {1, 2, 3} (5.19i)

Proof. We define U as before. But this time we treat h(Y1) differently. In (5.8c),

instead of using h(Y1) ≤ n
2

log
(
ã+P1+P2

)
, we keep h(Y1) = n

2
log
∣∣∣ãI+KX1 +KX2

∣∣∣.
Therefore, our maximization problem is,

n(R1 + ωR2) ≤ max
X1,X2

U∈U(X2)

(1− ω)

2
log
∣∣∣ãI +KX2|U +KX1

∣∣∣+
ω

2
log
∣∣∣I +KX2|U

∣∣∣
− 1

2
log
∣∣∣ãI +KX2|U

∣∣∣+
ω

2
log
∣∣∣ãI +KX1 +KX2

∣∣∣ (5.20a)

subject to tr(KX1) ≤ nP1 (5.20b)

tr(KX2) ≤ nP2 (5.20c)
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Now, as defined in (5.3), U is a quantized version of X2. Note again that

for any X2, not all U ∈ U is allowed. For example, if X2 ∼ N (0, P2In) with

n
2

log(1 + P2) information for receiver two, then U cannot be X2 since the channel

from transmitter two to receiver is degraded and cannot carry that much information.

Thus, for any given X2, we can choose U from a constant to some quantized version

of X2 and we see that the minimum value of tr(KX2|U ) may not always be 0. So, let

nρ ≤ tr(KX2|U ). Also, for any U , we have tr(KX2|U ) ≤ tr(KX2) ≤ nP2. Therefore,

nρ ≤ tr(KX2|U ) ≤ nP2.

The natural question that arises is what are the possible values of ρ? If we

choose X2 = 0, then we see that ρ can be zero. Thus, 0 ≤ ρ ≤ P2. Therefore, we can

write our maximization problem as,

n(R1 + ωR2) ≤ max
X1,X2

ρ∈[0,P2]

(1− ω)

2
log
∣∣∣ãI +KX2|U +KX1

∣∣∣+
ω

2
log
∣∣∣I +KX2|U

∣∣∣
− 1

2
log
∣∣∣ãI +KX2|U

∣∣∣+
ω

2
log
∣∣∣ãI +KX1 +KX2

∣∣∣ (5.21a)

subject to tr(KX1) ≤ nP1 (5.21b)

nρ ≤tr(KX2|U ) ≤ nP2 (5.21c)

Since KX2|U is a positive semi-definite matrix, we can decompose KX2|U as

V ΛV †, where Λ is a diagonal matrix with diagonal elements λi and V is a unitary

matrix. Then (5.13) holds.
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Now, we can write KX2 = KX2|U +KX2UK
−1
U KUX2 and therefore we have,

log
∣∣∣ãI +KX1 +KX2

∣∣∣ = log
∣∣∣V †(ãI +KX1 + [KX2|U +KX2UK

−1
U KUX2 ]

)
V
∣∣∣

(5.22a)

= log
∣∣∣ãI + V †KX1V + V †KX2|UV + K̃

∣∣∣ (5.22b)

= log
∣∣∣ãI + ˜KX1 + Λ + K̃

∣∣∣ (5.22c)

where K̃ = V †KX2UK
−1
U KUX2V and (5.22a) follows from the fact that det(AB) =

det(BA). Now if the diagonal elements of K̃ are ki, then by Hadamund’s inequality

we can write,

log
∣∣∣ãI +KX1 +KX2

∣∣∣ = log
∣∣∣ãI + ˜KX1 + Λ + K̃

∣∣∣ ≤∑
i

log
(
ã+ qi + λi + ki

)
(5.23)

With (5.13a), (5.13b), (5.14) and (5.23), we can write (5.21) as,

n(R1 + ωR2) ≤ max
qi,λi,ki
ρ∈[0,P2]

n∑
i=1

[
(1− ω)

2
log
(
ã+ qi+λi

)
+
ω

2
log
(

1 + λi

)

− 1

2
log
(
ã+ λi

)
+
ω

2
log
(
ã+ qi + λi + ki

)]
(5.24a)

subject to
n∑
i=1

qi ≤ nP1 (5.24b)

nρ ≤
n∑
i=1

λi (5.24c)

n∑
i=1

(λi + ki) ≤ nP2 (5.24d)
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To solve this new optimization problem, we use Lagrange Multipliers, and the

study the Lagrangian, (something might be missing here)

L =
n∑
i=1

[
(1− ω)

2
log
(
ã+ qi + λi

)
+
ω

2
log
(

1 + λi

)
− 1

2
log
(
ã+ λi

)
+
ω

2
log
(
ã+ qi + λi + ki

)]
+ α

(∑
i

λi − nρ
)

+ β
(
nP1 −

∑
i

qi

)
+ γ
(
nP2 −

∑
i

λi −
∑
i

ki

)
+
∑
i

αiλi +
∑
i

βiqi +
∑
i

σiki (5.25)

Because of the inequality constraints, we need to apply the Karush-Kuhn-Tucker

(KKT) conditions. The KKT stationary and complementary slackness constraints are

given by,

(1− w)/2

ã+ qi + λi
+

w/2

ã+ qi + λi + ki
− β − βi = 0 (5.26a)

(1− w)/2

ã+ qi + λi
+

w/2

1 + λi
− 1/2

ã+ λi
+

w/2

ã+ qi + λi + ki
+ α− γ + αi = 0 (5.26b)

w/2

ã+ qi + λi + ki
− γ + σi = 0 (5.26c)

α(nP2 −
∑
i

λi) = 0 (5.26d)

β(nP1 −
∑
i

qi) = 0 (5.26e)

αiλi = 0 ∀ i (5.26f)

βiqi = 0 ∀ i (5.26g)

σiki = 0 ∀ i (5.26h)
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Now, we have the following lemma,

Lemma 3. The solution to the optimization problem ( 5.24), can be written as,

n(R1 + ωR2) ≤ max
λi,qi,ki,mi

4∑
i=1

mi

[
(1− ω)

2
log
(
ã+ qi + λi

)
+
ω

2
log
(

1 + λi

)
− 1

2
log
(
ã+ λi

)
+
ω

2
log
(
ã+ qi + λi + ki

)]
(5.27a)

subject to
4∑
i=1

miqi ≤ nP1 (5.27b)

4∑
i=1

mi(λi + ki) ≤ nP2 (5.27c)

4∑
i=1

mi = 1; λ1 = q4 = k4 = 0 (5.27d)

k1 = k2 = k3 (5.27e)

ã+ qi + λi + ki = ã+ qj + λj + kj, i, j ∈ {1, 2, 3} (5.27f)

ã+ qi + aλi + ki ≤ ã+ λ4, i ∈ {1, 2, 3} (5.27g)

Proof. See appendix A.3

Thus, in (5.24), we only need to consider four different values of qi, λi, and

ki satisfying the constraints given in the lemma above. Figure 13 summarizes these

facts.
This completes the proof of the theorem 2.

Now let us take a look at how close the known achievable schemes are. First,

note that any point on the boundary of the upper bound must lie on one of the lines

defined in (5.19).

Now consider the Han-Kobayashi achievability scheme. With λi power of X2

used for private information, ki power of X2 used for common information, and qi
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Figure 13. The four band partition: The height of the first three bands with ki are
the same and are less than or equal to the height of the last band.

power of X1, we can achieve:

R1 =
1

2
log

(
1 +

qi
ã+ λi

)
,

R2 =
1

2
log

(
1 + λi

)
+

1

2
log

(
1 +

ki
ã+ λi + qi

)
(5.28)

With time-sharing, we can achieve:

R1 =
4∑
i=1

mi

2
log

(
1 +

qi
ã+ λi

)
,

R2 =
4∑
i=1

mi

[
1

2
log

(
1 + λi

)
+

1

2
log

(
1 +

ki
ã+ λi + qi

)]
(5.29)
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And we see that for this achievability scheme, we have,

R1 + ωR2 =
4∑
i=1

mi

[
(1− ω)

2
log
(
ã+ qi + λi

)
+
ω

2
log
(

1 + λi

)
− 1

2
log
(
ã+ λi

)
+
ω

2
log
(
ã+ qi + λi + ki

)]
(5.30)

which is a point on the outer bound.

Thus, any point on the outer bound must be a solution of some equation of

(5.19), for some ω, and that point can be achieved with Han-Kobayashi scheme as

described above. Therefore, our outer bound matches with the achievable scheme.

We numerically evaluate the upper bound and compare it to the achievable

scheme for P1 = 2, P2 = 2, a = 0.5 and P1 = 2, P2 = 4, a = 0.8. The results are shown

in figure 14 and figure 15 respectively.

Figure 14. The achievable rate (black line) as compared to the new outer bound (red
cross) for P1 = 2, P2 = 2, a = 0.5.
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Figure 15. The achievable rate (black line) as compared to the new outer bound (red
cross) for P1 = 2, P2 = 4, a = 0.8.

In the next chapter, we discuss why we were able to obtain such a tight upper

bound. The concept of common information (defined in U) deserves a closer look.
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CHAPTER 6. DISCUSSION

In this section, we discuss our intuitions for our definition of U . We show that

it is necessary to take special care of common information while trying to derive an

upper bound of Z-Interference channels. We provide the reasons for why Vaezi and

Poor [19] got an upper bound which is lower than the known inner bound.

Consider a single user Gaussian point to point channel. Such channels are well

studied and the capacity region is known. Let the input and output of the channel

be represented by X1 and Y1 respectively. If the input average power constraint

is P1 and the noise has unit variance, then the capacity of the channel is given by

C = 1
2

log(1 + P1) bits per channel use. Now, suppose in a particular communication

scenario, the transmitter is sending information at full capacity rate; it is transmitting

a Gaussian signal with power P1 (i.e. X1 ∼ N (0, P2I)), and the information content

of the transmitter is 1
2

log(1 +P1) bits per channel use, which is being decoded at the

receiver (receiver 1). Now suppose that this message of transmitted is also getting

received at another receiver (receiver 2), but this link is stronger than the original

link (see figure 16).

Figure 16. A simple case demonstrating common and private information
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In this scenario, if the strength of the second link is two, then the outputs of the

channel can be written as Y1 = X1+Z1 and Y2 = 2X1+Z2, where Z1,Z2 ∼ N (0, I) .

Information theory tells us that receiver 2, receives I(X1;Y2) amount of information.

Clearly, I(X1;Y2) > I(X1;Y1), since 2X1+Z2 contains more information about X1

than X1 + Z1 (more signal compared to noise). Thus, receiver 2 is able to receive

1
2

log(1 + 2P1) bits of information per channel use. However, the transmitter has

only 1
2

log(1 + P1) bits of information per channel use. Therefore, receiver 2 cannot

gain any more information than what is contained in X1. Therefore, I(X1;Y2) =

I(X1;Y1) = 1
2

log(1 + P1). However, if X2 is a Gaussian distribution with any given

variance, then mathematically I(X1;Y2) > I(X1;Y1). But, because of the nature

our communication scheme, they turn out to be equal.

This conundrum between mathematical value of mutual information and oper-

ational meaning of information is explored in the context of Z-Interference Channels

in the following theorem:

Theorem 3. For the Z-Interference Channel given in equation 4.2, we have,

h(X2 + Z2)− h(X2 + Z1 + Z2) + h(Z1 + Z2)− h(Z2) = h(W2|Y1,X1) (6.1)

where W2 is the information content of X2 for receiver two only (to be decoded at

Y2).

Proof. For any W2, we have,

h(W2|Y1,X1) = h(W2|Y2,X1) + h(X2|W2,Y2,X1)

= h(X2|Y2,X1) + h(W2|X2,Y2,X1) (6.2)

So,

h(W2|X2,Y2,X1) = h(W2|Y2) + h(X2|W2,Y2)− h(X2|Y2) (6.3)
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Similarly, we can write,

h(W2|X2,Y1,X1) = h(W2|Y1,X1) + h(X2|W2,Y1,X1)− h(X2|Y1,X1)

(6.4a)

⇒ h(W2|X2,X2 + Z1 + Z2) = h(W2|X2 + Z1 + Z2) + h(X2|W2,X2 + Z1 + Z2)

− h(X2|X2 + Z1 + Z2) (6.4b)

Since W2 is contained in X2, we have h(W2|X2,X2 + Z1 + Z2) = 0 and

h(W2|X2,Y2,X1) = 0. We can write,

0 = h(W2|X2 + Z2) + h(X2|W2,X2 + Z2)− h(X2|X2 + Z2) (6.5)

⇒ h(W2|X2 +Z1 +Z2) = h(X2|X2 +Z1 +Z2)− h(X2|W2,X2 +Z1 +Z2) (6.6)

Adding (6.5) and (6.6), we get,

h(W2|X2 + Z1 + Z2) = [h(X2|X2 + Z1 + Z2)− h(X2|X2 + Z2)] + h(W2|X2 + Z2)

+ [h(X2|W2,X2 + Z2)− h(X2|W2,X2 + Z1 + Z2)]

(6.7)

Now,

h(X2|W2,X2 + Z1 + Z2) ≥ h(X2|W2,X2 + Z1 + Z2,Z1)

= h(X2|W2,X2 + Z2)

⇒ h(X2|W2,X2 + Z2)− h(X2|W2,X2 + Z1 + Z2) ≤ 0 (6.8)
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Using (6.8), we can write (6.7) as,

h(W2|X2 + Z1 + Z2) ≤ h(X2|X2 + Z1 + Z2)− h(X2|Y2) + h(W2|X2 + Z2)

(6.9a)

≤ h(X2|X2 + Z1 + Z2)− h(X2|Y2) (6.9b)

≤ [h(X2)− h(X2 + Z1 + Z2) + h(X2 + Z1 + Z2|X2)]

(6.9c)

− [h(X2)− h(X2 + Z2) + h(X2 + Z2|X2)]

(6.9d)

= h(X2 + Z2)− h(X2 + Z1 + Z2) + h(Z1 + Z2)− h(Z2)

(6.9e)

Thus, we have the following:

h(W2|X2 +Z1 +Z2) ≤ h(X2 +Z2)−h(X2 +Z1 +Z2)+h(Z1 +Z2)−h(Z2) (6.10)

Now, assume that

h(X2 + Z2)− h(X2 + Z1 + Z2) + h(Z1 + Z2)− h(Z2) > h(W2|X2 + Z1 + Z2)

(6.11)
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Then, we have,

h(X2 + Z2)− h(Z2)− h(X2 + Z1 + Z2) + h(Z1 + Z2) > h(W2|X2 + Z1 + Z2)

(6.12a)

⇒ I(X2;Y2)− I(X2;Y1|X1) > h(W2|X2 + Z1 + Z2) (6.12b)

⇒ I(X2;Y2) > h(W2|X2 + Z1 + Z2) + I(X2;Y1|X1) (6.12c)

Since W2 is a part of X2, we can write

I(X2;Y1|X1) = I(X2,W2;Y1|X1) (6.13a)

= I(W2;Y1|X1) + I(X2;Y1|W2,X1) (6.13b)

In Z-Interference Channel, no information is sent from transmitter 2 to receiver 1.

Therefore, I(X2;Y1|W2,X1) = 0. With that in mind, we can use (6.13b) in (6.12c)

and get,

I(X2;Y2) > h(W2|X2 + Z1 + Z2) + I(W2;Y1|X1) (6.14a)

I(X2;Y2) > h(W2) (6.14b)

Equation (6.14b) states that R2 is greater than h(W2), which is not possible. Thus

our initial assumption of (6.11) was wrong and we have,

h(X2 +Z2)−h(X2 +Z1 +Z2)+h(Z1 +Z2)−h(Z2) ≤ h(W2|X2 +Z1 +Z2) (6.15)
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From (6.10) and (6.15), we have

h(X2 + Z2)− h(X2 + Z1 + Z2) + h(Z1 + Z2)− h(Z2) = h(W2|Y1,X1) (6.16)

which proves our original statement.

Theorem 3 says that the information decodable at receiver two (i.e. at Y2) is

dependent on the message content of X2 and not just the distribution of X2. For

example, if W2 = 0 (i.e. no specific information for receive two; in other words, no

”private information”), then the information of X2 decodable at receiver two is same

as the decodable amount at receiver one :

h(X2 + Z2)− h(Z2) = h(X2 + Z1 + Z2)− h(Z1 + Z2) (6.17)

⇒ I(X2;X2 + Z2) = I(X2;X2 + Z1 + Z2) (6.18)

However, mathematically this is not possible. For any Gaussian distribution X2,

we have, I(X2;X2 + Z2) > I(X2;X2 + Z1 + Z2). This is exactly the same case as

was described earlier in figure 16. This characteristic of h(X2+Z1+Z2)−h(Z1+Z2)

is shown in figure 17, where we plot h(X2 + Z1 + Z2)− h(Z1 + Z2) vs power of the

Gaussian random variable X2 for a given W2.
So, it turns out that just specifying the distribution of the random variable X2

is not enough; we need to specify how much information is ”common” and how much

is ”private”. For the Z-Interference Channel, if we do not use W2 to describe our

information and rather use X2 as our information content, then we are implicitly

assuming that X2 = W2 and the entire power of X2 is used as private information.

This is exactly what was done in Vaezi and Poor’s outer bound [19]. Now, to achieve

the capacity for R1, it needs a clear channel and therefore the private information

content of X2 should be zero. If we do not allow common information, then the
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Figure 17. Nature of common information: The mutual information is no longer given
by the mathematical expression

entire power of X2 is zero at this point (since we have no common information and

no private information), and thus R2 = 0. However, if we allow common information

(as we did), then we can achieve the point

(
1
2

log(1 + P1),
1
2

log
(
1 + P2

1+P1

))
, where

the entire information of X2 is common information when R1 achieves its capacity.

This explains why Vaezi and Poor’s outer bound turned out to be lower than the

inner bound, but we were able to derive an outer bound which matches with the

inner bound. For the reader’s reference, we show the upper bound of Vaezi and Poor

in figure 18.
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Figure 18. Vaezi and Poor’s outer bound

The next chapter concludes our work and summarizes our results. We also

discuss related problems where this work can be applied.
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CHAPTER 7. CONCLUSION

We have considered the Z-Interference Channel, which is a simplified case of the

general two user Interference Channel in the fact that one of the interference links is

zero. For such a channel, we restricted the input to Gaussian signal and under that

constraint characterized the capacity region under weak interference. Interference

channel was identified more than 40 years ago, but the exact characterization of the

capacity region is still not known to date. Many progress has been made, but it

remained unclear whether the best known achievable scheme was indeed the capacity

region or not. Even for the one-sided interference channels, the capacity was not

known. In this work about the Z-Interference Channel, we assume that some part

of interfering message can be decoded and the rest of it has to be treated as noise.

Then considering all possible combinations of decodable and undecodable interfering

messages at the receiver, we derive an upper bound. Finally, we show that this upper

bound is actually achievable by Han-Kobayashi scheme with time sharing. Therefore,

we prove that best known achievable region was indeed the capacity region.

This work sheds light on the problem of common information lurking in the

Z-Interference channels. The intuition gained from this work can be applied to the

problems such as the Z-Channel. The Z-Channel has the same channel model as the

Z-Interference Channel, but the interference link is seen as another communication

link. So the Z-Channel has three set of independent messages to be transmitted and

its capacity region is therefore three dimensional. We denote the three rates by R1, R2,

and R21. When R21 = 0, we get the Z-Interference Channel (as shown by [22]). There

has been many work on this channel and the capacity region is partially characterized

(see [23]). Till now, the boundary on the R1 − R2 plane was not characterized. Our

result just characterizes this bound on R1 −R2 plane. For the reader’s reference, we

show the known Z-Channel capacity region in figure 19 (taken from [23]).
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Figure 19. Known Z-Channel Capacity Region: Points B and C are known to be
optimal; point A is achievable, but its optimality is unknown

Our work will also give intuitions about finding the solution to the general Z-

Interference Channel (i.e. without Gaussian signaling constraint). Furthermore, since

the Z-Interference Channel is a special case of the two user Interference Channel, our

work can be used as a starting point for characterizing the capacity of the two user

Interference Channel.

Ultimately, this work will help in the future research towards exact characteri-

zation of capacity of interference networks.
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APPENDIX

A.1. Proof of Lemma 1

We can use [24], Lemma 6, and write

h(X2 + Z2|U) =
1

2
log |KX2|U + I| (A.1)

where KX2|U is the covariance of X2|U . [We need X2 and U to be zero-mean

Gaussian random vector sequences independent of Z].

Similarly, we have

h(Y1|U ,X1) = h(X2 + Z1 + Z2|U) =
1

2
log |KX2|U + ãI| (A.2)

On the other hand,

h(Y1|U) = h(X1 + X2 + Z1 + Z2|U) =
1

2
log
∣∣∣cov(X1 + X2 + Z1 + Z2|U)

∣∣∣ (A.3)

Now, define KU to be covariance of U , KX1 to be covariance of X1,

K = E[X2U ] and K∗ = E[UX2]. Now consider,

∣∣∣∣∣∣∣cov

X2

U


∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
KX2 K

K∗ KU


∣∣∣∣∣∣∣ (A.4a)

=

∣∣∣∣KU

∣∣∣∣ ∣∣∣∣KX2 −KK−1U K∗
∣∣∣∣ (A.4b)

where (A.4b) follows from Schur complement.
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So,

h(X2,U) = h
(X2

U

) = h(U) + h(X2|U) (A.5a)

⇒ 1

2
log

∣∣∣∣∣∣∣2πe.cov

X2

U


∣∣∣∣∣∣∣ =

1

2
log

∣∣∣∣2πe.KU

∣∣∣∣+
1

2
log

∣∣∣∣2πe.KX2|U

∣∣∣∣
(A.5b)

⇒ 1

2
log

∣∣∣∣KU

∣∣∣∣+
1

2
log

∣∣∣∣KX2 −KK−1U K∗
∣∣∣∣ =

1

2
log

∣∣∣∣KU

∣∣∣∣+
1

2
log

∣∣∣∣KX2|U

∣∣∣∣ (A.5c)

⇒ KX2|U = KX2 −KK−1U K∗ (A.5d)

where (A.5c) follows from (A.4b).

Similarly, we have

∣∣∣∣∣∣∣cov

X1 +X2 + Z1 + Z2

U


∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
KX1 +KX2 + ãI K

K∗ KU


∣∣∣∣∣∣∣ (A.6a)

=

∣∣∣∣KU

∣∣∣∣ ∣∣∣∣KX1 +KX2 + ãI −KK−1U K∗
∣∣∣∣ (A.6b)

=

∣∣∣∣KU

∣∣∣∣ ∣∣∣∣KX1 + ãI −KX2|U

∣∣∣∣ (A.6c)

Therefore,

h(X1 + X2 + Z1 + Z2,U) = h

(X1 + X2 + Z1 + Z2

U

)

= h(U) + h(X1 + X2 + Z1 + Z2|U) (A.7a)
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⇒ 1

2
log

∣∣∣∣∣∣∣2πe.cov

X1 + X2 + Z1 + Z2

U


∣∣∣∣∣∣∣ =

1

2
log

∣∣∣∣2πe.KU

∣∣∣∣
+

1

2
log

∣∣∣∣2πe.cov(X1 + X2 + Z1 + Z2|U )

∣∣∣∣
(A.7b)

⇒ 1

2
log

∣∣∣∣KU

∣∣∣∣+
1

2
log

∣∣∣∣KX1 +KX2|U + ãI

∣∣∣∣ =
1

2
log

∣∣∣∣KU

∣∣∣∣
+

1

2
log

∣∣∣∣cov(X1 + X2 + Z1 + Z2|U)

∣∣∣∣
(A.7c)

⇒ cov(X1 + X2 + Z1 + Z2|U ) = KX1 +KX2|U + ãI (A.7d)

Therefore, from (5.9c), we have.

h(Y1|U) =
1

2
log
∣∣∣cov(X1 + X2 + Z1 + Z2|U)

∣∣∣ =
1

2
log
∣∣∣KX1 +KX2|U + ãI

∣∣∣ (A.8)
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A.2. Proof of Lemma 2

Here, for a given P1 and P2, we will solve the maximization problem (5.15)

numerically after we simplify the problem by observing the nature of the equations.

Combining (5.17a) and (5.17f), we get

qi

(
β − (1− ω)/2

ã+ qi + λi

)
= 0 ∀ i (A.9)

Without loss of generality, assume λ1 ≤ λ2 ≤ ... ≤ λn. Say m is the largest

integer such that β < (1−ω)/2
ã+λi

∀i ≤ m.

Then,

qi =


1−ω
2β
− (ã+ λi) ∀ i ≤ m

0 ∀ i > m

(A.10)

Note that this essentially divided our qi and λi into two bands - one where qi 6= 0

and the other with qi = 0. We shall call the case qi 6= 0 as band 1 and qi = 0 as band

2. Let m/n = λ. Thus, for λ fraction we have band 1 and 1 − λ fraction we have

band 2.

Now, for any l < m , we have

β − (1− ω)/2

ã+ λl
< 0

and β − (1− ω)/2

ã+ λl + ql
= 0 (A.11)

For any j > m, we have

β − (1− ω)/2

ã+ λj
≥ 0 (A.12)
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From (A.11) and (A.12), we have for any l < m and j > m,

ã+ ql + λl ≤ ã+ λj (A.13)

This shows that the height of Band 1 is less than or equal to the height of Band

2.

Combining (5.17b) and (5.17e), we get

λi

(
α− (1− ω)/2

ã+ qi + λi
+

1/2

ã+ λi
− ω/2

1 + λi

)
= 0 (A.14)

Now when qi = 0, we have,

λi

(
α +

ω/2

ã+ λi
− ω/2

1 + λi

)
= 0 (A.15a)

Assuming that λi is not zero (since it would be sub-optimal for both qi and λi to be

zero simultaneously), we have

(ã+ λi)(1 + λi) =
ω(ã− 1)

2α
(A.15b)

⇒ aλ2i + (1 + a)λi + 1− ω(1− a)

2α
= 0 (A.15c)

This shows that λi can have two values, but one of them is negative (since

coefficient of λi is positive). Since λi ≥ 0, we see that when qi = 0, λi can take only

one value. Thus, band 2 consists of some non-zero λi = λ2 and qi = 0.

When qi is non-zero, i.e. i ≤ m, we have,

λi

(
α− β +

1/2

ã+ λi
− ω/2

1 + λi

)
= 0 (A.16)

which shows that there can be three different values of λi within band 1.
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Thus, we have divided the input power into 4 bands with different values of qi

and λi with i = 0, 1, 2, 3, and λ0 = 0, q3 = 0.
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A.3. Proof of Lemma 3

Combining (5.26c) and (5.26h) we get,

ki

(
γ − w/2

ã+ qi + λi + ki

)
= 0 ∀ i (A.17)

Without loss of generality, assume q1 + λ1 ≤ q2 + λ2 ≤ ... ≤ qn + λn. Say m is

the largest integer such that γ − w/2
ã+qi+λi

< 0 ∀i ≤ m and γ − w/2
ã+qi+λi

≥ 0 ∀i > m.

Then, we have,

ki =


ω
2γ
− (ã+ qi + λi) ∀ i ≤ m

0 ∀ i > m

(A.18)

Note that this again divides the input power into two bands - one where ki is

zero and one where it is not zero. We will call the band where ki 6= 0 as band 1 and

the band where ki = 0 as band 2.

Now, for any l < m , we have

γ− w/2

ã+ ql + λl
< 0

⇒ γ− w/2

ã+ ql + λl + kl
= 0 (A.19)

For any j > m, we have

γ − w/2

ã+ qj + λj
≥ 0 (A.20)
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From (A.19) and (A.20), we have for any l < m and j > m,

ã+ ql + λl + kl ≤ ã+ qj + λj (A.21)

Next, we will show that in band 1, qi 6= 0. Suppose qi = 0 for some i ≤ m.

Then the contribution towards the objective function for this particular i is:

[
(1− ω)

2
log(ã+ λi) +

ω

2
log(1 + λi)−

1

2
log(ã+ λi) +

ω

2
log(ã+ λi + ki)

]

= ω

[
1

2
log(1 + λi) +

1

2
log(ã+ λi + ki)−

1

2
log(ã+ λi)

]

It is easy to show that this expression can be maximized with k′i = 0 and

λ′i = λi + ki, i.e. having all the power in λi instead of ki. However, by assumption

ki 6= 0. Therefore, it is sub-optimal to have qi = 0 for i ≤ m.

Now, combining (5.26a) and (5.26g) we get,

qi

(
β − (1− w)/2

ã+ qi + λi
− w/2

ã+ qi + λi + ki

)
= 0 ∀ i (A.22)

Again consider l ≤ m and j > m, so that we have kj = 0, kl 6= 0 and ql 6= 0.

Since ql 6= 0, by (A.22) we have,

(
β − (1− w)/2

ã+ ql + λl
− w/2

ã+ ql + λl + kl

)
= 0 (A.23)

Now, since l ≤ m, from the ordering of qi + λi we have ql + λl ≤ qj + λj. Using

this fact and (A.21), we have

(
β − (1− w)/2

ã+ qj + λj
− w/2

ã+ qj + λj

)
> 0 (A.24)
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From equations (A.22) and (A.24), we have qj = 0. Thus, whenever ki = 0, we

have qi = 0. This simplifies our numeric analysis since in Band 2, we only have λi.

Combining (5.26b) and (5.26f) we get,

λi

(
(1− w)/2

ã+ qi + λi
+

w/2

1 + λi
− 1/2

ã+ λi
+

w/2

ã+ qi + λi + ki
+ α− γ

)
= 0 (A.25)

Now, in Band 1, we have ã + qi + λi + ki = ω
2γ

= constant. Then, equation

(A.23) shows that ã+ qi +λi = constant. This means that in the Band 1, ki has only

one value.

Using the fact that ã + qi + λi + ki and ã + qi + λi are constant in (A.25), we

again get an equation similar to (A.16) of part 1, which tells us that λi can have three

values in Band 1.
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