
EQUIVALENCE VERIFICATION FOR NULL CONVENTION LOGIC AND

LATENCY-INSENSITIVE CIRCUITS

A Dissertation
Submitted to the Graduate Faculty

of the
North Dakota State University

of Agriculture and Applied Science

By

Vidura Manu Wijayasekara

In Partial Fulfillment of the Requirements
for the Degree of

DOCTOR OF PHILOSOPHY

Major Department:
Electrical and Computer Engineering

April 2016

Fargo, North Dakota

NORTH DAKOTA STATE UNIVERSITY

Graduate School

Title

EQUIVALENCE VERIFICATION FOR NULL CONVENTION LOGIC AND

LATENCY-INSENSITIVE CIRCUITS

By

Vidura Manu Wijayasekara

The supervisory committee certifies that this dissertation complies with North Dakota State Uni-

versity’s regulations and meets the accepted standards for the degree of

DOCTOR OF PHILOSOPHY

SUPERVISORY COMMITTEE:

Dr. Sudarshan K. Srinivasan
Chair

Dr. Scott C. Smith

Dr. Debasis Dawn

Dr. Kenneth Magel

Approved:

8 April 2016

Date

Dr. Scott C. Smith
Department Chair

ABSTRACT

NULL convention logic and latency-insensitive circuits are delay-tolerant circuits that can

be synthesized from a synchronous specification. These design paradigms can use existing CAD

flows to implement circuits that are robust to process variations and wire delays. Verification is an

indispensable phase of any commercial design cycle, and needs to be addressed in order to exploit the

potential advantages of these design paradigms. Delay-tolerant circuits are of asynchronous nature.

Therefore, timing behavior of these delay-tolerant circuits are very disparate from the synchronous

specifications, and verifying equivalence of the synthesized circuit to the synchronous specification

is one of the main challenges. However, there is no existing work in the literature that address

this challenge and still remains an open problem. This study makes an initial effort in developing

equivalence verification methods and equivalence checking tools for these design paradigms.

iii

ACKNOWLEDGEMENTS

I would like to thank Dr. Sudarshan K. Srinivasan, Dr. Scott C. Smith, Dr. Debasis Dawn,

and Dr. Kenneth Magel for serving in my graduate committee. Dr. Sudarshan K. Srinivasan is

my Ph.D. Advisor, and I am very thankful for guidance, and wisdom he gave me through out my

research. He has shown me the true satisfaction of research, and I enjoyed many discussions we

had on the subjects of formal verification.

I would like to thank Dr. Hyunsook Do for serving in my graduate committee. I appreciate

your comments and input to improve this research.

NSF funded my research for many years through grants CCF-1117164 and CCF-1242043,

and I am very grateful.

Finally, I like to thank my family for their relentless support in every way, and my wife for

giving me strength thorough out this work.

iv

DEDICATION

To my family.

v

TABLE OF CONTENTS

ABSTRACT . iii

ACKNOWLEDGEMENTS . iv

DEDICATION . v

LIST OF TABLES . ix

LIST OF FIGURES . x

1. INTRODUCTION . 1

1.1. Background . 1

1.2. Motivation . 2

1.3. Problem Statement . 3

1.4. Equivalence Verification . 3

2. EQUIVALENCE CHECKING FOR SYNCHRONOUS ELASTIC CIRCUITS 5

2.1. Introduction . 5

2.2. Background: Equivalence Notion . 7

2.3. Automating Computation of Refinement Maps . 9

2.3.1. Token-Flow Diagrams for Elastic Circuits . 9

2.3.2. Reachability for Elastic Controller Networks 13

2.3.3. Token-Flow Diagrams for Synchronous Circuits 14

2.3.4. Refinement Map Computation . 16

2.4. Tool Flow . 19

2.4.1. Liveness . 21

2.5. Results . 22

2.6. Related Work . 23

2.7. Conclusions . 24

3. EQUIVALENCE VERIFICATION FOR NCL CIRCUITS 26

vi

3.1. Introduction . 26

3.2. Related Work . 28

3.3. Background: NCL Circuits . 29

3.4. Equivalence Verification for Combinational NCL Circuits 30

3.5. Equivalence Verification for Sequential NCL Circuits 32

3.5.1. WEB Refinement . 33

3.5.2. Reachability for Sequential NCL Circuits . 35

3.5.3. Refinement Maps . 39

3.6. Results . 42

3.7. Conclusions . 43

4. ABSTRACTION TECHNIQUES TO IMPROVE SCALABILITY OF EQUIVALENCE
VERIFICATION FOR NCL CIRCUITS . 44

4.1. Introduction . 44

4.2. Abstraction of Combinational Units . 45

4.3. Abstraction of Completion Mechanism . 47

4.4. Results . 48

4.5. Conclusion . 50

5. EQUIVALENCE VERIFICATION FOR DESYNCHRONIZED CIRCUITS 51

5.1. Introduction . 51

5.2. Related Work . 55

5.3. Desynchronization and DFVD Controllers . 58

5.3.1. DFVD Controller . 60

5.4. Reachability Analysis of DFVD Controller Network 61

5.5. Desynchronized Pipelined Models . 64

5.6. Refinement-Based Verification . 65

5.7. Circular Desynchronized Pipelines . 66

5.8. Refinement Map for Circular Desynchronized Pipelines 70

vii

5.8.1. Projection Predicates . 72

5.8.2. Projection Functions . 73

5.8.3. Consistency Invarients . 73

5.8.4. Duplicate Invarients . 74

5.8.5. Memory Invarients . 74

5.9. Results . 75

5.10. Conclusions . 76

6. CONCLUSION . 77

6.1. Nanoscale Circuit . 77

6.2. Final Remarks . 77

6.3. Recommendation for Future Work . 78

REFERENCES . 79

APPENDIX. LIST OF PUBLICATIONS . 87

viii

LIST OF TABLES

Table Page

2.1. Datapath Connectivity Matrix Mc for Benchmark E-2 10

2.2. Token Flow Diagram for E-2 . 14

2.3. Token Flow Diagram for Synchronous Circuit of E-2 . 15

2.4. Results . 22

3.1. Dual-Rail Signaling . 29

3.2. Results . 42

4.1. Verification Times for MAC Before and After Abstractions 50

5.1. Worst Case Delay Analysis of DFVD Controller . 60

5.2. SMT Statistics . 75

ix

LIST OF FIGURES

Figure Page

2.1. High-Level Organization of a 5-Stage Elastic Processor with Two Additional Elastic
Buffers L1 and L2. The J and F Blocks Denote the Join and Fork Structures. 6

2.2. Tool Flow . 20

3.1. Single-Bit Dual-Rail Register . 30

3.2. Multiplier Accumulator Circuit (MAC) . 33

3.3. Verification Times for MAC Circuits . 42

4.1. Comparison of Verification Times for MAC Circuits . 49

5.1. A Pipeline Stage with a Latch Controller Network. 58

5.2. DFVD Controller . 59

5.3. DFVD Controller Circuit for Data Transfer . 63

5.4. High-Level Organization of Desynchronized 6-Stage Pipelined Processor Model 64

5.5. The 6-Stage Desynchronized Pipeline and the Corresponding Parent Synchronous Pipeline. 66

5.6. n-Stage Circular Desynchronized Pipeline. 67

x

1. INTRODUCTION

1.1. Background

With technology scaling it is becoming increasingly difficult to design digital circuits using

a synchronous approach. Previously ignored design challenges such as process variability and wire

delays have significant effects on smaller feature size circuits. Process variations lead to stretching

of timing margins in static timing analysis resulting in too conservative designs [1]. As transistors

become smaller and faster, wire delays become relatively large [2]. However, wire delays cannot

be determined until later design stages (e.g. layout stage). If a long wire path is in the root of a

timing violation, it is likely to cause more iterations in the design cycle. This is called the wire-delay

challenge and could prohibitive prolong the design process. Designing the global clock to keep the

clock skew at an acceptable level require multiple drivers and more area of the chip. In fact, clock

logic itself contributes to increase in power dissipation, which hinders performance of the circuit [3].

Mixed signal environment of System-on-Chip (SoC) designs introduce a set of new problems,

which are termed more-than-Moore, such as harsh power and timing conditions; and require logic

to be robust under such circumstances [4]. Hence, the ability of the synchronous design style to

deliver economical and reliable solutions is being threatened.

Asynchronous circuits are clock-less circuits that take a feedback closed-loop control ap-

proach for synchronizing the data flow. Therefore, asynchronous circuits are more robust to varying

computational delays caused by process, voltage, temperature (PVT) variations, long wire paths,

etc. Also, these circuits require less power, and produce less electromagnetic interference. In addi-

tion to requiring less power, asynchronous circuits can operate robustly under modern circuit-level

power minimization techniques, such as dynamic voltage scaling.

However, using a local synchronization approach, instead of a global approach such as a

clock signal, means different stages of the circuit can progress at different speeds making the circuit

highly concurrent. Consequently, asynchronous circuits are harder to design and verify. Additional

circuit elements needed for hand shaking circuits, data encoding, etc. render area overhead. Hence,

although asynchronous design paradigm has been around for 50+ years, asynchronous circuits are

primarily utilized for niche markets and in the research domain.

1

1.2. Motivation

However, as transistor size continues to decrease, asynchronous circuits are being looked

to by industry more and more to solve power dissipation and process variability issues associated

with these smaller feature size circuits. Presently, companies like Intel and ARM incorporate

asynchronous logic to some of their designs using their own proprietary tools [3].

One reason asynchronous design style is avoided for digital circuit design is lack of complete

CAD flows, which is essential to design large, realistic designs [1]. Much work has been done in de-

veloping new design methodologies that could implement delay-tolerant circuits from a synchronous

design [5, 6, 7, 8]. These design methods can exploit existing EDA tools and CAD flows to design

delay-tolerant circuits. Such approaches can be divided into three categories:

• Synchronous Elastic Circuits: synchronous elastic circuits are clock-based latency insensitive

circuits. Elastic circuits are typically synthesized from synchronous circuits. After synthesis,

additional buffers can be arbitrarily inserted in the data path of an elastic circuit without

altering its functionality to resolve timing issues.

• Null Convention Logic (NCL) Circuits: NCL circuits are quasi delay-insensitive circuits that

can be synthesized from a synchronous design. They make minimal timing assumptions

(isochronic forks), and performance is close to average-case performance.

• Desynchronized Circuits: desynchronization is proposed as a design solution, to synthesize

bounded-delay asynchronous circuits from synchronous parents in a manner that exploits

existing CAD tool support for synchronous designs.

Development of tools to automate the synthesis of the above circuits is largely addressed [9,

10, 11, 12, 13]. So is the verifying correctness of components used in the control networks; and

certain properties of the circuit, such as delay insensitivity. Nonetheless, equivalence verification

of these circuits is still largely unaddressed. In fact, according to Jordi Cortadella, a top and

pioneering researcher in developing latency-insensitive systems, equivalence checking is one of the

main challenges and remains an open problem; some of the work done in this study is the initial

effort to address it [14].

2

1.3. Problem Statement

Equivalence verification of the synthesized NCL and latency-insensitive circuits against the

synchronous counterpart still remains an open problem [14]. This is one the main challenges as

synthesis tools and manual tinkering can introduce bugs to the design. This study makes the

initial attempt in developing equivalence verification methods and tools for Null Convention Logic

circuits, and delay-insensitive circuits.

1.4. Equivalence Verification

We use the notion of Well-Founded Equivalence Bisimulation (WEB) refinement for the

equivalence verification problem. A formal and detailed description of WEB refinement is provided

in [15][16]. Here, we provide a brief overview of the key features of WEB refinement relevant to the

problem at hand. WEB refinement is a notion of equivalence that can be used to check if an im-

plementation system satisfies its specification system, even if the implementation and specification

are defined at very disparate levels of abstraction.

In the context of refinement, digital systems are modeled as transition systems (TSs). A

TS is a three tuple and includes the set of states of the system, a transition relation that defines

the state transitions of the system, and a labeling function that defines what is observable in each

state. The behaviors of a system modeled as a TS are defined using the notion of paths. A path in

a TS is a sequence of states, say s0,s1,s2, ..., where s0 is the initial state and s0 transitions to s1,

s1 transitions to s2, and so on. An infinite sequence of such states is a full path. The behaviors of

a system is the set of all full paths in the TS of the system.

The implementation behaves correctly as given by the specification, if every behavior of

the implementation is matched by a behavior of the specification and vice versa. However, the

implementation and specification may not have the same timing behavior. For example, the im-

plementation may take many steps to match a single step of the specification. This phenomenon

is known as stuttering. To account for such situations, multiple but finite transitions of the imple-

mentation system are allowed to match a single transition of the specification system.

Refinement-Based Correctness Formula: Manolios [16] has shown that it is enough

to prove the following refinement-based correctness formula to establish the equivalence of an

implementation and specification based on WEB refinement. rank is used to distinguish stutter

3

from deadlock. rank is a witness function from implementation states to natural numbers whose

value decreases when the implementation stutters.

Definition 1. (Refinement-Based Correctness Formula)

〈
∀w ∈ I :: s = refinement-map(w) ∧ u = SStep(s) ∧

v = IStep(w) ∧ u 6= refinement-map(v)

⇒ s = refinement-map(v) ∧ rank(v) < rank(w)
〉

In the above, SStep() and IStep() are functions that define the transitions of the imple-

mentation and specification. I is the set of all the implementation states reachable from the initial

states of the implementation. Note that in order to establish the equivalence of an implementation

and specification system, all the reachable states of the implementation should be checked to see if

they satisfy the above correctness formula. The correctness formula given above is expressible in a

decidable fragment of first-order logic. Therefore, verifying equivalence of an implementation and

a specification based on WEB refinement can be accomplished automatically using an SMT solver

if a suitable refinement map and rank function are available.

4

2. EQUIVALENCE CHECKING FOR SYNCHRONOUS

ELASTIC CIRCUITS1

2.1. Introduction

Latency insensitive (LI) [6], [17] design addresses the wire delay challenge for nanometer

technologies within the synchronous framework. The central idea is to use relay stations—which

function like latches—to break long wires that cause violations of timing requirements imposed

by the clock. A handshaking protocol (known as LI protocol) is used to allow for insertion of

buffers/relay stations without altering the functionality of the system. One of the primary impacts

is that LI design aids in intellectual-property reuse in systems-on-chip by reducing the expensive

iterations required for timing closure [18]. LI design is a very active area of research in both

academia and industry and many LI design paradigms, implementations, and optimizations have

been proposed [6], [17], [8], [19], [20], [21], [22].

Synchronous Elastic Networks (SEN) [8], [23] is one effective approach to implement LI

designs and also synthesize LI systems from synchronous parents. The idea with SEN is to replace

all flip flops with elastic buffers (EBs) that are constructed from two elastic half buffers (EHBs),

namely a master EHB and a slave EHB. EHBs are gated latches whose clock input is produced by

elastic controllers that are used to implement the LI protocol. The clock network is replaced by a

network of elastic controllers, where each controller is used to control the elastic buffers in a design

stage and synchronize with the controllers of adjacent design stages. In the resulting elasticized

design, elastic buffers can be inserted in any place in the data path to break long wires. Figure 2.1

shows the example of an elasticized processor data path with two additional elastic buffers.

1 The material in this chapter was co-authored by Vidura M. Wijayasekara and Sudarshan K.
Srinivasan. Vidura Wijayasekara was the primary developer of the conclusions that are advanced
here.Vidura Wijayasekara also drafted and revised all versions of this chapter. Sudarshan Srini-
vasan served as proofreader and checked correctness of the theories and algorithms developed by
Vidura Wijayasekara. c©2013 IEEE. Reprinted, with permission, from V. Wijayasekara and S. K.
Srinivasan, “Equivalence Checking for Synchronous Elastic Circuits,” Formal Methods and Models
for Codesign (MEMOCODE), 2013 Eleventh IEEE/ACM International Conference on, 10/2013.

5

L1

L2

Forwarding
Logic

J FFJ

J

RF

MW

IM

F

Instruction
Decode

DM

PC FD DE EM

PC
Logic

write backmemoryexecute

decodefetch

Figure 2.1. High-Level Organization of a 5-Stage Elastic Processor with Two Additional Elastic
Buffers L1 and L2. The J and F Blocks Denote the Join and Fork Structures.

In this work, we present an automated equivalence checker that verifies the functionality

of the elastic circuit (even after the inclusion of any number of arbitrarily placed additional elastic

buffers) against its synchronous parent circuit. Why would such an equivalence checker be useful in

practice? Consider the IP reuse based SoC design paradigm. The SoC design is constructed from

digital IP components. Some of these IP components are obtained from third party vendors, some

are proprietary IPs, while others may be designed from scratch. All these IP components have to

be integrated together in a technology (that some of these IPs may not have been designed for).

At this stage in the design cycle, some of the IPs will require infeasible and expensive redesign to

resolve timing issues that arise in the new technology. The designer can instead opt to generate

elastic versions of these IPs and solve the timing issues in the elastic domain without requiring

expensive redesign. However, after generating the elastic design and fixing all timing issues using

additional elastic buffers, the resulting elastic IP will have undergone a considerable transformation

w.r.t. the original synchronous IP. The designer cannot assume that the resulting elastic IP will

not have bugs. The designer will instead have to expend time and resources to verify the elastic

IP.

Our fully automated equivalence checker comes to the aid here and addresses the verification

problem of the elastic IP. One may argue that the transformations used in generating elastic circuits

6

are already proved to be correct and so verification is not required. However, the IP circuits

will undergo considerably significant mutations and there could be many sources of error in the

elasticization process (such as buggy synthesis tools, and manual tinkering of the circuit). Also,

commercial design processes will not assume the functional correctness of the resulting design and

will require verification.

The equivalence checker takes as input the elastic and synchronous circuits in RTL VHDL.

The checker can currently handle closed circuits, where the behavior of the elastic controller net-

work is deterministic. For future work, we will extend the techniques implemented in the checker

to handle elastic controllers with non-deterministic behaviors. The equivalence verification proof

obligations are automatically generated. An SMT solver is used in the back end to check the proof

obligations. The notion of equivalence used is described in Section 2.2. The equivalence verification

algorithms incorporated in the tool are described in Section 2.3. The overall tool flow is described

in Section 2.4. Experimental results, related work, and conclusions are given in Sections 2.5, 2.6,

and 2.7, respectively. The capacity of the equivalence checker is demonstrated with results from 24

elastic circuit benchmarks. The benchmarks and tools required to reproduce our results is available

in [24].

2.2. Background: Equivalence Notion

The notion of equivalence we use is Well-Founded Equivalence Bisimulation (WEB) refine-

ment [15][16]. A formal and detailed description of WEB refinement is provided in [15][16]. Here,

we provide a brief overview of the key features of WEB refinement relevant to the problem at hand.

WEB refinement is a notion of equivalence that can be used to check if an implementation system

satisfies its specification system, even if the implementation and specification are defined at very

disparate levels of abstraction.

In the context of refinement, digital systems are modeled as transition systems (TSs). A

TS is a three tuple and includes the set of states of the system and a transition relation that

defines the state transitions of the system. The behaviors of a system modeled as a TS are defined

using the notion of paths. A path in a TS is a sequence of states, say s0,s1,s2, ..., where s0 is

the initial state and s0 transitions to s1, s1 transitions to s2, and so on. An infinite sequence of

such states is a full path. The behaviors of a system is the set of all full paths in the TS of the

system. The implementation behaves correctly as given by the specification, if every behavior of

7

the implementation is matched by a behavior of the specification and vice versa. However, the

implementation and specification may not have the same timing behavior. For example, if the

implementation is an elastic circuit and the specification is a synchronous circuit, the elastic circuit

may take many steps to match a single step of the synchronous circuit. This phenomenon is known

as stuttering. To account for such situations, multiple but finite transitions of the implementation

system are allowed to match a single transition of the specification system.

Another issue is that to check equivalence, synchronous states and elastic circuit states

need to be compared. However, these states look very different. While the synchronous states

have flip-flops, elastic circuit states have elastic buffers and also possibly additional buffers. WEB

refinement employs refinement maps, functions that map implementation states to specification

states to bridge this abstraction gap.

Refinement-Based Correctness Formula: Manolios [16] has shown that it is enough

to prove the following refinement-based correctness formula to establish the equivalence of an

implementation and specification based on WEB refinement. rank is used to distinguish stutter

from deadlock. rank is a witness function from implementation states to natural numbers whose

value decreases when the implementation stutters.

Definition 2. (Refinement-Based Correctness Formula) For every implementation state w, let s

be a specification state such that s = refinement-map(w). If u is the specification successor of s (u

= Sstep(s)) and v is the implementation successor of w (v = Istep(w)), then one of the following

has to hold:

1. u = r(v) {non-stuttering step}

2. s = r(v) ∧ rank(v) < rank(w) {stuttering step}

In the above, Sstep() and Istep() are functions that define the transitions of the imple-

mentation and specification. Note that in order to establish the equivalence of an implementation

and specification system, all the reachable states of the implementation should be checked to see if

they satisfy the above correctness formula. The correctness formula given above is expressible in a

decidable fragment of first-order logic. Therefore, verifying equivalence of an implementation and

a specification based on WEB refinement can be accomplished automatically using an SMT solver

if a suitable refinement map and rank function are available.

8

2.3. Automating Computation of Refinement Maps

If an implementation is a refinement of a specification, then a refinement map does exist [25].

However, finding/constructing a refinement map can be very challenging in practice and can require

deep understanding and analysis of the systems being compared. Also, often times, the refinement

map can be computationally expensive, resulting in the approach being infeasible. The primary

contribution of this work is a fully automated procedure to compute refinement maps for the elastic

verification problem described in the introduction section. The refinement maps synthesized by our

procedure leads to an efficient and scalable verification approach. The key idea is to use reachability

analysis of the elastic controller network (using the notion of token-flow diagrams) to systematically

synthesize refinement maps.

We use the example of a 5-stage elastic processor circuit (shown in Figure 2.1) to illustrate

the ideas presented in the rest of the paper. We call this elastic circuit example E-2. The elastic

processor pipeline has 5 elastic buffers corresponding to pipeline latches PC , FD , DE , EM , and

MW . We also inserted two additional elastic buffers at arbitrary points in the data path that are

labeled L1 and L2 . The elastic controller network is also shown in the figure. The controllers use

valid (indicated by solid lines) and stop signals (indicated by dashed lines) to implement the LI

protocol. The synchronous parent of E-2 would have regular registers instead of EBs, and will not

have the additional EBs. A clock signal would replace the entire elastic controller network.

2.3.1. Token-Flow Diagrams for Elastic Circuits

In this section, we describe a procedure for generating token-flow diagrams for elastic cir-

cuits. Token-flow diagrams are used for reachability analysis of the elastic control layer and also

for synthesizing refinement maps.

Sy is the set of stages in the synchronous circuit. It is an ordered set. Each stage in Sy is

hence identified by a unique number i, 0 ≤ i < |Sy|. E is the set of stages in the elastic circuit. E

is an ordered set. Each stage in E is hence identified by a unique number i, where 0 ≤ i < |E|.

Each stage of the elastic circuit corresponds to an elastic buffer and vice versa. The elastic buffers

are classified as non-additional elastic buffers and additional elastic buffers. Note that each non-

additional EB would correspond to a stage in the synchronous parent circuit. An EB is described

to be in an empty, half, or full state, if the EB holds 0, 1, or 2 valid data units, respectively.

9

Definition 3. The token state of an elastic controller network circuit, TE is defined as the set {〈

m0, s0 〉, 〈 m1, s1 〉, ..., 〈 m|E|−1, s|E|−1 〉} such that m0, m1, ..., m|E|−1, s0, s1, ..., s|E|−1 ∈ N.

The token state is used to capture the distribution of valid data in the elastic circuit. mi

and si indicate the token values corresponding to the master and slave EHBs, respectively. EHBs

without valid data are assigned the token value 0. EHBs with positive non-zero token values

indicates valid data. Unique data tokens are identified by unqiue token values.

We next define elastic token-flow diagrams (etfd), which are used to compute refinement

maps.

Definition 4. An elastic token-flow diagram (etfd) is a finite sequence of elastic token states such

that for any adjacent pair of token states in the sequence, say TEi and TEj, such that TEi and TEj

are elastic token states corresponding to the elastic controller network states ei and ej, then (ei ,

ej) ∈ →ecn, where →ecn is the transition relation of the elastic controller network circuit.

The token-flow diagram for a sequence of states of the E-2 elastic circuit is shown in Ta-

ble 2.2. First, we define a procedure that given a token state of the elastic circuit, computes the

next token state of that circuit. The procedure also takes as input the connectivity matrix of an

elastic circuit MC , which is defined as follows.

Definition 5. The connectivity matrix of an elastic circuit MC = [aij]|E|×|E| such that aij = 1 if

there is a data channel from EB i to EB j. Otherwise aij = 0.

Table 2.1. Datapath Connectivity Matrix Mc for Benchmark E-2

PC FD DE EM MW L1 L2

PC 0 1 0 0 0 1 0

FD 0 0 1 0 0 0 0

DE 0 0 0 1 0 0 0

EM 0 0 0 1 1 0 0

MW 0 0 0 1 0 0 1

L1 1 0 0 0 0 0 0

L2 0 0 1 0 0 0 0

10

Another data structure used in the procedure is the token transition matrix MTT . For EBs

with multiple destinations, it is possible that in a cycle, data is transferred in only some of the

output channels, but not all. To keep track of this, we use the MTT matrix. Initially, all entries

in the matrix are assigned a value 0. If data transfers from a source EB on only some but not all

output channels, then the channels on which the transition takes place is given a value 1 in MTT .

When in the future, the data from the source is transferred on all output channels, then all the

output channels from that source are reassigned a value 0 in MTT .

Note that unlike synchronous circuits, data need not always transfer from source EB to

destination in a given cycle. In fact, data transfers only when valid data is available at the source

EB and the destination EB is ready to accept data (which is indicated by deasserting the stop

signal). Therefore, we define the function ValidDataInputs(i) that determines if all the sources of

a destination EB have valid data.

Definition 6. ValidDataInputs(i) =

∧
0≤j<|E|

{(
Mc[j][i] = 1

)
→
(
MTT [j][i] = 0 ∧ sj 6= 0

)}

In the above definition, a destination EB i has valid data at all its sources j only if slave EHB

(sj) is not empty, and that data in sj has not previously transferred on that channel (MTT [j][i] = 0).

We only check those EBs that are sources to EB i (Mc[j][i] = 1).

Procedure 1 Next token calculation for master EHBs

1: for i ← 0 to |E| − 1 do
2: if mi 6= 0 then
3: m′i ← mi

4: else if ValidDataInputs(i) then
5: TokenGenerator ← TokenGenerator + 1
6: m′i ← TokenGenerator
7: for j ← 0 to |E| -1 do
8: MTT [j][i]← 1;

9: else
10: m′i ← 0;

11

The algorithm that computes the next token state is given in two steps. In the first step

(shown in Procedure 1), the next token value of all master EHBs (m′i) is computed. The procedure

enumerates through all the master EHBs and uses the following property of elastic circuits.

Property 1. [8] For any elastic buffer in a half state (one of the EHB has valid data and the other

EHB is empty), the master EHB will be empty and the slave EHB will have valid data.

As can be inferred from the above property, if the master EHB is not empty, then the

corresponding EB is full, meaning that both master and slave EHBs hold valid data. In this state,

the master EHB retains its previous value and the EB does not accept any new data. Otherwise,

if the master EHB is empty, then the procedure checks to see if all the sources to EB i have valid

data. If this is the case, a new unique token number is generated and assigned to m′i, the next

value of mi. The TokenGenerator is a counter that is initialized to a natural number value greater

than the greatest token value in the input elastic token state. The MTT matrix is updated. If

otherwise, one or more of the sources do not have valid data, then the Master EHB will become

empty. Therefore m′i is assigned zero in this case.

Procedure 2 Next token calculation for slave EHBs

1: for i ← 0 to |E| − 1 do
2: if si = 0 then
3: s′i ← 0
4: else
5: if DataTransferredAll(i) then
6: s′i ← 0
7: for j ← 0 to N-1 do
8: MTT [i][j]← 0

9: else
10: s′i ← si

11: if (s′i = 0) ∧ (m′i 6= 0) then
12: s′i ← m′i
13: m′i ← 0

Definition 7. DataTransferredAll(i) =

∧
0≤j<|E|

{(
Mc[i][j] = 1

)
→
(
MTT [i][j] = 1

)}

12

The second step of the algorithm computes the next value of slave EHBs and is shown in

Procedure 2. If the slave EHB is currently empty, then it will remain empty. Otherwise, if transfers

have taken place on all the output channels (determined by the DataTransferredAll function), then

the slave EHB can let go of its current token value and is updated to empty. The DataTransferredAll

function is defined in Definition 7.

The DataTransferredAll(i) function examines only those entries in MTT corresponding to

EB i that are destinations of EB i (Mc[i][j] = 1). The functions examines the output channels of

EB i to determine if transfers have been completed on these channels (MTT = 1).

Also, the entries in the MTT matrix corresponding to the output channels of EB i are

assigned a value 0 to indicate that transfers have taken place on all the output channels from EB

i. If there are still output channels in which transfers are yet to be completed, then the slave EHB

retains its token.

After the slave EHBs have been updated (lines 1-13 of Procedure 2), the procedure checks

the new token values of the master and slave EHBs. If the EB is in a half state where the slave is

empty and the master has a token, then this token is transferred from master to slave (lines 14-16

of Procedure 2), due to Property 1. This completes the computation of the next token state of the

elastic circuit.

2.3.2. Reachability for Elastic Controller Networks

The reachable states of an elastic controller network can be computed using token-flow dia-

grams. At reset, elastic buffers are initialized to the half state and additional buffers are initialized

to the empty state. Such a reset state is a requirement of the SEN paradigm.

Definition 8. The binary token state corresponding to the token-state TE of an elastic circuit is

defined as the set {〈 bm0, bs0 〉, 〈 bm1, bs1 〉, ..., 〈 bm|E|−1, bs|E|−1 〉} such that

bmi/bsi =

1 mi/si > 0

0 mi/si = 0

To compute token-flow diagrams for reachability, the initial token-state is constructed by

assigning a token value 0 to the empty EHBs and a unique non-zero natural number token value

to each of the non-empty EHBs.

13

Table 2.2. Token Flow Diagram for E-2

State
0 1 2 3 4 5 6

(pc) (fd) (de) (em) (mw) (l1) (l2)
m s m s m s m s m s m s m s

0 0 1 0 2 0 3 0 4 0 5 0 0 0 0
1 0 0 1 2 0 0 0 6 0 4 0 1 0 5
2 0 7 0 1 0 8 0 6 6 4 0 0 0 4
3 0 0 0 7 0 9 0 10 0 6 0 7 0 0
4 0 11 0 7 0 0 0 12 0 10 0 0 0 6
5 0 0 0 11 0 13 0 12 12 10 0 11 0 10
6 0 14 0 0 0 15 0 16 0 12 0 0 0 0
7 0 0 0 14 0 0 0 17 0 16 0 14 0 12
8 0 18 0 0 0 19 0 17 17 16 0 0 0 16
9 0 0 0 18 0 0 0 20 0 17 0 18 0 16
10 0 21 0 0 0 22 0 20 20 17 0 0 0 17
11 0 0 0 21 0 0 0 23 0 20 0 21 0 17
12 0 24 0 0 0 25 0 23 23 20 0 0 0 20
13 0 0 0 24 0 0 0 26 0 23 0 24 0 20

We use the notion of a binary token state for reachability, which is given in Definition 8.

The binary token state captures the distribution of data in the elastic circuit without distinguishing

the data units. Thus, two elastic controller network states with the same binary token states are

essentially equivalent.

The reachable states of the elastic controller network are computed by simulating the token-

flow diagram until a binary token state is reached that has already been visited before. Note that

since we consider only deterministic elastic controller networks, the reachable states will be a finite

sequence of states that will converge and hence can be computed as an etfd . The resulting token

states correspond to the reachable states of the controller network of the elastic circuit. Table 2.2

shows the token-flow diagram for computing the reachable states of the E-2 benchmark. As can

be seen from the table, states 7, 9, 11, and 13 map to the same binary token states. Also, states

8, 10, and 12 map to the same binary token states. Therefore, the reachable states of the elastic

controller network of E-2 are states 0 through 8, after which the states start to repeat.

2.3.3. Token-Flow Diagrams for Synchronous Circuits

Token flow diagrams for the synchronous parent circuit (stfd), which is the specification,

are also computed. Given an etfd , an stfd captures how the tokens in the etfd would progress in

14

the synchronous parent circuit. The token-flow diagram for the synchronous circuit corresponding

to the etfd of Table 2.2 is shown in Table 2.3. The refinement map is constructed by examining

the token states of the elastic and the synchronous circuits.

Table 2.3. Token Flow Diagram for Synchronous Circuit of E-2

State
0 1 2 3 4

(pc) (fd) (de) (em) (mw)

0 1 2 3 4 5
1 7 1 8 6 4
2 11 7 9 10 6
3 14 11 13 12 10
4 18 14 15 16 12
5 21 18 19 17 16
6 24 21 22 20 17

As such, etfd and stfd are matrices, where rows correspond to token states and columns

correspond to design stages. In the etfd matrix, each element corresponds to two token values

etfd [i, j]m and etfd [i, j]s, indicating master and slave tokens, respectively.

The synchronous circuit is comprised of registers as opposed to EBs. Therefore, a stage in

the design has only one token value in contrast to two token values (master and slave) for EBs.

Second, the registers always hold valid data and therefore always have a non-zero token value. Note

that the notion of valid data is w.r.t. elastic control and is used to contrast the progress of data

in the elastic and synchronous circuits. For example, bubbles in the design due to synchronous

control (for example, pipeline control) are still considered to be valid data in both circuits. Invalid

data are only the result of bubbles introduced by elastic control.

Property 2. The sequence of unique non-zero token values in any column of an stfd and the

corresponding slave column of etfd are identical.

The synchronous specification and the elastic implementation are flow equivalent [8]. There-

fore, the flow of tokens in a stage of the synchronous specification circuit can be obtained by re-

moving bubbles (tokens with value 0) and stale tokens (token values duplicated in the sequence)

from the flow of tokens of the slave EHB of the corresponding stage in the elastic circuit. The slave

EHB is chosen because all the valid data that flow through an EB is retained in the slave EHB

15

for at least one cycle. An stfd satisfies the above Property 2. Therefore, we construct the stfd

column by column. Each column of the stfd is obtained by removing the tokens with value zero

and duplicate tokens from the column in etfd corresponding to the slave EHB.

2.3.4. Refinement Map Computation

The refinement map for the equivalence verification problem at hand takes as input an

elastic circuit state and returns the corresponding synchronous circuit state. Due to the presence

of additional buffers, design stages in the elastic circuit progress at different speeds when compared

to corresponding stages in the synchronous circuit. For example, in the E-2 benchmark and its

corresponding synchronous specification, for states with the same program counter value, the value

in the decode stage may not be the same. Thus to map elastic states to synchronous states, we

choose a design stage and use it as a reference point to construct the mapping. An elastic state w

will be mapped to a synchronous state s such that the values of the latches/registers in the stage

corresponding to the reference point in both w and s match.

Next, we want to define a projection function that given an elastic state as input, constructs

the corresponding synchronous state. A systematic approach to computing the projection function

is possible by comparing the distribution of data tokens in an elastic state and its synchronous

counterpart. The token-flow diagrams can be used to determine the distribution of data tokens in

the reachable states of both elastic and synchronous circuits.

Procedure 3 Refinement Map

1: for elas-state ← 0 to |etfd |-1 do
2: h← elas-state
3: repeat
4: tp ← etfd [h, reference-point]s
5: h← h− 1
6: until tp 6= 0
7: sync-state ← 0
8: while stfd [sync-state, reference-point] 6= tp do
9: sync-state ← sync-state + 1

10: for j ← 0 to |Sy|-1 do
11: h← 0
12: while etfd [elas-state − h, j]s 6= stfd [sync-state, j] do
13: h← h− 1

14: refinement-map[elas-state, j]← h

16

Since the distribution of valid data is different for different reachable states of the elastic

controller network, one projection function is defined for each controller reachable state by exam-

ining the token flow diagrams of the elastic and synchronous circuits, etfd and stfd , respectively.

Note that a reachable state of the controller network corresponds to many states of the elastic

circuit. The objective of the projection function is to construct the synchronous state from the

elastic state. To achieve this, history information may be used. For example, to get the value of

the fd latch, for the synchronous state from the elastic state, the master and slave EHBs of fd can

be examined. However, it is also possible that fd is empty or the fd value in the elastic state is

not the required value to construct the synchronous state. Note that this is because while stages

in the synchronous circuit progress together, stages in the elastic circuit can progress at different

rates. In such a situation, the projection function can examine history values of fd to obtain the

required value.

As such, the refinement map is a matrix refinement-map|etfd |×|Sy |, where each row corre-

sponds to a reachable state of the elastic controller network. Each row has one entry for each stage

in the synchronous circuit. Each [i, j] entry in refinement-map indicates which history should be

projected for design stage j in controller state i. For example, an entry of 0 indicates the current

value should be projected and an entry of -2 indicates that the value of the stage 2 cycles before

should be projected.

An algorithm for computing the refinement-map matrix is given in Procedure 3. The al-

gorithm enumerates over the rows of etfd . We describe the algorithm using row 11 of etfd shown

in Table 2.2. For this circuit, reference-point=0 (the program counter is chosen as the reference

point). tp is the token value corresponding to the reference-point in etfd . For elas-state=11,

tp=21, which is the first valid token (when searching upward) in the pc column of etfd . Next, we

find the synchronous token state (sync-state) corresponding to elastic token state 11 by search-

ing the reference-point in stfd for tp. A match is found for sync-state=5. Then we compute

refinement-map[11] by searching backward from row 11 of etfd for a match with tokens in each

stage of sync-state=5. refinement-map[11] = [-1, -2, -3, -3, -3]. Using the refinement-map matrix,

proof obligations are generated for each elastic controller state as described next.

We choose a stage of the elastic design as a reference point (reference-point) such that the

procedure for finding a refinement map will always complete successfully. Note that reference-point

17

should be a stage that has a counterpart in the synchronous circuit. Therefore, reference-point has

to be a non-additional EB. For example, FD can be an reference-point , whereas L1 cannot. To

find a suitable reference-point , we define the following graph.

Definition 9. Gelastic(V,E) of an elastic circuit is a directed graph, such that vertices (V) are the

EBs of the circuit and the edges (E) correspond to data channels directed opposite to the direction

of data flow.

For example, if there is a data channel from EBi to EBj then there is an edge from Vj to

Vi in the graph.

Property 3. Every cycle in graph Gelastic(V,E) includes at least one EB node, which is a non-

additional buffer.

The above property is a result of the elastic design process that incorporates additional EBs

only to break paths between two non-additional EBs. The elastic design/synthesis process does

not create cycles of additional EBs [8].

Definition 10. Telastic is the set of directed graphs obtained by removing edges from Gelastic(V,E)

that are incoming to all non-additional elastic buffers.

Lemma 1. Every directed graph in set Telastic is a tree with a non-additional EB as the root.

Lemma 2. |Telastic| = |Sy|.

The above lemmas derive from Property 3. The lemmas indicate that Telastic contains one

tree each for every non-additional EB.

Definition 11. Latency of EB i of an elastic circuit is the depth of the tree ∈ Telastic with root i.

Definition 12. reference-point of an elastic circuit is the non-additional EB with the greatest

latency in the circuit.

Note that the reference-point need not be unique. Any EB with the greatest latency can

be chosen as the reference-point .

Theorem 1. If S is a closed synchronous circuit and E is the elastic implementation of S obtained

using the SEN approach [8][23], then Procedure 3 will complete for any such S and E.

18

Proof. Procedure 3 can be analyzed in 3 parts. In the first part (lines 2-6), the procedure searches

backward starting from row elas-state of etfd for a non-zero token value in the column corresponding

to the slave of the reference-point . For every row of etfd , this search will complete successfully

because in the reset state (row 0 of etfd) of the elastic circuit, slave EHBs of every non-additional

EB is initialized with a non-zero token value. tp is the token-value found as the result of this search.

In the second part (lines 8-10), the procedure searches for tp in column reference-point

of stfd starting from row 0. The search will complete due to Property 2, which states that the

sequence of tokens in the slave column (stage) of etfd and the corresponding column of stfd are

identical modulo bubbles and duplicated values.

In the third part (lines 11-17), the procedure searches backward in etfd starting from row

elas-state for every token in row sync-state of stfd . Note that the searches are done in corresponding

columns of etfd and stfd . The search in each column will complete because the reference point was

chosen as the point of synchronization. From Definition 12, the reference point has the greatest

latency, so its progress is the slowest. Therefore, other columns (corresponding to other stages

in the design) would have progressed faster and hence would have generated the tokens in row

sync-state. Therefore, searching backward, each of the searches will complete.

2.4. Tool Flow

The overall tool flow is shown in Figure 2.2. The equivalence checker takes as input the

elastic and synchronous circuits in RTL VHDL and generates the verification proof obligations in

SMT-LIB [26] format. The SMT logic used is QF ABV, which is the logic of closed quantifier-

free formulas over the theory of bitvectors and bitvector arrays. The proof obligations are then

discharged using an SMT solver. The front end of the tool uses Verific Design Automation’s

parser platform [27] to parse the RTL VHDL input circuits to an internal representation. Also as

input as meta data, the list of EBs/registers and their interconnection information is required for

elastic/synchronous input circuits. This information is used to generate the connectivity matrix

MC for both circuits, which are then used to construct the token flow diagrams for both circuits

as described in Sections 2.3.1 and 2.3.3. Also, the tool translates the internal representation from

the RTL VHDL input circuits into SMT-LIB functions that implement the transition relation

corresponding to the circuits.

19

Synchronous
RTL VHDL

SEC
RTL VHDL

Generate token
flow diagrams

Translate to SMT

Parsing

Reachability
analysis

Refinement map
computation

Proof obligations generator

SMT
solver

SMT
solver

counter example?
Redisign the
SEC

meta data

Figure 2.2. Tool Flow

From the token flow diagram of the elastic circuit, the reachable states of its elastic con-

troller network are computed (as described in Section 2.3.2). The reachability analysis provides

the reachable states and the transitions of the elastic controller network. Based on the reachability

analysis, the tool generates invariant proof obligations to check that the elastic circuit satisfies

these transitions. For example, if the E-2 circuit is in state 10, then it should transition to state

11 and if in state 11, it should transition to state 10. Note that states 10 and 12 are the same

controller states, as they have the same distribution of tokens. The invariant proof obligation for

the transition from state 10 to 11 is shown below.

20

{
half (PC 10) ∧ empty(FD10) ∧ half (DE 10) ∧ half (EM 10)∧

full(MW 10) ∧ empty(L1 10) ∧ half (L2 10)
}
−→{

empty(PC 11) ∧ half (FD11) ∧ empty(DE 11) ∧ half (EM 11)∧

half (MW 11) ∧ half (L1 11) ∧ half (L2 11)
}

In the above, half(x), empty(x), and full(x), indicate that the EB x is in a half state, empty

state, and full state. FD10 is the value of EB FD in state 10, and similarly for others.

Next, the tool computes the refinement map by examining the token flow diagrams as

described in Section 2.3.4. One refinement map function for each of the elastic controller network

states is then generated in SMT. Using the refinement map and the transition relation functions

in SMT, the proof obligations required for equivalence verification based on WEB refinement are

generated (see Section 2.2). One proof obligation is generated for each transition based on the

reachability analysis. Each of the proof obligations are generated in separate SMT files. Hence

these obligations can be checked in parallel. If one or more of the proof obligations do not succeed,

then the SMT solver will generate a counter example indicating one or more bugs.

2.4.1. Liveness

WEB refinement takes into consideration liveness. Establishing that an implementation

refines its specification guarantees that the implementation will always progress and never deadlock

w.r.t. the specification. Liveness is ensured using the mechanism of rank functions, functions that

map the implementation (SEN) states to natural numbers. The goal is to devise a witness rank

function such that for the stuttering steps of the implementation, the rank always decreases. There

are no requirements of the rank of the implementation in non-stuttering steps, as the liveness of the

implementation is witnessed in the fact that the implementation matches specification’s progress

in a non-stuttering step.

For the equivalence problem at hand, it is enough check that the implementation satisfies

the invariants generated by the reachability analysis to guarantee liveness. To see why consider the

following. The SEN framework is correct by construction and is guaranteed to be live. Therefore,

every cycle in the reachability graph generated form the token flow diagrams should include at

21

Table 2.4. Results

Benchmark No. of No. of Equivalence SMT statistics
gates latches Checker Time Memory

Runtime (sec) (sec) (MB)

E-32-0 36,875 620 0.804 9.39 16.54
E-32-1 37,225 688 0.952 16.51 13.75
E-32-2 37,635 768 0.932 20.43 15.22
E-32-3 38,045 848 1.020 13.99 18.86
E-32-4 38,455 928 0.988 18.33 20.51
E-32-5 38,865 1,008 0.964 17.63 20.99
EB1-32-2 37,624 768 0.972 4.97 14.59
EB2-32-2 37,635 768 0.984 1.64 13.99
E-64-0 130,939 1,132 1.548 84.03 53.32
E-64-1 131,609 1,264 2.004 134.14 47.5
E-64-2 132,339 1,408 2.144 113.58 46.48
E-64-3 133,069 1,552 2.152 84.65 65.25
E-64-4 133,799 1,696 2.160 139.35 63.81
E-64-5 134,529 1,840 2.184 89.2 64.28
EB1-64-2 132,328 1,408 2.108 31.2 45.25
EB2-64-2 132,339 1,408 2.128 6.04 44.44
E-128-0 494,171 2,156 3.972 560.88 588.13
E-128-1 495,481 2,416 5.388 764.72 157.77
E-128-2 496,851 2,688 5.568 947.30 313.51
E-128-3 498,221 2,960 5.488 445.12 341.87
E-128-4 499,591 3,232 5.680 792.69 240.52
E-128-5 500,961 3,504 5.788 606.68 237.73
EB1-128-2 496,840 2,688 5.420 273.84 158.45
EB2-128-2 496,851 2,688 5.516 14.46 156.73

least one non-stuttering transition. Note that if all transitions in a cycle are stuttering, then

this indicates deadlock. As long as the implementation satisfies the reachability invariants, it is

guaranteed to never be in a stuttering cycle, guaranteeing liveness w.r.t. its specification. Also, if

there are no stuttering cycles, its not hard to see that a rank function can be devised such that the

rank decreases for every stuttering step.

2.5. Results

The capacity of the equivalence checker is demonstrated using 24 elastic circuits. The

circuits are based on the elastic 5-stage processor shown in Figure 2.1. The circuits were obtained

by varying the size of the datapath and the number and location of additional buffers/relay stations

in the data path. A maximum of 5 additional buffers were used. Verification statistics are shown

22

in Table 2.4. The benchmark names are of the form ”E-m-n” or ”EB-m-n”. ”E” indicates that the

circuit was proved correct and ”EB” indicates a buggy circuit. ”m” indicates the size of the data

path and ”n” is the number of additional buffers in the elastic circuit. We are not aware of any

other equivalence checker that can verify the equivalence of elastic circuits and their synchronous

parents. Therefore, we do not have another tool to quantitatively compare the efficiency of our

results.

To demonstrate the results when checking buggy versions of elastic circuits, we developed

two buggy versions of the elastic processor. B1 has a data path bug in its forwarding logic. The

address of source register 1 in the execute stage is compared with the destination register address

of the memory stage, when instead the address of source register 2 should be compared. B2 has a

bug in the elastic controller, where the controller for the de elastic buffer receives its valid input

from the fetch stage instead of the decode stage.

Verification was performed on a 2.1GHz AMD (R) Athlon (TM) 2700+ CPU with a 256 KB

L1 cache. The SMT solver used was Z3 [28]. The equivalence checker run time is the time taken

to parse the input circuits and generate the proof obligations in SMT. The SMT time is the total

time required to check all the proof obligations corresponding to the verification of the benchmark.

The SMT memory is the maximum memory required for checking all the proof obligations of that

benchmark.

2.6. Related Work

Carloni et al. [17] developed a theory for Latency-Insensitive design. In this work, they

introduced latency equivalence, a notion of correctness that can be used to design latency insensitive

systems in a correct-by-construction compositional manner. Li et al. [29] have used property-

based verification to check latency equivalence, liveness, and storage capacity for three latency-

insensitive designs. Suhaib et al. [30] have developed a general property-based and simulation-

based validation framework that can be used with a large number of LI design methods. Their

approach is also based on latency equivalence. Another approach to property-based verification of

elastic systems is based on static data flow structures (SDFS) [31]. SDFS can be used to model

synchronous and asynchronous elastic systems. The SDFS models are translated to petri-net models

that are amenable to analysis and by model checking tools. In contrast, our contributions are in

equivalence checking for elastic circuits. In general, simulation-based validation, property-based

23

verification, and equivalence verification compliment each other very well as can be witnessed in

commercial design cycles. Also, our equivalence framework does not require additional properties

as the synchronous circuit is the specification.

Cortadella et al. [8] have verified the elastic controller implementations against a high-

level specification that describes how these controllers should behave. Kristic et al. [23] have

shown that additional buffers (empty buffers) can be inserted in the datapath without altering the

functionality of the design. Synthesis approaches based on correct-by-construction transformations

ensure that the synthesis methods are reliable. However as noted earlier, the synthesis process

and any further modifications to the circuit can introduces bugs. The target of our equivalence

verification framework is to catch these bugs.

Srinivasan et al. [32] have developed a refinement-based verification method for elastic

circuits. They provide methods and rules to construct equivalence proofs between pipelined elastic

circuits and their synchronous parents. Their proofs are constructed manually. Our equivalence

checker builds on this work. Following are the novelty of our work, over and above what was

presented in [32]. (1) We have formally defined token-flow diagrams and developed procedures to

automatically derive token-flow diagrams for elastic circuits. (2) We have generalized the algorithms

to be applicable to any circuit structure. In [32], the approach was applicable only to linear

pipelines. (3) Generalization required formalizing the concept of reference-points and incorporation

of the use of reference-points in the algorithm to compute refinement maps. (4) The computation

of token-flow diagrams and refinement maps is fully automated and implemented in a tool, whereas

previously all of this was done manually. (5) Completeness result for the algorithm that computes

refinement maps is derived. (6) The tool has been successfully applied to elastic circuits with as

many as 0.5M gates.

2.7. Conclusions

We have presented an automated equivalence checker that can verify elastic circuits against

their synchronous parent circuits. The efficiency of the tool was demonstrated using 24 elastic

VHDL benchmarks. The most complex elastic circuit verified has over 0.5M gates and over 3,500

latches. We believe that this equivalence checking technology can have a positive impact on the

use of latency insensitive design in commercial design cycles, especially in the context of IP reuse

to deal with timing issues.

24

There are several areas for future progress. Current algorithms are limited to dealing

with deterministic elastic controller networks. We plan to extend the methods to deal with non-

deterministic behavior of the elastic controllers as seen in open circuits, and circuits with variable

latency units. Currently our applications are limited to closed circuits. Another area of future work

is to explore the use of automated abstraction techniques to improve the scalability and capacity

of the tool.

25

3. EQUIVALENCE VERIFICATION FOR NCL CIRCUITS2

3.1. Introduction

The synchronous design paradigm is facing many challenges as fabrication technologies scale

down to keep up with the demand for high-performance low-power circuits. Such challenges include

dominant wire delays that cannot be accurately determined until the later stages of the design cycle,

and managing clock skew. In addition to these design challenges, high power consumption and

noise are also inherent challenges in the synchronous design domain that are becoming increasingly

difficult to manage. Asynchronous circuits in general have properties that could potentially solve

many of the issues that are becoming dominant in the synchronous domain [3]. Therefore, in

recent years, a lot of research work has been done to develop design methodologies and processes

to integrate asynchronous circuits in commercial systems [9][7].

NULL Convention Logic (NCL) circuits are delay-insensitive (DI) asynchronous circuits. In

comparison to synchronous circuits, DI circuits have lower power consumption, less noise, and lower

electro-magnetic interference. The delay-insensitive nature of DI circuits can also be exploited to

ease component reuse in complex SoC designs, especially for SoCs that employ multiple clocks [3].

DI asynchronous circuits are correct-by-construction designs that do not require extensive timing

analysis as needed by bounded-delay asynchronous circuits (micropipelines). Also, performance of

delay-insensitive asynchronous circuits is close to average case performance; whereas, performance

of bounded-delay circuits is close to worst case [3].

Functional testing and verification for asynchronous circuits is a challenging problem, be-

cause the control components of asynchronous designs are highly non-deterministic and exhibit a

2 The material in this chapter was co-authored by Vidura M. Wijayasekara, Sudarshan K. Srini-
vasan, and Scott C. Smith. Vidura Wijayasekara was the primary developer of the conclusions
that are advanced here.Vidura Wijayasekara also drafted and revised all versions of this chapter.
Sudarshan Srinivasan and Scott Smith served as proofreaders and checked correctness of the theo-
ries and algorithms developed by Vidura Wijayasekara. c©2014 IEEE. Reprinted, with permission,
from V. M. Wijayasekara, S. K. Srinivasan, and S. C. Smith, “Equivalence Verification for NULL
Convention Logic (NCL) Circuits,” 2014 IEEE 32nd International Conference on Computer Design
(ICCD), 10/2014.

26

prohibitively large state space. Therefore, exhaustive testing is very hard. Formal verification tech-

niques have been successfully integrated in synchronous commercial design cycles and have shown

to significantly improve functional coverage and find corner case bugs. In this paper, we propose a

formal verification methodology for NCL circuits.

The proposed verification methodology is developed in the context of NCL synthesis. A

recent trend to overcome the design challenges for asynchronous circuits (such as lack of CAD tools

and design complexity) is to develop tools to synthesize asynchronous circuits from synchronous

circuits. Such tools have been developed to automate the synthesis of NCL circuits from syn-

chronous circuits [9]. The goal of our verification methodology is to check the equivalence of the

synthesized NCL circuit against the synchronous circuit that was input to the synthesis tool, which

we call the parent synchronous circuit. Why would such an equivalence verification methodology be

useful in practice? Consider the integration of IP blocks in a multi-rate SoC environment. Such an

integration in the synchronous domain is a challenging task. Instead, the designer may opt to use

a technology in the DI design paradigm such as NCL circuits to ease integration of the multi-rate

blocks.

After generating the NCL design, the resulting NCL circuit will have undergone a consid-

erable transformation w.r.t. the original synchronous circuit. The designer cannot assume that

the resulting NCL circuit will not have bugs. The designer will instead have to expend time and

resources to verify the NCL circuit. Even though the NCL circuits are correct-by-construction,

the synthesis tools that generate NCL circuits from the synchronous circuit may have bugs. Also,

there maybe other sources of bugs such as manual tinkering of the NCL circuit after synthesis. The

commercial design process will definitely require functional verification of the NCL circuit used

in the SOC. The full verification of the NCL circuit cannot be bypassed because it is correct-by-

construction or by performing some checks on the connections of the NCL circuit. Our equivalence

verification methodology comes to the aid here as it is targeted at checking the correctness of the

NCL circuit against the parent synchronous circuit. Equivalence checking technology has been very

effective and useful in the synchronous domain.

The rest of the paper is organized as followed. First, we describe prior work related to

verification of asynchronous circuits in Section 3.2. An introduction to NCL circuits is given in

Section 3.3. Equivalence verification for combinational and sequential NCL circuits are described

27

in Sections 3.4 and 3.5, respectively. Experimental results are presented in Section 3.6. Finally, we

conclude in Section 3.7.

3.2. Related Work

Related work on verification technology for asynchronous circuits can be classified as prop-

erty checking approaches [33][34] or methods based on trace theory [35]. The trace theory ap-

proaches target the verification of gate-level asynchronous circuits. In trace theory based ap-

proaches, the circuit is modeled as a petri-net. The correctness property is also modeled as a

petri-net. In contrast, our equivalence verification approach is based on the theory of Well-Founded

Equivalence Bisimulation (WEB) refinement. In WEB refinement, both the specification and im-

plementation are modeled as transition systems. We are not aware of any trace theory based

methods that have been developed for equivalence verification of synchronous and NCL circuits.

Approaches based on property checking can be used for NCL circuits, but, are cumbersome because

a large number of properties are required and also the properties themselves can be hard to write

leading to erroneous specifications [35].

Loewenstein [36] verified some properties of a counter-flow pipeline using the HOL theorem

prover. Counter-flow pipelines are asynchronous in nature with results flowing in the pipeline in a

direction opposite to that of instruction flow. The NCL circuits we verify do not use the counter-

flow mechanism. Also, our correctness proofs are based on the use of decision procedures and are

highly automated.

Verbeek [37] verified deadlock freedom of DI circuits compiled from Click library (a DI

primitives library) using SAT/SMT instances of the circuit. We verify NCL circuits, which is a

different DI design paradigm from the technology implemented in the Click library. Also, we verify

safety, i.e., we verify that the implementation (NCL circuit) behaves correctly as given by the

specification (synchronous circuit).

A method to check the delay insensitive property of combinational NCL circuits is presented

in [38]. Our method verifies the functional equivalence of both combinational and sequential NCL

circuits against the parent synchronous circuit. A method to verify desynchronized pipelined cir-

cuits against ISA-type specifications using refinement is presented in [39]. Desynchronized circuits

are bounded-delay circuits. In contrast, NCL circuits are delay-insensitive. Hence, their intrinsic

properties are different and require domain-specific verification methods. Also, our specifications

28

are the parent synchronous circuit used for synthesis of NCL circuits. We do not use an ISA-type

specification. To our knowledge, there is no prior work that uses formal methods to verify the

functional equivalence of NCL circuits against their synchronous parent circuits.

Cortadella et al. [40] have used flow equivalence (FE) to prove the correctness of their desyn-

chronization method; and FE is well suited for this purpose. However, they have not demonstrated

verification based on FE. Why do we use refinement instead of FE? Refinement is a more general

notion. For example, one requirement of FE is that the specification and implementation should

have the same set of registers. This requirement is not satisfied when comparing NCL circuits and

their synchronous parents.

3.3. Background: NCL Circuits

NCL circuits are four phase (i.e., dual-rail) DI logic systems. Two rails or wires, D0 and

D1 , are used to represent a Boolean value. As shown in Table 3.1, D0 and D1 can take values

DATA0, DATA1, or NULL. The two rails cannot be asserted at the same time, which is an illegal

state. Values DATA0 and DATA1 correspond to Boolean zero and Boolean one, respectively. NULL

means valid data is not available.

NCL has 27 threshold gates that implement all functions of four or fewer Boolean variables.

A THmn gate, where m ≤ n, has n inputs and a threshold of m. When m or more inputs are

asserted, the output of the gate is asserted. The output is deasserted only when all inputs are

deasserted. A THnn gate is equivalent to an n-input C-element. A TH1n gate acts as an n-input

OR gate. Data propagates through an NCL circuit as wavefronts alternating between DATA and

NULL. The NULL wavefront (spacer) brings the output of all the threshold gates to logic zero in

preparation for the next set of DATA inputs.

Table 3.1. Dual-Rail Signaling

DATA0 DATA1 NULL Illegal

D0 1 0 0 1
D1 0 1 0 1

Sequential circuits are implemented using NCL registers. A single-bit dual-rail NCL register

is shown in Figure 3.1. The register receives Ki, a request signal, from a destination register as

29

I0

I1

O0

O1

Ko

Ki

1

2n

2n

Reset

Figure 3.1. Single-Bit Dual-Rail Register

input. When Ki is asserted, DATA is requested, and when Ki is deasserted, NULL is requested.

Each single-bit NCL register outputs Ko, an acknowledge signal. The Ko signals are combined in

a completion component to form a single Ko signal, which is the Ki input to the source registers.

When Ko is deasserted, the register acknowledges that DATA is received. When Ko is asserted,

the register acknowledges that NULL is received. Completion components are implemented using

THnn gates.

3.4. Equivalence Verification for Combinational NCL Circuits

We first describe the equivalence verification of combinational NCL circuits. Without loss of

generality, consider an NCL circuit X with i dual-rail inputs, g NCL gates, and o dual-rail outputs.

A subset of the gates form the dual-rail outputs of the circuit. Therefore, we have 2 ∗ o ≤ g. xI01

... ,xI0i denote the i D0 inputs of X. xI11 ... ,xI1i denote the i D1 inputs of X. xO0
1 ..., xO0

o denote

the o D0 outputs of X. xO1
1 ..., xO1

o denote the o D1 outputs of X. xG1 , ..., xGg denote the g gate

values of X. An NCL circuit is in the NULL state if all gate outputs are deasserted, as given by

the following equation.

g∨
j=1

xGj = 0

30

If the inputs or outputs of the circuit have valid DATA, then for each dual-rail wire, the

D0 wire should be the negation of the D1 wire. D1 and D0 both cannot be either 0 or 1. The

condition that the inputs have valid DATA is given below:

i∧
j=1

xI0j ⊕ xI1j = 1

NCL circuits are operated as follows. First, a NULL wave is propagated through the circuit,

which deasserts all the inputs. That the outputs of all gates are deasserted when a NULL wavefront

is propagated, is a pre-condition for the DATA wave to work correctly. The proof obligation to be

checked to verify that an NCL circuit satisfies the above requirement is given below.

Proof Obligation 1.

〈
∀xI01 , ..., xI0i , xI11 , ..., xI1i , xG1 , ..., x

G
g ∈ {0, 1} ::

〈yG1 , ..., yGg 〉 = nclstep(xI01 , ..., xI0i , xI11 , ..., xI1i , xG1 , ..., x
G
g)

∧ ¬(

i∨
j=1

xI0j) ∧ ¬(

i∨
j=1

xI1j)

=⇒ ¬(

g∨
j=1

yGj)
〉

In the above, nclstep() corresponds to a single step of the circuit and is modeled as a

function that takes as input, the circuit inputs and the current state of the gates in the circuit.

The nclstep() function outputs the values of the next state of the gates in the circuit.

A combinational NCL circuit is correct w.r.t. its synchronous counterpart, if for all combi-

nations of valid data inputs, the outputs of both circuits are the same; however, inputs to latter are

Boolean, and inputs to former are dual-rail. Same issue exists when checking the equality of out-

puts. To map valid dual-rail DATA to Boolean values, we exploit the fact that D1 values represent

the corresponding Boolean values, and D0 values are always the negation of the corresponding D1

values. Also, the NCL circuit operates under the assumption that the DATA wave is preceded by a

NULL wave. Therefore, all the gate outputs in the circuit are deasserted. If syncstep corresponds to

a single step of the synchronous circuit, the proof obligation below gives the equivalence correctness

condition of a combinational NCL circuit against its combination synchronous counterpart.

31

Proof Obligation 2.

〈
∀xI01 , ..., xI0i , xI11 , ..., xI1i , xG1 , ..., x

G
g ∈ {0, 1} ::

〈yG1 , ..., yGg 〉 = nclstep(xI01 , ..., xI0i , xI11 , ..., xI1i , xG1 , ..., x
G
g)

∧ ¬(

g∨
j=1

xGj) ∧
i∧

j=1

xI0j ⊕ xI1j

∧ 〈z1, ..., zo〉 = syncstep(xI11 , ..., xI1i)

=⇒
o∧

j=1

zj = yO1
j ∧

o∧
j=1

yO0
j ⊕ yO1

j

〉

Above, z1, ..., zo represent the outputs of the synchronous circuit. Verification of proof obli-

gations 1 and 2 guarantee the correctness of an NCL combinational circuit w.r.t. its synchronous

counterpart. Verification is performed by modeling the circuits in the SMT2-LIB modeling lan-

guage. An SMT solver can be used to check the proof obligations. We use the Z3 SMT solver for

verification.

3.5. Equivalence Verification for Sequential NCL Circuits

In this section, we present a methodology for verification of sequential NCL circuits. The

methodology is illustrated using the example shown in Figure 3.2. Fig 3.2.(a) is the circuit for

a synchronous multiplier and accumulate (MAC) unit. The circuit takes two 4-bit inputs p and

q, and computes r′ ← r + pq. Fig 3.2.(b) shows an NCL version of the MAC unit, obtained by

synthesizing the synchronous circuit in Fig 3.2.(a). Any feedback loop in an NCL circuit requires at

least 3 NCL registers to ensure that the loop does not get deadlocked [3]. Other than the inclusion

of two additional registers, the circuits look similar from the figure. However, there are many

other differences. The data path (as mentioned earlier) is dual-rail in the NCL circuit. The MAC

logic unit is implemented using threshold gates. Also, the registers in the synchronous circuit are

clocked, whereas progress in the NCL circuit is achieved using the movement of alternate DATA

and NULL waves that is achieved using completion logic communication between adjacent NCL

registers.

There are many states the NCL circuit can be in and there is not a straightforward relation-

ship between the synchronous circuit and the NCL circuit synthesized from it. Hence, we need a

32

register
n−bit

unit
combinational

p

q

r

r’

(a) Synchronous

completion
tree

DI

register

(reset
to

NULL)

n−bit
DI

register

(reset
to

NULL)

n−bit

2n 2n

completion
tree

Ko Ki
completion
tree

completion
tree

NCL

unit
combinational

DI

register

(reset
to

n−bit

DATA)

r

p

q
r’

(b) NCL

Figure 3.2. Multiplier Accumulator Circuit (MAC)

general theory of equivalence to relate and verify sequential NCL circuits against their synchronous

counterparts.

3.5.1. WEB Refinement

We use the notion of Well-Founded Equivalence Bisimulation (WEB) refinement for the

equivalence verification problem. A formal and detailed description of WEB refinement is provided

in [15][16]. Here, we provide a brief overview of the key features of WEB refinement relevant to

the problem at hand. WEB refinement is a notion of equivalence that can be used to check if an

implementation system satisfies its specification system, even if the implementation and specifica-

tion are defined at very disparate levels of abstraction. We consider the NCL circuit to be verified

as the implementation, and the synchronous parent circuit as the specification.

33

In the context of refinement, digital systems are modeled as transition systems (TSs). A

TS is a three tuple and includes the set of states of the system, a transition relation that defines

the state transitions of the system, and a labeling function that defines what is observable in each

state. The behaviors of a system modeled as a TS are defined using the notion of paths. A path in

a TS is a sequence of states, say s0,s1,s2, ..., where s0 is the initial state and s0 transitions to s1,

s1 transitions to s2, and so on. An infinite sequence of such states is a full path. The behaviors of

a system is the set of all full paths in the TS of the system.

The implementation behaves correctly as given by the specification, if every behavior of

the implementation is matched by a behavior of the specification and vice versa. However, the

implementation and specification may not have the same timing behavior. For example, if the

implementation is an NCL circuit and the specification is a synchronous circuit, the NCL circuit

may take many steps to match a single step of the synchronous circuit. This phenomenon is known

as stuttering. To account for such situations, multiple but finite transitions of the implementation

are allowed to match a single transition of the specification.

Another issue is that to check equivalence, synchronous states and NCL circuit states need

to be compared. However, these states can look very different. While synchronous states use D-FF

based registers, NCL circuit states use NCL registers that encode data in dual-rail format. Also,

there need not be a direct mapping between the synchronous registers and the NCL registers.

For the MAC example, the synchronous circuit has one register, while the NCL circuit has three

registers. WEB refinement employs refinement maps, functions that map implementation states to

specification states to bridge this abstraction gap.

Manolios [16] has shown that it is enough to prove the following refinement-based correct-

ness formula to establish the equivalence of an implementation and specification based on WEB

refinement. rank is used to distinguish stutter from deadlock. rank is a witness function from im-

plementation states to natural numbers whose value decreases when the implementation stutters.

34

Definition 13. (Refinement-Based Correctness Formula)

〈
∀w ∈ I :: s = refinement-map(w) ∧ u = SStep(s) ∧

v = IStep(w) ∧ u 6= refinement-map(v)

⇒ s = refinement-map(v) ∧ rank(v) < rank(w)
〉

In the above, SStep() and IStep() are functions that define the transitions of the imple-

mentation and specification. I is the set of all the implementation states reachable from the initial

states of the implementation. Note that in order to establish the equivalence of an implementation

and specification system, all the reachable states of the implementation should be checked to see if

they satisfy the above correctness formula. The correctness formula given above is expressible in a

decidable fragment of first-order logic. Therefore, verifying equivalence of an implementation and

a specification based on WEB refinement can be accomplished automatically using an SMT solver

if a suitable refinement map and rank function are available.

3.5.2. Reachability for Sequential NCL Circuits

The first step in our verification methodology is to find the reachable states of the imple-

mentation NCL circuit. Registers in the NCL circuit are initialized to either hold DATA (D) or

NULL (N) in a manner that ensures liveness of the circuit. For the MAC example, the registers

r1r2r3 are initialized to NND. Not every syntactically possible state of the three registers can be

reached from the NND initial state. For example, states DDD and NNN will be never reached. We

have developed a procedure to compute the reachable states of sequential NCL circuits. We require

one assumption, that the NCL circuit has only one input source and one destination output. A

large class of circuits fall under this category. We plan to tackle circuits with multiple input sources

and destination outputs for future work.

Definition 14. For an NCL circuit with n registers, an N/D state of the circuit is an n-tuple

〈r1, ..., rn〉, such that for 1≤ l ≤ n, rl = N if register l is holding NULL and rl = D if register l is

holding valid DATA.

To compute reachable states of an NCL circuit, we define the notion of an N/D state of

the circuit given in above Definition 14. Next, we develop a procedure that given an N/D state of

a circuit, computes its next N/D state. This procedure is based on the notion of the connectivity

35

matrix of an NCL circuit (Definition 15). In the definition below, R is the set of NCL registers in

the circuit.

Definition 15. The connectivity matrix of an NCL circuit MC = [alm]|R|×|R| such that alm = 1 if

there is a data channel from register l to register m. Otherwise alm = 0.

The following functions are used in Definition 16 that gives a function to compute the next

N/D state of register l. For the functions, rN/D ∈{D,N}. If rN/D =D, then src-status(l,rN/D)

returns true only if all source registers to register l are in DATA state. If rN/D =N, then

src-status(l,rN/D) returns true only if all source registers to register l are in NULL state.

src-status(l, rN/D) =
∧

0<m≤n

{(
Mc[m][l] = 1

)
→
(
rm = rN/D

)}
Similarly, dst-status(l,rN/D) evaluates the status of the destination registers of register l.

If rN/D =D, then dst-status(l,rN/D) returns true only if all destinations of register l are in DATA

state. If rN/D =N, then src-status(l,rN/D) returns true only if all destinations of register l are in

NULL state.

dst-status(l, rN/D) =
∧

0<m≤n

{(
Mc[l][m] = 1

)
→
(
rm = rN/D

)}
Definition 16.

get-next-state(l) =

D,

{(
rl = N ∧ src-status(l,D) ∧ dst-status(l, N)

)∨
(
rl = D ∧ ¬

[
src-status(l, N) ∧ dst-status(l,D)

])}
N, default

get-next-state(l) computes the next N/D state of register l. If the current N/D state of

register l is NULL, all source registers to register l are in DATA state, and all destination registers

of register l are in NULL state, then the next N/D state of register l is DATA. Otherwise, register

l remains in NULL state in the next state. When the current N/D state of register l is DATA, the

next N/D state of register l is NULL if source registers to register l are in NULL state and all the

destination registers to register l are in DATA state. Else, register l remains DATA in the next

state.

36

Procedure 4 Procedure to compute the next N/D settling state

1: procedure GetNextSettingState(〈r1, ..., rn〉)
2: settled ← false
3: 1 -flipped ← false
4: n-flipped ← false
5: while settled = false do
6: if 1 -flipped = true then
7: r′1 ← r1
8: else
9: r′1 ← GetNextState(1),

10: if r′1 6= r1 then
11: 1 -flipped ← true

12: if n-flipped = true then
13: r′n ← rn
14: else
15: r′n ← GetNextState(n)

16: if r′n 6= rn then
17: n-flipped ← true

18: for l ← 2 to n-1 do
19: r′l ← GetNextState(l)

20: if
∧n

l=1(rl = r′l) then
21: settled ← true
22: else
23: 〈r1, ..., rn〉 ← 〈r′1, ..., r′n〉

An NCL circuit has transient states and settling states. Settling states are stable. An NCL

circuit transitions from a settling state only when there is a change in the inputs to the circuit.

Note that on the input side, an NCL circuit has a data input. On the output side, an NCL circuit

has a Ki input. Before the circuit transitions from one settling state to another, it transitions

through a series of states called transient states. These states occur temporarily and are unstable.

Given an input N/D settling state, Procedure 4 computes the next N/D settling state. Without

loss of generality, for a circuit with n registers, we assume that r1 is connected to the data input

to the circuit, and rn is connected to Ki on the output side.

The construction of refinement maps depends on the number and distribution of unique

DATA wavefronts in the reachable settling states of an NCL circuit. In the reset state, the number

of DATA wavefronts is equal to stages in the corresponding synchronous circuit. However, this may

not be true for all settling states. If the number of DATA wavefronts is greater or less than the

number of stages in the synchronous circuit, it is harder to construct refinement mapping functions.

37

To address this issue, we introduce a design-for-verification technique that ensures that the number

of DATA wavefronts in all settling states is an invariant and is equal to the number of DATA

wavefronts in the reset state, which is again equal to the number of stages in the synchronous

circuit. The design-for-verification technique makes two additional connections in the circuit. The

first is to connect the Ko of register r1 to the input of the completion tree of register rn. The

second is to introduce a data channel from rn to r1. The data channel can simply be introduced

by connecting a bit in rn that is always initialized to the value 0, to a bit in r1. These additional

connections ensures that a DATA wavefront can enter the circuit iff a DATA wavefront exits the

circuit. Thus, the number of DATA wavefronts in the circuit always remains a constant. This

design-for-verification technique essentially causes the circuit to behave as if there is a feedback

loop from the last NCL register to the first NCL register. Procedure 4 exploits the property that

the number of DATA wavefronts in the reachable states are invariant.

Procedure 4 uses three flags. The settled flag indicates if a settling state has been reached.

Since r1 is connected to the input data, its current value will be flipped (D to N or N to D) exactly

once during the computation of the transient states and next settling state. Similarly, since rn is

connected to Ki, rn value will also be flipped exactly once. That r1 and rn are flipped exactly once

when transitioning from one settling state to another is also a result of the design-for-verification

technique. 1 -flipped and n-flipped keep track of whether r1 and rn have been flipped yet or not,

respectively. All the flags are initialized to false. In the procedure, rl indicates the current state

and r′l indicates the next state. The while loop (lines 5 to 23) is repeated until the next settling

state is reached (settled is true). In the while loop, next state of r1, the register that the input is

connected to, remains unchanged if it has already been flipped once (1 -flipped is true). Otherwise,

the next N/D state of r1 is computed using get-next-state() function (lines 6 to 9). If the next N/D

state of r1 is different from the current state of the register, 1 -flipped flag is set (lines 10 to 11).

The next state of rn is computed similarly using the n-flipped flag. The next N/D state of all other

registers are computed using the get-next-state() function (lines 18 to 19). Once the next state of

all the registers are computed, the next state of the NCL circuit is compared with the current state

of the circuit. If the two states are equal, the settled flag is set causing the loop to terminate (lines

20 to 21). The next state at the loop termination is the next settling state. Else, the computed

next state is set as the current state for the next loop run (lines 22 to 23). Using the procedure

38

we get two settling states for the MAC example, NND and DDN. The transition from NND state

to DDN state, transitions through the transient states DND and DNN. Similarly, transition from

DDN to NND state transitions through NDN and NDD.

The reachable settling states and transitions between settling states form a transition sys-

tem. For the MAC example, the transitions are NND to DDN and DDN to NND. We then check

that the NCL circuit satisfies these transitions.

3.5.3. Refinement Maps

In this section, we derive a formula that can be used to construct refinement maps from

NCL circuit states to parent synchronous circuit states. An NCL circuit is synthesized from an

m-stage synchronous circuit by replacing the registers of the synchronous circuit with two or more

NCL registers. Registers with self feedback loops should be replaced with a minimum of three

NCL registers to avoid deadlocks. Hence, the n registers of the NCL circuit can be divided into m

groups of two or more registers that correspond to the m stages of the synchronous pipeline. The

last register in every group is initialized to DATA state at reset. Other NCL registers are initialized

to NULL state. Therefore, there are m unique DATA wavefronts in the NCL circuit in the reset

states. Also, our design-for-verification technique ensures then that every state of the NCL circuit

reachable from reset state also has only m unique DATA wavefronts. Unique DATA wavefronts are

separated from each other by NULL wavefronts (spacers).

We number registers such that r2 is the register with input from r1, r3 is the register that

has input from r2 and so on. As such, we are assuming that the circuit has a linear pipeline

structure with arbitrary feedback loops, but a large class of circuits can be cast into this structure.

Register rv holds a unique DATA wavefront if rDv rNv−1 is true, where for 1 < v ≤ n, rDv is a predicate

that is true iff rv is holding a DATA wavefront, and rNv is a predicate that is true iff rv is holding

a NULL wavefront. The DATA wavefront in r1 is always unique.

Since the number of unique DATA fronts in the settling states of the NCL circuit is always

equivalent to the number of registers in the parent synchronous circuit (m), the problem of finding

a refinement map from the NCL circuit to the synchronous circuit reduces to finding the unique

DATA wavefronts of the settling states of the NCL circuit and projecting them onto the stages of

the synchronous circuit. Note that how the DATA wavefronts in NCL circuit states are projected

depends on how the DATA wavefronts are distributed in that state, which is captured by the N/D

39

settling states. As such each N/D settling state corresponds to a set of the NCL circuit states.

The refinement map is constructed by having one projection function per N/D settling state. To

construct such refinement maps, we introduce the notion of projection-predicates.

Definition 17. A projection-predicate pu←v is a predicate that is true only when register rv of an

NCL circuit state maps to stage u of the parent synchronous circuit.

pu←v =

rDv rNv−1

(
u−1∧
k=1

¬pk←v. , (1 ≤ u < v ≤ n)

v−2∧
k=1

¬pu←k

)

rD1 , (v = 1 ∧ u = 1)

0 , default

In the above definition, the first condition for pu←v to be true is that rv should hold a

unique DATA wavefront (rDv rNv−1). Then, we should determine if the unique DATA wavefront

in rv is the uth unique DATA wavefront. Since the distribution of the DATA wavefronts in an

NCL state is highly variable, it is hard to formulate an expression that would capture all possible

combinations of DATA wavefront distributions with rv holding the uth unique DATA wavefront.

We tackle this problem using an inductive approach to compute the projection-predicates using

p1←1 as the base case. The rest of the projection-predicates are constructed inductively. p1←1 is

true iff rD1 . We provide two conditions in terms of projection predicates that if satisfied, the unique

DATA wavefront in rv is the uth unique DATA wavefront. The first condition is that the DATA

wavefront in rv should not be mapping to any of the previous stages. The second condition is uth

stage of the synchronous circuit should not have a mapping from register in the NCL circuit before

rv.

We now provide the following formula for the refinement map, which gives the value of

each register su of synchronous pipeline for a given NCL state, using the projection-predicates and

projection functions.

40

for 1 ≤ u ≤ m,

su =

pf u←1(r1), pi←1

pf u←2(r2), pi←2

...

pf u←n(rn), pi←n

Projection function pf u←v(rv) projects register rv of the NCL circuit to register u of the

synchronous circuit. The value of the synchronous register is generated by extracting the value of

the D1 wires of the register rv. Using the above refinement map we can instantiate the general

web refinement theorem (Subsection 3.5.1) for equivalence verification problem of NCL circuits as

follows.

〈
∀〈r1, ..., rn〉 ∈ reachable-states ::

m∧
u=1

[
su = pf (〈r1, ..., rn〉, pu←1, ..., pu←n)

]
∧

〈s′1, ..., s′m〉 = syncstep(〈s1, ..., sm〉)∧

〈r′1, ..., r′n〉 = nclstep(〈r1, ..., rn〉)∧

¬
m∧

u=1

[
s′u = pf (〈r′1, ..., r′n〉, p′u←1, ..., p

′
u←n)

]
⇒

m∧
u=1

[
su = pf (〈r′1, ..., r′n〉, p′u←1, ..., p

′
u←n)

]〉

In the above proof obligation reachable-states is the set of reachable states of the NCL circuit

found from the reachability procedure described in Subsection 3.5.2. pf () is the refinement map

constructed from projection predicates and projection functions. nclstep() steps the NCL circuit

to the next settling state. By proving the above proof obligation together with the reachability

invariants mentioned in the Subsection 3.5.2, equivalence of the NCL circuit can be verified against

its synchronous parent circuit using theory of WEB refinement. In this work, we consider only the

safety part of WEB refinement, i.e., we only check that if the NCL circuit makes progress, that

progress is correct w.r.t. to the specification (synchronous circuit). We do not verify liveness, which

we plan to address in future work.

41

Table 3.2. Results

Model No. of NCL gates Time (s) Memory (MB)

mul4X4 91 0.04 1.10
mul4X4-2s 279 0.32 2.94
mac4X4 202 2.77 6.68
mac5X5 281 10.63 8.12
mac6X6 370 96.17 16.59
mac7X7 472 788.93 24.83
mac8X8 587 13,527.12 47.97
mac8X8-B1 587 1.27 10.60
mac8X8-B2 587 4.00 13.63

3 4 5 6 7 8 9

101

102

103

104
timeout

Datapath width

T
im

e
(s

ec
)

Figure 3.3. Verification Times for MAC Circuits

3.6. Results

The presented verification method was used to verify 9 NCL circuits including two buggy

circuits. Verification was performed on a 1.86GHz Intelr Celeron (R) CPU 540 with a 1 MB L2

cache. The SMT solver used was Z3 [28]. Results are summarized in Table 3.2. mul4X4 is a

4-bit combinational multiplier circuit. mul4X4-2s is a pipelined 4-bit multiplier circuit that has

two stages. macnXn circuits are n-bit wide MAC units. Finally, mac8X8-B1 and mac8X8-B2 are

buggy 8-bit MAC units. In mac8X8-B1, a bug was injected to the data path by connecting a wrong

wire to the input of an adder. In mac8X8-B2, a bug was injected in the completion tree path of

the circuit by connecting K0
i , which is generated by the completion tree for r0, to r1 instead. The

verification of NCL circuits is a complex problem. In fact, as the datapath width of the MAC

42

circuit was increased from 4 to 8, the verification times increased exponentially as can be seen from

the plot in Figure 3.3. The plot shows the time taken in seconds to complete the proof on a log

scale against the datapath width.

3.7. Conclusions

Our contributions include a design-for-verification technique that reduces the state space

of NCL circuits and ensures that the number of data tokens in reachable states of the circuit is an

invariant. We exploit this property to develop a procedure to compute the reachable states of NCL

circuits. We then use the reachable states to compute mapping functions or refinement maps for

equivalence verification. The techniques were demonstrated using several NCL circuits. We found

that for the MAC benchmarks, increase in the data path size causes verification times to increase

exponentially. For future work, we plan to develop abstraction techniques to improve scalability of

our equivalence verification approach.

43

4. ABSTRACTION TECHNIQUES TO IMPROVE

SCALABILITY OF EQUIVALENCE VERIFICATION FOR

NCL CIRCUITS3

4.1. Introduction

Asynchronous logic has been around for the past 50+ years; but, until recently, synchronous

circuits have been good enough to meet industry needs, so asynchronous circuits were primarily

utilized for niche markets and in the research domain. However, as transistor size continues to

decrease, asynchronous circuits are being looked to by industry more and more to solve power

dissipation and process variability issues associated with these smaller feature size circuits. NULL

Convention Logic (NCL) is an asynchronous paradigm for the design of digital circuits and is

characterized by dual-rail encoding (the use of two wires to encode Boolean data as opposed to just

one wire) and the lack of need for a global clock. These features of NCL circuits have resulted in very

desirable properties such as tolerance to high radiation exposure, tolerance to extreme temperature

fluctuations, low power, less EMI, less noise, increased robustness, and design-reuse [41]. Owing

to such properties, NCL circuits have carved out several niche application areas. NCL circuits

have now been demonstrated to function without breaking down in space applications with high

radiation exposure [42] and temperatures ranging from -196◦C to 125◦C [43, 44]. In System-on-

Chip (SoC) design, NCL IPs can be placed in large multi-rate systems with minimal disruption to

timing closure thus promoting IP reuse.

The design challenge for NCL circuits has been addressed to a large extent by the develop-

ment of techniques and tools to synthesize NCL circuits from their synchronous counterparts [9, 45].

3 The material in this chapter was co-authored by Vidura M. Wijayasekara, Anthony T. Rollie II,
Ronald G. Hodges, Sudarshan K. Srinivasan, and Scott C. Smith. Vidura Wijayasekara was the
primary developer of the conclusions that are advanced here.Vidura Wijayasekara also drafted and
revised all versions of this chapter. Anthony Rollie II and Ronald Hodges served as undergraduate
research assistants and contributed to the development of benchmarks. Sudarshan Srinivasan and
Scott Smith served as proofreaders and checked correctness of the theories and algorithms developed
by Vidura Wijayasekara.

44

Synthesis however does not guarantee that the resulting NCL circuits will be error free. There are

numerous sources of bugs: bugs in the synthesis tools, manual tinkering of the circuit after syn-

thesis, etc. To be employed in commercial designs, NCL circuits have to be verified. Due to the

lack of global clock and high nondeterminism, verification of NCL circuits is a very challenging

problem. The lack of verification technology will block the use of NCL circuits and the very fruitful

exploitation of the unique properties of these circuits.

A very successful verification technology in the semiconductor industry is formal equiva-

lence checking, where optimized circuits are checked for correctness against their original/parent

counterparts. Wijayasekara et al. [46] developed the first known formal verification methodology to

check the equivalence of NCL circuits against their synchronous counterparts. However, as will be

shown in the results section, efficiency and scalability of verification was quite limited. In this work,

we have developed two abstraction techniques to significantly improve the scalability of equivalence

verification for NCL circuits. The abstraction techniques essentially break down the equivalence

verification problem into smaller parts. The resolution of the smaller parts guarantee correctness

of the entire circuit.

4.2. Abstraction of Combinational Units

In the equivalence verification of two circuits, say A and B, if there is a combinational

circuit block that is identical in both circuits, the inner working of this combinational block can

be abstracted, and hence, ignored in proving equivalence of A and B. The abstraction is achieved

by replacing the combinational block in both circuits using an uninterpreted function (UF), which

is like a black box function [47]. UF only satisfies the property of functional consistency: equal

inputs produce the same outputs (given below).

(x1 = y1) ∧ (x2 = y2) ∧ . . . ∧ (xn = yn)⇒

uf (x1, x2, . . . , xn) = uf (y1, y2, . . . , yn)

This abstraction mechanism has been proven highly effective in verification of synchronous

circuits. We have developed a technique to apply UF-based abstraction to the equivalence verifica-

tion of NCL circuits with their synchronous counterparts. The challenge in the direct application

45

of UF-based abstraction is that, while the functionality of a combinational block in an NCL circuit

may be identical to the functionality of the corresponding block in the synchronous circuit, the

implementation of the blocks in the two circuits will be very different.

There are three differences in the implementation of a combinational block in synchronous

and NCL domains. First, NCL circuits use dual-rail encoding to represent values, as opposed to

Boolean, which is used in synchronous. A one-bit value in synchronous will be represented using

two wires in NCL: 〈D0, D1〉. Boolean 0 and 1 are represented as 〈1, 0〉 and 〈0, 1〉, respectively. The

combination 〈0, 0〉 is the NULL value, which represents absence of valid data; and 〈1, 1〉 is illegal,

and will not occur in a properly operating circuit. This brings us to the second difference, which is

that synchronization in NCL is achieved by alternatively propagating DATA and NULL wavefronts

with handshaking, thereby eliminating the need for a global clock. In contrast, synchronous circuits

always only propagate DATA and use a global clock for synchronization. Third, NCL circuits (both

combinational and sequential elements) are constructed using threshold gates with hysteresis. The

output of a three input threshold gate that has a threshold of two asserts when two or more

inputs assert, and resets only when all inputs reset again. Hence, threshold gates have memory

and the output depends on both inputs and current output. Moreover, NCL circuits need to be

observable and input-complete. Input-completeness requires that at least one output avoid the

transition NULL → DATA (DATA → NULL) until all inputs are DATA(NULL). Observability

is a property related to the internal gates of an NCL circuit: any change in the internal gate values

should cause a change at the output. These constraints ensure delay-insensitivity.

Definition 18. Let 〈y1, y2, ..., yn〉 = ufsync(〈i 1
1 , i 1

2 , ..., i 1
m〉). 〈Y 0

v , Y
1
v 〉 is

(a) 〈¬yv, yv〉 if
∧m

u=1(i
0
u ⊕ i 1

u),

(b) NULL if
∧m

u=1(¬i 0
u ∧ ¬i 1

u), or

(c) 〈y0v , y1v〉 otherwise,

where 1 ≤ v ≤ n.

We propose an NCL wrapper function (Definition 18), which is our novel contribution in

this paper. The wrapper function (definition given above), as the name suggests, is to be wrapped

around a synchronous function to enable that function to be embedded into an NCL environment.

46

The wrapper function transforms dual-rail data on the input side to boolean data, and vice versa

on the output side, while preserving all the properties of NCL, including handling NULL inputs

and guaranteeing input-completeness. Therefore, the wrapper function can be used to abstract a

combinational circuit block in an NCL circuit using a synchronous UF.

In Definition 18, input to the wrapper function is 〈i 0
u , i 1

u : 1 ≤ u ≤ m〉; current state of

the output is 〈y 0
v , y 1

v : 1 ≤ v ≤ n〉, and 〈Y 0
v , Y

1
v : 1 ≤ v ≤ n〉 is the next state of the output.

ufsync is the UF symbol that abstracts away the corresponding synchronous combinational unit.

Of dual-rail encoded signal 〈D0, D1〉, D0 and D1 are mutually exclusive when transmitting DATA,

and D1 is equivalent to the Boolean value of DATA. Hence, 〈i 1
1 , i 1

2 , ..., i 1
m〉 is forwarded as input to

ufsync , and dual-rail equivalent of an output y from ufsync is simply 〈¬y, y〉. If all dual-rail inputs to

the wrapper function are DATA (all dual-rail inputs are mutually exclusive), dual-rail equivalent

of output of ufsync is forwarded to the NCL system. If all inputs are NULL, output is also set

to NULL (required NCL behavior). For any other combination of inputs, output of the wrapper

function is unchanged. Triggering changes at the output only when all inputs are DATA (or NULL)

ensures input-completeness. Since ufsync abstracts out all the internal logic from the combinational

block, observability is irrelevant, and therefore ignored.

4.3. Abstraction of Completion Mechanism

In this section, we present another novel abstraction technique that we have developed,

which is targeted at the NCL control logic. A single-bit NCL register has an output (ko), which is

used to make requests to registers in preceding stages. When the register output is NULL/DATA,

ko is 1/0. ko is generated using an inverting TH12 threshold gate with the two output rails of a

dual-rail register as inputs.

Definition 19. A threshold gate THmn:

• has n inputs and a threshold m : 1 ≤ m ≤ n,

• if number of asserted inputs ≥ m, then output is 1,

• if number of asserted inputs is zero, then output is 0.

For an n-bit register, a completion detector kc is generated, which is 1/0 when all the single-

bit registers output NULL/DATA. Thus, the kc signal is used to synchronize the completion of the

registers.

47

Synthesizable threshold gates have an upper limit of four inputs [3]. Thus a tree of threshold

gates, called a completion tree, is used to generate kc. As the width of the register increases, the

completion tree grows more complex.

We propose an abstraction technique for the generation of kcwhere the tree for an n-bit

register is replaced by a THn(2n) threshold gate with inversion at the output. The function of the

gate is defined below.

Definition 20. kc is

(a) 0 if
∑n

j=1(r
0
j + r1j) = n,

(b) 1 if
∑n

j=1(r
0
j + r1j) = 0, or

(c) kc otherwise.

In the definition above, r0j and r1j are the dual-rail output of the jth register. Case (a)

corresponds to DATA completion. We check the sum of the asserted output rails ,
∑n

j=1(r
0
j + r1j),

to detect completion. Dual-rail output is DATA, when only one of r0 and r1 is 1. Therefore, sum

is n when all registers have valid data. Here we exploit the fact that both rails of a dual-rail signal

will not assert at the same time, which is also exploited in the completion detection circuit design.

Case (b) corresponds to NULL completion: deassertion of all output rails. Hence, the sum should

be zero. Case (c), the default case, corresponds to intermediate states between completions where

the circuit holds the current output.

The completion tree abstraction is achieved by replacing the original completion tree circuit

with the function from Definition 20. The use of this abstraction significantly reduces verification

time as can be evidenced from the experimental results (given in the Results sections). The use

of this abstraction has to be verified as well. To elaborate, a verification check is required that

checks that the abstraction function from Definition 20 is equivalent to the completion tree from

the original circuit that is replaced. This can be verified using techniques from [46].

4.4. Results

We used multiply and accumulate (MAC) circuits to demonstrate the effectiveness of the

proposed abstraction techniques. Circuits involving multiplication are typically challenging, and

therefore are good benchmarks to evaluate verification techniques. The benchmarks were obtained

48

4 8 16 32 64

100

101

102

103

104
timeout

Datapath width

T
im

e
(s

ec
)

original
abstracted

Figure 4.1. Comparison of Verification Times for MAC Circuits

by varying the datapath of the MAC circuits between 4-bits and 64-bits. The combinational multi-

plier circuit and the three completion trees in the MAC were abstracted away using our abstraction

techniques. Combinational multiplier circuit can be verified independently using equivalence veri-

fication method for combinational circuits [46]. The benchmarks and verification proof obligations

were specified using the SMT-LIB language [26] and were checked using the Yices Solver version

2.4.2 [48]. All experiments were performed on a 1.8 GHz AMD A6-6310 APU with a 2MB L2 cache.

The results are given in Table 4.1. We used a timeout of 20,000 seconds. As can be

seen from the table, equivalence verification of the original MAC circuits times-out beyond the

8-bit datapath. Column ”abstracted circuit” gives the verification times for the MAC circuits

after applying combinational abstraction and completion tree abstraction. The ”combinational

abstraction” column gives the verification times to check the equivalence of the combinational units

that were abstracted from the NCL and synchronous circuits. The ”completion tree abstraction”

column shows the verification times required to check the equivalence of the original completion

tree from the circuit and the completion tree abstraction function (from Definition 20) that was

applied to replace the original completion tree circuit. Results indicate significant improvements in

the verification times. With the use of abstractions, equivalence verification could be extended up

to and beyond a 64-bit MAC. Verification times of the original and abstracted circuits are plotted

against data path width in Figure 4.1.

49

Table 4.1. Verification Times for MAC Before and After Abstractions

Model
time (s)

full circuit pipeline comb. unit cmpl. tree

MAC4x4 8.501 0.167 0.1 N/A
MAC8x8 8528.824 0.184 0.292 0.046
MAC16x16 timeout 0.300 6.217 0.044
MAC32x32 timeout 0.660 42.106 0.042
MAC64x64 timeout 3.251 421.364 0.051

4.5. Conclusion

Based on the results, we conclude that the proposed abstractions are necessary for equiva-

lence verification of complex NCL circuits with their synchronous counterparts.

50

5. EQUIVALENCE VERIFICATION FOR

DESYNCHRONIZED CIRCUITS4

5.1. Introduction

The impact of persistent technology scaling results in a previously ignored set of design

challenges such as manufacturing and process variability, and increased significance of wire delays.

The challenges threaten to invalidate the effectiveness of synchronous design paradigms at the

system-level. Asynchronous circuits possess several alluring properties—over their synchronous

counterparts—that pose solutions to many of these challenges. Such properties include locally

generated timing signals in the place of global clocks, potential performance speedups, robustness

towards variability in the manufacturing process and operating conditions, etc. [40, 49, 50, 51, 52,

35, 53, 54, 55, 56]. However, design of asynchronous circuits has been a challenge and currently

lacks support of Computer-Aided Design tools. Desynchronization [40, 57] is proposed as a design

solution, where pipelined circuits and systems with a high degree of asynchronocity are synthesized

from synchronous parents in a manner that exploits existing CAD tool support for synchronous

designs. Desynchronization methods have in fact been successfully used to design and fabricate

circuits that implement the DLX architecture and the DES encryption/decryption algorithm [40].

For desynchronization to be a feasible design solution, one of the critical challenges however

is verification. Verification becomes a challenge when the desynchronized circuits are pipelined. For

example, the controller of a desynchronized 5-stage pipeline can have more than 16*1510 states [40].

Functional verification using exhaustive testing is, therefore, hard. In this paper, we present a

methodology for formal equivalence verification for desynchronized circuits. Equivalence verification

has been a very successful approach in commercial design cycles for synchronous design.

4 The material in this chapter was co-authored by Vidura M. Wijayasekara, Sudarshan K. Srini-
vasan, and Raj S. Katti. Vidura Wijayasekara was the primary developer of the conclusions that
are advanced here.Vidura Wijayasekara also drafted and revised all versions of this chapter. Su-
darshan Srinivasan and Raj Katti served as proofreaders and checked correctness of the theories
and algorithms developed by Vidura Wijayasekara.

51

The methodology is developed in the context of desynchronization synthesis. The desyn-

chronization paradigm was developed with the goal of synthesizing asynchronous circuits from

synchronous circuits. The target of our equivalence verification framework is to check equivalence

of desynchronized circuits and their parent synchronous circuits. We call the synchronous circuit

that is used as input to desynchronization synthesis as the parent synchronous circuit. Such equiv-

alence verification technology is new. We are not aware of any previous work that has developed

such an equivalence verification framework. We also note here that such an equivalence verifica-

tion methodology will positively impact the feasibility of using the desynchronization framework in

commercial design cycles.

The transformations used in desynchronization to synthesize asynchronous circuits from

synchronous circuits have been shown to be correct by construction. Why is then equivalence

verification required? The parent synchronous circuit will have undergone significant mutations

and there can be many sources of bugs that can creep into the synthesis process such as buggy

synthesis tools and manual tinkering of the synthesized circuit. Commercial design cycles will

require to verify the functional correctness of the asynchronous implementation, which could be

a prohibitively expensive task. Partial verification methods such as checking if the connections

in the desynchronized controller network are correct, will be insufficient to satisfy the stringent

requirements of commercial design. Our equivalence verification methodology addresses this gap.

The notion of equivalence we use is Well-Founded Equivalence Bisimulation (WEB) refine-

ment, which can be thought of as a notion of equivalence between two digital systems (a specification

and an implementation). WEB refinement can be used even if there is a significant abstraction

gap between the specification and implementation. There are two problems when using WEB re-

finement. First is finding the states of the desynchronized circuit that can be reached from the

initial states of the circuit (reachable states). Identifying reachable states is important as unreach-

able states are often inconsistent and can cause spurious counter examples. The second problem

is finding a refinement map, which is a function that maps reachable state of the implementation

onto specification states. To elaborate on the challenges of the first problem: the desynchronized

pipeline controller network is highly non-deterministic in nature and also exhibits a large state

space. These two factors make it hard to trace the reachable states. There are two approaches to

compute reachable states of the desynchronized controller network.

52

1. The first approach is based on symbolic simulation. The idea is to start from the set of

reset states and perform symbolic simulation until no new states are discovered, i.e., until a

fixed point is reached. Or, start from the set of all states and perform symbolic simulation

until a fixed point is reached where no new states are eliminated [58]. Approaches based

on symbolic simulation of the implementation model cannot be used because the complexity

of the desynchronized controller network requires a prohibitively large number of symbolic

simulations of the model.

2. The second approach is to compute invariant properties of the desynchronized controller

network that characterize the set of reachable states. We explored this approach and found

that because of the large state space and the high degree of non-determinism of the controller

networks, we could not find a systematic approach to generate invariants to characterize

the reachable states of the controller networks. The primary problem is that the behavior

of a desynchronized controller depends on the state of controllers on its output side, but,

does not have any dependencies on the input side i.e., the source controllers. This lack of

dependency on the source side results in a high degree of nondeterminism of the resulting

controller networks.

The second problem in equivalence verification is finding a suitable refinement map function.

The challenge here is to find a general formulation for generating refinement maps that can be used

for a large class of desynchronized circuits. Another requirement is that the formulation generates

refinement maps that can be encoded in a decidable fragment of first-order logic. Such a formulation

would provide a platform for highly automated equivalence verification that can exploit SMT solvers

to discharge WEB refinement proof obligations.

Since verifiability is an important consideration for design, we propose changes to the desyn-

chronized controllers introduced by Cortadella et al. [40] that would make equivalence verification

a feasible solution by alleviating the aforementioned challenges. These changes add additional

sequential dependencies between controller events so that the state space of each controller and

resulting controller networks are simplified and reduced. Changes are two fold. First, all con-

trollers in the controller network are replaced with the modified controllers, which we refer to as

the Design For Verification Desynchronization (DFVD) controllers. Second, the controller network

53

is modified, which we refer to as a circular desynchronized pipeline. We show that when desynchro-

nized pipelines are modified to circular desynchronized pipelines and DFVD controllers are used,

the resulting desynchronized pipelines become amenable to our verification approach. The specific

contributions of our work are:

1. The controller used for desynchronization can hold zero, one or two tokens. The controller is

initialized with one token and can transition to states with zero tokens or two tokens. Our

contribution is the DFVD controller that satisfies the following property. If the controller

currently holds one token, then the controller will hold on to that token until a new token

is accepted on its input. This is not a property satisfied by the original controller used for

desynchronization. Therefore, when the DFVD controller is initialized with one token, it will

always remain in states where it has one or two tokens. This property of the DFVD controller

makes it possible to compute reachable states of pipeline controller networks, which is a

requirement for equivalence verification. However, the verifiability of the controller is achieved

by trading with performance. We estimate that in the worst case, pipeline throughput is

degraded by the delay of four transitions of a muller-C element.

2. We analyzed and deduced 15 properties of the DFVD controller. These properties (an im-

portant contribution of our work) can be used as rules and applied to systematically generate

invariants and characterize the reachable states of any DFVD controller network.

3. We introduce design for verification: circular desynchronized pipeline systems. A desynchro-

nized pipeline system with n stages can hold anywhere between 1 to 2n valid unique tokens,

which correspond to information in the datapath that are not redundant, in a given state.

The number of valid unique tokens in circular desynchronized pipeline states, on the other

hand, remains constant. Therefore, when an n stage circular desynchronized pipeline system

is initialized with one unique token in each DFVD controller (totaling to n unique tokens),

the number of unique tokens in every reachable state of the system will always be n. This

property makes it possible to build a simplified general refinement map function between the

reachable states of the circular desynchronized pipeline and the states of the specification

synchronous pipeline, which, also, always has n unique tokens.

54

4. We have also developed a equivalence verification procedure for circular desynchronized

pipelined systems. Proving equivalence requires a refinement map, which (in this context)

is a function that maps states of the implementation (desynchronized pipelined system) to

states of the specification (pipelined synchronous machine). Defining the refinement map

in this context requires identifying redundant information in the pipeline (which is possible

in desynchronized pipelines). Our specific contribution here is to identify conditions of the

controller network state that correspond to redundant information in the data path. These

conditions are generic and can be applied to any DFVD controller network. The key here

is that these conditions are applicable only for reachable states (which we have been able to

characterize using the DFVD properties).

5. We developed 7 circular desynchronized processor models of varying pipeline length (between

5 and 7 stages) and controller complexity. The models used the DFVD controllers, and

the controller networks were modified to circular pipelines. Our design for verification and

verification approaches are demonstrated by checking the correctness of these models.

The rest of the paper is organized as follows. Related work is given in Section 5.2. Desyn-

chronization and DFVD controllers are described in Section 5.3. The properties of the DFVD

controllers and reachability analysis of desynchronization controller networks are described in Sec-

tion 5.4. The desynchronized processor models used for experiments are described in Section 5.5.

The equivalence verification procedure is detailed in Section 5.6. Circular desynchronized pipelines

are described in Section 5.7. Computation of the refinement map function for circular desynchro-

nized pipelines and required invarients are detailed in Section 5.8. Experimental results are given

in Section 5.9, and we conclude in Section 5.10.

5.2. Related Work

Current verification technology for asynchronous circuits can be classified as property check-

ing approaches [33][34] or methods based on trace theory [35]. Trace theory was originally developed

to model and verify concurrent systems. In trace theory the implementation and the specification

are modeled as trace structures. Later on the theory was adapted by asynchronous community to

verify untimed models of asynchronous circuits. The drawback in using untimed models is that they

force the designer to use more complex implementations for bounded delay asynchronous circuits

55

(e.g. desynchronized circuits) than necessary [59]. Later developments of the trace theory sought to

resolve this drawback and handle real-time constraints of bounded delay circuits by extending the

theory to handle timed traces and using time petri-nets to model bounded delay circuits. While

research has been done to prove the correctness and improve efficiency of these models, many

trace theory approaches target the verification of gate-level asynchronous circuits. Our focus is on

the verification of desynchronized pipelined circuits and systems that are described in RTL. Our

approach, which is equivalence verification, is based on the theory of Well-Founded Equivalence

Bisimulation (WEB), in which implementation and specification are modeled as transition systems.

Verifying pipelines has been a challenge and warrants specialized techniques. Approaches based on

property checking can be used for desynchronized pipelined circuits, but, are cumbersome because

a large number of properties are required and also the properties themselves can be hard to write

leading to erroneous specifications [35].

Loewenstein [36] verified some properties of a counter-flow pipeline using the HOL theorem

prover. Counter-flow pipelines are asynchronous in nature with results flowing in the pipeline in a

direction opposite to that of instruction flow. The desynchronized pipelines we verify do not use the

counter-flow mechanism. Also, our correctness proofs are based on the use of decision procedures

and are highly automated.

Verbeek [60] verified deadlock freedom of delay insensitive circuits composed of primitives

from the Click library. Click library is a collection of handshake circuit elements for implementation

of data-driven asynchronous circuits. Verbeek uses SAT/SMT instances of the circuit to verify the

deadlock freedom. In this regard, Verbeek’s approach is similar to ours in that we also use SMT to

model the transition systems. However, we prove funtional equivalence between a desynchronized

pipeline and its specification pipelined synchronous system.

Cortadella et al. [40] have used flow equivalence (FE) to prove the correctness of their

desynchronization method, and FE is well suited for this purpose. However, they have not demon-

strated verification based on FE. Why do we use refinement instead of FE? Refinement is a more

general notion. For example, one requirement of FE is that the specification and implementation

should have the same set of latches. If optimizations such as retiming or pipelining is applied after

desynchronization, then the design cannot be related back to its synchronous specification using

FE. This is because FE compare the values in latches to verify equivalence.

56

In previous work, we developed a refinement-based verification method for desynchronized

pipelines [61]. The original desynchronization controllers were used. The approach for reachability

is based on performing symbolic simulation of the implementation model, starting from reset states,

until no new states are discovered, i.e., until a fixed point is reached. However, this approach is

not viable because the complexity of the desynchronized controller network requires a prohibitively

large number of symbolic simulations of the model. As a result, we were only able to verify a

small subset of the reachable states, and, therefore, the verification method is only partial. In

the current work, our approach is to generate constraints (also known as inductive invariants) on

the state variables that characterize the reachable states of the system. This approach is also

not viable for the original desynchronization controllers. Hence we use the design for verification

approach to develop the DFVD controller. For the DFVD controller network, the latter approach

for reachability is viable as shown in Section 5.4.

Also, we verify the desynchronized pipeline (implementation) against its parent circuit: the

pipelined synchronous circuit (specification). In our previous work [61], we verified the desynchro-

nized pipeline against the non-pipelined synchronous specification. Verifying against the pipelined

synchronous specification is a better approach because the desynchronization paradigm was devel-

oped with the goal to use desynchronization as a way of synthesizing asynchronous circuits from

synchronous circuits. It is impossible to create refinement maps when there is so much variability

in the number of valid unique tokens in a given state of the desynchronized pipeline. In our current

work, we introduce circular desynchronized pipelines that enables generating the refinement maps

from the desynchronized pipeline states to the pipelined synchronous specification states.

We proposed the idea of using completion functions to define the refinement map for desyn-

chronized pipelines in [61]. We adopt this approach in our current work. However, the key difference

is how redundant data is identified in the pipeline. In [61], we relied on observing the flow of tokens

in the controller network, as symbolic simulation was used for reachability analysis. However, as

stated earlier, using symbolic simulation for reachability analysis is not viable. In this work, we

have deduced generic conditions of the state of controller network that identify redundancy in the

data path, which can be used for complete safety verification and is described in Section 5.7.

57

Figure 5.1. A Pipeline Stage with a Latch Controller Network.

5.3. Desynchronization and DFVD Controllers

Desynchronization is the process of converting a synchronous circuit into an asynchronous

one by replacing the clock network with a network of handshaking latch controllers. The edge-

triggered D-flipflops of the synchronous circuit are replaced by two D-latches which are transparent

when their clock input is a 1 and are in the hold mode otherwise. The clock signals or triggers (Ck)

for the latches are obtained by latch controllers with two inputs (Rin, Ao), and two outputs (Ro, A =

¬Ck). R′s denote a request signal and A′s denote an acknowledge signal. Consider a synchronous

pipeline stage with a logic block whose inputs are provided by a flipflop and whose outputs are

input to another flipflop. A desynchronized version of such a stage is shown in Figure 5.1. Each

flipflop is converted into two latches shown on either side of the logic block. In a pair of consecutive

latches, the left latch is the back latch and the right is the front latch, indicated by subscripts “b”

(or “B”) and “f” (or “F”), respectively. Each latch has a controller associated with it. The latch

controller used by us is the semi-decoupled controller in [57]. If G is a signal then G+ corresponds

to a rising edge on G and G− corresponds to a falling edge on G. We now describe the operation

of the latch controller labeled, LC, in Figure 5.1 with the help of the two latch controllers , S (for

sender), and R (for receiver). LC receives R+
in from S indicating the availability of data at the input

of the LC latch (F1). LC sends A+ to S indicating that the data has been captured by F1. LC

then sends R+
o to R to indicate that its output is valid and will be stable until A+

o is received. S

sees A+ and puts out R−in. LC sees R−in and A+
o and puts out A− and R−o . R puts out A−o when

58

it receives R−o . The above description of the latch controller (called the 4-phase controller) can be

converted to the following five logic equations.

1. A+ = Rin ∧ ¬Ro

2. A− = ¬Rin ∧Ro ∧Ao

3. R+
o = A ∧ ¬Ao

4. R−o = ¬A

5. Ck = ¬A

Note that the clock input to the latch is Ck, and the delay element D in Figure 5.1 mimics

the delay of the logic block. This kind of desynchronization is similar to that performed in [40] and

has been proven to work well.

One of the important aspects of desynchronization is that it leads to redundant tokens in

the data path. When a copy of the token is passed from a source latch to a destination latch,

the source latch holds on to the token until it receives an acknowledge signal indicating that the

destination latch has accepted the token. Thus, for a period of time, the source is holiding on

to a redundant token that has reached the destination. Redundancy leads to some issues with

refinement-based verification, which we discuss in Section 5.6.

C

C

RobRib Rof

AofAb Af

Ri1

Rim

Ao1

Aon

B F

Figure 5.2. DFVD Controller

59

5.3.1. DFVD Controller

The proposed Design For Verification Desynchronization (DFVD) controllers for a pipeline

latch pair is shown in Figure 5.2. The difference between the proposed controller and the controller

in the desynchronized circuit of [40] is the feedback of Rof to the muller-C element that generates

Rib and the feed forward of Ab to the muller-C element that generates Aof . The connections are

not part of the original controller. The Ab connection enforces the property that if the controller

currently holds only one token in the F latch, then the controller will hold on to that token until

it has received a new token in the B latch. The F latch will drop its token when it receives an

acknowledge (A+
of). Since Ab is connected to the muller-C element that generates Aof , unless latch

B acknowledges the receipt of a new token by asserting Ab, the F latch will not drop its token.

An additional dependency is enforced by the Rof connection that allows the B latch to

receive a new token only when the F latch has signaled a request on the output side. The new

controller results in only minor delays but satisfies properties that allow for reachability analysis

(see Section 5.4).

Table 5.1. Worst Case Delay Analysis of DFVD Controller

State State Event Delay
Label 〈AbRibRobAfRofAof 〉

S1 〈 000100 〉 R−ob N
S2 〈 000110 〉 R+

of N

S3 〈 010110 〉 R+
ib Y

S4 〈 110110 〉 A+
b N

S5 〈 100110 〉 R−ib Y
S6 〈 100111 〉 A+

of Y

S7 〈 100011 〉 A−f N

S8 〈 101011 〉 R+
ob N

S9 〈 101001 〉 R−of N

S10 〈 101101 〉 A+
f N

S11 〈 001101 〉 A−b N
S12 〈 001100 〉 A−of Y

We now estimate the worst case increase in delay for the new controller by estimating the

maximum delay between consecutive R+
ib transitions in the controller of latch B. This delay gives

us the minimum time between consecutive sets of data getting stored into a latch. In the new

60

controller circuit Rib cannot change to 1 (or 0) unless Ri’s (Ri1–Rim) and Rof are all 1 (or 0).

Similarly Aof cannot change to 1 (or 0) unless Ao’s (Ao1–Aon) and Ab are all 1 (or 0). The set of

transitions that lead to worst case delay for the proposed controller circuit is shown in Table 5.1.

This has been derived from the state diagram of an individual semi-decoupled 4-phase controller

of [57] (see Figure 8 in [57]). The controller transitions from state Si to Si+1, starting at state

S1 and until it reaches S12. From S12, it transitions back to S1. The events that causes the state

transition is also shown in Table 5.1. Delays occur when a transition of Rib or Aof has to occur.

From the state diagram it is clear that it takes 12 state transitions for two consecutive R+
ib

transitions to occur. However without the new connections to Rib and Aof it takes 8 state transitions

for two consecutive R+
ib transitions to occur. Thus we obtain a worst case delay of 4 state transitions

for the new controller to have two consecutive R+
ib compared to the existing semi-decoupled 4-phase

controller of [57], which is usually negligible compared to the delay of pipeline processing logic in

a stage. Also, note that many of the transitions of the additional muller-C elements can take place

simultaneously with other events in the circuit and on average the performance degradation could

be much lower.

5.4. Reachability Analysis of DFVD Controller Network

To perform verification, we need to compute the reachable states of the desynchronized

pipeline controller network. Computing reachable states has two ends. First, unreachable states

can be inconsistent w.r.t. the correctness property and flag spurious counter examples that hinder

the verification process. Identifying reachable states of the implementation solves this problem

as verification properties can now be checked only on the reachable states ensuring that spuri-

ous counter examples are eliminated. Second, our procedure for computing refinement maps for

desynchronized pipelined machines is based on reachability analysis. Note that the reachability

method eliminates unreachable states that hinder verification, which is what is re-

quired. The reachable states of the controller network may in fact only be a subset of

the set of states computed by the reachability method.

We now describe the general invariant generation rules. The first 8 rules (P1-P8) apply

to the DFVD controller shown in Figure 5.2. Note that these rules are properties of the DFVD

controller, and should be applied to each of the DFVD controllers in a DFVD pipeline controller

network.

61

The acknowledge signal for the front and back latches Af and Ab, respectively, also act as

the clock for the front and back latches. When Af or Ab are asserted, the corresponding latches are

in a hold state, and when Af or Ab are de-asserted, the corresponding latches are transparent (not

holding any data tokens). Thus Property P1 is a significant property as it implies that the DFVD

controller will always be in a state where one or both of the latches is in a hold state. In other

words, the DFVD controller will never reach a state where both latches are empty/transparent.

This is not a property satisfied by the desynchronization controller proposed by [40], which allows

the state where both latches are transparent. Property P1 makes it possible for us to compute

reachable states and define refinement maps in a systematic manner for desynchronized pipelines.

P1: Ab ∨Af

Property P1 is not an invariant by itself, because there are states of the DFVD controller,

which satisfy the property, but which can transition to states that do not satisfy P1. Therefore, we

need low-level properties P2–P8 that eliminate all such states.

P2: 〈Ab ∧Af ∧Rof 〉 → (¬Rob)

Properties P3–P5 identify the conditions under which the muller-C element corresponding

to Aof should hold values of 0 and 1.

P3: 〈Ab ∧Af ∧ (¬Rof)〉 → (¬Aof)

P4: 〈(¬Ab) ∧Af ∧Rof 〉 → (¬Aof)

P5: 〈Ab ∧ (¬Af)〉 → Aof

Properties P6–P8 identify the conditions under which the muller-C element corresponding

to Rib should hold values of 0 and 1.

P6: 〈Ab ∧ (¬Af) ∧ (¬Rof)〉 → Rib

P7: 〈(¬Ab) ∧Af ∧ (¬Rof)〉 → (¬Rib)

P8: 〈Ab ∧Af ∧Rof 〉 → Rib

62

The conjunction of properties P1–P8 form an inductive invariant, which we have verified

using the ACL2-SMT verification system [62] by proving that for every state of the DFVD controller

that satisfies the conjunction of properties P1–P8, its successor also satisfies the conjunction of P1–

P8.

D C

C

Combinational
Logic

Rof1

Ab2
Af1

Rib2

Aof1

Rob1 Rob2

Af2
F1 B2

Figure 5.3. DFVD Controller Circuit for Data Transfer

Properties P9–P15 apply to the circuit shown in Figure 5.3 that occurs in the desynchronized

pipeline controller network when data is passing from one stage of the pipeline to another. In this

situation, the front latch of the source stage is connected to the back latch of the destination stage.

Hence the front controller of the source stage (labeled F1 in the figure) is connected to the back

controller of the destination stage (labeled B2 in the figure).

Properties/rules P9–P15 should be applied to every source to destination connection in

the pipeline including feedback connections as well. The properties P9–P15 are used to eliminate

inconsistent states by identifying the conditions in which the muller-C elements corresponding to

Rib2 and Aof1 hold values of 1 and 0.

P9: 〈(¬Af1) ∧ (¬Ab2)〉 → (¬Rib2)

P10: 〈(¬Af1) ∧Rof1〉 → Rib2

63

PC
Logic IM

D

Instruction
Decode

Forwarding
Logic

DM

C

C

C

C

D C

C

CD

C

D CD

C

DD

D

QueueInstruction

D

C

C

fetch decode execute memory write back

RF

PC FD

DE
EM MM

FF

Figure 5.4. High-Level Organization of Desynchronized 6-Stage Pipelined Processor Model

P11: 〈Af1 ∧ (¬Ab2) ∧ (¬Rof1)〉 → (¬Rib2)

P12: 〈Af1 ∧Ab2 ∧Rof1〉 → Rib2

P13: 〈Af1 ∧Ab2 ∧ (¬Rof1)〉 → Aof1

P14: 〈Af1 ∧ (¬Ab2) ∧Rof1〉 → (¬Aof1)

P15: 〈(¬Af1) ∧Ab2〉 → Aof1

The conjunction of properties P9–P15 also form an inductive invariant, which we have veri-

fied using the ACL2-SMT system by proving that for every state of the circuit shown in Figure 5.3

that satisfies the conjunction of properties P9–P15, its successor also satisfies the conjunction of

P9–P15.

5.5. Desynchronized Pipelined Models

Five desynchronized pipelined processor models were developed and used as benchmarks to

demonstrate the applicability and efficiency of the proposed verification solution for desynchronized

systems. The models are specified in SMT-2 format. First, a 5-stage synchronous pipelined proces-

sor model based on the DLX pipeline [63] was constructed. Three desynchronized versions of the

synchronous pipeline were developed, including DPM5-1, DPM5-2, and DPM5-5. In DPM5-1, one

desynchronization controller is used to control all the stages of the pipeline using the idea of cluster-

ing [64]. Clustering is also used in DPM5-2, where two desynchronization controllers are employed

(one controller for the fetch and decode stages, and the second controller for the execute, memory,

and write back stages). DPM5-5 is a fully desynchronized model, where 5 controllers are used (one

64

for each stage of the pipeline). The fetch stage in DPM5-5 is further pipelined (resulting in a short

instruction queue) to create DPM6-6 and DMP7-7, both of which are fully desynchronized models

employing one controller for each pipeline stage. The high-level organization of DPM6-6 is shown

in Figure 5.4.

The models are specified at the term-level [47, 65], an abstraction level in which the bit-

vector data path is abstracted using integers (also called terms in this context). Also, functions

that operate on data are abstracted using Uninterpreted Functions (black box functions that only

satisfy the property that equal inputs produce equal outputs). Term-level abstraction is used as it

drastically improves the efficiency of verification.

5.6. Refinement-Based Verification

The goal of our verification procedure is to show equivalence between a pipelined desynchro-

nized circuit/system and its pipelined synchronous specification. The notion of equivalence that we

use is Well Founded Equivalence Bisimulation (WEB) refinement [15] and is based on stuttering

bisimulation. Proving refinement guarantees that every behavior of the implementation is matched

by behavior of the specification and vice versa. A detailed description of the theory of refinement

can be found in [15]. It is enough to check the following correctness formula [16] to establish

refinement (thereby establish equivalence) between an implementation and its specification.

Definition 1. (Core WEB Refinement Correctness Formula)

〈∀w ∈ IMPL :: s = r(w) ∧ u = Sstep(s) ∧

v = Istep(w) ∧ u 6= r(v)

→ s = r(v) ∧ rank(v) < rank(w)〉

In the formula above, IMPL denotes the set of implementation states, Istep is a step of the

implementation machine, and Sstep is a step of the specification machine. The refinement map r

(a mechanism not found in stuttering bisimulation) is a function that maps implementation states

to specification states thereby making it easy to compare systems at different abstraction levels.

rank , used for deadlock detection, is a witness function from implementation states to natural

numbers whose value decreases when there is stutter. The proof obligation that s = r(v) is the

safety component and guarantees that if the implementation makes progress, then the result of

65

FF FD DE EM MWPC

Figure 5.5. The 6-Stage Desynchronized Pipeline and the Corresponding Parent Synchronous
Pipeline.

that progress is correct as given by the specification. The proof obligation that rank(next-impl) <

rank(impl) is the liveness component and guarantees that the machine will not deadlock, i.e.,

will always make forward progress. In this work, we solve the problem of safety verification for

desynchronized pipelines and reserve liveness verification for future work.

The specific steps involved in a refinement-based verification methodology for checking

safety are: (a) Compute the states of the implementation model that are reachable from reset

(known as reachable states). We use the rules given in Section 5.4 to generate invariant

properties that characterize the reachable states of any desynchronized pipeline con-

troller network. (b) Construct a refinement map. (c) Use the models and the refinement map

to state the safety component of the refinement-based correctness formula for the implementation

model, which can then be automatically checked for the set of all reachable states using a decision

procedure.

Therefore, to perform verification, in addition to the implementation and specification mod-

els, and reachability analysis, we also require a refinement map.

5.7. Circular Desynchronized Pipelines

For equivalence verification based on WEB refinement, a refinement map is required that

maps every reachable state of the desynchronized circuit (implementation) to a synchronous circuit

state (specification). Consider the example of the 6-stage pipelined circuit shown in Figure 5.4. The

structure of the 6-stage desynchronized pipeline and corresponding parent synchronous pipeline is

shown in Figure 5.5. There are several challenges to building a refinement map.

66

1. The desynchronized pipeline with DFVD controllers can have any where between 6 to 12 valid

tokens in the pipeline, whereas the parent synchronous pipeline will always have 6 valid tokens.

Here, we identify latches in hold state as valid tokens. Note that by this definition, flip-flops

are always valid. The reason for the above is that all stages of the synchronous pipeline are

synchronized with the global clock. Whereas, stages of the desynchronized pipeline proceed

at differing speeds.

2. Valid tokens in many states of the desynchronized pipeline can be redundant. The syn-

chronous pipeline will never have redundant tokens.

Rib

Ab

Rof

Aof
l 1 l 2n

Ri1

Rip
Ao1

Aoq

C

C

Figure 5.6. n-Stage Circular Desynchronized Pipeline.

Based on the above, an n stage desynchronzed pipeline state can have anywhere between

1 and 2n non-redundant tokens. The states of the parent synchronous pipeline will always have n

non-redundant tokens. Defining refinement maps between desynchronized and parent synchronous

pipelines, when there is so much variation in the number of tokens and how the tokens are dis-

tributed in desynchronized pipelines, is hard to resolve. States that have more than n non-redundant

tokens need to be reduced to n, using flushing techniques, before mapping to a synchronous state.

States with less than n non-redundant tokens has to be modified, by injecting new tokens to the

pipeline, so that the state has n non-redundant tokens. A refinement map that can handle such

variations, using techniques mentioned above, will be computationally very complex and cause

efficiency of verification times to degrade. Therefore, we propose another design for verification

technique to limit these variations. The technique is a circular desynchronized pipeline and is

67

shown in Figure 5.6. For the purpose of explaining the properties of the circular desynchronized

pipeline and the computation of the refinement map, we label latches of an n-stage desynchronized

pipeline 〈l1, l2, ..., l2n〉 and the registers of the parent synchronous pipeline 〈r1, r2, ..., rn〉.

For any n-stage pipeline, the corresponding circular desynchronized pipeline is obtained by

1. connecting the Ro of the last latch (l2n) to the muller-C element that generates Ri of the first

latch (l1).

2. connecting the A of l1 to the muller-C element that generates Ao of l2n.

Adding the above connections to the circuit synchronizes the output of l2n with the input

of l1, and creates a loop like structure in the controller network. This synchronization ensures that

the number of non-redundant tokens remain constant in all the reachable states of the circular

desynchronized pipeline (see Property 5). This important property of the circular desynchronized

pipeline simplifies computing the refinement map, since the the number of non-redundant tokens

does not vary, as detailed in section 5.8. First, we present the conditions of the DFVD controller

network states that result in redundancy among tokens. Then the following property (Property 4)

is proved about the latches carrying redundant tokens in a desynchronized pipeline, which is used

to derive subsequent properties.

Since redundancy is a result of desynchronization, the latches that have redundant data

in a desynchronized pipelined machine state can be determined by observing the controller state.

There are two conditions of the DFVD controller network states that identify redundant data in

the pipelined system, which are given below.

Rd1: Ab ∧Rob ∧Af

The first condition (Rd1) occurs between the latch pair used to separate two stages of a

pipeline and is depicted in Figure 5.2. The condition occurs when the B latch is holding its data

(indicated by Ab), which has also been transmitted to the F latch (indicated by Rob ∧Af).

Rd2: Af1 ∧Rof1 ∧Rib2 ∧Ab2

The second condition (Rd2) occurs between the F latch of a source latch pair (controller

1) and B latch of a destination latch pair (controller 2). The corresponding circuit is shown in

68

Figure 5.3. The condition occurs when the F latch of controller 1 is holding its data (indicated by

Af1), which has also been transmitted to the B latch of controller 2 (indicated by Rof1∧Rib2∧Ab2).

Property 4 is expressed as a CTL property. In the property, lv is true iff latch l holds a

valid token and lr is true iff latch l holds a valid token that is redundant. Also, ls is the source

latch and ld is the destination latch.

Property 4.

AG {lrs → A [lvdU(¬lvs lvd)]}

Proof. When ls is the B latch and ld is the F latch of a pair of latches that seperate two stages, the

condition for redundant latches is Rd1 (where b← s and f ← d):

As ∧Ros ∧Ad

When ls is an F latch of a source latch pair (controller 1) and ld is a B latch of a destination

latch pair (controller 2), condition for redundant latches is Rd2 (where f1← s and b2← d):

As ∧Ros ∧Rid ∧Ad

For ld to become invalid (¬lvd), Ad of the corresponding latch controller (LC) should deassert.

Using the logic equations that describe the LC (See section 5.3), we have

A−d = ¬Rid ∧Rod ∧Aod

Therefore, Rid needs to be deasserted to deassert Ad. Rid remains asserted until Ros de-

asserts because Ros is an input to the muller-C element that generates Rid (Ros and Rid are the

same signal when ls and ld belong to the same DFVD controller). From the logic equations for LC:

R−os = ¬As

Hence, Ros cannot deassert until As deasserts. Deasserting As invalidates ls (¬lvs).

69

In the above property, the token in ld remains valid as long as the token in ls remains valid

if ls is holding a redundant token.

Property 5. An n-stage circular desynchronized pipeline with m non-redundant tokens in the

initial state, where m ≤ 2n, will have exactly m unique valid tokens in every reachable state.

Proof. The circular desynchronized pipeline design makes l2n an input to l1. Note that the changes

are made to the controller network, and the datapath is not altered. The added dependence puts

two constraints on the pipeline.

• Prevents l1 from accepting a new token until l2n is valid.

• Prevents any token in l2n from retiring until l1 accepts a new token.

New tokens are inserted to the pipeline at l1. Once l1 accepts a new token, l2n becomes re-

dundant. Therefore, the number of non-redundant tokens in the pipeline does not change. Because

the token in l2n is redundant and l2n is an input to l1, l1 remains valid until l2n becomes invalid

(Property 4). Therefore, l1 cannot accept a new token until the token in l2n retires.

In the above proof, it was mentioned that the token in l2n becomes redundant once l1

accepts a token. Note that the tokens are associated with the state of the controller network. In

the actual datapath, the data in l2n does not become redundant because l1 is really accepting a

new input. This is a special case, and we handle it by flushing the instruction in l2n because it is

not going to map to any stage of the synchronous pipeline.

5.8. Refinement Map for Circular Desynchronized Pipelines

In the initial state of a desynchronized pipeline, every F latch of the latch pairs has a non-

redundant token and every B latch is empty. Thus, an n-stage desynchronized pipeline will have

n non-redundant tokens at the initial state. If the desynchronized pipeline is circular, then the

pipeline will have n non-redundant tokens in every reachable state (Property 5). Note, however,

that there can be multiple redundant tokens in these reachable states. Therefore, a reachable state

can have anywhere between n to 2n valid tokens, but exactly n non-redundant tokens.

The problem of computing a witness refinement map reduces to identifying where these n

non-redundant tokens are located in the desynchronized pipeline, and mapping them onto the n

stages of the synchronous pipeline. The challenge here is to develop a refinement map function

70

that (1) is general and applicable to any circular desynchronized pipeline; (2) is applicable to every

reachable state and, therefore, has to account for all possible combinations in which these tokens

can be distributed in the desynchronized pipeline; (3) can be encoded in QF UFLIA (unquantified

linear integer arithmetic with uninterpreted sort and function symbols), so that the refinement

proof obligations (which use the refinement map function) can be checked using an SMT solver for

this logic.

We introduce the notion of projection predicates, which are used to construct refinement

maps.

Definition 21. A projection predicate pi←j is a predicate that is true only when the refinement

map projects latch lj in the desynchronized pipeline to register ri of the synchronous pipeline.

Since there are n pipeline registers in the synchronous machine and 2n latches in the desyn-

chronized machine, we have 1≤ i ≤ n and 1≤ j ≤2n in the above definition.

Next, we define projection functions pf i←j .

Definition 22. A projection function pf i←j is a function that computes the value of register ri of

the synchronous machine from the value of latch lj in the desynchronized machine.

We now provide a formula for the refinement map, which essentially gives the value of each

pipeline register ri, where 1≤ i ≤ n, for a given desynchronized state.

ri =

pf i←1(l1), pi←1

pf i←2(l2), pi←2

...

pf i←2n(l2n), pi←2n

Next, we describe how projection predicates and projection functions are computed. Note

that for the above definition to be complete, at least one of the projection predicates should be

true. Subsequently, we also state and prove this property.

71

5.8.1. Projection Predicates

We propose an inductive method to compute the projection predicates. The definition for

p1←j , the base case, is given below.

Definition 23. For all j ∈ N such that 1 ≤ j ≤ 2n where n is the number of synchronous stages,

p1←j =

 0 , n + 1 < j ≤ 2n

¬lrj lvj
(∧j−1

k=1 l
v
k → lrk

)
, 1 ≤ j ≤ n + 1

Out of the n non-redundant tokens in a given circular desynchronized pipeline state, the

first (leftmost) non-redundant token maps to r1. When the n non-redundant tokens are placed on

the last n pipeline latches (from ln+1 to l2n), ln+1 maps to r1. Therefore, ln+1 is the furthest latch

that can be mapped to r1 resulting p1←j to be false for (n+ 1) < j ≤ 2n. For 1 ≤ j ≤ (n+ 1), p1←j

is true iff lj holds a valid token that is non-redundant (¬lrj lvj) and all valid tokens in the latches

before lj are redundant so that lj is holding the first non-redundant token.

The inductive step for computing pi←j , which is derived from
{
p(i−1)←1, p(i−1)←2, . . . , p(i−1)←(j−i)

}
,

is defined below.

Definition 24. For all i, j ∈ N such that 1 < i ≤ n and 1 ≤ j ≤ 2n,

pi←1 = 0

for 1 < j ≤ 2n

pi←j = (¬lrj lvj)

[
p(i−1)←1

j−1∧
k=2

(lvk → lrk) + p(i−1)←2

j−1∧
k=3

(lvk → lrk)

+ . . .

+p(i−1)←(j−2)

j−1∧
k=j−1

(lvk → lrk) + p(i−1)←(j−1)

]

more concisely,

(¬lrj lvj)

j−1∨
m=1

[
p(i−1)←m

j−1∧
k=m+1

(lvk → lrk)

]

72

If l1 holds a valid non-redundant token, that token is the first non-redundant token of the

pipeline state. Therefore, pi←1 is always false for 1 < i ≤ n.

The first condition for lj to map to ri is that lj must hold a valid non-redundant token.

The second condition vary with the projection predicate values for ri−1. Given lm maps to ri−1

(p(i−1)←m), the goal is to find out if lj holds the next non-redundant token after lm. If m ≥ j,

pi←j is false. Otherwise, lj holds the next non-redundant token if all the valid tokens in the latches

between lm and lj are redundant.

5.8.2. Projection Functions

pf i←j projects the token in lj to ri. Projection functions can be categorized in to three types.

The first is the direct projection when j is equal to 2i or 2i−1; lj and ri are in the same pipeline

stage. In direct projection, the fields of lj are copied to ri. The other two types of projections

are forward projection and reverse projection. If pf i←j is not a direct projection, the first step is

to flush the inflight instructions that precede the instruction in lj ; non-redundant instructions are

commited to the memory using completion functions. If j < 2i−1 (forward projection), the data

in lj are projected to ri using partial-completion functions. Partial-completion functions compute

the values of the fields in ri using the values of the fields in lj and the updated memory obtained

by flushing the preceding instructions in the pipeline. If j > 2i, the data in lj needs to be reverse

projected to ri. When data move forward through the pipeline stages, information are lost as

a result of partial completion of the instructions. This is a challenge for reverse projection. To

overcome this challenge, essential fields to recover lost information are retained throughout all the

pipeline stages even though they are obsolete for the completion of the instruction. In the example

pipeline, pc and un-decoded instruction are preserved upto the writeback stage.

5.8.3. Consistency Invarients

The consistency invariants guarantee that interdependent fields within a latch are consistent

in the current state. Assume that the back latch of ff stage in the example desynchronized pipeline

(Fig. 5.5) reverse projects to pc pipeline register in the parent synchronous pipeline. Out of the

two fields in ff stage (program counter and instruction), only program counter field gets projected

to pc stage. When the synchronous machine is stepped, data in pc moves to ff pipeline register,

and the instruction field in the ff stage is read from instruction memory using pc as the address.

The instruction field of the pipeline register ff should be consistent with the instruction field of

73

the back latch of the ff stage in the desynchronized pipeline. This requirement is enforced by the

following consistancy invarient on instruction (ff .inst) and program counter (ff .pc) fields of the

desynchronized pipeline.

ff .inst = imem(ff .pc)

5.8.4. Duplicate Invarients

When a latch remains valid after passing on data to a destination latch, the overlapping fields

of the two latches hold duplicate information. Duplicate invarients guarantee that the overlapping

fields of such latch pairs are same. Every datapath connection that has overlapping fields at source

and destination requires a duplicate invarient. For example, consider a reachable state of the 6-

stage pipeline processor model (Fig. 5.4). The front latch of em (lemf) connects to the back latch

of mw (lmwb). There is also a feedback loop—forwarding logic—from lemf to the back latch of

em (lemb). Assume lemf is valid and passed on data to lmwb, but not to lemb. In the next state,

lemf would send data to lemb if all the source latches of lemb have valid data. Following duplicate

invarient between lemf and lmwb guarantee that the data forwarded to lemb is consistent with the

data in lmwb.

5.8.5. Memory Invarients

Memory invarients are similar to consistancy invarients. In states where memory gets

updated, memory invarients gurantee that memory array state is consistent with the latch states.

If value v is written to address a of the memory array mem, then for every latch i, 1 ≤ i ≤ 2n,

that contains fields v and a the following memory invarient should hold:

mem(li.a) = li.v

In the example 6 stage desynchronized pipeline (Fig. 5.5), data memory (dmem) is syn-

chronized with the back latch of the mw stage (lmwb). Assume a desynchronized state, in which

the instruction in lmwb updates dmem, and that lmwb reverse projects to the pipeline register of

the em stage (rem) in the parent synchronous state. When the instruction in rem moves forward to

pipeline register in mw stage, it will update the data memory of the synchronous pipeline. Updated

74

Table 5.2. SMT Statistics

Processor Model Decisions Conflicts Memory Used (MB) Time (s)

DPM5-1 1,022 165 1.15 0.02
DPM5-2 3,564 706 1.84 0.2
DPM5-5 26,161 8,372 3.43 3.78
DPM6-6 45,377 16,058 4.38 9.73
DPM7-7 73,395 27,993 5.31 16.96
DPM-B1-5-2 1,458 170 1.66 0.07
DPM-B2-5-2 1,661 253 1.76 0.1

data memory of the synchronous pipeline should be consistent with dmem in the desynchronized

state.This requirement is guaranteed by the following invariant on dmem.

memwrite(mwb.inst) ∧ lvmwb

⇒ dmem(mwb.result) = mwb.arg1

5.9. Results

Table 5.2 reports the results of safety verification of the five desynchronized processor models

described in Section 5.5 against the pipelined synchronous specifications. The experiments were

performed on a Intel(R) Celeron(R) CPU 540, with a cache size of 1024 KB. Verification was

performed on Z3 theorem prover (version 4.3.1) by Microsoft(R) Research. All models were written

in smt-2 format.

Buggy Models: Two buggy variations of the DPM5-2 model were also checked using the

verification procedure and resulted in the Z3 theorem prover flagging counter examples that pointed

to the source of the bug. The buggy models are DPM-B1-5-2 and DPM-B2-5-2. In DPM-B1-5-2,

we injected a bug in the data path. In the forwarding path for source operand 2 from memory stage

to execute stage, the destination operand address is compared with the source address of operand 1

instead of operand 2. In DPM-B2-5-2, we injected a bug in the desynchronized pipeline controller

network. The DPM5-2 model has 2 DFVD controllers. The Rob signal instead of the Rof signal of

controller 1 is connected to the Rib muller-C element of controller 2. The verification statistics are

also reported for the buggy models in Table 5.2.

75

5.10. Conclusions

Formal verification methods have become an integral part of the design cycle to ensure

reliable IC designs. Therefore, verifiability has become an important consideration for any design

paradigm. In this work, we propose improved verifiability for desynchronization, which is achieved

with a worst case performance penalty of 4 muller-C element delay in pipeline throughput.

For future work, we plan to address liveness verification of desynchronized pipelines and

explore compositional methods to improve scalability. We also plan to explore design for verification

solutions for desynchronization with lower performance degradation.

76

6. CONCLUSION

This chapter concludes the work in this study. The dissertation focused on developing

equivalence verification methods for design paradigms aimed at digital circuits for nanotechnologies:

(a) synchronous elastic circuits, (b) NCL circuits, and (c) desynchronized circuits.

6.1. Nanoscale Circuit

Digital circuits are omnipresent in today’s society. They are found in smart phones, automo-

biles, medical devices, home appliances, etc. They are also utilized in telecommunication systems,

traffic control systems, systems to control nuclear reactors, etc. As circuits become smaller, new

applications such as medical devices implanted in the human body (e.g. pacemaker) are discov-

ered continuously. Many of these applications are safety-critical: a failure can lead to catastrophic

events. Since digital circuits are readily used in many applications, including safety-critical appli-

cations, it is paramount to verify the correctness of modern circuit designs. In fact, only 27% of

the total effort of a commercial design cycle is actually spent on design, devoting the rest to error

detection and prevention [66].

Commercial design processes largely use simulation based testing to verify designs. Testing

methods scales well with design size. However, bugs in rarely exercised paths can escape detection:

these are called corner case bugs. Therefore, commercial circuit design companies use formal

methods in their verification process in an effort to find these corner case bugs that could escape

traditional testing [67, 68, 69].

6.2. Final Remarks

As the ability of synchronous paradigm to produce reliable circuit designs economically

is diminishing with technology scaling, circuit designers are showing more and more interest in

asynchronous design approaches. A new class of design paradigms: (a) Synchronous elastic circuits

(b) NCL circuits, and (c) Desynchronized circuits, are proposed that can exploit existing CAD

flows to synthesize delay-tolerant circuits. In this study, an initial successful effort is made to

develop formal equivalence verification methods for this new class of design paradigms. This has

remained largely an open problem before the work presented in this dissertation, and one of the

main challenges in integrating them to commercial designs. The developed methods are promising

77

and efficiently deal with state explosion problem: a major obstacle in formal verification. However,

there is a long way to go to develop these methods into tools of commercial strength. Possible

future work is discussed next.

6.3. Recommendation for Future Work

Work done in this study can be extended in three directions.

1. Complex systems with multiple inputs and outputs can become highly non-deterministic.

Heuristics needs to be developed to deal with this problem in reachability analysis.

2. Liveness aspect of WEB refinement theory needs to be addressed to verify the design is

deadlock free. Efforts can be made to develop a generic rank function that is applicable to a

large class of circuit structures.

3. compositional verification approaches needs to be explored to improve the scalability.

78

REFERENCES

[1] A. Taubin, J. Cortadella, L. Lavagno, A. Kondratyev, and A. Peeters, “Design automation

of real-life asynchronous devices and systems,” Foundations and Trends in Electronic Design

Automation, vol. 2, no. 1, pp. 1–133, 2007.

[2] M. T. Bohr et al., “Interconnect scaling-the real limiter to high performance ulsi,” in Interna-

tional Electron Devices Meeting. Institute of Electrical & Electronic Engineers, Inc (IEEE),

1995, pp. 241–244.

[3] S. C. Smith and J. Di, Designing Asynchronous Circuits using NULL Convention Logic (NCL),

ser. Synthesis Lectures on Digital Circuits and Systems. Morgan & Claypool Publishers, 2009.

[4] A. Yakovlev, P. Vivet, and M. Renaudin, “Advances in asynchronous logic: From principles to

gals amp; noc, recent industry applications, and commercial cad tools,” in Design, Automation

Test in Europe Conference Exhibition (DATE), 2013, March 2013, pp. 1715–1724.

[5] K. M. Fant and S. A. Brandt, “Null convention logictm: a complete and consistent logic

for asynchronous digital circuit synthesis,” in Application Specific Systems, Architectures and

Processors, 1996. ASAP 96. Proceedings of International Conference on, Aug 1996, pp. 261–

273.

[6] L. P. Carloni, K. L. McMillan, and A. L. Sangiovanni-Vincentelli, “Latency insensitive proto-

cols,” in CAV, 1999, pp. 123–133.

[7] J. Cortadella, A. Kondratyev, L. Lavagno, and C. Sotiriou, “Desynchronization: Synthesis of

asynchronous circuits from synchronous specifications,” Computer-Aided Design of Integrated

Circuits and Systems, IEEE Transactions on, vol. 25, no. 10, pp. 1904–1921, Oct 2006.

[8] J. Cortadella, M. Kishinevsky, and B. Grundmann, “Synthesis of synchronous elastic architec-

tures,” in DAC, 2006, pp. 657–662.

79

[9] R. B. Reese, S. C. Smith, and M. A. Thornton, “Uncle - an rtl approach to asynchronous

design,” in ASYNC, J. Sparsø, M. Singh, and P. Vivet, Eds. IEEE Computer Society, 2012,

pp. 65–72.

[10] N. Andrikos, L. Lavagno, D. Pandini, and C. P. Sotiriou, “A fully-automated desynchronization

flow for synchronous circuits,” in 2007 44th ACM/IEEE Design Automation Conference, June

2007, pp. 982–985.

[11] E. Kilada and K. S. Stevens, “Control network generator for latency insensitive designs,” in

Proceedings of the Conference on Design, Automation and Test in Europe, ser. DATE ’10.

3001 Leuven, Belgium, Belgium: European Design and Automation Association, 2010, pp.

1773–1778. [Online]. Available: http://dl.acm.org/citation.cfm?id=1870926.1871354

[12] M. Ligthart, K. Fant, R. Smith, A. Taubin, and A. Kondratyev, “Asynchronous

design using commercial hdl synthesis tools,” in Proceedings of the 6th International

Symposium on Advanced Research in Asynchronous Circuits and Systems, ser. ASYNC

’00. Washington, DC, USA: IEEE Computer Society, 2000, pp. 114–. [Online]. Available:

http://dl.acm.org/citation.cfm?id=785166.785308

[13] K. S. Stevens, Y. Xu, and V. Vij, “Characterization of asynchronous templates for integration

into clocked cad flows,” in Asynchronous Circuits and Systems, 2009. ASYNC ’09. 15th IEEE

Symposium on, May 2009, pp. 151–161.

[14] J. Cortadella, M. Galceran-Oms, M. Kishinevsky, and S. S. Sapatnekar, “Rtl synthesis: From

logic synthesis to automatic pipelining,” Proceedings of the IEEE, vol. 103, no. 11, pp. 2061–

2075, Nov 2015.

[15] P. Manolios, “Mechanical verification of reactive systems,” Ph.D. dissertation, University of

Texas at Austin, August 2001, see URL http://www.cc.gatech.edu/∼manolios/publications.

html.

[16] ——, “Correctness of pipelined machines,” in Formal Methods in Computer-Aided Design–

FMCAD 2000, ser. LNCS, W. A. Hunt, Jr. and S. D. Johnson, Eds., vol. 1954. Springer-

Verlag, 2000, pp. 161–178.

80

http://dl.acm.org/citation.cfm?id=1870926.1871354
http://dl.acm.org/citation.cfm?id=785166.785308
http://www.cc.gatech.edu/~manolios/publications.html
http://www.cc.gatech.edu/~manolios/publications.html

[17] L. P. Carloni, K. L. McMillan, and A. L. Sangiovanni-Vincentelli, “Theory of latency-

insensitive design,” IEEE Trans. on CAD of Integrated Circuits and Systems, vol. 20, no. 9,

pp. 1059–1076, 2001.

[18] L. P. Carloni and A. L. Sangiovanni-Vincentelli, “Coping with latency in soc design,” IEEE

Micro, vol. 22, no. 5, pp. 24–35, 2002.

[19] M. R. Casu and L. Macchiarulo, “Adaptive latency-insensitive protocols,” IEEE Design and

Test of Computers, vol. 24, pp. 442–452, 2007.

[20] C.-H. Li and L. P. Carloni, “Leveraging local intracore information to increase global per-

formance in block-based design of systems-on-chip,” IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, vol. 28, no. 2, pp. 165–178, 2009.

[21] G. Hoover and F. Brewer, “Synthesizing synchronous elastic flow networks,” in DATE. IEEE,

2008, pp. 306–311.

[22] M. Galceran-Oms, A. Gotmanov, J. Cortadella, and M. Kishinevsky, “Microarchitectural

transformations using elasticity,” ACM Journal on Emerging Technologies in Computing Sys-

tems, vol. 7, pp. 18:1–18:24, Dec. 2011.

[23] S. Krstic, J. Cortadella, M. Kishinevsky, and J. O’Leary, “Synchronous elastic networks,” in

FMCAD. IEEE Computer Society, 2006, pp. 19–30.

[24] “Benchmarks and Tool,” 2013, see URL http://venus.ece.ndsu.nodak.edu/∼s.srinivasan/

cav2013.tar.gz.

[25] P. Manolios, “A compositional theory of refinement for branching time,” in 12th IFIP WG 10.5

Advanced Research Working Conference, CHARME 2003, ser. LNCS, D. Geist and E. Tronci,

Eds., vol. 2860. Springer-Verlag, 2003, pp. 304–318.

[26] “SMT-LIB,” 2012, see URL http://www.smtlib.org/.

[27] “Verific Design Automation, Inc.” 2012, see URL http://www.verific.com/.

81

http://venus.ece.ndsu.nodak.edu/~s.srinivasan/cav2013.tar.gz
http://venus.ece.ndsu.nodak.edu/~s.srinivasan/cav2013.tar.gz
http://www.smtlib.org/
http://www.verific.com/

[28] L. M. de Moura and N. Bjørner, “Z3: An efficient smt solver,” in TACAS, ser. Lecture Notes

in Computer Science, C. R. Ramakrishnan and J. Rehof, Eds., vol. 4963. Springer, 2008, pp.

337–340.

[29] C.-H. Li, R. L. Collins, S. Sonalkar, and L. P. Carloni, “Design, implementation, and valida-

tion of a new class of interface circuits for latency-insensitive design,” in IEEE International

Conference on Formal Methods and Models for Co-Design (MEMOCODE 2007). IEEE, 2007,

pp. 13–22.

[30] S. Suhaib, D. Mathaikutty, D. Berner, and S. Shukla, “Validating families of latency insensitive

protocols,” IEEE Transations on Computers, vol. 55, no. 11, pp. 1391–1401, 2006.

[31] D. Sokolov, I. Poliakov, and A. Yakovlev, “Analysis of static data flow structures,” Fundam.

Inform., vol. 88, no. 4, pp. 581–610, 2008.

[32] S. K. Srinivasan, Y. Cai, and K. Sarker, “Refinement-based verification of elastic pipelined

systems,” IET Computers & Digital Techniques, vol. 6, no. 2, pp. 136–152, 2012.

[33] J. R. Burch, “Combining ctl, trace theory and timing models,” in Automatic Verification

Methods for Finite State Systems, ser. Lecture Notes in Computer Science, J. Sifakis, Ed., vol.

407. Springer, 1989, pp. 334–348.

[34] T. Yoneda and B.-H. Schlingloff, “Efficient verification of parallel real-time systems,” Formal

Methods in System Design, vol. 11, no. 2, pp. 187–215, 1997.

[35] C. J. Myers, Asynchronous Circuit Design. New York: Wiley, 2001.

[36] P. Loewenstein, “Formal verification of counterflow pipeline architecture,” in Proceedings of

the 8th International Workshop on Higher Order Logic Theorem Proving and Its Applications,

1995.

[37] F. Verbeek and J. Schmaltz, “Verification of building blocks for asynchronous circuits,” in

ACL2, ser. EPTCS, R. Gamboa and J. Davis, Eds., vol. 114, 2013, pp. 70–84.

82

[38] A. Kondratyev, L. Neukom, O. Roig, A. Taubin, and K. Fant, “Checking delay-insensitivity:

104 gates and beyond,” in Asynchronous Circuits and Systems, 2002. Proceedings. Eighth

International Symposium on, April 2002, pp. 149–157.

[39] S. K. Srinivasan and R. S. Katti, “Desynchronization: design for verification,” in FMCAD,

P. Bjesse and A. Slobodová, Eds. FMCAD Inc., 2011, pp. 215–222.

[40] J. Cortadella, A. Kondratyev, L. Lavagno, and C. P. Sotiriou, “Desynchronization: Synthesis

of asynchronous circuits from synchronous specifications,” IEEE Trans. on CAD of Integrated

Circuits and Systems, vol. 25, no. 10, pp. 1904–1921, 2006.

[41] S. C. Smith, “Gate and throughput optimizations for null convention self-timed digital cir-

cuits,” Ph.D. dissertation, School of Electrical Engineering and Computer Science, University

of Central Florida, 2001.

[42] L. Zhou, S. C. Smith, and J. Di, “Radiation hardened null convention logic asynchronous

circuit design,” Journal of Low Power Electronics and Applications, vol. 5, no. 4, pp. 216–233,

2015.

[43] J. Brady, A. M. Francis, J. Holmes, J. Di, and H. A. Mantooth, “An asynchronous cell library

for operation in wide-temperature and ionizing-radiation environments,” in IEEE Aerospace

Conference, 2015.

[44] B. Hollosi, M. Barlow, G. Fu, C. Lee, J. Di, S. C. Smith, H. A. Mantooth, and M. Schup-

bach, “Delay-insensitive asynchronous alu for cryogenic temperature environments,” in IEEE

International Midwest Symposium on Circuits and Systems, 2008.

[45] R. B. Reece, “Uncle user manual,” https://sites.google.com/site/asynctools/, (available Febru-

ary 2016).

[46] V. Wijayasekara, S. K. Srinivasan, and S. C. Smith, “Equivalence verification for NULL

convention logic (NCL) circuits,” in 32nd IEEE International Conference on Computer

Design, ICCD 2014, Seoul, South Korea, October 19-22, 2014. IEEE, 2014, pp. 195–201.

[Online]. Available: http://dx.doi.org/10.1109/ICCD.2014.6974681

83

https://sites.google.com/site/asynctools/
http://dx.doi.org/10.1109/ICCD.2014.6974681

[47] J. R. Burch and D. L. Dill, “Automatic verification of pipelined microprocessor control,” in

Computer-Aided Verification (CAV ’94), ser. LNCS, vol. 818. Springer-Verlag, 1994, pp.

68–80.

[48] “Yices homepage,” 2007, see URL http://fm.csl.sri.com/yices.

[49] J. Cortadella, “Petrify: A tool for manipulating concurrent specifications and synthesis of

asynchronous controllers,” IEICE Trans. Inf. Syst., vol. E80-D, no. 2, pp. 315–325, 1997.

[50] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A. Yakovlev, Logic Synthesis

of Asynchronous Controllers and Interfaces. New York: Springer-Verlag, 2002.

[51] A. Martin and M. Nystrom, “Asynchronous techniques for system-on-chip design,” Proc. IEEE,

vol. 94, no. 6, pp. 1089–1120, 2006.

[52] A. J. Martin, A. Lines, R. Manohar, M. Nyström, P. I. Pénzes, R. Southworth, and U. Cum-

mings, “The design of an asynchronous mips r3000 microprocessor,” in ARVLSI, 1997, pp.

164–181.

[53] J. Rabaey, A. Chandrakasan, and B. Nikolic, Digital Integrated Circuits: A Design Perspective.

Prentice-Hall, 2003.

[54] S. M. Nowick, M. B. Josephs, and C. H. V. Berkel, “Special issue: Asynchronous circuits and

systems,” Proc. IEEE, vol. 87, no. 2, pp. 217–396, 1999.

[55] J. Sparso and E. S. Furber, Principles of Asynchronous Circuit Design: A Systems Perspective.

Boston, MA: Kluwer, 2001.

[56] C. H. van Berkel and R. Saejis, “Compilation of communicating processes into delay insensitive

circuits,” in Proc. Int. Conf. Computer Design (ICCD), 1988, pp. 157–162.

[57] S. B. Furber and P. Day, “Four-phase micropipeline latch control circuits,” IEEE Trans. VLSI

Syst., vol. 4, no. 2, pp. 247–253, 1996.

[58] P. Manolios and S. K. Srinivasan, “A computationally efficient method based on commitment

refinement maps for verifying pipelined machines.” in Formal Methods and Models for Co-

Design (MEMOCODE’05). IEEE, 2005, pp. 188–197.

84

http://fm.csl.sri.com/yices

[59] T. Yoneda, B. Zhou, and B.-H. Schlingloff, “Verification of bounded delay asynchronous circuits

with timed traces,” in Algebraic Methodology and Software Technology. Springer, 1999, pp.

59–73.

[60] F. Verbeek and J. Schmaltz, “Verification of building blocks for asynchronous circuits,” in

ACL2, ser. EPTCS, R. Gamboa and J. Davis, Eds., vol. 114, 2013, pp. 70–84.

[61] S. K. Srinivasan and R. S. Katti, “Verification of desynchronized circuits,” in ISCAS’09, 2009.

[62] S. K. Srinivasan, “Efficient verification of bit-level pipelined machines using refinement,” Ph.D.

dissertation, Georgia Institute of Technology, December 2007, see URL http://etd.gatech.edu/

theses/available/etd-08242007-111625/.

[63] D. A. Patterson and J. L. Hennessy, Computer Organization and Design: The Hard-

ware/Software Interface. Elsevier Morgan Kaufmann, 2009.

[64] A. Davare, K. Lwin, A. Kondratyev, and A. L. Sangiovanni-Vincentelli, “The best of both

worlds: the efficient asynchronous implementation of synchronous specifications,” in (DAC’04),

2004, pp. 588–591.

[65] M. N. Velev and R. E. Bryant, “Bit-level abstraction in the verfication of pipelined micropro-

cessors by correspondence checking,” in FMCAD’98, 1998, pp. 18–35.

[66] C. Baier, J.-P. Katoen et al., Principles of model checking. MIT press Cambridge, 2008, vol.

26202649.

[67] B. Bentley, “Validating the intel(r) pentium(r) 4 microprocessor,” in Design Automation Con-

ference, 2001. Proceedings, 2001, pp. 244–248.

[68] R. Kaivola, R. Ghughal, N. Narasimhan, A. Telfer, J. Whittemore, S. Pandav, A. Slobodová,

C. Taylor, V. Frolov, E. Reeber et al., “Replacing testing with formal verification in intel

coretm i7 processor execution engine validation,” in Computer Aided Verification. Springer,

2009, pp. 414–429.

85

http://etd.gatech.edu/theses/available/etd-08242007-111625/
http://etd.gatech.edu/theses/available/etd-08242007-111625/

[69] R. M. Gott, J. R. Baumgartner, P. Roessler, and S. I. Joe, “Functional formal verification on

designs of pseries microprocessors and communication subsystems,” IBM Journal of Research

and Development, vol. 49, no. 4.5, pp. 565–580, July 2005.

[70] R. Gamboa and J. Davis, Eds., Proceedings International Workshop on the ACL2 Theorem

Prover and its Applications, ACL2 2013, Laramie, Wyoming, USA, May 30-31, 2013, ser.

EPTCS, vol. 114, 2013.

86

APPENDIX. LIST OF PUBLICATIONS

• Wijayasekara, V., & Srinivasan, S. K. (2013, October). Equivalence checking for synchronous

elastic circuits. In Formal Methods and Models for Codesign (MEMOCODE), 2013 Eleventh

IEEE/ACM International Conference on (pp. 109-118). IEEE.

• Wijayasekara, V. M., Srinivasan, S. K., & Smith, S. C. (2014, October). Equivalence verifi-

cation for NULL Convention Logic (NCL) circuits. InComputer Design (ICCD), 2014 32nd

IEEE International Conference on (pp. 195-201). IEEE.

• Dubasi, M. A. L., Srinivasan, S. K., & Wijayasekara, V. (2014). Timed refinement for verifica-

tion of real-time object code programs. In Verified Software: Theories, Tools and Experiments

(pp. 252-269). Springer International Publishing.

• Bilal, K., Malik, S. U. R., Khalid, O., Hameed, A., Alvarez, E., Wijaysekara, V., ... & Khan,

U. S. (2014). A taxonomy and survey on green data center networks. Future Generation

Computer Systems, 36, 189-208.

87

	ABSTRACT
	ACKNOWLEDGEMENTS
	DEDICATION
	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Background
	Motivation
	Problem Statement
	Equivalence Verification

	Equivalence Checking for Synchronous Elastic Circuits
	Introduction
	Background: Equivalence Notion
	Automating Computation of Refinement Maps
	Token-Flow Diagrams for Elastic Circuits
	Reachability for Elastic Controller Networks
	Token-Flow Diagrams for Synchronous Circuits
	Refinement Map Computation

	Tool Flow
	Liveness

	Results
	Related Work
	Conclusions

	Equivalence Verification for NCL Circuits
	Introduction
	Related Work
	Background: NCL Circuits
	Equivalence Verification for Combinational NCL Circuits
	Equivalence Verification for Sequential NCL Circuits
	WEB Refinement
	Reachability for Sequential NCL Circuits
	Refinement Maps

	Results
	Conclusions

	Abstraction Techniques to Improve Scalability of Equivalence Verification for NCL circuits
	Introduction
	Abstraction of Combinational Units
	Abstraction of Completion Mechanism
	Results
	Conclusion

	Equivalence Verification for Desynchronized Circuits
	Introduction
	Related Work
	Desynchronization and DFVD Controllers
	DFVD Controller

	Reachability Analysis of DFVD Controller Network
	Desynchronized Pipelined Models
	Refinement-Based Verification
	Circular Desynchronized Pipelines
	Refinement Map for Circular Desynchronized Pipelines
	Projection Predicates
	Projection Functions
	Consistency Invarients
	Duplicate Invarients
	Memory Invarients

	Results
	Conclusions

	Conclusion
	Nanoscale Circuit
	Final Remarks
	Recommendation for Future Work

	REFERENCES
	APPENDIX. List of Publications

