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ABSTRACT 

Light is an environmentally benign and renewable source of energy that finds wide application in 

the field of science. This dissertation explores two areas of chemistry that utilizes light extensively viz., 

asymmetric phototransformations and photodegradation of polymers. Phototransformation is an elegant 

method to construct structurally complex and diverse organic scaffolds. However, controlling the excited 

state in phototransformation to manipulate its stereochemical outcome is a challenge. This dissertation 

discloses a unique method employing atropisomeric chromophore to tackle asymmetric induction from the 

excited state. Photodegradation is a safe method to breakdown polymers that pose huge environmental 

and ecological concerns. Apart from designing polymers with a phototrigger that initiates the breakdown 

in a programmed fashion, this thesis also demonstrates recovery and reuse of monomers making the 

strategy sustainable. 

Chapter 1 describes the importance of light and basic principles involved in organic 

phototransformations. In this section, principle differences between asymmetric thermal and 

photochemical transformations are introduced, methodologies developed in asymmetric 

phototransformations and the role of light in medicinal/biological system and material science is 

presented. 

Chapter 2 evaluates metal free, thiourea/urea organocatalyst in enantioselective 6π-

photocyclization of acrylanilides. Preliminary investigations revealed that the asymmetric induction 

imparted by thiourea was low. Detailed photophysical analysis provided valuable information on the 

excited state interaction of the substrate with the catalyst, opening avenues for future development of this 

strategy. 

Chapter 3 demonstrates “axial-point chiral” strategy towards atropselective Paternò-Büchi 

reactions of oxoamides and chain length dependent [2+2] vs. [5+2]-photocycloaddition of atropisomeric 

maleimides. Axial chirality dictated high enantioselectivity (>97 %) in the photoproduct, while the solvent 

and substitution in the reactant controlled the diastereomeric ratio in photoproducts respectively. 

Chapters 4-5 report the photodegradation of bio-derived polymers using phototriggers. This 

method not only enabled us to deconstruct the polymers to its functional monomer(s) but also enabled a 

pathway to recover and recycle the monomer highlighting the sustainability of the strategy. 



 iv 

In summary this thesis details the role of light in asymmetric phototransformations using 

organocatalyst and atropisomeric chromophores leading to chiral photoproducts. Further, it describes the 

photodegradation of biomass-derived polymers and its recoverability and reusability of the monomer as a 

sustainable approach. 
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 CHAPTER 1. INTRODUCTION TO LIGHT, PRINCIPLES OF PHOTOCHEMISTRY 

AND ITS APPLICATIONS 

1.1. Introduction 

Light (photon) plays an important and fascinating role in the evolution and sustenance of the life 

on our planet. The interaction of human being with light started several thousand years ago when people 

began using fire, induced by lightening for cooking food, protecting themselves from predators and for 

warmth.1 Light is a constant source of energy that cherishes the life on earth and every form of life 

respond to light in one way or another. Various natural phenomena that occur on earth such as 

photosynthesis, circadian rhythms and vision cannot function in the absence of light. Even in the modern 

day medicine, such as treatment of jaundice in infants, light plays an indispensable role. 

Ever since we understood the importance of light and it’s exhaustive supply of energy, we began 

to study nature of light and its potential for advancing science and ultimately our way of life. Light is 

employed in various scientific fields including medicine, life sciences, art and technology to understand, 

analyze and apply the information. Among different areas of science, chemistry played a critical role in 

the history of light, leading to the development of devices such as microscope, telescope, optical 

microscopy etc., and many light induced phenomena/processes.1 The most important and earliest 

accounts of light (sunlight) induced processes are burning light of Archimedes, simple oxidation and 

reduction of metal ions by eminent scientists Archimedes, Joseph Priestley and J. W. Döbereiner 

respectively.2 Yet, artificial synthesis of organic molecules using light was only at their imaginary phase or 

at best in the nascent stage. In 1834, Hermann Trommsdorff reported his observation on the first account 

of phototransformations on Santonin 1 (Scheme 1.1), a sesquiterpene lactone that turned yellow and 

burst upon exposure to light.2-4 Later in 1872 Fausto Sestini and Stanislao Cannizaro jointly pursued 

detailed study on Santonin and the isolation of photosantonic acid.3 Other investigations of chemical 

reaction up on interaction with light includes photodimerization of aromatics with acid derivatives and 

styrene derivatives by Carl Julius Fritzsche and Carl Theodor Liebermann respectively, geometric 

isomerization of olefins by W. H. Perkins, photoinduced halogenations by Julian Scharamm, 

photoreduction of carbonyl compounds by Heinrich Klinger.2 Though several reports on light induced 
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reactions emerged on the literature, it was not until 20th century, when Giacomo Ciamician and Paul Silber 

performed a series of systematic investigations on light based chemical reactions.3 Since then the role of 

light in organic chemistry has grown steadily leading to a formation of new branch of chemistry 

“photochemistry” that dedicatedly explores the interaction of light with organic molecules. 

 

Scheme 1.1: Solid and solution state photoreaction of α-santonin (Reproduced from reference 4 with 
permission from American Chemical Society, 2007). 
 

1.2. Principles of photochemistry 

The study of chemical reactions of molecules upon interaction with light is called photochemistry. 

An organic molecule in the ground state upon photo excitation is promoted to its higher energy states. 

Now this molecule in the higher energy undergoes subsequent reaction to result in new molecules. Such 

a phenomenon often allows one to access structurally complex organic scaffolds in fewer steps that are 

usually very challenging or inaccessible through conventional thermal chemistry. Not all the organic 

compounds have the ability to absorb light, it is only the molecules that have chromophores can absorb 

light. Chromophore is a functionality in a compound that can interact with light and enable the molecule to 

reach the excited state. In order to understand the course of interaction of light with a chromophore (part 

of the molecule that absorbs light) it is essential to understand the nature of the light. Light is an 
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electromagnetic radiation that is a continuous spectrum of waves from low energy - long radio waves 

(longer wavelength) to high-energy short gamma waves (shorter wavelength) as shown in Figure 1.1. 

Synthetic organic photochemists are mainly interested in ultraviolet and visible light portion of the 

electromagnetic spectrum that is capable of inducing an excitation in a given molecule leading to 

chemical reactivity. 

The photochemical transformations can be understood by two fundamental principles of 

photochemistry. The first law of photochemistry, the Grothuss-Draper law which states that, “a molecule 

must absorb light to undergo photochemical reaction”. The second law of photochemistry, the Stark-

Einstein law that states that “when the photon of energy (resonance) is absorbed by a chromophore in the 

system, absorbance process takes place where the energy of the photon is transferred to a molecule 

leading to an electronically excited state”. Such matching energy or resonance energy of photon can 

cause only one electronic excitation. In other words, an encounter with single photon will only result in the 

electronic excitation of one molecule. 

 

Figure 1.1: Electromagnetic spectrum of light.5 
 

The energy absorbed by the chromophore of a molecule depends on the type of atoms and 

bonds involved in the process of excitation. The energy of the photon required for the excitation is given 

by Planck-Einstein equation. Once the molecule is excited, it can either be singlet excited state where the 
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electrons have opposite spin (↑↓- paired) with a net spin of zero (singlet) or triplet where the electron are 

of same spin (↑↑- unpaired) with a net spin of one (triplet) based upon spin angular momentum as 

depicted in Figure 1.2. 

 

Figure 1.2: Photoexcitation of electron from HOMO to LUMO. 
 

The excited molecules have several pathways to relax to the ground state. These pathways are 

broadly classified into radiative and non-radiative and are portrayed in the Jablonski diagram (Figure 1.3). 

 

Figure 1.3: Jablonski diagram depicting relaxation processes. 
 

In a non-radiative process, transition from higher to lower electronic state occurs via thermal or 

vibrational relaxation without the emission of light and this process is known as the internal conversion 

(IC). 

Internal conversion can be further classified into two types depending on whether a change in the 

spin multiplicity occurs or not. When a relaxation from vibrational level of one electronic state to another 

vibrational level of its lower electronic state occurs (S1 → S0), spin change is not involved, such a process 
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is termed as “spin allowed transition”. However if the transition from higher electronic state to lower 

electronic state occurs with change in spin as in the case of transition from singlet to triplet (S → T), then 

the process is called as “spin forbidden transition”. This process is also known as intersystem crossing 

(ISC) which occurs typically slower than an IC as it involves change in spin of electrons. 

In a radiative relaxation process, the excited species relaxes to the ground state by emitting a 

photon either by fluorescence or phosphorescence. When an excited singlet state (Sn) returns to ground 

state (S0) with the emission of light, the process is termed as fluorescence (F). Whereas if the relaxation 

to S0 occurs from triplet excited state (Tn) it is termed as phosphorescence (P). Since this process is “spin 

forbidden”, phosphorescence is generally slow compared to fluorescence. The approximate time scales 

for the above-discussed transitions are given in the Table 1.1. 

Table 1.1: Timescale for the relaxation pathways from the excited state.6 

Process Transition Timescale (sec) 

Light absorption S0 → Sn ca. 10-15 

Internal conversion Sn → S1 10-14 to 10-11 

Vibrational relaxation Sn* → Sn 10-12 to 10-10 

Intersystem crossing S1 → T1 10-11 to 10-6 

Fluorescence S1 → S0 10-9 to 10-6 

Phosphorescence T1 → S0 10-3 to 100 

Non-radiative decay 
S1 → S0 

T1 → S0 
10-7 to 10-5 

10-3 to 100 
 
 

Though molecules can be photo-excited upon absorption of photon, not all the excitation leads to 

desired photoproduct(s). As the excited state is higher in energy, has multiple competing pathways to 

relax to the ground state and the domination of one path over the other depends on several factors. The 

efficiency of a photochemical process is given by its quantum yield (Φ) as shown in the equation 1.1. 

Quantum yield (Φ) is described as the ratio of number of molecules that undergo desired photoreaction to 

the number of absorbed photon by the molecule undergoing the desired transformation. 

 

             (Equation 1.1) Quantum Yield (Φ) =
Number of molecules undergo desired process

Number of photons absorbed
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1.3. Standards for a photochemical set up 

Synthetic photochemistry made significant progress since early 20th century after Ciamician and 

Silber’s systematic investigations of photochemical reactions.7 The development of ultrafast spectroscopic 

techniques provided significant understanding of the excited state behavior of the molecule that paved the 

way for further development in this branch of chemistry. Based on extensive studies and observation by 

various scientists over time, general standards have been recommended while performing a 

photochemical reaction. Those guidelines are discussed in detail in the following sections. 

 

 1.3.1. Choice of irradiation source 

Light is an essential part of a photochemical reaction, therefore choice of light source employed in 

a given photochemical reaction becomes very important. The chromophore of a molecule is responsible 

for the light absorption and it can be excited using a resonance wavelength of light. Use of excess energy 

of light can lead to detrimental effects or unwanted side products leading to poor efficiency in the reaction. 

The choice of irradiation wavelength should be based on the type of chromophore involved in the 

photoreaction. Table 1.2 provides some insights on the types of chromophores, their transition and 

wavelength at which there is maximum absorption.  

Table 1.2: Types of chromophore, their transition and maximum absorption wavelength.8,9 

Chromophore Transition λmax (nm) 

N=O n → π* ~660 

C=S n → π* ~520 

N=N n → π* ~350 

C=C-C=O n → π* ~350 

C=O n → π* ~280 

Benzene π → π* ~260 

C=C-C=O π → π* ~220 

C=C-C=C π → π* ~220 

C=C π → π* ~180 

C-C σ → σ* <180 

C=H σ → σ* <180 
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The Table 1.2 clearly indicates that most of the chromophores can be excited with wide spectrum 

of irradiation sources ranging from visible to UV region. The most commonly used broadband irradiation 

source is a mercury lamp. The lamp is usually placed in an immersion well enclosed by quartz glass 

jacket with continuous flow of water that acts as a heat sink and prevents over heating of the lamp. 

Mercury lamps can be divided into 3 types: low, medium and high pressure based on their spectral output 

and intensity. Among them, medium pressure mercury lamp is the widely used light source for organic 

phototransformations. However, broadband light is not suitable in a situation where selective excitation of 

a chromophore is needed in a molecule that has other excitable chromophores. In situations like these a 

narrow bandwidth of light sources are employed which often prove to be very selective and useful in 

preventing undesired products or decomposition.10 There are several photochemical set ups available in 

the market that can be fitted with narrow bandwidth light bulbs such as Rayonet® reactors that can be 

fitted with variety of light sources including ~250 nm, ~300 nm, ~350 nm, ~420 nm, LEDs which comes in 

multiple wavelengths (violet LED, blue LED, green LED , red LED etc.,), common fluorescence lamp 

(CFL) that emits light in the visible region or monochromatic laser irradiation. 

 

 1.3.2. Choice of photochemical apparatus 

Apart from narrow bandwidth light source, the choice of glasswares for a photochemical reaction 

can also allow us to bring about selective excitation of a desired chromophore. The specific make up of a 

glassware can act like a filter thereby allowing only certain wavelength of light to penetrate through the 

reaction vessel. Various types of glasswares are available in the market and these include Uranium (>350 

nm cut off) Pyrex (< 290 nm cut off), Corex (<260 nm cut off), Vycor (<220 nm cut off) and Quartz (<190 

nm cut off). Apart from the listed glassware/filters, there are specially designed glass filters and filter 

solutions are also available that are used to cut off undesired wavelength of light.11 

 

 1.3.3. Choice of solvents 

The choice of solvent can play a crucial role in the outcome of a photochemical reaction. Often 

times, the poor choice of solvent lead to undesired side products and decomposition of the reactants or 
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products. As the solvent molecules can be excited using an appropriate light source, it becomes 

imperative to choose a solvent that does not absorb light in a given reaction. Further, solvent can also be 

taken to our advantage to accelerate a reaction (as a sensitizer), provide useful insights about the 

reaction mechanisms, control by-product formation and also influence the ratios of the photoproducts (in 

the case of formation of more than one photo product). Below are few parameters that are to be followed 

when choosing a solvent 

1. Solvent should be free of impurities as presence of impurities can affect the reactions. 

2. The solvent must completely dissolve the reactant(s) to give a homogenous solution to avoid 

scattering and reflection of the light. 

3. The solvent must be optically transparent at the wavelength of excitation where the reactant(s) 

only absorb. 

4. The solvent should not adversely affect the excited state of a molecule and enable its decay. 

5. The concentration of the reaction mixture has to be optimized such that the reactants in the 

solvent itself should not act as a filter leading to internal filter effect. 

Table 1.3 lists some of the common organic solvents and their approximate cut off wavelength:12-

14  

  



 9 

Table 1.3: Common organic solvents used in the photoreactions and their UV-cut off. 

Entry Solvent 
Dielectric 
constant  

UV Cut-off 
(nm) 

1 n-hexanes 1.9 195 
2 Cyclohexane 2.0 215 
3 Carbon tetrachloride 2.2 265 
4 Benzene 2.3 280 
5 Toluene 2.4 285 
6 1,4-Dioxane 2.2 230 
7 Chloroform 4.8 245 
8 Diethyl ether 4.3 215 
9 Methylene chloride 9.1 230 

10 Tetrahydrofuran 7.5 245 
11 Ethyl acetate 6.0 255 
12 Acetone 21.0 330 
13 Acetonitrile 36.6 190 
14 Dimethylsulfoxide 47.0 277 
15 Ethanol 24.6 204 
16 Methanol 32.6 205 
17 Acetic acid 6.2 250 
18 Water 78.5 185 

 

 1.3.4. The choice of sensitizers 

Sensitizers are photochemical catalysts that act as a light antenna and transfer its excited state 

energy to the reactant there by bringing about a photochemical reaction. Sensitizers are used when the 

desired reactants are poor light absorbers or their excited state is short lived. In such cases the sensitizer 

absorbs light and transfers its energy (or electron) to reactant to initiate the photochemical reaction. In 

order to perform this task, the sensitizer should absorb light efficiently and should have long life time to 

transfer its energy or electron to the reactants. Importantly, the sensitizer should be photostable to 

perform the energy transfer multiple times. The Table 1.4 is the lists some of the most commonly used 

sensitizers 15 
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Table 1.4: List of triplet sensitizers and their triplet energies.  

Entry Sensitizers ET (kcal⋅mol -1) 

1 6,9-Dicyanoanthracne ~42 

2 Anthracene ~43 

3 Benzil ~53 

4 Biacetyl ~56 

5 2-acetyl-napthalene ~59 

6 Naphthalene ~61 

7 Thioxanthone ~63 

8 Biphenyl ~66 

9 Fluorenone ~66 

10 Benzophenone ~69 

11 Acetophenone ~74 

12 Xanthone ~74 

13 Acetone ~78 

14 Pyridine ~85 

 

1.4. Role of light in asymmetric organic synthesis 

 The importance of accessing optically pure (chiral) molecule, especially in the pharmaceutical 

industry and drug discovery is increasing exponentially. Such significance was given to chiral molecules 

after the tragedy involved in the use of undesired isomer of thalidomide drug in the year 1957 that led to 

child birth with abnormalities.16 Since then, the field of asymmetric synthesis has evolved into a powerful 

method in organic synthesis that focused to obtain optically pure molecules. While the demand for new 

drugs are increasing, there is also a growing concern for developing methods to access those drugs with 

greener protocol. In this regard, phototransformations holds promise as it provides access to structurally 

complex organic scaffolds with multiple stereogenic centers in fewer steps.17-19 In addition, photochemical 

transformations employs environmentally benign reagent – “light” giving a sense of greener perspective in 

achieving structural complexity in the molecule. While accessing complexity in an organic molecule 

seemed to be easy with the use of light, obtaining them with desired chiral purity proved to be a 

challenging task. The difficulty in achieving high stereocontrol is due to the short-lived excited state of the 

molecule, which makes it challenging to control and tune the excited state for a favorable stereochemical 
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outcome. The other issue involved in the stereocontrol is that the excited state is much higher in energy 

and subsequent processes are barrier less that presents challenges in tuning the energetics of a reaction. 

An important criterion to achieve high stereoselectivity in a photoreaction is the preorganization of the 

reactants. Preorganization sets the reactants in an appropriate conformation such that the excited state 

can be channeled to a desired reaction pathway. In this vein, many research groups have looked at 

various strategies to obtain stereoselective phototransformations by employing methods that were 

successful in thermal transformations. Unfortunately, the successful methods in thermal reactions such as 

chiral perturbers, chiral auxiliaries etc., only resulted in moderate success. The fundamental challenge 

involved in obtaining high enantioselectivity in the photoreaction is poor interaction of the chiral perturbers 

to bring about desired chiral induction during short-lived excited state of the chromophore undergoing the 

chemical transformations. 

In a conventional thermal reaction, the chiral inductors interact with prochiral reactants resulting in 

diastereomeric transition states (Figure 1.4A). The extent of interaction with the reactant will dictate the 

selectivity in the product. For example, a differential activation energy of ~3 kcal⋅mol-1 at room 

temperature (298 K) is sufficient to result in >99% enantioselectivity. But this situation cannot be extended 

to photochemical transformations. In a photochemical reaction, upon shining light, the reactants are 

promoted to higher excited states that are short-lived and highly energetic. The high-energy excited 

species is unable to distinguish the small diastereomeric energy difference imparted by the chiral 

perturbers thus leading to poor selectivity (Figure 1.4B) in the resulting product. To address this 

bottleneck, photochemists have attempted various strategies with limited success.20 The following 

subsection provides a brief overview of those endeavors. 
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Figure 1.4: Representation of diastereomeric transition state in A) thermal and B) photoreaction. 
 

 1.4.1. Asymmetric phototransformations using chiral light source 

Circularly polarized light (CPL) is a chiral electromagnetic radiation and in principle up on 

interaction with the racemic reactant(s) it should yield enantioenriched product. Indeed, photoreaction-

using CPL was the earliest performed asymmetric phototransformations. The potential of using CPL was 

first suggested by Le Bel and Van’t Hoff in the 19th century.21,22 A prochiral molecule up on interacting with 

CPL gets promoted to the excited state with a preference of one enantiomer over the other leading to 

enantioenriched product. In principle asymmetric phototransformations influenced by CPL can be 

classified into three categories as depicted in Figure 1.5.23 They are a) photo resolution where the inter 

convertible enantiomers are deracemized (Figure 1.5A) b) asymmetric synthesis where the optically 

active compound is synthesized from prochiral substrate (Figure 1.5 B) and c) photo destruction where 

one of the enantiomer in the racemate is preferentially destroyed leading to enantioenrichment (Figure 

1.5C). 
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Figure 1.5: Classification of CPL induced symmetric transformation A) photo resolution, B) asymmetric 
synthesis, C) photo destruction. (Reproduced from reference 20 with permission from Wiley-VCH, 1999). 
 

Though Le bel and Van’t Hoff considered CPL for obtaining optically active molecule, it was not 

until 1929, when Kuhn and coworkers first experimentally reported the photo resolution of racemic ethyl 

2-bromopropanoate 6 and 2-azido-N,N-dimethylpropanamide 7 (Scheme 1.2).8,24,25 They proposed that 

the photo resolution took place via homolytic cleavage of α-C-Br or α-C-N3 followed by recombination in a 

stereocontrolled fashion. The anisotropy factor (g) (measure of excitation of one enantiomer over the 

other towards CPL) played a crucial role in dictating the chirality in the product. 

 

Scheme 1.2: Photo resolution of ethyl 2-bromopropanoate 6 (top) and 2-azido-N,N-dimethylpropanamide 
7 (bottom) using CPL. 
 

In 1971, Kagan and coworkers reported asymmetric synthesis of hexahelicenes 12 using CPL.26 

They were successful in achieving optically active hexahelicenes by oxidative 6π-photocyclization of 1,2-

diarylethanes 8 and 9 in the presence of iodine (Scheme 1.3). 
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Scheme 1.3: Oxidative 6π-photocyclization of 1,2-diarylethanes 8-9 induced by CPL. 
 
 Bonner and coworkers demonstrated the first asymmetric photolysis of prebiotically important 

amino acid (rac)-Leucine 13 using CPL generated by Nd/YAG laser (Scheme 1.4). 27 They obtained 1.98 

% ee, 2.50 % ee with (r)-CPl and (l)-CPL respectively as shown in Scheme 1.4. 

 

Scheme 1.4: Asymmetric photolysis of amino acid 13 by laser induced CPL. 
 
 While many groups were working towards enantioenriched prebiotically important molecules, 

Soai and coworkers in 2005 developed a method that will be of synthetic use in large-scale preparation 

(Scheme 1.5). They demonstrated the process by employing CPL on racemic pyrimidyl alcohol 15.28,29 

The photodecomposition of alcohol 15 resulted in enantioenriched alkanol, which acted as cryptochiral 

(special case of chirality raised due to electronic properties of the molecule) source auto catalyzing the 

reaction between 2-alkynylpyrimidine carbaldehyde 16 and diisopropylzinc 17 leading to enantioenriched 

pyrimidyl alkanol 15. 
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Scheme 1.5: Asymmetric autocatalysis of pyrimdyl alcohol 15 using CPL. 
 
 Employing asymmetric photodestruction method, Rau and coworkers reported resolution of 

tetramethyl-tetraaza-spirononadiene 18 by using circularly polarized light. Based on their experimental 

studies they believed that the (S)-isomer underwent photolysis to a greater extent compared to (R)-

isomer that led to enantioenrichment in the product (Scheme 1.6).30 

 

Scheme 1.6: Asymmetric photo destruction of 18 using CPL. 
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Solid-state (crystalline state) photoreaction is one of the earliest methods for asymmetric 

phototransformations that dates back to early 20th century.31-33 The success of solid-state photoreactions 

relies on the crystalline lattice of the system and they are termed as “topochemically controlled reactions”. 

This approach (solid state) holds a unique place as they can give rise to optically active photoproduct 

starting from achiral reactant without any external influence. Such studies are called as “absolute 
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carry out successful solid-state asymmetric phototransformations, crystals should be generated in one of 

the 65 chiral space groups out of 230 unique space groups available.35 In addition to this, the relative 

distance between the reacting partners should be approximately < 4.2 Å (Schmidt distance).36  

Schmidt and coworkers elegantly demonstrated the solid-state [2+2]-photodimerization of 

cinnamic acid derivative 20 that yielded cyclobutane photoproducts (Scheme1.7).37-39 On the contrary, in 

solution, cis-trans isomerization of the double bond was the dominant pathway. The formation of the 

photoproducts in solid-state irradiation was determined by the polymorph of the crystals of the cinnamic 

acid derivative. While the α-polymorph and the β-polymorph resulted in photoproducts 22 and 23 

respectively, γ-form did not yield the desired photoproduct. They attributed the failure of photoreaction to 

the distance of the reacting double bonds i.e. 4.7-5.1 Å, which does not comply with the optimal distance 

(<4.2 Å) criteria proposed by Schmidt. Based on the insights gained from their investigation, they further 

extended their methodology for bimolecular photocycloaddition of the butadiene derivatives.40 

 

Scheme 1.7: Solid-state [2+2]-photodimerization of cinnamic acid derivatives 20. (Reproduced from 
reference 38 with permission from American Chemical Society,1987). 
 

Employing the same strategy, Scheffer and coworkers reported first absolute asymmetric di-π 

methane rearrangement and Norrish-Yang cyclization.41 Irradiation of achiral dibenzobarralene diester 

derivative 24 crystallized from cyclohexane (crystallized in a P212121) resulted in semibulvalene product 

25 with >95 % ee (Scheme 1.8). The ee obtained was the highest reported for an absolute asymmetric 

synthesis at that time. 
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Scheme 1.8: Asymmetric di-π methane rearrangement of dibenzobarralene diester derivative 24. 
 
 The same group had demonstrated the Norrish-Yang reaction in adamantyl-p-

chloroacetophenone derivative 26 (Scheme 1.9). The reaction proceeded via hydrogen abstraction by 

excited state ketone through a six membered transition state leading to the formation of cyclobutanol 

derivative 27. 

 

Scheme 1.9: Norrish Yang reaction of adamantyl derivative 26. 
 
 Although, the topochemically controlled reactions opened avenues to access enantioenriched 

photoproduct, it was not a universal method to obtain stereoselectivity as this technique solely dependent 

on the criteria that the “achiral substrate should crystallize in a chiral space group”. With crystallographic 

technique at the developing stage it was hard to predict if the molecule had crystallized in a chiral space 

group. In order to ensure the molecule crystallizes in a chiral space group a different strategy was 

envisioned. In this technique, a chiral auxiliary was attached to achiral reactant either covalently or 

ionically that influenced the molecule to crystallize in a chiral space group.42 In covalent type, the chiral 

auxiliary is tethered to achiral substrate via covalent bond (Figure 1.6 A) whereas in ionic model, the 

tethering is via a salt bridge such as ammonium ion or carboxylate anion (Figure 1.6 B). 
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Figure 1.6: Different ways to tether chiral auxiliary on carboxylic acid derivatives A) Covalent, B) Ionic. 
 

The ionic chiral auxiliary approach was advantageous compared to covalent because ionic type 

showed high melting points. This effect proved to be advantageous in resisting melting when the crystals 

were irradiated for longer period of time for higher conversion. Further, ionic chiral auxiliary are easy to 

detach after the photoreaction revealing enantioenriched building blocks. Scheffer and coworkers 

documented the first report on ionic auxiliary tethered asymmetric photoreaction by investigating di-π 

methane rearrangement of dibenzobarralene derivative 28 as shown in Scheme 1.10.43 

 

Scheme 1.10: Asymmetric di-π methane rearrangement of dibenzobarralene derivative 28 using ionic 
chiral auxiliary. 
 

They employed a variety of optically active amines as chiral auxiliaries, which were tethered to 

the ester by simply mixing with the amine in methanol or ether resulting in chiral salts that were filtered 

and irradiated. After the irradiation, the solution was worked up with  diazomethane to obtain 

semibulvalene product 29 with very high enantiomeric excess (>95 % ee when proline tert –butyl ester 

was employed). X-ray analysis showed that the enantioselectivity of the reaction is conformationally 

controlled similar to dibenzobarralene diester derivative 24 that underwent stereoselective di-π methane 

rearrangement. Following their successful demonstration of chiral auxiliary based di-π methane 

rearrangement, the same group elaborated their research to Norrish-Yang reaction using chiral auxiliary 

attached amino ketone derivative 30. Irradiation of 30 afforded cis and trans cyclobutanol product 31 with 

91 % ee and 32 (>12:1 ratio) via hydrogen abstraction respectively along with cleavage product 33 

(Scheme 1.11).44 High ee was attributed to the geometric orientation and the molecular motion of the 
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substrate in the crystalline state. The predominant formation of 33 was due to competitive hydrogen 

abstraction and cleavage of 1,4 biradical. 

 

Scheme 1.11: Norrish Yang reaction of salts of amino ketone 30. 
 

 1.4.3. Asymmetric phototransformations by supramolecular approach 

 Inspired by the biological processes that utilize molecular confinement to perform desired task, 

photochemists employed supramolecular hosts to organize and direct the short-lived excited state 

species to perform the desired phototransformation. The supramolecular host with the ability to 

accommodate guest molecules acts as a container to hold molecule through non-covalent interactions in 

a reaction-ready state. This conformationally locked reactant, upon photo excitation undergoes specific 

transformation. The energies of non-covalent interactions in the supramolecular complexes can vary from 

<1.2 to 84 kcal⋅mol -1.45 The presence of supramolecular host has the potential to alter the kinetics and 

the selectivity of a given reaction. Such host-guest approach is widely used in catalysis, drug delivery 

system, molecular machines etc., Few of the well-defined and successful supramolecular hosts that are 

employed for asymmetric phototransformations include cyclodextrins, zeolites, cucurbiturils, micelles 

etc.,46,47 Ramamurthy and coworkers had employed chirally modified zeolites for stereoselective 4π-

photocyclization of tropolone derivatives 34 (Scheme 1.12).48-50 In their work, they used photochemically 

inert and optically pure ephedrine as a chiral inductor, which was adsorbed on to the NaY zeolite prior to 

loading of the reaction mixture containing tropolone ether. The irradiation was performed as a powder or 

slurry in hexane to yield bicyclic photoproduct 35 with 78 % ee. The selectivity was attributed to the 
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carbonyl interaction. In addition to this three point interaction, the cation present in the zeolite also played 

a crucial role in determining the selectivity. 

 

Scheme 1.12: 4π-Photocyclization of tropolone derivatives 34 in zeolite. 
 

Inoue and coworkers51 utilized γ-cyclodextrins as supramolecular host and illustrated 

photodimerization of anthracene carboxylate 36 as shown in Scheme 1.13. The anthracene derivative 36 

and the cyclodextrin formed a 2:1 guest-host complex in the ground state, which up on irradiation resulted 

in photoproducts 37, 38, 39 and 40. The syn-HT photoproduct had an ee of 41 % and anti-HH resulted in 

< 5 % ee at 0 °C. 

 

Scheme 1.13: Photodimerization of anthracene carboxylate 36 in supramolecular host-cyclodextrin. 
 
 Sivaguru and coworkers demonstrated photodimerization of 6-methyl coumarin 41 in the 

presence of catalytic amount of cucurbit[8]uril (CB[8]) in water (Scheme 1.14).52,53 The photodimerization 

was effective in the presence of 10 mol% of CB[8] resulting in syn-dimer as major product with the ratio of 

syn HT:HH = 70:30 whereas in absence of CB[8] photodimerization resulted in 10% conversion with 

mixture of products. Based on their detailed kinetic and photophysical analysis, they proposed a catalytic 

cycle for the photodimerization. The first step of the catalytic cycle involved the formation of 1:1 

host:guest complex followed by 1:2 host:guest complex with the former as the rate determining step. 
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Scheme 1.14: CB[8] mediated photodimerization of 6-methyl coumarin 41 
 
 Ramamurthy and coworkers reported the dimerization of acenaphthylene 46 using octa-acid as 

the host (Scheme 1.15).54 They had performed both direct irradiation and triplet-sensitized irradiation with 

Eosin. Direct irradiation resulted in syn dimer 47 and the triplet-sensitized irradiation yielded both syn 47 

and anti dimer 48 in a ratio 60:40. High selectivity was credited to the restricted mobility of the reactants 

in direct irradiation. 

 

Scheme 1.15: Octa-acid mediated photodimerization of acenaphthylene 46. 
 

 1.4.4. Asymmetric phototransformations by H-bonding template 

 The previous section described the success of employing supramolecular host as a reaction 

vessel to obtain stereoselectivity in the desired photochemical transformation. However, the selectivity in 

the photoproduct(s) depends on the effective binding of host with guest and also the orientation of the 

guest inside the cavity. In contrast to this approach, chemists explored the use of chiral templates that 

interact with the reactant through H-bonding and provide necessary stereodifferentiation for higher 

selectivity. One of the earliest examples of stereoselective photocycloaddition by H-bonding template was 

elegantly demonstrated by Nakamura and coworkers in 1996 (Scheme 1.16).55 They used stoichiometric 
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Kemp triacid as a host that was appended to coumarin derivative 49. The photoreaction between Kemp 

triacid tethered coumarin 49 and butyl thymine 50 in benzene afforded cis-syn/cis-anti cross adduct 51 in 

a ratio of 96:4. However in this approach, the H-bonding Kemp triacid derivative that provided 

stereoselectivity was still covalently bound to the photoproduct. In order for a strategy that employs sub 

stoichiometric amount of host paving way for true catalysis required further development. 

 

Scheme 1.16: Kemp triacid-based photocycloaddition of coumarin 49 and butyl thymine 50. 
 
 Based on Nakamura’s work, Bach and coworkers developed H-bonding catalysis using Kemp 

triacid derivative and demonstrated its efficacy towards enantioselective [2+2]-photocycloaddition of 

quinolone (Scheme 1.17).56 They subjected 2-quinolone derivative 52 to intramolecular [2+2]-

photocycloaddition in the presence of H-bonding catalyst 53 in toluene as a solvent that yielded 

cyclobutane derivatives 54 and 55 with up to 88 % ee. The substrate bound to the chiral template through 

H-bonding and the tetrahydronaphthalene group on the template shielded one of the enantiotopic faces of 

the substrate leading to enantio enrichment in the resulting photoproducts. 
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Scheme 1.17: Photocycloaddition of quinolone 50 using chiral template. 
 
 The same group developed a strategy in which a sensitizer was appended to the Kemp triacid 

template to perform triplet-sensitized photoreactions (Scheme 1.18).57 Using their sensitizer template 57, 

they demonstrated enantioselective visible light photocatalysis of quinolone derivative 56. In the presence 

of chiral thioxanthone template 57, the intramolecular [2+2]-photocycloaddition of quinolone 56 proceeded 

efficiently leading to product 58 with high enantioselectivity (92 %) and conversion (90 %). The reaction 

proceeded via energy transfer from the excited thioxanthone to the substrate and since the reactant was 

bound to the chiral template the stereo induction was efficient leading to enantioenriched photoproducts. 

  

N
H

O

O n

H
NO NO

hν
(~300 nm)

toluene, -15 °C N
H

O
H

O
n

H

N
H

O
H

O n
H

NH
O

N
O

HN

O O

n

52 53
54 55

facial discrimination

(1.2 equiv.)



 24 

 

Scheme 1.18: Photocycloaddition of quinolone 56 using thioxanthone based chiral template 57. 
 
 Recently Sivaguru, Sibi and coworkers demonstrated the use of novel atropisomeric binaphthyl 

thiourea organocatalyst 60 for intramolecular [2+2]-photocycloaddition of coumarin derivative 59 as 

shown in Scheme 1.20.58 The use of organocatalyst for photocatalysis has its advantages including easy 

handling of the reagents, non-metal based reaction conditions and most importantly the ease of synthesis 

and modification of the catalysts. The enantioselective reaction of coumarin 59 yielded tricyclic 

photoproduct 60 with 69-96% ee at low catalyst loading of 1-30 mol%. Detailed photophysical analysis 

revealed that the reaction proceeded via static and dynamic complexes allowing an energy transfer from 

the exciplex (static and dynamic excited state complex). They also proposed dual catalytic cycle 

depending up on the catalyst loading. 
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Scheme 1.19: Photocycloaddition of coumarin 59 using atropisomeric thiourea catalyst 60. 
 
 The same group also demonstrated intermolecular [2+2]-photocycloaddition of coumarin 62 with 

alkene 63 catalyzed by achiral thiourea catalyst 64. Irradiation of coumarin 62 and alkene 63 in presence 

of catalyst 64 afforded cyclobutane photoproduct 65 (Scheme 1.20).59 Detailed photophysical 

investigations on the substrate and the catalyst revealed that the reaction occurred via a combination of 

minimized aggregation of the coumarin 62, altered excited lifetime and enhanced intersystem crossing 

influenced by the catalyst. 

 

Scheme 1.20: Intermolecular photocycloaddition of coumarin 62 using thiourea catalyst 64. 
 

 1.4.5. Asymmetric phototransformations influenced by axial chirality 

 Axial chirality can be defined, as a stereoisomerism arising from non-planar arrangement of four 
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a pair of enantiomers. Atropisomers are class of axially chiral compounds where the chirality originates 

from the restricted rotation around a single bond that in turn rely on the sterics around the axis. Such 

axially chiral compounds was first identified in 1922 by Christie and Kenner in 6,6’-dinitrobiphenyl-2,2’- 

dicarboxylic acid 66,60 but the term “atropisomer” was coined by Richard Kuhn in 1933.61 Early 

investigations on these molecules were mainly focused on physical characteristics such as racemization 
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barrier, conformational analysis etc. But later taking advantage of its unique chirality, several reports 

emerged that demonstrated an efficient way to transfer axial chirality from the substrate to the point 

chirality in the product. 

 

Figure 1.7: First reported axially chiral compound 6,6’-dinitrobiphenyl-2,2’- dicarboxylic acid 66. 
 
 Curran and Clayden were the first to demonstrate the application of atropisomeric compounds for 

asymmetric thermal transformations62 and Curran named such reactions as “atropselective reactions”.63 

In 1994, Curran and coworkers were the first to report atropselective reactions of axially chiral maleimides 

and anilides derivatives. They demonstrated the cycloaddition of benzonitrile oxide to racemic acrylanilide 

67 that gave isoxazoline derivative 68 and 69 as shown in Scheme 1.21 with high diastereoselectivity (dr 

>97:3).64 

 

Scheme 1.21: Cycloaddition of benzonitrile oxide to acrylanilides 67. 
 
 The same group illustrated the transfer of axial chirality in the reactant to point chirality in the 

product with high enantioselectivity by radical cyclization of axially chiral acrylanilides 70 as shown in 

Scheme 1.22.65 In this reaction, the racemization barrier of the reactant was high enough (ΔG = 30.8 kcal⋅ 

mol -1) to perform reaction at ambient temperature without eroding the optical purity of axial chirality, 

whereas the racemization barrier for the radical intermediate was lower than the reactant due to loss of 

Iodo group that acted as one of the steric. In spite of the loss of iodo group, the transfer of chirality was 
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efficient since the radical cyclization occurred at much faster time scale than the competing racemization. 

This reaction resulted in oxindole derivative 71 with moderate yield and high enantioselectivity. 

 

Scheme 1.22: Radical cyclization of atropisomeric acrylanilides 70. (Reproduced from reference 64 with 
permission from American Chemical Society, 1999). 
 
 In 1996, Clayden and coworkers reported stereoselective reduction of ketone on axially chiral 

naphthamide derivative 72 that resulted in high diastereoselectivity in the corresponding alcohol 73 with 

anti:syn ratio up to 99:1 (Scheme 1.23).66 High selectivity was observed when bulky nucleophile such as 

LiBHEt3 was employed. In addition to using bulky nucleophile, the selectivity in the product also depended 

on the ability of atropisomeric compound to direct the nucleophile.  
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Scheme 1.23: Diastereoselective reduction of atropisomeric amide derivative 72. 
 
 After eminent works by Curran and Clayden, there was an immense growth in the research of 

atropisomeric compound in thermal chemistry. But atropisomers in photochemical reaction was not 

explored to the extent it was in thermal chemistry. Bach and coworkers investigated stereoselective 

Paternò-Büchi reaction with atropisomeric enamides 74 and benzaldehyde 75 which resulted in moderate 

diastereoselectivity in the resulting oxetane (Scheme 1.24).67 However, in this example, the atropisomeric 

enamide was only in the ground state that reacted with excited benzaldehyde and the excited state 

photochemistry of atropisomeric system was not investigated. 

 

Scheme 1.24: Paternò-Büchi reaction of atropisomeric enamide 74 with benzaldehyde. 
 

During this time, Sakamoto and coworkers introduced a new concept called “frozen chirality” 

where chiral crystals were obtained from achiral substrates.35 In this strategy, the chirally enriched 

reactant could be irradiated at low temperature in a suitable solvent so that the absolute chirality remains 

intact during the phototransformations. They demonstrated this elegant concept by performing 

photocycloaddition of chiral naphthamide 77 generated from achiral naphthamide with 9-cyanoanthracene 

78 in THF or THF/MeOH at -20 °C resulting in 95 % ee in the photoproduct 79 (Scheme 1.25).68 
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Scheme 1.25: Photocycloaddition of anthracene derivative with napthamides obtained through frozen 
chirality concept. 
 

They have also reported benzophenone sensitized [2+2]-photocycloaddition of coumarin 

carboxamide 80 with various alkenes 82 (Scheme 1.26).69 Upon irradiation, the reaction yielded products 

83 and 84 with ee up to 99% and endo:exo ratio up to 1:0. 

 

Scheme 1.26: Photocycloaddition of coumarin derivative 81 with alkenes 82. 
 

Though achieving enantioselectivity via frozen chirality is a promising avenue, once again this 

strategy had challenges in crystallizing achiral molecules in a chiral space group as discussed earlier. 

More over, the chiral crystal in solution has to resist racemization during irradiation, which was a major 

hurdle in this technique. As discussed in the previous section, controlling the short lived excited state 

especially in solution was much more challenging. In order to find a solution to this bottleneck, Sivaguru 

and coworkers carried out detailed investigation on photochemistry of atropisomeric chromophores as an 

avenue to perform atropselective photochemical reaction in solution. Their concept of “Axial to Point 

Chiral Transfer” was inspired by success of atropisomers in thermal chemistry discussed in previous 
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equilibrate during the short excited-state lifetime due to the increased bond order of the ground state C-C 

single bonds”.70 One of the interesting examples where NEER principle operates is in the photoreactivity 

of previtamin D.71,72 The study reveals that the rotamers do not interconvert in the excited state even 

though the products formed from the excited state is unstable due to steric interaction. Initially this 

principle was put forward for singlet reaction and later it was proven for triplet-sensitized reactions as well. 

Below schematic (Figure 1.8) represents the hybrid of NEER principle and atropisomers that enabled 

Sivaguru and co-workers to perform atropselective phototransformations in leading to chirally enriched 

building blocks. The optically pure rotamers/atropisomers A and B that interconvert in the ground state 

(with a given rate constant determined by energy barrier) when photo-excited is promoted to the excited 

state with same rotamer ratio as in the ground state. This short-excited state species do not interconvert 

due to NEER principle and thus lead to specific photoproducts that is dictated by their ratio in ground 

state. If one could design atropisomers such that we have precise control over the ratio of rotamers in the 

ground state, then we could extend that control to the photoproducts leading to complete “axial to point 

chiral transfer”. 

 

Figure 1.8: Schematic representation of NEER principle. 
 

In an effort to validate this principle, Sivaguru and coworkers reported highly enantiospecific 

photoreactions with various atropisomeric chromophores. For example they reported conrotatory 6π-

photocyclization of acrylanildes derivatives 85 resulting in cis and trans photoproducts 86 and 87 

(Scheme 1.27).73,74  
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Scheme 1.27: Atropselective 6π-photocyclization of acrylanildes 85. 
 

The photoreaction occurred via cyclization at the ortho carbon holding the t-Bu group followed by 

loss of isobutene relieving the steric strain in the product. The diastereoselectivity and the 

enantioselectivity were influenced by the substitutions on the alkene and the type of mechanism involved 

in the photoreaction (singlet or triplet). In the singlet pathway, the zwitterionic intermediate underwent 

stereospecific conrotatory ring closure to form enolate intermediate. This process is followed by non-

stereospecific hydrogen migration to afford both cis and trans photoproducts 86 and 87. Whereas the 

triplet-sensitized reaction proceeded through radical pathway via a cyclization followed by stereospecific 

H-abstraction leading to photoproduct with high enantioselectivity.75 They also demonstrated 

atropselective photoreaction in solid state76 and in the presence of alkali metal ions77 to achieve high 

selectivity in acrylanilide derivatives. To further explore this strategy, they reported stereospecific Norrish-

Yang cyclization of atropisomeric α-oxoamides 88 yielding β-lactam as a major photoproduct 89 with high 

enantioselectivity (Scheme 1.28).78,79 
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Scheme 1.28: Atropselective Norrish-Yang cyclization of α-oxoamides 88. 
 

In 2011, Sivaguru and coworkers, demonstrated atropselective 4π-ring closure of 2-pyridones 90 

leading to enantioenriched β-lactam 91 as photoproduct via “dis” outward ring closure (Scheme 1.29).80 

Based on their extensive physical characterization studies, the enantioselectivity of the photoproduct was 

highly dependent on solvent, reaction temperature and the type of face shielding i.e the formation of inter 

and intra molecular hydrogen bond of the substrate with the solvent and the steric features of the 

compound. 

 

Scheme 1.29: Atropselective 4π-ring closure of 2-pyridones 90. 
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acrylimides 92 resulting in exclusive cross [2+2] photoadduct 93 with excellent ee and de (Scheme 

1.30).81 On the contrary, the non-atropisomeric acrylimide (without t-Bu group at the ortho position) 

resulted in a mixture of straight and cross addition product 93 and 94. This is one of the interesting 

examples as it clearly showed the effect of axial chirality in influencing the selectivity of the reaction. 
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Scheme 1.30: Atropselective [2+2]-photocycloaddition of acrylimides 92. 
 

1.5. Role of light in biological systems and medicine 

 Light, as discussed plays a vital role in various fields of science. One of the important fields where 

the use of light was significantly explored and appreciated is in the biological systems and therapies. The 

following subsection provides a glimpse of those endeavors.  
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constructs an image. During this process the all 11-trans retinal is expelled, which upon further enzymatic 

reaction is converted to 11-cis retinal for the cycle to continue (Scheme1.31).85,86 

 

Scheme 1.31: Schematic representation of vision process. 
 

Such cis-trans isomerization initiated by light is also responsible for the growth in plants. Plants 

use light for photosynthesis. They posses a light sensitive pigment bound to the protein called 

phytochrome, which acts as a biological clock regulating the growth and development of plants. 

Phytochrome can exist in two forms namely Pr 97 (cis form-inactive) and Pfr 98 (trans form-active). Upon 

interaction with light, phytochrome undergo cis-trans isomerization (Scheme 1.32)87,88 around C15 –C16 

bond resulting in altering the gene expression thus dictating the growth of the plants. Such also occur in 

bacteria and other microorganism, which acts as circadian rhythm for their movements. 

 

Scheme 1.32: Schematic representation of growth of plants by phytochrome receptor. 
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 1.5.2. Role of light in medicinal therapies 

 Light has been used for the treatment of several diseases over 3000 years. Ancient Egyptian, 

Indian and Chinese civilizations employed light for the treatment of psoriasis, rickets, vitiligo etc.,89 Even 

though the therapeutic properties of light were known for several years it was only after Niels Finsen’s 

extensive work using light to treat small-pox, discharge of smallpox pustules and cutaneous tuberculosis 

in the late 19th century led to the modern day light therapies.90 

 One of the important treatments, which doctors stumbled upon, is the use of light in the treatment 

of jaundice in babies known as neonatal jaundice.91 This disease occurs as a result of accumulation of 

bilirubin, which is a breakdown product of heme catabolism. Bilirubin is insoluble in water due to the 

presence of intramolecular hydrogen bonding thus making it hydrophobic in nature. This hydrophobicity, 

prevents their excretion from humans and gets deposited on the skin and other internal organs leading to 

jaundice. When babies suffering from jaundice are exposed to light, cis-trans photoisomerization of the 

double bond in bilirubin at C4, C15 carbons occurs leading to the loss of intramolecular hydrogen bonding 

making it hydrophilic and water-soluble. Due to its change in solubility profile upon cis-trans isomerization, 

hydrophilic bilirubin can be excreted out of the body. This is one of the less expensive, non-invasive and 

painless treatments for babies ailing from jaundice and is still the only treatment for newborns in neonatal 

care that is practiced in many countries. The process of converting hydrophobic bilirubin to hydrophilic 

bilirubin is depicted in the Scheme 1.33.91 
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Scheme 1.33: Schematic representation of cis-trans isomerization in bilirubin 99. 
 
 Another break through treatment in the field of medicine where light plays a crucial role is 
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treated skin tumors with eosin and white light.94 They called this phenomenon as “photodynamic action”.95 

Following their preliminarily experiments, various trials involving different reagents and light led to modern 

photodynamic therapy. PDT is a treatment that destroys target cells employing three components viz., a 
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photosensitizer intravenously, which is taken up by inflammatory cells in vessel wall or can be applied 

topically. The second step is activating the sensitizer by suitable wavelength of light, which then kills the 

damaged cells. The activation of sensitizer and the destroying of the target cell involve two mechanisms 

(type I and type II vide infra). In both the mechanisms, the photosensitizer interacts with light and gets 

promoted to singlet excited state which then intersystem crosses to triplet state. In type I, the triplet state 

sensitizer directly react with the target cell by transferring an electron to the cell membrane giving rise to 

radicals which then reacts with oxygen to form the reactive oxygen species leading to  cell death  (via 

radical chemistry). In type II, the triplet-excited sensitizer interacts with the tissue oxygen leading to 

singlet oxygen, which destroys the damaged cell. Type II is the most prevalent mechanism (Figure 

1.9).96,97 The elegance of this therapy is, they are target specific as the photosensitizer is activated only in 

precise area (spatial control) of the tissue so that cells in the proximal area are not affected. In other 

words since the half life of singlet oxygen in biological system is <0.04 µs, the area of action will be <0.02 

µm.98 The main advantage of this method is quick curing process, minimal side effect and target 

specificity. 

 

Figure 1.9: Mechanism of action in PDT. 
 
 Porphyrin is one of the extensively used photosensitizer in PDT. Porphyrin has four pyrrole rings 

connected via methane units. Initial studies with porphyrin sensitizer was performed by W. Hausmann in 

Paramecium - a genus of unicellular protozoan and reported that it killed the cells.99 Even though many 

scientists explored the study of PDT with modified porphyrin such as haematoporphyrin derivate (HPD) 
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for various diseases, it was not until 1972 when Diamond and coworkers demonstrated that porphyrin 

derivatives could be employed as a photosensitizer to kill cancer cells.100 In vivo studies in 1972 by 

Diamond and coworkers revealed that it suppressed the gliomas (type of tumor in brain) growth in mice. 

But complete cure of the tumor was not reported. Later in 1975, Dougherty and coworkers reported that 

HPD (haematoporphyrin derivate) completely destroyed the mammary tumor and bladder carcinoma in 

mice.101 These studies led to the first human trials with HPD in 1976 by Kelly and coworkers, where he 

successfully treated 5 patients with recurrent bladder carcinoma which failed to respond to the 

conventional radio- and chemotherapy. 102 

 Later Dougherty and coworkers performed detailed investigations on 7 patients with malignant 

melanomas, 3 patients with colon carcinomas, 5 patients with breast carcinomas on chest wall, 2 patients 

with recurring basal cell carcinomas using HPD sensitizer. 2.5 mg/kg-5.0 mg/kg doses were injected 

intravenously. After 3 days of injection of sensitizer, the patients were exposed to red light (100 

milliwatts/sq cm) for 20 mins ranging from one to several days depending up on the stage and the 

reoccurrence of tumor. Tumor response and the normal tissue were monitored for 7 days and followed up 

at least once in 4 weeks to ensure the absence of recurrence. Complete disappearance or complete 

tumor response was noticed with 2.5 mg/kg of HPD dose with slight to no erythyma on the skin.103 

 

Figure 1.10: Breast carcinoma A) Before treatment B) after 1 day of irradiation showing erythema. 
Complete response obtained after 120 h (Reproduced from reference 102 with permission from American 
Association for Cancer Research, 1998). 
 
 Continuous efforts by scientists – Dougherty, McCaughen and many more led PDT for brain, 

breast, head and neck pancreatic treatment (both precancerous or cancerous conditions) etc.,96 The 

clinical application was approved using HPD with trade name Photofrin104 in 1993 in Canada and later to 
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various parts of the world. Below are few clinically approved sensitizer used for various types of cancer 

(Table 1.5). 

Table 1.5: Few clinically approved sensitizers for PDT.96 

Sensitizer Trade name Type of cancer Wavelength (nm) 

HPD Photofrin 
Cervical, oesophagel, brain 

tumors, bladder, breast cancer 
630 

Boronated 

protophyrin 
BOPP Brain tumor 630 

Lutetium texaphyrin Lutex 
Cervical, prostrate and brain 

tumor 
732 

Pthalocyanine-4 Pc4 
Cutaneous/subcutaneous lesion 

form diverse solid tumor origins 
670 

Taporfin Sodium Talaporfin Solid tumor from diverse origins 664 

 

 1.5.3. Role of light in drug delivery 

 Drug delivery system can be defined as a system that has the ability to release an active 

molecule upon stimuli. The most important criteria to be met in qualifying as a good drug delivering 

system are i) the delivery of the drug has to be at the appropriate site and ii) controlled rate of drug 

release at the target site. With this goal, any system, which responds to an external stimuli such as heat, 

light, change in pH etc., can be successfully employed for drug delivery.105 Among these different types, 

the one based on light responsive system have received great attention since they are greener, they can 

be target specific and most importantly light can be used in biological systems. Most of the light based 

drug delivery system uses a photosensitive unit, which is commonly called as phototriggers. Phototrigger 

acts as a protecting group, which provides spatial and temporal release of various chemicals, upon 

shining light. Based upon their action they are often called as photoreleasable -, photoremovable-, 

photosensitive- and photoactivatable group. Compounds protected by photo protecting group are also 

called as caged compounds. The compounds in the caged form will be in their inactive form, but upon 

irradiation, turns to active form and releases the chemicals.106,107 J. A Barltrop and Schofield reported the 

first observation on photosensitive group in 1962 on the release of amino acid 104 from carbamate 100 

upon shining light as shown in scheme 1.34.108 
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Scheme 1.34: First observation on photosensitive group on release of amino acid 104. 
 
 Followed by this observation there were several reports made by Barton, Woodward and co-

workers.109,110 But it was popularized by Engels and coworkers111 and Hoffman and coworkers112 as they 

extended this strategy to biological systems wherein they achieved photorelease of cyclic adenosine 

monophosphate and ATP respectively in late 1970s. From that point forward there have been numerous 

reports on photoremovable group in different fields including drug release, material science and organic 

synthesis. The phototrigger should possess certain properties in order to be used in the drug delivery 

system. Several researchers have listed those properties and the compiled list was given by Lester and 

Sheehan,113-115 that includes: 

1. The caged substrate, substrate, and photoproduct should have good solubility in water for 

biological studies; for synthetic purpose this property can be relaxed. 

2. Quantum yield for the release of active component should be efficient (φrel >0.10). 

3. The release of active substrate should be a primary photochemical process. 

4. Excitation wavelength should be preferably >300 nm especially for biological systems. 

5. Photochemical by-products should not interfere with the system investigated. 

Photoremovable protecting group, which lacks one or two of the desirable properties, can be still 

useful but absence of more properties will not be ideal for the intended investigation. 
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Figure 1.11: Selected examples of phototriggers.106 
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These phototriggers undergo a photolytic cleavage by absorbing a photon thereby triggering the 

release of the active component. There are several pathways116 that the phototrigger could take to 

perform the release and some of them are listed below 

Norrish type II reaction: 

 

Scheme 1.35: Photocleavage of nitroaryl derivative 105 by Norrish type-II reaction. 
 

Nitroaryl group 105 undergoes Norrish type-II reaction via intramolecular abstraction of γ-

hydrogen by excited carbonyl (n,π*) resulting in the formation of 1,4 diradical followed by cyclization 

resulting in photorelease of acid derivative 109 (Scheme1.35). Alternate mechanism which involves β-

cleavage also possible that is dictated by the spin states involved in the reaction.110 

Norrish type I reaction: 

 

Scheme 1.36: Photocleavage of fluorene derivative 110 by Norrish type-I reaction. 
 
 Fluorene carboxylate derivative 110 undergoes Norrish type-I cleavage via homolytic cleavage of 

excited carbonyl group leading to fluorene radical 111 and aryloxy radical 112 along with the release of 
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carbon monoxide (Scheme 1.36). The aryloxy radical 112 can abstract a hydrogen leading to the 

formation of the desired product 113.117 

Photoisomerization: 

Cinnamyl ester, upon absorption of photon undergoes cis-trans isomerization that places the 

functional group in the suitable orientation for the release of the enzyme (Scheme 1.37).118,119 

 

 

Scheme 1.37: Photo release of enzyme 117 by isomerization reaction. 
 

Based on their properties, the utility of phototriggers has been extended to wide range of 

disciplines including, multistep synthesis, drug delivery, polymers, and modern agriculture. Taking 

advantage of the properties of phototriggers, several drug delivery systems were developed that were 

used for treating various diseases. For example, Pradeep Singh and coworkers demonstrated the use of 

perylene-3-yl methanol nanoparticles as a phototrigger, and nanocarrier for the release of anticancer drug 

chlorambucil (Scheme 1.38). The perylene-chlorambucil photocaged compound 118 (Pb-CbI) was 

synthesized according to the reported literature.120 Reprecipitation technique was adopted to use this 

photocaged compound for drug delivery. The shape and size of the nanocarrier was found to be globular 

and 30 nm respectively. Irradiation of photocaged Pb-CbI under visible light (>410 nm) in 125W medium 

pressure Hg lamp with filter (1 M NaNO2) resulted in the release of the drug chlorambucil 120 and the 

nanocarrier 119.121 The progress of release of the drug was monitored by reverse phase HPLC, which 

showed an efficient release within 20 min of irradiation. They also illustrated the temporal control of their 

strategy by light ON-OFF where only drug release occurred up on irradiation. This strategy was extended 

to in vitro studies in HeLa cells and validated their method in the biosystem. 
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Scheme 1.38: Photorelease of chlorambucil 120 under visible light in HeLa cells. 
 

In another example, Friedman and coworkers established the release of insulin,122 which was 

covalently linked to the (poly ethylene glycol) resin (Scheme 1.39). Insulin is an important drug for the 

treatment of type I diabetes. This drug is usually injected in the patient multiple times in a day. Though 

other approaches such as transdermally delivering insulin using cannula are available it is not patient 

friendly. Therefore, in order to address this Friedman and coworkers designed a method to release the 

drug using a photocleavable linker attached to the drug insulin that is covalently linked to resin. In an 

attempt to prove their concept, they used (polyethylene glycol) resin to which nitro phenyl derivative 

linked with insulin was attached via click reaction. 

Irradiation of the polymer linked insulin 121 was performed using two different lamps i) 30W 

black-ray fluorescent lamp and ii) 365 nm LED. Based on the detailed kinetic studies, 365 nm LED 

released the drug 32 times faster than the fluorescent UV lamp. They followed the release of the drug 122 

using HPLC with authentic insulin as a reference. They also showed ON-OFF studies to prove that light is 

necessary for the release of the drug demonstrating the control over the process of release multiple 

times. In their long-term goal they were interested in using biodegradable resin so that after the release of 

the drug, the insoluble resin could be biodegraded and excreted from the body. 
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Scheme 1.39: Photo release of insulin 122 using 365 nm LED. 
 

1.6. Role of light in polymers/materials 

As the need for customizable, new and specialty polymeric materials in various fields are 

increasing day by day, scientists have looked at employing light for developing such polymeric materials. 

Light is used for initiating many physiochemical changes in polymers such as structure and size 

modifications, stimuli responsive polymers with spatio-temporal control etc., It has also been used to 

study the relationship between the structure and the property of a polymer, to synthesize as well as 

degrade polymers and functionalize the polymer. Such polymers have found wide applications from 

photolithographic applications to invivo biomedical applications. The following section will highlight those 

efforts taken in the field of materials. 

 

 1.6.1. Role of light lithography 

In modern times, most of the electronic devices such as laptops, cell phones etc., rely on 

microchips developed from various semiconductor devices. Though the function of microchip can be 

explained by physics or engineering techniques, the fabrication of those electronic devices can be 

explained by technique called photolithography.123 This process was first developed in the year 

1959.124,125 The word lithography literally means “writing on stones”. In semiconductor lithography, a 

specific geometric shape is inscribed on a silicon wafer that acts a stone using light and photomask. The  
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main process in photolithography involves a) preparation of silicon layers with SiO2 surface. b) spin 

coating the photoresist (polymer) to approximately 1µm thickness. c) placing a photomask of desired 

geometric shape on the photoresist and d) irradiating photoresist and the photomask with UV light. Up on 

irradiation, the unmasked area undergoes polymerization or degradation of polymers making it 

insoluble/soluble respectively leaving a pattern. After the formation of patterned polymer on the SiO2 

substrate, the unwanted SiO2 substrate is etched away leaving behind the pattern. The photoresist can be 

of two types viz., positive resist and negative resist. In the case of negative resist, the photoresist contain 

pre-polymer mixture with photoinitiator such as 2,2-dimethoxy-2-phenyl acetophenone (DMPA) therefore 

upon exposure to light DMPA breaks down into reactive radical species thus initiating the polymerization 

resulting in insoluble polymer leaving a pattern as shown in Figure 1.12 B. On the other hand, the 

photoresist containing a photocleavable group attached to a polymer resulting in degradation of polymer 

(making it soluble) after irradiation as depicted in the Figure 1.12. 126 In order to have a precise control 

over the shape of the pattern it is important for photoresist polymer to undergo polymerization 

/degradation efficiently. As polymerization-using photoinitiator was a very fast process, more emphasis 

was given in developing degradable polymers. Turro and coworkers demonstrated one such effort using 

nitrobenzyl phototrigger for linear and star polymer using click reactions.127 

 

Figure 1.12: Pictorial representation different type of resist. (Reproduced from reference 125 with 
permission from American Chemical Society). 
 

In 2004, Doh and coworkers demonstrated the use of photolithography technique in patterning 

bio macromolecules (Scheme 1.40).128 The conventional photoresists are developed with organic 

solvents, which is too harsh for biomolecules such as proteins. So, they developed a photoresist (positive 

type) using o-nitrobenzyl cleavable linker with methyl methacrylate and poly(ethylene glycol) methacrylate 

that could be developed using pH buffer so that the process is compatible with biomolecules. Upon 
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exposure of polymer 123 to light, the nitro benzyl group cleaved that resulted in pattern and also leaving 

behind a carboxylic acid anion 124 that could be further developed using buffer. They also extended this 

work to different proteins as well as immune cells. 

 

Scheme 1.40: Protein patterning using 123. (Right) UV exposed and methylene blue stained photoresist. 
(Reproduced from reference 127 with permission from American Chemical Society, 2004). 
 

In 2011, Carlborg and coworkers demonstrated thio-ene based patterning for microfluidic devices. 

They illustrated this method by applying polyethylene glycol based thiol with ene in the presence of 

Isopropyl thioxanthone as a photoinitiator. Upon irradiation, the thiol-ene undergo stepwise polymerization 

with quantitative yield followed by development of the resist that led to pattern on the device.129 

 

Figure 1.13: Pictorial representation of thiol-ene reaction for pattern microfluidic device. 
 

 1.6.2. Role of light in smart materials 

Smart materials are materials that will change few of its properties up on external stimuli such as 

pH, stress, temperature, electric or magnetic field, light etc., Two characteristic examples of this are self-

healing polymers (SHP) and shape memory polymers (SMP). SHPs can repair any damage (breaking of 

chemical bond or polymer chains) inside the polymeric material, or on its surface while the SMPs can 

transition from temporary shape to permanent shape.130 One of the stimuli that is widely used for self-

healing polymers and shape memory polymers is light. The advantages of using light is a) they can be 

delivered to specific site (spatial control) and b) the process can be stopped and activated whenever 

required (temporal control). 
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Self-healing process in polymers can be performed by three different approaches i) photo-

crosslinking reaction ii) photo triggered metathesis and iii) photo thermal effect. In 2004, Chung and 

coworkers reported first photo crosslinking healing of polymer employing [2+2]-photocycloaddition of 

cinnamoyl derivative (Scheme 1.41). They first made a thin, hard, transparent polymer with cinnamate 

monomer -1,1,1-tris(cinnamoylmethyl)ethane (TCE) using light >280 nm. The formation of cycloaddition 

product 126 was followed by disappearance of C=C double bond in the cinnamoyl derivative by FTIR. 

The resultant cyclobutane derivative was subjected to mechanical stress (grinding) to break the 

cyclobutane ring to form 127 that was again irradiated with light for 120 s to form 126.131 By comparing 

the flexural strength of the originally synthesized film, cracked and self-healed polymer, they reported the 

efficiency to be 14 %. The efficiency was increased to 26 % by performing the healing process at 100 °C. 

 

Scheme 1.41: Crack formation and healing process of cinnamoyl derivative. 
 

The idea of using light for self-healing process by photoinduced reactive radical on a cracked 

surface was demonstrated by Ghosh and Urban in 2009.132 Following upon their strategy, there had been 

considerable development in the photoinduced metathesis reaction on covalent bonds such as disulfides, 

trithiocarbonates and allyl sulfide. Matyjaszewski demonstrated one such study by synthesizing cross-

linked polymer by RAFT polymerization of n-butyl acrylate 128 and trithiocarbonates (TTC) 129 cross 

linker (Scheme1.42).133 Upon UV irradiation 130, the TTC unit breaks leading to reactive radicals, which 

react among themselves thereby healing the crack by re-crosslinking the material. They also 

demonstrated that self-healing can be performed multiple times by cutting the polymer into 3 pieces and 

fusing them by irradiating in MeCN solution. They showed that the healing is not just a physical 

entanglement rather chemically fused by swelling the reformed polymer in anisole for 6 h, which did not 

show any polymer dissociation. 
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Scheme 1.42: Synthesis of a cross-linked polymer 130. 
 

 

Figure 1.14: Self healing of polymer 130 A) cut into 3 pieces B) healing upon UV irradiation. (Reproduced 
from reference 132 with permission from Wiley-VCH, 2011). 
 

Another approach to self heal the polymers is by photo thermal method. Weder and coworkers134 

illustrated this approach using metallo supramolecular polymer synthesized from poly(ethyle-co-

butylene),the ligand 2,6-bis(1’-methyl-benzimidazoyl)pyridine and metal ion either Zn2+ or La3+ (Scheme 

1.43). Up on irradiation of mechanically cracked polymer, the ligand absorbs light generating heat above 

175 °C, at that temperature the ligand–metal binding is dissociated resulting depolymerization on the 

cracked surface. The low viscous polymer obtained due to depolymerization diffuses in the crack and 

mend the defects. Once the light is turned off, heating is stopped which resulted in the formation of metal- 

ligand coordination. The healing of the polymer was confirmed by atomic force microscope images (AFM). 

 

O
O O

O
O

O
S S

S
O

O
O

O

AIBN, 
anisole

60 °C

S S

S
O

O

O
O

OO O

O
O

O

O
O

O

O

O
O

O

OO

O

O
O

O

O

O
O

O

O
O

O

128
129

130

A B



 50 

 

Scheme 1.43: Self-healing of polymer 132 by photo thermal process. 
 

Similar to self-healing smart materials, shape memory smart materials are fast developing class 

of polymers that can remember two or more of its temporary shapes apart from their permanent shape. 

The temporary shapes were obtained by deformation at a temperature greater than its transition 

temperature (glass transition temperature or melting point of the polymer) and the permanent shape of 

the polymer was regained by cooling below its transition temperature. Light induced shape memory 

polymers can be obtained by two main methods. The most widely used method is photo thermal method 

as discussed in the self-healing polymers. The other method employed is the reversible photochemical 

reaction. In photo thermal method, the shape memory polymer should contain an additive or filler, which 

can absorb the light and generate heat. Most commonly used additives are carbon nanotube, gold 

nanoparticle, gold nanorods, organic dyes etc.,130  

In 2012, Chen and coworkers135 used single walled carbon nanotube (SWNT) as an additive in 

Nafion polymer (sulfonated tetrafluoroethylene based fluoropolymer) that had the ability to remember 

three or more temporary shapes. They employed near infrared (NIR) laser for this process. Absorption of 

808 nm NIR (6 mW mm-2) by SWNT generates heat (T = 70-75 °C) followed by cooling resulted in the 

formation of first temporary shape-coiled form (Figure 1.15 b). Second temporary shape was obtained by 

using localized 808 nm NIR (25 mW mm-2) which rises the temperature between 140-150 °C resulting in 

coiled form with a bend (Figure 1.15 c). Uncoiling of the material took place in the oven at 75 °C resulting 

in the bend structure (Figure 1.15 d). Unbending of the material was performed by irradiation using 808 

nm NIR (T = 140-150 °C). 
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Figure 1.15: Shape memory Nafion polymer with SWNT. a) permanent shape b) first temporary shape 
808 nm NIR (6 mW mm-2, T = 70-75 °C) c) first temporary shape localized 808 nm NIR (25 mW mm-2, T = 
140-150 °C) d) uncoiling in over at 75 °C d) unbending to permanent shape using 808 nm NIR light ( T = 
140-150 °C). (Reproduced from reference 134 with permission from American Chemical Society, 2012). 
 

While the photo thermal process is the most widely used method, Lindlein and coworkers136 

reported first example of the shape memory polymer using reversible photo crosslinking reaction using 

cinnamic acid and cinnamylidene acetic acid as photo switching groups. Following this precedence many 

groups reported the use of various photochemical reaction in memorizing the shape of the polymer. One 

of the interesting developments reported in shape memory polymers that employed light was the use of 

azo-liquid crystal polymer (LCN) reported by White and coworkers (Figure 1.16).137 They synthesized the 

polymer starting from acrylate monomer RM 257 133 and 4,4’-bis[6-(acryloxy)-hexyloxy] azobenzene 134. 

The polymer was made into film and subjected to irradiation by 442 nm circularly polarized light to 

undergo trans-cis and cis-trans isomerization at room temperature (below the 40 °C) resulting in a bend 

structure. The bent form was stable in the absence of light and regained its permanent shape by 

irradiating with light. 

 

Figure 1.16: (Top) Shape memory polymers synthesized using 133 and 134. (Bottom) i) Bending of the 
thin film upon excitation of circularly polarized 442 nm visible light ii) stable bent form of the film upon 
turning off of light iii) regaining permanent shape after irradiation of light iv) stable permanent form after 
turning off light. (Reproduced from reference 136 with permission from The Royal Society of Chemistry, 
2011). 
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 The applications of such shape memory polymers are largely used in many industrial applications 

such as robotics, engines etc., they also find vast applications in medicinal field such as orthopedic and 

various ophthalmic devices. These smart materials could also be potentially used as orthodontics wires. 

With such demand in developing new devices and strategies, light plays a significant role in realizing 

those goals with greener perspective. 

 

1.7. Summary and outlook 

 The use of light in our day to day activities as well as for its role in different fields such as organic 

synthesis, medicine and materials has seen tremendous growth in recent years. In this regard various 

successful strategies and techniques employing light were reported in the literature especially in obtaining 

stereoselectivity in the field of organic synthesis, in drug delivery and in materials that includes 

lithography, degradable polymer and smart materials. Chapter one provides a glimpse of critical role 

played by light in various fields of science. With an aim to further explore new prospects in chemistry that 

utilizes light, the second and third chapters in this thesis describe strategies to obtain stereoselectivity in 

photochemical transformations using organocatalyst and atropisomeric chromophores respectively. The 

fourth and fifth chapters details elaborately about the use of phototrigger in the degradation of polymer 

and the reusability of the polymers. 
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 CHAPTER 2. ASSESSING THIOUREA/UREA CATALYSTS FOR 

ENANTIOSELECTIVE 6π-PHOTOCYCLIZATION OF ACRYLANILIDES 

 Introduction 2.1.

Photocyclization reactions can be defined as intramolecular processes leading to the formation of 

ring system (carbo-or heterocyclic) by formation of new σ-bond.1 This process can either take place via 

concerted mechanism e.g. electrocyclic reactions or by multi step processes e.g. Norrish-Yang 

cyclization. Electrocyclic ring closing reactions are unimolecular pericyclic reactions where a new σ-bond 

is formed between terminal conjugated π-system. This type of reaction is widely used in the synthesis of 

natural products.2,3 This concerted reaction can take place either by photochemical or by thermal 

methods. Depending on the total number of π electrons involved in the reaction and the type of reaction 

e.g. photochemical or thermal, the cyclization can occur by conrotatory or disrotatory pathways. In 

conrotation, the atomic orbitals at the terminal position turn in the same direction or in other words the 

atomic orbital rotate either in clockwise or counter clockwise direction. In disrotation, the terminal atomic 

orbitals rotate in opposite direction with respect to each other (one atomic orbital turns clockwise and the 

other turns counter clockwise) as depicted in the Figure 2.1.4,5 

 

Figure 2.1: Pictorial representation of A. con-rotation, B. dis-rotation. 
 

Woodward-Hoffmann rules6 and Fukai Frontier model theory (FMO)7 put forward certain 

guidelines to predict if a given cyclization is allowed or forbidden under given reaction conditions 

n n

B

n n

A
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(photochemical or thermal) (Table 2.1). Based on these rules, the type of rotation determines the 

stereospecificity of the resulting products. For example, cyclization of 2,4,6-octatriene 135 (4n+2 electron 

system) takes place only via disrotation in thermal reaction where the ground state (HOMO configuration) 

is involved in the bond forming process leading to cis product 136-cis. However, in the photochemical set 

up, upon excitation, one electron is promoted to form HOMO* to LUMO*. This change in the electronic 

configuration requires conrotation for bond formation resulting in the trans photoproduct 136-trans 

(disrotation is not favored photochemically) (Figure 2.2). Thus these guidelines are indispensible for 

understanding and explaining the stereospecificity of the resulting product.8-10 

Table 2.1: Woodward-Hoffman rules for electro cyclization. 

No. of electrons Thermal Photochemical 
4n (n=integer) Conrotatory Disrotatory 

4n+2 Disrotatory Conrotatory 
 

 

Figure 2.2: FMO analysis cyclization of 2,4,6-octatriene top: ground state reaction (Thermal) bottom: 
excited state reaction (photochemical). 
 

 6π-Photocyclization of acrylanilides 2.2.

6π-Photocyclization of acrylanilides resulting in 3,4-dihydroquinolin-2(H)-one was first reported by 

Chapman and coworkers.11-13 During their study on the photochemistry of unsaturated acids and their 
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derivatives, they observed non-oxidative cyclization of alkyl-substituted acrylanilides to diastereomeric 

photoproducts cis and trans alkyl substituted 3,4-dihydroquinoline derivatives 138 (Scheme 2.1).  

 

Scheme 2.1: First report on photocyclization of acrylanilides. 
 

Based on their observations, Ninomiya and coworkers had performed detailed study on 6π-

photocyclization of acrylanilides including the influence of the substituents and the role of solvents such 

as diethyl ether, benzene and methanol in determining the ratio of the resulting cis/trans products 

(Scheme 2.2). Their study revealed that in an aprotic solvent, trans product 141-trans was obtained due 

to the tautomerization via thermal suprafacial 1,5 hydrogen shift whereas in protic solvent or in presence 

of Brønsted acid, cis photoproduct 141-cis was obtained.14,15  

 

Scheme 2.2: Photocyclization of anilides: role of solvent effects. 
 

Most of the research efforts to control the excited state of the substrate to obtain high 

enantioselectivity in the photoproduct(s) employed supramolecular assemblies; solid-state irradiation etc., 

In that regard, Toda and coworkers reported an enantioselective solid-state 6π-photocyclization of 

acrylanilides using inclusion crystal (recrystallization of host and guest in stoichiometric ratio from a 

solvent) of acrylanilides with tartaric acid-derived 1,4-dioxaspiro-[4.4]-nonanes and -[4.5]-decanes. The 

reaction predominantly yielded trans photoproduct with 41-70 % yield and up to 98 % enantioselectivity 

due to its chiral conformation in the crystalline environment provided by the chiral host.16,17 The first 

enantioselective 6π-photocyclization of acrylanilides 142 in solution was reported by Ninomiya and 
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coworkers. The zwitterionic intermediate formed during the 6π-photocyclization was enantioselectively 

protonated using an external chiral proton source (+)-di(p-toluyl)tartaric acid (DTTA) that resulted in 

enantiomerically enriched 3,4-dihydroquinolin-2(H)-one products 143 (Scheme 2.3).18 

Building upon their work, Bach and coworkers19 have studied the effect of chiral Kemp host in 

enantioselective 6π-photocyclization of acrylanilides 142. They employed chiral Kemp triacid host, which 

binds to the guest using its two-point hydrogen-bonding site. Such orientation provides a chiral 

environment for the substrate and facilitates enantioselective 6π-photocyclization to yield enantioenriched 

products. They were able to achieve up to 57 % ee for the trans photoproduct at -55 °C and 45% ee for 

cis photoproduct at -15 °C in toluene. 

 

Scheme 2.3: Enantioselective 6π-photocyclization of acrylanilides 142 in solution. 
 

One of the successful reports on enantioselective 6π-photocyclization in solution was 

documented by Sivaguru and coworkers.20-24 They employed atropisomeric acrylanilides derivative 144 to 

achieve conformational orientation and steric predisposition for the enantioselective cyclization to occur. 

In this substrate-controlled reaction, they were able to achieve enantioselectivity up to 99% in the 

photoproducts 145 (Scheme 2.4). They were able to fine-tune the selectivity with spin (direct/sensitized) 

as well as by using solid-state reactivity and also using alkali metal ions. In recent years, many 

researchers have been working towards developing photocatalytic system for stereoselective synthesis. 
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Scheme 2.4: Atropselective 6π-photocyclization of atropisomeric acrylanilides in solution. 
 

One of the emerging strategies that is gaining rapid interest in the synthetic community is 

photoredox catalysis.25-30 In this strategy, the substrate undergoes a one electron oxidation or reduction 

initiated by a transition metal catalyst leading to a ground state radical anion or a radical cation. This 

process leads to an increase in reactivity of the substrate from the ground state. During the reaction cycle 

the substrate is not in the excited state. So, this strategy may not be suitable to induce selectivity in 

reactions that originates from the excited state. This opens up avenues to explore different approaches to 

control or manipulate the substrate in the excited state to achieve chiral induction. One such approach is 

to use of an organocatalyst that activates the substrates through hydrogen bonding (H-bonding). H-bond 

can be defined as an “X-H---A” interaction, where XH acts as proton donor to A.31 They can be classified 

as 3 types as in Table 2.2. 

Table 2.2: Classification and properties of hydrogen bonding.32 

 Strong Moderate Weak 
X-H----A interaction 

(type of bonding) 
Mostly covalent Mostly electrostatic Electrostatic 

Bond angle 
X-H----A (°) 175-180 130-180 90-150 

Length of H-bond 
H-----A (Å) 1.2-1.5 1.5-2.2 2.2-3.2 

Bond energy (kcal⋅mol-1) 14-40 4-15 <4 
 
 

Thiourea/urea catalyst coordinates with the substrate through its double H-bond interaction 

leading to the activation and acceleration of a given reaction. If a chiral (thio) urea catalyst is employed, 

then in principal the interaction can lead to chiral induction in the given transformation. The advantages of 

using (thio)urea-based organocatalysts are33  
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! Metal free catalysis 

! Relative ease of synthesis from inexpensive reagents 

! Robustness and exceptional stability 

! Inertness towards moisture and less demanding conditions (inert atmosphere, inert towards 

moisture, low temperature) 

Sivaguru, Sibi and coworkers successfully demonstrated the use of atropisomeric thiourea 

catalyst for enantioselective intramolecular [2+2]-photocycloaddition of 4-alkenyl substituted coumarins 59 

(Scheme 2.5).The enantioselective photoreactions took place via hydrogen bonding interaction via energy 

sharing mechanism leading to 69-96% ee in the photoproduct 61 at low catalyst loading of 1-30 mol%.34,35 

 

Scheme 2.5: Enantioselective [2+2]-photocycloaddition of 4-alkenyl coumarins 59 using atropisomeric 
thiourea catalysts. 
 

As a continuing effort along these lines, we have investigated organocatalyst-based 

enantioselective 6π-photocyclization of acrylanilides in solution. The thiourea/urea catalysts employed this 

investigation are listed in Scheme 2.6 and were synthesized according to the procedures reported in the 

literature. To develop a catalytic method for 6π-photocyclization of acrylanilides, we evaluated six 

thiourea/urea catalysts with different backbones. They are phenylethyl thiourea derivative 147a, 

binaphthyl based bis-aryl thiourea 147b, C2-symmetrical bis-thioureas 147c and 147d, mono functional 

chiral thiourea 147e and mono-functional chiral urea catalyst 147f. 
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 Catalyst screening for 6π-photocyclization of acrylanilides 2.3.

 

Scheme 2.6: Irradiation of 146a with 100 mol% of catalyst 147a-147f. 
 

The photoreaction of the N-phenyl methacrylamide 146a-b was carried out with 100 mol% of the 

catalyst 147a-147f at 10 °C in benzene. The reaction mixture was degassed by nitrogen bubbling for 5–

10 min. The irradiation was performed using a Rayonet reactor equipped with ~ 300 nm light bulbs (14 

Watts x 16 bulbs) for 12 h. After the photoreaction, to monitor the reaction progress, an aliquot (~0.5 mL) 

of the reaction mixture was taken in a GC vial and was diluted by adding methanol (1 mL). The samples 

were then analyzed by gas chromatography on a chiral stationary phase to ascertain the enantiomeric 

excess in the photoproduct. For conversion yield and mass balance studies, after irradiation, an 

appropriate amount of internal standard (triphenylmethane) was added to the reaction mixture. The 

solvent was evaporated under reduced pressure and was dried under high vacuum. The crude reaction 

mixture was analyzed by 1H-NMR spectroscopy (CDCl3 as solvent). From the integral value of respective 

peaks, NMR yield was calculated. 
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Analysis of Table 2.3 revealed that the background reaction i.e., in the absence of catalyst, 

proceeded to completion to yield racemic photoproduct. However, in the presence of thiourea catalyst, 

the conversion was low compared to background reaction, but noticeable amount of enantiomeric excess 

(ee) was observed. The phenylethyl thiourea catalyst 147a gave a moderate conversion with 13 % ee. 

Upon changing the catalyst to binaphthyl based bis-aryl derivative 147b, the ee was lowered to 7 %. The 

C2 - symmetrical bis –thiourea catalyst 147c and 147d only resulted in racemic mixture, whereas the 

monofunctionalized thiourea catalyst gave low enantioselectivity. Interestingly, the urea catalyst 147f 

gave highest conversion for the catalyzed reaction but only resulted in 9 % ee. 

Table 2.3: Enantioselective 6π-photocyclization of 1 with thioureas / urea 147a-147f a. 

Entry Substrate Catalyst NMR yield (%)b % ee c 
1 146a None 100  Racemic 
2 146a 147a 53 13 
3 146a 147b 28 7 
4 146a 147c 35  Racemic 
5 146a 147d 31  Racemic 
6 146a 147e - 7 
7 146a 147f 89 9 
8 146b None - Racemic 
9 146b 147a - Racemic 

[a] Reactions were carried out in benzene at 10±2 °C for 12 h with 1 equivalent of catalyst. All the 
samples were degassed with N2 bubbling for 5-10 min prior to irradiation. Values are an average of two 
trials. [b] NMR yield was determined by 1H-NMR spectroscopy using triphenylmethane as an internal 
standard. [c] From GC analysis using chiral stationary phase (error: ±3%). 
 

 Catalyst loading studies for 6π-photocyclization of acrylanilides 2.4.

 

Scheme 2.7: Irradiation of 146a with 10 - 100 mol% of catalyst 147a and 147f. 
 

The photoreaction of the N-phenyl methacrylamide with varying catalyst loading (10 – 100 mol%) 

of 147a and 147f were irradiated at 10 °C in benzene using a Rayonet reactor equipped with ~ 300 nm 

light bulbs (14 Watts x 16 bulbs) for 12 h. The reaction mixture was degassed by nitrogen bubbling for 5–
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10 min. Then the resultant solution was irradiated in Rayonet reactor at 10 °C (± 2 °C) for 12 h. After the 

photoreaction, to monitor the reaction, an aliquot (~0.5 mL) of the reaction mixture was taken in a GC vial 

and was diluted by adding 1 mL of methanol. The samples were then analyzed by gas chromatography 

on a chiral stationary phase to ascertain the enantiomeric excess in the photoproduct. 

 Inspection of Table 2.4 shows that catalyst loading of 50 mol% was efficient in obtaining a higher 

ee in the photoproduct. For example, 50 mol% of 147a catalyst resulted in 13 % ee and further increase 

in catalyst loading did not result in an increase of enantioselectivity in the photoproduct. Similar results 

were observed when 147f was employed. Interestingly, the higher loading of 147f catalyst resulted in 

higher conversions. This is on contrary to 147a catalyst where the conversion started to depreciate. 

Table 2.4: Enantioselective 6π-photocyclization of 146a with varying catalyst 147a-147f loadinga 

Entry Catalyst (mol%) NMR yield (%)b % ee c 

1 
147a (10) 54 9 
147a (50) 49 13 

147a (100) 53 13 

2 
147f (10) 56 7 
147f (50) 59 9 

147f (100) 89 9 
[a] Reactions were carried out in benzene at 10±2 °C for 12 h. All the samples 
were degassed with N2 bubbling for 5-10 min prior to irradiation. Values are an 
average of two trials. [b] NMR yield was determined by 1H-NMR spectroscopy 
using triphenylmethane as internal standard. [c] From GC analysis using chiral 
stationary phase (error: ±3%). 

 

  6π-photocyclization of acrylanilides under sensitized conditions 2.5.

 

Scheme 2.8: Irradiation of N-phenylacrylanilide 146a with triplet sensitizer. 
 

N-Phenylmethacrylamide 146a (1mM), thiourea 147a and an appropriate sensitizer (acetone (ET 

= 78 kcal⋅mol -1) or xanthone (ET = 74 kcal⋅mol -1)) were dissolved in respective solvent in a Pyrex test 

tube and were degassed by bubbling nitrogen for 5–10 min. The resultant solution was irradiated in 

Rayonet reactor equipped with ~ 300 nm light bulbs / 350 nm light bulbs at 10±2 °C for 12 h. After the 
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photoreaction, to monitor the reaction, an aliquot (~0.5 mL) of the reaction mixture was taken in a GC vial 

and was diluted by adding 1 mL of methanol. The samples were then analyzed by chiral gas 

chromatography to ascertain the enantiomeric excess in the photoproduct. For conversion yield and mass 

balance studies, after irradiation, an appropriate amount of internal standard (triphenylmethane) was 

added to the reaction mixture. The solvent was evaporated under reduced pressure and was dried under 

high vacuum. The crude reaction mixture was analyzed by 1H-NMR spectroscopy (CDCl3 as solvent). 

From the integral value of respective peaks, NMR yield was calculated. 

The results of the sensitized irradiations with acetone (both as solvent and sensitizer) or xanthone 

in benzene are shown in Table 2.5. The studies revealed that in the presence of a sensitizer the 

conversion of the reaction was low compared to non-sensitized reaction. Similarly, the enantioselectivity 

of the reaction was also affected where the sensitized reaction only yielded racemic mixture for all the 

substrates under our condition in our study. 

Table 2.5: 6π-photocyclization of 146a under sensitized conditionsa. 

Entry Catalyst Solvent/Sensitizer*3 
Irradiation 

source 
NMR yield 

(%)c 
% eed 

1 None Acetoneb/- 300 nm 24 Racemic 
2 147a Acetoneb/- 300 nm 10 Racemic 
3 None Benzene/Xanthone 350 nm 22 Racemic 
4 147a Benzene/Xanthone 350 nm 7 Racemic 
5 None Benzene/Xanthone 300 nm 15 Racemic 
6 147a Benzene/Xanthone 300 nm 17 Racemic 

[a] All the samples were degassed with N2 bubbling for 5-10 min prior to irradiation. Values are an 
average of two trials. [b] Acetone as solvent and sensitizer. [c] NMR yield was determined by 1H-
NMR spectroscopy using triphenylmethane as internal standard. [d] From GC analysis using chiral 
stationary phase (error : ±3 %). 

 

 Temperature dependent studies for 6π-photocyclization of acrylanilides 2.6.

 

Scheme 2.9: Irradiation of 146a at different temperature. 

N-Phenylmethacrylamide 146a (1mM) and thiourea 147a were dissolved in toluene in a Pyrex 
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test tube. The reaction mixture was degassed by nitrogen bubbling for 5–10 min. The resultant solution 

was irradiated in Rayonet reactor equipped with ~ 300 nm light bulbs for 12 h at a given temperature as 

shown in Table 2.6. After the photoreaction, to monitor the reactions, an aliquot (~0.5 mL) was taken in a 

GC vial and was diluted by adding 1 mL of methanol. Then the samples were analyzed by chiral gas 

chromatography to ascertain the enantiomeric excess in the photoproduct. For conversion yield and mass 

balance studies, after irradiation, an appropriate amount of internal standard (triphenylmethane) was 

added to the reaction mixture. The solvent was evaporated under reduced pressure and was dried under 

high vacuum. The crude reaction mixture was analyzed by 1H-NMR spectroscopy (CDCl3 as solvent). 

From the integral value of respective peaks, NMR yield was calculated. 

Inspection of the Table 2.6 clearly showed that the temperature of the reaction did not have any 

noticeable influence in the product ee values while it affected the conversion. For example, in the 

presence of catalyst 147a, conversion was 21 % with 10 % ee at -60 oC and at 25 oC, the conversion was 

93 % with 9 % ee. 

Table 2.6: Temperature dependent studies 6π-photocyclization of 146a.a 

Entry Catalyst Temp °C NMR yield (%)b % eec 

1 None 

-60 54 Racemic 
-30 78 Racemic 
0 80 Racemic 

25 97 Racemic 

2 147a 

-60 21 10 
-30 43 9 
0 51 9 

25 93 9 
 a] All the samples were degassed with N2 bubbling for 5-10 min prior to   
  irradiation. Values  are an average of two trials. [b] NMR yield was determined by   
 1H-NMR spectroscopy using triphenylmethane as internal standard. [c] From GC  
  analysis using chiral stationary phase (error: ±3 %). 

 

 Photophysical studies of 6π- photocyclization of acrylanilides 2.7.

Detailed photophysical studies were performed to understand the interaction between the 

substrate and the catalyst. UV-Vis absorption spectra of 146a, catalyst 147a and the 1:1 mixture of 146a 

and 147a were recorded in toluene and ethanol (Figure 2.3A and Figure 2.3B). No emission was 

observed at room temperature therefore, in order to understand the interaction, steady state 

luminescence were recorded at 77 K. Based on the spectra (Figure 2.3C) it was evident that there was 
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luminescence from the catalyst 147a and no luminescence from the substrate. Also, it was interesting to 

note that the luminescence of the catalyst was quenched by the substrate indicating the interaction of the 

excited-state catalyst and the substrate. To corroborate this interaction, we performed luminescence 

studies in a polar protic solvent such as ethanol (Figure 2.3D). We envisioned that the hydrogen bonding 

ability of the catalyst with the substrate would be disrupted by the protic solvent that also can act as a H-

bonding agent. As expected, in ethanol glass at 77 K, the luminescence of 147a was not quenched by 

substrate. This was further substantiated by photoreaction wherein we obtained a racemic photoproduct 

in ethanol solvent compared to 13 % ee in benzene. These studies clearly showed that interaction 

mediated by hydrogen bonding between the substrate and the catalyst was critical for the observed 

enantioselectivity in the reaction that was manifested as the quenching of the luminescence of the 

catalyst in presence of substrate. 

 

Figure 2.3: (A) UV-Vis spectra of 146a (black), 147a (blue) and 147a+146a (red) (1:1 mixture) in toluene. 
(B) UV-Vis spectra of 146a (black), 147a (blue) and 147a+146a (red) (1:1 mixture) in ethanol.(C) 
Luminescence  spectra of 146a (black), 147a (blue) and 147a+146a (red) (1:1 mixture) at 77 K in toluene. 
(D) Luminescence  spectra of 146a (black), 147a (blue) and 147a+146a (red) (1:1 mixture) at 77 K in 
ethanol at 320 nm excitation. 
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 Mechanistic rationale for 6π-photocyclization of acrylanilides 2.8.

 

Scheme 2.10: Mechanistic rationale for 6π-photocyclization of 146a. 
 

Based on the literature precedence, 6π-photocyclization of 146a can occur either via a singlet-

excited state or via a triplet excited state. Based on the photochemical reactivity paradigm and the ππ* 

excited state in acrylanilides, it is highly plausible that the reaciton can proceed either via a zwitterionic 

intermediate from a singlet excited state and a diradicaloid intermediate from the triplet excited state. 

Depending upon our experimental conditions, in the presence of catalyst 147, both a zwitterionic 

intermediate ZW-146a and a triplet diradical intermediate tDR-146a are possible. If reactions takes place 

via triplet pathway, it forms tDR-146a (and tDR-146a’) and has to intersystem cross to singlet to form the 

product. The ZW-146a thus formed via a direct or sensitized irradiation will lead to photoproduct 148 via 

direct hydrogen migration or via an enol intermediate (Scheme 2.10). We believe that the partition of the 

reactive pathways either via ZW-146a intermediate (where a chiral form is preserved) and/or via the enol 

intermediate (where the chirality is destroyed) determines the enantiomeric excess in the photoproduct. 

From our photophysical studies, it is evident that the catalyst and substrate interact in the excited state 
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and this interaction is facilitated by hydrogen bonding. In spite of the observable interaction, the low 

enantioselectivity is likely a reflection of a combination of factors viz., a) with respect to the mode of 

cyclization; b) formation of an enol intermediate that destroys the chirality; c) relative reactivity of the 

zwitterion intermediate leading to enol formation that competes with direct hydrogen migration. The blend 

of these aspects are likely reflected in the observed low enantioselectivity in the product irrespective of 

the catalyst-substate interaction(s) in the excited state. 

 

 Summary and outlook 2.9.

We have developed a catalytic process for the 6π-photocyclization of acrylanildes derivative 

employing thiourea/urea catalyst leading to 3,4 dihydroquinolin-2-one. Photophysical studies clearly 

showed the interaction between the catalyst and the substrate where the luminescence of the catalyst 

was efficiently quenched by the substrate. In spite of the interaction of the catalyst and the substrate, we 

observed low enantioselectivity due to combination of several factors like mode of cyclization of the 

substrate while bound to the catalyst, formation of enol intermediate that destroys the chirality and the 

relative reactivity of the zwitterion intermediate that competes with enol formation and direct hydrogen 

migration. However our preliminary studies showed the interaction of the catalyst and the susbtrate which 

opens up avenues for exploring the system further to get better selectivity in the photocyclization of 

acrylanilide systems. 

 

 Experimental section 2.10.

 General methods 2.10.1.

All commercially obtained reagents/solvents were used as received; chemicals were purchased 

from TCI®, Alfa Aesar®, Sigma-Aldrich®, and Acros® and were used as received without further purification. 

Dry Benzene solvent was purchased from Merck® Chemicals. Unless stated otherwise, reactions were 

conducted in oven-dried glassware. 1H-NMR and 13C-NMR spectra were recorded on Bruker and Varian 

400 MHz (100 MHz for 13C) and on 500 MHz (125 MHz for 13C) spectrometers. Data for 1H-NMR are 

reported as chemical shift (δ ppm) with the corresponding integration values. Coupling constants (J) are 
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reported in hertz (Hz). Standard abbreviations indicating multiplicity were used as follows: s (singlet), b 

(broad), d (doublet), t (triplet), q (quartet), m (multiplet) and ABq (AB quartet). Data for 13C-NMR spectra 

are reported in terms of chemical shift (δ ppm). Analytical gas chromatography analyses were performed 

on Varian 3900® equipped with auto-injector CP-8410 for automated sample injection, a chiral stationary 

phase: Supelco betadex-225 30 x 0.25 mm and a flame ionization detector. Instrumental settings as 

indicated below were used. 

 

Figure 2.4: Pictorial representation of GC oven program. 
 

GC Oven program: Injector temperature: 250 °C, Injection volume: 5 µL ,Split ratio: 20:1, Detector 

temperature: 280 oC, Gas flow: He (29 mL/min), H2 (30 mL/min), air (300 mL/min). Total run time: 61 min 

When necessary, the compounds were purified by combiflash chromatography equipped with 

dual wavelength UV-Vis absorbance detector (Teledyne ISCO®) using ethyl acetate-hexanes as the 

mobile phase and Redisep cartridge filled with silica (Teledyne ISCO®) as stationary phase. In some 

cases, compounds were purified by column chromatography on silica gel (Sorbent Technologies®, silica 

gel standard grade: Porosity 60 Å, Particle size: 230 x 400 mesh, Surface area: 500 – 600 m2/g, Bulk 

density: 0.4 g/mL, pH range: 6.5 – 7.5). The Retention Factor (Rf) values were recorded using a 5-50 % 

ethyl acetate-hexanes as mobile phase and on Sorbent Technologies® Silica Gel TLC plates (200 mm 

thickness w/UV254). 

 

 General methods employed for photochemical reactions 2.10.2.

An RPR-200 photochemical reactor (Southern New England Ultraviolet Company®) equipped with 

16 (~300 nm) 14 watts lamps was used for photochemical reactions. To monitor the progress of the 

reaction, an aliquot (~0.5 mL) of the reaction mixture was taken in a GC vial and was diluted by adding 1 

mL of methanol. The samples were analyzed by gas chromatography on a chiral stationary phase to 

ascertain the enantiomeric excess in the photoproduct. For conversion yield and mass balance studies, 

165 oC 165 oC

190 oC 190 oC

9.75 min

50 min
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after irradiation for specific time intervals, an appropriate amount of internal standard (triphenylmethane) 

was added to the reaction mixture. The solvent was evaporated under reduced pressure and was dried 

under high vacuum. The crude reaction mixture was analyzed by 1H-NMR spectroscopy (CDCl3 as 

solvent). From the integral value of respective peaks, % conversion and mass balance was calculated 

using the formula 

     (Equation 2.1) 
 

Where, Na and Ni are the number of nuclei giving rise to the relevant analyte and internal 

standard signals respectively. Similarly mola and moli are the molarity of analyte and the internal standard 

in deuterated chloroform, respectively. All photoreactions were performed in duplicates. 

 

 General methods employed for photophysical studies 2.10.3.

Spectrophotometric solvents (Sigma-Aldrich®) were used wherever necessary unless or 

otherwise mentioned. UV quality fluorimeter cells with range until 190 nm were purchased from Luzchem®. 

Low temperature luminescence measurements were performed using a quartz tube (3 mm inner 

diameter) that fit in a liquid N2 filled quartz Dewar jacket with an optical window. Absorbance 

measurements were performed on an Agilent Cary 300 UV-Vis spectrometer®. Emission spectra were 

recorded on a Horiba Scientific Fluorolog 3 spectrometer® (FL3-22) equipped with double-grating 

monochromators, dual lamp housing containing a 450-watt CW xenon lamp and a UV xenon flash lamp 

(FL-1040), Fluorohub/MCA/MCS electronics® and R928 PMT detector. Emission and excitation spectra 

were corrected in all the cases for source intensity (lamp and grating) and emission spectral response 

(detector and grating) by standard instrument corrections provided in the instrument software.  

 

 General procedure for the synthesis of organocatalyst 147a-147f 2.11.

 Synthetic protocol for catalysts 147a, 147c and 147d 2.11.1.

147a,36 147c37 and 147d38 was synthesized according to a procedure reported in the literature. 

To a solution of the corresponding amine (1.5 mmol) in dry THF (3-5 mL), 3,5-bis(trifluoromethyl)phenyl 

mola moli X
Integral of analyte
Integral of Int. Std Ni

NaX=
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isothiocyanate (1.5 mmol) was added at room temperature. The reaction mixture was stirred at 50 °C for 

6-48 h. The reaction progress was monitored by TLC. After completion of the reaction, the reaction 

mixture was concentrated under reduced pressure and the residue was purified by flash chromatography 

on silica gel to afford the pure product (84 - 97% yield). 

 

 Synthetic protocol for catalyst 147b 2.11.2.

The compound 147b was synthesized according to a procedure reported in the literature.39 To a 

solution of (S)-1,1'′-binaphthyl-2,2'′-diamine (0.72 mmol) in dry dichloromethane (1.5 mL), 3,5-

bis(trifluoromethyl)phenyl isothiocyanate (1.5 mmol) was added at room temperature. The reaction 

mixture was stirred at room temperature for 12 h. After completion of the reaction (monitored by TLC), the 

resultant mixture was concentrated under reduced pressure and the residue was purified by flash 

chromatography on silica gel to afford the pure product (82% yield). 

 

 Synthetic protocol for catalyst 147e 2.11.3.

The compound 147e was synthesized according to a procedure reported in the literature.40 To a 

stirred solution of (S)-tert-butanesulfinamide (1.0 mmol) in dry THF (10 mL) at -78 °C, butyllithium in 

hexanes (1.1 mmol) was added slowly to the reaction mixture. The resultant solution was stirred for 15 

min. Then 3,5-bis(trifluoromethyl)phenyl isothiocyanate was added and stirred at room temperature for 5 

h. The reaction mixture was quenched by addition of water and extracted with CH2Cl2. The combined 

organic layer was dried over anhyd. Na2SO4, filtered and the solvent was removed under reduced 

pressure to get the crude product. The crude residue was purified by flash chromatography on silica gel 

to afford the pure product (67% yield). 

 

 Synthetic protocol for catalyst 147f 2.11.4.

The compound 147f was synthesized according to a procedure reported in the literature.40 To a 

stirred solution of (S)-tert-butanesulfinamide (1.0 mmol) in dry THF (10 mL) at -78 °C, butyllithium in 

hexanes (1.1 mmol) was added slowly to the reaction mixture. The resultant solution was stirred for 15 
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min. Then 3,5-bis(trifluoromethyl)phenyl isocyanate was added and stirred at room temperature for 5 h. 

The reaction mixture was quenched by addition of water and extracted with CH2Cl2. The combined 

organic layer was dried over anhyd. Na2SO4, filtered and the solvent was removed under reduced 

pressure to get the crude product. The crude residue was purified by flash chromatography on silica gel 

to afford the pure product (90% yield). 

 

 General irradiation procedure for enantioselective phototransformations and 2.12.

characterization of the photoproducts 

 Catalyst screening studies 2.12.1.

 

Scheme 2.11: Irradiation of 146a with 100 mol% of catalyst 147a-147f. 
 

N-Phenylmethacrylamide 146a (1mM) and thiourea 147a–147f were dissolved in Benzene in a 

Pyrex test tube. The reaction mixture was degassed by nitrogen bubbling for 5–10 min. Then the resultant 

solution was irradiated in Rayonet reactor equipped with ~ 300 nm light bulbs at 10±2 °C for 12 h. The 

samples were analyzed by gas chromatography on a chiral stationary phase to ascertain the 

enantiomeric excess in the photoproduct. For conversion yield and mass balance studies, after irradiation, 

an appropriate amount of internal standard (triphenylmethane) was added to the reaction mixture. The 

solvent was evaporated under reduced pressure and was dried under high vacuum. The crude reaction 

mixture was analyzed by 1H-NMR spectroscopy (CDCl3 as solvent). From the integral value of respective 

peaks, NMR yield was calculated. 
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 Catalyst loading studies 2.12.2.

 

Scheme 2.12: Irradiation of 146a with 10 - 100 mol% of catalyst 147a, 147f. 
 

N-Phenylmethacrylamide 146a (1mM) and 10-100 mol% of the catalyst 147a and 147f were 

dissolved in benzene in a Pyrex test tube. The reaction mixture was degassed by nitrogen bubbling for 5–

10 min. Then the resultant solution was irradiated in Rayonet reactor at 10 °C (± 2 °C) for 12 h. The 

progress of the reaction was monitored by GC to ascertain the enantiomeric excess in the photoproduct. 

 

 Solvent studies 2.12.3.

 

Scheme 2.13: Irradiation of 146a with 100 mol% of catalyst 147a in different solvent. 
 

N-Phenylmethacrylamide 146a (1mM) and 100 mol% of the catalyst 147a was dissolved in 

respective solvent in a Pyrex test tube. The reaction mixture was degassed by nitrogen bubbling for 5–10 

min. Then the resultant solution was irradiated in Rayonet reactor at 10 °C (± 2 °C) for 12 h. The progress 

of the reaction was monitored by GC to ascertain the enantiomeric excess in the photoproduct. 

Table 2.7: Solvent dependent studies 6π-photocyclization of 146a.a 

Solvent % Enantioselectivity b 
Without catalyst 147a With catalyst 147a 

Benzene Racemic 13 
Ethanol Racemic Racemic 

Methyl tetrahydrofuran Racemic Racemic 
[a] Reactions were carried out at 10±2 °C for 12 h. Values are an average of two 
trials. [b] From GC analysis using chiral stationary phase (error : ±3 %). 
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1H-NMR (400 MHz, CDCl3, δ ppm): 1.27-1.28 (d, 3H, J= 2 Hz), 2.62-2.75 (m, 2H), 2.95-3.00 (m, 1H), 

6.79-6.81 (m, 1H), 6.94-6.98 (m, 1H), 7.12-1.17 (m, 2H), 8.73 (b, 1H). 

 

Figure 2.5: 1H-NMR (400 MHz, CDCl3, δ ppm of acrylanilide photoproduct 148a. 

= Solvent*

*

N H
O
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13C-NMR (100 MHz, CDCl3, δ ppm): 15.6, 33.6, 35.2, 115.4, 123.1, 123.7, 127.7, 128.3, 137.4, 174.9.  

 

Figure 2.6: 13C-NMR (100 MHz, CDCl3, δ ppm of acrylanilide photoproduct 148a. 

= Solvent*

*N H
O
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 CHAPTER 3. ATROPSELECTIVE PHOTOCYCLOADDITION OF AXIALLY 

CHIRAL CHROMOPHORES* 

 Introduction 3.1.

Light induced transformations holds a unique place in the field of asymmetric organic synthesis 

and are often employed to access structurally complex and chirally enriched molecule in fewer steps.1-3 

Thus, photochemical reactions often serve as a complementary strategy to thermal reactions in obtaining 

structurally complex building blocks. Though phototransformations are elegant, they are inherently fast 

processes, which poses a challenge to control the excited state reactivity often resulting in poor 

selectivity. As a solution to this challenge, many research groups have performed reactions in confined 

media, employed supramolecular templates, carried out reactions in the solid-state, which has led to an 

improvement in controlling selectivity in the photoproduct(s).4-8 In spite of this improvement, achieving 

stereoselectivity in photoreactions in solution remains a longstanding challenge. As a possible solution to 

this bottleneck, Sivaguru and coworkers introduced a concept of “axial to point chiral transfer” that 

employed atropisomeric chromophores to perform various asymmetric photoreactions with good control 

over stereochemistry. In this vein, we have successfully demonstrated 6π-photocyclization,9-11 4π-

photocyclization,12,13 [2+2]-photocycloaddition14 and Norrish-Yang reactions.15,16  

 

*The material in Sections 3.2-3.6 of this chapter was co-authored by Ramya Raghunathan (RR), 
Elango Kumarasamy (EK), Akila Iyer (AI), Dr. Angel Ugrinov (AU) and Dr. J. Sivaguru (JS). RR, EK, AI in 
consultation with JS synthesized all the compounds and carried out all the experiments. AU recorded 
XRD data and solved the structures reported in this chapter. SJ performed photophysical studies detailed 
in this chapter. EK, RR, AI and JS came up with the mechanistic rationale and the conclusion described 
in this chapter. 

The material in Sections 3.7-3.14 of this chapter was co-authored by Ramya Raghunathan (RR), 
Elango Kumarasamy (EK), Dr. Steffen Jockusch (SJ), Dr. Angel Ugrinov (AU) and Dr. J. Sivaguru (JS). 
RR and EK in consultation with JS synthesized all the compounds and carried out all the experiments. A 
part of the results based on the atropisomeric maleimide system that is not reported in this thesis is a part 
of EK’s thesis. AU recorded XRD data and solved the structures reported in this chapter. SJ performed 
photophysical studies detailed in this chapter. RR, EK, SJ and JS came up with the mechanistic rationale 
and the conclusion described in this chapter. 

The material in Sections 3.15-3.22 of this chapter was co-authored by Ramya Raghunathan (RR), 
Elango Kumarasamy (EK), Dr. Angel Ugrinov (AU), Dr. Steffen Jockusch and Dr. J. Sivaguru (JS). RR 
and EK in consultation with JS synthesized all the compounds and carried out all the experiments. AU 
recorded XRD data and solved the structures reported in this chapter. RR, EK, SJ and JS came up with 
the mechanistic rationale and the conclusion described in this chapter. 
 



 90 

To further broaden the scope of this methodology we have carried out investigations on Paternò-

Büchi reactions of atropisomeric oxoamides, and photocycloaddition ([2+2]-[5+2]) of maleimides. 

 

 Paternò-Büchi reaction of atropisomeric oxoamides 3.2.

The [2+2] photocycloaddition reaction between excited state of a carbonyl group and an alkene 

generating an oxetane ring is called as Paternò-Büchi reaction. Oxetanes are constituents of many 

biologically active natural products like taxol, merrilactone A, oxetin etc.,17 Emajuele Paternò was the first 

to observe this reaction in 1909 while performing a photochemical   reaction between benzophenone 149 

and amylene 150, which resulted in [2+2] photoadduct 151 (Scheme 3.1).18 It was not until 1954, when 

George Hermann Büchi reported the exact identification of the photoproduct as an oxetane. Since then, 

there are many reports in the field of synthetic chemistry that utilizes Paternò-Büchi reaction.19 

 

Scheme 3.1: An example of a Paternò-Büchi reaction. 
 

The mechanism of these cycloaddition reactions depends on the interactions of the orbitals (n or 

π*) of the two components that initiate the process and also the electronics and the sterics of alkene 

(electron rich or electron poor). However the most simplified mechanism describes that the carbonyl 

group serves as a light absorbing chromophore resulting in an excited state carbonyl 152 that can be 

singlet or a triplet. The excited carbonyl then reacts with the alkene 153 counterpart to form the oxetane 

photoproduct 154 via a 1,4 biradical formation (singlet or triplet; Scheme 3.2). The 1,4 biradical 

intermediate formed during the reaction has been characterized spectroscopically. The diradical 

intermediate has been trapped by biradical quenchers. Though in few instances, it has been shown that 

the exciplex formation precede the formation of biradical intermediates, and their role in the regio- 

stereoselectivity is not well understood or explored.20,21 Also, for the reaction between electron rich 

alkenes and electron-poor carbonyl compounds, electron transfer mechanism is a potential alternative 
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pathway. The regio- and stereo-chemistry of the addition is dictated by the stereoelectronic of the excited 

state and the reactivity of carbonyl compound. 

 

Scheme 3.2: General mechanism of Paternò-Büchi reactions. 
 

The Paternò-Büchi reactions can be widely performed with different type of alkenes and carbonyl 

derivatives. However, its application in synthesis is limited because of its regioselectivity. Many research 

groups have probed control of the regioselectivity in these reactions. From these investigations, it can be 

concluded that the regioselectivity can be controlled by the substituents on the alkene and the type of  the 

carbonyl that participates in the reaction. The photocycloaddition of benzophenone 155 and isobutene 

156 gave two regioisomers 157 and 158 in 90:10 ratio (Scheme 3.3).22,23 Similarly the cycloaddition of β-

unsubstituted enol ether to benzophenone gave the cycloadducts in a 3:1 ratio.24 
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Scheme 3.3: Regioselectivity in Paternò-Büchi reactions. 
 

Diastereoselectivity in Paternò-Büchi reactions can be either a simple/non-induced 

diastereoselectivity where the stereogenic center will be generated in the photoproduct without any 

stereogenic element existing in the starting materials or induced diastereoselectivity, where a stereogenic 

center will be generated from substrates that already have at least one stereogenic center. Griesbeck and 

coworkers have extensively studied on the non-induced diastereoselectivity employing dihydrofuran and 

furan with prochiral carbonyl derivatives.25 They examined [2+2]-photocycloaddition of 2,3 dihyrdofuran 

160 with different aliphatic and aromatic aldehydes 159 which resulted in high diastereoselectivity up to 

91:9 for pivaldehyde (aliphatic aldehyde) and 98:2 for mesitaldehyde, 2,4-di-tert-butyl-6-

methylbenzaldehyde (aromatic aldehyde) (Scheme 3.4). The formation of endo product is attributed to the 

spin-orbit coupling geometries of triplet 1,4 biradical. This model26 was also able to explain the Paternò-

Büchi reactions of enamine photocycloaddition described  by Bach and coworkers.27,28 
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Scheme 3.4: Non-induced diastereoselectivity in Paternò-Büchi reactions. 
 

The first example of induced diastereoselectivity in Paternò-Büchi reaction was reported by 

Gotthardt and Lenz in 1979 by using a chiral carbonyl compound.29 They used enantiomerically pure (-)-

menthyl ester of phenylglyoxalic acid 162 with tetramethylethylene 153, which resulted in oxetane 

photoproducts 163 and 164 with a diastereomeric excess of 32% (Scheme 3.5). 

 

Scheme 3.5: Photocycloaddition of chiral phenylglyoxylates 162 with tetramethylethylene 153. 
 

In 1991 Scharf and coworkers reported a highly diastereoselective Paternò-Büchi reaction 

involving chiral phenyl glyoxylates.30,31 Although the sterogenic center in the phenyl glyoxylates are 

localized in the alcohol part of the α-keto ester, which is distant from the reactive triplet excited carbonyl 

group, they were able to achieve exceedingly high diastereoselectivity. For example, the 

photocycloaddition of 1,3-dioxole 165 and with phenyl glyoxalic acid ester 162 gave the cycloadducts with 

high diastereoselectivity (Scheme 3.5). 

While research on induced diastereoselectivity from chiral carbonyl unit was studied by different 

groups, Bach and coworkers investigated an alternative strategy that involved the use of chiral alkene 
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units to obtain selectivity in the Paternò-Büchi reactions (Scheme 3.6).32-34 They investigated the 

photocycloaddition of chiral silylenolethers 167 with benzaldehyde 149. The substituent R at the γ-position 

of silylenolethers was varied to understand and evaluate the influence of steric and the electronic effects 

on the selectivity.  

 

Scheme 3.6: Photocycloaddition of chiral phenylglyoxylates 162 with 1,3 dioxole 165. 
 

Diastereoselectivity in the oxetane was increased as the bulkiness of the R substituent increased. 

For. e.g. when R was ethyl, the dr was 61:39; however when R was t-Bu the dr increased to 95:5 

(Scheme 3.7). This facial diastereoselectivity was explained based on the 1,3 allylic strain model.35 

 

Scheme 3.7: Photocycloaddition of benzaldehyde 149 with silylenol ether 167. 
 

Sakamoto and coworkers have extensively worked on stereoselective and enantioselective 

intramolecular Paternò-Büchi reactions involving N-(α,β-unsaturated carbonyl)benzoylformamides 170 

both in solid-state and in solution.36,37 They carried out detailed experimental investigations on various 

structural parameters and described the importance of structural features that is necessary to access 

chirally enriched oxetane product. Irradiation of N-(α,β-unsaturated carbonyl)benzoylformamides 170 

resulted in cross [2+2] intramolecular cycloaddition between the carbonyl and the alkenyl double bonds. 

Systematic studies on the efficiency of the reactions were performed by varying the substituents on 170 

One key factor that determined the reactivity of 170 towards Paternò-Büchi reactions is the 

conformational distribution of imides. The imides can exist in 4 different conformers namely E,E or s-

trans, s-trans, E,Z or s-trans, s-cis, Z,E or s-cis, s-trans and Z,Z or s-cis, s-cis as shown in the Figure 3.1. 
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Cyclic imides that are in E,E or s-trans, s-trans conformations have the reacting species (carbonyl and 

alkene group) (Scheme 3.8) are in close proximity that results in the oxetane product. However for 170 in 

other conformations, the reacting species are not suitably oriented to undergo Paternò-Büchi reaction to 

yield oxetane photoproduct. 

 

Figure 3.1: Conformers of N-(α,β-unsaturated carbonyl)benzoylformamides. 
 

When the reactions was performed in solution, the interconversion of conformers to E,E or s-

trans, s-trans takes place rapidly resulting in facile formation of oxetane photoproduct. Whereas in solid-

state such conformational interconversion not feasible as it will involve series of changes in the molecular 

orientation. Also, apart from interconversion, two other parameters that determine the photocycloaddition 

in the solid-state are the distance and the dihedral angle between the carbonyl and the alkenyl groups. 

Based on their experiments, the E,E or s-trans, s-trans gave good yield and up to 99% ee. Though few 

substrates crystallized in E,Z or s-trans, s-cis conformer which only resulted in 50 % yield with ee value  

of 88% (resulted attributed to the distance and dihedral angle). 

 

Scheme 3.8: Phototransformations of N-(α,β-unsaturated carbonyl)benzoylformamides 170. 
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Chart 3.1: Structures of atropisomeric oxoamides, their photoproducts and the precursors for the 
synthesis. 
 

The newly synthesized atropisomeric oxoamides 172 were characterized by NMR spectroscopy, 

mass spectrometry and single crystal XRD analysis. HPLC analysis showed P and M isomers were 

originated due to the restricted bond rotation around N-C(aryl) axis. P and M isomers were separated 

using HPLC on a chiral stationary phase. The optical purity of the isomers was confirmed by optical 

rotation and by analysis on a chiral stationary phase. 

 

 Racemization barrier in atropisomeric oxoamides 3.3.

One of the important features of an atropisomeric compound is its ability to racemize at higher 

temperatures. Such racemization will erode the absolute configuration of the isomer leading to poor 

selectivity in the atropselective transformations. Therefore it becomes important to ascertain the barrier 

for N-C(aryl) rotation. Due to slow racemization of these compounds at room temperature, we carried out 

racemization kinetics on optically pure atropisomeric oxoamides 172a and 172b at 50 °C in polar 

acetonitrile (MeCN) and non-polar benzene solvents. 

The decrease in the enantiomeric excess (ee) over time was monitored using HPLC on a chiral 

stationary phase. The first order kinetic plot of ln (% ee) vs. time gave the rate constant of racemization 
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equation.38  
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          (Equation 3.1) 

 

          (Equation 3.2) 

 

The half-life of racemization (τ1/2rac), was calculated using the rate constant of racemization krac 

(assuming 1-P0 = 0 at t = 0) 

 

          (Equation 3.3) 

 

 

          (Equation 3.4) 

 
Where, 

krac = 2kenant; R0 is the initial concentration of the (R)-enantiomer; 

χ = R0 - R, S (concentration of the racemate at time t); and 

krac is the rate constant for racemization 

Note: R0 = R + S 

At 50% ee, the equation becomes: 

 

          (Equation 3.5) 

 The course of racemization (% ee) was monitored by HPLC analysis on a chiral stationary phase 

at various time intervals. The activation energy barrier is provided in Table 3.1. 

Analysis of the kinetic parameters of atropisomeric oxoamides 172 provided insights into the 

energy barrier to rotation around the N-C(aryl) chiral axis (Table 3.1). For example, in the case of 172a in 

MeCN at 50 °C, the half-life for racemization (τ1/2) was 6.4 days, corresponding to a racemization rate 

constant (krac) of 1.26 × 10-6 s-1 and an activation energy barrier (ΔG‡
rac) of 27.7 kcal⋅mol-1. Upon changing 

to a non-polar benzene solvent, the half-life for racemization (τ1/2) was reduced to 3.8 days at 50 °C, 
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corresponding to a racemization rate constant (krac) of 2.11 × 10-6 s-1 and an activation energy barrier 

(ΔG‡
rac) of 27.4 kcal⋅mol-1. The racemization kinetic studies shows that non-bonding interactions and the 

solvent polarity played a critical role in the rates and the half-life of racemization. These studies also 

suggested that the newly synthesized atropisomeric oxoamides can resist racemization at ambient 

temperature (due to high-energy barrier for racemization at 50 °C) and can be employed for 

atropselective photoreactions without any racemization. 

Table 3.1: Rate constant, half-life and energy barrier for racemization on atropisomeric oxoamides 
172a-b. 
 

Entry Compound Solvent 
Parameters 

τ1/2 (days) krac (s-1) ΔG‡
rac 

(kcal⋅mol-1) 
1 172a MeCN 6.4 1.26 × 10-6 27.7 
2 172a Benzene 3.8 2.11 × 10-6 27.4 
3 172b MeCN 3.5 2.27 × 10-6 27.3 
4 172b Benzene 2.1 3.81 × 10-6 27.0 

The racemization kinetics was followed by HPLC analysis on a chiral stationary phase. Values 
carry an error of ±5%. 

 

 Intramolecular Paternò-Büchi reaction of atropisomeric α-oxoamides 172 3.4.

 

Scheme 3.9: Intramolecular Paternò-Büchi reaction of atropisomeric α-oxoamides 172. 
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HPLC separations of atropisomeric oxoamides followed by crystallization. The crystals were sandwiched 

between a glass substrate that was irradiated for a given time interval. After the reaction, the resulting 

product was analyzed by several analytical tools to estimate the stereoselectivity. 

Analysis using NMR spectroscopy, HPLC and X-ray diffraction revealed that the presence of two 

diastereomeric photoproducts viz., photoproduct 173 where the relative orientation of the oxygen atom in 

the oxetane ring was syn to the N-aryl ortho-tert-butyl substituent while in photoproduct 174, the relative 

orientation was anti. The NMR spectroscopic and the HPLC analysis of the crude reaction mixture 

revealed the dr values and the enantiomeric excess in the resulting photoproducts respectively. 

Analysis of Table 3.2 reveals that the Paternò-Büchi reaction of atropisomeric α-oxoamides 

proceeded smoothly to furnish oxetane photoproducts 173 and 174 in excellent yields (78-91%) and 

mass balance (>90%). The enantiomeric excess of the photoproduct of all the oxoamides were analyzed 

and found to be >97 %. This was a clear indication of the influence of stable chiral axis that facilitated 

efficient “Axial to Point Chiral Transfer” during Paternò-Büchi reaction resulting in enantioenriched 

photoproducts. Apart from providing sufficient sterics that resulted in higher energy barrier, the presence 

of bulky ortho-tert-butyl substituent on the N-phenyl ring influences the formation of s-trans, s-trans 

conformer in the solution leading to enhanced reactivity. As a control study, 172c was synthesized that 

lacked the bulky ortho-tert-butyl and it showed diminished reactivity (30% yield). The slow reactivity 

reflected conformational distribution where the s-trans, s-trans was not present as a major conformer in 

the solution. 
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Table 3.2: Intramolecular Paternò-Büchi of atropisomeric α-oxoamides 172a-ca 

Entry Compoundb Solvent dr (173:174)c % eed,e Yieldf 

1 (-)-172a MeCN 
71:29 

98 (R,R,M)-173a 
78 

2 (+)-172a MeCN 98 (S,S,P)-173a 

3 (-)-172a Benzene 
55:45 

97 (R,R,M)-173a 
90 

4 (+)-172a Benzene 97 (S,S,P)-173a 

5 (M)-172b MeCN 
82:18 

99 (R,R,M)-173b 
81 

6 (P)-172b MeCN 98 (S,S,P)-173b 

7 (M)-172b Benzene 
78:22 

99 (R,R,M)-173b 
78 

8 (P)-172b Benzene 98 (S,S,P)-173b 

9 (M)-172b Crystal 
15:85 

98 (A)-174b - 

10 (P)-172b Crystal 98 (B)-174b - 

11 172c MeCN - - 30 

aReported values are an average of 3 runs with ±3% error. 2.5 h irradiation for 172a–c, 12 h 
irradiation

 
for 172c. b(+) and (-) represent the sign of optical rotation, refer to experimental 

section. cThe diastereomeric ratio (dr) was determined using 1H-NMR spectroscopy. dFrom 
HPLC analysis. A and B refer to the elution order for a given pair of enantiomers. Absolute 
configuration from single crystal XRD using Flack parameter. eIdentical ee values for both 
172 and 173. fIsolated yield. 

 

The diastereomeric ratio (dr) in the photoproducts was influenced by polarity of the solvent. For 

example, dr value 173:174 from the reaction of 172a in polar MeCN was 71:29 and in non-polar benzene, 

the dr value was 55:45. The dr values for substrate 172b showed a modest increase in both MeCN and 

benzene. To enhance the diastereoselectivity in the photoproducts, we carried out photoreaction in the 

solid state, as we were successful in crystallizing the optically pure isomer of 172b. Irradiation of optically 

pure crystal of 172b gave dr values of 15:85. Though the dr values in solution as well as in the solid state 

were comparable, we observed reversal of diastereomers i.e., in solid-state reaction photoproduct 174b 

was formed as the major product. A closer look at the crystal structure of 172b showed that the distance 

between the keto carbonyl functionality and the alkene double bond is at an optimal distance viz., 

OC⋅⋅⋅⋅CH2=C is ~3.083 Å and CO⋅⋅⋅⋅C=CH2 is 2.986 Å (Figure 3.2) for undergoing photochemical 

transformation resulting in photoproduct 174b as the major product. 
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Figure 3.2: Crystal structure of optically pure oxoamide 172b. 
 

 Mechanistic rationale for Paternò-Büchi reaction of atropisomeric α-oxoamides 3.5.

On the basis of photochemical investigations, it is evident that apart from the structural features of 

the oxoamides, other characteristics such as conformers arising from atropisomerism, excited state 

reactivity of ketones with electron deficient alkenes plays a vital role in the observed reactivity and 

selectivity in Paternò-Büchi reaction of atropisomeric α-oxoamides. We believe that the half-filled π* 

orbital of the carbonyl group initiated the photoreaction by charge transfer to the LUMO of π* orbital of the 

electron deficient alkene resulting in the formation of oxetane photoproducts. 

Based on the stereochemistry of the photoproducts, in addition to the s-trans,s-trans geometry at 

CO-N bond, the conformation of CO-CC bond plays a vital role. Four conformers viz., conf-A, conf-B, 

conf-C, conf-D arising from s-trans,s-trans geometry of 172 dictates the product ratio and the selectivity. 

As observed in the case of oxetane 173 and 174, it is likely that conf-D and conf-A gives rise to the 

oxetane photoproducts. Photo excitation of conf-D and conf-A leads to a 1,4 diradical. Based on the 

overlap of π*C=O and π*C=C, it is likely that diradical DR1 (DR1-(D) and DR1-(A)) is formed that cyclize to 

form products 173 and 174 respectively. The other diradicals (DR2, DR3, DR4) are also feasible 

depending upon the orbital coefficient, steric, electronic feature present in the system as well as the 

substitution on the alkene bond. In solution state, since 173 was formed as the major isomer, it is 

believed that conf-D is preferred compared to conf-A. In solid state, it is ascertained from the crystal 

structure that conf-A was predominant resulting in oxetane 174 as the major product (Scheme 3.10). 
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Scheme 3.10: Mechanistic rationale for Intramolecular Paternò-Büchi reaction of atropisomeric  
α-oxoamides 172. 
 

 X-Ray crystal structure data for atropisomeric α-oxoamides and its photoproducts 3.6.

Structure determination: Single crystal X-ray diffraction data of the compounds 172, 173 and 174 

were collected on a Bruker Apex Duo diffractometer with a Apex 2 CCD area detector at T = 100K. Cu 

radiation was used. All structures were process with Apex 2 v2010.9-1 software package (SAINT v. 

7.68A, XSHELL v. 6.3.1). Direct method was used to solve the structures after multi-scan absorption 

corrections.  

 

Figure 3.3: Crystal structure of (-)-(M)-172b (Crystallized from: hexanes/2-propanol). 
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Figure 3.4: Crystal structure of (-)-(P)-172b (Crystallized from: hexanes/2-propanol). 
 

 

Figure 3.5: Crystal structure of (-)-(R,R,M)-173a (crystallized from: hexanes/chloroform). 
 

 

Figure 3.6: Crystal structure of (+)-(S,S,P)-173a (crystallized from: hexanes/2-propanol). 
 

 

Figure 3.7: Crystal structure of 174a (crystallized from: hexanes/chloroform). 
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Figure 3.8: Crystal structure of (+)-(R,R,M)-173b (crystallized from: hexanes/chloroform). 
 

 [2+2]-Photocycloaddition of maleimides - Introduction 3.7.

Maleimides are one of the interesting and resourceful substrates that have numerous applications 

not only in the ground state (thermal transformations) but also in the excited state (photochemical 

transformations). This chromophore is highly reactive and functionalizable due to the presence of electron 

deficient double bond and imide carbonyl groups. Photochemical transformations especially 

photocycloaddition involving maleimides are well explored in the literature. Few examples of 

photocycloaddition undergone by maleimides includes [2+2],39 [4+2]40 and [5+2]41,42 and are represented 

in the Scheme 3.11. Many prominent research groups have explored phototransformations employing 

maleimides and thiomaleimides extensively resulting in cyclobutane photoproducts.39,43-45 

 

Scheme 3.11: Diverse photochemical transformations of maleimides. 
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Upon direct irradiation of N-alkyl maleimides in acetonitrile solvent resulted in the [5+2] 

photocycloaddition through N-CO bond cleavage leading to azepinone derivative 182, whereas up on 

sensitized irradiation in acetonitrile, N-alkyl maleimides 181 underwent [2+2] photocycloaddition that led 

to cyclobutane photoproducts 183 (Scheme 3.12). These products are very useful in the synthesis of 

complex polycyclic molecules. 

 

Scheme 3.12: [2+2] and [5+2]-photochemical transformations of maleimides. 
 

In another investigation, Baker and coworkers reported efficient formation of cyclobutane 

photoproducts (Scheme 3.13) through intra and intermolecular [2+2] photocycloaddition of various 

thiomaleimides 184, 186, 188,189 (Figure 3.9).39 

 

Scheme 3.13: Intra- and intermolecular [2+2]-photocycloaddition of thiomaleimides. 
 

Comparison of UV-Vis spectrum of unsubstituted maleimides (λmax of 273 nm), mono 
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for increase in the efficiency of photocycloaddition. 
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Figure 3.9: [2+2]-photocycloaddition of thiomaleimides. 
 

Though these compounds undergo variety of photocycloaddition reactions yielding synthetically 

useful moieties, stereoselective phototransformations of maleimides remained unexplored. Milburn and 

coworkers43 were one of the first to report a diastereoselective intramolecular [2+2]-photocycloaddition of 

tetrahydrophthalimides 190. In these substrates the reacting alkene unit was tethered to chiral valinol and 

phenylgylcinol units that provides necessary diastereoselectivity in the photocycloaddition (Scheme 3.14). 

However, the diastereoselectivity between the endo and the exo photoproducts was only moderate at 

best. 

 

Scheme 3.14: [2+2]-Photocycloaddition of tetrahydrophthalimides. 
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Chart 3.2: Structures of atropisomeric maleimides, their photoproducts and the precursors for the 
synthesis. 
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 Photoreactivity of N-aryl atropisomeric maleimides towards cycloaddition reaction 3.8.

Based on the pioneering work by Milburn and co workers, it is known that N-alkenyl maleimide 

derivatives undergo both [2+2]- and [5+2]-photocycloaddition depending on the irradiation conditions.45 

We were interested in investigating atropisomeric maleimides towards photocycloaddition. One of the 

interesting observations made during this course of [2+2]-photocycloaddition was the chain length 

dependent control over the chemoselectivity. For example, when maleimides with a butenyl chain 192 

was irradiated only [2+2]-photocycloaddition products 193 and 194 was observed under both direct and 

sensitized. However, when the atropisomeric maleimides with an allyl chain group 205a was exposed to 

direct irradiation conditions only [5+2] product 206a and 207a were obtained. Sensitized irradiation of allyl 

chain substituted maleimides resulted only in the isomerization of the double bond resulting in styrene 

type products (Scheme 3.15). 

 

Scheme 3.15: Photoreactivity of N-aryl maleimides with varying chain length. 

 
We believe that the formation of [5+2] adduct is the consequence of molecular constraint on the 

maleimides and the kinetics of the reactions ([2+2] vs [5+2]). In [5+2] photocycloaddition, the length of the 

allyl chain was short preventing it form reaching the maleimide double bond to undergo [2+2] 

photocycloaddition. Therefore upon irradiation, the N-CO bonds cleave, resulting in the insertion of allyl 

double bond. On the other hand, the butenyl-substituted maleimides is long enough to reach the 

maleimide double bond to undergo [2+2] photocycloaddition (Sections 3.6-3.13), [5+2]-photocycloaddition 

of allyl maleimide derivative is discussed in detail in sections 3.14-3.21. 
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 Racemization barrier in atropisomeric maleimide 3.9.

N-Aryl maleimides prefers to be twisted at N-Caryl axis due to steric hindrance between the imide 

carbonyl and ortho hydrogens. However simple hydrogen will not provide enough sterics to be 

atropisomeric. In this aspect, the newly synthesized atropisomeric maleimides with methyl group at the  

6-position of the phenyl ring played a crucial role in providing stable atropisomers by increasing the 

energy barrier for N-Caryl bond rotation. Racemization of optically pure atropisomeric maleimides 192a 

was carried out in toluene at 100 °C. The progress of the racemization (% ee) was monitored by HPLC 

analysis on a chiral stationary phase at different time intervals. 

 

Figure 3.10: Racemization kinetics of 192a. 
 

Inspection of the kinetic parameters on atropisomeric maleimides 192a gave insights on the 

energy barrier to rotation around N-Caryl axis (Figure 3.10). The half-life for racemization (τ1/2) was 3.6 

days at 100 °C, corresponding to a racemization rate constant (krac) of 2.22 × 10-6 s-1 and an activation 

energy barrier (ΔG‡
rac) of 31.7 kcal⋅mol-1. Such a high racemization barrier allowed us to carry out 

atropselective photoreaction without the loss of optical purity. 

 

  Intramolecular [2+2]-photocycloaddition of atropisomeric maleimides 3.10.

The photoreactions of newly synthesized atropisomeric maleimides 192 were subjected to 

different irradiation conditions and solvent that resulted in [2+2] photoadducts with complete 

chemoselectivity over competing [5+2] photocycloaddition. Three different sets of irradiation conditions 

were examined (a) direct irradiation; (b) sensitized irradiation under UV light (e.g., using xanthone as a 

sensitizer in a Rayonet reactor at ~350 nm); and (c) metal-free sensitized irradiation under visible-light 

(e.g., using thioxanthone as a sensitizer in a Rayonet reactor at ~420 nm). After the photoreaction, the  

O
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192a, Toluene, 100 °C
krac (s-1)                     = 2.22 x 10-6
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solvent was evaporated under reduced pressure and the photoproduct(s) were purified by column 

chromatography. 

 

Scheme 3.16: [2+2] photocycloaddition of atropisomeric maleimides 192. 
 

Crude 1H-NMR spectroscopic analysis revealed the presence of diastereomeric photoproducts 

viz., exo-photoproduct 193 and endo-photoadduct 194. In the major exo-photoproduct, the carbon 

bearing the terminal alkene tether is away from the carbon bearing the R1 substituent. On the other hand, 

in the minor endo-photoproduct, the carbon of the terminal alkene is towards the carbon bearing the R1 

substituent. Several control studies were performed to optimize conditions to provide insights about the 

solvent choice, sensitizer and type of irradiation. 

 

  Control experiments for atropselective [2+2]-photocycloaddition of maleimides 3.11.

The optimized conditions for the photoreactions were obtained after series of screening reactions 

carried out on atropisomeric maleimides. These experiments played a vital role in optimizing the solvent, 

choice of irradiation, sensitizer temperature and time. The following table summarizes the results of those 

experiments (Table 3.3) 
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Table 3.3: Control experiments for atropselective [2+2]-photocycloaddition of maleimides 192. 

Entry Compd Solvent Conditions 
dr 

(193:194) 
Convn (%) MB (%) 

1 192a Acetone bb, rt, 75 min 79:21 53a - 

2 192a MeCN Xanthone, 350 nm, rt, 1 h 79:21 60a - 

3 192e MeCN Xanthone, 350 nm, rt, 8 h >99:1 > 99 93 

4 192e MeCN Thioxanthone, 420 nm, rt, 1 h >99:1 82 a - 

5 192f Acetone bb, rt, 30 min Decomposed 

6 192f MeCN Thioxanthone, 420 nm, rt, 1 h >99:1 74 a - 

7 192g Acetone bb, rt, 60 min Decomposed 

Note: MeCN- acetonitrile; bb- broad band (450W mercury lamp); rt- room temperature; The 
reactions were run with ∼3.9 mM concentration either under constant bubbling of N2 or N2 
degassed solution. Convn- conversion, MB- mass balance. ∼300, ∼350 and ∼420 nm irradiations 
were carried out in a Rayonet reactor. a Isolated yield. 
 

Investigation of Table 3.3 shows that the photocycloaddition reaction progressed more efficiently 

under sensitization. For example, triplet sensitized reactions i.e. in the presence xanthone and 

thioxanthone; reaction was complete within 1 h (entry 2, 4 and 6) without any decomposition. The alkyne-

substituted maleimide 192g did not result in the desired [2+2] photoadduct even under sensitized 

irradiation (acetone, xanthone and thioxanthone) rather led to dimerization and decomposition. Various 

other control studies were performed that includes (a) solvent screening (b) thioxanthone sensitizer 

loading and (c) analysis of dr in photoproducts in different solvents. These experiments were performed 

with 192h as a model compound.46,47 The conversion was moderate to high in several solvents (MeOH, 

MeCN, ethyl acetate, chloroform, CH2Cl2 etc.,).46 The photoproduct was not stable in THF and the 

conversion was low in benzene and methyl cyclohexane. The efficiency of employing thioxanthone 

sensitizer in promoting the visible light mediated [2+2]-photocycloaddition was evident from the Table 3.3  

(entries 4 and 6). Therefore sensitizer-loading studies were performed with 192h. A 60% conversion was 

achieved using 5 mol% of thioxanthone, but in order to ensure that the catalyst always absorbs the light 

thereby preventing the decomposition of the starting materials (optical shield), 30 mol% loading was 

used. The dr ratio in the photoproducts was not affected significantly by changing the solvent from polar 



 112 

MeOH to non-polar toluene or MCH. Based on these control experiments, the stereospecific 

photoreactions were carried out under optimized conditions i.e., with 30 mol % of xanthone (Rayonet 

reactor at ~350 nm) or thioxanthone (Rayonet reactor at ~420 nm) as sensitizers in MeCN as solvent.46,47 

 

  Atropselective [2+2]-photocycloaddition of maleimides 192 3.12.

The photoreaction was performed in optimized reaction conditions i.e., MeCN as solvent and 

sensitizer-xanthone or thioxanthone to access the enantio- and diastereoenriched photoproducts. The 

photoreaction was monitored by TLC. After complete consumption of the starting material, the solvent 

was evaporated under reduced pressure and the photoproducts were isolated by column 

chromatography. The diastereomeric ratio of the photoproducts was analyzed by crude NMR 

spectroscopy and the HPLC analysis revealed the enantiomeric excess in the photoproduct(s) (Scheme 

3.17). 

 

Scheme 3.17: Atropselective [2+2] photocycloaddition of atropisomeric maleimides 192. 
 

Investigation of Table 3.4 clearly revealed, the enantioselectivity of photoproducts in all the 

atropisomeric maleimides investigated were >98%. This is a reflection of higher energy barrier for the 

newly synthesized atropisomeric maleimides. The diastereomeric ratio (exo:endo) in the photoproducts 

was dictated by the substituents at the alkenyl tether (R2-R4) and the maleimide double bond (R1). So in 

order to evaluate the influence of the substituents on the alkenyl and the maleimide ring, we 

systematically varied the substituents. When R1 was Me as in the case of 192a, the dr value was 79:21, 

however when R1 was changed to Br as in 192d, the dr decreased to 69:31. Complete control over the dr 

was obtained when R1 was substituents with bulky phenyl and imidazole 192e and 192f. 
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Table 3.4: Intramolecular [2+2]-photocycloaddition of atropisomeric maleimides 192a,b 

 
aIrradiation of 192a was performed with 30 mol % xanthone as the triplet sensitizer in acetonitrile solvent 
at room temperature using a Rayonet reactor equipped with 300 nm lamps. Irradiations of 192e, and 192f 
were performed with 30 mol% thioxanthone as the triplet sensitizer in acetonitrile solvent at room 
temperature using a Rayonet reactor equipped with 420 nm lamps. For all other substrates, the 
photoreactions were performed in acetone at room temperature using a 450 W medium-pressure Hg 
lamp with a Pyrex cutoff filter. bThe ee values were obtained from HPLC analysis on a chiral stationary 
phase, and the results are averages of three runs with an error of ±3%. The absolute configuration was 
determined by XRD with Flack parameters. cThe ratios were determined by 1H NMR spectroscopy of the 
crude samples. dYield based on 1H NMR spectroscopy using triphenylmethane as an internal standard. 

 
To understand the effect of R1 substitution, we continued the investigation by changing the 

substitution on the alkene tether. The gem dimethyl substitution at the alkene tether as in the case of 

192a did not alter the dr values compared to 192 h (79:21).46 On the other hand, monomethyl substitution 

as in the case of 192b resulted in a dr 84:16. Internal substitution on the alkene carbon 192c lowered the 

dr values. We changed the alkene reacting partner to alkyne 192g envisaging cyclobutene photoproduct, 

but the reaction did not give the desired photoproduct rather it formed dimeric products with significant 

decomposition. The presence of oxygen on the alkenyl tether in the photoproduct 193a provided avenues 
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to cleave the tether after the photoreaction. The ether cleavage of the photoproducts proceeded smoothly 

and furnished N-aryl phenols 230 and 231. However, the imide cleavage did not yield the desired product. 

These results showed that maleimides undergo [2+2]-photocycloaddition with degree of 

stereocontrol. The dr ratio is influenced by R1 substituent on maleimide double bond and R2-R4 

substituent in the alkene tether. 

 

 Mechanistic rationale for stereospecific [2+2]-photocycloaddition 3.13.

Detailed photophysical investigation revealed some of the salient features of the results (a) the 

maleimides as such, had very poor intersystem crossing quantum yield and very low triplet population 

upon direct irradiation and (b) the triplet excited state of thioxanthone (sensitizer) is quenched by 

maleimides to generate triplet maleimides suggesting that excited state thioxanthone acted as a donor 

while the maleimide functioned as an acceptor. Based on the photophysical and photochemical 

experiment we believe that the intramolecular [2+2]-photocycloaddition of maleimides proceeded via 

triplet pathway (Scheme 3.18). We believe the electron rich alkene likely interacted with the half filled π 

orbital of the ππ* excited state of the maleimide. 

Since this [2+2]-photocycloaddition required a triplet sensitizer, the product formation takes place 

in two steps. The first step is the formation of 1,4 diradical (DR1-DR4) and the second step is the 

cyclization step, in which triplet 1,4 diradical intersystem crosses to form singlet 1,4 diradical and 

combines to form photoproducts 193 and 194. The formation of exo and endo product can be explained 

based on their conformational equilibrium and the type of radical formed. On the basis of conformational 

equilibrium, the exo product was likely formed from conf-A in which the CH2 group of the alkenyl tether is 

pointed away from the R1 substituent of the maleimide double bond. In the initial step it could likely lead to 

the formation of DR1 or DR2. Similarly the endo photoproduct was likely formed from conformer conf-B in 

which the CH2 group of the alkenyl tether is pointed towards the R1 substitution of the maleimide double 

bond. In this case diradical DR3 or DR4 will likely formed. These 1,4 diradicals intersystem crosses to 

form singlet 1,4 diradical and cyclize to the photoadducts. 
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Scheme 3.18: Mechanistic rationale of atropisomeric maleimides 192. 
 

To obtain deeper knowledge on the type of radical formed; scrambling studies of 192b were 

performed with the maleimides that has a methyl substituent at the terminal carbon at the alkenyl tether 

(cis alkene) (Scheme 3.19). The analysis of the photoproducts of maleimides 193b showed only endo 

and exo photoproduct and trace of scrambled photoproducts. 
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Scheme 3.19: Scrambling studies of maleimides 192b. 
 

The absence of scrambled photoproducts with respect to the alkene substituent (Scheme 3.19) 

reflected two scenarios. In the first scenario, the 1,4 diradical DR1 was likely more favored over DR2 

leading to major exo product. Similarly, 1,4 diradical DR3 was likely more favored over DR4 for the minor 

endo product. In the second case, the 1,4 diradical DR2 formed in the initial step, cyclizes at much faster 

rate compared to bond rotation to retain the stereospecificity of the exo photoproduct. However, the 

second scenario is unlikely because the photoreaction takes place via a triplet pathway. So, the 1,4 

diradical formed has to intersystem cross to singlet state, which provides sufficient time for scrambling to 

occur. Hence the lack-scrambling product likely indicates the first scenario as plausible mechanism. 

 

 X-Ray crystal structure data for atropisomeric maleimides and its photoproducts 3.14.

Structure determination: Single crystal X-ray diffraction data of the compound 193b was collected 

on a Bruker Apex Duo diffractometer with a Apex 2 CCD area detector at T = 100K. Cu radiation was 

used. All structures were processed with Apex 2 v2010.9-1 software package (SAINT v. 7.68A, XSHELL 

v. 6.3.1). Direct method was used to solve the structures after multi-scan absorption corrections. Details 

of data collection and refinement are given in the table below. 
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Table 3.5 Crystal structure data for cyclobutane photoproduct 193b. 

 (1R,5S,6R,7S)-193b (1S,5R,6S,7R)-193b 
Formula C16H17NO3 C16H17NO3 
FW 271.30 271.30 
cryst. size_max [mm] 0.25 0.19 
cryst. size_mid [mm] 0.22 0.15 
cryst. size_min [mm] 0.14 0.07 
cryst. system  Orthorhombic Orthorhombic 
Space Group, Z P212121, 4 P212121, 4 
a [Å] 10.4155(4) 10.4007(7) 
b [Å] 10.8207(4) 10.8621(7) 
c [Å] 11.9003(4) 11.9388(8) 
α [Å] 90 90 
ß [Å] 90 90 
γ [Å] 90 90 
V [Å3] 1341.20(8) 1348.77(15) 
ρcalc [g/cm3] 1.344 1.336 
µ [mm-1] 0.756 0.752 
Radiation Type Cu Cu 
F(000) 576 576 
no of measured refl. 6957 6310 
no of indep. refl. 2368 2369 
no of refl. (I ≥ 2σ) 2309 2204 
Resolution [Å] 0.84 0.84 
R1/wR2 (I ≥ 2σ)a [%]  4.86/13.23 6.80/19.80 
R1/wR2 (all data) [%] 4.96/13.31 7.16/20.27 

 

 

(A is the first isomer that elutes from chiral stationary phase in HPLC analysis) 

Figure 3.11: Photoproduct (A)-(1R,5S,6R,7S)- 193b (crystallized from: hexanes:CHCl3) 
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(B is the Second isomer that elutes from chiral stationary phase in HPLC analysis)  

Figure 3.12: Photoproduct (B)-(1S,5R,6S,7R)-193b (crystallized from: hexanes:CHCl3) 

 

 [5+2]-Photocycloaddition of maleimides-introduction 3.15.

In the previous section on [2+2]-photocycloaddition of atropisomeric of maleimides, we have 

reported that the maleimide chromophore underwent facile photocycloaddition with very high 

enantioselectivity, diastereoselectivity and good isolated yield. As a further extension in the study of 

maleimide chromophore, we looked at the [5+2]-photocycloaddition of maleimide. One of the interesting 

observations made during the [2+2]-photocycloaddition study is the chemoselectivity of the 

photocycloaddition i.e. [2+2] vs. [5+2], which was determined by the chain length of the alkenyl tether 

(Scheme 3.20). When the maleimide has a 4-carbon alkene (butenyl) tether it underwent [2+2]-

photocycloaddition exclusively whereas reaction with a 3-carbon alkene (allyl) tether, it exclusively led to 

[5+2]-photoproduct(s) (photocycloaddition through N-CO bond cleavage leading to azepinone derivative). 

 

Scheme 3.20: [2+2] and [5+2]-Photochemical transformations of maleimides. 
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In 1977, Mazzocchi and coworkers48 reported [5+2] photoproducts 210 when they were exploring 

the photocycloaddition of dienes towards N-alkylphthalimides 208 (Scheme 3.21). Though they did not 

name it as [5+2] photoproduct, they deciphered the structure to be anti and syn azepinone derivatives. 

 

Scheme 3.21: Photocycloaddition of dienes to N-alkylphthalimides. 
 

Following this observation, Mazzocchi et al., reported series of papers on the mechanism of the 

formation of azepinone photoproducts.49-51 Similar observation, were made by Milburn and workers in 

199852 when they were investigating the photocycloaddition of pentenyl substituted imide derivatives 212 

(Scheme 3.22). The photoreaction resulted in a tricyclic azepinone product 213 rather than the 

anticipated cyclobutane photoproduct 212. They have elaborated their observation from simple alkene to 

complex alkene tether leading to [5+2] photoproduct in quantitative yield as a single diastereoisomer 

(Scheme 3.23). 

 

Scheme 3.22: [5+2]-Photocycloaddition of maleimides with simple alkene tethers. 

 

Scheme 3.23: [5+2]-Photocycloaddition of maleimides with complex alkene tethers. 
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With the intention of increasing the scope of these reactions to access novel organic building 

blocks, Milburn and co-workers have incorporated diverse functionality into the alkenyl tether. Maleimides 

with chiral substitution on the alkenyl tether 217 resulted in inseparable cis/trans isomers 218.42 The ratio 

of the cis/trans isomers was affected by the position of this substitution as shown in Scheme 3.24. 

Increase in the formation of cis isomer was observed on substituting methyl group at position 3 whereas 

substitution at position 4 or 5 resulted in a single isomer (Scheme 3.24). 

 

Scheme 3.24: Photocycloaddition of maleimide derivative 217. 
 

Milburn and co workers have also explored other possible mechanism for observed [5+2]-

photocycloaddition of maleimides apart from the pathways proposed by Mazzocchi, Fischer and De 

Schreyver et al. Based on their detailed photophysical and theoretical studies, they proposed that the 

[5+2] products can be formed via stepwise processes where singlet excited state is formed by n-π* 

excitation followed by α-cleavage of N-CO bond.53 

Due to the advantage of [5+2]-photocycloaddition in accessing structurally complex building 

blocks in a single step, the same group has demonstrated that this powerful strategy could be used for 

accessing several natural products. For example, they have demonstrated the synthesis of (-)-

Cephalotaxine, one of the alkaloids isolated from plum yews that are potential drugs for the treatment of 

leukemia (Scheme 3.25).54 

 

Scheme 3.25: Photocycloaddition of maleimide derivative 219 towards natural product 220. 
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Based on literature precedence, it is clear that the azepinone derivatives are biologically useful 

scaffolds and has its importance in natural product synthesis. Unfortunately, there are no reports on an 

asymmetric approach for the [5+2]-photocycloaddition reaction that would yield enantioenriched 

azepinone products. Therefore, we were interested in utilizing our strategy of “axial to point chiral 

transfer” to access enantioenriched azepinone derivatives. We designed atropisomeric maleimides with 

3-carbon alkenyl chain (allyl) to undergo intramolecular stereospecific [5+2]-photocycloaddition. The 

atropisomeric maleimides and their intermediates listed in the following Chart 3.3 were synthesized 

according to procedures reported in literature. 

 

Chart 3.3: Structures of atropisomeric ally maleimides, their photoproducts and the precursors for the 
synthesis. 
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  Racemization barrier in atropisomeric allyl maleimides 3.16.

As discussed in section 3.8, atropisomeric compounds are bound to racemize at elevated 

temperature, which will lead low selectivity during the phototransformations. Though the atropisomeric 

maleimides with a butenyl chain gave insights on the energy barrier, it is important to evaluate the rotation 

barrier for the newly synthesized maleimides derivatives with an allyl substituent. 

Inspection of the Table 3.6 indicates that the atropisomeric maleimides with a 3-carbon (allyl) 

chain are stable at the elevated temperature (100 °C). For instance, 205c displayed a half life of 

racemization of 23 days, with racemization constant of ~3.5 × 10-7 s-1 and activation energy barrier of 33.0 

kcal⋅mol-1. No significant change in the racemization barrier was observed on varying the substituent on 

the maleimides ring. These studies suggested that these atropisomeric maleimides could be subjected to 

phototransformations without racemization. 

Table 3.6: Racemization kinetics of atropisomeric maleimides 205. 

Entry Compound 
Parameters 

τ1/2 (days) krac (s
-1) ΔG‡

rac 

(kcal⋅mol-1) 
1 205c 23 3.5 × 10-7 33.0 
2 205d 32 2.5 × 10-7 33.3 
3 205e 26 3.1 × 10-7 33.1 
4 205f 17 4.6 × 10-7 32.8 

 

 Intramolecular [5+2]-photocycloaddition of atropisomeric maleimides 3.17.

 

Scheme 3.26: Photocycloaddition or atropisomeric maleimides 205. 
 

The photoreactions of newly synthesized atropisomeric maleimides 205 in the optimized solvent 
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photoreaction, the solvent was evaporated under reduced pressure and the photoproduct(s) were purified 

by either preparative TLC or column chromatography. Crude 1H-NMR spectroscopic analysis revealed the 

presence of two diastereomeric photoproducts major 206 and minor 207 due to the regiochemistry of 

addition across the N-CO bond. 1H-NMR analysis of the crude product revealed the dr values and the 

HPLC analysis disclosed the enantiomeric excess in the photoproducts respectively. 

 

 Solvent screening for [5+2]-photocycloaddition of atropisomeric maleimides 3.18.

Solvent plays a key role in the outcome of the photoreactions. Therefore, various solvents were 

screened for the photoreaction of atropisomeric maleimide 205a. For the experiment, maleimide 205a in a 

given solvent (∼3.9 mM concentration) was degassed with N2 for 15 min and then sealed for 

photoreaction. This solution was irradiated in a Rayonet reactor (∼300 nm) for 3 h. After 3 h, internal 

standard (triphenylmethane) was added and this solution was concentrated under reduced pressure to 

obtain the crude reaction mixture. 1H-NMR spectroscopy was recorded on the crude reaction mixture and 

from the integral values the conversion and mass balance were calculated based on the equation 2.1. 

Analysis of the Table 3.7 shows that the conversion and mass balance of the photoreaction is 

similar in all the solvents except ethyl acetate and chloroform where decomposition was observed. Based 

on these results we chose acetonitrile as solvent for further photoreactions. 

Table 3.7: Optimization of solvent with maleimide 205a. 

Entry Solvent NMR Yield (%) (% mass balance) 

1 Acetonitrile 26 (60) 

2 Ethyl acetate Decomposed 

3 Dichloromethane 20 (59) 

4 Chloroform Decomposed 

5 Benzene 33 (50) 

6 MCH 35 (59) 

Note: The reported value carry an error of ±5%. 
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 Photoreaction of atropisomeric allyl maleimide in various atmospheric conditions 3.19.

In a typical experiment, maleimide 205a in MeCN (∼3.9 mM concentration) was bubbled with 

Nitrogen or Oxygen for 8-10 min. For irradiation under air, the reaction mixture was irradiated without 

bubbling. The resultant solution was irradiated in a Rayonet reactor (∼300 nm or ∼350 nm) for 3 h. After 

the reaction, a stock solution of internal standard (triphenylmethane) was added and this solution was 

concentrated under reduced pressure to obtain the crude reaction mixture. 1H-NMR spectrum was 

recorded on the crude reaction mixture and from the integral values the conversion and mass balance 

were calculated using equation 2.1 (Table 3.8) 

Table 3.8: Photoreaction of 205a at various atmospheric conditions. 

Entry Condition NMR Yield (%) 

1 Nitrogen 23  

2 Oxygen 22  

3 Air 26  

Note: The reported value carry an error of ±5%.  
Values are average of two trials. 

 

 Atropselective [5+2]-photocycloaddition of atropisomeric maleimides 205 3.20.

 

Scheme 3.27: [5+2]-Photocycloaddition of atropisomeric maleimides 205. 

The photoreaction was carried out with optically pure atropisomeric maleimides in optimized 

solvent –MeCN with the irradiation conditions mentioned in section 3.19. After irradiation, the solvent was 
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chromatography and characterized by NMR spectroscopy, mass spectrometry, single crystal XRD, [α]D 

and by HPLC. HPLC analysis of the photoproducts on a chiral stationary phase gave the optical purity of 

the photoproducts. 

The results of [5+2]-photoreaction of the atropisomeric maleimides showed few noteworthy 

features. a) The presence of the maleimide double bond is necessary for the [5+2]-photocycloaddition to 

take place, as the succinimide derivative 205i did not undergo photocycloaddition under the irradiation 

conditions (Table 3.9 entry 9). b) Direct irradiation resulted in the desired photoproducts, rather than the 

sensitized irradiation, which led to isomerization of the alkene tether giving rise to styrene type derivative 

and c) the conversion of products was very low ~14 - 26 % except for 205d. This is due to high extinction 

coefficient of the photoproducts 206 and 207 compared to the reactant 205. Hence the photoproduct acts 

as an internal filter thereby preventing complete conversion. Reviewing Table 3.9 discloses that the 

maleimides which were subjected to enantiospecific reaction resulted in > 98 % ee. This indicated that the 

chirality in the starting material was efficiently transferred to photoproducts due to the high N-Caryl 

rotational barrier. However, dr values of the photoproducts are influenced by the substituent on the 

maleimides. Therefore, substitution on the maleimides ring was systematically varied to understand its 

effect on the dr between 206 and 207. When R1 is a methyl as in 205b the dr value was 60:40. Slight 

increase in the dr values was observe when R1 was replaced with Br as in 205c (dr = 65:35) and when R1 

= Ph as 205d, the dr was 70:30. Substitution on the alkene tether as in 205e did not affect the dr (74:26) 

but it showed significant influence on reactivity. Compound 205e displayed slow reactivity compared to 

205d (without the internal substitution), which is evident from the conversion (205e = 14% and 205d = 

50%) due to the steric in the reacting alkene during transition state. Disubstitution on the maleimides also 

did not affect the dr as in the case of 205h, dr = 69:31. On understanding that the substitution so far 

showed only weak electronic perturbation on the reactivity, we went on to investigate on strong electron 

donating and withdrawing substitution. When R1 = OMe, we observed complete control over dr 99:1 in 

addition to the >98 % enantioselectivity. Minor methoxy was synthesized separately to confirm the 

absence of minor photoproduct by comparing it with the crude reaction mixture. While the strong 

activating group on the maleimide ring resulted in complete control over the dr and ee, the deactivating 
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group CF3 as in 205g resulted in the slight reversal of the dr  (favoring the minor photoproduct) with >98 

% ee. 

Table 3.9: Intramolecular [5+2]-photocycloaddition of atropisomeric maleimides.a 

 

a) Irradiation of substrates in MeCN was performed using Rayonet reactor equipped with ∼300 nm bulbs 
except for 205d and 205e for which ∼350 nm bulbs was employed. For all the substrates photoreactions 
were performed in MeCN as solvent. b) Yield based on 1H-NMR spectroscopy using triphenylmethane as 
an internal standard. c) The dr ratio were determined by 1H-NMR spectroscopy of crude reaction mixture. 
d) The ee values were obtained form HPLC analysis on a chiral stationary phase, and the results are 
average of three runs with an error of ±3. (+) and (−) represent the sign of optical rotation (MeOH at 25 
°C). A and B refer to the order of HPLC elution for a given pair of enantiomers. 
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  Mechanistic rationale of [5+2]-photocycloaddition of atropisomeric maleimides 205 3.21.

Based on the UV-Vis experiments (Section 3.32) it is evident that the lowest excited state of 

atropisomeric maleimides 205 is nπ* configuration with slight mixing of ππ* in the case of 205d and 205e. 

The mixing of ππ* was substantiated by higher extinction coefficient (at ε340 205d = 2044 M-1⋅cm-1 and 

205e = 2644 M-1⋅cm-1) and slight bathochromic shift upon changing the solvent from methylcyclohexane 

(non-polar) to methanol (polar). Furthermore these types of maleimide derivatives have low intersystem 

crossing and very low triplet quantum yield.47 Based on our experiments and literature precedence,44,55 

we believe that the [5+2]-photocycloaddition occurs from nπ* excited state and the  involves singlet-

excited species. This was corroborated by the outcome of the a) photoreaction under triplet sensitized 

irradiation (acetone as solvent and sensitizer) which resulted in isomerization and not the desired [5+2]-

photoproduct b) the product yield remained unaffected under nitrogen or oxygen or aerated conditions. 

[5+2]-photocycloaddition of alkenyl substituted maleimides and N-alkenyl phthalimides were studied in 

literature and different mechanism has been put forth. For example, Mazzocchi and coworkers49-51 based 

on their extensive studies on N-alkenyl phthalimides proposed that the photocycloaddition of alkene to 

zwitterionic resonance form of maleimide, which then undergoes fragmentation of N-C(CO) bond to form 

[5+2] product. Alternatively Milburn and coworkers53 suggested α-cleavage of N-C(CO) bond originating 

from nπ* of the excited N-alkenyl maleimides. Gaining insights from literature and based on our 

experimental observations, we propose that atropisomeric maleimides likely undergoes reaction from nπ* 

excited state of 205. (Scheme 3.28) 
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Scheme 3.28: Mechanistic rationale of [5+2] maleimides 205. 
 

Based on the photochemical paradigm, the nπ* singlet excited state leads to cleavage of N-C(CO) 

bond resulting in a diradical (DR) which combines to form the [5+2]-photoproducts. Since the maleimides 

205 is unsymmetrically substituted, the cleavage of N-C(CO) can take place on either side (shown in red 

and blue) resulting in regioisomeric photoproducts 206 and 207. It is evident from the results that the dr 

between 206 and 207 is influenced by the R1 substituent on the maleimide ring. If the R is electron 

donating group as in the case of 205f (R1=OMe), N-C(CO) which is nearest to the R1 substituent will be 

weaker due to mesomeric effect leading to diradical DR1 over DR2 which adds to the alkene to form 206 

as the major photoproduct. If R1 is electron withdrawing group such as CF3, the cleavage of the N-C(CO) 

which is farthest from the R1 substituent (blue bond) is preferred resulting in DR2 compared to DR1 

resulting in the formation of 207 as a major photoproduct. 
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  X-Ray crystal structure data for atropisomeric maleimides and its photoproducts 3.22.

Structure determination: Single crystal X-ray diffraction data of the compounds 206 and 207 were 

collected on a Bruker Apex Duo diffractometer with a Apex 2 CCD area detector at T = 100K. Cu radiation 

was used. All structures were processed with Apex 2 v2010.9-1 software package (SAINT v. 7.68A, 

XSHELL v. 6.3.1). Direct method was used to solve the structures after multi-scan absorption corrections. 

Details of data collection and refinement are given in the table below 
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Table 3.10: Crystal structure data for atropisomeric maleimides 205 and its photoproducts 206 and 207. 

 (10R)-206b 
(PkA) 

(10S)-206b 
(PkB) 

206c 207 206f 206g 207g 

Formula C15H15NO2 C15H15NO2 C14H12BrNO2 C14H12BrNO2 C15H15NO3 C15H12F3NO2 C15H12F3NO2 
FW 241.29 241.29 306.16 306.16 257.29 295.26 295.26 
cryst. size_max 
[mm] 

0.24 0.22 0.24 0.301 0.227 0.16 0.2 
cryst. size_mid 
[mm] 

0.17 0.20 0.166 0.23 0.221 0.11 0.182 
cryst. size_min 
[mm] 

0.14 0.12 0.06 0.21 0.045 0.05 0.075 
cryst. system  Orthorhombic Orthorhombic Monoclinic Orthorhombic Monoclinic Monoclinic Triclinic 
Space Group, Z ‘P212121’, 4 ‘P212121’, 4 ‘P121/n1’, 4 ‘P212121’, 4 ‘P121/n1’, 8 'P 1 21/c 1’, 4 ‘P1211’, 2 
a [Å] 7.9647(2) 7.9650(2) 18.1984(5) 8.5431(8) 16.9222(7) 9.6309(3) 8.7121(3) 
b [Å] 9.5076(3) 9.5073(4) 7.3629(2) 9.8089(8) 7.6509(3) 7.8723(2) 11.7093 (3) 
c [Å] 16.0492(5) 16.0506(4) 19.2858(5) 14.6636(12) 20.5384(8) 17.2740(3) 14.2353(4) 
α [Å] 90 90 90 90 90 90 76.9998(11) 
ß [Å] 90 90 108.4870(10) 90 109.285(2) 96.9200(12) 72.3793(11) 
γ [Å] 90 90 90 90 90 90 69.8941(6) 
V [Å3] 1215.33(6) 1215.44(5) 2450.81(11) 1228.79(18) 2509.90(18) 1300.13(6) 1287.79(7) 
ρcalc [g/mm3] 1.319 1.319 1.665 1.665 1.362 1.508 1.523 
µ [mm-1] 0.704 0.704 4.534 3.338 0.779 1.117 1.128 
Radiation Type Cu Cu Cu Cu Cu Cu Cu 
F(000) 512 512 1236 616 1088 608 608 
no of measured refl. 7249 9006 34112 9446 15458 15086 16410 
no of indep. refl. 2119 2206 4323 2719 4309 2304 4407 
no of refl. (I ≥ 2σ) 2077 2165 3735 2542 3820 2001 4025 
Resolution [Å] 0.84 0.84 0.84 0.84 0.84 0.84 0.84 
R1/wR2 (I ≥ 2σ)a [%] 2.77/6.79 2.66/6.56 3.21/7.78 0.00/4.25 0.000/28.73 4.50/11.28 3.51/8.72 
R1/wR2 (all data)[%] 2.83/6.84 2.72/6.61 3.84/8.22 0.001/4.36 0.000/29.02 5.08/11.69 3.83/8.93 
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Figure 3.13: Photoproduct (10R)-206b (crystallized from hexanes:CHCl3). 

 

 

Figure 3.14: Photoproduct (10S)-206b (crystallized from hexanes:CHCl3). 
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Figure 3.15: Photoproduct 206c (crystallized from hexanes:CHCl3). 

 

 

Figure 3.16: Photoproduct 207c (crystallized rom hexanes:CHCl3). 
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Figure 3.17: Photoproduct 206f (crystallized from hexanes:CHCl3).  

 

Figure 3.18: Photoproduct 206g (crystallized from hexanes:CHCl3). 
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Figure 3.19: Photoproduct 207g (crystallized from hexanes:CHCl3). 
 

 Summary and Outlook 3.23.

The atropisomeric chromophores designed for Paternò-Büchi reaction proceeded smoothly to 

yield diastereomeric photoproducts. The reactivity and the selectivity was dependent on the degree of 

overlap of orbital between excited ketone and the electron deficient alkene and the solvent employed for 

the photoreaction. The conformational aspect of the atropisomeric oxoamides dictates the 

stereoselectivity. Further, the diastereoselectivity was easily reversed by simply switching the reaction 

medium from solution to solid-state conditions. 

The [2+2]-photocycloaddition of maleimides resulted in several interesting features. The control 

over the chemoselectivity of atropisomeric maleimides ([2+2] vs. [5+2]) was dictated by the chain length 

of the alkene tether and not on the irradiation conditions as in the case of N-alkenyl maleimides. The 

substituent on the maleimide and the alkene tether played a crucial role in the regioselectivity of the 

photoproducts. The photocycloaddition proceeds smoothly under UV/Visible light/ household lamp 

resulting in diastereomeric products (exo and endo). The irradiation conditions provided an opportunity to 

merge the visible light with flow set up, which showed promise in the scalability of the photoreactions. 

Detailed photophysical experiments gave insights on the excited states, which helped in deciphering the 

mechanism. 

We have also successfully demonstrated the atropisomeric maleimides can be employed for 

atropselective [5+2] photocycloaddition leading to azepinone type products with high enantioselectivity. 
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We have also discussed the role of electrons imparted by the substituent R1 on the maleimide ring in 

determining the dr values in the photoproducts. Substitution of electron donating group on the maleimide 

ring lead to complete stereocontrol in the photoproduct. This method opens up avenues for synthesizing 

enantioenriched azepinone type products. 

 

 Experimental section for atropselective photoreactions 3.24.

 General methods 3.24.1.

 All commercially obtained reagents/solvents were used as received; chemicals were purchased 

from Alfa Aesar®, Sigma-Aldrich®, Acros organics®, TCI America®, Mallinckrodt®, and Oakwood® 

Products, and were used as received without further purification. Unless otherwise stated, reactions were 

conducted in oven-dried glassware under nitrogen atmosphere. Unless otherwise state demineralized 

water (DI water) was used for work up procedures. 1H-NMR and 13C-NMR spectra were recorded on 

Varian 400 MHz (100 MHz for 13C) and on 500 MHz (125 MHz for 13C) spectrometers. Data from the 1H-

NMR spectroscopy are reported as chemical shift (δ ppm) with the corresponding integration values. 

Coupling constants (J) are reported in hertz (Hz). Standard abbreviations indicating multiplicity are used 

as follows: s (singlet), b (broad), d (doublet), t (triplet), q (quartet), m (multiplet) and virt (virtual). Data for 

13C NMR spectra are reported in terms of chemical shift (δ ppm). High-resolution mass spectrum data in 

Electrospray Ionization mode were recorded on a Bruker – Daltronics® BioTof mass spectrometer in 

positive (ESI+) ion mode. HPLC analyses were performed on Waters® HPLC equipped with 2525 pump 

or on Dionex® Ultimate 3000 HPLC. Waters® 2767 sample manager was used for automated sample 

injection on Waters® HPLC or Ultimate 3000 sample injector was used for injection on Dionex® HPLC. All 

HPLC injections on Waters® HPLC were monitored using a Waters® 2487 dual wavelength absorbance 

detector at 254 and 270 nm or on Dionex®. HPLC were monitored using a diode array detector 

(DAD3000125). Analytical and semi-preparative injections were performed on chiral stationary phase 

using various columns as indicated below.  

i) Regis® PIRKLE COVALENT (R,R) WHELK–01 

a) 25 cm x 4.6 mm column for analytical injections. 
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b) 25 cm x 10 mm column for semi-preparative injections. 

ii) CHIRACEL® OD-H 

a) 0.46 cm x 25 cm column for analytical injections. 

b) 10 mm x 25 cm column for semi-preparative injections. 

iii) CHIRALPAK® IC 

a) 0.46 cm x 25 cm column for analytical injections. 

b) 10 mm x 25 cm column for semi-preparative injections 

iv) CHIRALPAK® AD-H 

a) 0.46 cm x 15 cm column for analytical injections. 

b) 10 mm x 25 cm column for semi-preparative injections. 

v) CHIRALCEL – OD-3 

a) 0.46 cm x 15 cm column for analytical injections. 

vi) CHIRAPAK – AD-3 

a) 0.46 cm x 15 cm column for analytical injections. 

Masslynx software version 4.1 was used to monitor/analyze the HPLC injections on Waters® and 

to process HPLC traces. Chromeleon 7 software was used to monitor and process HPLC injections on 

Dionex® HPLC. Igor Pro® Software version 6.0 was used to process the HPLC graphics. Optical activity 

values were recorded on JASCO® DIP – 370 digital polarimeter. When necessary, the compounds were 

purified by combiflash equipped with dual wavelength UV-Vis absorbance detector (Teledyne ISCO) 

using hexanes:ethyl acetate as the mobile phase and Redisep® cartridge filled with silica (Teledyne 

ISCO) as stationary phase. In some cases, compounds were purified by column chromatography on silica 

gel (Sorbent Technologies®, silica gel standard grade: porosity 60 Å, particle size: 230 x 400 mesh, 

surface area: 500 – 600 m2/g, bulk density: 0.4 g/mL, pH range: 6.5 – 7.5). Unless indicated, the 

Retardation Factor (Rf) values were recorded using a 5-50% hexanes:ethyl acetate as mobile phase and 

on Sorbent Technologies®, silica Gel TLC plates (200 mm thickness w/UV254). 
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 General procedure for synthesis of α-oxoamide derivative 172 and their precursors 3.25.

 Synthesis of 2-methylenebutanoyl chloride 176b 3.25.1.

 

Scheme 3.29: Synthesis of 2-methylenebutanoyl chloride 176b. 
 

2-Methylenebutanoyl chloride was synthesized according to the literature reported procedure.56 

To a solution of ethyl malonic acid (179)(1.85 g, 1.0 equiv.) in dry ethyl acetate (40 mL) at 0 oC under N2 

atmosphere diethylamine (2.17 mL, 1.5 equiv.) was added. The mixture was stirred for 5 min followed by 

the addition of paraformaldehyde (0.67 g, 1.5 equiv) in 2 portions. The resulting mixture was stirred for 5 

mins and then moved to oil bath where it was refluxed for 2 h. The mixture was cooled to room 

temperature and quenched with water. The pH of the solution was adjusted to 1 by carefully adding conc. 

HCl and extracted with ethyl acetate (3 X 15 mL). The combined organic layer was dried over anhy. 

Na2SO4, filtered and the solvent was removed under reduced pressure to yield crude product as pale 

yellow oil. The crude product was directly taken to next stage without further purification. 

To the crude product under N2 atmosphere added thionyl chloride (1.54 mL, 1.0 equiv.). The 

mixture was heated to 50 °C and maintained for 3 h. After 3 h, the excess thionyl chloride was removed 

under reduced pressure while the temperature was maintained at 25 °C. The vacuum was released under 

N2 and the residue was taken up in DCM and directly taken to next step without further analysis or 

purification. 

 

 Synthesis of phenylglyoxalyl chloride 177 3.25.2.

 

Scheme 3.30: Synthesis of phenylglyoxalyl chloride 177. 
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To a solution of phenylglyoxylic acid (178) (1.1 g, 7.33 mmol, 1.0 equiv.) in DCM (10 mL) at room 

temperature added a two drops of DMF (catalytic). To this solution oxalyl chloride (2.5 equiv) was slowly 

added during which white effervescence was observed. The mixture was further stirred for 1 h and the 

solvent and excess oxalyl chloride was removed under reduced pressure while the temperature was 

maintained at 25 °C. The vacuum was released under N2 and the residue was taken up in DCM and 

directly taken to next step without further analysis or purification. 

 

 Synthesis of substituted amide derivatives 175a-c 3.25.3.

  

Scheme 3.31: Synthesis of substituted amide derivatives 175a-c. 
 
 To a solution of aniline (1.0 g, 1.0 equiv), triethylamine (2.0 equiv) in dry DCM (15 mL) at 0 °C 

under N2 atmosphere corresponding acyl chloride (1.1 equiv) was added. The resulting solution was 

slowly allowed to warm to room temperature over 6 h. After the reaction, water was added, stirred and the 

layers were separated. The organic layer was washed with DM water (2 X 15 mL), dried over anhy. 

Na2SO4, filtered and the solvent was removed under reduced pressure to yield crude product. The crude 

product was purified by combiflash using hexanes:ethyl acetate mixture. 

TLC condition - Rf = 0.32 (80% hexanes:20% ethyl acetate) for 175a (Yield = 85 %) 

TLC condition - Rf = 0.28 (50% hexanes:50% ethyl acetate) for 175b (Yield = 76 %) 

TLC condition - Rf = 0.52 (50% hexanes:50% ethyl acetate) for 175c (Yield = 93 %) 
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1H-NMR (400 MHz, CDCl3, δ ppm): 7.76 (s, 1H), 7.57 (bs, 1H), 7.31-7.29 (m, 1H), 7.17-7.13 (m, 1H), 5.83 

(s, 1H), 5.46 (s, 1H), 2.08 (s, 3H), 1.39 (s, 9H) and 1.297 (s, 9H). 

 

Figure 3.20: 1H-NMR (400 MHz, CDCl3, δ ppm) spectrum 2,5 di-tert-butylphenyl methacrylamide 175a. 
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13C-NMR (100 MHz, CDCl3, δ ppm): 166.5, 149.9, 141.3, 138.9, 135.0, 126.3, 124.4, 122.9, 119.9, 34.5, 

34.3, 31.4, 30.9 and 19.2. 

 

Figure 3.21: 13C-NMR (100 MHz, CDCl3, δ ppm) spectrum 2,5 di-tert-butylphenyl methacrylamide 175a. 
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1H-NMR (400 MHz, CDCl3, δ ppm): 7.65-7.63 (m, 1H), 7.57 (bs, 1H), 7.38-7.36 (m, 1H), 7.23-7.11 (m, 

2H), 5.72 (s, 1H), 5.39 (s, 1H), 2.43 (q, J=7.2 Hz, 2H) 1.39 (s, 9H) and 1.13 (t, J=7.2 Hz, 3H). 

 

Figure 3.22: 1H-NMR (400 MHz, CDCl3, δ ppm) spectrum 2-tert-butylphenyl ethacrylamide 175b. 
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13C-NMR (100 MHz, CDCl3, δ ppm): 167.2, 148.3, 142.4, 135.4, 127.7, 127.0, 126.7, 126.2, 116.7, 34.7, 

30.8, 25.7 and 12.7. 

 

Figure 3.23: 13C-NMR (100 MHz, CDCl3, δ ppm) spectrum 2-tert-butylphenyl ethacrylamide 175b. 
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HRMS-ESI (m/z) ([M + Na]+): 

Calculated : 254.1515 

Observed : 254.1513 

|Δm|  : 0.8 ppm 

 

 

Figure 3.24: HRMS of 2-tert-butylphenyl ethacrylamide 175b. 
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1H-NMR (400 MHz, CDCl3, δ ppm): 7.69 (bs, 1H), 7.55-7.53 (m, 2H), 7.30-7.26 (m, 2H), 7.098-7.06 (m, 

1H), 5.75 (s, 1H), 5.40 (s, 1H) and 2.01 (s, 3H). 

 

Figure 3.25: 1H-NMR (400 MHz, CDCl3, δ ppm) spectrum Phenyl methacrylamide 175c. 
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13C-NMR (100 MHz, CDCl3, δ ppm): 166.96, 141.1, 138.0, 129.1, 124.6, 120.3, 120.0 and 18.96. 

 

Figure 3.26: 13C-NMR (100 MHz, CDCl3, δ ppm) spectrum Phenyl methacrylamide 175c. 
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 Synthesis of α-oxoamides derivatives 172a-c 3.25.4.

 

Scheme 3.32: Synthesis of substituted amide derivatives 172a-c. 
 

To a solution of corresponding amide  (175 a-c) (1.0 g, 1.0 equiv.) in dry DCM (15 mL) at 0 °C 

under N2 atmosphere triethylamine (2.3 equiv.) was added followed by the addition of corresponding acid 

chloride (177) (2.0 equiv.). The resulting solution was slowly allowed to warm to room temperature over 

14 h. After the reaction, water was added, stirred and the layers were separated. The organic layer was 

washed with DM water (2 X 15 mL), dried over anhy. Na2SO4, filtered and the solvent was removed under 

reduced pressure to yield crude product. The crude product was purified by combiflash using 

hexanes:ethyl acetate mixture. 

 

TLC condition - Rf = 0.43 (80% hexanes:20% ethyl acetate) for 172a (Yield = 84 %) 

TLC condition - Rf = 0.33 (50% hexanes:50% ethyl acetate) for 172b (Yield = 64 % ) 

TLC condition - Rf = 0.32 (50% hexanes:50% ethyl acetate) for 172c (Yield = 70 %) 
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1H-NMR (400 MHz, CDCl3, δ ppm): 8.01-7.98 (m, 2H), 7.62-7.59 (m, 1H), 7.52-7.48 (m, 3H), 7.41-7.38 

(m, 1H), 5.42 (s, 1H), 5.28- 5.28 (m, 1H), 1.80-1.799 (m, 3H), 1.399 (s, 9H) and 1.29 (s, 9H). 

 

Figure 3.27: 1H-NMR (400 MHz, CDCl3, δ ppm) spectrum of oxoamide derivative 172a. 
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13C-NMR (100 MHz, CDCl3, δ ppm): 186.7, 172.6, 170.96, 150.5, 144.8, 141.0, 135.9, 134.4, 133.3, 

129.9, 129.4, 129.0, 128.7, 126.8, 125.7, 125.6, 125.2, 35.8, 34.4, 32.0, 31.3 and 19.9. 

 

Figure 3.28: 13C-NMR (100 MHz, CDCl3, δ ppm) spectrum of oxoamide derivative 172a. 
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HRMS-ESI (m/z) ([M + Na]+): 

Calculated : 428.2196 

Observed : 428.2201 

|Δm|  : 1.2 ppm 

 

Figure 3.29: HRMS of oxoamide derivative 172a. 
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HPLC analysis conditions: 

For analytical conditions, 

I). Column    : (R,R) WHELK–01 

 Abs. detector wavelength : 254 nm and 270 nm 

 Mobile phase   : Hexanes:2-propanol = 95:5 

 Flow rate   : 1.0 mL/min 

 Retention times (min)  : ∼ (-)-9.44 and ∼ (+)-11.98 

For preparative conditions, 

I). Column    : (R,R) WHELK–01 

 Abs. detector wavelength : 254 nm and 270 nm 

 Mobile phase   : Hexanes:2-propanol = 95:5 

 Flow rate   : 3.0 mL/min 

 Retention times (min)  : ∼ (-)-14.0 and ∼ (+)-17.37 

 

Optical rotation [α]D22 : 

HPLC retention time (R,R) WHELK–01 at ∼ 9.44 min, (c ≈ 0.772 %, MeOH) = -22.05 deg. 

HPLC retention time (R,R) WHELK–01 at ∼ 11.98 min, (c ≈ 0.772 %, MeOH) = +22.91 deg.  
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1H-NMR (400 MHz, CDCl3, δ ppm): 8.01-7.99 (m, 2H), 7.61-7.59 (m, 2H), 7.51-7.47(m, 2H), 7.41-7.36 (m, 

1H), 7.29-7.287 (m, 1H), 7.10-7.08 (m, 1H), 5.49 (s, 1H), 5.23 (t, J=1.6 Hz, 1H) 2.35-2.12 (m, 2H), 1.43 

(s, 9H) and 0.92 (t, J= 7.4 Hz, 3H). 

 

Figure 3.30: 1H-NMR (400 MHz, CDCl3, δ ppm) spectrum of oxoamide derivative 172b. 
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13C-NMR (100 MHz, CDCl3, δ ppm): 186.6, 172.8, 170.7, 148.0, 147.0, 146.9, 135.1, 134.5, 133.3, 131.7, 

129.9, 129.7, 129.1, 127.6, 122.7, 36.2, 31.98, 25.7 and 11.5. 

 

Figure 3.31: 13C-NMR (100 MHz, CDCl3, δ ppm) spectrum of oxoamide derivative 172b. 
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HRMS-ESI (m/z) ([M + Na]+): 

Calculated : 386.1727 

Observed : 386.1730 

|Δm|  : 0.8 ppm 

 

Figure 3.32:  HRMS of oxoamide derivative 172b. 
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HPLC analysis conditions: 

For analytical conditions, 

I). Column    : CHIRALPAK-AD-H 

 Abs. detector wavelength : 254 nm and 270 nm 

 Mobile phase   : Hexanes:2-propanol = 90:10 

 Flow rate   : 1.0 mL/min 

 Retention times (min)  : ∼ 5.66 [M-(-)-172b] and 13.58 [P-(+)-172b] 

 
For preparative conditions, 

I). Column    : CHIRALPAK-AD-H 

 Abs. detector wavelength : 254 nm and 270 nm 

 Mobile phase   : Hexanes:2-propanol = 95:5 

 Flow rate   : 3.0 mL/min 

 Retention times (min)  : ∼ 10.80 [M-(-)-172b]  and ∼ 29.77 [P-(+)-172b] 

(The absolute crystal structure was obtained by single crystal XRD using Flack parameters) 

Optical rotation [α]D22:  

HPLC retention time CHIRALPAK-AD-H at ∼ 5.66 min, (c ≈ 2.00 %, MeOH) = -65.06 deg. 

HPLC retention time CHIRALPAK-AD-H at ∼ 13.58 min, (c ≈ 2.00 %, MeOH) = +64.08 deg.  
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1H-NMR (400 MHz, CDCl3, δ ppm): 7.99-7.97 (m, 2H), 7.598-7.58 (m, 1H), 7.50-7.38 (m, 5H), 7.23-7.21 

(m, 2H), 5.55 (s, 1H), 5.38 (s, 1H) and 1.74 (m, 3H). 

 

Figure 3.33: 1H-NMR (400 MHz, CDCl3, δ ppm) spectrum of oxoamide derivative 172c. 
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13C-NMR (100 MHz, CDCl3, δ ppm): 187.4, 173.2, 169.99, 139.3, 136.8, 134.5, 132.97, 130.0, 129.8, 

129.0, 128.99, 127.9, 126.6 and 18.96. 

 

Figure 3.34: 13C-NMR (100 MHz, CDCl3, δ ppm) spectrum of oxoamide derivative 172c. 
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 General irradiation procedure Paternò-Büchi reaction of atropisomeric α-oxoamides and 3.26.

characterization of photoproducts 

 

Scheme 3.33: Photoreaction of oxoamide derivatives 172a-c. 
 

A solution (∼ 3 mM concentration/1mg in 1mL) of optically pure axially chiral α-oxoamides 172a-b 

and achiral 172c in benzene or acetonitrile were irradiated at 25 °C for a given time interval in Pyrex tube 

with a 450 W medium pressure mercury lamp placed inside a water cooled quartz well under a constant 

flow of nitrogen or in a rayonet reactor equipped with 16 (12 Watt) ~350 nm bulbs under constant flow of 

nitrogen. After irradiation, the solvent was evaporated under reduced pressure and the photoproducts 

were isolated by preparative thin layer chromatography. For large scale reactions, the photosylate was 

purified by combiflash using hexanes:ethyl acetate mixtures. The photoproducts were then characterized 

by NMR spectroscopy, mass spectrometry, single crystal XRD, [α]TD and HPLC analysis of the 

photosylate on a chiral stationary phase gave the optical purity of the photoproducts. 

 

Note: For compound 172a the reaction was monitored by 1H-NMR spectroscopy, as TLC monitoring was 

difficult due to the overlap of Rf for starting material and the product. 

 

TLC condition - Rf = 0.56 for 173a and 0.73 for 174a respectively (80% hexanes:20% ethyl acetate) 

TLC condition - Rf = 0.46 for 173b and 0.59 for 174b respectively (80% hexanes:20% ethyl acetate) 

TLC condition - Rf = 0.24 for 173c (50% hexanes:50% ethyl acetate) 
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1H-NMR (400 MHz, CDCl3, δ ppm): 7.55-7.53 (m, 1H), 7.46-7.38 (m, 6H), 6.90 (d, J=2 Hz, 1H), 3.50-3.30 

(ABq, 2H), 1.74 (s, 3H), 1.36 (s, 9H) and 1.34 (s, 9H). 

 

Figure 3.35: 1H-NMR (400 MHz, CDCl3, δ ppm) spectrum of oxetane photoproduct 173a.
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13C-NMR (100 MHz, CDCl3, δ ppm): 173.7, 172.8, 150.4, 145.2, 136.0, 131.1, 129.1, 128.6, 128.5, 127.8, 

126.9, 125.7, 84.8, 82.9, 48.3, 35.4, 34.4, 31.7, 31.5 and 20.3. 

 

Figure 3.36: 13C-NMR (100 MHz, CDCl3, δ ppm) spectrum of oxetane photoproduct 173a. 
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HRMS-ESI (m/z) ([M + Na]+): 

Calculated : 428.2196 

Observed : 428.2184 

|Δm|  : 2.8 ppm 

 

Figure 3.37: HRMS of oxetane photoproduct 173a. 
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HPLC analysis conditions: 

For analytical conditions, 

I). Column    : CHIRALPAK-AD-H 

 Abs. detector wavelength : 254 nm and 270 nm 

 Mobile phase   : Hexanes:2-propanol = 98:2 

 Flow rate   : 1.0 mL/min 

 Retention times (min)  : ∼ (+)-4.64 and (-)-7.95 

For preparative conditions, 

I). Column    : CHIRALPAK-AD-H 

 Abs. detector wavelength : 254 nm and 270 nm 

 Mobile phase   : Hexanes:2-propanol = 99:1 

 Flow rate   : 3.0 mL/min 

 Retention times (min)  : ∼ (+)-7.53 and (-)-15.10 

Optical rotation [α]D22:  

HPLC retention time CHIRALPAK-AD-H at ∼ 4.64 min, (c ≈ 1.10 %, MeOH) = +22.27 deg. 

HPLC retention time CHIRALPAK-AD-H at ∼ 7.95 min, (c ≈ 1.10 %, MeOH) = -23.41 deg.  
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1H-NMR (400 MHz, CDCl3, δ ppm): 7.53-7.50 (m, 1H), 7.46-7.38 (m, 6H), 6.92 (d, J=2 Hz, 1H), 3.40-

3.339 (ABq, 2H), 1.74 (s, 3H), 1.35 (s, 9H) and 1.298 (s, 9H). 

 

Figure 3.38: 1H-NMR (400 MHz, CDCl3, δ ppm) spectrum of oxetane photoproduct 174a. 
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13C-NMR (100 MHz, CDCl3, δ ppm): 173.4, 172.4, 150.6, 144.9, 135.98, 131.1, 129.1, 128.7, 128.6, 

127.8, 126.8, 125.6, 84.6, 82.7, 46.2, 35.6, 34.4, 31.96, 31.4 and 20.4. 

 

Figure 3.39: 13C-NMR (100 MHz, CDCl3, δ ppm) spectrum of oxetane photoproduct 174a. 
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HRMS-ESI (m/z) ([M + Na]+): 

Calculated : 428.2196 

Observed : 428.2197 

|Δm|  : 0.2 ppm 

 

Figure 3.40: HRMS of oxetane photoproduct 174a. 

HPLC analysis conditions: 

For analytical conditions, 

I). Column    : (R,R) WHELK–01 

 Abs. detector wavelength : 254 nm and 270 nm 

 Mobile phase   : Hexanes:2-propanol = 98:2 

 Flow rate   : 1.0 mL/min 

 Retention times (min)  : ∼ 10.25 [PkA] and ∼ 20.52 [PkB] 

(PkA and PkB refers to the order of elution of the isomers in the HPLC on the chiral stationary phase) 
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1H-NMR (400 MHz, CDCl3, δ ppm): 7.61-7.59 (m, 1H), 7.46-7.38 (m, 6H), 7.32-7.30 (m, 1H), 6.98-6.96 

(m, 1H), 3.47-3.14 (ABq, 2H), 2.16-2.03 (m, 2H), 1.36 (s, 9H) and 1.11 (t, J=7.46 Hz, 3H) 

 

Figure 3.41: 1H-NMR (400 MHz, CDCl3, δ ppm) spectrum of oxetane photoproduct 173b. 
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13C-NMR (100 MHz, CDCl3, δ ppm): 173.5, 172.7, 148.5, 136.0, 131.7, 131.1, 129.7, 129.1, 128.8, 128.6, 

127.5, 125.6, 85.4, 84.5, 46.2, 35.8, 31.6, 26.2 and 6.9. 

 

Figure 3.42: 13C-NMR (100 MHz, CDCl3, δ ppm) spectrum of oxetane photoproduct 173b. 
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HRMS-ESI (m/z) ([M + Na]+): 

Calculated : 386.1727 

Observed : 386.1728 

|Δm|  : 0.3 ppm 

 

Figure 3.43: HRMS of oxetane photoproduct 173b. 
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HPLC analysis conditions: 

For analytical conditions, 

I). Column    : CHIRALPAK-AD-H 

 Abs. detector wavelength : 254 nm and 270 nm 

 Mobile phase   : Hexanes:2-propanol = 90:10 

 Flow rate   : 1.0 mL/min 

 Retention times (min)  : ∼ (-)-6.34 and (+)-10.92 

 
For preparative conditions, 

I). Column    : (R,R) WHELK–01 

 Abs. detector wavelength : 254 nm and 270 nm 

 Mobile phase   : Hexanes:2-propanol = 98:2 

 Flow rate   : 3.0 mL/min 

 Retention times (min)  : ∼ (+)-21.00 and (-)-28.14 

Optical rotation [α]D24 :  

HPLC retention time CHIRALPAK-AD-H at ∼ 6.34 min, (c ≈ 1.83 %, CHCl3) =-11.91 deg. 

HPLC retention time CHIRALPAK-AD-H at ∼ 10.92 min, (c ≈ 1.83 %, CHCl3) = +11.92 deg. 
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1H-NMR (400 MHz, CDCl3, δ ppm): 7.59 (m, 1H), 7.43-7.35 (m, 6H), 7.27-7.23 (m, 1H), 6.999-6.98 (m, 

1H), 3.39-3.24 (ABq, 2H), 2.09-2.03 (m, 2H), 1.35 (s, 9H) and 1.08 (t, J= 7.6 Hz, 3H). 

 

Figure 3.44: 1H-NMR (400 MHz, CDCl3, δ ppm) spectrum of oxetane photoproduct 174b. 
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13C-NMR (100 MHz, CDCl3, δ ppm): 173.2, 172.4, 148.2, 135.9, 131.7, 131.1, 129.6, 129.0, 129.0, 128.5, 

127.7, 125.6, 85.0, 84.4, 43.1, 36.0, 31.9, 25.9 and 6.94. 

 

Figure 3.45: 13C-NMR (100 MHz, CDCl3, δ ppm) spectrum of oxetane photoproduct 174b. 
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HRMS-ESI (m/z) ([M + Na]+): 

Calculated : 386.1727 

Observed : 386.1731 

|Δm|  : 1.0 ppm 

 

Figure 3.46:  HRMS of oxetane photoproduct 174b. 

HPLC analysis conditions: 

For analytical conditions, 

I). Column    : (R,R) WHELK–01 

 Abs. detector wavelength : 254 nm and 270 nm 

 Mobile phase   : Hexanes:2-propanol = 90:10 

 Flow rate   : 1.0 mL/min 

 Retention times (min)  : ∼ 9.15 (PkA) and 11.72 (PkB) 

(PkA and PkB refers to the order of elution of the isomers in the HPLC on the chiral stationary phase)  
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1H-NMR (400 MHz, CDCl3, δ ppm): 7.49-7.34 (m, 8H), 7.27-7.25 (m, 2H), 3.42-3.31 (ABq, 2H) and 1.72 

(s, 3H). 

 

Figure 3.47: 1H-NMR (400 MHz, CDCl3, δ ppm) spectrum of oxetane photoproduct 173c. 
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13C-NMR (100 MHz, CDCl3, δ ppm): 172.9, 171.98, 135.8, 132.8, 129.4, 129.1, 129.09, 128.6, 128.4, 

125.5, 84.7, 82.9, 48.2 and 20.3. 

 

Figure 3.48: 13C-NMR (100 MHz, CDCl3, δ ppm) spectrum of oxetane photoproduct 173c. 
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 UV-Vis spectrum of α-oxoamides and its photoproducts 3.27.

The UV-Vis spectra of oxoamides 172a-c and its photoproducts 173 and 174 were measured in 

acetonitrile. 

 

Figure 3.49: UV-Vis spectra of oxoamides 172a-c and its photoproducts 173 and 174. 
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 General procedure for synthesis of maleimide derivatives for [2+2] photocycloaddition and 3.28.

their precursors 

 Synthesis of acetamide derivative 203 3.28.1.

 

Scheme 3.34: Synthesis of acetamide derivative 203. 
 
 The acetamide derivative was synthesized according to a procedure reported in the literature.57 

To a solution of corresponding aniline 204 (3.0 g, 1.0 equiv.) in ethyl acetate (30 mL) at 0 °C, acetic 

anhydride (2.3 equiv.) was added slowly over 15 min. The mixture was allowed to warm to room 

temperature over 4 h during which a solid started to precipitate out of the solution. The mixture was 

concentrated under reduced pressure to leave ∼10% of the initial ethyl acetate. To this slurry hexanes (50 

mL) was added, stirred for 10 min and filtered. The solid residue was washed with hexanes (15 mL), dried 

and directly taken for the next step without further purification. 

Rf = 0.20 (50% hexanes:50% ethyl acetate), Yield for 203 = 94% 

1H-NMR (400 MHz, CD3OD, δ ppm): 7.00-6.96 (m, 1H), 6.699-6.68 (m, 2H), 2.16 (s, 3H) and 2.14 (s, 3H). 

13C-NMR (100 MHz, CD3OD, δ ppm): 175.7, 156.7, 140.3, 131.5, 127.1, 125.0, 117.6, 25.3 and 20.9. 

 

 Synthesis of o-allylated acetamide derivative 202 3.28.2.

 

Scheme 3.35: Synthesis of o-allylated acetamide derivative 202. 
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To a solution of acetamide derivative 203 (3.5 g, 1 equiv.) in dry acetone (35 mL) anhyd. 

potassium carbonate (3.0 equiv.) and allyl bromide (2.5 equiv.) were added at 25 °C. The resulting 

mixture was refluxed for 4 h. After the completion of the reaction, the mixture was cooled to 25 °C, filtered 

through celite and the solid was washed with acetone (15 mL). The combined organic layer was 

concentrated and the residue was taken up in DCM (50 mL) and washed with DI water (2 × 15 mL) and 

brine solution (1 × 15 mL). The organic layer was dried over anhyd. Na2SO4, filtered and the solvent was 

removed under reduced pressure to get the crude product. The crude product was directly taken to next 

step without further purification. 

Rf = 0.75 (95% DCM:5% methanol), Yield for 202 = 88% 

1H-NMR (400 MHz, CD3OD, δ ppm): 7.12-7.06 (m, 1H), 6.82-6.797 (m, 2H), 6.07-5.97 (m, 1H), 5.41-5.35 

(m, 1H), 5.22-5.19 (m, 1H), 4.52-4.499 (m, 2H), 2.17 (m, 3H) and 2.12 (m, 3H). 

13C-NMR (100 MHz, CD3OD, δ ppm): 175.2, 158.2, 141.1, 137.6, 131.5, 128.6, 126.2, 119.8, 114.2, 72.9, 

25.3 and 20.9. 

 

 Synthesis of o-allylated aniline derivative 198 3.28.3.

 

Scheme 3.36: Synthesis of o-allylated acetamide derivative 198. 
 

To o-allylated acetamide derivative 202 (2.9 g), 6M HCl (7 mL) was added at 25 °C. The resulting 

mixture was refluxed for 3-6 h. After the completion of the reaction, the mixture was cooled to 0 °C. The 

pH of the reaction mixture was adjusted to 14 by slowly adding 4M NaOH solution without allowing the 

internal temperature to rise above 10 °C. The aqueous layer was extracted with ethyl acetate. The 

combined organic layer was dried over anhyd. Na2SO4, filtered and the solvent was removed under 

reduced pressure to get the crude product. The crude product was purified by combiflash using hexanes: 

ethyl acetate mixture (80:20). 
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Rf = 0.80 (80% hexanes: 20% ethyl acetate), Yield for 198 = 78% 

1H-NMR (400 MHz, CDCl3, δ ppm): 6.74-6.43 (m, 3H), 6.15-6.04 (m, 1H), 5.44-5.39 (m, 1H), 5.30-5.27(m, 

1H), 4.57-4.55 (m, 2H), 3.79 (bs, 2H) and 2.19 (s, 3H). 

13C-NMR (100 MHz, CDCl3, δ ppm): 146.1, 134.8, 133.9, 123.1, 123.0, 117.7, 117.5, 109.9, 69.6 and 17.4. 

 

 Synthesis of 2-amino benzyl alcohol derivative 200 3.28.4.

 

Scheme 3.37: Synthesis of 2-amino benzyl alcohol derivative 200. 
 

The benzyl alcohol derivative was synthesized according to a procedure reported in the 

literature.58To a slurry of lithium aluminum hydride (2.5 equiv.) in dry THF (50 mL) under N2 atmosphere at 

0 °C, a solution anthranillic acid derivative 201 (4.0 g, 1.0 equiv.) in dry THF (50 mL) was added over a 

period of 15 min without allowing the internal temperature to rise above 5 °C. The resulting mixture was 

allowed to warm to room temperature over 12 h. After the reaction, the mixture was cooled to 0 °C and 

quenched with saturated Na2SO4 solution over 15 min. To the resulting solid mixture DCM (CH2Cl2, 75 

mL) was added, stirred for 15 min, filtered and the filtered solid residue was washed with DCM (50 mL). 

The combined organic layer was dried over anhyd. Na2SO4, filtered and the solvent was removed under 

reduced pressure to get the crude product. The crude product was directly taken to next step without 

further purification. 

Rf = 0.45 (50% hexanes: 50% ethyl acetate), Yield for 200 = 90% 

1H-NMR (400 MHz, CDCl3, δ ppm): 7.03-7.01 (m, 1H), 6.92-6.90 (m, 1H), 6.65-6.61 (m, 1H), 4.61 (s, 2H), 

3.40 (bs, 3H) and 2.15 (m, 3H). 

13C-NMR (100 MHz, CDCl3, δ ppm): 144.3, 130.7, 127.3, 124.4, 122.9, 117.9, 64.7 and 17.5. 
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  Synthesis of 2-methoxymethylaniline derivative 199 3.28.5.

 

Scheme 3.38: Synthesis of 2-methoxymethylaniline derivative 199. 
 

To a solution of aminobenzyl alcohol derivative 200 (5.0 g, 1.0 equiv.) in methanol (40 mL) at 0 

°C, concd. H2SO4 (1.1 equiv.) was added over 5 min. The resulting mixture was heated to 50 °C for 7 h. 

After the reaction, the mixture was cooled to 10 °C and neutralized with saturated Na2CO3 solution 

carefully, during which a brisk effervescence was observed. The aqueous layer was extracted with DCM 

(3 × 40 mL). The combined organic layer was dried over anhyd. Na2SO4, filtered and the solvent was 

removed under reduced pressure to get the crude product. The crude product was purified by combiflash 

using a hexanes: ethyl acetate mixture. 

Rf = 0.80 (50% hexanes: 50% ethyl acetate), Yield for 199 = 77% 

1H-NMR (400 MHz, CDCl3, δ ppm): 7.05-7.03 (m, 1H), 6.96-6.94 (m, 1H), 6.6-6.62 (m, 1H), 4.49 (s, 2H), 

4.12 (bs, 2H), 3.33 (s, 3H) and 2.17 (s, 3H). 

13C-NMR (100 MHz, CDCl3, δ ppm): 144.6, 130.7, 128.3, 122.5, 121.5, 117.5, 74.1, 57.6,and 17.5. 

 

 Synthesis of 2-(butenyl)aniline 197 3.28.6.

 

Scheme 3.39: Synthesis of 2-(butenyl)aniline derivative 197. 
 

To a solution aniline derivative 199 (5.3 g, 1.0 equiv.) in dry THF (40 mL) at 0 °C, allyl 

magnesium halide (2.0 M in THF, 2.2 equiv.) was added slowly over 15 min. The resulting mixture was 

allowed to warm to room temperature over 12 h. After the reaction, the mixture was cooled to 0 °C and 

quenched with dil. HCl. The aqueous layer was extracted with DCM (3 × 50 mL). The combined organic 
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THF, 25 oC, 12 h
197
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layer was dried over anhyd. Na2SO4, filtered and the solvent was removed under reduced pressure to get 

the crude product. The crude product was purified by combiflash using a hexanes: ethyl acetate mixture. 

Rf = 0.60 (90% hexanes: 10% ethyl acetate), Yield for 197 = 75% 

1H-NMR (400 MHz, CDCl3, δ ppm): 6.95-6.93 (m, 2H), 6.68-6.64 (m, 1H), 5.9-5.83 (m, 1H), 5.15-4.97 (m, 

2H), 3.77 (bs, 2H), 2.61-2.57 (m, 2H), 2.40-2.35 (m, 2H) and 2.18 (s, 3H). 

13C-NMR (100 MHz, CDCl3, δ ppm): 142.4, 138.4, 128.6, 127.4, 125.6, 122.4, 118.3, 115.2, 33.1, 31.2 

and 17.98. 

 

 Synthesis of citraconicimide derivative 195 3.28.7.

 

Scheme 3.40: Synthesis of citraconicimide derivative 195. 
 
 To a solution of aniline 204 (5.0 g, 40.6 mmol) in toluene (25 mL) at 25 °C, citraconic anhydride 

196a (5.46 g, 48.7 mmol) was added with stirring in a round bottom flask. The resulting mixture was 

refluxed for 2 h after which it was cooled to room temperature and the mixture was diluted with hexanes 

(50 mL). The precipitated solid was filtered and washed with hexanes (20 mL) and dried under vacuum. 

The crude product was directly taken to next step without further purification. 

Rf = 0.40 (50% hexanes: 50% ethyl acetate), Yield for 195 = 94%. 
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1H-NMR (400 MHz, CD3OD, δ ppm): 7.14-7.098 (m, 1H), 6.74-6.72 (m, 2H), 6.58 (s, 1H), 2.11 (s, 3H) and 

2.04 (s, 3H). 

 

Figure 3.50: 1H-NMR (400 MHz, CDCl3, δ ppm) spectrum of hydroxy maleimide derivative 195. 

*

*= solvent

*

N
O

O
O

H



 

 181 

13C-NMR (100 MHz, CD3OD, δ ppm): 175.4, 174.5, 158.3, 150.5, 142.7, 133.7, 131.7, 124.8, 122.3, 117.3, 

20.5 and 13.7. 

 

Figure 3.51: 13C-NMR (100 MHz, CDCl3, δ ppm) spectrum of hydroxy maleimide derivative 195. 
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HRMS-ESI (m/z) ([M + Na]+): 

Calculated : 240.0631 

Observed  : 240.0639 

|Δm|  : 3.3 ppm 

 

Figure 3.52: HRMS of hydroxy maleimide derivative 195. 
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 Synthesis of atropisomeric maleimide derivatives 192a-c 3.28.8.

 

Scheme 3.41: Synthesis of atropisomeric maleimide derivative 192a-c. 
 
 To a mixture of citraconicimide derivative 196 (1.0 g, 1.0 equiv.) and anhyd. potassium carbonate 

(3.0 equiv.) in dry acetone (10 mL), corresponding allyl bromide (2.5 equiv.) was added in a round bottom 

flask. The resulting mixture was refluxed for 4 h or until the complete consumption of citraconicimide. The 

reaction mixture was cooled to room temperature and filtered through celite bed. The solid was washed 

with acetone and the combined organic layer was concentrated to get the crude product. The crude 

product was purified by combiflash using a hexanes:ethyl acetate mixture. 

TLC condition - Rf = 0.80 (50% hexanes:50% ethyl acetate) for 192a, (Yield = 66%). 

TLC condition - Rf = 0.45 (80% hexanes:20% ethyl acetate) for 192b, (Yield = -). 

TLC condition - Rf = 0.85 (50% hexanes:50% ethyl acetate) for 192c, (Yield = 43%). 

TLC condition - Rf = 0.6 (50% hexanes:50% ethyl acetate) for 192g, (Yield = 74 %) 
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1H-NMR (400 MHz, CDCl3, δ ppm): 7.22-7.18 (m, 1H), 6.84-6.82 (m, 1H), 6.78-6.76 (m, 1H), 6.42-6.41 (q, 

J = 1.6 Hz, 1H), 5.29-5.25 (m, 1H), 4.45-4.43 (m, 2H), 2.11 (s, 3H), 2.09-2.08 (d, J = 2 Hz, 3H), 1.68 (s, 

3H) and 1.62 (s, 3H). 

 

Figure 3.53: 1H-NMR (400 MHz, CDCl3, δ ppm) spectrum of maleimide derivative 192a. 
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13C-NMR (100 MHz, CDCl3, δ ppm): 171.1, 170.0, 155.3, 146.1, 138.97, 137.5, 130.1, 128.0, 122.6, 

120.1, 119.95, 110.9, 65.8, 25.9, 18.4, 17.95 and 11.3. 

 

Figure 3.54: 13C-NMR (100 MHz, CDCl3, δ ppm) spectrum of maleimide derivative 192a. 
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HRMS-ESI (m/z) ([M + Na]+): 

Calculated : 308.1257 

Observed  : 308.1253 

|Δm|  : 1.3 ppm 

 

Figure 3.55: HRMS of maleimide derivative 192a. 
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HPLC analysis conditions: 

For analytical conditions, 

I). Column    : CHIRALPAK-ADH  

 Abs. detector wavelength : 254 nm and 270 nm 

 Mobile phase   : Hexanes:2-propanol = 95:5 

 Flow rate   : 1.0 mL/min 

 Retention times (min)  : ∼ 9.03 [(+)-192a] and ∼ 10.47 [(-)-192a] 

For preparative conditions, 

I). Column    : CHIRALPAK-ADH  

Abs. detector wavelength : 254 nm and 270 nm 

Mobile phase   : Hexanes:2-propanol = 99:1 

Flow rate   : 3.0 mL/min  

Retention times (min)  : ∼ 31.89 [(+)-192a and ∼ 40.74 [(-)-192a] 

Optical rotation [α]D24 : 

HPLC retention time (CHIRALPAK-ADH) at ∼ 9.03 min, (c ≈ 1.29 %, MeOH) = +23.73 deg 

HPLC retention time (CHIRALPAK-ADH) at ∼ 10.47 min, (c ≈ 1.29 %, MeOH) = -22.35 deg. 
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1H-NMR (400 MHz, CDCl3, δ ppm): 7.24-7.20 (m, 1H), 6.87-6.85 (m, 1H), 6.79-6.77 (m, 1H), 6.45 (q, J = 

1.6 Hz, 1H), 5.67-5.58 (m, 1H), 5.53-5.46 (m, 1H), 4.53 (d, J = 6.4 Hz, 2H), 2.14 (d, J = 1.6 Hz, 3H), 2.13 

(s, 3H) and 1.64 (d, J = 6.4 Hz, 3H). 

 

Figure 3.56: 1H-NMR (400 MHz, CDCl3, δ ppm) spectrum of maleimide derivative 192b. 
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13C-NMR (100 MHz, CDCl3, δ ppm): 171.1, 170.1, 155.1, 146.2, 139.1, 130.1, 128.5, 128.0, 125.7, 122.8, 

120.1, 110.7, 64.7, 17.97, 13.6 and 11.4. 

 

Figure 3.57: 13C-NMR (100 MHz, CDCl3, δ ppm) spectrum of maleimide derivative 192b. 
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HRMS-ESI (m/z) ([M + Na]+): 

Calculated : 294.1101 

Observed  : 294.1102 

|Δm|  : 0.3 ppm 

 

Figure 3.58: HRMS of maleimide derivative 192b. 
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HPLC analysis conditions: 

For analytical conditions, 

I). Column    : CHIRALPAK-ADH  

 Abs. detector wavelength : 254 nm and 270 nm 

 Mobile phase   : Hexanes:2-propanol = 95:5 

 Flow rate   : 1.0 mL/min 

 Retention times (min)  : ∼ 8.55 [(+)-192b] and ∼ 9.69 [(-)-192b] 

For preparative conditions, 

I). Column    : CHIRALPAK-ADH  

Abs. detector wavelength : 254 nm and 270 nm 

Mobile phase   : Hexanes:2-propanol = 99:1 

Flow rate   : 3.0 mL/min  

Retention times (min)  : ∼ 31.58 [(+)-192b] and ∼ 38.47 [(-)-192b] 

Optical rotation [α]D23:  

HPLC retention time (CHIRALPAK-ADH) at ∼ 8.55 min, (c ≈ 1.0 %, MeOH) = +30.04 deg 

HPLC retention time (CHIRALPAK-ADH) at ∼ 9.65 min, (c ≈ 1.0 %, MeOH) = -30.14 deg. 
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1H-NMR (400 MHz, CDCl3, δ ppm): 7.23-7.19 (m, 1H), 6.87-6.85 (m, 1H), 6.77-6.75 (m, 1H), 6.45 (q, J = 

1.74 Hz, 1H), 4.92 (s, 1H), 4.87 (m, 1H), 4.35 (s, 2H), 2.14 (s, 3H), 2.13-2.12 (m, 3H) and 1.67 (s, 3H). 

 

Figure 3.59: 1H-NMR (400 MHz, CDCl3, δ ppm) spectrum of maleimide derivative 192c. 
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13C-NMR (100 MHz, CDCl3, δ ppm): 171.1, 170.1, 154.9, 146.3, 140.4, 139.1, 130.1, 128.0, 122.8, 119.8, 

112.5, 110.5, 71.97, 19.4, 17.93 and 11.4. 

 

Figure 3.60: 13C-NMR (400 MHz, CDCl3, δ ppm) spectrum of maleimide derivative 192c. 
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HRMS-ESI (m/z) ([M + Na]+): 

Calculated : 294.1101 

Observed  : 294.1098 

|Δm|  : 1.0 ppm 

 

Figure 3.61: HRMS of maleimide derivative 192c. 
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1H-NMR (400 MHz, CDCl3, δ ppm): 7.28-7.24 (m, 1H), 6.95-6.91 (m, 2H), 6.46 (q, J = 1.8 Hz, 1H), 4.61 

(d, J = 2.4 Hz, 2H), 2.45 (t, J = 2.4 Hz, 1H), 2.15 (d, J = 1.8 Hz, 3H) and 2.13 (s, 3H). 

 

Figure 3.62: 1H-NMR (400 MHz, CDCl3, δ ppm) spectrum of maleimide derivative 192g. 

N
OO

O



 

 196 

13C-NMR (100 MHz, CDCl3, δ ppm): 170.9, 169.8, 154.1, 146.2, 139.3, 130.1, 128.1, 123.8, 120.2, 111.1, 

78.3, 76.0, 56.8, 17.99 and 11.5. 

 

Figure 3.63: 13C-NMR (100 MHz, CDCl3, δ ppm) spectrum of maleimide derivative 192g. 
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HRMS-ESI (m/z) ([M + Na]+): 

Calculated : 278.0788 

Observed  : 278.0777 

|Δm|  : 3.9 ppm 

 

Figure 3.64: HRMS of maleimide derivative 192g. 
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 Synthesis of atropisomeric maleimide derivative 192d 3.28.9.

 

Scheme 3.42: Synthesis of atropisomeric maleimide derivative 192d. 
 
 The bromocitraconic anhydride 196c was synthesized according a procedure reported in the 

literature.59  A mixture of aniline 198 (1.0 g, 1.0 equiv.) and anhydride 196c (1.1 equiv.) in toluene (5 mL) 

was refluxed for 2 h. The reaction mixture was cooled to room temperature and the solvent was 

evaporated to get the crude product. The crude product was purified by combiflash using a hexanes:ethyl 

acetate mixture. 

TLC condition - Rf = 0.43 (80% hexanes:20% ethyl acetate) for 192d (Yield = 84 %) 
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1H-NMR (400 MHz, CDCl3, δ ppm): 7.27-7.23 (m, 1H), 7.01-7.00 (m, 1H), 6.89-6.87 (m, 1H), 6.79-6.77 

(m, 1H), 5.92-5.82 (m, 1H), 5.27-5.17 (m, 2H), 4.49-4.48 (m, 2H) and 2.15 (m, 3H). 

 

Figure 3.65: 1H-NMR (400 MHz, CDCl3, δ ppm) spectrum of maleimide derivative 192d. 
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13C-NMR (100 MHz, CDCl3, δ ppm): 167.7, 164.5, 154.7, 139.1, 132.8, 132.7, 131.9, 130.6, 122.97, 

119.3, 117.5, 110.8, 69.2 and 17.9. 

 

Figure 3.66: 13C-NMR (400 MHz, CDCl3, δ ppm) spectrum of maleimide derivative 192d. 
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HRMS-ESI (m/z) ([M + Na]+): 

Calculated : 345.9874 

Observed  : 345.9875 

|Δm|  : 0.3 ppm 

 

Figure 3.67: HRMS of maleimide derivative 192d. 

HPLC analysis conditions: 

For analytical conditions, 

I). Column    : CHIRALPAK-ADH  

 Abs. detector wavelength : 254 nm and 270 nm 

 Mobile phase   : Hexanes:2-propanol = 98:2 

 Flow rate   : 1.0 mL/min 

 Retention times (min)  : ∼ 12.42 [PkA] and ∼ 13.44 [PkB] 

(PkA and PkB refers to the order of elution of the isomers in HPLC on a chiral stationary phase) 
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 Synthesis of maleimide derivatives 192e and 192f 3.28.10.

 

Scheme 3.43: Synthesis of atropisomeric maleimide derivative 192e-f. 
 
 The maleimide derivatives 192e and 192f were synthesized according to the literature reported 

procedure.12 To a solution of corresponding aniline derivative 197 or 198 (10 mmol) in toluene (20 mL) at 

25 °C, substituted maleic anhydride 196b-c (10.1 mmol) was added. The resulting mixture was heated to 

45 °C and maintained for 2 h. After the reaction, the mixture was cooled to room temperature and the 

residue was diluted with hexanes (50 mL). The precipitated solid was filtered, washed with hexanes (20 

mL) and dried under vacuum. The crude product was directly taken to next step without further 

purification. 

 To the crude product from above reaction dissolved in chloroform under N2 atmosphere 1,1’-

carbonyldiimidazole (12 mmol) was added. The resulting solution was refluxed for 14 h. After the reaction, 

the solution was cooled to room temperature and DI water was added. The mixture was stirred and the 

layers were separated. The organic layer was washed with DI Water (2 × 100 mL), cold aqueous 2N HCl 

(2 × 75 mL or until the imidazole byproduct was removed) and brine solution (1 × 100 mL). The organic 

layer was dried over anhyd. Na2SO4, filtered and the solvent was evaporated under reduced pressure to 

get the crude product. The crude product was purified by combiflash using a hexanes:ethyl acetate 

mixture (90:10). 

Note: During the addition of 1,1’-carbonyldiimidazole evolution of CO2 gas was observed. 

TLC condition - Rf = 0.55 (80% hexanes:20% ethyl acetate) for 192e, (Yield = 70%). 

TLC condition - Rf = 0.50 (90% DCM: 10% MeOH) for 192f, (Yield = 68%). 
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1H-NMR (400 MHz, CDCl3, δ ppm): 8.04-8.01 (m, 2H), 7.50-7.48 (m, 3H), 7.33-7.29 (m, 1H), 7.21-7.18 

(m, 2H), 6.92 (s, 1H), 5.85-5.75 (m, 1H), 5.02-4.93 (m, 2H), 2.58-2.54 (m, 2H), 2.33-2.28 (m, 2H) and 

2.17 (s, 3H). 

 

Figure 3.68: 1H-NMR (400 MHz, CDCl3, δ ppm) spectrum of maleimide derivative 192e. 
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13C-NMR (100 MHz, CDCl3, δ ppm): 170.0, 169.7, 143.99, 141.1, 137.9, 137.4, 131.6, 129.7, 129.4, 

129.3, 129.0, 128.95, 128.9, 127.7, 124.2, 115.4, 34.5, 31.5 and 18.3. 

 

Figure 3.69: 1H-NMR (400 MHz, CDCl3, δ ppm) spectrum of maleimide derivative 192e. 
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HRMS-ESI (m/z) ([M + Na]+): 

Calculated : 340.1308 

Observed  : 340.1299 

|Δm|  : 2.6 ppm 

 

Figure 3.70: HRMS of maleimide derivative 192e. 
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1H-NMR (400 MHz, CDCl3, δ ppm): 8.52 (s, 1H), 7.52 (s, 1H), 7.28-7.23 (m, 2H), 6.90-6.88 (m, 1H), 6.80-

6.78 (m, 1), 6.398 (s, 1H), 5.91-5.82 (m, 1H), 5.26-5.15 (m, 2H), 4.50-4.49 (m, 2H) and 2.18 (s, 3H). 

 

Figure 3.71: 1H-NMR (400 MHz, CDCl3, δ ppm) spectrum of maleimide derivative 192f. 
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13C-NMR (100 MHz, CDCl3, δ ppm): 167.9, 164.98, 154.8, 139.2, 138.7, 137.2, 132.7, 132.1, 130.7, 123.0, 

118.8, 117.7, 117.6, 110.8, 109.4, 69.3 and 17.99. 

 

Figure 3.72: 13C-NMR (100 MHz, CDCl3, δ ppm) spectrum of maleimide derivative 192f. 
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HRMS-ESI (m/z) ([M + Na]+): 

Calculated : 332.1006 

Observed  : 332.1001 

|Δm|  : 1.5 ppm 

 

Figure 3.73: HRMS of maleimide derivative 192f. 
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  UV-Vis spectrum of atropisomeric maleimides and its photoproducts 3.29.

 The UV-Vis spectra of atropisomeric maleimides and its photoproducts were measured in 

acetonitrile. 

 

Figure 3.74: UV-Vis spectra of maleimides 192 and its photoproducts 193 and 194 in acetonitrile. 
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 General irradiation procedures and characterization of photoproducts 3.30.

 Process for photoreaction of atropisomeric maleimides 192 3.30.1.

 

Scheme 3.44: General irradiation procedure for maleimides 192. 
 

Enantiospecific reactions: A solution of optically pure atropisomeric maleimides obtained from 

HPLC preparative separation on a chiral stationary phase (2.5-4.0 mM or 1 mg/1 mL) in appropriate 

solvent (acetone or MeCN) or with the combination of MeCN/30 mol% sensitizer (xanthone or 

thioxanthone) was irradiated in either one of the following procedures. a) The solution in a Pyrex tube was 

irradiated with a 450W medium-pressure mercury lamp under constant flow of nitrogen for a given time 

interval. b) Irradiated in a Rayonet reactor fitted with bulb of desired wavelength. After the irradiation, the 

solvent was evaporated under reduced pressure and the photoproducts were isolated by preparative thin 

layer chromatography and characterized by NMR spectroscopy, mass spectrometry, single crystal XRD, 

CD, [α]D and by HPLC. HPLC analysis of the photolysate on a chiral stationary phase gave the optical 

purity of the photoproducts. 

Large-scale reactions: Large-scale reactions were carried out on racemic maleimides as 

batches (4 × 20 mL test tubes per batch). After the irradiation the solutions were combined and the 

solvent was evaporated under reduced pressure. The residue was purified by combiflash using a 

hexanes:ethyl acetate mixture as mobile phase. 

In some cases (192e and 192f) N2 degassed solutions of maleimides placed in a merry-go-round 

(8 x 10 mL test tubes) were irradiated in a Rayonet reactor for given time period. After the irradiation, the 

solutions were combined and the solvent was evaporated under reduced pressure. The residue was 

purified by combiflash using a hexanes:ethyl acetate mixture as mobile phase. 

Conversion and mass balance were obtained from NMR integration of the crude photosylate 

against triphenylmethane as an internal standard using the equation 2.1 (Chapter 2) 
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The dr of the photoproducts 193 and 194 were calculated from the crude reaction mixture after 

the photoreaction. 

TLC condition - Rf = 0.30 (80% hexanes:20% ethyl acetate) for 193a 

TLC condition - Rf = 0.25 (50% hexanes:50% ethyl acetate for 193b 

TLC condition - Rf = 0.18 (80% hexanes:20% ethyl acetate) for 193c 

TLC condition - Rf = 0.20 (80% hexanes:20% ethyl acetate)for 194c 

TLC condition - Rf = 0.35 (80% petroleum ether:20% ethyl acetate) for 193d 

TLC condition - Rf = Rf = 0.25 (80% petroleum ether:20% ethyl acetate for 194d 

TLC condition - Rf = 0.35 (50% hexanes:50% ethyl acetate) for 193e 

TLC condition - Rf = 0.40 (90% DCM:10% MeOH) for 193f 
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1H-NMR (400 MHz, CDCl3, δ ppm): 7.20-7.16 (m, 1H), 7.06-7.04 (m, 1H), 6.92-6.90 (m, 1H), 4.57 (dd, J = 

14.4, 4.8 Hz, 1H), 3.87 (d, J = 14.4Hz, 1H), 2.92-2.91(m, 1H), 2.35 (s, 3H), 2.18-2.16 (m, 1H), 1.68 (s, 

3H), 1.61 (s, 3H) and 1.37 (s, 3H). 

 

Figure 3.75: 1H-NMR (400 MHz, CDCl3, δ ppm) spectrum of maleimide photoproduct 193a. 
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13C-NMR (100 MHz, CDCl3, δ ppm): 183.2, 179.3, 155.9, 139.2, 132.17, 129.9, 126.5, 120.4, 74.1, 58.6, 

54.5, 48.9, 41.2, 32.6, 22.5, 17.9 and 17.6. 

 

Figure 3.76: 13C-NMR (100 MHz, CDCl3, δ ppm) spectrum of maleimide photoproduct 193a. 
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HRMS-ESI (m/z) ([M + Na]+): 

Calculated : 308.1257 

Observed  : 308.1249 

|Δm|  : 2.6 ppm 

 

Figure 3.77: HRMS of maleimide photoproduct 193a. 
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HPLC analysis conditions: 

For analytical conditions, 

I). Column    : CHIRALPAK-OD-H  

Abs. detector wavelength : 254 nm and 270 nm 

Mobile phase   : Hexanes:2-propanol = 90:10 

Flow rate   : 1.0 mL/min 

Retention times (min)  : ∼ 15.87 [PkA-193a] and ∼ 20.57 [PkB-193a] 

For preparative conditions, 

I). Column    : CHIRALPAK-OD-H  

Abs. detector wavelength : 254 nm and 270 nm 

Mobile phase   : Hexanes:2-propanol = 95:5 

Flow rate   : 3.0 mL/min  

Retention times (min)  : ∼ 35.30 [PkA-193a] and ∼ 45.40 [PkB-193a] 
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1H-NMR (400 MHz, CDCl3, δ ppm): 7.19-7.15 (m, 1H), 7.06-7.04 (m, 1H), 6.93-6.91 (m, 1H), 4.61-4.54 

(m, 1H), 3.88-3.80 (m, 1H), 3.61-3.51 (m, 1H), 3.10 (dd, J = 9.2, 2.4 Hz, 1H), 2.45 – 2.41 (m, 1H), 2.36 (s, 

3H), 1.54 (s, 3H) and 1.34 (d, J = 7.2 Hz, 3H). 

 

Figure 3.78: 1H-NMR (400 MHz, CDCl3, δ ppm) spectrum of maleimide photoproduct 193b. 
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13C-NMR (100 MHz, CDCl3, δ ppm): 182.3, 179.3, 156.0, 139.2, 132.4, 129.7, 126.6, 120.1, 74.9, 53.1, 

50.7, 48.6, 33.6, 19.5, 17.6 and 15.3. 

 

Figure 3.79: 13C-NMR (100 MHz, CDCl3, δ ppm) spectrum of maleimide photoproduct 193b. 
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HRMS-ESI (m/z) ([M + Na]+): 

Calculated : 294.1101 

Observed  : 294.1094 

|Δm|  : 2.4 ppm 

 

Figure 3.80: HRMS of maleimide photoproduct 193b. 

HPLC analysis conditions: 

For analytical conditions, 

I). Column    : CHIRALPAK-AD-H  

Abs. detector wavelength  : 254 nm and 270 nm 

Mobile phase   : Hexanes:2-propanol = 95:5 

Flow rate    : 1.0 mL/min 

Ret. tim. (min): ∼9.84 [(PkA)-(1R,5S,6R,7S)-193b] and ∼11.53 [(PkB)-(1S,5R,6S,7R)-193b] 

 

(PkA and PkB refers to the order of elution of the isomers on the chiral stationary phase) 
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1H-NMR (400 MHz, CDCl3, δ ppm): 7.20-7.16 (m, 1H), 7.07-7.05 (m, 1H), 6.95-6.93 (m, 1H), 4.02 (d, J = 

13.5 Hz, 1H), 3.56 (d, J = 13.2 Hz, 1H), 2.98 (dd, J = 10, 1.6 Hz, 1H), 2.77 (dd, J = 12.4, 1.6 Hz, 1H), 2.55 

(dd, J = 12.0, 10.0 Hz, 1H), 2.36 (s, 3H), 1.45 (s, 3H) and 1.02 (s, 3H). 

 

Figure 3.81: 1H-NMR (400 MHz, CDCl3, δ ppm) spectrum of maleimide photoproduct 193c. 
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13C-NMR (100 MHz, CDCl3, δ ppm): 182.8, 182.7, 155.8, 139.2, 132.6, 129.7, 126.7, 120.1, 80.7, 54.1, 

48.8, 41.99, 32.5, 20.9, 17.6, and 12.96. 

 

Figure 3.82: 13C-NMR (100 MHz, CDCl3, δ ppm) spectrum of maleimide photoproduct 193c. 
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HRMS-ESI (m/z) ([M + Na]+): 

Calculated : 294.1101 

Observed  : 294.1088 

|Δm|  : 4.4 ppm 

 

Figure 3.83: HRMS of maleimide photoproduct 193c. 
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1H-NMR (400 MHz, CDCl3, δ ppm): 7.20-7.16 (m, 1H), 7.07-7.05 (m, 1H), 6.94-6.92 (m, 1H), 3.97 (d, J = 

13.6 Hz, 1H), 3.59 (d, J = 13.2 Hz, 1H), 3.09 (s, 1H), 2.98 (d, J = 12.4 Hz, 1H), 2.36 (s, 3H), 2.21 (d, J = 

12.4 Hz, 1H), 1.52 (s, 3H) and 1.20 (s, 3H). 

 

Figure 3.84: 1H-NMR (400 MHz, CDCl3, δ ppm) spectrum of maleimide photoproduct 194c. 
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13C-NMR (100 MHz, CDCl3, δ ppm): 185.6, 179.6, 155.96, 139.3, 132.4, 129.7, 126.8, 120.2, 79.7, 58.2, 

44.0, 41.6, 41.1, 26.5, 20.2 and 17.6. 

 

Figure 3.85: 13C-NMR (100 MHz, CDCl3, δ ppm) spectrum of maleimide photoproduct 194c. 
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HRMS-ESI (m/z) ([M + Na]+): 

Calculated : 294.1101 

Observed  : 294.1098 

|Δm|  : 1.0 ppm 

 

Figure 3.86: HRMS of maleimide photoproduct 194c. 
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1H-NMR (400 MHz, CDCl3, δ ppm): 7.24-7.199 (m, 1H), 7.10-7.08 (m, 1H), 6.98-6.96 (m, 1H), 4.37 (dd, J 

=14.0, 4.8 Hz, 1H), 3.79 (d, J =14 Hz, 1H), 3.50-3.48 (m, 1H), 3.396-3.32 (m, 1H), 3.15-3.12 (m, 1H), 2.66 

(d, J =12 Hz, 1H) and 2.37 (s, 3H). 

 

Figure 3.87: 1H-NMR (400 MHz, CDCl3, δ ppm) spectrum of maleimide photoproduct 193d. 
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13C-NMR (100 MHz, CDCl3, δ ppm): 178.9, 175.1, 156.0, 139.6, 131.9, 130.3, 127.1, 120.5, 73.7, 55.2, 

53.4, 47.5, 24.4 and 17.6. 

 

Figure 3.88: 13C-NMR (400 MHz, CDCl3, δ ppm) spectrum of maleimide photoproduct 193d. 
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HRMS-ESI (m/z) ([M + Na]+): 

Calculated : 343.9893 

Observed  : 343.9896 

|Δm|  : 0.9 ppm 

 

Figure 3.89: HRMS of maleimide photoproduct 193d. 

 

  

N

B
r

O

O
O



 

 228 

1H-NMR (400 MHz, CDCl3, δ ppm): 7.25-7.21 (m, 1H), 7.11-7.09 (m, 1H), 6.98-6.96 (m, 1H), 4.43-4.39 

(m, 1H), 3.99-3.95 (m, 1H), 3.63 (d, J =13.6 Hz, 1H), 3.22-3.199 (m, 3H) and 2.39 (s, 3H). 

 

Figure 3.90: 1H-NMR (400 MHz, CDCl3, δ ppm) spectrum of maleimide photoproduct 194d. 
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13C-NMR (100 MHz, CDCl3, δ ppm): 178.3, 176.8, 155.97, 139.4, 132.1, 130.2, 127.2, 120.4, 73.4, 55.9, 

45.6, 39.2, 37.2 and 17.7. 

 

Figure 3.91: 13C-NMR (100 MHz, CDCl3, δ ppm) spectrum of maleimide photoproduct 194d. 
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HRMS-ESI (m/z) ([M + Na]+): 

Calculated : 343.9893 

Observed  : 343.9899 

|Δm|  : 1.7 ppm 

 

Figure 3.92: HRMS of maleimide photoproduct 194d. 
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1H-NMR (400 MHz, CD2Cl2, δ ppm): 7.54-7.51 (m, 2H), 7.48-7.44 (m, 2H), 7.39-7.35 (m, 1H), 7.297-7.24 

(m, 2H), 7.17-7.13 (m, 1H), 3.75-3.72 (m, 1H), 3.29-3.24 (m, 1H), 3.13-3.05 (m, 1H), 2.96-2.89 (m, 1H), 

2.77-2.70 (m, 1H), 2.37-2.34 (m, 1H), 2.29 (s, 3H), 2.26-2.22 (m, 1H) and 2.01-1.95 (m, 1H). 

 

Figure 3.93: 1H-NMR (400 MHz, CDCl3, δ ppm) spectrum of maleimide photoproduct 193e. 
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13C-NMR (100 MHz, CD2Cl2, δ ppm): 181.5, 180.0, 143.6, 139.9, 137.9, 136.8, 131.3, 131.1, 131.09, 

130.7, 129.8, 128.97, 60.0, 51.2, 44.5, 30.4, 29.97, 26.6 and 19.2. 

 

Figure 3.94: 13C-NMR (100 MHz, CDCl3, δ ppm) spectrum of maleimide photoproduct 193e. 

*= solvent

*

N

Ph

OO



 

 233 

HRMS-ESI (m/z) ([M + Na]+): 

Calculated : 340.1308 

Observed  : 340.1293 

|Δm|  : 4.4 ppm 

 

Figure 3.95: HRMS of maleimide photoproduct 193e. 
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1H-NMR (400 MHz, DMSO-d6, δ ppm): 8.04 (s, 1H), 7.50 (s, 1H), 7.30-7.26 (m, 1H), 7.15-7.13 (m, 1H), 

7.05-7.01 (m, 2H), 4.49-4.44 (m, 1H), 4.02-3.99 (m, 1H), 3.78-3.74 (m, 1H), 3.32-3.29 (m, 1H), 3.20-3.12 

(m, 1H) 2.38-2.35 (d, J = 11.2 Hz, 1H) and 2.27 (s, 3H). 

 

Figure 3.96: 1H-NMR (400 MHz, CDCl3, δ ppm) spectrum of maleimide photoproduct 193f. 
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13C-NMR (100 MHz, DMSO-d6, δ ppm): 184.1, 180.97, 161.8, 144.3, 142.2, 136.6, 135.3, 133.8, 131.6, 

125.6, 124.3, 79.3, 73.0, 53.7, 48.1, 29.0 and 22.3. 

 

Figure 3.97: 13C-NMR (100 MHz, CDCl3, δ ppm) spectrum of maleimide photoproduct 193f. 
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HRMS-ESI (m/z) ([M + H]+): 

Calculated : 310.1186 

Observed  : 310.1179 

|Δm|  : 2.3 ppm 

 

Figure 3.98: HRMS of maleimide photoproduct 193f. 
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 Cleavage of maleimide photoproduct 193a 3.31.

 Cleavage of maleimide photoproduct 193a using Concd.HCl:TFA 3.31.1.

 

Scheme 3.45: Ether cleavage of photoproduct 193a using Concd.HCl-TFA mixture. 
 

Imide 193a was taken in a sealed flask/vial to which a 1:1 mixture of concd. HCl and 

trifluoroacetic acid (2 mL) was added at 0 °C and stirred for 5 min. The vial was sealed and transferred to 

an oil bath and heated to 110 °C for 24 h. After the reaction, the mixture was cooled to 0 °C, diluted with 

DI water (15 mL) and washed with saturated NaHCO3 solution (10 mL). The organic layer was dried over 

anhyd. Na2SO4, filtered and the solvent was removed under reduced pressure to get the crude product. 

The crude product was purified by combiflash using a hexanes:ethyl acetate mixture. 

TLC condition - Rf = 0.35 (50% hexanes:50% ethyl acetate), Yield = 62% 
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1H-NMR (400 MHz, CD3OD, δ ppm): 7.16-7.12 (m, 1H), 6.77-6.74 (m, 3H), 3.78-3.74 (m, 2H), 2.82 (s, 

1H), 2.49 (dd, J = 10.0, 6.4 Hz, 1H), 1.996 (s, 3H), 1.53 (s, 3H), 1.43 (s, 3H) and 1.27 (s, 3H). 

 

Figure 3.99: 1H-NMR (400 MHz, CDCl3, δ ppm) spectrum of ether cleaved photoproduct 230. 
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13C-NMR (100 MHz, CD3OD, δ ppm): 183.7, 180.9, 157.2, 141.5, 133.96, 124.9, 122.7, 117.3, 57.7, 57.2, 

47.9, 45.2, 40.4, 36.4, 24.98, 21.4 and 20.2. 

 

Figure 3.100: 13C-NMR (400 MHz, CDCl3, δ ppm) spectrum of ether cleaved photoproduct 230. 
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HRMS-ESI (m/z) ([M + Na]+) 

Calculated : 344.1024 

Observed : 344.1024 

|Δm|   : 0.0 ppm 

 

Figure 3.101: HRMS of ether cleaved photoproduct 230. 
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 Cleavage of maleimide photoproduct 193a using BBr3 3.31.2.

 

Scheme 3.46: Cleavage of photoproduct 193a using BBr3 

 
To a solution of imide193a (50 mg, 0.17 mmol) in dry DCM (5 mL) at -78 °C under N2 atmosphere 

BBr3 (1M solution in DCM, 1.75 mL, 10.0 equiv.) was added. The resulting mixture was allowed to warm 

to room temperature over 12 h. After the reaction, the solution was cooled to 0 °C and quenched with 

saturated NaHCO3 solution. The aqueous layer was extracted with DCM (2 × 10mL). The combined 

organic layer was dried over anhyd. Na2SO4, filtered and the solvent was removed under reduced 

pressure to get the crude product. The product was purified by combiflash using a hexanes:ethyl acetate 

mixture. 

Note: 193a had small amount of inseparable regioisomers 194a, so the resulting product contained 

cleavage product from 194a. 

TLC condition - Rf = 0.30 (80% hexanes:20% ethyl acetate), Yield = 70% 
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1H-NMR (400 MHz, CDCl3, δ ppm): 6.93-6.89 (m, 1H), 6.75-6.73 (m, 1H), 6.51 (s, 1H, OH), 6.41-6.39 (m, 

1H), 3.59 (dd, J = 10.8, 5.6 Hz, 1H), 3.51-3.46 (m, 1H), 2.75 (s, 1H), 2.59 (dd, J = 10.8, 5.6 Hz, 1H), 2.02 

(s, 3H), 1.56 (s, 3H), 1.45 (s, 3H) and 1.28 (s, 3H). 

 

Figure 3.102: 1H-NMR (400 MHz, CDCl3, δ ppm) spectrum of cleavage photoproduct 231. 

N
O

HB
r

O
O

*= solvent

*



 

 243 

13C-NMR (100 MHz, CDCl3, δ ppm): 179.6, 176.8, 151.99, 137.2, 130.5, 122.3, 118.3, 114.4, 54.0, 53.8, 

45.4, 37.6, 33.4, 29.3, 22.6, 18.1 and 17.6. 

 

Figure 3.103: 13C-NMR (100 MHz, CDCl3, δ ppm) spectrum of cleavage photoproduct 231. 
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HRMS-ESI (m/z) ([M + Na]+): 

Calculated : 388.0519 

Observed  : 388.0529 

|Δm|  : 2.6 ppm 

 

Figure 3.104: HRMS of cleavage photoproduct 231. 
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 Reduction of maleimide photoproduct 193a using LiAlH4 3.31.3.

 

Scheme 3.47: LiAlH4 reduction of photoproduct 193a. 
 

To a solution of imide 193a (50 mg) in dry THF (5 mL) at 0 °C under N2 atmosphere LiAlH4 (5.0 

equiv.) was added. The resulting mixture was allowed to warm to room temperature and stirred for 1 h. 

After the reaction, the mixture was cooled to 0 °C and quenched with saturated NH4Cl solution. The 

aqueous layer was extracted with ethyl acetate (2 × 10 mL). The combined organic layer was dried over 

anhyd. Na2SO4, filtered and the solvent was removed under reduced pressure to get the crude product. 

The product was purified by combiflash using a hexanes:ethyl acetate mixture. 

TLC condition - Rf = 0.30 (50% hexanes:50% ethyl acetate)  
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1H-NMR (400 MHz, CD3OD, δ ppm): 7.10-7.06 (m, 1H), 6.90-6.86 (m, 2H), 5.01-5.00 (m, 1H), 4.63 (d, J = 

13.6 Hz, 1H), 4.34 (dd, J = 13.2, 4.4 Hz, 1H), 3.89–3.79 (m, 1H, exchangeable), 2.30 (dd, J = 6.0, 3.2 Hz, 

1H), 2.19 (s, 3H), 1.85 (t, J = 4.0 Hz, 1H), 1.50 (s, 3H), 1.44 (s, 3H) and 1.29 (s, 3H). 

 

Figure 3.105: 1H-NMR (400 MHz, CDCl3, δ ppm) spectrum of reduction of photoproduct 232. 
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13C-NMR (100 MHz, CD3OD, δ ppm): 178.9, 158.2, 138.6, 131.96, 128.7, 125.4, 119.8, 89.3, 73.5, 56.0, 

55.5, 46.3, 40.4, 32.2, 22.95, 22.7 and 17.98. 

 

Figure 3.106: 13C-NMR (400 MHz, CDCl3, δ ppm) spectrum of reduction of photoproduct 232. 
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HRMS-ESI (m/z) ([M + Na]+): 

Calculated : 310.1414 

Observed  : 310.1419 

|Δm|  : 1.6 ppm 

 

Figure 3.107: HRMS of reduction of photoproduct 232. 
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 General procedure for synthesis of maleimide derivatives for [5+2] photocycloaddition and 3.32.

their precursors 

 Synthesis of 2-(allyl)aniline 222 3.32.1.

 

Scheme 3.48: Synthesis of 2-(allyl)aniline derivative 222. 
 

To a solution aniline derivative 199 (5.3 g, 1.0 equiv.) in dry THF (40 mL) at 0 °C, allyl 

magnesium halide (2.0 M in THF, 2.2 equiv.) was added slowly over 15 min. The resulting mixture was 

allowed to warm to room temperature over 12 h. After the reaction, the mixture was cooled to 0 °C and 

quenched with dil. HCl. The aqueous layer was extracted with DCM (3 × 50 mL). The combined organic 

layer was dried over anhyd. Na2SO4, filtered and the solvent was removed under reduced pressure to get 

the crude product. The crude product was purified by combiflash using a hexanes: ethyl acetate mixture. 

Rf = 0.40 (80% hexanes: 20% ethyl acetate), Yield for 222 = 55% 

1H-NMR (400 MHz, CDCl3, δ ppm): 7.03-6.95 (m, 2H), 6.69-6.66 (m, 1H), 6.12-5.94 (m, 1H), 5.20-5.12 (m, 

2H), 3.68 (bs, 2H), 3.38-3.34(m, 2H) and 2.22 (s, 3H). 

13C-NMR (100 MHz, CDCl3, δ ppm): 143.0,136.1,128.8,128.0,123.3,122.3118.1,116.1,36.8 and 17.6. 

 

 Synthesis of 2-iodo-4,6-dimethyl aniline 226 3.32.2.

 

Scheme 3.49: Synthesis of 2-iodo-4,6-dimethylaniline 226. 
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Synthesis of iodinating agent benzyltrimethylammonium dichloroiodate (BTMA ICl2): The 

compound was synthesized using previously reported procedure.60 To a solution of iodinemonochloride 

(3.0 g, 18.6 mmol) in DCM (37 mL) at room temperature added a solution of benzyltrimethylammonium 

chloride (3.5 g, 18.6 mmol) in DI water (22 mL) slowly over 10 mins. The resulting mixture was stirred at 

room temperature for 30 mins. The layers were separated and the organic layer was washed with DI 

water (10 mL), dried over anhyd. Na2SO4, filtered and the solvent was removed under reduced pressure 

to get the crude product as a brownish yellow solid. The crude product was directly used for iodination 

reaction without further purification (isolated crude product yield: 98%). 

Note: The iodine monochloride was purchased as 1M solution in DCM, which was again diluted using 

required amount of DCM. The crude BTMA ICl2 can also be recrystallized in DCM: Ether mixture. 

To a mixture of aniline (1.0 g, 8.2 mmol) and calcium carbonate (1.4 g) in DCM:methanol (50:50 mixture, 

50 mL) at room temperature added a solution of benzyltrimethylammonium dichloroiodate (2.9 g, 8.2 

mmol) in DCM (30 mL) slowly over 30 mins. The resulting mixture was stirred at room temperature for 1 h. 

After the reaction, the mixture was filtered through celite bed under vacuum and the bed was washed with 

DCM (50 mL). The combined filtrate was concentrated under reduced pressure. The residue was taken 

up in 5% NaHSO3 aqueous solution (40 mL) and the aqueous layer was extracted with diethyl ether (3 x 

30 mL). The combined organic layer was dried over anhyd. Na2SO4, filtered and the solvent was removed 

under reduced pressure to get the crude product. The crude product was purified by combiflash using 

hexanes:ethyl acetate mixture (95:5) to get the title compound as a brownish solid (isolated yield = 67%). 

TLC condition - Rf = 0.35 (95% hexanes:5% ethyl acetate)  

1H-NMR (400 MHz, CDCl3, δ ppm): 7.34 (s, 1H) and 6.82 (s, 1H),3.90 (bs, 2H), 2.18 (s, 3H), 2.16 (s, 3H). 

13C-NMR (100 MHz, CDCl3, δ ppm): 142.5, 137.0, 131.6, 129.5, 122.7, 85.0, 20.0 and 19.1. 
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  Synthesis of N-diallyl-2-iodo-4,6-dimethylaniline 225 3.32.3.

 

Scheme 3.50: Synthesis of N-diallyl-2-iodo-4,6-dimethylaniline 225. 
 
 The compound was synthesized according to a literature reported procedure.61 Mixture of aniline 

(5 g, 20.2 mmol), allyl bromide (4.4 mL, 50.9 mmol) and sodium carbonate (6.4 g, 60.6 mmol) in DMF 

(150 mL) was heated to 150 °C in a sealed tube and maintained for 2 h. After the reaction, the mixture 

was cooled to room temperature and poured into cold DI water (200 mL). The aqueous layer was 

extracted with diethyl ether (3 x 50 mL). The combined organic layer was washed with DI water (2 x 50 

mL) to remove traces of DMF, dried over anhy. Na2SO4, filtered and the solvent was removed under 

reduced pressure to get the crude product. The crude product was purified by combiflash using 

hexanes:ethyl acetate mixture (98:2) to get the title compound as a pale yellow oil (isolated yield = 90%).  

TLC condition - Rf = 0.90 (90% hexanes:10% ethyl acetate) 

1H-NMR (400 MHz, CDCl3, δ ppm): 7.52 (s, 1H), 6.90 (s, 1H), 5.97 - 5.87 (m, 2H), 5.14 - 5.09 (m, 2H), 

5.02 - 4.99 (m, 2H), 3.74 - 3.60 (m, 4H), 2.27 (s, 3H) and 2.20 (s, 3H). 

13C-NMR (100 MHz, CDCl3, δ ppm): 147.7, 139.0, 138.1, 137.0, 136.9, 132.4, 116.6, 104.6, 56.2, 20.3 

and 20.0. 
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 Synthesis of N-diallyl-2,4-dimethyl-6-allyl-aniline derivative 224 3.32.4.

 

Scheme 3.51: Synthesis of N-diallyl-2,4-dimethyl-6-allyl-aniline derivative 224. 
 
 The compound was synthesized according to the literature reported procedure.62 To a solution of 

N-diallyl-2-iodo aniline derivative 225 (5.9 g, 18.0 mmol) in dry THF (120 mL) at -15 °C under N2 

atmosphere added iPrMgCl.LiCl (1.3M in THF, 15.2 mL, 19.8 mmol) slowly over 10 mins. The mixture 

was maintained at -15 °C for 45 mins after which 3-chloro-2-methylpropene (2.13 mL, 21.6 mmol) and 

CuCN.2LiCl (0.16 mL, 0.9 mmol) was added. The reaction mixture was slowly allowed to warm to room 

temperature over 12 h. The reaction mixture was quenched with Satd. NH4Cl solution (50 mL), stirred and 

the layers were separated. The aqueous layer was extracted with diethyl ether (2 X 75 mL). The 

combined organic layer was dried over anhyd. Na2SO4, filtered and the solvent was removed under 

reduced pressure to get the crude product. The crude product was purified by combiflash using 

hexanes:ethyl acetate mixture (95:5) to get the title compound as a pale yellow oil (isolated yield = 92%). 

TLC condition - Rf = 0.75 (100% hexanes) 

1H-NMR (400 MHz, CDCl3, δ ppm): 6.79 (s, 2H), 5.86-5.76 (m, 2H), 5.09- 5.08 (m, 1H), 5.05- 5.03 (m, 1H), 

4.99-4.96 (m, 2H), 4.82-4.81 (m, 1H), 4.58- 4.578 (m, 1H), 3.64-3.51 (m, 4H), 3.37 (s, 2H), 2.25 (s, 3H), 

2.22 (s, 3H) and 1.697 (s, 3H). 

13C-NMR (100 MHz, CDCl3, δ ppm): 145.9, 138.96, 137.5, 137.3, 134.7, 130.1, 129.6, 128.6, 116.1, 112.1, 

56.8, 40.2, 23.0, 21.0 and 19.9. 

  

N
I

iPrMgCl, THF, 30 min

Cl

N

229
225 224

CuCN.2LiCl, 12h
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 Synthesis of 2,4-dimethyl-6-allyl-aniline derivative 223 3.32.5.

 

Scheme 3.52: Synthesis of 2,4-dimethyl-6-allyl-aniline derivative 223. 
 

The compound was synthesized according to the literature reported procedure.14 In a flame dried 

flask charged Pd(PPh3)4 (183 mg, 0.16 mmol) and 1,3-dimethylbarbituric acid (12.8 g, 82 mmol). To this 

mixture added a solution of N-diallyl-6-(2-methylallyl)-aniline derivative 224 (4.2 g, 16.4 mmol) in dry DCM 

(100 mL) via cannula. The resulting solution was heated to 35 oC and maintained for 16 h. After the 

reaction the mixture was cooled to room temperature and the solvent was removed under reduced 

pressure. The residue was taken in a Satd. Na2CO3 solution (250 mL) and the aqueous layer was 

extracted with diethyl ether (3 X 75 mL). The combined organic layer was washed with Satd. Na2CO3 

solution (2 X 50 mL), dried over anhyd. Na2SO4, filtered and the solvent was removed under reduced 

pressure to get the crude product. The crude product was purified by combiflash using hexanes:ethyl 

acetate mixture (95:5) to get the title compound as a pale yellow oil (isolated yield = 92%). 

Note: The product accompanied by inseparable Di-allylated 1,3- dimethylbarbituric acid byproduct. So the 

mixture was taken to next step where it gets removed by filtration after the reaction. The relative 

percentage of the product was determined by 1H-NMR spectroscopy.  

TLC condition - Rf = 0.35 (100% hexanes) 

1H-NMR (400 MHz, CDCl3, δ ppm): 6.78 (s, 1H), 6.72 (s, 1H), 4.85 – 4.84 (m, 1H), 4.73 – 4.728 (m, 1H), 

3.54 (bs, 2H), 3.24 (s, 2H), 2.20 (s, 3H), 2.13 (s, 3H) and 1.71 (s, 3H). 

13C-NMR (100 MHz, CDCl3, δ ppm): 144.0, 141.0, 129.61, 129.56, 127.2, 123.5, 122.6, 111.7, 41.6, 22.5, 

20.6 and 17.7. 

1,3-Dimethylbarbituric acid

Pd(PPh3)4,DCM, 35 oC, 16 h

NH2

223

N

224
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 Synthesis of atropisomeric maleimide derivatives 205a-d, 205g, 205i 3.32.6.

 

Scheme 3.53: Synthesis of atropisomeric maleimide derivatives 205a-d, 205g and 205i. 
 

To a solution of aniline derivative 222 (500 mg, 1.1 equiv.) in toluene (5 mL) corresponding 

anhydride 221a-e, 221f, 221h and (1.0 equiv.) was added and the resulting mixture was heated to 50 °C 

for 2 h. After the reaction, the solvent was concentrated and the residue was directly taken to next step. 

To the residue from the above reaction in glacial acetic acid (5 mL), anhyd. sodium acetate (236 mg, 2.88 

mmol) was added. The resulting mixture was refluxed for 2 h. After the reaction, the mixture was cooled 

to room temperature and diluted with ethyl acetate (20 mL). The organic layer was washed with DI water 

(2 x 15 mL), saturated NaHCO3 solution (2 × 15 mL), dried over anhyd. Na2SO4, filtered and concentrated 

under reduced pressure to yield crude product. The crude product was purified by combiflash using a 

hexanes:ethyl acetate mixture. 

Rf = 0.80 (80% hexanes:20% ethyl acetate) for 205i (Yield = 80 %) 

1H-NMR (400 MHz, CDCl3, δ ppm): 7.27-7.23 (m, 1H), 7.16-7.12 (m, 2H), 5.84-5.74 (m, 1H), 5.03-4.97 

(m, 2H), 3.18 (d, J=6.8 Hz, 2H), 2.71 (s, 2H), 2.08 (s, 3H), 1.421 (s, 3H) and 1.42 (s, 3H). 

13C-NMR (100 MHz, CDCl3, δ ppm): 182.2, 175.03, 137.97, 136.2, 136.1, 130.3, 129.8, 129.4, 128.3, 

116.6, 44.2, 40.8, 36.5, 26.4, 25.6, and 17.9. 

HRMS-ESI (m/z) ([M + Na]+): Calculated: 280.1308; Observed: 280.1310; |Δm|: 0.8 ppm. 

TLC condition - Rf = 0.45 (80% hexanes:20% ethyl acetate) for 205a (Yield = 54 % ) 

TLC condition - Rf = 0.65 (80% hexanes:20% ethyl acetate) for 205b (Yield = 60 %) 

TLC condition - Rf = 0.50 (80% hexanes:20% ethyl acetate) for 205c (Yield = 67 %) 

TLC condition - Rf = 0.50 (80% hexanes:20% ethyl acetate) for 205d (Yield = 78 % ) 

TLC condition - Rf = 0.60 (80% hexanes:20% ethyl acetate) for 205g (Yield = 40 % ) 

 

NH2

N OO

R1

O OO

R1

221a-e,221h
R1= H, Me, Ph, Br, CF3

R2 = H,Me

(ii) CH3COONa, CH3COOH, 
reflux,2h

222
205a-d,205g, 205h

(i) Toluene, 45 oC, 2 h;
O OO

221f

or N OO

205i

R2
R2

or
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 Synthesis of atropisomeric maleimide derivative 205e 3.32.7.

 

Scheme 3.54: Synthesis of atropisomeric maleimide derivatives 205e. 
 

To a solution of aniline derivative 223 (500 mg, 1.1 equiv.) in toluene (5 mL) corresponding 

anhydride 221d (1.0 equiv.) was added and the resulting mixture was heated to 50 °C for 2 h. After the 

reaction, the solvent was concentrated and the residue was directly taken to next step. To the residue 

from the above reaction in glacial acetic acid (5 mL), anhyd. Sodium acetate (236 mg, 2.88 mmol) was 

added. The resulting mixture was refluxed for 2 h. After the reaction, the mixture was cooled to room 

temperature and diluted with ethyl acetate (20 mL). The organic layer was washed with DI water (2 x 15 

mL), saturated NaHCO3 solution (2 × 15 mL), dried over anhyd. Na2SO4, filtered and concentrated under 

reduced pressure to yield crude product. The crude product was purified by combiflash using a 

hexanes:ethyl acetate mixture. 

 

TLC condition - Rf = 0.2 (95% hexanes:5% ethyl acetate) for 205e (Yield = 68 % ) 

  

N OO

R1

(ii) CH3COONa, CH3COOH, 
reflux,2h

205e

(i) Toluene, 45 oC, 2 h;

NH2

O OO

R1

221d
R1=  Ph223
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 Synthesis of atropisomeric maleimide derivative 205f 3.32.8.

 

Scheme 3.55: Synthesis of atropisomeric maleimide derivatives 205f. 
 

To a solution of bromo maleimide derivative 205c (500 mg, 1.0 equiv.) in MeOH (5 mL) 

triethylamine in MeOH (1.1 equiv.) was added and the resulting mixture refluxed for 1 h. After the 

reaction, the solvent was concentrated and the reaction mixture was quenched with DI water. The 

aqueous layer is extracted with DCM (20 mL). The combined organic layer was dried over anhyd. 

Na2SO4, filtered and concentrated under reduced pressure to yield crude product. The crude product was 

purified by combiflash using a hexanes:ethyl acetate mixture. 

TLC condition - Rf = 0.40 (50% hexanes:50% ethyl acetate) ,Yield = 63 % 

  

N OO

Br

205c

MeOH, Et3N
RT, reflux 1h

N OO

OMe

205f
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1H-NMR (400 MHz, CDCl3, δ ppm): 7.27-7.23 (m, 1H), 7.16-7.12 (m, 2H), 5.81-5.71 (m, 1H), 4.98-4.93 

(m, 2H), 3.19-3.17 (d, J =  6.4 Hz, 2H) and 2.07 (s, 3H). 

 
Figure 3.108: 1H-NMR (400 MHz, CDCl3, δ ppm) spectrum of allyl maleimide 205a. 
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13C-NMR (100 MHz, CDCl3, δ ppm): 169.9, 130.3, 137.6, 136.1, 134.5, 129.9, 129.4, 129.3, 128.3, 116.6, 

36.9 and 18.1. 

 
Figure 3.109: 13C-NMR (100 MHz, CDCl3, δ ppm) spectrum of allyl maleimide 205a. 
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1H-NMR (400 MHz, CDCl3, δ ppm): 7.28-7.24 (m, 1H), 7.17-7.12 (m, 2H), 6.46-6.45 (q, J = 5.2 Hz 1H), 

5.82-5.72 (m, 1H), 4.98-4.93 (m, 2H), 3.19-3.17 (d, J = 6.8 Hz, 2H), 2.14-2.14 (d, J = 2 Hz, 2H) and 2.09 

(s, 3H). 

 
Figure 3.110: 1H-NMR (400 MHz, CDCl3, δ ppm) spectrum of allyl maleimide 205b. 
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13C-NMR (100 MHz, CDCl3, δ ppm): 170.9, 169.9, 146.1, 139.3, 137.5, 136.2, 129.7, 129.6, 129.3, 128.2, 

127.8, 116.4, 36.9, 18.2 and 11.4. 

 
Figure 3.111: 13C-NMR (100 MHz, CDCl3, δ ppm) spectrum of allyl maleimide 205b. 
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1H-NMR (400 MHz, CDCl3, δ ppm): 7.30-7.26 (m, 1H), 7.18-7.14 (m, 2H), 6.99 (s,1H), 5.81-5.71 (m, 1H), 

5.00-4.94 (m, 2H), 3.20-3.19 (d, J = 6.8 Hz, 2H) and 2.10 (s, 3H). 

 
Figure 3.112: 1H-NMR (400 MHz, CDCl3, δ ppm) spectrum of allyl maleimide 205c. 
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13C-NMR (100 MHz, CDCl3, δ ppm): 167.7, 164.4, 139.2, 137.5, 136.0, 132.3, 131.9, 130.2, 129.5, 129.1, 

128.4, 116.7, 37.1 and 18.1. 

 
Figure 3.113: 13C-NMR (100 MHz, CDCl3, δ ppm) spectrum of allyl maleimide 205c. 
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HPLC analysis conditions: 

For analytical conditions, 

I). Column    : CHIRALPAK-IC  

 Abs. detector wavelength : 254 nm and 270 nm 

 Mobile phase   : Hexanes:2-propanol = 98:2 

 Flow rate   : 1.0 mL/min 

 Retention times (min)  : ∼ 6.72 [(+)-205c] and ∼ 7.40 [(-)-205c] 

For preparative conditions, 

I). Column    : CHIRALPAK-IC  

Abs. detector wavelength  : 254 nm and 270 nm 

Mobile phase    : Hexanes:2-propanol = 99:1 

Flow rate    : 3.0 mL/min  

Retention times (min)   : ∼ 13.05 [(+)-205c and ∼ 15.30 [(-)-205c] 

Optical rotation [α]D22 :  

HPLC retention time (CHIRALPAK-IC) at ∼ 6.72 min, (c ≈ 0.383 %, CHCl3) = +8.33 deg 

HPLC retention time (CHIRALPAK-IC) at ∼ 7.40 min, (c ≈ 0.383 %, CHCl3) = -8.85 deg. 
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1H-NMR (400 MHz, CDCl3, δ ppm): 8.03-8.00 (m, 2H), 7.49-7.48 (m, 3H), 7.32-7.29 (m, 1H), 7.23-7.21 

(m, 2H), 6.90 (s, 1H),5.91-5.80 (m, 1H), 5.04-5.00 (m, 2H), 3.31-3.29 (d, J = 6.4 Hz, 2H) and 2.1 (s, 3H). 

 
Figure 3.114: 1H-NMR (400 MHz, CDCl3, δ ppm) spectrum of allyl maleimide 205d. 
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13C-NMR (100 MHz, CDCl3, δ ppm): 169.9, 169.5, 144.1, 139.4, 137.7, 136.3, 131.6, 129.8, 129.8, 129.4, 

129.3, 129.1, 128.9, 128.3, 124.3, 116.6, 37.1 and 18.3. 

 
Figure 3.115: 13C-NMR (100 MHz, CDCl3, δ ppm) spectrum of allyl maleimide 205d. 
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HPLC analysis conditions: 

For analytical conditions, 

I). Column    : CHIRALPAK-ADH  

 Abs. detector wavelength : 254 nm and 270 nm 

 Mobile phase   : Hexanes:2-propanol = 95:5 

 Flow rate   : 1.0 mL/min 

 Retention times (min)  : ∼ 7.17 [(+)-205d] and ∼ 7.72 [(-)-205d] 

For preparative conditions, 

I). Column    : CHIRALPAK-ADH  

Abs. detector wavelength  : 254 nm and 270 nm 

Mobile phase    : Hexanes:2-propanol = 99:1 

Flow rate    : 3.0 mL/min  

Retention times (min)   : ∼ 31.95 [(+)-205d and ∼ 36.02 [(-)-205d] 

Optical rotation [α]D22 :  

HPLC retention time (CHIRALPAK-ADH) at ∼ 7.17 min, (c ≈ 0.231 %, CHCl3) = +7.10 deg 

HPLC retention time (CHIRALPAK-ADH) at ∼ 7.72 min, (c ≈ 0.231 %, CHCl3) = -7.45 deg. 
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1H-NMR (400 MHz, CDCl3, δ ppm): 7.98-7.96 (m, 2H), 7.48-7.46 (m, 3H), 7.02-6.98 (d, J = 16.4, 2H), 

6.85 (s, 1H), 4.72 (s, 1H), 4.62 (s, 1H), 3.19 (s, 2H), 2.34 (s, 3H), 2.12 (s, 3H), and 1.59 (s, 3H). 

 
Figure 3.116: 1H-NMR (400 MHz, CDCl3, δ ppm) spectrum of allyl maleimide 205e. 
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13C-NMR (100 MHz, CDCl3, δ ppm): 169.7, 169.6, 144.0, 139.5, 138.5, 137.3, 131.5, 130.2, 129.6, 129.2, 

129.0, 128.9, 42.6, 22.1, 21.4 and 18.1. 

 
Figure 3.117: 13C-NMR (100 MHz, CDCl3, δ ppm) spectrum of allyl maleimide 205e. 
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HPLC analysis conditions: 

For analytical conditions, 

I). Column    : CHIRALPAK-IC  

 Abs. detector wavelength : 254 nm and 270 nm 

 Mobile phase   : Hexanes:2-propanol = 90:10 

 Flow rate   : 1.0 mL/min 

 Retention times (min)  : ∼ 6.12 [(+)-205e] and ∼ 6.64 [(-)-205e] 

For preparative conditions, 

I). Column    : CHIRALPAK-IC  

Abs. detector wavelength : 254 nm and 270 nm 

Mobile phase   : Hexanes:2-propanol = 99:1 

Flow rate   : 3.0 mL/min  

Retention times (min)  : ∼ 19.53 [(+)-205e and ∼ 22.10 [(-)-205e] 

Optical rotation [α]D22 :  

HPLC retention time (CHIRALPAK-IC) at ∼ 6.12 min, (c ≈ 1.364 %, CHCl3) = +7.88 deg 

HPLC retention time (CHIRALPAK-IC) at ∼ 6.64 min, (c ≈ 1.364 %, CHCl3) = -7.74 deg. 
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1H-NMR (400 MHz, CDCl3, δ ppm): 7.27-7.23 (m, 1H), 7.15-7.11 (m, 2H), 5.83-5.72 (m, 1H), 5.54 (s, 1H), 

4.99-4.95 (m, 2H), 3.96 (s, 3H), 3.20 (d, J = 6.8, 2H) and 2.10 (s, 3H). 

 
Figure 3.118: 1H-NMR (400 MHz, CDCl3, δ ppm) spectrum of allyl maleimide 205f. 
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13C-NMR (100 MHz, CDCl3, δ ppm): 169.3, 164.7, 161.0, 139.4, 137.7, 137.1, 129.8, 129.3, 

129.0, 128.2, 116.5, 96.7, 59.2, 36.9 and 18.2. 

 
 

Figure 3.119: 13C-NMR (100 MHz, CDCl3, δ ppm) spectrum of allyl maleimide 205f. 
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HPLC analysis conditions: 

For analytical conditions, 

I). Column    : CHIRALPAK-IC  

 Abs. detector wavelength : 254 nm and 270 nm 

 Mobile phase   : Hexanes:2-propanol = 95:5 

 Flow rate   : 1.0 mL/min 

 Retention times (min)  : ∼ 13.59 [(-)-205f] and ∼ 15.34 [(+)-205f] 

For preparative conditions, 

I). Column    : CHIRALPAK-IC  

Abs. detector wavelength : 254 nm and 270 nm 

Mobile phase   : Hexanes:2-propanol = 99:1 

Flow rate   : 3.0 mL/min  

Retention times (min)  : ∼ 5.64 [(-)205f and ∼ 18.89 (+)205f] 

Optical rotation [α]D24 :  

HPLC retention time (CHIRALPAK-IC) at ∼ 13.59 min, (c ≈ 0.408 %, CHCl3) = - 3.69 deg 

HPLC retention time (CHIRALPAK-IC) at ∼ 15.35 min, (c ≈ 0.408 %, CHCl3) = +1.89 deg. 
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1H-NMR (400 MHz, CDCl3, δ ppm): 7.32-7.28 (m, 1H), 7.21-7.15 (m, 2H), 7.09-7.08 (q, J = 5.2Hz, 1H), 

5.79-5.69 (m, 1H), 4.99-4.92 (m, 2H), 3.22-3.20 (d, J = 6.8 Hz, 2H) and 2.10 (s, 3H). 

 
 

Figure 3.120: 1H-NMR (400 MHz, CDCl3, δ ppm) spectrum of allyl maleimide 205g. 
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13C-NMR (100 MHz, CDCl3, δ ppm): 166.2, 163.9, 139.0, 137.5, 136.0, 133.7, 130.3, 129.6, 128.7, 128.5, 

120.8, 118.1, 116.5, 37.3 and 17.9. 

 
Figure 3.121: 13C-NMR (100 MHz, CDCl3, δ ppm) spectrum of allyl maleimide 205g. 
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HPLC analysis conditions: 

For analytical conditions, 

I). Column    : CHIRALPAK-ADH  

 Abs. detector wavelength : 254 nm and 270 nm 

 Mobile phase   : Hexanes:2-propanol = 95:5 

 Flow rate   : 1.0 mL/min 

 Retention times (min)  : ∼ 4.30 [(A)-205g] and ∼ 5.30 [(B)-205g] 

For preparative conditions, 

I). Column    : CHIRALPAK-ADH  

Abs. detector wavelength : 254 nm and 270 nm 

Mobile phase   : Hexanes:2-propanol = 99:1 

Flow rate   : 3.0 mL/min  

Retention times (min)  : ∼ 10.42 [(A)-205g] and ∼ 12.42 [(B)-205g] 

Optical rotation [α]D24 :  

HPLC retention time (CHIRALPAK-ADH) at ∼ 10.42 min, (c ≈ 0.283 %, CHCl3) = +7.47 deg 

HPLC retention time (CHIRALPAK-ADH) at ∼ 12.42 min, (c ≈ 0.283 %, CHCl3) = -7.21 deg. 
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1H-NMR (400 MHz, CDCl3, δ ppm): 7.29-7.25 (m, 1H), 7.18-7.15 (m, 2H), 5.81-5.71 (m, 1H), 4.99-4.93 

(m, 2H), 3.20-3.18 (d, J = 6.8 Hz, 2H), 2.11 (s, 3H) and 2.09 (s, 3H). 

 
Figure 3.122: 1H-NMR (400 MHz, CDCl3, δ ppm) spectrum of allyl maleimide 205h. 
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13C-NMR (100 MHz, CDCl3, δ ppm): 168.5, 164.5, 142.8, 139.2, 137.6, 136.1, 129.9, 129.4, 128.3, 125.5, 

116.5, 37.0, 18.2 and 11.2. 

 
Figure 3.123: 13C-NMR (100 MHz, CDCl3, δ ppm) spectrum of allyl maleimide 205h. 
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 UV-Vis Spectrum of atropisomeric maleimides and its photoproducts  3.33.

The UV-Vis spectra of atropisomeric maleimides and its photoproducts were measured in 

acetonitrile. 

 
 

Figure 3.124: UV-Vis spectrum of allyl maleimide 205 and its photoproducts 206 and 207. 
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Figure 3.125: Molar absorptivity of 205 at longest absorption wavelength.  

 
Solvatochromic effect: The UV-Vis spectra of atropisomeric maleimide 205d in various solvent viz. 

Methyl cyclohexane (MCH), acetonitrile (MeCN) and methanol (MeOH). 

 

Figure 3.126: Solvatochromic effect of allyl maleimide 205d. 
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 General irradiation procedures and characterization of photoproducts 3.34.

 Process for photoreaction of atropisomeric maleimides 205a-l 3.34.1.

 

Scheme 3.56: General irradiation procedure for maleimide derivatives 205a-i. 
 

Enantiospecific reactions: A solution of optically pure atropisomeric maleimides obtained from 

HPLC preparative separation on a chiral stationary phase (2.5-4.0 mM or 1 mg/1 mL) in appropriate 

solvent was irradiated in either one of the following procedures. Irradiated in a Rayonet reactor fitted with 

bulb of desired wavelength. After the irradiation, the solvent was evaporated under reduced pressure and 

the photoproducts were isolated by preparative thin layer chromatography and characterized by NMR 

spectroscopy, mass spectrometry, single crystal XRD, [α]D and by HPLC. HPLC analysis of the 

photolysate on a chiral stationary phase gave the optical purity of the photoproducts. 

Large-scale reactions: Large-scale reactions were carried out on racemic maleimides as 

batches (4 × 20 mL test tubes per batch). After the irradiation the solutions were combined and the 

solvent was evaporated under reduced pressure. The residue was purified by combiflash using a 

hexanes:ethyl acetate mixture as mobile phase. Conversion and mass balance were obtained from NMR 

integration of the crude photosylate against triphenylmethane as an internal standard using the equation 

2.1 (Chapter 2) 

The dr of the photoproducts 206 and 207 were calculated from the crude reaction mixture after the 

photoreaction. 
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TLC condition - Rf = 0.30 (80% hexanes:20% ethyl acetate) for 206a  

TLC condition - Rf = 0.15, 0.2 (80% hexanes:20% ethyl acetate) for 206b and 207b respectively  

TLC condition - Rf = 0.30, 0.2 (80% hexanes:20% ethyl acetate) for 206c and 207c respectively 

TLC condition - Rf = 0.40 (80% hexanes:20% ethyl acetate) for 206d and 207d (single spot) 

TLC condition - Rf = 0.20 (80% hexanes:20% ethyl acetate) for 206g and 207g (single spot) 

TLC condition - Rf = 0.10 (50% hexanes:50% ethyl acetate) for 206f  

TLC condition - Rf = 0.20, 0.10 (80% hexanes:20% ethyl acetate) for 206g and 207g respectively  

TLC condition - Rf = 0.40, 0.2 (80% hexanes:20% ethyl acetate) for 206h and 207h respectively 

  



 

 282 

1H-NMR (400 MHz, CDCl3, δ ppm): 7.05-7.01 (m, 3H), 6.58-6.6.55 (m, 1H), 6.39-6.36 (m, 1H), 5.08-5.02 

(m, 1H), 3.66-3.59 (m, 1H), 3.08-2.99 (m, 1H), 2.78-2.72 (m, 2H) and 2.23 (s, 3H). 

 
Figure 3.127: 1H-NMR (400 MHz, CDCl3, δ ppm) spectrum of allyl maleimide photoproduct 206a. 
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13C-NMR (100 MHz, CDCl3, δ ppm): 209.9, 172.5, 148.9, 146.3, 145.7, 141.5, 141.3, 138.2, 135.7, 132.4, 

67.0, 60.9, 44.5 and 31.9. 

 
Figure 3.128: 13C-NMR (100 MHz, CDCl3, δ ppm) spectrum of allyl maleimide 206a. 
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1H-NMR (400 MHz, CDCl3, δ ppm): 7.03-6.99(m, 3H), 6.46-6.45 (m, 1H), 5.01-4.96 (m, 1H), 3.61-3.54 (m, 

1H), 3.07-3.00 (m, 1H), 2.80-2.73 (m, 2H), 2.22 (s, 3H) and 2.05-2.04 (d, J = 4 Hz 3H). 

 
Figure 3.129: 1H-NMR (400 MHz, CDCl3, δ ppm) spectrum of allyl maleimide photoproduct 206b. 
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13C-NMR (100 MHz, CDCl3, δ ppm): 200.9, 162.9, 145.3, 139.1, 132.3, 131.4, 131.2, 127.9, 125.4, 122.3, 

56.6, 51.3, 34.3, 21.9 and 20.6. 

 
Figure 3.130: 13C-NMR (100 MHz, CDCl3, δ ppm) spectrum of allyl maleimide 206b. 
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1H-NMR (400 MHz, CDCl3, δ ppm): 7.07-7.02(m, 3H), 6.37 (s, 1H), 5.05-4.98 (m, 1H), 3.64-3.57 (m, 1H), 

2.98-2.90 (m, 1H), 2.78-2.65 (m, 2H), 2.22 (s, 3H) and 2.18 (s, 3H). 

 
Figure 3.131: 1H-NMR (400 MHz, CDCl3, δ ppm) spectrum of allyl maleimide photoproduct 207b. 
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13C-NMR (100 MHz, CDCl3, δ ppm): 199.7, 163.7, 145.1, 138.9, 133.1, 131.6, 131.2, 128.3, 125.5, 122.4, 

56.9, 50.6, 34.1, 21.9 and 21.3. 

 
Figure 3.132: 13C-NMR (100 MHz, CDCl3, δ ppm) spectrum of allyl maleimide 207b. 
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1H-NMR (400 MHz, CDCl3, δ ppm): 7.19 (s, 1H), 7.05-7.02 (m, 3H), 5.07-4.99 (m, 1H), 3.65-3.58 (m, 1H), 

3.19-3.11 (m, 1H), 2.92-2.75 (m, 2H) and 2.22 (s, 3H). 

 
Figure 3.133: 1H-NMR (400 MHz, CDCl3, δ ppm) spectrum of allyl maleimide photoproduct 206c. 
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13C-NMR (100 MHz, CDCl3, δ ppm): 192.7, 160.3, 138.5, 137.5, 132.9, 131.4, 131.3, 128.2, 125.9, 122.5, 

56.5, 50.3, 34.2 and 21.9. 

 
Figure 3.134: 13C-NMR (100 MHz, CDCl3, δ ppm) spectrum of allyl maleimide 206c. 

N
O

O
B
r

*

* = Solvent



 

 290 

1H-NMR (400 MHz, CDCl3, δ ppm): 7.08 (s, 1H), 7.07-7.04 (m, 3H), 5.13-5.06 (m, 1H), 3.68-3.61 (m, 1H), 

2.99-2.91 (m, 1H), 2.79-2.70 (m, 2H) and 2.23 (s, 3H). 

 
Figure 3.135: 1H-NMR (400 MHz, CDCl3, δ ppm) spectrum of allyl maleimide photoproduct 207c. 
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13C-NMR (100 MHz, CDCl3, δ ppm): 196.5, 158.1, 138.3, 137.7, 135.6, 131.4, 128.7, 126.2, 122.6, 57.2, 

50.0, 34.1and 21.8. 

 
Figure 3.136: 13C-NMR (100 MHz, CDCl3, δ ppm) spectrum of allyl maleimide 207c. 
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1H-NMR (400 MHz, CDCl3, δ ppm), (Major 206d + minor 207d, 70:30): 7.50-7.27 (m, 16H), 7.06-7.04 (m, 

9H), 6.67 (s, 2H), 6.62 (s, 1H), 5.23-5.13 (m, 3H), 3.64-3.58 (m, 3H), 3.18-3.11 (m, 2H), 3.01-2.95(m, 3H), 

2.82-2.71 (m, 4H), 2.26 (s,6H) and 2.25 (s, 3H). 

 
Figure 3.137: 1H-NMR (400 MHz, CDCl3, δ ppm) spectrum of allyl maleimide photoproduct 206d and 
207d. 
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13C-NMR (100 MHz, CDCl3, δ ppm), (Major 206d + minor 207d, 70:30): 201.9, 200.7, 163.7,162.9, 148.6, 

146.6, 138.9, 138.7, 136.8, 135.5, 132.3, 131.8, 131.4, 131.2, 130.1, 129.8, 129.1, 128.8, 128.7, 128.5, 

128.1, 128.0, 125.8, 125.5, 122.6, 122.54, 57.1, 57.0, 53.5, 50.8, 36.9, 33.9, 33.7, 29.9, 22.2 and 21.8 

 
Figure 3.138: 13C-NMR (400 MHz, CDCl3, δ ppm) spectrum of allyl maleimide photoproduct 206d and 
207d. 
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1H-NMR (400 MHz, CDCl3, δ ppm), (Major 206e + minor 207e, 74:26): 7.57-7.54 (m, 2H), 7.41-7.38 (m, 

10H), 7.06 (s, 1H), 6.89-6.87 (m, 5H), 6.48-6.47 (d, J = 2 Hz, 1H), 3.62-3.59 (d, J = 14 Hz, 2H), 3.48-3.45 

(d, J = 15 Hz, 3H), 3.38-3.30 (m, 3H), 3.11-3.07 (d, J = 14 Hz, 2H), 2.99-2.92 (m, 2H), 2.86-2.82 (d, J = 

15.2 Hz, 2H), 2.29-2.28 (m, 8H), 2.14 (s, 4H), 2.09 (s, 3H), 1.43 (s, 3H) and 1.33 (s, 4H). 

 
Figure 3.139: 1H-NMR (400 MHz, CDCl3, δ ppm) spectrum of allyl maleimide photoproduct 206e and 
207e. 
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13C-NMR (100 MHz, CDCl3, δ ppm), (Major 206e + minor 207e, 74:26): 196.5, 195.4, 163.9, 161.7, 152.1, 

142.5, 139.4, 138.6, 138.2, 137.8, 135.8, 135.8, 135.4, 132.6, 131.6, 131.4, 131.2, 129.8, 129.2, 129.1, 

128.9, 128.96, 128.7, 128.5, 128.48, 128.3, 122.96, 122.90, 64.84, 64.80, 54.2, 53.9, 47.6, 46.9, 23.2, 

22.7, 21.8, 21.2, 21.1, 21.0 

 
Figure 3.140: 13C-NMR (400 MHz, CDCl3, δ ppm) spectrum of allyl maleimide photoproduct 206e and 
207e. 
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1H-NMR (400 MHz, CDCl3, δ ppm): 7.03-6.99 (m, 3H), 5.74 (s, 1H), 5.07-5.02 (m, 1H), 3.76 (s, 3H), 3.65-

3.58 (m, 1H), 3.09-3.02 (m, 1H), 2.86-2.70 (m, 2H), and 2.22 (s, 3H). 

 
Figure 3.141: 1H-NMR (400 MHz, CDCl3, δ ppm) spectrum of allyl maleimide photoproduct 206f. 
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13C-NMR (100 MHz, CDCl3, δ ppm): 194.8, 163.1, 158.9, 139.2, 131.2, 130.9, 131.3, 127.9, 125.2, 122.4, 

106.3, 56.4, 56.38, 34.1 and 21.8. 

 
Figure 3.142: 13C-NMR (400 MHz, CDCl3, δ ppm) spectrum of allyl maleimide photoproduct 206f. 
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1H-NMR (400 MHz, CDCl3, δ ppm): 7.13-7.09(m, 3H), 6.95 (s, 1H), 5.16-5.09 (m, 1H), 3.76-3.69 (m, 1H), 

3.14-3.06 (m, 1H), 2.89-2.82 (m, 2H)) and 2.29 (s, 3H). 

 
Figure 3.143: 1H-NMR (400 MHz, CDCl3, δ ppm) spectrum of allyl maleimide photoproduct 206g. 
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13C-NMR (100 MHz, CDCl3, δ ppm): 197.7, 157.7, 137.9, 135.7, 135.6, 131.3, 131.1, 128.5, 126.1, 122.4, 

56.9, 50.6, 33.6, 29.7 and 21.7. 

 
Figure 3.144: 13C-NMR (400 MHz, CDCl3, δ ppm) spectrum of allyl maleimide photoproduct 206g. 
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1H-NMR (400 MHz, CDCl3, δ ppm): 7.12-7.09(m, 4H), 5.11-5.04 (m, 1H), 3.72-3.66 (m, 1H),3.22-3.15 (m, 

1H), 2.99-2.85 (m, 2H) and 2.29 (s, 3H). 

 
Figure 3.145: 1H-NMR (400 MHz, CDCl3, δ ppm) spectrum of allyl maleimide photoproduct 207g. 
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13C-NMR (100 MHz, CDCl3, δ ppm): 193.7, 159.9, 138.1, 135.9, 131.3, 131.2, 128.3, 126.2, 122.4, 119.8, 

56.5, 51.6, 33.9, 29.7 and 21.7. 

 
Figure 3.146: 13C-NMR (400 MHz, CDCl3, δ ppm) spectrum of allyl maleimide photoproduct 207g. 
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1H-NMR (400 MHz, CDCl3, δ ppm): 7.05-7.02(m, 3H), 5.09-5.02 (m, 1H), 3.63-3.37 (m, 1H), 2.99-2.92 (m, 

1H), 2.84-2.73 (m, 2H), 2.24 (s, 3H) and 2.21 (s, 3H). 

 
Figure 3.147: 1H-NMR (400 MHz, CDCl3, δ ppm) spectrum of allyl maleimide photoproduct 206h. 
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13C-NMR (100 MHz, CDCl3, δ ppm): 199.7, 159.4, 145.9, 138.4, 131.4, 129.3, 128.4, 125.9, 122.6, 56.6, 

50.9, 33.5, 22.9 and 21.8. 

 
Figure 3.148: 13C-NMR (400 MHz, CDCl3, δ ppm) spectrum of allyl maleimide photoproduct 206h. 
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1H-NMR (400 MHz, CDCl3, δ ppm): 7.05-7.02 (m, 3H), 5.04-4.97 (m, 1H), 3.62-3.56 (m, 1H), 3.07-2.99 

(m, 1H), 2.89-2.84 (m,1H), 2.79-2.74 (m, 1H), 2.31 (s, 3H) and 2.19 (s, 3H). 

 
Figure 3.149: 1H-NMR (400 MHz, CDCl3, δ ppm) spectrum of allyl maleimide photoproduct 207h. 
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13C-NMR (100 MHz, CDCl3, δ ppm): 195.2, 161.9, 142.2, 138.3, 131.3, 131.32, 129.4, 128.3, 125.9, 

122.6, 56.4, 50.5, 33.5, 21.8 and 21.5. 

 
Figure 3.150: 13C-NMR (400 MHz, CDCl3, δ ppm) spectrum of allyl maleimide photoproduct 207h. 
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 Synthesis of minor methoxy maleimides photoproduct 207f 3.34.2.

 

Scheme 3.57: Synthesis of minor methoxy maleimides photoproduct 207f. 
 

To a solution of bromo maleimide derivative 206c (10 mg, 1.0 equiv.) in MeOH (5 mL) 

triethylamine in MeOH (1.1 equiv.) was added and the resulting mixture refluxed for 1 h. After the 

reaction, the solvent was concentrated and the reaction mixture was quenched with DI water. The 

aqueous layer is extracted with DCM (20 mL). The combined organic layer was dried over anhyd. 

Na2SO4, filtered and concentrated under reduced pressure to yield crude product. The crude product was 

purified by combiflash using a hexanes:ethyl acetate mixture. Since the yield was very low (>0.5 mg was 

isolated) the product was characterized by mass spectrometry and HPLC. 

 

TLC condition - Rf = 0.20 (50% hexanes:50% ethyl acetate) for 207f  
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HRMS-ESI (m/z) ([M + Na]+): Calculated: 280.0950; Observed: 280.0913; |Δm|: 11 ppm. 

 

 
Figure 3.151: HRMS of minor methoxy photoproduct 207f.  
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Figure 3.152: HPLC trace of A. Pure major methoxy maleimide photoproduct 206c, B. Crude 
photoreaction of 205c and C. HPLC trace of thermally synthesized 207f. 
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 CHAPTER 4. PHOTODEGRADATION OF POLYMERIC/OLIGOMERIC 

MATERIALS DERIVED FROM BIORENEWABLE RESOURCES* 

4.1. Introduction 

Macromolecular materials derived from renewable resources played a critical role in human 

civilization before 19th century. We relied on natural polymeric materials such as wood, plant fibers, 

cotton, silk etc., for utensils, weapons, shelter and clothes for various day-to day activities. However the 

importance of renewable resource based macromolecules suffered a major setback after the 

development of non-renewable, coal-based industry and with petrochemical revolution in the 20th century. 

Within few decades the materials synthesized from non-renewable fossil fuels swamped the world. The 

decline in the use of renewable resource based products is not only attributed to the development of coal 

and petroleum based industries, but also to the numerous varieties of synthetic polymeric material 

synthesized from petroleum based feedstock. For example, last century saw a steep rise in the 

production of plastics, elastomers, paints, adhesives, resin fibers etc., with superior properties and 

structures at a low cost compared to the materials derived from renewable resources. This exponential 

growth on polymers/materials derived from fossil completely filed our daily life such that we are totally 

dependent on non-renewable polymers.1,2 

 

4.2. Decline in fossil fuels and rise of renewable resources 

Since the turn of the millennium, the scenario on the dependency of the fossil slowly started to 

take a turn. Many research efforts were made for developing materials derived from renewable resources. 

The advance in research not only focused on synthesizing polymers with different properties but also 

focused on competitive price to polymers derived from renewable resources.  

 

*The material in this chapter was co-authored by Saravanakumar Rajendran (SR) Ramya 
Raghunathan (RR), Ivan Hevus (IH), Retheesh Krishnan (RK), Dr. Angel Ugrinov (AU), Dr. Mukund. P. 
Sibi (MPS), Dr. Dean C. Webster (DCW) and Dr. J. Sivaguru (JS). SR, RR, RK in consultation with MPS, 
DCW and JS synthesized all the compounds and carried out all the experiments. AU recorded PXRD 
data reported in this chapter. IH performed polymer characterization reported in this chapter. 
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These strenuous efforts rekindled the hope for replacement of fossil fuel by renewable resources. 

This paradigm shift towards the use of renewable resources is due to the increased awareness on the 

impact of non-renewable based polymers on the environment. For e.g. between 2010-2015, the 

worldwide production of plastics will exceed 300 million tons and at least 40% of it are made for short-

term usage that will be quickly disposed to environment as landfills.3 These landfills not only take 

thousands of years to degrade, but also greatly harm the animal life on land and marine life at sea as they 

tend to consume the residue of the plastics and perish. Another driving force for the research in 

renewable polymers is the steep rise in the price of oil and dwindling fossil reserves. About 86 % of the 

energy and 96% of the organic chemicals are obtained from fossil fuels. With world population increasing 

from 7.3 billion to about 11.2 billion at the end of the century, and with improved standard of living, the 

consumption of the fossil fuels will be only be accelerated leading to rapid depletion of fossil fuels that 

might last only for about 2 more decades.4-6 Another perilous effects associated with the use of fossil fuel 

is the emission of CO2 and other green house gases. With the consumption of more fuels, consumers and 

the government are alarmed at the rising level of CO2 emission leading to undesirable global warming 

and its irreversible destruction to the earth. With these concerns in mind, it becomes imperative to 

develop polymeric materials from biomass-based resources. Biomass can be defined as materials 

derived from plants or plants based resources, more specifically defined as lignocellulosic biomass. The 

major components of lignocellulosic biomass in a plant are polysaccharides, e.g. cellulose, starch, chitin, 

chitosan, hemicellulose and lignin. Other renewable resources from which monomer for the biobased 

polymeric materials can be obtained are vegetable oils, terpenoids, polycarboxylic acid, alcohols/polyols, 

sugars (mono- and disaccharides commonly called as carbohydrates).2,7,8 

Cellulose:2,7 Cellulose is undoubtedly the most abundant biopolymer on earth. It is a linear homo 

polysaccharide comprising of β-D-glucopyranose units linked by glycosidic β (1-4) bonds in a 4C1 

conformation 233 (Figure 4.1). The properties of cellulose including its hydrophilic nature, biodegradability 

are attributed to its unique structure such as the presence of OH group. They display regular intra-inter 

molecular –O–H!••H–O– hydrogen bonds. Cellulose naturally has fibers like shape, which provides 

mechanical strength to wood and plants. The pulp industries mainly focus on the chemical extraction of 
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cellulose fibers and use them in various applications including the production of rayon fibers and films 

(cellophane) industry. 

 

Figure 4.1: Structure of cellulose 233 and the morphology of plant cellulose fibers (right).9 
 

Starch:7,10 It is a polysaccharide similar to cellulose except that it is more granular in nature and 

plays a role of energy reservoir. Starch is composed of two macromolecules – poly(α-1,4-D-

glucopyranose) 234 which is an amylose and α-1,6-branched amylopectin 235 at different proportions 

depending on the species (Figure 4.2). The structural properties make it easily biodegradable and 

digestible by humans. Starch based materials plays vital role in thermoplastic starch (TPS) and 

composites. TPS are generally prepared by subjecting starch granules to a process called gelatinization. 

The TPS can be molded and used in various applications especially in packaging industries. Many 

chemical modifications of starch granules are gaining more attention with the aim to develop material 

composites other than TPS. Most notable research efforts include the synthesis of green adhesives for 

aluminum by starch-controlled thermolysis. 

 

Figure 4.2 : Structure of poly(α-1,4-D-glucopyranose) 234 and α-1,6-branched amylopectin 235. 
 

Chitin and chitosan:7,11 These are high molecular weight linear polymers. Chitin is composed of 

N-acetyl-2-amido-deoxy-D-glucose units 236, where as chitosan is 2-amido-2-deoxy-D-glucose 237 
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obtained from partial deacetylation of chitin (Figure 4.3). Chitosan is widely used in materials due to its 

ease of processability and chemical modification by simple procedures, which find wide application in the 

field of biotechnology, pharmaceutics, wastewater treatment, cosmetics and food science.12 The interest 

in the chitosan research is gaining momentum after a recent demonstration of water-soluble chitosan 

derivative used as a coating for paper that improved the quality of the print.13,14 

 

Figure 4.3 : Structure of Chitin 236 and Chitosan 237. 
 

Hemicellulose:15 They are polysaccharides with different anhydroglucose unit (AGU) as shown in 

the Figure 4.4. Due to this structural attribute, hemicelluloses are amorphous in nature and give a gel like 

texture around cellulose fiber in plants. The primary applications of hemicellulose include, food additives, 

emulsifications, films and hydrogels. Hemicelluloses are used to prepare films and coatings, which are 

quite useful in food packaging applications. 

 

Figure 4.4: Important constituents of hemicelluloses. 
 

NH

O
HO

OH

O

COCH3

O
O

HO NH

H3COC

n

Chitin

CH2OH
NH2

O
HO

OH

O O
O

HO NH2

n

Chitosan

CH2OH

236 237

OH

O
HO

OH

HO OH

D-glucopyranose

O
HO

OH

HO OH

D-mannopyranose

OH

OH

O
HO

OH
HO

OH

D-galactopyranose

O
OH

HO OH
OH

L-arabinofuranose

OH

O
HO

HO OH

D-xylopyranose

HO

HO OH

O
OHO

HO

D-glucuronic acid

238 239 240

241 242 243



 319 

Lignin:7,16 These belong to a family of vegetable biopolymer that has complex macromolecular 

structures constituting both aromatic and aliphatic moieties (Figure 4.5). In other words, they are complex 

cross-linked phenolic polymers. These lignins are important for the formation of cell walls most 

importantly in wood and bark as they provide rigidity to the system. The three basic constituent of lignin 

are coumaryl alcohol, coniferyl alcohol and sinapyl alcohol (Figure 4.5). 

 

Figure 4.5: The basic constituent of lignins. 
 

These three units are present in various proportions in a plant cell wall. Even though the 

proportions of lignins are different, polymer chemist showed great interest in exploring these polymers 

and utilized them for the synthesis of polyester, polyurethanes, polyethers etc., by taking advantage of the 

functional handle such as phenolic hydroxyl and aliphatic moieties present in them. Several research 

initiatives on the extraction of fundamental units and their application in the macromolecular materials 

have been explored. One such interesting study is the conversion of Kraft lignin to vanillin 247, which is a 

useful biomass based monomer. It has been used as a precursor in the synthesis of novel aromatic 

polymers mimicking polyethylene terephthalate (PET) via acetyldihydroferulic acid 250 (Scheme 4.1).17 

 

Scheme 4.1: Synthesis of poly (dihydroferulic acid) (PHFA) 250 from vanillin 247. 
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Other promising monomers derived from renewable resources like vegetable oils (fatty acids 

derived from vegetable oil like myristic acid, steric acid, oleic acid, etc.,), terpenoids (pinene, limonene, 

etc.,), polycarboxylic acid (tartaric acid, succinic acid, etc.,), alcohols/polyols (glycerols), sugars (D-

glucoisosorbide) are widely used in the synthesis of polyesters, polyurethanes etc., as food additives, 

lubricants and in the field of cosmetics. Furan-2-carboxaldehyde (furfural) and 5-hydroxymethylfurfural 

(HMF) are chemically modified product of monosaccharaides (5- and 6-carbon sugars i.e. pentoses and 

hexoses respectively) and the most important biomass based compounds in the furan family.1 Among 

these two, HMF is well explored and attractive to many chemists due to the presence of functional handle 

on either side of the ring. Dull and Kiermayer reported the first synthesis of HMF independently in the 

year 1895 and termed the compound as “oxymethylfurfurol”.18,19 Despite its presence from 19th century, 

its potential as a renewable resource was only identified recently. Since then, there has been a 

continuous interest and growth in the field of HMF which is evident from the number publications and 

patens appeared in the literature as shown in Figure 4.6.20 

 

Figure 4.6: Growth of HMF per year as registered by web of science. (Reproduced from reference 20 
with permission from American Chemical Society, 2013). 
 

HMF 260 can be synthesized by several methods such as dehydration of fructose in the presence 

of acid catalyst, high temperature (without catalyst), in the presence of ionic liquids etc.21 These methods 

allow us to obtain HMF without losing any carbon from hexoses unlike other platform chemicals such as 

levulinic acid or bioethanol. It is a key intermediate for many furan/non furanic derivatives, which has 

widespread application in fuels, and polymers as listed in the Figure 4.7. Due to its versatile applications, 
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furan derivatives – HMF 260, furfural, and 2,5-furan dicarboxylic acid 253 are listed in top 14 bio-based 

chemicals by department of energy (DOE).20 Though furan is an important intermediate, polymers starting 

from furan are rare. But HMF is converted into a variety of monomers (Figure 4.8) that are employed in 

polymer synthesis. 

 

Figure 4.7: HMF as a platform chemical.20 
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Figure 4.8: Monomers derived from HMF.22 
 

The following section discusses few polymers derived from HMF and its derivatives. Detailed 

discussion on the synthesis of polymers derived from HMF based compounds are reported in various 

reviews.20,22-24 

 

4.3. Polymers from 5-hydroxymethylfurfural derivatives 

Gandini and coworkers employed symmetrical aldehyde 2,5-bis(formyl)-furan 268 obtained from 

the oxidation of HMF as a monomer along with variety of diamine monomers to prepare Schiff base 

copolymers 270 (Scheme 4.2).25 The polymers 270 resulting from 2,5-bis(formyl)-furan had a molecular 

weight Mn of 1500-2500 and are readily soluble in common organic solvents. These categories of 

polymers resulting from diamines showed good thermal stability and semiconductor properties (10-5 to 10 
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Scheme 4.2: Synthesis of furanic poly Schiff base 270 from 2,5-bis(formyl)furan 268. 
 

In continuing their efforts towards obtaining polymer with desired structure and good conductivity, 

the same group worked on condensation of dimerized product of HMF i.e 5, 5’(oxy-bis(methylene))bis-2-

furfural (OBMF) 271 with p-phenylenediamine 269a to result in new Schiff polymer 272 (Scheme 4.3).25 

The polymer was stable till 270 °C and showed a semiconductivity of 10-6 S cm-1 at room temperature. 

 

Scheme 4.3: Synthesis of furanic poly Schiff base 272 from 5, 5’(oxy-bis(methylene))bis-2-furfural 
(OBMF) 271. 
 

Furan based polyurethanes were prepared by condensation of 2,5-(bishydroxymethyl)furan 257 

with various diisocyanates.25-29 These reactions were performed at 70 °C for 24 h. Initially, a simple 

hexamethylene diisocyanate 273 was used instead of 2,5-furyl diisocyanate 261 due to its sensitivity to 

resinification and low stability of urethane. To circumvent the resinification problem, a homologue of 2,5-

furyl diisocyanate, furyl methylenediisocyanate was used in the condensation procedure that resulted in 

stable urethane polymer 275 (Scheme 4.4). 

 

Scheme 4.4: Synthesis of furanic poly urethane from 2,5-bis(formyl)furan 257. 
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Lincoln and co-workers reported the preparation of FDCA based polyester in 1951.30 They 

demonstrated that that FDCA based polyester can be obtained by heating FDCA and ethylene glycol at 

180 °C for 3 h then increasing the temperature to 210 °C and maintaining for  4 h. The melting point of the 

resulting polyester was found to be 205-210 °C. Later in the year 1978, Moore and Kelly reported a 

detailed study on the preparation of polyester 277 with FDCA derivative 262a (Scheme 4.5).31 They 

performed trans esterification of FDCA with corresponding diol 276 in the presence of calcium acetate 

and antimony to obtain polymer of Mn of 7.4 k, Mw = 18 k with PDI of 2.54. 

 

Scheme 4.5: Synthesis of furanic polyester 277 by trans esterification. 
 

Later in 2009, Fehrenbacher and coworkers studied the effect of chain length of diols on the 

molecular weights and thermal properties of the polyester. They systematically varied the chain length on 

the diol such as 1,3-propane diol, 1,6-hexane diol, 1,12-dodecane diol, and 1,18-octadocane diol. The 

analysis showed that that this method produced polyester with low to moderate molecular weight and 

meting point (Table 4.1)32 

Table 4.1: Molecular weight and thermal properties of polyester with different diol co-monomer. 

Diol co-monomer Mn (kg/mol) Mw (kg/mol) Tm (°C) from DSC 
1,3-propane diol 13.9 30.6 176.5 
1,6-hexane diol 13.4 22.3 142.7 

1,12-dodecane diol 25.3 51.6 109.2 
1,18-octadocane diol 22.1 46.8 98.1 

 

In 2009, Gandini and coworkers reported comprehensive comparative studies by analyzing the 
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DSC analysis showed high degree of crystallinity with melting temperature of 210-215 °C which is ~45 °C 

lower than PET. 

 

Scheme 4.6: Synthesis of polyethylene(2,5furandicarboxylate)(PEF) 279. 
 

Based on the extensive research on utilizing renewable resources for the application of materials, 

it is evident that we have an alternate for the fossil resources. However, once the materials derived from 

renewable resources gets commercialized, the demand for the renewable sources will increase, their 

prices will hike, and most importantly, the materials after usage will go back to the environment as 

landfills. So it is important to find ways to safely decompose them or more desirably recycle them. There 

are few reports on the degradation of plastics obtained from fossil fuels as well as renewable resources. 

These methods involve the use of microorganisms, enzymes or catalyst which are expensive, takes 

longer times and more adversely unsustainable.34-36 In order to address these deficiencies, we have 

worked on developing polymeric building blocks that are derived from sustainable materials with built in 

photocleavable unit that can be excited to initiate the degradation of polymers using a benign reagent 

“light”. In order to validate this proof of concept we have employed FDCA based polymer (section 4.4) 
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Scheme 4.7: Photoreaction of degradable polymer 280. 
 

Similarly, nitrobenzyl phototrigger are employed in synthesis of light triggered dissociable block  

copolymer. These block copolymer are investigated as a nano carrier for the controlled release of drugs. 

For example, Zhao and coworkers demonstrated release of Nile red dye using two different block co 

polymer 283 and 286 (Scheme 4.8).38,39 The release of the Nile red which was efficient in both the 

polymer.  

 

Scheme 4.8: Photoreaction of block copolymer 283 (top). Photodegradable ABA tri block copolymer 286. 
 

In most of the literature discusses about the cleavage of polymer and also though the nitrobenzyl 

phototrigger is substituted on both ortho position, the cleavage took place on a mono substituted 

phototrigger.40,41 On the contrary, our strategy not only allowed the degradation of the biomass based 

polymer but also demonstrated the recovery and reuse of monomer when the cleavage of the ortho-

nitrobenzyl phototrigger occurred at both the position leading to recovery of monomer. This approach 

alleviates the environmental impact by reducing the amount of landfill. The model compound, polymers 

and their intermediates used in this study are listed in the Chart 4.1 and were synthesized according to 

the procedures reported in literature. 
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Chart 4.1: Structures of model compounds, polymer, copolymer and the compounds used for their 
synthesis. 
 

4.4. Synthesis and photodegradation of model compounds 

To demonstrate the proof of principle, we began our investigation to optimize the reactions 

conditions by model compounds employing HMF 260 that is a dehydrated product of fructose 297 

(Scheme 4.9). These monomer were functionalized with 2-nitro1,3-benzenedimethanol 292, which is a 

phototrigger. We chose to use nitrobenzyl chromophore as a phototrigger as it is one of the well-studied 

systems and its mechanism of action has been extensively investigated and proved by various research 

groups. Symmetrical 290 and unsymmetrical model compounds 291 were synthesized to evaluate 

photodegradation of bio-based polymers. The synthesized polymers were characterized by NMR 

spectroscopy, and their properties were studied using gel permeation chromatography (GPC), differential 

scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier transform Infrared spectroscopy 

FTIR and powder X-ray diffraction (XRD). 
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Scheme 4.9: Synthesis of symmetrical model compounds from HMF and 2-nitro1,3-benzenedimethanol. 
 

HMF was obtained from fructose in the presence of acid followed by the protection of alcohol 

functionality to yield 296. Upon oxidation of aldehyde 296 followed by reacting with 2-nitro 1,3-

benzenediemthanol 292 results in the two model compounds (Scheme 4.9) (detailed synthetic procedure 

are given in the experimental section). Irradiation of these symmetrical esters 290a-b was carried out in 

Rayonet reactor equipped with 350 nm (16 lamps X 14 watts each). Progress of the reaction was 

monitored by UV-Vis and NMR spectroscopy after an interval of 30 min. The o-nitrobenzyl proton at 5.45 

ppm was used as a NMR handle to monitor the progress of the reaction. Analysis of the 1H-NMR spectra 

reveals that the photocleavage was very efficient with mass balance of 89% and 80% respectively (Figure 

4.42 and Figure 4.44). As reported in the mechanism of nitrobenzyl phototrigger, the photocleavage of the 

model ester compounds proceeded via intermediate nitroso aldehyde 300 as the aldehydic resonance at 

9.17 ppm was observed during the progress of the reaction, which later decompose to furan carboxylic 

acid as monitored by the rise of methylene peak at 5 ppm (Scheme 4.10). 

 

 

Scheme 4.10: Photoreaction of symmetrical esters model compound 290. 
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In order to substantiate the effectiveness of the photocleavage, unsymmetrical model ester 

compound 291 was also synthesized and subjected to irradiation. Upon irradiation of unsymmetrical ester 

291, photocleavage occurred in a facile manner to give corresponding acid 295b (Scheme 4.11). 

 

Scheme 4.11: Photoreaction of unsymmetrical esters model compound 291. 

 
The study with the model compounds 290 and 291 showed that use of nitrobenzyl as phototrigger 

can be successfully employed not only for the degradation of polymer but also for recovering the 

monomer. With the knowledge gained from the prototypical studies we went forward to incorporate this 

strategy for the degradation of polymer/oligomer derived from FDCA monomer. 
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one-pot reaction, where the FDCA is converted to its corresponding acid chloride by treating with thionyl 

chloride, which then reacts with nitrobenzyl phototrigger to yield the desired polymer as a pale brown 

solid (Scheme 4.12). The insoluble polymer 287 was washed with methanol to remove any unreacted 

monomer. The resulting polymer further washed with acetone and dichloromethane to remove low 

molecular weight oligomers. The purified polymer was insoluble and was characterized by NMR 

spectroscopy, FTIR spectroscopy, GPC, Powder XRD, TGA, DSC analysis. 

  

OO

NO2 O
O

OTIPS

O
HOOC O

OTIPS +

COOH

295b 298
291

hν (~350 nm)

THF-H2O (4:1)



 330 

 

Scheme 4.12: Synthesis of polymer/oligomer 287 derived from FDCA. 
 

Gel permeation chromatographic (GPC) analysis revealed that the product formed was a mixture 

of polymer with Mw=81000, Mn=54000, PDI=1.5 and oligomer whose Mw= 450, Mn= 340 and PDI=1.3. IR 

studies clearly revealed  the presence of ester functionality as a strong vibration was observed at 1739 

cm-1 and also the presence of nitro group by indicating the symmetric and asymmetric stretching at 1367 

cm-1 and 1529 cm-1 respectively. As the material is insoluble in most of the common organic solvents 

(chloroform, ethyl acetate, methanol) it was made soluble by heating the mixture in deuterated DMSO at 

80 °C for the 1H-NMR characterization. NMR spectroscopy indicated the presence of furan and phenyl 

functionalities. Apart from these signature peaks, two distinct singlet resonances were observed at 5.48 

ppm and 5.29 ppm, which was assigned to the benzylic functionalities of oligomer and polymer which was 

in the ratio 11:1. These results substantiated the presence of mixture of oligomer and polymer in the 

system. TGA analysis of the polymer/oligomer mixture showed that they are thermally stable up to 234 °C 

without any loss. When the temperature was increased to 302 °C a 50 % loss was observed due to 

decomposition and decomposition was complete when the temperature was further increased to 648 °C. 

The first cycle of DSC analysis showed a glass transition temperature (Tg) at 159 °C followed by melting 

at 184 °C denoting that the polymer /oligomer mixture was a mixture of amorphous and crystalline states. 

Recrystallization did not show sharp peak due to the absence of crystallinity and the second cycle 

showed Tg at 113 °C signifying that it is a mostly amorphous oligomer. To corroborate these observations, 

PXRD was recorded. Inspection of PXRD indicated sharp peaks (2θ values) and the percentage of 

crystallinity was around 23.34 % using cristobalite (SiO2) as reference standard. Complete loss of 

crystallinity was observed upon heating the polymer/oligomer to 200 °C and cooling which was in line with 

the results observed from DSC analysis (Figure 4.9). 
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Figure 4.9: Characterization of polymer/oligomer 287. A) FTIR spectroscopy B) GPC C) TGA D) DSC E) 
Powder-XRD. 
 

4.6. Photodegradation of polymer/oligomer in solution and solid state 

Detailed characterization of the synthesized polymer/oligomer gave insights on the properties of 

the mixture. Most importantly the crystallinity, which made the polymer/oligomer insoluble in most of the 

common organic solvents. Therefore to evaluate the photodegradation, polymer/oligomer 287, it was 

suspended in THF-H2O (4:1) mixture and irradiated in Rayonet reactor equipped with ∼350 nm bulb (16 
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solution after 1 h and become transparent over 3 h of irradiation during which the color of the solution 

changed from white suspension to yellow solution (Figure 4.10). 

 

Scheme 4.13: Photodegradation of polymer/oligomer 287 derived from FDCA in solution phase. 
 

 

Figure 4.10: Polymer/oligomer 287 a) before irradiation b) irradiated for 1 h c) irradiated for 3 h d) 
irradiated for 6 h. 
 

The reaction was further continued for 6 h to ensure complete decomposition of the polymeric 

materials. After 6 h of irradiation, the sample was concentrated and the residue was analyzed by 1H NMR 

spectroscopy using an internal standard. Analysis of 1H-NMR confirmed  (Figure 4.49) complete 

degradation of the polymer to give FDCA monomer (complete agreement with the NMR spectra of 

authentic FDCA) with 40±5% recovery. 

Since these types of polymers can be potentially made into plastics it becomes important to 

evaluate the degradation in solid state. Therefore photodegradation was performed in solid state, in both 

350 nm lamp as well in ambient conditions (Scheme 4.14) 

 
Scheme 4.14: Photodegradation of polymer/oligomer 287 in solid state. 
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sample was analyzed by 1H-NMR spectroscopy as internal standard. The solid sample changed color 

from pale yellow to dark brown over the period of irradiation (Figure 4.11 left). After 12 h, the recovery of 

FDCA was found to be 16%. The solid state degradation was slow and resulted in low yield compared to 

the solution state due to competitive absorption of light by the photoproducts as well as due to light 

scattering. The above reaction was also performed in ambient conditions (40 W incandescent bulb). No 

degradation was observed even after 12 h of irradiation (Figure 4.11 Right). 

 

Figure 4.11: Left: Solid-state irradiation of Polymer/oligomer 287 in Rayonet (R) and Ambient (A) Right: 
% recovery of FDCA determined using 1H NMR spectroscopy in Rayonet reactor and ambient conditions. 
 

4.7. Strategy for recycling the recovered monomer 

 

 
Scheme 4.15: Synthesis of polymer/oligomer 287 in from recovered monomer. 
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dichloromethane). The removal of the by-products was monitored by UV-Vis spectrophotometer. The 

isolated yield was found to be 38 %. The recovered monomer was subjected to polymerization with the 

procedure reported in Scheme 2.10. The product obtained was analyzed by GPC and compared with the 

GPC trace of the polymer before photoreaction (Figure 4.12).  

 

Figure 4.12: GPC trace of polymer/oligomer 287 A) First time synthesized (blue) B) synthesized using the 
recovered FDCA (red). 
 

4.8. Synthesis, characterization and photodegradation of copolymer 

After successfully demonstrating the photodegradation of polymer/oligomer in solution and in 

solid state followed by its recyclability, we assessed the photodegradation of copolymers including a 

glycol unit, other than the phototrigger. Copolymer 288 was synthesized in a single pot reaction by 

converting the FDCA  253 to its corresponding acid chloride and reacting it with glycol and 2-nitro 1,3 

benzenedimethanol. After the reaction, methanol was added to the mixture to result the copolymer 288. 

 

Scheme 4.16: Synthesis of copolymer 288. 
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deuterated DMSO at 75 °C. 1H-NMR analysis showed furan proton resonance at 7.39 ppm and the 

resonance peaks for nitrophenyl group at 7.76 ppm and 5.45 ppm. Ethylene glycol unit protons appeared 

at around 4.91, 4.59, 4.28 and 3.56 ppm respectively. FTIR spectra revealed the presence of ester 

carbonyl at around 1739 cm-1 and the symmetric and asymmetric stretching of nitro functionality at 1308 

cm-1 and 1581 cm-1 respectively. 

 

Figure 4.13: Characterization of copolymer 288. A) FTIR spectroscopy B) GPC C) TGA D) DSC. 
 

Copolymer 288 was sonicated and filtered to record GPC. GPC analysis showed mixture of 
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completely decomposed at 660 °C. First cycle of DSC analysis showed two glass transition temperature 
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Though there was a endotherm at 168 °C it did not correspond to the melting point as no visible 

recrystallization was observed. During the second cycle, there was shift in the Tg (75 °C) indicating an 

amorphous material. 
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Scheme 4.17: Photodegradation of copolymer 288. 
 

After characterization, the copolymer was subjected to degradation as a suspension in THF/water 

(4:1 mixture) with 350 nm light source. Similar to the degradation of polymer/oligomer 287, The new 

copolymer 288 also turned from initial turbid to transparent solution after the degradation was complete. 

After the completion of reaction, the sample was concentrated and the residue was analyzed by 1H-NMR. 

Analysis of 1H NMR showed that the photodegradation of the copolymer was efficient. Thus proving that 

the strategy of employing nitrobenzyl unit as a phototrigger to degrade polymer and copolymer was very 

efficient and also provided avenues to recover and recycle. 

 

4.9. Conclusions 

Our strategy of incorporating phototrigger unit in the polymer structure that was derived form 

biomass to degrade the polymer was substantiated from our studies. We showed that this strategy could 

be applied for solid-state reaction and also extended to copolymer degradation as well. In addition to the 

degradation, we have also demonstrated the successful recovery and reuse of the monomer to build the 

polymer/oligomer. This study opens up avenues to build novel materials from bio renewable resources 

that can be degraded after use thereby reducing the landfills that affects the environment. 

 

4.10. Experimental section 

 General methods 4.10.1.

All commercially obtained reagents/solvents were used as received; chemicals were purchased 

from Alfa Aesar®, Sigma-Aldrich®, Acros organics®, TCI America®, Mallinckrodt®, and Oakwood® 

Products, and were used as received without further purification. Unless stated otherwise, reactions were 

conducted in oven-dried glassware under nitrogen atmosphere. 1H-NMR and 13C-NMR spectra were 

recorded on Varian 500 MHz (125 MHz for 13C) or Bruker 400 MHz (100 MHz for 13C) spectrometers. 
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Data from the 1H-NMR spectroscopy are reported as chemical shift (δ ppm) with the corresponding 

integration values. Coupling constants (J) are reported in hertz (Hz). Standard abbreviations indicating 

multiplicity were used as follows: s (singlet), b (broad), d (doublet), t (triplet), q (quartet), m (multiplet) and 

virt (virtual). Data for 13C NMR spectra are reported in terms of chemical shift (δ ppm). High-resolution 

mass spectrum data in Electrospray Ionization mode were recorded on a Bruker – Daltronics® BioTof 

mass spectrometer in positive (ESI+) ion mode. IR spectra were recorded in Thermo Scientific Nicolet 

Nexus 470 FT-IR spectrometer and band positions are reported in reciprocal centimeters. Samples were 

made as pellet with KBR and IR spectrum was recorded. Absorbance measurements were performed 

using a Shimadzu® UV-2501PC UV-Vis spectrophotometer and Agilent® Cary 300 UV-Vis 

spectrophotometer. Tetrahydrofuran (THF) dried over sodium and HPLC graded H2O (Alfa Aesar®) were 

used for UV-Vis measurements. Powder X-Ray Diffraction (PXRD) measurements were made in Phillips 

X’Pert MPD powder X-ray diffractometer (λ = 1.54060) with step size of 0.0500 (2θ) and continuous scan 

type. 2θ range from 5 to 80°. Thermo Gravimetric Analysis (TGA) were performed in TA instruments 

Q500 Hi-RES Thermogravimetric analyzer under nitrogen atmosphere with temperature increment of 10 

°C/min. Differential Scanning Calorimeter measurements were performed in TA instruments’ Q1000 

Modulated Differential Scanning Calorimeter. Gel permeation chromatography analysis were performed in 

Symyx Rapid GPC equipped with ELS detector (PL-ELS1000), two varian PL gel Mixed–β 10 µm 300 x 

7.5 mm columns and HP 100 series pump. 

 

4.11. General procedure for the recyclable polymers 

 Synthesis of 5-hydroxymethylfurfural 260 4.11.1.

 

Scheme 4.18: Synthesis of 5-hydroxymethylfurfural 260. 
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5-Hydroxymethylfurfural 260 was synthesized according to a procedure reported in the 

literature.42 To a solution of D-fructose 297 (10 g, 55.5 mmol, 1 equiv.) in N,N-dimethylacetamide (DMA, 

100 mL) under N2 atmosphere, LiBr (10 g, 10% wt) was added, followed by catalytic amount of H2SO4 

(0.326 g, 3.33 mmol, 0.06 equiv. 0.17 mL) and stirred at 100 °C for 6 h. After the reaction, the mixture 

was cooled to room temperature and filtered through celite bed to remove any insoluble residue. Celite 

bed was washed with ethyl acetate (EtOAc) (3 x 25 mL). Ethyl acetate in the filtrate was removed under 

reduced pressure, followed by removal of DMA by vacuum distillation. The residue after vacuum 

distillation was diluted with EtOAc, washed with brine solution, extracted with EtOAc. The organic layer 

was dried over anhyd.Na2SO4, and the solvent was removed under reduced pressure. The crude product 

was purified by column chromatography using hexane-ethyl acetate mixture. 5-hydroxymethylfurfural 

(HMF, 260) was obtained as brown viscous oil (which solidifies upon cooling). 

TLC condition - Rf = 0.30 (40% hexanes: 60% ethyl acetate) for 260 (Yield = 45 %) 
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1H-NMR (400 MHz, CDCl3, δ ppm): 3.27 (bs, 1H), 4.68 (s, 2H), 6.49 (d, 1H, J = 3.5 Hz), 7.19 (d, 1H, J = 

3.5 Hz) and 9.53 (s, 1H). 

 

Figure 4.14: 1H-NMR (400 MHz, CDCl3, δ ppm) spectra of HMF 260. 
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13C-NMR (100 MHz, CDCl3, δ ppm): 57.6, 110.0, 123.3, 152.3, 161.0 and 177.9.  

 

Figure 4.15: 13C-NMR (100 MHz, CDCl3, δ ppm) spectra of HMF 260. 
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 Synthesis of 2,5-furandicarboxylic acid (FDCA) 253 4.11.2.

 

Scheme 4.19: Synthesis of furan dicarboxylic acid 253. 
 

2,5-Furan dicarboxylic acid (FDCA) was synthesized according to a procedure reported in the 

literature.43 To a solution of HMF (260) (6.99 g, 0.055 mmol, 1 equiv.) in H2O (370 mL), aq. NaOH (51 g, 

1.27 mol, 23 equiv. in 93 mL of water) was added followed by the addition of KMnO4 (20.17 g, 0.127 mol, 

2.3 equiv. in 92 mL of water) and the reaction mixture was stirred at room temperature for 12 h. After 

completion the reaction mixture was filtered to remove the insoluble residue. The filtrate was cooled to 0-

5 °C and pH of the solution was adjusted to ~1 with concd. HCl. The product precipitates as pale yellow 

solid that was filtered, washed with excess of water and dried in high vacuum at 60 °C to give pure 

product 253. 

Yield = 64% 
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HRMS [ESI-MS] m/z ([M-OH]): Calculated : 139.0026; Observed : 139.0018; |Δm| : 5.7 ppm 

IR (KBr) cm-1: 3026 (νOH), 1688 (νC=O), 1221 (νC-O).  

1H-NMR (500 MHz, DMSO-d6, δ ppm):7.28 (s, 2H). 

 

Figure 4.16: 1H-NMR (500 MHz, DMSO-d6, δ ppm) spectra of FDCA 253. 
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13C-NMR (125 MHz, DMSO-d6, δ ppm): 119.0, 147.6 and 159.6. 

 

Figure 4.17: 13C-NMR (125 MHz, DMSO-d6, δ ppm) spectra of FDCA 253. 
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 Synthesis of benzoyl protected 5-hydroxymethylfurfural 296a 4.11.3.

 

Scheme 4.20: Synthesis of benzoyl protected 5-hydroxymethylfurfural 296a. 
 

Compound 296a was synthesized according to a procedure reported in the literature.44 To a 

stirred solution of 5-hydroxymethylfurfural (260) (1.5 g, 11.9 mmol, 1 equiv.) in pyridine (6 mL), benzoyl 

chloride (3.35 g, 23.8 mmol, 2 equiv., 2.8 mL) was added drop wise at 0 °C. The resulting mixture was 

allowed to warm to room temperature over 16 h. After the reaction, the mixture was quenched with cold 

dil. H2SO4 (5%) and extracted with CH2Cl2 (3 x 25 mL). The combined organic layer was washed with 

satd. NaHCO3 (~30 mL) solution, dried over anhyd. Na2SO4, and the solvent was removed under reduced 

pressure. The crude product was purified by column chromatography using hexane-ethyl acetate. 

Benzoyl protected HMF (196a) was obtained as white solid. 

TLC condition - Rf = 0.50 (60% hexanes: 40% ethyl acetate) for 296a (Yield = 86%) 

  

Cl

O

pyridine, rt, 16 h
H

O
O

HO H

O
O

O

O

260 296a



 345 

HRMS [ESI-MS] m/z([M+Na]): Calculated : 253.0471; Observed : 253.0486; |Δm| : 5.9 ppm 

1H-NMR (400 MHz, CDCl3, δ ppm): 5.36 (s, 2H), 6.65 (d, 1H, J = 4 Hz), 7.21 (d, 1H, J = 4 Hz), 7.40-7.44 

(m, 2H), 7.53-7.57 (m, 1H), 8.02-8.05 (m, 2H) and 9.63 (s, 1H).  

 

Figure 4.18: 1H-NMR (400 MHz, CDCl3, δ ppm) spectra of benzoyl protected HMF 296a. 
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13C-NMR (100 MHz, CDCl3, δ ppm): 58.4, 112.9, 121.9, 128.6, 129.4, 130.0, 133.6, 153.0, 155.7, 166.0 

and 178.0. 

 

Figure 4.19: 13C-NMR (100 MHz, CDCl3, δ ppm) spectra of benzoyl protected HMF 296a. 
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 Synthesis of TIPS protected 5-hydroxymethylfurfural 296b 4.11.4.

 

Scheme 4.21: Synthesis of TIPS protected 5-hydroxymethylfurfural 296b. 
 

Literature reported procedure was followed for the synthesis of 296b.45 To a solution of 

triisopropylsilyl chloride (1.16 g, 6 mmol, 1.2 equiv.,1.28 mL) in DMF (5 mL), imidazole (0.687 g, 10 mmol, 

2 equiv.), and 260 (0.63 g, 5 mmol, 1 equiv.) were added and stirred at room temperature for 8 h. After 

the reaction, the mixture was diluted with water and extracted with hexane. The organic layer was dried 

over anhyd. Na2SO4 and the solvent was removed under reduced pressure. The crude product was 

purified by column chromatography using hexane-ethyl acetate mixture. Pure compound (296b) was 

obtained as pale yellow viscous liquid. 

TLC condition - Rf = 0.80 (85% hexanes: 15% ethyl acetate) for 296b (Yield = 90%) 
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HRMS [ESI-MS] m/z([M+Na]): Calculated : 305.1543; Observed : 305.1553; |Δm| : 3.3 ppm 

1H-NMR (500 MHz, CDCl3, δ ppm): 1.03 (d, 18H, J = 7.15 Hz), 1.09-1.16 (m, 3H), 4.80 (s, 2H), 6.47 (d, 

1H, J = 3.6Hz), 7.18 (d, 1H, J = 3.6 Hz) and 9.54 (s, 1H).  

 

Figure 4.20: 1H-NMR (500 MHz, CDCl3, δ ppm) spectra of TIPS protected HMF 296a. 
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13C-NMR (125 MHz, CDCl3, δ ppm): 12.1, 18.0, 59.3, 109.2, 122.7, 152.2, 161.9 and 177.6.  

 

Figure 4.21: 13C-NMR (125 MHz, CDCl3, δ ppm) spectra of TIPS protected HMF 296b. 
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 Synthesis of 5-((benzoyloxy)methyl)furan-2-carboxylic acid 295a 4.11.5.

 

Scheme 4.22: Synthesis of 5-((benzoyloxy)methyl)furan-2-carboxylic acid 295a. 
 

Literature reported procedure was followed for the synthesis of compound 295a.46 To a solution 

of 296a (0.23 g, 1 mmol, 1 equiv.) in acetonitrile (2 mL) at 0 °C., aq NaH2PO4 (50 mg in 0.5 mL of water) 

was added. To this mixture, 30% aq. H2O2 (5 mmol, 5 equiv., 0.6 mL) was added dropwise followed by 

the addition of aq. NaClO2 (0.135 g, 1.5 mmol, 1.5 equiv.,2 mL water) over 15 min. The resulting mixture 

was allowed to warm to room temperature over 12 h. The product precipitated as white solid, which was 

filtered, washed with excess of water, acetone and dried in high vacuum to give pure product. Compound 

295a was obtained as white solid. 

TLC condition - Rf = 0.60 (60% hexanes: 40% ethyl acetate) for 295a (Yield = 89%) 
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HRMS [ESI-MS] m/z([M+Na]): Calculated : 269.0420; Observed : 269.0430; |Δm| : 3.7 ppm 

1H-NMR (500 MHz, DMSO-d6, δ ppm): 5.33 (s, 2H), 6.64 (d, 1H, J = 5 Hz), 6.91 (d, 1H, J = 5 Hz), 7.52 (t, 

2H, J = 10 Hz), 7.66 (t, 1H, J = 10 Hz) and 7.96 (d, 2H, J = 10 Hz).  

 

Figure 4.22: 1H-NMR (500 MHz, DMSO-d6, δ ppm) spectra of acid derivative 295a. 
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13C-NMR (125 MHz, DMSO-d6, δ ppm): 59.1, 113.0, 115.7, 129.6, 129.8, 129.9, 134.2, 150.5, 151.3, 

161.2 and 166.0.  

 

Figure 4.23: 13C-NMR (125 MHz, DMSO-d6, δ ppm) spectra of acid derivative 295a. 
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 Synthesis of 5-(((triisopropylsilyl)oxy)methyl)furan-2-carboxylic acid 295b 4.11.6.

 

Scheme 4.23: Synthesis of 5-((triisopropylsilyl)methyl)furan-2-carboxylic acid 295b. 
 

Literature reported procedure was followed for the synthesis of 295b.46 To a solution of 296b (23 

g, 0.081 mol, 1 equiv.) in acetonitrile (120 mL) at 0 °C, aq. NaH2PO4 (7 g in 30 mL of water) was added. 

To this mixture, 30% aq. H2O2 (0.407 mol, 5 equiv., ~50 mL) was added drop wise followed by the drop 

wise addition of aq. NaClO2 (11.04 g, 0.122 mol, 1.5 equiv.,120 mL of water) over 1 h. The resulting 

mixture was allowed to warm to room temperature over 12 h. After reaction, the mixture was quenched 

with water and extracted with EtOAc. The organic layer was dried over anhyd. Na2SO4 and the solvent 

was removed under reduced pressure to give pure compound 295b as white semi-solid. 

TLC condition - Rf = 0.50 (85% hexanes: 15% ethyl acetate) for 295b (Yield = 90%) 
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HRMS [ESI-MS] m/z([M+Na]): Calculated : 321.1493; Observed : 321.1491; |Δm| : 0.6 ppm 

1H-NMR (500 MHz, CDCl3, δ ppm): 1.09 (d, 18H, J = 5 Hz), 1.14-1.21 (m, 3H), 4.85 (s, 2H), 6.47 (d, 1H, J 

= 5 Hz) and 7.30 (d, 1H, J = 5Hz).  

 

Figure 4.24: 1H-NMR (500 MHz, CDCl3, δ ppm) spectra of TIPS protected acid derivative 295b. 
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13C-NMR (100 MHz, CDCl3, δ ppm): 12.1, 18.0, 59.3, 108.9, 121.4, 142.7, 161.0 and 163.8.  

 

Figure 4.25: 13C-NMR (100 MHz, CDCl3, δ ppm) spectra of TIPS protected HMF 295b. 
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 Synthesis of 2-nitro-1,3-benzenedicarboxylic acid 293 4.11.7.

 

Scheme 4.24: Synthesis of 2-Nitro-1,3-benzenedicarboxylic acid 293. 
 

Literature reported procedure was followed for the synthesis of 293.38 To a stirred solution of 1,3-

dimethyl-2-nitrobenzene 294 (15.1 g, 0.1 mol, 1 equiv.) in water (750 mL), NaOH (6 g, 0.15 mol, 1.5 

equiv.) was added and refluxed. To this KMnO4 (60 g, 0.38 mol, 3.8 equiv.) was added slowly over a 

period of 3 h. The resulting mixture was refluxed for 20 h. After the reaction, the mixture was cooled to 

room temperature and filtered. The filtrate was acidified with concd. HCl. The title compound, 293 

precipitated out as white solid. The precipitate was filtered, washed with excess water and dried under 

vacuum. 

TLC condition - Rf = 0.60 (90% hexanes: 10% ethyl acetate) for 293 (Yield = 72%) 
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H2O, reflux 20 h
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1H-NMR (500 MHz, DMSO-d6, δ ppm): 4.91 (s (broad, H2O + COOH), 7.80 (t, 1H, J = 10 Hz) and 8.18 (d, 

2H, J = 10 Hz). 

 

Figure 4.26: 1H-NMR (500 MHz, DMSO-d6, δ ppm) spectra of nitro acid derivative 293. 
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13C-NMR (125 MHz, DMSO-d6, δ ppm): 125.4, 131.8, 135.2, 149.4 and 164.8. 

 

Figure 4.27: 13C-NMR (125 MHz, DMSO-d6, δ ppm) spectra of nitro acid derivative 293. 
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 Synthesis of 2-nitro-1,3-benzenedimethanol 292 4.11.8.

 

Scheme 4.25: Synthesis of 2-Nitro-1,3-benzenedimethanol 292. 
 

2-Nitro-1,3-benzenedimethanol 292 was synthesized according to a procedure reported in the 

literature.38 To a solution of 2-nitro-1,3-benzenedicarboxylic acid (293) (1.25 g, 5.9 mmol, 1 equiv.) in 

THF, BH3-THF complex (1.0 M in THF. 2.53 g, 29.5 mmol, 5 equiv., 29.5 mL) was added at 0 °C over 1 h. 

The resulting mixture was allowed to warm to room temperature over 48 h. After reaction, THF was 

removed under vacuum; the reaction mixture was quenched with water, and extracted with EtOAc. The 

combined organic layer was dried over anhyd. Na2SO4 and solvent were removed under reduced 

pressure to give crude product. Crude product was purified by column chromatography (hexane-EtOAc). 

2-Nitro-1,3-benzenedimethanol 292 was obtained as a white solid. 

TLC condition - Rf = 0.8 (95% DCM: 05% Methanol) for 292 (Yield = 81%) 
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1H-NMR (500 MHz, DMSO-d6, δ ppm): 4.53 (d, 4H, J = 5 Hz), 5.50 (t, 2H, J = 5 Hz) and 7.52-7.57  

(m, 3H). 

 

Figure 4.28: 1H-NMR (500 MHz, DMSO-d6, δ ppm) spectra of alcohol derivative 292. 
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13C-NMR (125 MHz, DMSO-d6, δ ppm): 64.6, 132.9, 136.2, 139.7 and 152.8.  

 

Figure 4.29: 13C-NMR (125 MHz, DMSO-d6, δ ppm) spectra of alcohol derivative 292. 
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 Synthesis of ester derivative 290a 4.11.9.

 

Scheme 4.26: Synthesis of ester derivative 290a. 
 

To a solution of acid 295a (2.46 g, 10 mmol, 1 equiv.) in benzene (15 mL), SOCl2 (1.784 g, 15 

mmol, 1.5 equiv. 1.1 mL) was added and refluxed for 2 h. Benzene and excess SOCl2 was removed by 

distillation and dried under vacuum. The residue was dissolved in CH2Cl2 (15 mL) and added drop wise to 

a solution of 2-nitro-1,3-benzenedimethanol 292 (0.91 g, 5 mmol, 0.5 equiv.) and Et3N (2.53 g, 25 mmol, 

2.5 equiv., 3.5 mL) in CH2Cl2 (15 mL) and stirred  at room temperature for 12 h. After the reaction, the 

mixture was quenched with water, extracted with CH2Cl2. The organic layer was dried over anhyd. 

Na2SO4 and the solvent was removed under reduced pressure. The crude product was purified by column 

chromatography hexanes-EtOAc mixture. The ester 290a was obtained as white solid. 

TLC condition - Rf = 0.30 (60% hexanes: 40% ethyl acetate) for 290a (Yield = 69%) 

  

COOHO
BzO

1.SOCl2, benzene,
 reflux, 2 h

2. 292, CH2Cl2, Et3N,
 rt, 12 h

NO2

O O

O O
O O

295a 290a

BzO OBz



 363 

HRMS [ESI-MS] m/z([M+Na]): Calculated : 662.1269; Observed : 662.1279; |Δm| : 1.5 ppm 

FT-IR (KBr) cm-1: 1745 (νCO, 1532 (asymνNO2), 1364 (symνNO2) 

1H-NMR (400 MHz, CDCl3, δ ppm): 5.36 (s, 2H), 5.47 (s, 2H), 6.61 (d, 1H, J = 3.45 Hz), 7.19 (d, 1H, J = 5 

Hz), 7.45 (t, 2H, J = 5 Hz), 7.54-7.61 (m, 3H) and 8.06 (d, 2H, J = 5 Hz).  

 

Figure 4.30: 1H-NMR (400 MHz, CDCl3, δ ppm) spectra of ester derivative 290a. 
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13C-NMR (100 MHz, CDCl3, δ ppm): 58.4, 62.6, 94.6, 112.6, 119.9, 128.6, 129.5, 129.6, 130.0, 130.3, 

131.5, 133.5, 144.0, 154.5, 157.8 and 166.1. 

 

Figure 4.31: 13C-NMR (100 MHz, CDCl3, δ ppm) spectra of ester derivative 290a. 
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  Synthesis of ester derivative 290b 4.11.10.

 

Scheme 4.27: Synthesis of ester derivative 290b. 
 

To a solution of 295b (0.149 g, 0.5 mmol, 1 equiv.) in benzene (5 mL), SOCl2 (0.089 g, 0.75 

mmol, 1.5 equiv. 54 µL) was added and refluxed for 2 h. Benzene and excess SOCl2 was distilled and the 

residue was dried under vacuum. The residue was dissolved in CH2Cl2 (5 mL) and added drop wise to a 

solution of 2-nitro-1,3-benzenedimethanol 292 (0.046 g, 0.25 mmol, 0.5 equiv.) and Et3N (0.126 g, 1.25 

mmol, 2.5 equiv., 0.174 mL) in CH2Cl2 (5 mL) and stirred for 12 h at room temperature. After the reaction, 

the mixture was quenched with water, extracted with CH2Cl2. The organic layer was dried over anhyd. 

Na2SO4 and concentrated under reduced pressure. Crude product was purified by column 

chromatography using hexanes-EtOAc mixture. The ester 290b was obtained as colorless viscous oil and 

monoester 299 was obtained as minor product. 

Compound 290b: 

TLC condition - Rf = 0.60 (60% hexanes: 40% ethyl acetate) for 290b (Yield = 59%) 
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HRMS [ESI-MS] m/z([M+Na]): Calculated : 766.3413; Observed : 766.3434; |Δm| : 2.7 ppm 

1H-NMR (500 MHz, CDCl3, δ ppm): 1.08 (d, 36H, J = 10 Hz), 1.12-1.18 (m, 6H), 4.81 (s, 4H), 5.45 (s, 4H), 

6.41 (d, 2H, J = 5 Hz), 7.17 (d, 2H, J = 5 Hz) and 7.53-7.58 (m, 3H).  

 

Figure 4.32: 1H-NMR (500 MHz, CDCl3, δ ppm) spectra of ester derivative 290b. 
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13C-NMR (125 MHz, CDCl3, δ ppm): 12.1, 18.1, 59.2, 62.3, 108.7, 120.2, 129.7, 130.1, 131.5, 142.7, 

148.9, 158.1 and 160.4.  

 

Figure 4.33: 13C-NMR (125 MHz, CDCl3, δ ppm) spectra of ester derivative 290b. 
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Compound 299: 

TLC condition - Rf = 0.50 (60% hexanes: 40% ethyl acetate) for 299 (Yield = 10%) 

HRMS [ESI-MS] m/z([M+Na]): Calculated : 486.1919; Observed : 486.1913; |Δm| : 1.2 ppm 

1H-NMR (400 MHz, CDCl3, δ ppm): 1.09 (d, 18H, J = 4 Hz), 1.13-1.20 (m, 3H), 2.25, (s (broad), 1H), 4.77 

(s, 2H), 4.83 (s, 2H), 5.46 (s, 2H), 6.43 (d, 1H, J = 4 Hz), 7.18 (d, 1H, J = 4 Hz), 7.56-7.60 (m, 2H) and 

7.63-7.65 (m, 1H).  

 

Figure 4.34: 1H-NMR (400 MHz, CDCl3, δ ppm) spectra of alcohol derivative 299. 
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13C-NMR (100 MHz, CDCl3, δ ppm): 11.9, 17.8, 59.0, 61.5, 62.2, 108.5, 119.9, 129.3, 129.4, 129.8, 131.6, 

134.2, 142.5, 148.5, 157.9 and 160.2.  

 

Figure 4.35: 13C-NMR (100 MHz, CDCl3, δ ppm) spectra of alcohol derivative 299. 
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 Synthesis of ester derivative 291 4.11.11.

 

Scheme 4.28: Synthesis of ester derivative 291. 
 

To a solution of 299 (0.463 g, 1 mmol, 1 equiv.) in CH2Cl2 (25 mL), Et3N (0.151 g, 1.5 mmol, 1.5 

equiv., 0.21 mL) was added followed by drop wise addition of benzoyl chloride (0.168 g, 1.2 mmol, 1.2 

equiv., 0.14 mL). The reaction mixture was stirred for 2 h at room temperature. After the reaction, the 

mixture was quenched with satd. NaHCO3 solution, extracted with CH2Cl2. The combined organic layer 

was dried over anhyd. Na2SO4 and concentrated under reduced pressure. The crude product was purified 

by column chromatography using hexanes:EtOAc mixture. The pure compound 291 was obtained as 

colorless viscous oil (which solidifies upon cooling). 

TLC condition - Rf = 0.60 (70% hexanes: 30% ethyl acetate) for 291 (Yield = 93%) 
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HRMS [ESI-MS] m/z([M+Na]): Calculated : 590.2181; Observed : 590.2184; |Δm| : 0.5 ppm 

1H-NMR (400 MHz, CDCl3, δ ppm): 1.09 (d, 18H, J = 4 Hz), 1.20-1.13 (m, 3H), 4.83 (s, 2H), 5.47 (s, 2H), 

5.51 (s, 2H), 6.43 (d, 1H, J = 4 Hz), 7.19 (d, 1H, J = 4 Hz), 7.45-7.49 (m, 2H), 7.55-7.63 (m, 4H) and 8.04-

8.06 (m, 2H).  

 

 

Figure 4.36: 1H-NMR (400 MHz, CDCl3, δ ppm) spectra of ester derivative 291. 
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13C-NMR (100 MHz, CDCl3, δ ppm): 11.9, 17.9, 59.0, 62.1, 62.6, 108.5, 120.0, 128.5, 129.3, 129.5, 129.7, 

129.8, 129.9, 130.0, 131.2, 133.4, 142.5, 148.9, 157.9, 160.2 and 165.8.  

 

Figure 4.37: 13C-NMR (100 MHz, CDCl3, δ ppm) spectra of ester derivative 291. 
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 Synthesis of polymer/oligomer 287 4.11.12.

 

Scheme 4.29: Synthesis of polymer/oligomer 287. 
 

To a solution of 253 (0.312 g, 2 mmol, 1 equiv.) in dry benzene (15 mL), SOCl2 (0.713 g, 6 mmol, 

3 equiv. 0.5 mL) and DMF (0.2 mL) were added and were refluxed for 2 h. After 2 h, benzene and excess 

SOCl2 were distilled and dried under vacuum. The residue was dissolved in CH2Cl2 (10 mL) and added 

drop wise to a solution of 2-nitro-1,3-benzenedimethanol 292 (0.183 g, 1 mmol, 0.5 equiv.) and Et3N 

(0.606 g, 6 mmol, 3 equiv., 0.8 mL) in CH2Cl2 (10 mL) and continued stirring for 12 h at room 

temperature. After the reaction, pale brown solid was precipitated. It was filtered and washed with 

methanol (3 x ~25 mL) to remove any unreacted monomer. Followed by washing with DCM (2 x 20 mL) 

and acetone (2 x 20 mL) to remove low molecular weight oligomer. The insoluble material obtained was 

pale yellow solid (287) in 0.175 g. It was insoluble in common organic solvents such as DMSO, DMF, 

CH2Cl2, EtOAc, MeOH, THF and CHCl3. It was characterized by 1H, 13C NMR in DMSO-d6 (the 

suspension was heated at 60-80 oC to make it completely soluble), IR spectroscopy, GPC, TGA, DSC 

and PXRD. For GPC analysis, the compound was suspended in THF and sonicated for 5 h at room 

temperature. The residue was filtered and the supernatant was injected in the GPC. 

Yield: 0.175 g (insoluble portion) 
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1H-NMR (400 MHz, DMSO-d6, δ ppm): 5.29, (s, 0.47 H), 5.48 (s, 4H), 7.41 (s, 2H), 7.54 (s, 0.23 H), 7.64 

(d, 0.39 H, J = 8 Hz) and 7.73-7.77 (m, 3H).  

 

Figure 4.38: 1H-NMR (400 MHz, DMSO-d6, δ ppm) spectra of polymer/oligomer 287. 
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13C-NMR (100 MHz, DMSO-d6, δ ppm): 63.2, 120.1, 129.1, 131.2, 132.5, 146.1, 148.4 and 157.0. 

 

Figure 4.39: 13C-NMR (100 MHz, DMSO-d6, δ ppm) spectra of polymer /oligomer 287. 
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IR (KBr) cm-1: 1739 (νC=O), 1529(asym. νNO2), 1367 (sym. NO2), 1129 (νC-O). 

%Crystallinity of compound 287 was determined by PXRD data It is calculated to be 20.26% with respect 

to Cristobalite (98% crystallinity) as standard. 

The above experiment was repeated at least three times to check the reproducibility of the crystallinity of 

the product formed. PXRD patterns are almost identical  

%Crystallinity of compound 287 synthesized for second and third time are found to be 19.93% and 

21.47% respectively.  

 

 Synthesis of co-polymer/oligomer 288 4.11.13.

 

Scheme 4.30: Synthesis of co-polymer/oligomer 288. 
 

To a solution of 2,5-furan dicarboxylic acid (FDCA) 253 (0.468 g, 3 mmol, 1 equiv.) in dry 

benzene (15 mL), SOCl2 (2.14 g, 18 mmol, 6 equiv. 1.3 mL) and catalytic amount of DMF (0.2 mL) were 

added and refluxed for 3 h. After the reaction, benzene and excess SOCl2 were distilled and dried under 

reduced pressure. The residue obtained was dissolved in CH2Cl2 (10 mL) and added drop wise to a 

solution of 2-nitro-1,3-benzenedimethanol 292 (0.055 g, 0.3 mmol, 0.1 equiv.), ethylene glycol (0.167 g, 

2.7 mmol, 0.9 equiv., 0.15 mL) and Et3N (0.91 g, 9 mmol, 3 equiv., 1.25 mL) in CH2Cl2 (10 mL) and 

continued stirring for 36 h at room temperature. After the reaction, the mixture was concentrated under 

reduced pressure to obtain crude product as pale brown solid. It was then washed with excess of water (2 

x ~200 mL) and methanol (2 x ~50 mL) and dried under vacuum to get off-white solid in 260 mg. The 

obtained solid was characterized by 1H, 13C NMR, IR spectroscopy, GPC, TGA, DSC and PXRD. 

 For GPC analysis, the compound was suspended in THF for 5 h at room temperature. The 

residue was filtered and the supernatant was injected in the GPC. 
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1H-NMR (500 MHz, DMSO-d6, δ ppm): 3.66 (s (broad), 4H), 4.27 (s (broad), 4H), 4.59 (s (broad), 28H), 

4.91 (s (broad), 2H), 5.45 (s (broad), 4H), 7.40 (s (broad), 15H) and 7.75 (s (broad), 3H).  

 

Figure 4.40: 1H-NMR (500 MHz, DMSO-d6, δ ppm) spectra of copolymer 288. 
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13C-NMR (125 MHz, DMSO-d6, δ ppm): 64.2, 68.5, 72.4, 124.9, 134.1, 151.3 and 162.5. Apart from the 

above major peaks there are several peaks, which are little above base line: 68.1,124.5, 125.1, 136.2, 

137.4, 150.8, 151.1, 151.6, 151.8, 162.0, 162.5, 162.6 and 162.8. 

 

Figure 4.41: 13C-NMR (125 MHz, DMSO-d6, δ ppm) spectra of copolymer 288. 
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ESI-MS sample preparation: Sample was dispersed in THF and sonicated for 5 min and allow to settle 

down for 2 h. The supernatant solution was analyzed by ESI-MS. A series of peaks appeared in the range 

of m/z 531-839 as binomial series with difference of 44 between every peak which is typical for ethylene 

glycol unit. 

[ESI-MS] m/z: 531.4567, 575. 4870, 619.5200, 663. 5516, 707.5837, 751.6145, 795.6462, 839. 6800. 

IR (KBr) cm-1: 3520 (b, νO-H), 1754 (νC=O), 1581 (asym. νNO2), 1308 (sym. NO2), 1124 (νC-O).  

% Crystallinity of above copolymer/oligomer was determined by PXRD.  It is calculated to be 21.05% with 

respect to Cristobalite (98% crystallinity) standard  

 

4.12. General procedure and characterization of photocleaved products 

Nitrobenzyl phototrigger based model compound 290a-b, 291 and polymeric/oligomeric compounds 

287,co-polymer/oligomeric compound 288 in respective solvent were irradiated for a given time interval in 

pyrex tube in Rayonet reactor RPR-200 at 350 nm (16 bulbs X 14 Watts). The photocleaved mixture was 

analyzed by NMR spectroscopy. 

Conversion and mass balance after photoreaction: Mass balance and conversion of photocleaved 

compounds were obtained using triphenylmethane as an internal standard (IS). 1 mL of 10-2 M (122 mg in 

50 mL of CHCl3) solution of triphenylmethane was added to the crude product and evaporated. To the 

mixture of Internal standard and the photosylate about ~0.6 mL of deuterated solvent is added and 1H 

and 13C NMR was recorded. From the integral value of respective peaks, the % conversion and mass 

balance was calculated using the equation 2.1 (Chapter 2) 

Calculation for the recovery of FDCA: Literature reported method was followed for the calculation of 

FDCA recovery.47 The recovery of FDCA from the irradiated polymer/oligomer sample was determined 

with NMR spectroscopy using an internal standard (IS). The mass of the FDCA was calculated from the 

integrated peak areas using the formula 

     (Equation 4.1) 

Where mFDCA, mIS are the mass; NFDCA, NIS are the number of nuclei giving rise to the signals; AFDCA, AIS 

are the areas of the peak and MWFDCA, MWIS are the molecular weights of FDCA and IS respectively. 

=mFDCA
MWFDCA

MWIS
x

NIS

NFDCA
x

AIS

mIS x AFDCA



 380 

 Photoreaction, mass balance and conversion studies of ester derivative 290a 4.12.1.

 

Scheme 4.31: Photoreaction of ester derivative 290a. 
 

1 mM solution of 290a in THF-d8-D2O was employed for the mass balance and conversion studies. 

Schematic representation of procedure was given below 

 

 

Scheme 4.32: Schematic depiction of photoreaction of ester derivative 290a. 
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Figure 4.42: 1H-NMR (500 MHz, THF-D2O, δ ppm) spectra of 290a inTHF-D2O (4:1) irradiated at different 
time interval. 
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Figure 4.43: 1H-NMR (400 MHz, THF-D2O, δ ppm) spectra of 290a in THF-D2O (4:1) irradiated at 
different time interval.  
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 Photoreaction, mass balance and conversion studies of ester derivative 290b 4.12.2.

 

Scheme 4.33: Photoreaction of ester derivative 290b. 
 

1 mM solution of 290b in THF-d8-D2O was employed for the mass balance and conversion studies. 

Schematic representation of procedure was given below 

 

 

Scheme 4.34: Schematic depiction of photoreaction of ester derivative 290b. 
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Figure 4.44: 1H-NMR (400 MHz, THF-D2O, δ ppm) spectra of 290b in THF-D2O (4:1) irradiated at 
different time interval.  
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Figure 4.45: 1H-NMR (400 MHz, THF-D2O, δ ppm) spectra of 290b in THF-D2O (4:1) irradiated at 
different time interval.   
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 Photoreaction, mass balance and conversion studies of ester derivative 291 4.12.3.

  

Scheme 4.35: Photoreaction of ester derivative 291. 
 

A 5 mM solution of ester 291 in THF-d8-D2O (NMR tube) was irradiated for 1 h. For every 0.5 h 

photocleavage was followed up 1H NMR spectrum. Schematic representation of procedure was given 

below 

 

Scheme 4.36: Schematic depiction of photoreaction of ester derivative 291. 
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Figure 4.46: 1H-NMR (400 MHz, THF-D2O, δ ppm) spectra of 291 in THF-D2O (4:1) irradiated at different 
time interval. 
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Figure 4.47: 1H-NMR (400 MHz, THF-D2O, δ ppm) spectra of 291 in THF-D2O (4:1) irradiated at different 
time interval. 
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 Photoreaction and conversion studies of polymer/oligomer 287 in solution 4.12.4.

 
Scheme 4.37: Photoreaction of polymer/oligomer 287 in solution. 
 

30 mg of polymer/oligomer 287 in 60 mL of THF-H2O (4:1) mixture was divided into 6 x 10 mL 

and irradiated in Rayonet reactor equipped with ∼350 nm bulb (16 bulbs x 14 watt). For every one hour 

one sample was removed, concentrated and the residue was analyzed by 1H-NMR spectroscopy (such 

that the last sample was irradiated for 6 h). The solution was heterogeneous before irradiation and 

become clear over 3 h of irradiation during which the color of the solution changed from white suspension 

to yellow solution (Figure 4.48). The reaction was further continued for 3 h to ensure complete 

decomposition of the polymeric materials. 

 

Figure 4.48: Polymer/oligomer 287 a) before irradiation b) irradiated for 1 h c) irradiated for 3 h d) 
irradiated for 6 h 
 

After 6 h of irradiation the sample was concentrated and the residue was analyzed by 1H NMR 
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spectra of authentic FDCA sample) and the recovery of FDCA was found to be 40 ±5%. The experiments 

were performed with two different internal standards (triphenylmethane and maleic acid) and the results 

are an average of three runs. 

 

Figure 4.49: 1H-NMR (400 MHz, DMSO-d6, δ ppm) spectra of polymer/oligomer 287. 
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Figure 4.50: 13C-NMR (125 MHz, DMSO-d6, δ ppm) spectra of polymer/oligomer 287. 
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 Photoreaction of polymer/oligomer 287 in solid state 4.12.5.

 

Scheme 4.38: Photoreaction of polymer/oligomer 287 in solid state. 
 

5 mg of polymer/oligomer 287 was packed as a thin layer between two 1 mm micro slides made 

of Swiss glass (purchased from VWR® international). 3 sets of samples were prepared and were 

irradiated in Rayonet reactor equipped with ∼350 nm bulb (16 bulbs x 14 watt). One sample was kept in 

dark (0 h sample). For every 6 hour one sample was removed and was analyzed by 1H-NMR 

spectroscopy with maleic acid as internal standard (such that the last sample was irradiated for 12 h). The 

solid sample changed color from pale yellow to dark brown over the period of irradiation (Figure 4.51-

Left).  After 12 h, the recovery of FDCA was found to be 16%. The low yield is due to competitive 

absorption of light by the photoproducts. The above reaction was also performed in ambient conditions 

(40 W incandescent bulb). No degradation was observed even after 12 h of irradiation (Figure 4.51-Right) 

 

Figure 4.51: Left: Solid-state irradiation of Polymer/oligomer 287 in Rayonet (R) and Ambient (A) Right: 
% recovery of FDCA determined using 1H NMR spectroscopy in Rayonet reactor and ambient conditions. 
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 Photoreaction of co-polymer/oligomer 288 4.12.6.

 

Scheme 4.39: Photoreaction of co-polymer/oligomer 288. 
 

5 mg of copolymer/oligomer 288 in 10 mL of THF-H2O (4:1) and irradiated in Rayonet reactor 

equipped with 350 nm bulb (16 bulbs x 14 watt) for 5 h. After the reaction (appearance of clear solution), 

the solvent in the mixture was removed under reduced pressure to get crude product as pale yellow solid 

in 3 mg. It was then analyzed by 1H NMR spectroscopy.  
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Figure 4.52: 1H-NMR (500 MHz, DMSO-d6, δ ppm) spectra of copolymer 288. 
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4.13.  UV-Vis absorption spectra 

 UV-Vis spectra of ester 290a-b in THF-H2O irradiated at different time intervals 4.13.1.

 

Figure 4.53: UV-Vis spectra of 10-4 M solution of ester 290a (left) and 290b (right) in THF-H2O (4:1) at 0 
min, 30 min, 60 min, 90 min, 120 min, 150 min and 180 min of irradiation. 
 

 UV-Vis spectra of ester 291 in THF-H2O irradiated at different time intervals 4.13.2.

 

Figure 4.54: UV-Vis spectra of 10-4 M solution of ester 291 in THF-H2O (4:1) at 0 min, 30 min, 60 min, 90 
min, 120 min, 150 min and 180 min irradiation. 
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4.14. Powder X-ray diffraction (PXRD) of 287 and 288 

 PXRD of polymer/oligomer 287 4.14.1.

 

Figure 4.55: Stacked PXRD pattern of polymer/oligomer 287 synthesized first time (Red) second time 
(black) and third time (blue). 
 

 PXRD of co-polymer/oligomer 289 4.14.2.

 

Figure 4.56: Stacked PXRD pattern of co-polymer/oligomer 289 synthesized first time (Red) second time 
(black) and third time (blue). 
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 CHAPTER 5. EVALUATING p-HYDROXY PHENACYL DERIVATIVES AS A 

BIOMASS DERIVED MODEL PHOTOTRIGGER* 

 Introduction 5.1.

 In the previous chapter, we demonstrated the use of o-nitrobenzyl derivative as a phototrigger to 

degrade polymer. Although o-nitrobenzyl derivative is one of the most commonly used phototriggers and 

its mechanism of action is well established in the literature, it has a few shortcomings, and they are (i) the 

release of leaving group are in the microseconds time regime1 and (ii) the formation of o-nitroso derivative 

byproduct during the releasing process. The byproduct (nitroso derivative) absorbs more strongly than the 

parent compound at the irradiation wavelength (~350 nm) which interferes with the release of the leaving 

group due to competitive absorption.2 This hindrance becomes more challenging especially in the case of 

the bio-based polymer discussed in the previous chapter. We believed that the formation of the o-nitroso 

by-product interacts/reacts with the released FDCA monomer thereby reducing its recovery. To alleviate 

this problem, we looked at alternative phototriggers that could be employed for degradation of polymers 

and obtain better recovery of the released monomer(s). This chapter describes our attempt towards that 

goal where we designed and evaluated a model system with p-hydroxy phenacyl (pHP) as phototrigger 

with the long-term goal of developing biomass derived compounds and incorporating them in the polymer 

backbone for programmed photodegradation. 

 

 p-Hydroxy phenacyl as a phototrigger 5.2.

 In 1962, Anderson and Reese were the first to report on the use of p-hydroxy phenacyl as a 

phototrigger in the substituted phenacyl chlorides 301 as shown in Scheme 5.1.3 They performed the 

reaction in 1% ethanolic solution of the phenacyl chloride and observed the formation of two products: (i) 

ketone-reduction product 302, that is formed by the loss of chlorine resulting in ketonyl radical followed by  

H-abstraction from the solvent and (ii) ester-rearranged product 303, which is formed via spirodienedione 

intermediate. 

*Dr. Saravanakumar Rajendran (SR) Ramya Raghunathan (RR), in consultation with Dr. Mukund. 
P. Sibi (MPS) and Dr. J. Sivaguru (JS) synthesized all the compounds reported in this chapter and carried 
out all the experiments. 
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Scheme 5.1: First report on p-hydroxy phenacyl phototrigger 301. 
 
 Later in 1973, Sheehan and Umezwa reported the release of benzoic acid and various amino 

acid derivatives employing pHP derivative as a phototrigger (Scheme 5.2).4 But unlike the observation 

made by Anderson and Reese, this group reported that they observed only the reduction product 302. 

They demonstrated this observation by irradiating of p-methoxy phenacyl derivative 304 in dioxane or in 

ethanol as solvent. They proposed that the formation of products took place via a homolytic cleavage of 

carbon-oxygen bond and the solvent served as a hydrogen donor. The reaction proceeded in ethanol 

more efficiently compared to dioxane as ethanol is a better H-donor solvent then dioxane. For instance, 

the reaction in ethanol only took 6 h for completion compared to dioxane that took 11-17 h for complete 

conversion. 

 

Scheme 5.2: Release of benzoic acid employing phenacyl phototrigger. 
 
 Similar observation was noticed by Epstein and Garrossian for the release of ethyl and phenyl 

phosphate esters from the p-methoxy phenacyl phosphates in 1,4-dioxane solvent.5 This contradiction in 

the formation of product was attributed to the change in the mechanism involved in the reaction by the 

employment of non H-donor solvent such as dioxane that did not assist the formation of precursor to form 
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the rearranged photoproduct (similar to 303). The influence of the nature of solvent affecting the outcome 

of the products led to comprehensive study of the phenacyl phototrigger. Along these lines, Givens and 

coworkers have done extensive studies including the solvent dependent product formation.6 They 

examined the release of phosphate esters 305 using t-butyl alcohol and methanol as H-donor solvents 

(Scheme 5.3). The solvents employed for this reaction are more polar in nature compared to dioxane and 

protic in nature. However, methanol is a much better H-donor solvent compared to t-butyl alcohol, which 

is a poor hydrogen donor. The reaction run in both solvents resulted in rearranged product 306 as the 

major photoproduct similar to observation made by Anderson and Reese along with the reduction product 

302 as a minor. However, the formation of reduction product was 21% in methanol compared to only 14% 

in t-butyl alcohol. So, they further investigated the role of solvent by performing the reaction in deuterated 

methanol (CD3OD) and compared with CH3OH. The formation of reduction product 302 was 5 times lower 

when the reaction was carried out in CD3OD compared to CH3OH. These studies clearly indicated the 

ability of the solvent to donate hydrogen atom is one of the key factors in determining the formation of 

reduction product. 

 

Scheme 5.3: Photo release of phosphates esters 305. 
 
 Based on their extensive work involving solvent, substitution on the phototrigger, Givens and 

coworkers proposed new mechanistic aspects for the phototrigger, which is depicted in Scheme 5.4.7 

They proposed three plausible mechanistic pathways for the formation of the products. Upon excitation, 

the compound undergoes a rapid intersystem crossing from singlet to triplet-excited state. In the first 

pathway, from the triplet-excited state it can either undergo homolytic cleavage to form ketonyl radical, 

which abstracts a proton from the solvent to form the reduction product. The ketonyl radical can also 

undergo single electron transfer to form zwitterionic intermediate. The intermediate generates 

spirodienedione by electrocyclic closure of the intermediate to form rearrangement product. In the second 
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plausible pathway, a simple heterolytic cleavage resulting in the zwitterionic intermediate followed by 

spiro derivative to form rearranged product. In the latter case, the release of the leaving group takes place 

via neighboring group participation leading to the formation of spirodienedione derivative followed by 

formation of rearranged product. The exact mechanistic pathway of the reaction largely depends on the 

solvent, substitution on the aryl ring and the leaving group. 

 

Scheme 5.4: Mechanistic aspect of pHP trigger. 
 
 Insights gained from mechanistic analysis on the phototrigger led to widespread use of this 

approach in the photo protection of thiols, phosphates, acids etc., Apart from its use as photo protecting 

group, phototriggers were also used in micro pattering of the film by photolithographic technique and 

biomedical applications like controlled drug delivery. One such application employing the phototrigger 

was reported by Joy and coworkers (Figure 5.1).8 They synthesized phenacyl phototrigger based 

polycarbonates polymer 310. The polymer film was coated on a silicon surface and irradiated through a 

1000 mesh transmission electron microscopy (TEM) grid for 30 min. Upon shining light, the uncovered 

portion of the polymer film underwent controlled scission leading to TEM grid pattern on the polymer film 

that was confirmed by AFM and SEM (Figure 5.1 C and D). They had also demonstrated the release of 
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Nile red nanoparticle loaded in the polymer as a proof of concept for mimicking drug delivery system.8 

They had performed similar studies by incorporating phototrigger-based polyesters (311) as well.9 

 

Figure 5.1: A) Phenacyl based polycarbonate polymer. B) Phenacyl based polyesters C) AFM pictures 
showing the pattern on polycarbonate polymer and D) SEM picture of the pattern. (Reproduced from 
reference 8 with permission from American Chemical Society, 2012). 
 

While the photodegradable polymers find various applications such as photo patterning, the 

primary objective in the development of photodegradable polymers was to reduce the wastes caused by 

the plastics.10,11 We recently reported one such photodegradable polymers derived form biomass using o-

nitrobenzyl derivative as a trigger to cleave the polymer. The novelty of our strategy compared to other 

photodegradable polymers lies in recovering the monomer after the degradation and reusing the 

monomer to recreate the polymer.12 Along those lines we have looked at employing pHP for the 

degradation of polymer. In order to evaluate the pHP as a phototrigger we initially studied the 

degradability of the model system. The model system and the precursor listed in Chart 5.1 were 

synthesized according to procedures reported in the literature. 
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Chart 5.1: Structures of phenacyl trigger based model system and its precursor. 
 
 

 Synthesis and photodegradation of model compounds 5.3.

To demonstrate photodegradation of polymer incorporated with pHP trigger, we began our 

investigation by optimizing the reactions conditions employing model compound (312). We synthesized 

the model system starting from hydroxy acetophenone (315) as shown in Scheme 5.5. 

 

Scheme 5.5: Synthesis of phenacyl based model compound 312. 
 

Hydroxy acetophenone based model system 312 was obtained by reacting the hydroxy 

acetophenone 315 in the presence of a base followed by bromination and coupling with the acetic acid 

(detailed synthetic procedures are given in the experimental section). Irradiation of the ester 312 (Scheme 

5.6) was carried out in Rayonet reactor equipped with 300 nm bulbs (16 lamps x 14 watts each). The 

progress of the reaction was monitored by 1H-NMR spectroscopy after an interval of 15 min. Analysis of 

the 1H-NMR spectroscopy revealed that the photocleavage was very efficient with complete consumption 
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of ester (312). One of the interesting observations made during the investigation of the model system 

study is the formation the reduction product (314) which was confirmed by comparing the reaction mixture 

with the authentic sample. The formation of reduction product presents an avenue to recycle the 

intermediate and use it in the preparation of polymer with the same synthetic procedure shown in Scheme 

5.5 as the reduction product (314) is one of the intermediate. 

 

Scheme 5.6: Photoreaction of phenacyl based model system 312. 
 

The success with the model compounds 312 clearly indicates that the phenacyl as phototrigger 

could be incorporated in the polymer backbone and can be employed not only for the degradation of 

polymer but also for recovering and reusing the monomer. 

 

 Conclusions 5.4.

The use of phenacyl phototrigger was successfully demonstrated in the model system. The 

photoreaction resulted in the reduction product (314), which gives an opportunity recycle and reuse the 

trigger. In long-term objective, this trigger can be imbibed in the backbone of the polymer to undergo 

photodegradation, which has the potential to degrade fast and increase the recovery of the trigger 

derivative. 

 

 Experimental section 5.5.

 General methods 5.5.1.

All commercially obtained reagents/solvents were used as received; chemicals were purchased 

from Alfa Aesar®, Sigma-Aldrich®, Acros organics®, TCI America®, Mallinckrodt®, and Oakwood® 

Products, and were used as received without further purification. Unless stated otherwise, reactions were 
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conducted in oven-dried glassware under nitrogen atmosphere. 1H-NMR and 13C-NMR spectra were 

recorded on Varian 500 MHz (125 MHz for 13C) or Bruker 400 MHz (100 MHz for 13C) spectrometers. 

Data from the 1H-NMR spectroscopy are reported as chemical shift (δ ppm) with the corresponding 

integration values. Coupling constants (J) are reported in hertz (Hz). Standard abbreviations indicating 

multiplicity were used as follows: s (singlet), b (broad), d (doublet), t (triplet), q (quartet), m (multiplet) and 

virt (virtual). Data for 13C NMR spectra are reported in terms of chemical shift (δ ppm). High-resolution 

mass spectrum data in Electrospray Ionization mode were recorded on a Bruker – Daltronics® BioTof 

mass spectrometer in positive (ESI+) ion mode. 

 

 General procedure for the model system 5.6.

 Synthesis of hydroxy acetophenone dimer 314 5.6.1.

 

Scheme 5.7: Synthesis of hydroxy acetophenone dimer 314. 
 

To a solution of p-hydroxylphenacyl 315 (6.8 g, 50 mmol, 1 equiv.) in DMF (50 mL), K2CO3 (13.6 

g, 100 mmol, 2 equiv.) and 1,4-dibromobutane (5.4 g, 10 mmol, 0.5 equiv., 2.98 mL) were added and 

heated at 100 °C for 4 h. Progress of the reaction was monitored by TLC. After completion of the reaction 

mixture was cooled to room temperature and added to ice cold water upon which white solid precipitated 

which was filtered, washed with excess of water, methanol (~2 x 25 mL) and dried to get pure product 

314 (the obtained compound is pure enough that column chromatography was not necessary) as white 

solid. 

TLC condition - Rf = 0.60 (95% DCM: 5% ethyl acetate) for 314 (Yield = 86 %) 
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HRMS [ESI-MS] m/z ([M+Na]): Calculated: 349.1410; Observed: 349.1409; |Δm|: 0.2 ppm 

1H-NMR (500 MHz, CDCl3, δ ppm): 7.95-7.93 (d, 4H, J = 10 Hz), 6.94-6.93 (d, 4H, J = 5 Hz), 4.13-4.12 (t, 

4H, J = 5 Hz), 2.57 (s, 6H), 2.04-2.03 (t, 4H, J = 5 Hz). 

 

Figure 5.2: 1H-NMR (500 MHz, CDCl3, δ ppm) spectra of hydroxy acetophenone dimer 314. 
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13C-NMR (125 MHz, CDCl3, δ ppm): 196.9, 163.0, 130.8, 114.3, 67.8, 26.0. 

 

Figure 5.3: 13C-NMR (125 MHz, CDCl3, δ ppm) spectra of hydroxy acetophenone dimer 314. 
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 Synthesis of bromo derivative 313 5.6.2.

 

Scheme 5.8: Synthesis of bromo derivative 313. 
 

Compound 313 was synthesized according to a procedure reported in the literature.8 CuBr2 

(11.16 g, 50 mmol, 5 equiv.) was added to a solution of compound 314 (3.26 g, 10 mmol, 1 equiv.) in 

CHCl3-EtOH (1:05) (42 mL) and refluxed for 1 h and the progress of the reaction was monitored by TLC. 

After completion of the reaction mixture was filtered through celite bed and filtrate was concentrated 

under reduced pressure. The crude product was washed with excess of methanol to get pure product 313 

as white solid. 

TLC condition - Rf = 0.70 (95% DCM: 5% ethyl acetate) for 313 (Yield = 88%) 
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HRMS [ESI-MS] m/z ([M+Na]): Calculated: 504.9621, 506.9601; Observed: 504.9608, 506.9602; |Δm|: 

2.6 ppm and 0.2 ppm 

1H-NMR (500 MHz, CDCl3, δ ppm): 7.98-7.97 (d, 4H, J = 10 Hz), 6.96-6.95 (d, 4H, J = 10 Hz), 4.41 (s, 

4H), 4.15-4.14 (t, 4H, J = 5 Hz), 2.05-2.04 (t, 4H, J = 5 Hz). 

 

Figure 5.4: 1H NMR (500 MHz, CDCl3, δ ppm) spectra of bromo derivative 313.  
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13C-NMR (125 MHz, CDCl3, δ ppm): 190.1, 163.7, 131.6, 127.1, 114.7, 67.9, 30.8, 26.0. 

 

Figure 5.5: 13C-NMR (125 MHz, CDCl3, δ ppm) spectra of bromo derivative 313. 
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 Synthesis of phenacyl based model system 312 5.6.3.

 

Scheme 5.9: Synthesis of phenacyl based model system 312. 
 

To a solution of compound 313 (1.21 g, 2.5 mmol, 1 equiv.) in DMF (20 mL), Et3N (0.758 g, 7.5 

mmol, 3 equiv.) followed by acetic acid (0.45 g, 7.5 mmol, 3 equiv., 0.43 mL) were added and stirred at 

room temperature for 1 h. Progress of the reaction was monitored by TLC. After the reaction, the mixture 

was quenched with water, extracted with CH2Cl2. The organic layer was dried over anhyd. Na2SO4 and 

concentrated under reduced pressure. Pure product 312 was obtained after column chromatography 

using CH2Cl2-EtOAc (95:5) as white solid  

TLC condition - Rf = 0.30 (95% DCM: 5% ethyl acetate) for 312 (Yield = 27%) 
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HRMS [ESI-MS] m/z ([M+Na]): Calculated: 465.1520; Observed: 465.1520; |Δm|: 0 ppm 

1H-NMR (500 MHz, CDCl3, δ ppm): 7.91-7.89 (d, 4H, J = 10 Hz), 6.96-6.94 (d, 4H, J = 10 Hz), 5.31 (s, 

4H), 4.13-4.12 (t, 4H, J = 5 Hz), 2.24 (s, 6H), 2.04-2.03 (t, 4H, J = 5 Hz). 

 

Figure 5.6: 1H-NMR (500 MHz, CDCl3, δ ppm) spectra of ester derivative 312.  
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13C-NMR (125 MHz, CDCl3, δ ppm): 190.7, 170.7, 163.6, 130.3, 127.4, 114.7, 67.9, 65.9, 26.0, and 20.9. 

 

Figure 5.7: 13C-NMR (125 MHz, CDCl3, δ ppm) spectra of ester derivative 312. 
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 General procedure and characterization of photocleaved products 5.7.

Phenacyl phototrigger based model compound 312 in THF-H2O (4:1) was irradiated for a given 

time interval in Pyrex tube in Rayonet reactor RPR-200 at 350 nm (16 bulbs x 14 Watts). The 

photocleaved mixture was analyzed by 1H-NMR spectroscopy. 

Conversion and mass balance after photoreaction: Mass balance and conversion of photocleaved 

compounds were obtained using triphenylmethane as an internal standard (IS). 1 mL of 10-2 M (122 mg in 

50 mL of CHCl3) solution of triphenylmethane was added to the crude product and evaporated. To the 

mixture of Internal standard and the photosylate about ~0.6 mL of deuterated solvent is added and 1H-

NMR was recorded. From the integral value of respective peaks, the % conversion and mass balance 

was calculated using the equation 2.1 (Chapter 2) 

 

 Photoreaction, mass balance and conversion studies on ester derivative 312 5.7.1.

 

Scheme 5.10: Photoreaction of ester derivative 312. 
 

A 5 mM (1.0 mg in 0.5 mL of THF-d8-D2O (4:1)) solution of ester 312 in THF-d8-D2O (4:1) was 

irradiated at 300 nm and analyzed by 1H-NMR spectroscopy. Photocleavage was completed in 15 min 

and to the irradiated sample 0.1 mL of 5 mM internal standard (triphenylmethane in THF-d8-D2O) was 

added and 1H-NMR recorded to determine conversion and mass balance. 
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Scheme 5.11: Schematic representation of photoreaction of ester derivative 312. 
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Figure 5.8: 1H-NMR (400 MHz, CDCl3, δ ppm) spectra of photoreaction of 312. 

(A) before irradiation and (B) after irradiation.
 (C) The authentic 314 is provided for comparison.
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 CHAPTER 6. FUTURE OUTLOOK 

 Light plays a vital role in everyday life and has been a great influence in the life sustaining 

process that takes place around us. We share a close tie with light not only with respect to their influence 

in biological systems but also with respect to the role they play in the field of medicine, industry, 

electronics, chemistry etc., This thesis details two such important areas of chemistry i.e. asymmetric 

transformations of organic molecules and photodegradation of bio-based polymers. Chapter one narrates 

the role of light in various fields of science; the second and third chapters in this thesis describe strategies 

to obtain stereoselectivity in photochemical transformations using organophotocatalyst and atropisomeric 

chromophore respectively. The fourth and fifth chapters details about the use of phototrigger in the 

degradation of polymer and the reusability of the polymers. With an aim to further explore the above-

described aspects in chemistry that utilizes light, this chapter details future goals of the discussed 

strategies. 

 Chapter 2 explores the thiourea/urea-based catalyst for enantioselective 6π-photocyclization of 

acrylanilides. As a continuing effort, evaluation of new catalysts based on non-covalent interactions to 

enhance the enantioselectivity in the photoproduct(s) is necessary. Also, to broaden the substrate scope, 

substitution on the β-position of acrylanilides e.g. cyclic enones will give an opportunity to have better 

hydrogen bonding interaction between the catalyst and the substrate that might influence the %ee in the 

resulting photoproduct. Varying the substitution on the aryl ring such as electron donating and electron-

withdrawing groups, its impact on reactivity and selectivity can be evaluated. 

 Chapter 3 demonstrates axial-point chiral strategy towards atropselective transformations 

employing various chromophores such as oxoamides and maleimides. Maleimide chromophore 

undergoes chain length dependent chemoselective photocycloaddition viz., [2+2] or [5+2] 

photocycloaddition. Though [2+2] photocycloaddition resulted in high chemical yield, the [5+2]-

photocycloaddition resulted in only low yield due to competitive absorption between the reactant and the 

photoproducts (due to presence of highly conjugated chromophore in the products). In order to address 

this issue, tandem reactions with conjugated double bond (enones) such as nucleophillic addition, 1,4-

conjugate addition using Gilman reagents could be evaluated to increase the yield of the photoproduct 
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(by removal of the enone chromophore). This in turn also increases the stereocenters in the molecule and 

also provides a handle to diversify the reactivity. 

Chapter 4 and 5 explores the concept of employing phototrigger for programmed degradation of 

polymers. In chapter 4, nitrophototrigger is employed for photodegradation of polymers. Based on the 

literature1-5 reports on nitrophototrigger where the nitrobenzyl derivative features substitution at one of the 

ortho positions, it was established that the presence of nitro group is necessary for the photocleavage 

resulting in nitroso aldehyde photoproduct. But the studies detailed in chapter 4 were performed with 

nitrobenzyl compounds that features substitution at both the ortho positions of the nitrobenzyl trigger. This 

makes the break down mechanism more challenging, as the nitroso aldehyde has to initiate the second 

cleavage for complete decomposition leading to monomer. In order to decipher this, detailed mechanistic 

investigations needs to be carried out. Preliminary investigation reveals that both oxygen and light are 

necessary for the second cleavage process. Further studies need to be carried out using laser flash 

photolysis to identity the reactive intermediate and the excited state(s) involved. Chapter 5 describes the 

use of phenacyl phototrigger with a model compound to address the shortcomings of the nitrobenzyl 

phototrigger. Further studies on developing biomass-derived polymers with phenacyl phototrigger needs 

to carried out to showcase the effectiveness of the strategy. 

 In summary, light is an environmentally benign reagent that has widespread applications. This 

dissertation detailed two important areas of chemistry that extensively employs light. Further research 

along these lines as discussed in this chapter is likely to strengthen the strategies and broaden the scope 

of the methodologies detailed in this thesis. 
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