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ABSTRACT 

 

 

Genome-wide association study of heat stress tolerance in rapeseed/canola was conducted 

in greenhouse, growth chamber, and in the field. A total of 37,539 SNP markers were used in 

this study. In the greenhouse and growth chamber study, 5, 8, and 7 QTL were found associated 

with pollen sterility, sterile/aborted pods, and number of pods on main raceme, which explained 

46.3%, 60.5% and 60.6% phenotypic variations, respectively. In the field study, 6, 11, 7, 11 and 

7 QTL were identified causing phenotypic variation of 52.2%, 71.8%, 53.2%, 73.5% and 61.0% 

for plant height, main raceme height, pods on main raceme, pod length, and pod abortion on 

main raceme, respectively. Three QTL located on chromosome C05 and, five QTL on 

chromosome A10 and C03 were identified linked to two common traits sterile/aborted pods, and 

number of pods on main raceme, respectively. Multiple heat tolerant candidate genes were 

identified surrounding these QTL. 
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CHAPTER 1.  GENERAL INTRODUCTION 

The global air temperature is increasing day by day, and is expected to rise up to 1.8–

4.0ºC than the current level by 2100 (IPCC, 2007). The increasing temperature is creating an 

abiotic stress modifying the surrounding niche of the crop plants, creating possibly lethal 

environments for the growth, development and reproduction of crops. High temperature stress 

changes the morphological, physiological, biochemical, and molecular properties of plants. The 

crop growth at flowering stage is highly sensitive to heat stress (Kaushal et al., 2016; Bita et al., 

2013) which causes flower abortion, pollen sterility; reduced pod development and seed set, as 

wee as reduced assimilatory capacity (Wheeler, 2006) and productivity (Barnabas et al., 2008) of 

crops. It can also change gene expression (Ivashuta et al., 2002; Steward et al., 2002) through 

genomic rearrangements, demethylation of transposons (Bennetzen, 2000) which affects gene 

activation or deactivation, the capture of a gene fragment and co-suppression of gene activity. 

Enzyme activities become less efficient beyond the optimum temperature range (Mahan and 

Upchurch, 1988) due to their structural change (Bensaude et al., 1990).  Certain genotypes are 

more tolerant to heat stress and these tolerant traits are genotype dependent as well as controlled 

by multiple genes (Prasad et al., 2006; Challinor et al., 2007) .  

Like many other crop species, rapeseed/canola (Brassica napus L., 2n = 4x = 38, genome 

AACC) is also suffered from heat stress. Rapeseed/canola  is an amphidiploid species of 

Brassicaceae, which is evolved by the spontaneous interspecific hybridization between two 

diploid species B. rapa (2n = 20, genome AA) and B. oleracea (2n = 18, genome CC)  

(Nagaharu, 1935). It is widely grown for the production of edible oil for human consumption, 

bio-fuel, and animal and poultry feed as a source of high quality protein. It is predominantly 

grown as in North America, Europe, Australia, China, India, and Bangladesh. To date, it is the 
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second largest oil producing crop in the world next to soybean (Foreign Agricultural Service, 

USDA, October 2015). North Dakota is the largest canola producing states of the United States, 

which produces around 84% of all U.S. canola that contributes more than $384 million to the 

national economy (5 years average from 2011-2015; USDA-NASS, 2016). Other states with high 

canola acrage are Oklahoma, Montana, Idaho, Washington, Minnesota, and Oregon.  

Canola is very sensitive to heat stress. Generally, 15-20C is suitable for its growth and 

development. High temperature (over 27ºC) causes pollen sterility and pod abortion (Morrison, 

1993; Angadi et al., 2000; Nuttall et al., 1992), whereas between 28ºC to 35ºC causes 54% to 

87% seed yield reduction, respectively (Gan et al., 2004). It has been estimated that 1°C 

temperature increase from the suitable range cause 10% yield reduction (Nuttall et al., 1992). 

Heat stress during pre-anthesis stage reduced pollen fertility, whereas post anthesis heat 

decreased female fertility of Brassica (Young et al., 2004).  

Due to limited geographic range and intensive breeding, especially for zero seed erucic 

acid and low seed glucosinolate content canola germplasms show a comprehensive linkage 

disequilibrium, which has led to a comparatively narrow genetic basis in the current breeding 

material (Hasanuzzaman et al., 2013). Genome-wide association study (GWAS) is a powerful 

tool to identify the genetic architecture of traits and multiple candidate genes associated with the 

traits in many crop species (Huang et al., 2012; Li et al., 2013; Li et al., 2014). It is based on the 

historical recombination events and a genome scanning with high-density DNA markers to locate 

the genetic loci associated with the traits of interest at a relatively high level of resolution 

(Nordborg and Weigel, 2008; Huang and Han, 2014). To date, GWAS is widely used technology 

to identify the association of many phenotypic traits with its genotypes of many crop species 

such as; rice (Oryza sativa L.), maize (Zea mays L.), barley (Hordeum vulgare L.) (Ersoz et al., 
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2009; Ordonez et al., 2010), wheat (Triticum aestivum L.) (Gurung et al., 2014), soybean 

(Glycine max L.) (Mamidi et al., 2014), shorgum (Sorghum bicolor L. Moench) (Morris et al., 

2013), tomato (Solanum lycopersicum L.) (Sauvage et al., 2014), bean (Phaseolus vulgaris L.) 

(Cichy et al., 2015) including rapeseed (Brassica napus L.) (Li et al., 2016). Germplasm-based 

study creates an opportunity to assess many alleles simultaneously with creating broader genetic 

variation and a wider background for marker-traits correlation (Hansen et al., 2001). GWAS of 

canola using SNP (Li et al., 2014) and wide accessions of germplasms (Hasan et al., 2008) as 

mapping populations can therefore help to find out significant markers associated with heat 

stress oriented phenotypic traits and the potential candidate genes that are underlying to control 

the traits. Identification of highly significant markers within and among wide accessions of B. 

napus germplasms through association mapping could be helpful to develop improved canola 

varieties efficiently while incorporated into the breeding program for a specific purpose. It will 

help breeders to create genetic diversity which will foster in developing commercially desired 

canola varieties with specific phenotypes.    

The objectives of this study are  

1. To screen heat stress tolerant germplasms from wide accessions of spring type Brassica 

germplasms  

2. To identify genomic regions associated with heat stress using genome-wide association 

mapping  

3. To identify candidate genes located around significant QTL regions associated with 

tolerance to heat. 
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CHAPTER 2.  LITERATURE REVIEW 

2.1. Evolution of rapeseed (Brassica napus L.) 

Rapeseed (Brassica napus L.) is an allopolyploid, specifically an amphidiploid (2n = 4x 

= 38, AACC). It is originated by the hybridization of diploid species, B. rapa (2n=20, AA) and 

B. oleracea (2n=18, CC) (Fig. 2.1). The hybridization and the relatedness of canola with other 

Brassica species was described by the “Triangle of U” (Nagaharu, 1935; Raymer, 2002). 

According to the description, three diploid Brassica species, B. oleracea (CC, 2n=18), B. nigra 

(BB, 2n=16) and B. rapa (AA, 2n=20) hybridized in three independent events to produce three 

amphidiploids, B. juncea (AABB, 2n=36), B. napus (AACC, 2n=38), and B. carinata (BBCC, 

2n=34). It was speculated that the natural hybridization between B. rapa and B. oleracea 

occurred several times, which helps to adapt the B. napus species, and now it is one of the most 

economically important edible oilseed crops in the world with 400 years of domestication 

(Gomez-Campo and Prakash, 1999). The relationships between cultivated Brassica species were 

first clarified by Moringa (1934) and verified by Nagaharu (1935) (Raymer, 2002).  

 

Figure 2.1. "The triangle of U" showing genomic relationships among Brassica. Adapted from U 

1935 (Nagaharu, 1935). 
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2.2. Origin, domestication and dissemination of rapeseed (Brassica napus L.) 

Brassica species have been cultivated for many years and are among the oldest cultivated 

plants (Raymer, 2002). Archeological records have been dated back to 5000 BCE (Yan Z, 1990; 

Raymer, 2002) while written records of Brassica species have been dated back to ca. 1500 BCE 

(Prakash, 1980; Raymer, 2002). Brassica napus L. (rapeseed) may have arisen in cultivation 

since no wild species are known (Raymer, 2002; Wang et al., 2011).  

Rakow (2004) reported that wild forms of B. napus occurred in Sweden, the Netherlands, 

and Britain. Brassica is related to Arabidopsis and diverged from a common ancestor about 20 

million years ago (Yang et al., 1999;  Wang et al., 2011; Koch et al., 2000). B. napus arose 

within the past 10,000 years (Wang et al., 2011). The wild progenitor parental species have been 

found in the Mediterranean area (Raymer, 2002). During the middle Ages, the oilseed production 

may have been started in Europe due to the use of oil in lamps. Oilseed rape production is 

dominated by North America (particularly Canada), Western Europe and China; however, 

Brassica oilseed crops also play a major role in Eastern Europe, the Indian subcontinent and 

Australia. Since the 18th century, forage rape had been grown in Canada, but the earliest record 

of rapeseed production in Canada is from 1936 and was credited to a migrant farmer (Mr. Fred 

Solvoniuk) who moved from Poland to Saskatchewan, Canada (Bell, 1982; Khachatourians and 

Sumner, 2001). The rapeseed brought from Poland was later identified as B. rapa (Polish type).  

2.3. Taxonomy of rapeseed (Brassica napus L.) 

The species Brassica napus L. belongs to the genus Brassica and the family 

Brassicaceae, which was formerly known as crucifereae.  Approximately, 338 genera and 3709 

species are belonging to this family (Cheng et al., 2014). The genus Brassica consists of around 

100 species including B. napus L. (Thomas, 2003) which is generally called oilseed rape or 
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rapeseed. The flowers of this species are bisexual, cruciform petals and composed of four petals, 

four sepals, a pistil with two carpels and six stamens, the outer stamens are shorter than the rest. 

Flowers are arranged in a branching type of inflorescence called a raceme. The flower is yellow, 

the ovary is superior type and positioned above receptacle of the flower (Bilay, 1976).  B. napus 

is a self-pollinating crop, but under favorable environmental condition about 12-47% cross-

pollination can occur (Becker et al., 1992). Mature and fertile flowers produce a large amount of 

pollen, and the pollen transfer to the adjacent flowers through insect, wind, and also physical 

contact which helps pollination of this crop. Fruits are long, slender, and called as pod or silique 

(Bilay, 1976). 

2.4. Rapeseed/ canola 

Canola stands for “Canadian Oil Low Acid”, which is a trademark of the Canola Council 

of Canada. Two species, B. rapa and B. napus, are commonly known as rapeseed/canola which 

must meet the following internationally regulated standards: "the oil shall contain less than 2% 

erucic acid in its fatty acid profile and the seed meal shall contain less than 30 micromoles 

glucosinolates per gram of air-dry, oil-free meal" (Canola Council of Canada. 2014a). The 

United States Food and Drug Administration (FDA) granted Generally Recognized as Safe 

(GRAS) status in 1985 to canola oil (Brown et al., 2008). Canola and rapeseed became the most 

widely grown non-cereal crops in North America by 1983.  

2.5. History of canola 

Canola is an important oil producing crops over the course of the past three decades, 

containing low erucic acid in oil and low glucosinolates in seed meal. During the Second World 

War, the increasing demand of industrial lubricant leads the necessities of canola research and 

cultivation in Canada. In 1954, Canada developed a Brassica variety “Golden” (Stefansson, 
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1983) which contained the higher percentages of erucic acid (C22:1, cis 13-docosenoic acid) and 

high glucosinolates, both were harmful for human consumption and livestock feed. By the 

continuous effort of the researchers, in 1963, the scientists of University of Manitoba, Canada, 

identified low erucic acid containing B. rapa line “Liho” (Stefansson, 1983; Downey et al., 

1989) and the first Canadian Brassica variety with low erucic acid, 'ORO' (B. napus), was 

released in 1968 (Bell 1982; Khachatourians et al., 2001). The value of this crop was not still up 

to the mark due to the presence of high quantity harmful glucosinolates content in the seed meal. 

In 1969, the Polish spring rape (B. napus) variety ‘Bronowski’ was identified as a low-

glucosinolate content variety. This cultivar was used in a backcrossing program to introgress this 

polygenic trait into high-yielding erucic acid-free rapeseed variety. Finally, in 1974, Dr. Baldur 

Stefansson developed for the first time the ‘00’quality spring oilseed rape variety, ‘Tower’, 

(Brown et al., 2008) with low erucic acid in the oil and low glucosinolates in the meal.  

2.6. Importance of canola 

Canola oil is considered as healthy vegetable oil for human consumption with a healthy 

fatty acid profile: about 7% saturated, 61% mono-unsaturated, and 32% poly-unsaturated (21% 

linoleic, 11% alpha-linolenic acid) fatty acid content (http://canolainfo.org/quadrant/media/files/ 

health/canola-oil-good-for-every-body.pdf). The oil is also rich with alpha-linolenic acid (ALA) 

which has been related to a lower risk of cardiovascular disease (Connor, 2006). Canola oil 

contains high monounsaturated fatty acid, which is good for heart and control worst cholesterol 

(LDL) regulating the blood glucose and also increase frying stability of the oil. Due to low erucic 

acid level in canola, it becomes very healthy and digestible vegetable oil (Campbell, 1963). This 

oil is mostly used in frying and baking, margarine, salad dressing, preserving of food stuffs etc. 

Canola oil is also enriched and well balanced with polyunsaturated fatty acids, linoleic acid and 
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alpha-linolenic acid, and vitamin E (Canola council of Canada, 2013) which are recognized as 

nutritionally favorable. Moreover, canola meal is also a good source of protein for animal feed 

(http://www.ers.usda.gov).  

2.7. Economic importance of canola in North Dakota 

The cultivation of this crop is increasing day by day and to date, it is the 2nd largest 

source of vegetable oil in the world next to soybean (Foreign Agricultural Service, USDA, 

2015). Rapeseed/canola became the most widely grown non-cereal crops in North America by 

1983, but in the U.S., canola cultivation was started in 1991. U.S. canola seed production, 

planting acreage and crop value increased sharply from 1992 to 2015 (USDA-NASS, 2015). The 

sharp increases from the average of five years between 1992–1996 to the average of five years 

between 2011-2015 for seed production is 627%, cultivation area is 488% and the crop value is 

1,285% (Fig.2.2).  Among the United States, the highest cultivation acreage is located in North 

Dakota state which produces about 84% of U.S. canola (5 years average from 2011-2015, 

USDA-NASS ). Most of the acres of North Dakota are concentrated near the U.S Canadian 

border. Other states that grow canola include Oklahoma, Montana, Idaho, Washington, 

Minnesota, Oregon, and the Pacific Northwest. In 2015, the economic value in the top three 

states in production was $386.26 million (North Dakota), $20.85 million (Oklahoma), and 

$12.12 million (Montana) (Table 2.1).  
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Figure 2.2. U.S. Canola seed production (green), planting area (red) and crop values (blue) since 

1992 (USDA-NASS, 2015). 

 

 

Figure 2.3. U.S. canola plant acreage by major states (5 years average from 2011 to 2015) 

(USDA-NASS, 2015). 
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Table 2.1. Canola price per Cwt (Centum weight) and value of production in different states of 

the United States from 2013 to 2015. 

State Price per Cwt (US $) Value of production(US $*1000) 

 

2013 2014 2015 2013 2014 2015 

Idaho 22.0 16.0 16.0 17,501 9,792 6,048 

Minnesota 26.4 20.0 18.0 8,494 4,713 7,276 

Montana 19.0 16.1 13.4 20,189 13,553 12,124 

North Dakota 20.6 17.0 15.5 343,052 361,998 386,260 

Oklahoma 20.3 15.0 15.9 42,346 14,415 20,845 

Oregon 22.0 18.7 17.5 4,259 2,805 567 

Washington 21.5 18.4 17.5 13,158 10,378 6,545 

Other states 19.6 17.0 17.5 7,449 5,728 5,849 

United states 20.6 17.0 15.5 456,448 423,382 445,514 

Source: National Agricultural Statistic Service (NASS), USDA. Crop values 2015 summary (February 2016).   

(http://usda.mannlib.cornell.edu/MannUsda/viewDocumentInfo.do?documentID=1050) 

2.8. Molecular characterization of Brassica species 

Rapeseed/Canola (Brassica napus L., AACC) has 19 chromosomes, 10 are from its 

progenitor species B. rapa (AA) and 9 are from the other progenitor species B. oleracea (CC). 

The genome size is about 1,130 Mb (Chalhoub et al., 2014). The C genome is larger than the A 

genome and this is consistent to the genome sizes of B. oleracea and B. rapa. Transposable 

elements (TEs) compose only about 34.8% of the genomes. About 101,040 gene models have 

been estimated using various methods, including RNA sequencing, Ab initio gene prediction, 

protein and EST alignments, and transposon masking. Confirmed matches composed about 

91,167 gene models between the genomes of B. oleracea and B. rapa (Chalhoub et al., 2014). 

Comparison between orthologous gene pairs of B. oleracea (C) and B. rapa (A) suggested a 

divergence time of about  7500 to 12,500 years ago while the B. napus would have formed after 

this divergence date (Chalhoub et al., 2014).  
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2.9. Heat stress and its effect on crop production  

The Globe is warming day by day. It is expected that the global air temperature will be 

rising up to 1.8–4.0ºC than the current level by 2100 (IPCC, 2007), and it will be detrimental for 

the crop production in the near future. The increasing high temperature will create an abiotic 

stress by modifying the surrounding niche of living organisms including crop plants. High 

temperature may create lethal environments for growth and development of plants from which 

they must be able to escape. Plants try to cope with the stress by reducing the growth and 

development as well as the yield, but under lethal condition they fail to survive and ultimately 

die. High-temperature stress produces different types of metabolites, toxins in plants and alters 

the hormonal activity which leads plants to show some abnormal behavior under the stressed 

condition. The increasing high temperature plays a vital role in plant growth, development, 

physiological process and reduces the production of crops as an abiotic stress (Fig. 2.4). Heat 

stress reduces the assimilatory capacity (Wheeler, 2007) and productivity (Barnabas et al., 2008) 

of crops through reducing photosynthesis (Zhang and Zhou, 2006), radiation use efficiency 

(Hasanuzzaman et al., 2013) and increasing leaf abscission and senescence, shoot and root 

growth inhibition or fruit damage (Vollenweider and Günthardt-Goerg, 2005), increasing 

respiration (Reynolds et al., 2007), higher production of Reactive Oxygen Species (ROS) (Guo et 

al., 2007), lipid peroxidation, and protein degradation in various metabolic processes (Savchenko 

et al., 2002). 
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Figure 2.4. Effect of heat stress on plant growth, development and physiological process 

(adapted from Hasanuzzaman et al., 2013). 

 

Heat stress induces pollen sterility and reduce the yield in many crop species  including 

canola (Zinn et al., 2010). Many essential phytohormones like ABA, salicylic acid (SA) and 

ethylene (ET) are increased under heat stress and the other phytohormones like cytokinin (CK), 

auxin (AUX), and gibberellic acids (GA) are decreased and the effects of these hormonal change  

ultimately cause premature plant senescence (Talanova et al., 2003; Larkindale and Huang, 

2004; Larkindale et al., 2005). High temperature plays a significant role in reducing plant growth 

by affecting the shoot net assimilation rates and reducing the total dry weight of plant (Wahid et 

al., 2007). High temperature disrupts biosynthesis and compartmentalization of metabolites in  

plants (Maestri et al., 2002) and it also change carbon metabolism activities, accumulation of 

carbohydrates and synthesis of sucrose  by regulating specific genes (Ruan et al., 2010). It also 

changes the gene expression which ultimately cause tapetum degeneration and pollen sterility in 
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several plant species that affects ultimate yield and quality of plant species (Oshino et al., 2007; 

Endo et al., 2009). 

2.10. Effect of heat stress on rapeseed/canola 

Increasing high temperature has a significant impact in the Brassica growing regions of 

the world. High temperature stress might cause severe seed yield reduction and therefore plant 

breeders have been working to develop heat tolerance germplasm (Malcolm et al., 2002).  

Canola is a cool season crop, of the 15-20ºC are suitable for its growth and development. This 

crop is highly sensitive to high temperature stress (Morrison, 1993; Brandt and McGregor, 1997; 

Angadi et al., 2000). High temperature creates an abiotic stress for the growth, development, and 

reproduction of canola which can cause substantial yield losses of this species (Angadi et al., 

2000; Morrison and Stewart, 2002). Plants suffer at different level of heat stress at their different 

growth stage, particularly prior to fertilization the effect is more severe.  Seed yield potentiality 

of this crop is depends on the stress occurrence and stress severity prior to and during the 

flowering stage (Mendham, N. J. and Salisbury, 1995), while the crop gets heat stress during the 

reproductive period, the significant yield loss occurs in Brassica (Hall, 1992). Heat stress 

significantly affect pollen development, anthesis and the fertilization stage of Brassica (Hall, 

1992) while the photosynthetic source is also indirectly affected by high temperature stress 

(Morrison, 1993; Angadi et al., 2000; Craufurd et al., 2003). Morrison and Stewart (2002) 

reported that high temperature at 29.5ºC from bolting to the end flowering stage significantly 

reduced the seed yield of three different Brassica species: B. napus, B. rapa and B. juncea. 

Shorter periods of heat stress are also found destructive during the critical growth stage of 

Brassica species. Angadi et al. (2000) conducted an artificial heat stress simulating study during 

flowering stage on three species of Brassica under controlled conditions with 35/15ºC day/night 
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temperature for 7 d and identified an 89% seed yield reduction of the main stems, and a 52% 

seed yield decreased per plant. Seed storage components, including oil and proteins are generally 

accumulating between 2 and 5 weeks after flowering in oilseed rape. In an another heat stress 

experiment on three B. juncea cultivars and one B. napus cultivar with a heat stress of 35/18ºC 

(day/night) for 10 days, the seed yield per plant was reduced by 77% at the pod development 

stage, 58% at the flowering stage, and 15% at the bud formation stage (Gan et al., 2004). A 

moderate heat treatment of 28/23ºC (day/night) for 10 d on B. napus from 20 to 30 days after 

flowering altered the fatty acid profile including increased oleic acid and reduced linoleic and 

linolenic acids of rapeseed oil. A very high temperature heat stress of 38/23ºC (day/night) for 5 d 

from 25 to 29 days after flowering reduced the seed oil content and the seed yield (Aksouh et al., 

2001). Heat stress during bolting to the end of flowering stage on B. juncea and B. rapa 

significantly reduced the seed yield of these two species through inhibiting flower, silique and 

seed production (Young et al., 2004). Planting time has a great effect on temperature stress. The 

delay planting of canola gets high temperature stress mostly during anthesis or prior to a pod 

formation stage, which leads higher rate of pod abortion and lower seed yield (Thurling, 1974; 

McGregor, 1981). Polowick and Sawhney (1988) conducted an experiment with a canola variety 

‘Westar’ imposing high temperature stress (32/26ºC) in a growth cabinet and reported that heat 

stress resulted in sterile flowers with smaller sepals, petals, and stamens. Late bud development 

to early seed development stage of B. napus cultivars Westar and Delta were found more 

sensitive to heat stress at 27/17ºC (day/night) with almost sterile flower or pods (Morrison, 

1993).  
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2.11. Heat stress tolerance 

Heat stress tolerance is a multigenic character. Many biochemical and metabolic 

pathways are involved with heat stress. Plants alter its morphological, physiological and genetic 

architecture to cope with the increasing heat stress. There are several traits like, antioxidant 

activity, membrane lipid unsaturation, gene expression and protein translation, protein stability, 

and accumulation of different compatible solutes are associated with the development and 

maintenance of high temperature tolerance of plants (Kaya et al., 2001). High temperature stress 

produces a huge amount of heat shock protein (Vierling, 1991) that act as thermotolerance 

ingredient and molecular chaperones to prevent denaturation or aggregation of target proteins in 

plant cell (Lohar and Peat, 1998; Ahuja et al., 2010; Scharf et al., 2012).  As soon as the plants 

get heat stress stimuli in the plasma membrane of the cell, it stimulates the messengers such as 

Ca2+ ion, calmodulins (Liu et al., 2003) and calcium-dependent protein kinases (CDPKs) (Das 

and Pandey, 2010) that act as calcium sensor, which ultimately activate a novel class of protein 

called Heat Shock Proteins (HSPs). These HSPs serve as molecular chaperons to maintain 

protein functions as well as cellular protein refolding, thereby protecting plants under heat stress 

conditions (Wang et al., 2004). High temperature affects the gene through transcriptional 

repression of genes, DNA polymerases and deregulation, methylation of DNA, which are 

involved in cell growth of plants (Sakata and Higashitani, 2008; Smith and Workman, 2012).  

Plants alter their metabolic process, maintain cell turgor pressure, arrange proteins, 

cellular structures and alter the antioxidant system to recreate redox balance and homeostasis in 

cells against high temperature to become tolerant to heat stress (Valliyodan and Nguyen, 2006). 

The high carbohydrate content of tomato plants demonstrated heat tolerance through increasing 

the sink strength and sugar signaling activities under extreme heat stress (Firon et al., 2006). 
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Plants express genes to protect from the heat stress through changing osmoprotectants, 

transporters, detoxifying enzymes, and regulatory proteins (Semenov and Halford, 2009) which 

makes it tolerant against the stress. Scientists are still working to develop heat stress tolerance in 

plants. However, the active heat stress tolerance in plants through induction of genes is still to be 

unknown (Frank et al., 2009). 

 In Arabidopsis thaliana, heat stress transcription factors (HSFs) regulate many heat 

responsive genes with heat shock proteins (HSPs) those are responsible for  thermotolerance 

during the vegetative growth stage of Arabidopsis (Scharf et al., 2012). Yang et al. (2006) 

reported that 0.25 to 12 h heat stress treatment of 7-d–old seedlings of B. rapa (cv. Jangwon) 

significantly increased the accumulation of HSFs and HSPs and also up-regulated some cell wall 

modifying genes against the heat stress.  MicroRNAs (miRNAs) also play a significant role in 

heat stress tolerance (Yu et al., 2012). Developing gametophyte of B. napus showed responsive 

to heat stress while at least one HSP transcript was found prominent in pollen and pistil during 

the reproductive stage of this crop, which suggests that the developing gametophytes are also 

responsive to high temperature stress (Young et al., 2004). Giorno et al. (2013) reported that the 

heat stress during pollen development stage increases the gene expression as well as HSFs and 

HSPs for male reproductive organs while the cell proliferating gene and, genes involved with 

DNA replication and genes encoding hydrolytic enzymes in tapetum cells, were silenced to 

protect the developing pollen from excessive heat stress.   

Seeds are the harvested organs of B. napus and heat stress causes significant loss of oil 

and starch of seed during seed filling stage. The short-term solution against heat stress and 

development of heat stress tolerance is quietly unknown to the scientists due to the complexity of 

physiological traits of crops and their interaction with the surrounding environmental conditions 
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(Shao et al., 2007).  Recently, crop simulation modeling, combined with the genetic information  

of crop plants is becoming an additional methodology to identify the complex physiological 

traits of plants (Semenov and Halford, 2009), which might be helpful to identify heat stress 

related complex traits as well as to develop heat stress tolerance of crops.  

2.12. Single nucleotide polymorphism (SNP) markers in Brassica napus 

Markers are the highly heritable genetic "tags" that helps to identify the genes associated 

with a specific phenotypic expression which are difficult to identify phenotypically. Markers can 

also be used   to map genes that controls the traits of interest (Thoday et al., 1961). Among 

different molecular markers, SNP markers are comparatively new, stable, simple to use for 

genotyping. SNPs are currently one of the most popular markers for the fine mapping of 

heritable traits (Chagné et al., 2008). In many species, these markers are distributed throughout 

the genome, which are frequently used in the genome-wide association mapping study (Drenkard 

et al., 2000). SNPs can also be applied to genetic diagnostics, germplasm identification and 

marker-assisted selection for breeding programs in agriculture. SNPs are also excellent genetic 

markers for high-density genetic map construction, physical ordering of chromosome, QTL 

mapping, association mapping and linkage disequilibrium (LD) studies, and also for the 

comparative and evolutionary genomic analyses. There are three categories of SNPs: 

transversions (C/G, A/T, C/A and T/G), transitions (C/T or G/A) and insertions/deletions which 

is also known as indels. SNPs are the frequently used marker which are contributing the majority 

of genotyping work in different crop species including B. napus ( Durstewitz et al.,  2010; Trick 

et al., 2009; Westermeier et al., 2009). 

The availability of reference genome of Brassica napus ( Chalhoub et al., 2014) make it 

feasible to genome-wide identification of SNPs in many allopolyploid Brassica napus 
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accessions. Genotyping by sequencing (GBS) is a low costing technology based on SNPs which 

is basically involved in low coverage of a large group of samples or large scale genotyping. 

SNPs are used for the analysis of genetic diversity in Brassica, where the high heritability of 

SNPs is an excellent indicator of genetic diversity and phylogeny in B. napus. These markers are 

also used for association studies because of their availability, low rate of reversion to their 

ancestral state, and comparatively low cost of high throughput assay. SNP mapping is a helpful 

tool to know the validation of current B. napus genome sequencing and the effort of its assembly 

and evolutionary process. Trick et al. (2009) reported around 20,000 SNPs across the genome of 

B. napus mapping population BnaTNDH to identify the parents of the population. According to  

Duran et al. (2010), with the availability of the 50K Infinium SNP chip for B. napus, it will be 

helpful to map the larger size of the polyploid genome of different crop species. 

Different studies have also shown that B. napus has an SNP of every 600 base pairs of the 

genome (Edwards et al, 2007; Fourmann et al., 2002) which indicate that ~ 1.1 Gb size of the B. 

napus genome would have equate to ~ 1.7 million SNP markers. This distribution of SNPs in 

Brassica genome help to identify many important genetic traits associated with phenotypic 

expression of B. napus  ( Duran et al., 2010; Edwards and Batley, 2004;  Edwards, 2007). In 

many studies, SNPs were used to identify the major QTL in canola particularly for its oil yield, 

oil quality, disease resistance and pod shatter tolerance etc. (Rahman et al., 2008; Kaur et al., 

2009; Pilet et al., 1998 Qiu et al., 2006;  Smooker et al., 2011) which were found helpful to 

construct a high density QTL mapp of this crop species. Choi et al. (2007) described that SNPs 

areenablede to fine-mapping of the QTLs. Hayward et al. (2012) stated that the discovery of 

genes required for resistance to the major fungal pathogen Leptosphaeria maculans (the causal 
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agent of blackleg disease) with the help of  SNPs associated with the genes are the candidates for 

qualitative or quantitative trait nucleotides (QTNs) which also called the perfect markers.  

Genotyping based on the identification of SNPs in its complex allotetraploid genome is 

an important criteria of B. napus for association mapping. Among many high-throughput 

genotyping assays, Amplifluor (Serological Corp), the Affymetrix Genechips, the SNPlex, 

TaqMan and SnaPshot assays are used in applied Biosystems  for quality genotyping (Appleby et 

al., 2009). Now a day, Golden Gate and Infinium based genotyping is widely used as high-

throughput technology for the genotyping assays with SNPs (Fan et al., 2006). Most recently, the 

Infinium® II assay is introduced as a custom chip for B. napus which has been designed for 

screening around 50,000 genome-specific SNPs simultaneously.  

2.13. Association mapping 

Association mapping (AM), also known as linkage disequilibrium mapping, is a 

relatively new and promising genetic method for complex trait dissection of plants. It is one of 

the most important tools to study the complex traits of plants with linkage disequilibrium (Zhu et 

al., 2008) and it is also a method of QTL mapping through the linking of phenotypes to 

genotypes (Yu et al., 2006). AM helps to develop a high resolution map, and greater allele 

frequency (Yu and Buckler, 2006). AM uses a sample of accessions from the germplasm 

collections which are found from the many rounds of meiosis and hereditary recombinations 

within the ancestors of the samples or population. The main objective of AM studies is the 

detection of correlations between genotypes and phenotypes in a genetically diverse populations/ 

individuals/ genotype core collection based on linkage disequilibrium (Zondervan and Cardon, 

2004). There are two types of AM, (1) candidate-gene association mapping which is associated 

with polymorphisms in selected candidate genes controlling the phenotypic variation for 
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particular traits, and (2) genome-wide association mapping (GWAS) which is associated with 

genetic variation within the whole genome to find signals of association for various complex 

traits (Risch and Merikangas, 1996). AM is a relatively low cost technology that can also be used 

for abiotic stress related traits in combination with marker assisted selection breeding (Varshney 

et al., 2009). This is also useful to conduct the experiment repeatedly and this approach will help 

to detect the appearance of alleles in different germplasms where allele specific markers can be 

used for the introgression of the genes into the commercially cultivated varieties. Lamkey et al. 

2013. reported that AM is able to identify coherent marker-QTL associations across populations. 

Although AM is a widely used and most popular approach to map linkage disequilibrium, in 

some cases there is a probability of getting false positives due to a strong population structure, 

and also in some cases high linkage disequilibrium can cause poor resolution of the map. 

Therefore, population structure, genotyping and accurate phenotyping are the pre-requisite for 

the high resolution association mapping (Balding, 2006). The first association mapping study 

was conducted for human diseases identification where genome-wide association study (GWAS) 

gave a good result to diagnose major loci associated with type 2 diabetes disease (WTCCC, 

2007). In Brassica research, the first application of the association mapping approach was used 

to identify the marker-trait association for seed quality traits in B. napus core collection (Lühs et 

al, 2003a). This approach was also used to see the association between plant height and primary 

branch of B. napus  (Li et al., 2016), genetic architecture of seed weight and quality in rapeseed 

(Li et al., 2014), genetic architecture of flowering time (Xu et al., 2015), blackleg disease of 

rapeseed (Rahman et al., 2016), clubroot disease of rapeseed/canola (Zhang et al., 2016) etc. In 

plant genetics, AM was first applied to Oat genomic study in 1998  to identify the significant 
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QTL using restriction fragment length polymorphisms (RFLP) markers where 13 significant 

QTL was identified from 64 oat varieties  (Beer et al., 1997; Virk et al., 1996).  

The first step of AM is the selection of germplasms, cultivars, or breeding lines with a 

wide range of genetic diversity. Phenotyping of the selected population is the next step of this 

approach. Then it needs to accumulate genotypic data of the germplasms with molecular marker 

information. Markers which possess less than 5% minor allele frequency (MAF) should be 

removed from the marker groups to avoid the lower resolution of the association within the 

alleles (Myles et al., 2009). Linkage disequilibrium determination, assessment of the population 

structure and kinship, development or selection of the regression model is the next step of AM. 

The better model is selected on the basis of smallest mean square difference (MSD) between the 

observed and expected P-value.  General linear model (GLM) and Mixed linear model (MLM) 

are used to control the population structure, where GLM is used to control only fixed effects, but 

MLM to control both fixed (SNP and population structure effect) and random (kinship) effects 

(Yu et al., 2006). As MLM deals with unbalanced data across multiple trials and shows reliable 

inference through the correlation of model between genetic and environmental effects, so it is 

used in GWAS to avoid biasness within the population structure and relatedness.  The molecular 

markers present within the close proximity of traits of interest are known as significant markers 

and used as a “marker tags” in this approach (Abdurakhmonov et al., 2008). Significant markers 

(based on P-value) could be subsequently used in stepwise regression model to identify major 

QTL. Finally, markers from each side of the major QTL will be blasted to identify candidate 

genes.  
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  2.14. Importance of phenotyping in association mapping 

Precise phenotyping is one of the important criteria to get a high resolution map in 

association mapping.  Collection of high-quality phenotypic data is the part of the accurate 

phenotyping and uses of these high quality phenotypic data increase the precision of AM. 

Although the cost of genotyping is decreasing rapidly, but the demand of efficient phenotyping is 

increasing than the increasing number of SNPs to increase the power in association studies. The 

association mapping study is based on the phenotypic data of the diverse population, but the 

phenotypic scoring and the accuracy is costly and time consuming. Besides, for the precise data, 

it needs replicated trial in different environments to reduce the environmental effects and the 

reduction of errors on phenotyping. Data collected from different environments shows diversity, 

but, the mean phenotype data from different environments shows the precise data without the 

environmental effects. Flint-Garcia et al. (2005) reported that the newly discovered candidate 

genes in association mapping studies can only be validated if we have accurate and robust 

replicated data from different environments and different years.  To ensure the high quality 

phenotypic data from a different experiments and different environments, it is necessary to 

monitor the performance and environmental growth conditions (field or greenhouse) which 

should be included as an annotation to the experiment in the trait database. Therefore, to increase 

the power of association mapping and to get a robust map, it is necessary to consider efficient 

field designs, appropriate statistical methods, and QTL × environmental interaction (Eskridge, 

2003). 
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CHAPTER 3. GENOME-WIDE ASSOCIATION STUDY OF TOLERANCE TO HIGH 

TEMPERATURE STRESS OF CANOLA IN CONTROLLED CONDITION 

3.1. Abstract  

 

High temperature plays a significant role in growth, development and yield of Brassica 

napus. Even a short period of heat stress can lead to 15-20% of yield loss of this crop. A total of 

88 accessions were studied to identify the effect of short periods high temperature stress on the 

early flowering stage of Brassica napus. Two sets of accessions with three replications per set 

were grown in a greenhouse at 22/18°C day/night temperatures. Plants from set-2 at 6-day 

flowering stage were exposed for a short period to an artificial heat stress simulating conditions 

in a plant growth chamber. The heat stressed plants were recovered at 22/18°C day/night 

temperatures in a greenhouse. Data on pollen sterility, sterile/aborted pods, and number of pods 

on main raceme were taken from both control (set-1) and heat stress (set-2) plants. The heat 

susceptibility index for each trait was calculated and an association mapping study was 

conducted using 37,539 SNPs to identify the genomic region controlling the heat stress. A total 

of 115 and 15 significant markers were identified associated with the heat tolerant traits using 

P=0.01 and P=0.001 cutoff with 10000 bootstraps, respectively. With stepwise regression, a total 

of 5, 8, and 7 QTL were identified associated with pollen sterility, sterile/aborted pods, and 

number of pods on main raceme, which together explained 46.3%, 60.5%, and 60.6% phenotypic 

variations, respectively. Many candidate genes were identified associated with the QTL related 

to male sterility, pollen abortion, embryo abortion, reduce plant growth etc.    

Keywords: Brassica napus, heat stress, controlled environment, QTL, association mapping. 
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3.2. Introduction 

Rapeseed/canola (Brassica napus L, AACC, 2n=4x=38) is an amphidiploid species of 

Brassica, originated from two diploid species B. rapa (2n=20, AA) and B. olerecea (2n=18, CC) 

(U, 1935). It is the second largest oil producing crop in the world after soybean (Foreign 

Agricultural Service, USDA; October, 2015). This crop is cultivated as a major oilseed crop in 

Canada, Europe, China, Australia, USA and the Indian subcontinent. North Dakota is the largest 

canola producing states with around 84% of U.S. canola production that contributing about $384 

million to the national economy (5 years average from 2011-2015; USDA-NASS, 2016). 

It has been predicted from climate models that the global mean temperature will increase 

by 1–4°C by the end of the twenty-first century (Driedonks et al., 2015). The increasing 

temperature will create an adverse environment that will impact agriculture and crop production 

(IPCC, 2007). This abiotic stress changes morphological, physiological, biochemical, and 

molecular properties of plants. The crop growth at flowering stage is highly sensitive to heat 

stress (Kaushal et al., 2016; Bita et al., 2013), and causes flower abortion, pollen sterility, 

reduced pod development, seed set, assimilatory capacity and productivity of crops (Wheeler, 

2007; Barnab et al., 2008). Certain genotypes are more tolerant to heat stress and these tolerant 

traits are genotype dependent as well as controlled by multiple genes (Prasad et al., 2006; 

Challinor et al., 2007). 

Rapeseed/canola is highly affected by heat stress. Generally, 15-20C temperature is 

suitable for growth and development of canola.  High temperature (over 27C) causes pollen 

sterility, pod abortion and significant yield loss of this crop (Morrison, 1993; Angadi et al., 1999; 

Nuttal et al., 1992). It has been estimated that every 1°C temperature increase from the suitable 

range of its growth and development during pod setting can cause 10% yield reduction of canola 



 

44 
  

(Nuttal et al., 1992). Heat stress during pre-anthesis stage reduces the pollen fertility, whereas 

post-anthesis heat decreases the female fertility of B. juncea (Rao et al., 1992).  

Heat stress tolerance in plants is a complex phenomenon, where numerous biochemical 

and metabolic activities such as antioxidant activity, membrane lipid unsaturation, gene 

expression and translation, protein stability, and accumulation of compatible solutes are involved 

(Kaya et al., 2001). This is a polygenic trait that makes it difficult to introgress multiple 

favorable alleles into cultivars (Frova and Gorla, 1993; Ottaviano et al., 1991).  

Canola germplasms show a comprehensive linkage disequilibrium due to its limited 

geographic range and intensive breeding (Hasanuzzaman et al., 2013). Genome-wide association 

study (GWAS) is a powerful tool to identify the genetic architecture of traits and multiple 

candidate genes associated with the traits in many crop species (Huang et al., 2012; Li et al., 

2013; Li et al., 2014). It is based on the historical recombination events and a genome scanning 

with high-density DNA markers to locate the genetic loci associated with the traits of interest at a 

relatively high level of resolution (Nordborg and Weigel, 2008; Huang and Han, 2014). GWAS 

is widely used technology to identify the association of many phenotypic traits with its genotypes 

of many crop species. This study helps to find out significant markers associated with different 

qualitative and quantitative traits through using diversified populations.  

Genome wide association mapping using the spring type diversity germplasm panel will 

help to uncover multiple small effects of quantitative trait loci (QTL). In the light of this, an 

association mapping study was performed to pinpoint genomic regions controlling the heat stress 

tolerant traits.  
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3.3. Materials and methods 

3.3.1. Plant materials and phenotyping 

A total of 122 spring type B. napus accessions obtained from USDA-ARS Germplasm 

Resources Information Network were used in this study. The accessions were grown in a 

greenhouse and plant growth chamber of North Dakota State University (NDSU), Fargo, USA 

during 2014-2015. Two sets of experiments (set-1 and set-2) were conducted in randomized 

complete block design with three replications per set.  The set-1 experiment (control) was 

conducted in the greenhouse at 22/18 day/night temperature until desiccation. The germplasm in 

the set-2 were grown in the same greenhouse, and a short periods of heat stress was given at 6-

day old flowering plants in the plant growth chamber for 5 days. The artificial heat stress 

simulating condition was set up as 18ºC for 4 hours, temperature ramped up from 18ºC to 35ºC 

in 6 hours, maintained at 35ºC for 4 hours, and temperature ramped down from 35ºC to 18ºC in 6 

hours. The relative humidity in the growth chamber was maintained at 70%, and light was 

provided for 14/10 hours day and night. The plants in the growth chamber were watered twice a 

day with a rate of 300 ml/application/plant. After the heat treatment, the plants were returned 

into the original greenhouse room at 22/18 day/night temperature and grown until desiccation. 

The flowering buds were tagged before and after heat stress to identify the pod development 

during the period of heat stress. Flower buds were collected from the heat stressed plants as soon 

as plants were removed from the growth chamber after 5 days of heat stress, while buds from the 

controlled plants were collected at the same time. Data on pollen sterility, sterile/aborted pods on 

main raceme, and number of pods on main raceme were taken from all the plants grown in set-1 

(control) and set-2 (heat stress treatment). The pods that have already been aborted/ sterile 

without any seed are counted from the main raceme as sterile/ aborted pods. On the other hand, 
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total number of pods were counted on the main raceme with viable and sterile pods. Although we 

had planted 122 germplasms for the study, however due to late flowering, as well as lack of GBS 

data, finally we were able to use a complete data of 88 germplasms (Table A8, S9, & S10) in 

association mapping study.  ANOVA was performed through SAS Proc GLM procedure using 

SAS 9.3 (SAS Institute, Inc. 2011) (Freund et al., 1986) to see the significant variation among 

the genotypes (Table A2, S3 and S4). The standard deviation, skewness, kutosis, and normality 

(Kolmogorov-Smirnov test) was calculated (Table A1 & Suplementary Fig. S1). Pearson 

correlation was also performed using R 3.3.0. to see relationhip among the traits (Table A5). 

  

Figure 3.1. Heat simulation study under normal condition in the greenhouse (left) and heat 

stressed condition in growth chamber (right). 

 

3.3.2. Pollen sterility study  

The pollen sterility study was conducted in the laboratory. The flower buds prior to open 

were collected from the greenhouse, and growth chamber. A total of 10 buds from each 

germplasm per replication were collected in an Eppendorf tube containing water, and were stored 

in an icebox during bud collection. The water from the Eppendorf tube was replaced carefully by 
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30% acetic acid solution (70% ethanol + 30% Acetic acid) and was preserved in the refrigerator 

for the study. The preserved buds were open carefully with forceps on the pre-cleaned VWR 

micro slides (25 mm X 75 mm, and 1.00 mm thick) and 2-3 anther were macerated and pressed 

using scalpels on each slide with 1-2 drop of 1% acetocarmin solution.  The slide was heated 

over a spirit lamp for 5-10 seconds to fix the acetocarmin dye with the pollen grain. The anther 

debris was cleaned with needles and a coverslip was placed on the slide carefully to prevent 

entering air bubble between the slide and coverslip. The sterile (no/lightly stained) and viable 

(stained) pollen were counted under an optical microscope (N-400M, 110-115V ~ 60/60HZ; 

0.4A, Halogen lamp 60V 20W). One hundred random pollen grains per slide were counted and 

percentage of fertile and sterile pollen grains were recorded. The images of the representative 

samples of fertile and sterile pollen were captured for future record (Fig. 3.2). 

 

 

Figure 3.2. Pollen sterility status without heat stress (left- Almost no sterility) and heat stressed 

condition (right- almost all are sterile). 
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3.3.3 Heat susceptibility index (HSI) 

Heat stress of each trait was calculated as a heat susceptibility index (HSI) using the 

equation by Fisher and Maurer (1978):  

HSI  

where, Yh and Y are the phenotypic means for each genotype under heat stress and 

controlled conditions, respectively, and Xh and X are the phenotypic means for all lines under 

heat stress and controlled conditions, respectively.  

3.3.4. DNA extraction and genotyping  

DNA was extracted using a Qiagen DNeasy kit (Qiagen, CA, US). The genotyping was 

conducted at the institute of genome diversity (IGD), Cornell University for genotype-by-

sequencing (GBS). The 88 genotypes used in the study are a subset of a core collection of the B. 

napus lines used for diversity study (Michelak et al., Unpublished). The GBS data was cleaned 

followed by alignment using BWA-MEM. It is a new alignment algorithm which is used to align 

sequence reads or assembly contigs of a large large reference genome. This algorithm is an 

automatic process of choosing alignments between local and end-to-end of the alignments. It also 

supports paired-end reads and align chimeric regions. This algorithm is a robust method of 

finding sequencing errors and also useful to alignment for small to large sequences (~70 bp to 

few megabasepairs). To date, this algorithm is more feasible and frequently used method to align 

100bp sequences (Li et al., 2013). SNP calling was performed using VarScan. It is a platform-

independent software tool which is used to detect variants in NGS data. This software employs a 

robust statistic approach which is used to call read depth, base quality, variant allele frequency, 
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and statistical significance of the variants.  (Liu et al., 2013). The SNPs were further imputed to 

estimate the missing alleles using FastPHASE 1.3 (Scheet et al., 2006) to increase the power of 

the study and mapping the causal variant. All markers <5% MAF were removed for further 

analysis. The 37,539 SNP marker data used in this analysis for the 88 individuals was cleaned 

from minor allele frequency (MAF). 

3.3.5. Population structure and relatedness 

Population structure was analyzed using principal components (PC), estimated in 

TASSEL 5.0 (Bradbury et al., 2007). PCs that account for 25% (PC3) and 50% (PC17) of 

cumulative variations were included in the association mapping analysis. In addition, a pairwise 

kinship coefficient matrix (K-matrix) was estimated (Fig.3.9) as the proportion of shared alleles 

for all pairwise comparisons within the population (Zhao et al., 2007). Further an identity by 

state matrix was also estimated to see the relatedness among the genotypes. The Linkage 

Disequilibrium (LD) between markers was estimated using TASSEL version 5.0 as the squared 

allele frequencies correlations (r2). The LD decay graph was plotted with physical distance (kb) 

between pairs of polymorphic SNP markers and the correlations of allele frequency (r2 = 0.2) in 

R version 3.3.0 (Fig. 3.3). The expected decay helps to estimate the numbers of markers needed 

to scan the whole genome.  
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Figure 3.3. Bar graph showing patterns of linkage disequilibrium (LD) decay across 19 

chromosomes of canola. Each bar represents the expected rate at which LD decays with physical 

distance (kb) for a chromosome at a threshold of r2 = 0.2, based on a non-linear regression 

model. 

 

3.3.6. Genome-wide association analysis 

Six regression models (Naïve, PC3 (25% variation), PC17 (50% variation), Kinship, 

PC3+Kinship, and PC17+Kinship) were used to estimate p-values for each of the markers in 

TASSEL 5.0 (Bradbury et al., 2007) using general liner model (GLM) and mixed linesr model 

(MLM). Among the six models for each trait, the best model was selected based on the smallest 

Mean Square Difference (MSD) between the observed and expected P-values (Mamidi et al., 

2011). After that, the best model was run against the individual trait using generalized least 

squares (GLS) model (mixed model) in TASSEL(https://bitbucket.org/tasseladmin/tassel-5-

source/wiki/User Manual/MLM/MLM) to identify the phenotypic variation (r2) by individual 

markers.  

A marker is considered significant if the P-value of the marker is within 0.1 and 0.001 

percentile tail of 10,000 bootstraps (Mamidi et al., 2014; Gurung et al., 2014). Bootstrapping is 

the re-sampling of the individual marker trait association. This approach is similar to choose an 

arbitrary value based on choosing predefined percentile tail from an empirical distribution. As P-

value is dependent upon phenotypic distribution, the variation explained by the marker, structure 

https://bitbucket.org/tasseladmin/tassel-5-source/wiki/User
https://bitbucket.org/tasseladmin/tassel-5-source/wiki/User
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and relatedness of the population so, we had used a cutoff to identify the marker trait association 

as well as significant markers. In addition, stepwise regression was implemented using 

significant markers in the SAS REG procedure to estimate the combined variation (r2) explained 

by these significant markers as well as to reduce the number of significant markers to define 

major QTL (Mamidi et al., 2014; Gurung et al., 2014). A significant P-value of 0.05 was 

necessary for both marker and model for stepwise inclusion of the marker in REG procedure in 

SAS 9.3. Further, genes 100 kb on either side of Major QTL were used to identify candidate 

genes. The gene sequences of canola were blasted against the Arabidopsis gene models (TAIR10 

database; Berardini et al., 2015) to obtain an annotation for the gene models. The genes were 

further subject to a literature search to find the function of the genes related to the traits of 

interest.  

3.4. Results 

3.4.1. Phenotypes 

Variations between control and heat stress study was observed for all the traits when the 

plants were grown in normal greenhouse conditions and were exposed to 5-day heat stress during 

flowering time in the plant growth chamber (Table 3.1). The heat stress treatment significantly 

increased pollen sterility, sterile/aborted pods, and reduced the number of pods on main raceme. 

The percentage of pollen sterility and sterile/aborted pods were increased sharply after the heat 

stress, which were 84.4 times and 26.1 times, respectively. On the other hand, the total number 

of pods on main racemes were reduced to 0.86 times of the heat treated plants (Table 3.1). The 

phenotypic estimate is presented in Table A1-S4; Fig. 3.4-3.6.  
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Table 3.1. Variation within the three traits studied under heat stress and controlled conditions. 

Traits Set-1 (Control) Set-2 (Heat stress) “X” 

Change 

Av.* Stdev* Range Av.* Stdev* Range  

Pollen sterility 0.25 0.44 0-2.33 21.1 21.07 0-94.3 84.4 

Sterile/aborted 

pods 

0.51 0.96 0-5.67 13.3 6.92 2-36.3 26.1 

Pods on main 

raceme 

34.8 11.7 13-74.5 30 10.29 8-66.5 0.86 

* Av=Average; Stdev= Standard deviation; “X” Change = Times of phenotypic change. 

 

 
 

Figure 3.4. Same germplasms at before and after heat stress (Brown tag- before heat stress and 

white tag-after heat stress). 
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Figure 3.5. Status of an NDSU line before and after heat stress. 

 

   

Figure 3.6. Pollen sterility of a germplasm Legend at before and after heat stress A) GHSE; B) 

after heat stress. 
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3.4.2. Genotyping and association mapping 

A total 42,575 SNPs were obtained from the samples used in this study. After filtering, a 

total 37,539 SNPs with minor allele frequencies >5% were further used for the subsequent 

analysis. There was a total of 20.6% heterozygous loci among these samples. Population 

structure was analyzed and controlled using principal components (PC) analysis. Three and 17 

PCs accounted for cumulative variation of 25% and 50%, respectively, and were used for 

controlling population structure in the mixed model. Three continuous cluster groups were 

obtained with the first two principal components through PC analysis (Fig. 3.7). Among the six 

models used in the analysis, the model with PC3 (explain 25% variance) and kinship was the best 

model for pollen sterility, only PC17 (explain 50% variance) was the best for the sterile/aborted 

pod, and kinship was the best model for the total pods on main raceme. The P-P plots showed 

the distribution of observed P-values and expected P-values for all the three different traits [Fig. 

3.8(A, B & C)]. 

 
Figure 3.7. PCA graph showing distribution of two principal components of 37,269 SNPs. PC1 

and PC2 explain 13.42% and 9.5% variations, respectively.   
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Figure 3.8. (A-C). P-P plot: Distribution of P-values for the six models tested in relation to three 

different traits (A) Pollen sterility(%), (B) sterile/aborted pods, (C) total pods on main raceme. P-

observed value is plotted on the X axis and P-expected value is plotted on the Y axis. The 

different color represents the different regression models used. The best model is that one which 

is close to the diagonal line. 
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Figure 3.9. Heat map of pairwise kinship among 88 canola genotypes used for controlled study 

in the greenhouse. The red squares in the diagonal indicate a genotype’s genetic relatedness to 

itself.  
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3.4.3. Pollen sterility 

 Six markers were found significant at the 0.001 percentile (p≤6. 38E-08; Table 3.2; Fig. 

3.10A), and were located on chromosomes C08 (3.76 Mbp), C03 (0.39 Mbp) and C04 (47.2 

Mbp). Two other markers, named chrAnn_rand_4645588, and chrCnn_rand_18549112, were 

present at unknown positions and evenly distributed on the chromosomes. Another 33 markers 

were found significant at 0.01 percentile tail of the empirical distribution (p≤5.86E-06; Table 

A6). These significant markers were found on multiple chromosomes.  A stepwise regression 

was performed to identify the major QTL associated with these markers and five significant QTL 

regions were identified those explained 46.31% of the total variation (Table 3.3). The candidate 

genes identified here include genes associated with male sterility, pollen tube growth, pollen 

abortion and anther dehiscence (Table A7).  
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Figure 3.10. Manhattan plots for the three major traits of B. napus associated with heat stress. 

(A) pollen sterility, (B) sterile/aborted pods, and (C) pods on main raceme. Y-axis showing the 

P-value on a -log10 scale and, X-axis showing the nineteen chromosomes (A01-A10 and, C01-

09). Horizontal line with red color showing the significant markers with p≤0.01. 
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Table 3.2. Significant markers associated with different traits tolerance to heat stress. 

Marker Chr* Position 

(Mbp) 

P-value -Log10 p A1 Mean 

frequency 

A2 Mean Mean 

Difference 

Pollen Sterility         

chrAnn_rand_4645588 Ann_rand 4.64 1.35E-09 8.87 CC 86.43 TT 1084.1 997.67 

chrC03_394217 C03 0.39 4.64E-08 7.33 AA 1084.1 GG 116.81 967.29 

chrC04_47184437 C04 47.1 6.38E-08 7.2 CC 1084.1 TT 84.54 999.56 

chrC04_47184438 C04 47.1 6.38E-08 7.2 AA 1084.1 TT 84.54 999.56 

chrC08_3759455 C08 3.75 1.42E-08 7.85 GG 38.73 TT 1084.1 1045.37 

chrCnn_rand_18549112 Cnn_rand 18.5 7.78E-11 10.11 CC 1084.1 TT 86.98 997.12 

Sterile/aborted pods         

chrA01_8090850 A01 0.81 4.16E-05 4.38 AA 326.92 GG 234.11 92.81 

chrA03_13865121 A03 13.8 2.82E-05 4.55 CC 457.8 TT 217.59 240.21 

chrA08_9665233 A08 9.66 2.27E-05 4.64 CC 380.48 TT 253.83 126.64 

chrC01_38231402 C01 38.2 1.94E-05 4.71 AA 240.56 GG 392.74 152.18 

Pods on main raceme        

chrA02_3316315 A02 3.31 5.47E-05 4.26 AA 1.88 TT 3.64 1.77 

chrA06_20870206 A06 20.8 9.02E-05 4.04 CC 3.25 TT 1.88 1.37 

chrA06_20955765 A06 20.9 1.37E-04 3.86 GG 3.1 TT 1.97 1.14 

chrA10_1645036 A10 1.64 1.39E-04 3.86 GG 2.46 TT 2.33 0.13 

chrCnn_rand_35427743 Cnn_rand 35.4 4.88E-05 4.31 AA 1.88 CC 3.64 1.77 

*Chr.: chromosome; position (Mbp) the position of the significant markers on chromosome; P-value is the Bonferroni P- value of SNPs; A1 and A2 represents 

Allele-1 and Allele-2. 
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Table 3.3. Significant Markers associated with QTL expressing cumulative phenotypic variation 

of different traits of canola under heat stress condition. 

 Traits # of 

significant 

markers 

# of QTL Chromosomes  Position 

(Mbp) 

% Phenotypic 

Variation  

Pollen sterility 39 5 A02  1.5 46.31 

C01  21.3 

C02_rand    1.4 

C05  9.6 

Unn_rand 6.7 

Sterile/aborted 

pods 

39 8 A01  8.1 60.45 

A03  16.3 

A09  32.1 

A10  12.8 

C05  37.9 

C05  42.4 

C07  27.3 

Unn_rand    6.7 

Pods on main 

raceme 

37 7 A02  5.6 60.59 

A05  15 

A06  21 

A10  1.6 

A10            14.4 

C03  23.3 

Cnn_rand  8.7 

 

3.4.4. Sterile/aborted pods 

 For pod sterility, four markers were identified significant at 0.001 percentile (p≤4.16E-

05; Table 3.2; Fig 3.10 B). These markers were distributed on chromosomes C1 (38.2 Mbp), A8 

(9.67 Mbp), A03 (13.9 Mbp) and A01 (8.1 Mbp). Another 35 markers were found significant at 

0.01 percentile tail of the empirical distribution (p≤9.9E-04) (Table A6).  Stepwise regression 

identified eight QTL region, which explained 60.5% phenotypic variation of pod sterility (Table 

3.3). These QTL were located on chromosome A01, A03, A09, A10, C05 and C07.  Multiple 
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candidate genes involved in pod abortion, floral organ development, pollen tube growth, embryo 

and pollen abortion were identified in these QTL regions (Table A7). 

3.4.5. Pods on main raceme  

 Five markers significant at 0.001 percentile (p≤1.39E-04; Table 3.2; Fig. 3.10C) were 

identified for total number of pods on main raceme. These significant markers were located on 

chromosomes A02 (3.32 Mbp), A06 (20.87 and 20.95 Mbp), and A10 (1.65 Mbp). One markers 

named chrCnn_rand_35427743 was present at unknown positions. Other 34 markers were found 

significant at 0.01 percentile tail of the empirical distribution (p≤1.73E-03) (Table A6). Seven 

QTL regions were identified through stepwise regression. These seven QTL explained 79.65% 

phenotypic variation and located on chromosome A02, A05, A06, A10 and C03 (Table 3.3).  

Candidate genes in this QTL include genes involved in the floral organ development, abortion of 

various organs during development, reduced flowering fertility etc. (Table A7).  

3.5. Discussion 

Improvement of several traits, including heat stress tolerance is an important criterion to 

expand the cultivation of this crop in the United States beyond the North Central states as well as 

different parts of the world. Heat stress negatively affects plant’s developmental and 

physiological processes, reproduction and adaptation (Hall, 2001). The identification of markers, 

genes, and QTL associated with heat stress related traits during flowering to pod development 

stages can help to select stress tolerant genotypes for a breeding program. The spring type 

germplasm accessions used in this study are originated/obtained from 14 countries of 3 

continents. This provides a useful resource of genetic diversity for genome-wide association 

mapping study.  
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In this study, we simulated an artificial heat stress conditions in a controlled plant growth 

chamber. This simulation allowed us to reliably control the temperature, humidity, light, 

moisture in the growth chamber to facilitate the artificial heat stress. None of the above 

conditions are possible to control under field testing conditions. Moreover, we evaluated the 

same germplasm in the greenhouse without heat stress, which gave us an ample opportunity to 

compare the same germplasm between normal growing and heat stress conditions to find out the 

heat susceptibility index. We have given a 4h/day heat stress at 35ºC for 5 days in a plant growth 

chamber. This artificial heat stress research showed a similar agreement with many researchers 

such as Angadi et al. (2000) conducted an artificial heat stress simulating study during flowering 

stage on three species of Brassica under controlled conditions with 35/15ºC day/night 

temperature for 7 d and identified an 89% seed yield reduction on the main stems, and a 52% 

seed yield reduction per plant. In an another heat stress study on three B. juncea cultivars and 

one B. napus cultivar with a heat stress of 35/18ºC (day/night) for 10 days, the seed yield per 

plant was reduced by 77% at the pod development stage, 58% at the flowering stage, and 15% at 

the bud formation stage (Gan et al., 2004). A very high temperature heat stress of 38/23ºC 

(day/night) for 5 d from 25 to 29 days after flowering reduced the seed oil content and the seed 

yield (Aksouh et al., 2001). Heat stress at 35oC during bolting to the end of flowering stage on B. 

juncea and B. rapa significantly reduced the seed yield of these two species through inhibiting 

flower, silique and seed production (Young et al., 2004). Polowick and Sawhney (1988) 

conducted an experiment with a canola variety ‘Westar’ imposing high temperature stress at 

32/26ºC (day/night) in a growth cabinet and reported that heat stress resulted sterile flowers with 

smaller sepals, petals, and stamens. Late bud development to early seed development stage of B. 

napus cultivars Westar and Delta were found the most sensitive to heat stress at 27/17ºC 
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(day/night) with almost sterile flower or pods (Morrison, 1993). Morrison and Stewart (2002) 

reported that high temperature at 29.5ºC from bolting to the end flowering stage significantly 

reduced the seed yield of three different Brassica species: B. napus, B. rapa and B. juncea. The 

delay planting of canola gets high temperature stress mostly during anthesis or prior to a pod 

formation stage, which leads higher rate of pod abortion and lower seed yield (Thurling, 1974; 

McGregor, 1981).  

In general, heat stress tolerance study can be conducted at different developmental stages 

of the plant, however, in this study the heat stress was given to flowering plants at six days after 

flower initiation. Early flowering stage of the crop is highly sensitive to heat stress and causes 

the most significant variation of plant’s physiological activity (Johanna et al., 2015, Young et al., 

2004), and significantly reduces the seed yield (Hedhly et al., 2009; Thakur et al., 2010). It has 

been reported that the heat stress during flower initiation or pod development of B. napus and B. 

juncea is more deleterious than the heat stress during bud initiation (Gan et al., 2004). Heat stress 

after pod development stage in Brassica do not significantly damage the crop yield (Angadi et 

al., 2004).  

We have studied pollen sterility, flower/pod abortion, number of pods on main raceme 

which were affected by heat stress. This is an agreement with many findings of heat stress 

induced pollen sterility, flower and pod abortion, and reduced pods per plant in several species 

including tomato (Levy et al., 1978; Abdul-Baki 1991), Capsicum annum L. (Rylski, 1986; 

Erickson and Markhart, 2002), bean (Konsens et al., 1991), cowpea (Craufurd et al, 1998), pea 

(Wery and Tardieu, 1997), and cotton (Reddy et al., 1992). In cereals, the pollen tube growth and 

pollen viability is significantly reduced during the heat stress at reproductive stage (Saini and 

Aspinall, 1982; Stone, 2001). Heat stress affects the gametophytes and the tapetum layer which 
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reduces water and nutrient transportation during microspore development (Young et al., 2004). 

Heat stress also accelerates the early anther development process, progression of pollen mother 

cell, arrest the cell proliferation and anther cell wall degradation which ultimately cause pollen 

abortion and male sterility in the flower (Giorno et al., 2013).  

Association Mapping   is a powerful tool to identify marker-trait associations and genes 

associated with the trait (Li et al., 2011; Jia et al., 2008). However, the results might be 

undermined if the false positives are not controlled. To avoid these spurious associations, the 

marker-trait associations were corrected for population structure and relatedness and a 

combination of both. Further the significant markers for each trait were selected based on 

empirical distribution rather than a single P-value based on the suggestion by Mamidi et al. 

(2014) and Gurung et al. (2014). Further to narrow the QTL peaks and finding the markers for 

marker assisted selection, a stepwise regression was performed (Mamidi et al., 2014). Our 

analysis identified 20 QTL regions for the 3 traits studied. Even though the traits are 

physiologically related, we did not find common QTL because of the involvement of multiple 

physiological pathways into these trait developments. Gene models around these QTL were used 

to identify the candidate genes. The canola accessions studied here had a lower LD (Michalak et 

al., Unpublished), and therefore we selected the markers around the 100 kb sequence of each side 

of the significant QTL. The position of the markers, QTL, candidate genes are based on the 

canola genome sequence reported by Chalhoub et al. (2014). 

We evaluated 88 diversified spring type accessions for association mapping study. 

Although, it is not a large number of accessions, however, because of diversified origin, we 

could identify a large number of polymorphic markers (37,539 markers) for trait association 

study. Therefore, a low number of accessions were used for this association study. Rezaeizad et 
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al. (2011) conducted an association mapping study using 49 genetically diverse winter type B. 

napus germplasm. Honsdorf et al. (2010) used 84 winter type B. napus accessions for association 

study. Gajardo et al. (2015) used 89 winter type B. napus accessions, Jestin et al. (2011) used 

128 accessions, and Liu et al. (2016) used 143 accessions. Moreover, we could identify a very 

high number of SNPs for association mapping study compared to the other studied mentioned 

above. 

Plants respond to increased temperature by changes in biochemical and physiological 

processes. Cooling and warming temperature alters membrane fluidity and elicit intracellular 

free-calcium elevation, and is considered the primary event controlling plant responses to 

temperature (McClung and Davis, 2010). Over the last few years, many molecular-genetic 

studies demonstrated the effects of temperature on hormone signaling, flowering time, the 

circadian clock, light-signal transduction, and cold and heat acclimation as the pre-priming of the 

acquisition of hardiness against heat stress (Penfield, 2008). The variation in these interrelated 

traits is due to common physiological responses associated with heat stress in plants. Several 

heat shock proteins (HSPs) act as sensors to heat stress are found within the QTL regions of the 

traits. These heat shock genes (HSGs) encode HSPs are vital for plant’s survival under heat 

stress conditions (Yang et al., 2006). These proteins are expressed under high temperature and 

most of these proteins protect intracellular proteins from being denaturation and preserve their 

stability and function through protein folding, thus it acts as chaperones (Baniwal et al., 2004). 

Flowering is one important trait affected by heat stress. Multiple flower related genes like 

F-box proteins (Jain et al., 2007; Ariizumi et al., 2011), homeobox-leucine zipper protein 17 

(Rueda et al., 2005) were identified in the QTL regions. Multiple genes related to floral organs 

abortion are also affected by heat stress. They include adenosine kinase 2 that hamper flower and 
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pod development through embryo abortion (Zhang et al., 2014), Cytochrome P450 family that 

effects the number of siliques and leads to pollen abortion (Bak et al., 2011), MATE efflux 

family proteins that induce embryo abortion (Zhao et al., 2015). In addition, pentatricopeptide 

(PPR) repeat-containing family of proteins that lead to embryo abortion (Lurin et al., 2013), the 

protein kinase family of proteins that are known to induce pollen abortion in Barley (Radchuk et 

al., 2006) were identified in the QTL regions. Also cytokinin oxidase 7 and indole-3-acetic acid 

inducible 19, proton pump interactor known to induce flower abortion were also identified (Nico 

et al., 2015; Song et al., 2015). Genes known to induce embryo and seed abortion like SET-

domain containing protein lysine methyltransferase family protein (Pontvianne et al., 2010), 

Pyruvate kinase family protein (Zhang et al., 2014), Galactosyltransferase family protein (Basu 

et al., 2015), GDSL proteins (Zhao et al., 2015), phosphatidic acid phosphohydrolase 2 

(Eastmond et al., 2010), phosphoenolpyruvate carboxylase 3 (Fischinger et al., 2010) and RGA-

like protein 3 (Cheng et al., 2015) were also identified.  

Pollen and flower sterility are also affected by heat stress. We identified many candidate 

genes associated with flower and pollen sterility in our study, which ultimately reduces the yield 

of this crop. Among different candidate genes, pentatricopeptide repeat (PPR) superfamily 

protein, which leads to embryo abortion, thus produces the sterile pod (Lurin et al., 2013). The 

protein 2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase superfamily protein increase 

oxidative stress to reduce flower and pod (Leisner et al., 2014), Coatomer and beta subunit 

protein involved in the tapetum cell development and fertility restoration (Singh et al.,2015). 

Protein kinase superfamily creates pollen abortion in barley (Radchuk et al., 2006), whereas 

peptide transporter5 controls plant cell differentiation and nutrient supply that hamper flower 

development (Yang et al., 2000). F-box family protein was found responsible to reduce flower 
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fertility (Ariizumi et al., 2011). In addition, Adenosine kinase 2 protein hampers flower and pod 

development through embryo abortion (Zhang et al., 2014), glutamine synthetase 1,4 creates 

oxidative stress and B-deficiency (Bargaz et al., 2015), heat shock factor 3 associated with male 

sterility (Kim et al., 2001), pectin lyase-like superfamily protein involved in pollen tube growth 

(Zhao et al., 2015), homeodomain GLABROUS 9 regulates anther dehiscence  (Wilson et al., 

2011) and  Cytochrome P450 was found associated with pollen abortion with reduced number of 

elongated siliques in Arabidopsis (Bak et al., 2011).  

The number of pods per plant varied due to the detrimental effects of heat stress. High 

temperature reduces the pollen fertility, stigma receptivity and also reduces the pollen tube 

growth, which lead to reduce the pod development in plants. With the physiological and 

biochemical activities associated with reduced numbers of pods, many genes are also involved in 

this process. A group of genes associated with a total number of pods was identified through this 

study such as P450 reductase1 is responsible for pollen abortion with reduced number of 

elongated siliques in Arabidopsis (Bak et al., 2011), Pectin methylesterase31 involved in pollen 

tube growth (Zhao et al., 2015), basic helix-loop-helix (bHLH) DNA-binding family protein 

associated with the development and dehiscence of the seed and pod (Hudson et al., 2015). In 

addition, translocon at the inner envelope membrane of chloroplasts 20 is involved in tapetum 

function and microspore development in Brassica (Dun et al., 2011), 17.6 kDa class II heat 

shock protein is associated with heat stress tolerant of crop plants (Al-Whaibi, 2010) and K+ 

efflux antiporter 6 which is involved in pollen tube development and fertilization (Lu et al., 

2011). 
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3.6. Conclusion  

 The results of our study identified 115 significant markers associated with pollen sterility, 

sterile/aborted pods, and number of pods on main raceme. After stepwise regression, the markers 

were reduced from 115 to 15, those are closely associated with major QTL causing maximum 

phenotypic variation. This result also demonstrates that the use of association mapping was able 

to identify many QTL regions which were not known before. The candidate genes identified in 

the QTL regions support the use of these QTL for identification of genotypes with 

resistance/tolerance to heat stress. Markers identified here could be used for marker assisted 

selection in plant breeding programs. As this study was conducted only for one year, so, marker 

validation and 2nd year study could help to recommend the selected markers in marker assisted 

selection. 
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CHAPTER 4.  GENOME-WIDE ASSOCIATION MAPPING OF HEAT STRESS 

TOLERANT TRAITS OF CANOLA (BRASSICA NAPUS L.) UNDER FIELD 

CONDITIONS 

4.1. Abstract 

 

Brassica is a cool season crop and is susceptible to high temperatures. Developing heat 

stress tolerant variety helps the crop to sustain in growing temperatures and to extend the 

geographical range of cultivation. A total of 85 spring type Brassica napus accessions grown in 

the field with natural heat stress at the end of flowering to the pod initiation stage were 

phenotyped. An association study was performed to identify QTL associated with heat stress 

tolerant traits. About 37k markers obtained using genotyping-by-sequencing were used for this 

study. Multiple markers distributed on most of the chromosomes were identified. Further, a total 

of 6, 11, 7, 11 and 7 QTL were identified with 52.19%, 71.75%, 53.21%, 73.48% and 61.02% 

phenotypic variation for plant height, main raceme height, pods per main raceme, pod length, 

and pod abortion per main raceme, respectively. Multiple candidate genes known to be involved 

in stress, abortion of different organs were identified in the vicinity of the QTL.  

Keywords: Brassica napus, heat stress, QTL, Association mapping. 

4.2. Introduction 

Rapeseed/canola (Brassica napus L., 2n=4x=38) is an allopolyploid species, specifically 

an amphidiploid consisting of genome AACC and originated from the hybridization of two 

diploid species Brassica rapa (2n=2x=20) and B. oleracea (2n=2x=18) (U, 1935; Raymer, 

2002). Genome size of this crop is about 1,130 Mb and C genome is larger than the A genome, 

which is consistent with the genome sizes of B. oleracea and B. rapa (Chalhoub et al., 2014). 

Rapeseed ranks the second position in the world as oil producing crop next to soybean (Foreign 
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Agricultural Service, USDA, 2015). In the USA, about 84% of canola is produced in North 

Dakota and the market value is about $464 million/year (average of 2011-2015) (Foreign 

Agricultural Service, USDA, 2015).  

Although rapeseed is a valuable oilseed crop, but the production of this crop is hampered 

due to different biotic and abiotic stresses, such as disease, pest, heat stress, drought and cold 

stress etc. High temperature creates lethal environments for the growth and development of 

plants, and produces different types of metabolites, toxins and alters the hormonal activity which 

leads plants to show some abnormal behavior under the stressed conditions. Plants are able to 

cope with the stress conditions by reducing the growth and development, yield and, changing 

morphological, physiological, biochemical, and molecular properties. Temperature increases at 

3-4˚C from its normal range during reproductive stages, even for a short duration, could cause 

15-35% yield loss of many crop species (Ortiz et al., 2008). Generally, the suitable temperature 

for spring canola production is about 15-20˚C, but the temperature over the 27˚C causes pollen 

sterility and pod abortion (Morrison,1993; Angadi et al., 2000; Nuttall et al., 1992).  The changes 

of heat stress from 28˚C to 35˚C in rapeseed could reduce the seed yield from 54% to 87%, 

respectively (Gan et al., 2004). It has been estimated that 1˚C temperature increase from the 

suitable range of crop growth and development in July, cause 10% yield reduction of canola in 

Saskatchewan, Canada (Nuttall et al., 1992). Heat stress during pre-anthesis stage reduced pollen 

fertility, whereas post anthesis heat decreased the female fertility of B. juncea (Rao et al., 1992). 

The generative stage of crop development is highly sensitive to heat stress (Bita and Gerats, 

2013) which causes flower abortion, pollen sterility, reduces pod development and seed set, 

reduces the assimilatory capacity and productivity (Wheeler, 2007; Barnabas et al., 2008)  

through reducing photosynthesis (Zhang and Zhou, 2006), radiation use efficiency 
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(Hasanuzzaman et al., 2013), and increases plant respiration (Reynolds et al., 2007), Reactive 

Oxygen Species (ROS) production (Gong et al., 1998; Volkov et al., 2006, Guo et al., 2007), 

lipid peroxidation, protein degradation (Savchenko et al., 2002), shoot and root growth inhibition 

(Vollenweider and Günthardt-Goerg, 2005), hyperfluidization and disruption of plant cell 

membranes (Horváth et al., 1998; Sangwan et al., 2002), misfolding, and aggregation of protein 

(Sharma et al., 2010), metabolic imbalance (Vierling, 1991; Gong et al., 1998; Volkov et al., 

2006) and yield reduction (Ahuja et al., 2010; Mittler and Blumwald, 2010). Biosynthesis and 

compartmentalization of metabolites are disrupted by high temperature (Maestri et al., 2002). 

Heat stress causes tapetum degeneration and pollen sterility (Oshino et al., 2007, Endo et al., 

2009), genomic rearrangements (Ivashuta et al., 2002; Steward et al., 2000), demethylation of 

transposons (Bennetzen, 2000) by regulating specific genes in the biochemical pathway.   

Heat stress tolerance in plants is a multigenic character, where numerous biochemical and 

metabolic traits like, antioxidant activity, membrane lipid unsaturation, gene expression and 

translation, protein stability, and accumulation of compatible solutes (Kaya et al., 2001) are 

involved. Transcriptional repression of genes, DNA polymerases, and deregulation of DNA 

methylation involved in cell growth (Sakata and Higashitani, 2008; Smith and Workman, 2012) 

are also caused by heat stress. Many genes are expressed to protect plants from the heat stress 

through changing osmoprotectants, transporters, detoxifying enzymes, and regulatory proteins 

which makes it tolerant against the stress (Semenov and Halford, 2009). However, the specific 

role of the genes in heat stress tolerance is not yet identified in crops (Frank et al., 2009). Due to 

the complexity of physiological traits and their interaction with the environment the short-term 

solution for heat stress tolerance is quietly unknown to the scientific community (Shao et al., 

2007).    
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Association mapping (AM) is basically developed on the basis of the linkage 

disequilibrium concept which utilizes ancestral recombination and natural genetic diversity 

within a population to quantify the quantitative traits (Geiringer, 1944; Lewontin and Kojima, 

1960), where linkage disequilibrium is the non-random co-segregation of alleles at two loci. It is 

an alternative method to discover genetic factors using biparental crosses that has a higher 

mapping resolution within a large number of unrelated individuals and can identify common 

genetic variants which control a common phenotype (Risch, 2000). As heat stress is a complex 

trait, AM would be a good approach to locate the genomic region associated with the heat stress 

related phenotypes. 

In the light of these facts, this research scheme has been taken to pinpoint the genomic 

region associated with the heat stress traits in a wide accessions of B. napus germplasms under 

field conditions.   

4.3. Materials and methods                                                                                                                                                

4.3.1 Phenotyping 

A total of 160 spring type Brassica accessions obtained from USDA-ARS Germplasm 

Resources Information Network were used for this study. Plants were grown during 2014 in the 

field at Prosper, North Dakota, in a randomized complete block design (RCBD) with 3 

replications. The germplasms were planted at May 28, 2014 and during flowering, three plants 

from each replication were tagged randomly for data collection. During the pod initiation time 

(1st week to 3rd week of July), the air temperature was about 35ºC (https://ndawn.ndsu. nodak. 

edu), which created a natural heat stress for about 20 days (Table A15). Data on plant height 

(cm), raceme height (cm), number of pods on the raceme, pod length (cm) and, % pod abortion 

on main raceme were recorded on the physiological maturity stage of the crop. Plant height was 
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measured from the bottom (ground level) to the top of the plant. The main raceme height was 

measured from the bottom to the top of the main inflorescence. Total number of pods on the 

main raceme were counted for each plant. Pod length was measured from 10 pods per main 

raceme from the middle part of the main raceme. Pod abortion was recorded from the main 

raceme. Although we had planted 160 germplasms but due to late flowering, imbalanced 

flowering, as well as lack of GBS data, finally we got complete data of 85 germplasms (Table 

A16, & S17), which were used in association mapping analysis.  An ANOVA was also 

performed through  SAS Proc GLM procedure using SAS 9.3 (SAS Institute, Inc. 2011) (Freund 

et al., 1986) to see the significant variation among the genotypes (Table A11). The standard 

deviation, skewness, kutosis, and normality (Shaprio-Wilk test) was also calculated (Table 4.1, 

& Suplementary fig. S2). Pearson correlation was also performed using R 3.3.0 to see relation 

among the traits (Table A12). 
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Figure 4.1. Flower and pod abortion under field condition at different stages of pod development. 

 

4.3.2. Genotyping and association mapping 

The SNP marker data for these samples were obtained using GBS from a collection of 

366 individuals (Michelak et al., Unpublished). Briefly, these samples along with others were 

digested with ApkI enzyme. The Illumina GAII sequencer was used to sequence the sample at 

100 bp single end reads. Alignments were performed using BWA-MEM. It is a new alignment 

algorithm which is used to align sequence reads or assembly contigs of a large large reference 

genome. This algorithm is an automatic process of choosing alignments between local and end-

to-end of the alignments. It also supports paired-end reads and align chimeric regions. This 

algorithm is a robust method of finding sequencing errors and also useful to alignment for small 

to large sequences (~70 bp to few megabasepairs). To date, this algorithm is more feasible and 

frequently used method to align 100bp sequences (Li et al., 2013). SNP calling was performed 
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using VarScan. It is a platform-independent software tool which is used to detect variants in 

NGS data. This software employs a robust statistic approach which is used to call read depth, 

base quality, variant allele frequency, and statistical significance of the variants.  (Liu et al., 

2013). FastPHASE 1.3 (Scheet et al., 2006) was used to estimate the missing alleles. The marker 

data for the 85 individuals was further cleaned for minor allele frequency of 5% below which 

markers were removed. Finally, 37,269 SNPs were subsequently used for the further analysis. 

We had calculated Linkage Disequilibrium (LD) between the markers as the squared allele 

frequencies correlations (r2). This LD was estimated using TASSEL version 5.0. The LD decay 

graph was plotted with physical distance (kb) between pairs of polymorphic SNP markers and 

the correlations of allele frequency (r2 = 0.2) using R version 3.3.0 (Fig. 4.2) 

 
Figure 4.2. Bar graph showing patterns of linkage disequilibrium (LD) decay across 19 

chromosomes of canola. Each bar represents the expected rate at which LD decays with physical 

distance (kb) for a chromosome at a threshold of r2 = 0.2, based on a non-linear regression 

model. 
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4.3.3. Structure analysis, kinship, and model testing 

Population structure was analyzed using principal components (PC) and estimated in 

TASSEL 5.0 (Bradbury et al., 2007). PCs that account for 25% and 50% of cumulative variation 

were used in Association mapping analysis. In addition, a pairwise kinship coefficient matrix (K-

matrix) was estimated (Fig. 4.5) as the proportion of shared alleles for all pairwise comparisons 

within the population (Zhao et al., 2007). Further an identity by state matrix was also estimated 

to see the relatedness among the genotypes. Six regression models: Naïve, PC3 (25% variation), 

PC17 (50% variation), kinship, PC3+kinship, and PC17+ Kinship were used in this study to 

identify the marker trait association as well as to select the best models. General linear model 

(GLM) was used for three models (Naïve, PC3, PC17) as they have only fixed effects, and other 

three models (kinship, PC3+kinship, and PC17+ Kinship) were analyzed using mixed linear 

model (MLM) due to their fixed and random effects. Among the six models for each trait, a best 

model was selected based on the smallest Mean Square Difference (MSD) between the observed 

and expected P-values (Mamidi et al., 2011) and run the best model using TASSEL to identify 

the significant markers. The significant markers were identified at p value 0.1 and 0.001 

percentile tail of 10,000 bootstraps. Bootstrapping is the re-sampling of the individual marker 

trait association which is similar to choose an arbitrary value based on choosing predefined 

percentile tail from an empirical distribution. As P-value is dependent upon phenotypic 

distribution, the variation explained by the marker, structure and relatedness of the population so, 

we had used a cutoff to identify the marker trait association as well as significant markers.When 

the P -value of a marker is within 0.01 percentile tail of 10,000 bootstraps then the marker was 

identified as a highly significant marker (Mamidi et al., 2014; Gurung et al., 2014). Significant 

markers were selected from the selected best models, and Mahhattan plots were constructed 
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using –log10 of P-values against chromosome location for the graphical representation of the 

position of the markers on chromosome. 

4.3.4. Identification of QTL and candidate genes 

The best model was run against the individual trait using generalized least squares (GLS) 

model (mixed model) in TASSEL (https://bitbucket.org/tasseladmin/tassel-5-source/wiki/User 

Manual/MLM/MLM) to identify the phenotypic variation (r2) by individual markers.  

In addition, stepwise regression was also implemented using significant markers in the 

SAS REG procedure to estimate the combined variation (r2) explained by these significant 

markers as well as to reduce the number of significant markers to define major QTL (Mamidi et 

al., 2014; Gurung et al., 2014). A significant P-value of 0.05 was necessary for both marker and 

model for stepwise inclusion of the marker in REG procedure of SAS 9.3. Further, genes within 

100 kb on either side of  the major QTL were used to identify candidate genes. The gene 

sequences of canola were blasted against the Arabidopsis gene models (TAIR10 database; 

Berardini et al., 2015) to obtain an annotation for the gene models. Candidate genes were 

identified on the basis of the physiology and functions of those genes which were previously 

reported.  

4.4. Results 

4.4.1 Phenotyping of plant materials 

Phenotypic variation of the five traits were found variable in the field condition after a 

short heat stress during flowering to fruit setting stage of the genotypes. Of the genotypes, the 

number of pods per raceme varied from 13.0 to 52.6 with an average of 30.2 pods per raceme, 

whereas pod abortion was observed 1.68 to 30.1% with an average of 9.74% in the experiment 

while the other heat stress related traits like plant height, main raceme height, and pod length 

https://bitbucket.org/tasseladmin/tassel-5-source/wiki/User


  

90 
 

were found different among the genotypes under the study (Table 4.1; Fig. 4.1). Statistics of the 

phenotypic estimation is presented in Table A11).  

Table 4.1. Variation in different traits of B. napus under natural heat stress in field condition. 

Traits Av* Stdev* Max* Min* Skewness kurtosis Shaprio-Wilk 

 P- value 

Plant height (cm) 96.9 12.6 134 68.0 0.55 1.20 0.0081 

Raceme height (cm) 39.9 8.64 61.1 15.5 0.32 0.39 0.1977 

# Pod/raceme  30.2 8.15 52.6 13.0 0.5 0.28 0.1503 

Pod length (cm) 6.62 0.8 8.21 4.27 -0.76 0.76 0.0055 

Abortion% 9.74 5.54 30.1 1.68 1.03 1.32 0.0001 

Av* = Average, Stdev*= Standard deviation, Max*= Maximum, Min*= Minimum 

4.4.2 Population structure, PCA and relatedness 

A total 85 genotypes were used in the gemone-wide association study (GWAS). 

Polymorphic SNPs were selected on the basis of minor allele frequency distribution. Initially, a 

total of 42,575 SNP markers were selected, and finally, after removing the minor allele 

frequency (>5%), 37,269 quality cleaned SNPs were used for the analysis. Principal components 

(PC) were used to control the population structure. A mixed linear model with 25% and 50% 

cumulative variation by PCs were used to control the population structure. PC analysis has been 

grouped the population into three continuous clusters using first two principal components (Fig. 

4.3, PC graph).   
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PC graph  

 
Figure 4.3. PC graph of the first two principal components using 37,269 polymorphic SNPs. The 

X-axis represents PC1 and Y-axis is PC2. PC1 and PC2 explain 13.13% and 9.5% variations, 

respectively.   

 

4.4.3. Association mapping (AM) 

Six regression models were used to test the phenotypic variation associated with the 

SNPs. Out of the six models tested in the analysis, the model with PC17 (explain 50% variance) 

and kinship was found as the best model for plant height, and pod abortion. The model PC17 was 

the best model for the main raceme height and number of pods on main raceme, whereas PC3 

(Explain 25% variance) was the best model for pod length (Table 4.2). The P-P plots showed the 

distribution of observed P-values and expected P-values for all the five different traits [Fig. 4.4 

(A-E)]. 

Table 4.2. Statistics of MSD values of five different traits used in association mapping analysis. 

Traits Naïve PC3 PC17 kinship PC3+kinship PC17+kinship 

Plant height 0.000264 5.65E-05 0.000239 0.001878 2.179913 4.5E-05¶ 

Raceme height 0.001978 0.005471 6.59E-04¶ 0.002245 2.179913 0.001031 

No of pods on main 

raceme  

0.002282 0.000306 5.78E-05¶ 0.002247 2.179913 6.29E-05 

Pod length 0.000238 1.43E-04¶ 0.000542 0.000235 2.179913 0.001049 

Pod abortion 0.001941 0.000234 0.000323 0.001841 2.179913 8.73E-05¶ 

“¶” is the least mean square difference (MSD) value. PC3 and PC17 are the PCA with 25% and 50% variance, 

respectively. 
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(A) Plant height                          (B) Raceme height               

 

 

(C) Pods/raceme             (D) Pod length               

 
 

                                                 (E) Pod abortion   

 

 
Figure 4.4. (A-E). P-P plot: Distribution of P-values of six models of the five traits; (A) Plant 

height, (B) Main raceme height, (C) pods on main raceme, (D) pod length, (E) Pod abortion; Y-

axis represents expected P-value while X-axis is observed P-value. 
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Figure 4.5. Heat map of pairwise kinship among 85 canola genotypes used for field study. The 

red squares in the diagonal indicate a genotype’s genetic relatedness to itself.  

 

During the marker trait association, three markers were found significant for plant height 

at the 0.001 percentile (p≤2. 99E-05; Table 4.3; Fig. 4.6A) tail of empirical distribution. Among 

these three markers, two of them were located on the chromosome C03 (0.5 Mbp) and C08 

(32.86 Mbp) and, the other one (78.5 Mbp) was randomly distributed in chromosomes without 

any known position. Another 35 markers were found significant at 0.01 percentile tail of the 

empirical distribution (p≤5.18E-04; Table A13). These markers were found on multiple 

chromosomes. A stepwise regression with these markers identified 6 significant QTL regions 

associated with this trait that explained 52.19% phenotypic variation (Table 4.4). The candidate 

genes identified here were: kinase family protein that plays an important role in plant growth and 

development, iron regulated 2 protein associated with Iron (Fe) availability for plants which is an 

essential mineral element for plant growth and development, ethylene-responsive nuclear protein 

(ERT2), regulates plant growth and development through cell division, and gibberellin 2-oxidase 

that was found involved in plant growth and development (Table A14). 
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Figure 4.6. Manhattan plots showing P-values of markers across 19 chromosomes associated 

with five different traits (A-E). (A) Plant height, (B) main raceme height, (C) number of pods on 

main raceme, (D) pod length, and (E) pod abortion on main raceme. The P values are plotted on 

log10 scale and the markers are considered significant at P≤ 0.001.
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Table 4.3. Significant markers associated with heat stress tolerance of five traits under field condition. 

Marker     Allele 1 Allele 2 Heterozygous Allele 

 Chr Pos P R2 

(%)  

Allele  # Obs Mean Allele  # Obs Mean Allele # 

Obs 

Mean 

Plant height (cm) 
chrC08_32368215 

 

C08 

 

32368215 

 

2.40E-05 

 

24 

 

A 

 

1 

 

134.0 

 

G 

 

77 96.8 R 7 92.4 

chrC03_545192 C03 545192 2.61E-05 24 G 52 94.1 T 18 103.58 K 15 98.5 

chrCnn_rand_78509836 Cnn-rand 78509836 2.99E-05 23 C 7 98.4 T 72 95.1 Y 6 116.5 

Raceme height (cm)              

chrC01_15689071 C01 15689071 1.74E-05 22 G 59 39.7 T 20 36.86 K 6 51.7 

chrC01_15689086 C01 15689086 5.77E-05 20 C 55 40.0 T 25 37.5 Y 5 50.1 

chrA02_1133295 A02 1133295 8.39E-05 20 A 25 37.5 T 55 40.0 W 5 50.1 

chrC01_26101660 C01 26101660 1.18E-04 19 A 25 37.5 T 55 40.0 W 5 50.1 

#Pods on main raceme              

chrA10_rand_2092893 A10_rand 2092893 9.42E-05 21 A 43 27.9 G 28 30.0 R 14 37.0 

chrA10_rand_2092900 A10_rand 2092900 9.42E-05 21 C 62 30.7 T 12 33.1 Y 11 23.0 

chrA09_26370461 A09 26370461 1.27E-04 21 A 71 29.0 T 2 27.0 W 12 37.1 

chrAnn_rand_10002128 Ann-rand 10002128 2.98E-04 19 C 2 27.0 G 71 29.0 S 12 37.1 

chrAnn_rand_10002131 Ann-rand 10002131 2.98E-04 19 A 11 32.5 G 64 30.8 R 10 22.6 

Pod length (cm)              

chrC02_33478452 C02 33478452 7.34E-06 26 A 26 6.4 G 47 6.9 R 12 5.87 

chrC09_43471822 C09 43471822 1.24E-05 25 A 25 6.5 G 44 6.9 R 16 5.97 

chrAnn_rand_11544915 Ann-rand 11544915 3.50E-05 23 A 38 6.6 G 39 6.8 R 8 5.62 

chrC03_58651519 C03 58651519 3.72E-05 23 A 11 7.0 G 68 6.7 R 6 5.37 

Pod abortion              

chrA03_4072206 A03 4072206 5.20E-06 27 A 9 14.9 T 40 10.1 W 36 8.06 

chrC02_13281695 C02 13281695 9.16E-06 26 A 16 7.7 G 20 13.5 R 49 8.90 

chrC02_13209276 C02 13209276 2.22E-05 23 A 70 8.9 C 4 9.0 m 11 15.6 

chrC02_13209244 C02 13209244 2.22E-05 23 C 4 9.0 T 70 8.9 Y 11 15.6 

chrA10_1216770 A10 1216770 1.19E-04 16 C 67 39.9 G 3 29.8 S 15 41.9 

 



  

96 
 

Table 4.4. Significant Markers and QTL associated with total phenotypic variation of five 

different traits. 

 Trait # of significant 

markers 

# of QTL Chromosomes  Position 

(Mbp) 

% Phenotypic 

Variation  

Plant height  38 6 A01 

C03 

C06 

C07 

C07 

C08  

2.76 

0.54 

5.17 

38.5 

6.80 

32.3 

52.19 

Main raceme height 36 

 

11 A02 

A03 

A10 

C01 

C01 

C05 

C05 

C07 

C08 

Cnn_ rand 

Cnn_ rand  

1.13 

19.9 

1.21 

15.6 

26.1 

39.3 

1.57 

35.3 

16.8 

67.4 

22.2 

71.75 

Pods per main raceme 25 7 A09 

A10_ rand 

Ann_ rand 

C01 

C01 

C03 

C09 

26.3 

2.09 

10.0 

3.05 

9.23 

8.00 

3.59 

53.21 

Pod length 38 11 A03 

A05 

A09 

A10 

C01 

C01 

C02_ rand 

C03 

C03 

C07 

C09 

4.12 

20.3 

32.4 

16.4 

14.8 

16.9 

3.64 

1.38 

12.3 

40.1 

43.4 

73.48 

Pod abortion 35 7 A05 

A07 

C02 

C04 

C04 

C04_rand 

C05  

22.8 

1.11 

13.2 

5.45 

5.46 

0.98 

22.9 

61.02 
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Four markers significant at 0.001 percentile (p≤ 8.39E-05 (Table 4.3; Fig 4.6B) were 

identified for main raceme height. These significant markers were located on chromosome A02 

(1.13 Mbp) and C01 (15.6 and 26.1Mbp). Thirty-two other markers were found significant at 

0.01 percentile tail of the empirical distribution (p≤ 7.84E-04) (Table A13). Eleven QTL regions 

were identified through stepwise regression. These 11 QTL explained 71.75 % phenotypic 

variation and found on chromosome A02, A03, A10, C01, C05, C07, and C08 (Table 4.4). Many 

candidate genes such as plant calmodulin-binding protein is associated with Ca2+ binding and 

plant growth and development, indole acetic acid-induced protein 10 that enhance plant growth 

under drought stress condition, protein kinase family protein are involved in stem elongation and 

vascular development, ACC oxidase1 that favors plant growth and lowering stress susceptibility 

are associated with the QTL responsible for raceme height (Table A14). 

In a number of pods on main raceme, five markers were found significant at the 0.001 

percentile (p≤ 2.98E-04; Table 4.3; Fig. 4.6C). These markers were distributed on chromosome 

A09 (26.3 Mbp) and randomly distributed on chromosome A10 (20.9 Mbp). The other two 

markers were distributed anonymously. Besides these markers, 20 more markers were found 

significant at 0.01 percentile tail of the empirical distribution (p≤ 9.86E-04) (Table A13). 

Further, 7 major QTL were identified through stepwise regression which were responsible for 

53.21% phenotypic variation of pods on main raceme (Table 4.4).   Among them, 5 QTL were 

located on chromosomes A09, C01, C03 and C09, and A10_rand. Multiple candidate genes such 

as adenine nucleotide alpha hydrolases-like superfamily protein known to be involved in male 

sterility, protein kinase superfamily protein involved in pollen abortion, pyruvate kinase family 

protein, associated with early embryo abortion, proline-rich family protein associated with 

flower and pod development is present in the QTL regions (Table A14). 
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Pod length was found associated with four markers at 0.001 percentile tail of significance 

level (p≤ 3.72E-05; Table 4.3; Fig 4.6D), and these markers were located on chromosome C02 

(33.4 Mbp), C03 (58.6 Mbp) and C09 (43.4 Mbp). One significant marker (Ann_rand, 11.5Mbp) 

was also found randomly and anonymously distributed within the genome. The other 34 markers 

were found significant at 0.01 percentile tail of the empirical distribution (p≤ 9.87E-05) (Table 

A13).  Stepwise regression reveals that 73.48% variation was caused by the 11 major QTL 

(Table 4.4).  These QTL were located on A03, A05, A09, A10, C01, C03, C07, C09 

chromosomes and randomly distributed on C02 chromosomes. Multiple genes such as cellulose 

synthesis like A14 known to be involved in the young seedpod development, plant self-

incompatibility protein S1 family that severely reduced pollen coats and cause male sterility, 

glutamine synthetase 1:4 which is involved in B-deficiency and pod development are present in 

the QTL region (Table A14). 

Pod abortion was found associated with four significant markers and these markers were 

found significant at the 0.001 percentile (p ≤ 5.20E-06; Table 4.3; Fig. 4.6E). The markers were 

located on chromosome A03 (4.07 Mbp) and C02 (13.20 to13.28 Mbp). Further 31 markers were 

identified with significant at 0.01 percentile tail of the empirical distribution (p ≤ 2.57E-05) 

(Table A13). These markers were distributed on multiple chromosomes. A stepwise regression 

was performed, and 7 QTL regions were identified explaining 61.02% phenotypic variation of 

pod abortion (Table 4.4).  Many candidate genes known to be involved in organ abortion were 

identified (Table A14). These genes included heat shock proteins, genes associated with male 

sterility, embryo abortion, pollen abortion, and reduced flowering fertility.   
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4.5. Discussions 

Canola is the second largest oil producing crops in the world with low percentage of 

erucic acid and high percentage of unsaturated fatty acid, which is good for human health to 

reduce the risk of cardiovascular disease (Connor, 2000). It is a cool season crop and sensitive to 

heat stress (Morrison, 1993). Since heat stress is a growing concern, improvement of traits like 

heat stress tolerance in Canola might be an important criterion to expand the cultivation of this 

crop in the United States. As a part of this view, a genome-wide association study was conducted 

to identify significant markers closely associated with heat stress related traits that can be helpful 

for marker assisted selection program. The germplasms flowered within 40-60 days of planting 

and were considered as spring type. These plants are subject to heat stress during its reproductive 

developmental stage. 

There are several studies on heat stress under controlled conditions, but limited studies on 

plant height, raceme height, total number of pods on main raceme, pod length as well as pod 

abortion of canola in natural condition in the field with heat stress. The germplasm used here has 

higher genetic diversity and a better mapping resolution that can be helpful to narrow QTL 

regions that can be used for marker assisted selection (MAS).       

We studied plant height, main raceme height, number of pods per raceme, pod length as well as 

pod abortion of canola under natural heat stress conditions in the field. This study was conducted 

in summer 2014. Many researchers have conducted genome-wide association mapping study 

based on single year data. Hwang et al. (2014) conducted a genome-wide association study of 

seed protein and oil content in soybean with one year field trial in 2003. Zegeye et al. (2014) 

conducted association mapping on seedling and adult plant resistance to stripe rust in synthetic 

hexaploid wheat using single year data. Bellucci et al. (2015) conducted a single year field trial 
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in 2008 for association mapping in Scandinavian winter wheat for seed yield, plant height, and 

traits important for second-generation bioethanol production. 

 We had recorded data of plant height and raceme height which were varied significantly 

from different genotypes. Heat stress affects plant height and inflorescence height through 

reducing photosynthesis, which is one of the most heat sensitive physiological processes in 

plants (Yamamoto et al., 2008).  

Heat stress causes pod sterility and pod abortion (Morrison, 1993). Variable flower and 

pod abortion were observed in different germplasms in our study. Variability of pod abortion due 

to heat stress is also reported in different crops such as tomato (Levy, Rabinowitch and Kedar 

1978; Abdul-Baki, 1991), Capsicum annum L. (Rylski, 1986; Erickson & Markhart, 2002), bean 

(Konsens, Ofir & Kigel, 1991), cowpea (Craufurd et al., 1998), pea (Wery and Tardieu, 1997), 

and cotton (Reddy et al., 1992). Heat stress affects the tapetum layer of pollen and causes the 

significant changes in the tapetum layer which affects the nutrition supply, especially callus 

supply of pollen during microspore development. These shortage nutrient supply strongly affect 

the male gametogenesis therefore, the correct formation of microspore cells development is 

hampered which ultimately results in sterile mutants and pod abortion (Ma et al., 2005).  

Heat stress tolerance is governed by multiple gene and many biochemical and metabolic 

pathways are involved with this abiotic stress. Different antioxidant activity, membrane lipid 

unsaturation, gene expression and protein translation, stability of protein, and accumulation of 

compatible solutes are also playing a significant role in heat stress tolerance (Kaya et al., 2001). 

Heat stress has a significant role in growth, development and reproduction of Brassica 

(Morrison, 1993; Angadi et al., 1999; Nuttal, 1992). Although this crop suffers from different 
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biotic and abiotic stress, however, heat stress cause significant damage on different phenotypic 

changes through genetic alteration of the crop.  

In this study, genome-wide association mapping was conducted to identify significant 

markers associated with five traits related to heat-stress. GWAS helps to identify the candidate 

gene regions for each trait of interest depending on the marker number, trait, size and resolution 

of the population. It is also a powerful tool to identify QTL and candidate genes associated with 

specific traits of crop species (Huang et al., 2012). The phenotypic variation of many complex 

traits is influenced by the QTL where association mapping helps to find out molecular markers 

which are closely linked to the traits of interest or closely associated with the QTL or genes 

controlling the traits (Li et al., 2011). We have identified single nucleotide polymorphism (SNP) 

markers for different traits. SNPs are the frequently used marker which are contributing the 

majority of genotyping work in different crop species including B. napus (Trick et al., 2009). 

GWAS of canola using SNP and wide accessions of germplasms as mapping populations can 

therefore be helpful to find out significant markers and the candidate genes associated with the 

traits (Hasan et al., 2008; Li et al., 2014). It could also be helpful to identify a significant marker 

for the marker assisted selection breeding in canola. 

About 37K cleaned SNP markers were used in this study. The missing data of the SNPs 

were further imputed following FastPHASE 1.3 (Scheet et al., 2006) and minor allele frequency 

(<0.05) to increase the map resolution of the study and to map the causal variant of the analysis. 

To protect from spurious marker-trait associations (Pressor et al., 2006; Price et al., 2010), we 

tested six regression models (Naïve, PC3, PC17, kinship, PC3+kinship, and PC17+ Kinship) that 

include structure and/or relatedness.  The best model was selected on the basis of P-value of 

mean square difference (Mamidi et al., 2011). Among the six models tested in the study, the 
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model containing the lowest P-value was the best model for the respective trait to control the 

population structure. 

In association mapping there is a chance of false positive association. Multiple testing 

corrections (Benjamini et al., 2001) were used to eliminate false positive associations. A 

Manhattan plot was constructed for each trait and initially on the basis of P-value that was 

estimated on the basis of 0.001 cutoff, bootstrapping and finally with the multiple testing 

corrections. Initially large number of significant markers were found associated with the heat 

stress traits when the p-value was P=0.001, but after multiple testing correctness and 

bootstrapping (Mamidi et al., 2014) only a few markers were found significantly associated with 

the QTL related to heat stress traits. Stepwise regression was performed to identify the minimum 

number of markers (Mamidi et al., 2014) associated with each trait that controlled by the major 

QTL which could be used for marker assisted selection. 

Plant height is an important trait of canola affected by heat stress. Heat stress affects the 

photosynthesis (Crafts-Brandner et al., 2002) and produce Reactive Oxygen Species (ROS) 

Hasanuzzaman et al., 2013) which severely affect plant growth and development. Plants 

accumulate protein and osmolytes under heat stress, which helps to continue the photosynthesis 

through enhancing the activities of many antioxidants like superoxide dismutase (SOD), catalase 

(CAT) and peroxidise (POD) as well as scavenging the harmful ROS (Warich et al., 2012).  QTL 

plays a significant role in phenotypic variation of particular traits of plants (Wang et al., 2013, 

Lorkovic, 2009, Tapia-López et al., 2008, Wu et al., 2001).  Several studies identified QTL 

associated with heat stress in various crops, such as rice (Ye et al., 2012), cowpea (Vigna 

unguiculata) (Lucas et al., 2013), and tomato (Grilli et al., 2007) with a phenotypic variation 

between 2 and 20%, which is related to this study of QTL identification in Brassica. In our 
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study, the phenotypic variation of plant height due to the major QTL was about 53% indicates 

that the QTL plays a major role of plant development in B. napus. The Brassica gene model was 

used to identify the candidate genes associated with marker and heat stress. The significant 

marker was selected around 100 kB of each side of the major QTL due to the lower LD of the 

studied canola accessions (Michalak et al., Unpublished) and the position of the markers and the 

QTL as well as candidate genes are described based on the canola genome sequence published 

(Chalhoub et al., 2014). Many genes related to plant height under heat stress have been 

identified. The heavy metal transport/detoxification superfamily protein gene was found in 

chromosome C03 which was only 4 kb apart from the major QTL chrC03_545192. This gene is 

associated with plant growth and development and helps the plant to sustain under abiotic stress 

conditions (Hall 2002). Many other genes were found associated with heat stress such as H(+)-

ATPase 2 which is involved in plant growth and development (Schubert, 2013); gibberellin 2-

oxidase 8 which regulates plant growth  (Fang Lo et al., 2008); ethylene-regulated nuclear 

protein (ERT2) which regulates plant growth and development through cell elongation, cell 

division, etc. (Sakai et al., 1998); and ABC-2 type transporter family protein, which is involved 

in plant growth, development and  response to abiotic stresses (Kang et al., 2011). Other genes 

associated with plant growth and development like C2H2-like zinc finger protein (Chrispeels et 

al., 2000), iron regulated 2 (Yang et al., 2013);and Core-2/I-branching beta-1,6-N-

acetylglucosaminyltransferase family protein (Lin et al., 2015), were  found in this study too. 

Raceme height is correlated with the plant height that is ultimately associated with yield 

of canola. GWAS revealed 36 significant SNP markers located on eleven QTL on chromosome 

A02, A03, A10, C01, C05, C07 and C08 associated with raceme height. Many candidate genes 

were identified associated with raceme height involved in different physiological process. Of 
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these candidate genes, Core-2/I-branching beta-1,6-N-acetylglucosaminyltransferase family 

proteins are involved in plant development  (Lin et al., 2015), Plant calmodulin-binding protein 

is associated with Ca2+ binding and plant growth (Ranty et al., 2006), indoleacetic acid-induced 

protein 10 which enhances plant growth under drought stress condition (Yasin Ashraf et al., 

2006), protein kinase family protein is involved in stem elongation and vascular development 

(Matschi et al., 2013), auxin response factor 1 that regulates plant growth and development (Li et 

al., 2016), mitogen-activated protein kinase that act as signal transporter for cell division and 

plant growth (Sinha et al., 2011), AP2/B3-like transcriptional factor family protein is involved in 

plant growth (Song et al., 2013), ACC oxidase 1 is involved in plant growth and lowering stress 

susceptibility (Van de poel, 2014). 

Number of pods per plant depends on the pod development and the rate of abortion of 

pods per plant. Pollination and fertilization is the prerequisite for the pod development of crops. 

Heat stress affects the pollination of Brassica through the desiccation of pollen and reduction the 

pollen receptivity of the stigma (Rao et al., 1992). Many genes are involved in the variation of 

number of pods per plant. We had identified seven significant QTL those explained 53.21% 

phenotypic variation of number of pods per main raceme. Twenty-five significant markers were 

identified associated with these QTL which are located on the chromosome A09, C01, C03 and 

C09. The closest marker chrC03_8003052 is located on Brassica gene BnaC03g15870D that 

contain protein kinase superfamily protein, which is involved in pollen abortion of crops 

(Radchuk et al., 2006). Three significant marker chrA10_rand_2092900, chrC01_3055220 and 

chrA09_26370461 were found on the chromosome A10, C01 and A09, respectively. These 

markers are located on 4, 6, and 7 kb apart from the target Brassica genes, respectively. Many 

candidate genes were identified associated with the variation of number of pods per plants. 
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Among the candidate genes, basic helix-loop-helix (bHLH) DNA-binding superfamily protein is 

involved in the development and dehiscence of seed and pod (Hudson et al., 2015), Protein 

kinase superfamily protein is involved in pollen abortion (Radchuk et al., 2006), Pyruvate kinase 

family protein is associated with early embryo abortion of flower (Zhang et al.,2014), ARM 

repeat superfamily protein is involved in self-incompatibility and reduction of pod number 

(Sharma et al., 2016),  Chaperone DNAJ-domain superfamily protein, which is involved in male 

sterility to reduce pod number (Yang et al., 2009), DNAJ heat shock N-terminal domain-

containing protein that makes tolerant to heat and prevent fruit drop (Zhao-Xia Ma et al., 2015), 

proline-rich family protein is associated with flower and pod development (Girno et al., 2013), 

adenine nucleotide alpha hydrolases-like superfamily protein is involved in male sterility ( Mok 

et al., 2001), Homeodomain-like protein, regulate anther dehiscence (Wilson et al., 2011), 

Cytochrome P450 is involved in the pollen tube development and fertilization (Zhao et al., 

2015), Pyruvate kinase family protein is found associated with early embryo abortion (Zhang et 

al., 2014).   

Pod length is one of the indicators of seed yield of Brassica. The pod length is also 

affected by heat stress. High temperature reduces the photosynthetic capacity (Crafts-Brandner et 

al., 2002) and also causes pollen abortion (Zhang et al., 2014) which affects the growth and 

development of the pod. Thirty-eight significant markers located on 11 QTL associated with pod 

length in relation to heat stress were identified in this study. The QTL are located on the 

chromosome A03, A05, A09, A10, C03, C07 and C09 with a phenotypic variation of 73.48%. 

The marker chrA03_4124353 located on chromosome A3 is only 1 kb away from Brassica gene 

BnaA03g09160D (Cysteine/Histidine-rich C1 domain family protein). This gene is involved in 

tapetal development, Programmed Cell Death (PCD) and pollen grain sterility (Zhang et al., 
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2014). Many of other genes such as 2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase 

superfamily protein (Leisner et al., 2014), Cysteine/Histidine-rich C1 domain family protein 

(Zhang et al., 2014), Heat shock protein 18.2 (Kim et al., 2001), Zinc finger (C3HC4-type RING 

finger) family protein (Wu et al., 2014), Cellulose synthase like A14 (Park et al., 2013), 

Homeodomain-like superfamily protein (Wilson et al., 2011), Syntaxin of plants 71 (Sharma et 

al., 2014), Cellulose synthase 5 (Park et al., 2013), Plant self-incompatibility protein S1 family 

(Samuel et al., 2009), Cytochrome P450 (Zhao et al., 2015), Ubiquitin family protein 

(Mazzucotelli et al., 2006), Malectin/receptor-like protein kinase family protein (Matschi et al., 

2013), Glutamine synthetase 1;4 (Bargaz et al., 2015), Auxin response factor 19 (Li et al 2016), 

AGAMOUS-like 24 (Yu et al 2002), P450 reductase 1 (Bak et al., 2011) were also identified 

associated with the cytoplasmic male sterility, pollen tube and pollen coat development, Boron 

deficiency, and seed pod development 

Pod abortion is an important phenotypic trait of heat stress, which causes significant yield 

loss of Brassica. Thirty-five SNPs were identified associated with pod abortion on different 

chromosomes. Stepwise regression identified seven significant QTL located on chromosome 

A05, A07, C02, C04 and C05. Stepwise regression is used to minimize the number of markers 

for QTL determination, estimating allelic combinations (Mamidi et al., 2014; Gurung et al., 

2014). We had also detected the distance among the major QTL and the candidate genes 

associated with the traits. The closest markers chrC04_5456736, and ChrC04_rand_988002 were 

found 4 kb apart from Brassica gene BnaC04g07360D and BnaC04g01250D, respectively. Two 

other markers chrA05_22801086 and chrA05_22801086 were also found 5 and 6 kb apart from 

the Brassica gene BnaA05g33770D and BnaA05g33780D, respectively, which were located on 

the chromosome A05. The gene associated with these QTLs are F-box family protein, associated 
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with the reduction of flower fertility and reduced number of pod set (Ariizumi et al., 2011), 

cyclic nucleotide gated protein that is involved in meiotic division and fruit development (Yang 

et al., 2006), myb domain protein 57 associated with drought stress tolerance to reduce pod 

abortion (Baldoni et al., 2015) and, Adenine nucleotide alpha hydrolases-like superfamily protein 

that are involved in male sterility and ultimately cause pod abortion (Mok et al., 2001).  

4.6. Conclusion 

Eighty-five spring type Brassica napus accessions were evaluated for heat stress tolerant 

traits in the field. Under heat stress in the field the heat tolerant traits such as plant height was 

varied from 68-134 cm, main raceme height varied 15.5-61.1 cm, number of pods on main 

raceme varied 13.0-52.6, pod length varied 4.27- 8.21 cm, and pod abortion per main raceme 

varied from 1.68 - 30.1.  Genome-wide association study was conducted using about 37K high 

quality cleaned single nucleotide polymorphic markers. 172, and 21 significant markers were 

identified associated with five different traits using P= 0.1 and 0.01 cutoff of 10,000 bootstraps, 

respectively. A total of 6, 11, 7, 11 and 7 QTL were identified which explained 52.19%, 71.75%, 

53.21%, 73.48% and 61.02% phenotypic variation for plant height, main raceme height, pods on 

main raceme, pod length, and pod abortion per main raceme, respectively. Many candidate genes 

associated with the QTL were found to cause variation in plant height, main raceme height, 

number of pods per main raceme, pod length and, pod abortion of Brassica. The markers linked 

to the respective traits could help breeders to select high yielding heat stress tolerant canola 

variety through marker-assisted selection. As it was a one year study, so, marker might be 

helpful to recommend the selected markers for fruitful use in marker assisted selection. 
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CHAPTER 5. SUMMARY 

The study of heat stress tolerant traits of rapeseed/canola was conducted in controlled 

conditions in a greenhouse and growth chamber, and in the field with a wide collection of spring 

type germplasms. In the greenhouse, two sets of 88 accessions with three replications per set 

were grown at 22/18°C day/night temperatures. The germplasm in the set-1 was grown as a 

control experiment, whereas the germplasm in the set-2 at 6-day flowering stage were exposed to 

an artificial heat simulating condition for 5 days in a plant growth chamber. In the field, 85 

accessions were allowed to expose under natural heat stress conditions. Genome wide 

association study was conducted using 37,539 high quality cleaned single nucleotide 

polymorphic (SNP) markers. Under heat simulating conditions, a total of 115 significant (-log10 

P-value <0.01) markers associated with three traits were identified, whereas, 15 markers were 

found highly significant using P=0.001 thresh hold. After stepwise regression, a total of 5, 8, and 

7 QTL were identified associated with pollen sterility, sterile/aborted pods, and number of pods 

on main raceme which explained 46.31%, 60.45% and 60.59% phenotypic variations, 

respectively. In the field study, 172 significant (-log10 P-value <0.01) markers were identified 

associated with five traits and, finally 21 markers were identified using P=0.001 cutoff. Stepwise 

regression identified 6, 11, 7, 11 and 7 QTL causes phenotypic variation of 52.19%, 71.75%, 

53.21%, 73.48% and 61.02% for plant height, main raceme height, pods on main raceme, pod 

length, and pod abortion on main raceme, respectively. Two traits such as sterile/aborted pods on 

main raceme, and total number of pods on main raceme were common for both greenhouse and 

field studies. Three markers (chrC05_37931234, chrC05_42411802 and chrC05_22964001) 

linked to sterile/aborted pods on main raceme identified 3 QTL were located on chromosome 

C05. On the other hand, five markers (chrA10_1645036, chrA10_14378371, chrC03_23275707, 
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chrA10_rand_2092893, chrC03_8003052) identified 5 QTL associated with a total number of 

pods on main raceme located on Chromosome A10 and C03 was identified. Many candidate 

genes  such as, Kinase superfamily protein, Cleavage and polyadenylation specificity factor 

(CPSF), A subunit protein, Calmodulin 7, ARM repeat superfamily protein, F-box family 

protein, Plant self-incompatibility protein S1 family, MATE efflux family protein, Pectin methyl 

esterase 31, Lipase/Acylhydrolase superfamily protein, C2H2-type zinc finger family protein, 

ABC-2 type transporter family protein, Indole acetic acid-induced protein 10, Pyruvate kinase 

family protein, heat shock protein 18.2, ARM repeat superfamily protein were identified 

associated with these QTL. The identified genes were found associated with male sterility, pollen 

abortion, embryo abortion as well as reduction of plant growth and development. The discovered 

major QTL could help breeders to select high yielding heat stress tolerant canola accessions 

through marker-assisted selection as well as to develop heat stress tolerant canola varieties for 

breeding program.    
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APPENDIX 

Table A1. Heat Susceptibility Index (HSI) of the three different traits under controlled condition. 

Traits Av* Stdev* Skewness Kurtosis Kolmogorov-Smirnov  

P value 

Pollen sterility 133.8 208.6 2.883 9.640 0.260 

Sterile/aborted pods 298.7 287.5 0.621 -0.509 0.201 

Pods on main raceme 1.375 1.367 0.729 -0.390 0.172 

  * Av=Average; Stdev*= Standard deviation 

Table A2. ANOVA for the three different traits of Brassica napus under controlled condition.  

Traits SV Df SS MS F-value Pr> F 

Pollen sterility Rep 2 1.9596068 0.979803 3.37 0.0368 

 Gen 87 52.273896 0.600849 2.06 <.0001 

Sterile pod Rep 2 11.479924 5.739962 5.15 0.0067 

 Gen 87 246.29832 2.831015 2.54 <.0001 

Total pods on 

main raceme  

Rep 2 175.15909 87.57955 0.91 0.4035 

 Gen 87 35964.424 413.3841 4.31 <.0001 

 

Table A3. ANOVA for the three different traits of Brassica napus under heat stress. 

Traits SV Df SS MS F-value Pr> F 

Pollen sterility Rep 2 103.7782 51.8891 3.16 0.0450 

 Gen 87 115983.9 1333.14 81.1 <.0001 

Sterile pod Rep 2 128.8484 64.4242 1.96 0.1439 

 Gen 87 12485.12 143.507 4.37 <.0001 

Total pods on 

main raceme 

Rep 2 85.78030 42.8901 0.95 0.3885 

 Gen 87 27622.14 317.495 7.04 <.0001 
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Table A4. ANOVA for the three different traits of Brassica napus across all environments.  

Traits SV Df SS MS F-value Pr> F 

Pollen sterility Gen 87 58520.174 672.6456 80.400 <.0001 

Rep(Env) 4 105.73785 26.43446 3.1600 0.0143 

Env 1 56954.393 56954.393 6807.4 <.0001 

Env*Gen 87 57516.053 661.10407 79.020 <.0001 

Sterile pods Gen 87 58520.174 672.64568 80.400 <.0001 

Rep(Env) 4 140.32841 35.082100 2.0700 0.0849 

Env 1 21455.674 21455.674 1263.1 <.0001 

Env*Gen 87 5569.1241 64.012920 3.7700 <.0001 

Total pods on 

main raceme 

 

Gen 87 48471.573 557.14453 7.9000 <.0001 

Rep(Env) 4 260.93939 65.234850 0.9200 0.4497 

Env 1 3088.5018 3088.5018 43.780 <.0001 

Env*Gen 87 15114.998 173.73561 2.4600 <.0001 
 

Table A5. Correlation among the traits under control and heat stress condition. 

Traits Control (GH) Heat Stressed 

Total pod Sterile pod   Total pod Sterile pod   

Total pod ---------   --------   

Sterile pod 0.22*   0.28**   

Pollen sterility 0.084 ns 0.12 ns  0.026 ns 0.015 ns  

*, and ** = significantly different at 0.05, and 0.01 levels of probability, respectively; ns=not significant at P=0.05. 
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Table A6. Significant markers associated with different traits under heat stress condition. 

Pollen Sterility         

        Allele 1 Het Allele  Allele 2 

Marker Chr Pos  P-value Obs Mean Obs Mean Obs Mean 

chrA02_1481324 A02 1,481,324 7.33E-07 16 036 14 458 58 076 

chrA02_16363471 A02 16,363,471 1.34E-07 75 105 03 542 10 052 

chrA03_4168209 A03 4,168,209 4,168,209 12 202 13 181 63 086 

chrA03_11267300 A03 11,267,300 11,267,300 78 095 01 1084 09 095 

chrA03_11267316 A03 11,267,316 11,267,316 11 082 01 1084 76 098 

chrA03_11485277 A03 11,485,277 11,485,277 83 100 01 1084 04 006 

chrA03_11485282 A03 11,485,282 11,485,282 04 006 01 1084 83 100 

chrA03_16097707 A03 16,097,707 16,097,707 82 103 01 1084 05 005 

chrA03_26857689 A03 26,857,689 26,857,689 04 150 01 1084 83 091 

chrA05_5780703 A05 5,780,703 5.26E-06 08 026 80 135 00 000 

chrA06_10285855 A06 10,285,855 2.82E-07 21 128 01 1084 66 088 

chrA06_10285865 A06 10,285,865 2.82E-07 66 088 01 1084 21 128 

chrA06_20547923 A06 20,547,923 1.80E-06 03 000 04 592 81 101 

chrA06_rand_1806137 A06_rand 1,806,137 1.86E-06 78 090 02 766 08 043 

chrA07_rand_1794834 A07_rand 1,794,834 2.98E-07 23 165 64 080 01 1084 

chrA08_10051973 A08 10,051,973 1.82E-06 04 011 01 000 83 124 

chrAnn_rand_4645588 Ann_rand 4,645,588 1.35E-09 22 086 64 100 02 1084 

chrC01_3445668 C01 3,445,668 1.90E-06 76 127 09 051 03 000 

chrC01_6790079 C01 6,790,079 1.27E-07 66 097 21 090 01 1084 

chrC01_21285298 C01 21,285,298 6.70E-07 02 1084 39 126 47 075 

chrC01_33027305 C01 33,027,305 1.28E-07 40 100 47 090 01 1084 

chrC01_35999141 C01 35,999,141 5.29E-06 78 078 05 452 05 241 

chrC02_rand_1420921 C02_rand 1,420,921 2.77E-06 74 144 11 032 03 000 

chrC02_rand_4413987 C02_rand 4,413,987 2.95E-07 01 1084 07 078 80 097 
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Table A6. Significant markers associated with different traits under heat stress condition (continued). 

Pollen Sterility         

        Allele 1 Het Allele  Allele 2 

Marker Chr Pos  P-value Obs Mean Obs Mean Obs Mean 

chrC03_394217 C03 394,217 4.64E-08 01 1084 37 059 50 117 

chrC03_27509176 C03 27,509,176 2.99E-07 01 1084 38 113 49 080 

chrC03_31613088 C03 31,613,088 2.99E-07 81 095 01 1084 06 104 

chrC04_47184437 C04 47,184,437 6.38E-08 01 1084 41 114 46 085 

chrC04_47184438 C04 47,184,438 6.38E-08 01 1084 41 114 46 085 

chrC04_rand_2348374 C04_rand 2,348,374 1.84E-06 54 092 28 088 06 383 

chrC05_9566302 C05 9,566,302 1.73E-07 10 003 77 106 01 1084 

chrC07_13100599 C07 13,100,599 1.91E-07 01 1084 36 072 51 111 

chrC08_3759455 C08 3,759,455 1.42E-08 27 039 60 122 01 1084 

chrCnn_rand_17510479 Cnn_rand 17,510,479 5.86E-06 02 605 61 087 25 108 

chrCnn_rand_18549100 Cnn_rand 18,549,100 7.03E-08 06 542 53 099 29 097 

chrCnn_rand_18549112 Cnn_rand 18,549,112 7.78E-11 04 1084 51 104 33 087 

chrCnn_rand_18549122 Cnn_rand 18,549,122 7.03E-08 29 097 53 099 06 542 

chrUnn_rand_6658728 Unn_rand 6,658,728 9.85E-07 15 056 66 100 07 389 

chrUnn_rand_6711432 Unn_rand 6,711,432 4.29E-06 12 283 47 058 29 137 

Sterile/ aborted Pods         

        Allele 1 Het Allele  Allele 2 

Marker Chr Pos  P-value Obs Mean Obs Mean Obs Mean 

chrA01_8090850 A01 8,090,850 4.16E-05 57 327 15 202 16 234 

chrA01_21809368 A01 21,809,368 7.03E-04 38 242 39 230 11 468 

chrA02_6194788 A02 6,194,788 8.01E-04 69 243 11 326 08 450 

chrA02_22559756 A02 22,559,756 0.000354 73 258 05 435 10 349 

chrA02_22559765 A02 22,559,765 0.000354 73 258 05 435 10 349 

chrA02_22697009 A02 22,697,009 0.000344 12 348 03 614 73 258 
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Table A6. Significant markers associated with different traits under heat stress condition (continued). 

Sterile/ aborted Pods         

        Allele 1 Het Allele  Allele 2 

Marker Chr Pos  P-value Obs Mean Obs Mean Obs Mean 

chrA03_13865121 A03 13,865,121 2.82E-05 19 458 15 451 54 218 

chrA03_16335953 A03 16,335,953 3.33E-04 04 556 05 000 79 263 

chrA03_18700126 A03 18,700,126 9.90E-04 71 251 07 366 10 348 

chrA05_rand_2356690 A05_rand 2,356,690 6.29E-04 50 231 18 437 20 269 

chrA06_12786141 A06 12,786,141 9.24E-04 03 000 06 575 79 278 

chrA07_505308 A07 505,308 9.36E-04 78 287 06 001 04 230 

chrA08_214273 A08 214,273 5.62E-04 78 274 03 409 07 288 

chrA08_216429 A08 216,429 5.48E-04 08 288 02 320 78 275 

chrA08_9665215 A08 9,665,215 2.55E-04 17 352 04 352 67 253 

chrA08_9665217 A08 9,665,217 2.46E-04 18 338 04 352 66 254 

chrA08_9665233 A08 9,665,233 2.27E-05 17 380 03 235 68 254 

chrA08_9689294 A08 9,689,294 3.47E-04 12 351 06 441 70 245 

chrA09_25264986 A09 25,264,986 2.44E-04 72 250 07 230 09 443 

chrA09_27884724 A09 27,884,724 1.79E-04 75 258 07 422 06 351 

chrA09_30791683 A09 30,791,683 6.49E-05 65 252 07 531 16 320 

chrA09_32074221 A09 32,074,221 9.27E-04 72 271 07 026 09 443 

chrA10_12793248 A10 12,793,248 4.83E-04 08 243 04 409 76 278 

chrC01_38231402 C01 38,231,402 1.94E-05 33 241 22 168 33 393 

chrC01_38249968 C01 38,249,968 8.64E-04 32 404 54 216 02 116 

chrC03_947250 C03 947,250 7.98E-04 22 201 32 498 34 171 

chrC03_12712425 C03 12,712,425 6.21E-04 40 281 11 355 37 260 

chrC03_50178610 C03 50,178,610 8.12E-04 58 281 08 288 22 270 

chrC03_50178612 C03 50,178,612 8.12E-04 22 270 08 288 58 281 

chrC03_50178621 C03 50,178,621 9.67E-04 57 283 07 288 24 267 

chrC04_254453 C04 254,453 5.05E-04 58 299 24 164 06 661 
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Table A6. Significant markers associated with different traits under heat stress condition (continued). 

Sterile/ aborted Pods         

        Allele 1 Het Allele  Allele 2 

Marker Chr Pos  P-value Obs Mean Obs Mean Obs Mean 

chrC04_918148 C04 918,148 9.68E-05 11 358 10 288 67 255 

chrC04_44274216 C04 44,274,216 5.44E-04 06 492 05 441 77 246 

chrC05_37931234 C05 37,931,234 4.71E-04 30 101 33 439 25 256 

chrC05_42411802 C05 42,411,802 7.70E-04 03 384 17 479 68 219 

chrC07_27295639 C07 27,295,639 6.45E-04 09 313 04 614 75 264 

chrCnn_rand_17211548 Cnn_rand 17,211,548 4.38E-04 66 265 05 518 17 270 

chrCnn_rand_73794981 Cnn_rand 73,794,981 2.46E-04 17 237 11 239 60 306 

chrUnn_rand_6711432 Cnn_rand 6,711,432 5.93E-04 12 491 47 130 29 426 

Pods on main raceme         

        Allele 1 Het Allele  Allele 2 

Marker Chr Pos  P-value Obs Mean Obs Mean Obs Mean 

chrA01_21164074 A01 21,164,074 0.00155425 42 1.50 32 2.60 14 2.0 

chrA02_3316315 A02 3,316,315 5.47E-05 79 1.9 04 3.5 05 3.6 

chrA02_3785127 A02 3,785,127 4.65E-04 03 4.6 04 3.5 81 1.9 

chrA02_5382625 A02 5,382,625 0.001248573 82 1.9 03 3.5 03 3.7 

chrA02_5589336 A02 5,589,336 2.09E-04 09 3.2 03 00 76 1.8 

chrA03_25984973 A03 25,984,973 3.66E-04 02 0.0 14 2.8 72 1.9 

chrA04_15181007 A04 15,181,007 1.95E-04 61 1.8 24 2.4 03 4.0 

chrA04_15181010 A04 15,181,010 1.95E-04 03 4.0 24 2.4 61 1.8 

chrA05_2492635 A05 2,492,635 7.74E-04 23 1.7 17 3.2 48 1.8 

chrA05_10441722 A05 10,441,722 7.09E-04 04 0.9 07 3.7 77 1.9 

chrA05_15015248 A05 15,015,248 0.001580437 02 2.7 37 1.7 49 2.3 

chrA05_15015254 A05 15,015,254 0.001580437 49 2.3 37 1.7 02 2.7 

chrA05_15015285 A05 15,015,285 0.001580437 49 2.3 37 1.7 02 2.7 
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Table A6. Significant markers associated with different traits under heat stress condition (continued). 

Pods on main raceme         

        Allele 1 Het Allele  Allele 2 

Marker Chr Pos  P-value Obs Mean Obs Mean Obs Mean 

chrA01_21164074 A01 21,164,074 0.00155425 42 1.50 32 2.60 14 2.0 

chrA06_19592145 A06 19,592,145 0.001387125 63 2.2 07 1.5 18 1.8 

chrA06_20870206 A06 20,870,206 9.02E-05 08 3.2 06 00 74 1.9 

chrA06_20874104 A06 20,874,104 0.001266024 05 2.7 08 2.8 75 1.9 

chrA06_20955765 A06 20,955,765 1.37E-04 05 3.1 06 00 77 2.0 

chrA06_22014672 A06 22,014,672 0.001500718 80 2.0 01 00 07 2.7 

chrA07_23503722 A07 23,503,722 3.05E-04 05 2.6 07 3.3 76 1.8 

chrA10_1645036 A10 1,645,036 1.39E-04 11 2.5 43 1.7 34 2.3 

chrA10_12998203 A10 12,998,203 0.00117271 44 1.8 11 1.7 33 2.4 

chrA10_14378371 A10 14,378,371 5.31E-04 73 2.1 09 3.1 06 1.1 

chrA10_14851252 A10 14,851,252 5.14E-04 02 3.3 05 3.9 81 1.9 

chrA10_14871336 A10 14,871,336 0.001511636 79 1.9 08 3.3 01 0.0 

chrAnn_rand_4588189 Ann_rand 4,588,189 0.001575634 31 2.0 51 2.1 06 2.6 

chrC02_rand_3127972 C02_rand 3,127,972 0.001304941 68 1.9 04 4.6 16 2.1 

chrC02_rand_3127976 C02_rand 3,127,976 0.001304941 68 1.9 04 4.6 16 2.1 

chrC03_23275707 C03 23,275,707 0.001561324 20 1.9 35 2.6 33 1.6 

chrC07_34885819 C07 34,885,819 0.001516786 10 3.3 17 1.6 61 1.9 

chrC09_41084846 C09 41,084,846 3.97E-04 01 0.0 09 3.3 78 1.9 

chrCnn_rand_8679255 Cnn_rand 8,679,255 4.28E-04 08 1.6 58 2.1 22 2.0 

chrCnn_rand_8679287 Cnn_rand 8,679,287 0.001306417 09 1.9 59 2.1 20 2.0 

chrCnn_rand_12757556 Cnn_rand 12,757,556 0.001302798 04 2.7 02 4.6 82 1.9 

chrCnn_rand_35427743 Cnn_rand 35,427,743 4.88E-05 80 1.9 03 3.5 05 3.6 

chrCnn_rand_36648262 Cnn_rand 36,648,262 0.001729644 44 2.1 39 1.8 05 3.7 

chrCnn_rand_55711143 Cnn_rand 55,711,143 0.001667809 15 3.2 12 1.2 61 2.0 

chrCnn_rand_55825162 Cnn_rand 55,825,162 7.00E-04 79 2.1 05 0.6 04 3.4 
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Table A7. Candidate genes associated with the QTL related to different traits under heat stress condition. 

Gene model Chromosome start end Gene annotation Gene function References 

       Pollen sterility 
 

      

GSBRNA2T00143205001 chrA02 1,381,512 1,384,147 glutamine synthetase 1;4 Oxidative stress, and 

B-defficiency 

Bargaz et al. (2015) 

GSBRNA2T00143187001 chrA02 1,451,304 1,454,179 Protein kinase superfamily 

protein 

pollen abortion  Radchuk et al. (2006) 

GSBRNA2T00143186001 chrA02 1,454,367 1,456,043 heat shock factor 3 Associated with male 

sterility 

Kim et al. (2001) 

GSBRNA2T00143181001 chrA02 1,469,412 1,475,092 cellulose-synthase like D2 Associated young 

seedpod development 

Park et al. (2013) 

GSBRNA2T00143169001 chrA02 1,526,097 1,528,165 Pectin lyase-like superfamily 

protein 

Involved in pollen tube 

growth 

Zhao et al. (2015) 

GSBRNA2T00143164001 chrA02 1,540,681 1,542,666 Cyclin A1;1 Involved in meiotic 

division in rice 

Yang et al. (2006) 

GSBRNA2T00143160001 chrA02 1,551,186 1,553,704 Homeodomain-like 

superfamily protein 

Regulate anther 

dehiscence 

Wilson et al. (2011) 

GSBRNA2T00143159001 chrA02 1,555,660 1,559,910 homeodomain GLABROUS 

9 

Regulate anther 

dehiscence 

Wilson et al. (2011) 

GSBRNA2T00143158001 chrA02 1,564,900 1,568,272 glutamate decarboxylase Involved in pollen tube 

growth in arabiodiopsis 

Palanivelu. (2003) 

GSBRNA2T00143152001 chrA02 1,579,851 1,584,847 Cellulose synthase family 

protein 

Associated young 

seedpod development 

Park et al. (2013) 

GSBRNA2T00125949001 chrC01 21,297,841 21,299,412 cytochrome P450, family 71, 

subfamily A, polypeptide 23 

pollen abortion with 

reduced number of 

elongated siliques 

Bak et al. (2011) 

GSBRNA2T00125953001 chrC01 21,336,887 21,338,435 cytochrome P450, family 71, 

subfamily A, polypeptide 23 

pollen abortion with 

reduced number of 

elongated siliques 

Bak et al. (2011) 

GSBRNA2T00098391001 chrC02_random 1,363,612 1,369,466 Calmodulin-binding 

transcription activator 

protein  

Involved in embryo 

development 

Radchuk et al. (2006) 

GSBRNA2T00047754001 chrC05 9,663,726 9,665,733 acyl activating enzyme 1 Involvement Pollen 

development and 

fertilization 

Souza et al. (2009) 

GSBRNA2T00019534001 chrUnn_random 6,778,955 6,779,833 F-box/RNI-like/FBD-like 

domains-containing protein 

Involved in floral 

organ development 

Jain et al. (2007) 
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Table A7. Candidate genes associated with the QTL related to different traits under heat stress condition (continued). 

Sterile/ aborted pods Chromosome start end Gene annotation Gene function References 
 

GSBRNA2T00149519001 chrA01 8,156,639 8,158,938 Phosphatidate 

cytidylyltransferase family 

protein 

Involved in Microspore 

development 

Yamaoka et al. 

(2011) 

GSBRNA2T00149515001 chrA01 8,169,399 8,171,514 Pentatricopeptide repeat 

(PPR) superfamily protein 

Leads to embryo 

abortion 

Lurin et al. (2013) 

GSBRNA2T00137595001 chrA03 16,296,098 16,301,133 phosphoenolpyruvate 

carboxylase 3 

Associated with seed 

abortion 

Fischinger et al. 

(2010) 

GSBRNA2T00137594001 chrA03 16,301,210 16,303,561 Galactosyltransferase family 

protein 

Involved in ovule 

abortion and reduced 

seed set 

 Basu et al. (2015) 

GSBRNA2T00137589001 chrA03 16,327,693 16,328,656 RAB GTPase homolog A1G essential for male 

fertility 

Gutkowska et al. 

(2014) 

GSBRNA2T00137582001 chrA03 16,351,813 16,353,433 NAC (No Apical Meristem) 

domain transcriptional 

regulator superfamily protein 

Associated with stress 

response 

Jin et al. (2013) 

GSBRNA2T00137580001 chrA03 16,358,258 16,359,218 ethylene responsive element 

binding factor 4 

Associated with 

Number of Seeds 

per Pod 

Kagale et al. (2010) 

GSBRNA2T00137560001 chrA03 16,433,475 16,434,855 indole-3-acetic acid 

inducible 19 

induce abortion of 

flowers 

Nico et al. (2015) 

GSBRNA2T00057373001 chrA09 31,985,235 31,990,347 aspartic proteinase A1 Involved in Pod and 

seed development 

Chen et al. (2002) 

GSBRNA2T00057374001 chrA09 31,990,456 31,992,915 F-box family protein Reduced flower 

fertility 

Ariizumi et al. 

(2011) 

GSBRNA2T00057385001 chrA09 32,017,249 32,018,865 FAD-binding Berberine 

family protein 

Drymatter 

accumulation and seed 

development 

Zhao et al. (2015) 

GSBRNA2T00057386001 chrA09 32,019,986 32,020,405 Plant self-incompatibility 

protein S1 family 

severely reduced 

pollen coats and cause 

male sterility 

Samuel et al. (2009) 

GSBRNA2T00057388001 chrA09 32,022,888 32,023,304 Plant self-incompatibility 

protein S1 family 

severely reduced 

pollen coats and cause 

male sterility 

Samuel et al. (2009) 

GSBRNA2T00057391001 chrA09 32,034,286 32,037,146 MATE efflux family protein Involved in embryo 

abortion 

Zhao et al. (2015) 
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Table A7. Candidate genes associated with the QTL related to different traits under heat stress condition (continued). 

Sterile/ aborted pods Chromosome start end Gene annotation Gene function References 
 

GSBRNA2T00057396001 chrA09 32,054,111 32,056,812 Protein kinase superfamily 

protein 

pollen abortion in 

barley 

Radchuk et al. (2006) 

GSBRNA2T00057403001 chrA09 32,114,727 32,115,889 syntaxin of plants 124 Involved in pollen tube 

growth 

Sharma et al. (2014) 

GSBRNA2T00057408001 chrA09 32,131,104 32,132,634 F-box and associated 

interaction domains-

containing protein 

Involved in floral 

organ development 

Jain et al. 2007 

GSBRNA2T00057419001 chrA09 32,167,384 32,167,734 F-box and associated 

interaction domains-

containing protein 

Involved in floral 

organ development 

Jain et al. (2007) 

GSBRNA2T00065907001 chrA10 12,703,569 12,705,505 calcium exchanger 7 Involved in 

pod development and 

inhibit elongation of 

gynophores 

Zhao et al. (2015) 

GSBRNA2T00065896001 chrA10 12,766,271 12,769,875 MATE efflux family protein Involved in embryo 

abortion 

Zhao et al. (2015) 

GSBRNA2T00065871001 chrA10 12,827,579 12,829,368 RGA-like protein 3 induced seed abortion Cheng et al. (2015) 

GSBRNA2T00065861001 chrA10 12,860,636 12,861,656 Adenine nucleotide alpha 

hydrolases-like superfamily 

protein 

Involved in male 

sterility 

 Mok et al. (2001) 

GSBRNA2T00135353001 chrA10 12,883,556 12,885,711 Homeodomain-like 

superfamily protein 

Regulate anther 

dehiscence 

Wilson et al. (2011) 

GSBRNA2T00106056001 chrC05 37,845,107 37,847,738 Protein kinase superfamily 

protein 

pollen abortion in 

barley 

Radchuk et al. (2006) 

GSBRNA2T00106048001 chrC05 37,867,378 37,867,917 Zinc finger, C3HC4 type 

(RING finger) family protein 

cellular regulation in 

plants 

Wu et al. (2014) 

GSBRNA2T00106046001 chrC05 37,876,691 37,880,376 pectin methylesterase 3 Involved in pollen tube 

growth 

Zhao et al. (2015) 

GSBRNA2T00106034001 chrC05 37,935,924 37,937,363 GDSL-motif lipase 4 plays an important role 

in embryo abortion 

Zhao et al. (2015) 

GSBRNA2T00023867001 chrC05 38,023,921 38,024,922 Pentatricopeptide repeat 

(PPR) superfamily protein 

Leads to embryo 

abortion 

Lurin et al. (2013) 

GSBRNA2T00023866001 chrC05 38,025,038 38,025,792 Pentatricopeptide repeat 

(PPR) superfamily protein 

Leads to embryo 

abortion 

Lurin et al. (2013) 
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Table A7. Candidate genes associated with the QTL related to different traits under heat stress condition (continued). 

Sterile/ aborted pods Chromosome start end Gene annotation Gene function References 
 

GSBRNA2T00023864001 chrC05 38,026,436 38,031,421 beta galactosidase 1 Carbohydrate 

metabolism, pollen 

development 

Sharma et al. (2014) 

GSBRNA2T00075666001 chrC05 42,331,911 42,332,659 F-box and associated 

interaction domains-

containing protein 

Involved in floral 

organ development 

Jain et al. (2007) 

GSBRNA2T00075665001 chrC05 42,332,820 42,333,256 F-box and associated 

interaction domains-

containing protein 

Involved in floral 

organ development 

Jain et al. (2007) 

GSBRNA2T00075662001 chrC05 42,338,193 42,340,293 Homeodomain-like 

superfamily protein 

Regulate anther 

dehiscence 

Wilson et al. (2011) 

GSBRNA2T00075659001 chrC05 42,343,619 42,349,146 SET-domain containing 

protein lysine 

methyltransferase family 

protein 

cause embryo abortion Pontvianne et al. 

(2010) 

GSBRNA2T00075634001 chrC05 42,492,531 42,495,263 apyrase 1 Male transmission 

completely blocked 

Steinebrunner et al. 

(2003) 

GSBRNA2T00075629001 chrC05 42,507,505 42,509,224 Pyruvate kinase family 

protein 

related to early 

embryo abortion 

Zhang et al. (2014) 

GSBRNA2T00128854001 chrC07 27,205,457 27,206,291 indole-3-acetic acid 

inducible 32 

induce abortion of 

flowers 

Nico et al. (2015) 

GSBRNA2T00128855001 chrC07 27,206,397 27,208,828 Leucine-rich repeat protein 

kinase family protein 

Involved in abnormal 

anther development 

Jia et al. (2008) 

GSBRNA2T00128889001 chrC07 27,363,136 27,367,597 homeobox-leucine zipper 

protein 17 

Associated with 

flowering  

Rueda et al. (2005) 

GSBRNA2T00019534001 chrUnn_random 6,778,955 6,779,833 F-box/RNI-like/FBD-like 

domains-containing protein 

Involved in floral 

organ development 

Jain et al. (2007) 

Pods on main raceme 
 

Chromosome start end Gene annotation Gene function References 

GSBRNA2T00036883001 chrA02 5,618,950 5,621,701 MATE efflux family protein Involved in embryo 

abortion 

Zhao et al. (2015) 

GSBRNA2T00066329001 chrA05 14,923,082 14,929,060 MATE efflux family protein Embryo abortion Zhao et al. (2015) 

GSBRNA2T00066327001 chrA05 14,957,816 14,961,501 P450 reductase 1 with reduced number 

of elongated siliques 

Bak et al. (2011) 
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Table A7. Candidate genes associated with the QTL related to different traits under heat stress condition (continued). 

 

Pods on main raceme 
 

Chromosome start end Gene annotation Gene function References 

GSBRNA2T00066308001 chrA05 15,071,152 15,072,722 Pentatricopeptide repeat 

(PPR-like) superfamily 

protein 

Leads to embryo 

abortion 

Lurin et al. (2013) 

GSBRNA2T00066307001 chrA05 15,080,249 15,082,335 F-box/RNI-like/FBD-like 

domains-containing protein 

Involved in floral 

organ development 

Jain et al. (2007) 

GSBRNA2T00066304001 chrA05 15,096,996 15,099,069 2-oxoglutarate (2OG) and 

Fe(II)-dependent oxygenase 

superfamily protein 

Involved with 

increased pod 

dehiscence creating 

oxidative stress 

Leisner et al. (2014) 

GSBRNA2T00144500001 chrA06 20,857,138 20,858,439 calmodulin-binding protein-

related 

Involved in embryo 

development 

Radchuk et al. (2006) 

GSBRNA2T00144502001 chrA06 20,861,772 20,863,986 Pentatricopeptide repeat 

(PPR) superfamily protein 

Leads to embryo 

abortion 

Lurin et al. (2013) 

GSBRNA2T00144513001 chrA06 20,888,721 20,891,712 SNF1 kinase homolog 11 Involved in stress 

signalgoldmang 

Halford et al. (2009) 

GSBRNA2T00144518001 chrA06 20,898,100 20,900,195 pectin methylesterase 31 Involved in pollen tube 

growth 

Zhao et al. (2015) 

GSBRNA2T00144521001 chrA06 20,903,890 20,905,358 NAC domain containing 

protein 3 

Associated with stress 

response 

Jin et al. (2013) 

GSBRNA2T00144548001 chrA06 21,052,298 21,052,848 basic helix-loop-helix 

(bHLH) DNA-binding 

family protein 

Development and 

dehiscence of the seed 

and pod 

Hudson et al. (2015) 

GSBRNA2T00150214001 chrA10 1,583,137 1,584,495 translocon at the inner 

envelope membrane of 

chloroplasts 20 

tapetal function and 

microspore 

development in 

Brassica  

Dun et al. (2011) 

GSBRNA2T00086284001 chrA10 1,638,312 1,642,124 glutamate receptor 3.4 Oxidative stress, and 

B-defficiency 

Bargaz et al. (2015) 

GSBRNA2T00086287001 chrA10 1,644,665 1,650,390 homeodomain GLABROUS 

2 

Regulate anther 

dehiscence 

Wilson et al. (2011) 

GSBRNA2T00135727001 chrA10 14,312,130 14,314,781 RAB geranylgeranyl 

transferase beta subunit 1 

essential for male 

fertility 

Gutkowska et al. 

(2014) 

GSBRNA2T00135730001 chrA10 14,319,545 14,321,924 calcium-dependent protein 

kinase 17 

Involved in pollen tube 

tip growth 

Myers et al. (2009) 
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Table A7. Candidate genes associated with the QTL related to different traits under heat stress condition (continued). 

 

Pods on main raceme 
 

Chromosome start end Gene annotation Gene function References 

GSBRNA2T00135738001 chrA10 14,338,348 14,340,789 pentatricopeptide (PPR) 

repeat-containing protein 

Leads to embryo 

abortion 

Lurin et al. (2013) 

GSBRNA2T00135742001 chrA10 14,355,102 14,355,566 17.6 kDa class II heat shock 

protein 

Involved in heat stress 

tolerant 

Al-Whaibi. (2010) 

GSBRNA2T00135764001 chrA10 14,419,789 14,420,289 Plant self-incompatibility 

protein S1 family 

severely reduced 

pollen coats and male 

sterility 

Samuel et al. (2009) 

GSBRNA2T00135765001 chrA10 14,420,543 14,421,879 K+ efflux antiporter 6 Associated with pollen 

tube development and 

fertilization 

Lu et al. (2011) 

GSBRNA2T00123633001 chrC03 23,295,425 23,304,438 Cysteine/Histidine-rich C1 

domain family protein 

Involved in Tapetal 

Programmed Cell 

Death and pollen 

grain sterility 

Zhang et al. (2014) 

GSBRNA2T00123636001 chrC03 23,323,996 23,326,131 calmodulin-binding family 

protein 

Involved in embryo 

development 

Radchuk et al. (2006) 

GSBRNA2T00123637001 chrC03 23,327,874 23,329,653 2-oxoglutarate (2OG) and 

Fe(II)-dependent oxygenase 

superfamily protein 

Involved with 

increased pod 

dehiscence creating 

oxidative stress 

Leisner ea al. (2014) 

GSBRNA2T00123644001 chrC03 23,354,234 23,357,932 Protein kinase family protein pollen abortion in 

barley 

Radchuk et al. (2006) 

GSBRNA2T00068140001 chrCnn_random 8,658,749 8,660,163 Zinc finger C-x8-C-x5-C-x3-

H type family protein 

cellular regulation in 

plants 

Wu et al. (2014) 

GSBRNA2T00068144001 chrCnn_random 8,674,490 8,677,292 GDSL-like 

Lipase/Acylhydrolase 

superfamily protein 

ethylene production, 

plays an important role 

in embryo abortion 

Zhao et al. (2015) 

GSBRNA2T00071888001 chrCnn_random 8,746,117 8,747,363 F-box family protein Reduced flower 

fertility 

Ariizumi et al. 

(2011) 
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Table A8. Genotypes, plant introduction number and collection site/origin of the accession used 

for the study. 

Genotypes Plant Introduction number Collection site/origin 

NDSU 0472 Not available USA 

NDSU 0474 Not available USA 

NDSU 0620 Not available USA 

NDSU 0728 Not available USA 

NDSU 10999 Not available USA 

NDSU 15989 Not available USA 

NDSU 161013 Not available USA 

NDSU 31011 Not available USA 

NDSU 41000 Not available USA 

NDSU 7997 Not available USA 

NDSU 81000 Not available Canada 

NDSU 91013 Not available USA 

Azuma PI 469730 South Korea 

Bingo PI 546468 USA 

BO-63 Ames 15651 Canada 

Bronowski PI 469737 Poland  

Buk Wuk 3 PI 469738 South Korea 

Celebra PI 538766 Sweeden 

Ceskia Tabor Ames 2793 Czechoslovakia 

Comet PI 649130 Sweden 

Cougar Not available Canada 

delta PI 543937 Sweden 

Evvin PI 633131 Russian Federation 

France 1 PI 469791 France 

Galant Not available Serbia 

Galaxy Ames 15938 Sweden 

Gisora PI 458948 Germany 

Global PI 601200 Sweden  

Golden PI 649126 Canada 

Gora PI 458949 Germany 

Gulle PI 458936 Sweden 

Gullivar PI 458937 Sweden 

Gylle PI 469812 South Korea 

Helga PI 649136 Germany 

Hi-Q Not available Canada 

IR-2 PI 531280 Hungary 
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Table A8. Genotypes, plant introduction number and collection site/origin of the accession used 

for the study (continued). 

Genotypes Plant Introduction number Collection site/origin 

Janetzkis PI 469826 South Korea 

Jasna Not available Serbia 

Kanada Not available Poland 

Klinki PI 469840 South Korea 

Kosa PI 458951 Germany 

Koubun PI 469841 South Korea 

Kraphhauser PI 469842 South Korea 

Kritmar rape PI 469843 South Korea 

Legend PI 633118 USA 

Lieikoposki  PI 469887 South Korea 

Lifura  PI 469888 South Korea 

Lisora PI 458953 Germany 

Major  PI 469891 South Korea 

Mali  PI 469894 South Korea 

Midas PI 431571 Canada 

Miekuro Dane  PI 469901 South Korea 

Mlochowski PI 535848 Poland 

Nabo PI 469944 Korea South 

Nilla 1022  PI 469947 South Korea 

Nilla glossy  PI 469946 South Korea 

NU 51084 PI 633124 Sweden  

Oro PI 458930 Canada  

Orpal PI 458968 France 

Polo canola Ames 26635 USA 

Printol PI 552810 USA 

Prota PI 458955 Germany 

Q2 Not available Canada 

Rang PI 470013 South Korea 

Ratnik Not available Serbia 

Regent PI 431572 Canada  

Regina II Ames 1669 Canada  

Reston PI 649152 USA 

Rico PI 458956 Germany 

Romeo PI 458971 France 

Russia 5 PI 470021 Former Soviet Union 

S.V. Gulle PI 470032 South Korea 
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Table A8. Genotypes, plant introduction number and collection site/origin of the accession used 

for the study (continued). 

Genotypes Plant Introduction number Collection site/origin 

Seoul PI 537090 South Korea 

Shang you PI 391553 China  

Silex Not available Canada 

Sunrise PI 597352 USA 

SVALOF GULLEN   PI 470033 South Korea 

Taiwan  PI 470039 Taiwan 

Tokiwa PI 470049 South Korea 

Tonus PI 470050 South Korea 

Topas PI 601201 Sweden 

Tower    PI 431574 Canada  

Vostochno-sibirskii PI 633126 Russian Federation 

Wasefuji PI 470054 South Korea 

Westar Ames 26653 Canada 

Willa PI 470058 South Korea 

Yonkkaichi kwo PI 470061 South Korea 

Yudal PI 470065 South Korea 

 

Table A9. List of germplasms and phenotypic mean data of three different traits under heat stress 

and controlled condition in greenhouse. 

 

 

 Heat stress Control 

 

Genotypes Gen. 

number  

Total# Pod #Sterile 

pod 

Pollen 

sterility (%) 

#Total Pod #Sterile 

pod 

Pollen sterility 

(%) 

Azuma g108 50.50 13.00 91.33 55.00 0.001 1.000 

Bingo g5 44.33 5.333 12.00 35.33 0.001 0.333 

BO-63 g235 22.66 15.66 22.00 41.00 2.500 0.001 

Bronowski g28 30.33 14.33 5.667 37.00 0.001 0.001 

Buk Wuk 3 g158 42.66 9.333 10.33 38.00 0.001 0.001 

Celebra g310 38.00 14.33 24.33 35.00 0.001 0.001 

Ceskia 

Tabor 

g191 32.00 5.000 33.66 36.00 0.001 0.667 

Comet g10 37.00 20.00 5.333 50.00 0.500 0.333 

Cougar g12 20.00 21.66 39.00 35.00 0.001 0.001 

Delta g113 23.00 8.333 11.33 49.66 1.667 0.001 

Evvin g119 41.00 14.33 3.333 41.50 0.001 0.333 

France 1 g124 30.33 8.333 35.33 38.33 0.001 0.001 

Galant g25 32.33 14.66 15.33 52.00 1.667 0.001 

Galaxy g127 29.66 9.000 12.00 39.00 0.001 0.333 
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Table A9. List of germplasms and phenotypic mean data of three different traits under heat stress 

and controlled condition in greenhouse (continued). 

 

 

 Heat stress Control 

 

Genotypes Gen. 

number  

Total# Pod #Sterile 

pod 

Pollen 

sterility (%) 

#Total Pod #Sterile 

pod 

Pollen sterility 

(%) 

Gisora g27 30.33 18.33 21.00 51.50 2.000 0.001 

Global g345 44.00 17.00 11.33 52.66 1.667 0.667 

Golden g30 25.00 6.000 10.00 46.50 0.001 0.333 

Gora g131 31.33 8.667 56.00 44.00 0.001 1.333 

Gulle g66 30.33 7.333 2.333 41.00 0.001 0.001 

Gullivar g31 42.66 28.33 11.00 36.66 2.000 0.001 

Gylle g32 24.50 15.00 41.66 32.50 0.500 0.333 

Helga g134 24.50 4.500 54.33 33.50 0.001 1.000 

Hi-Q g34 16.33 16.00 8.333 29.33 0.001 0.333 

IR-2 g261 31.33 10.00 20.00 19.50 0.500 0.001 

Janetzkis g139 25.33 6.000 8.333 39.00 0.001 0.001 

Jasna g357 36.66 11.33 12.66 49.00 2.333 0.001 

Kanada g43 19.33 7.000 11.33 28.50 1.000 0.667 

Klinki g145 23.00 18.00 10.00 50.00 0.001 0.001 

Kosa g148 29.33 9.333 37.00 23.66 0.001 0.333 

Koubun g149 23.00 16.00 33.33 13.00 0.500 0.667 

Kraphhauser g152 30.00 11.00 32.33 37.50 0.001 0.333 

Kritmar rape g151 29.00 21.50 6.000 24.50 2.000 0.333 

Legend g48 24.33 7.667 93.00 21.50 0.001 0.333 

Lieikoposki g274 31.00 27.00 22.00 29.00 3.500 1.667 

Lifura g53 12.66 10.66 17.33 33.00 0.001 0.001 

Lisora g161 21.50 8.500 3.000 25.00 0.001 0.001 

Major g63 44.50 23.50 11.00 53.00 1.500 0.001 

Mali g163 66.50 32.50 10.33 44.33 5.667 0.001 

Midas g166 22.66 7.000 0.333 23.50 0.001 0.001 

Miekuro 

Dane 

g167 18.00 15.50 26.00 21.00 0.001 0.333 

Mlochowski g171 42.50 13.00 22.00 59.00 0.001 1.000 

Nabo g177 22.00 11.66 69.66 28.00 0.001 0.001 

NDSU0472 g208 38.33 16.33 34.66 36.00 0.001 0.001 

NDSU0474 g210 25.33 21.00 7.333 20.33 0.001 0.001 

NDSU0620 g213 32.66 13.00 8.000 21.66 0.001 0.667 

NDSU0728 g215 53.66 36.33 11.00 45.66 2.333 0.333 

NDSU10999 g217 24.33 18.66 8.000 33.33 2.000 0.001 

NDSU15989 g218 23.66 13.33 3.667 26.66 0.333 0.001 

NDSU161013 g219 33.33 28.00 17.66 14.66 0.001 1.333 

NDSU31011 g220 40.00 20.33 12.66 21.33 0.001 0.667 

NDSU41000 g221 29.00 7.000 65.33 21.00 0.001 0.001 
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Table A9. List of germplasms and phenotypic mean data of three different traits under heat stress 

and controlled condition in greenhouse (continued). 

 

 

 Heat stress Control 

 

Genotypes Gen. 

number  

Total# Pod #Sterile 

pod 

Pollen 

sterility (%) 

#Total Pod #Sterile 

pod 

Pollen sterility 

(%) 

NDSU7997 g222 21.66 11.66 17.00 50.00 1.333 0.001 

NDSU81000 g224 20.66 20.00 4.333 46.33 0.001 0.333 

NDSU91013 g225 15.33 2.667 8.000 22.66 1.000 0.001 

Nilla 1022 g290 44.00 10.00 21.00 45.00 0.001 0.001 

Nilla glossy g179 28.50 9.000 12.00 41.00 0.001 0.001 

NU 51084 g299 35.00 5.000 33.00 25.00 0.500 0.001 

Oro g182 22.00 13.00 12.33 28.00 0.001 0.001 

Orpal g183 32.00 9.500 14.33 40.00 0.001 1.333 

Polo canola g184 28.00 12.00 14.33 25.00 1.000 0.001 

Printol g323 25.00 16.00 19.33 33.33 0.667 0.001 

Prota g334 8.000 5.500 93.00 24.00 0.001 0.001 

Q2 g72 23.66 14.00 24.00 42.50 0.500 0.001 

Rang g325 38.66 25.66 14.66 37.66 0.001 0.001 

Ratnik g73 26.33 15.00 20.00 31.00 0.001 0.001 

Regent g187 22.00 4.000 15.33 42.00 0.500 2.333 

Regina II g294 25.66 13.66 8.000 26.50 0.001 0.001 

Reston g327 20.50 7.500 39.00 14.00 0.001 1.000 

Rico g339 39.00 6.500 10.33 30.00 2.000 0.001 

Romeo g75 31.00 15.00 11.66 34.50 0.001 0.001 

Russia 5 g341 30.00 15.33 9.000 38.50 0.001 0.001 

S.V. Gulle g342 38.00 13.66 24.00 54.50 1.500 0.001 

Seoul g190 23.33 16.66 3.000 23.00 0.001 0.001 

Shang you g212 19.66 19.66 2.333 15.50 0.500 0.001 

Silex g78 18.00 8.500 6.000 33.00 0.001 0.001 

Sunrise g194 37.66 4.667 33.33 28.00 0.001 0.333 

Svalof 

gullen   

g297 23.66 19.00 28.00 30.00 0.001 0.001 

Taiwan  g80 48.00 4.500 94.33 45.00 0.001 0.001 

Tokiwa g83 9.667 7.667 31.66 15.50 0.001 0.333 

Tonus g302 34.33 21.00 11.00 40.50 0.001 0.001 

Topas g84 36.00 24.00 8.667 38.50 0.001 0.001 

Tower    g86 29.00 13.66 1.000 33.00 0.001 0.001 

V.-sibirskii g96 31.33 2.000 1.333 28.66 0.001 0.001 

Wasefuji g307 18.00 8.333 12.00 21.66 0.001 0.001 

Westar g99 25.00 12.33 9.000 17.33 0.333 0.001 

Willa g102 30.00 9.667 0.001 40.50 0.500 0.001 

Yon. kwo g203 59.33 2.000 16.00 74.50 0.001 0.001 

Yudal g205 27.33 12.66 20.33 34.66 0.001 0.333 
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Table A10. List of germplasms and Heat Susceptibility Index (HSI) of three different traits under 

controlled condition. 

  Heat Susceptibility Index (HSI) 

Genotypes Gen. number Total# Pod Sterile pod Pollen sterility 

Azuma g108 0.614 498.60 1.0380 

Bingo g5 -1.913 204.53 0.4020 

BO-63 g235 3.358 0.2020 252.82 

Bronowski g28 1.353 549.74 65.112 

Buk Wuk 3 g158 -0.922 357.95 118.74 

Celebra g310 -0.644 549.74 279.63 

Ceskia Tabor g191 0.834 191.74 0.5690 

Comet g10 1.952 1.4960 0.1720 

Cougar g12 3.218 831.02 448.19 

delta g113 4.032 0.1530 130.23 

Evvin g119 0.090 549.74 0.1030 

France 1 g124 1.567 319.60 406.05 

Galant g25 2.840 0.2990 176.20 

Galaxy g127 1.797 345.17 0.4020 

Gisora g27 3.086 0.3130 241.32 

Global g345 1.236 0.3530 0.1840 

Golden g30 3.472 230.10 0.3330 

Gora g131 2.162 332.38 0.4710 

Gulle g66 1.954 281.24 26.804 

Gullivar g31 -1.229 0.5050 126.40 

Gylle g32 1.848 1.1120 1.4250 

Helga g134 2.017 172.56 0.6130 

Hi-Q g34 3.328 613.67 0.2760 

IR-2 g261 -4.557 0.7290 229.83 

Janetzkis g139 2.631 230.10 95.758 

Jasna g357 1.890 0.1480 145.55 

Kanada g43 2.415 0.2300 0.1840 

Klinki g145 4.055 690.38 114.91 

Kosa g148 -1.798 357.95 1.2640 

Koubun g149 -5.776 1.1890 0.5630 

Kraphhauser g152 1.502 421.88 1.1030 

Kritmar rape g151 -1.379 0.3740 0.1950 

Legend g48 -0.990 294.03 3.1950 

Lieikoposki g274 -0.518 0.2580 0.1400 

Lifura g53 4.627 409.10 199.18 

Lisora g161 1.051 325.99 34.466 

Major g63 1.204 0.5630 126.40 

Mali g163 -3.755 0.1820 118.74 
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Table A10. List of germplasms and Heat Susceptibility Index (HSI) of three different traits under 

controlled condition (continued). 

  Heat Susceptibility Index (HSI) 

Genotypes Gen. number Total# Pod Sterile pod Pollen sterility 

Midas g166 0.266 268.46 3.8190 

Miekuro Dane g167 1.073 594.49 0.8850 

Mlochowski g171 2.100 498.60 0.2410 

Nabo g177 1.609 447.45 800.62 

NDSU0472 g208 -0.487 626.45 398.39 

NDSU0474 g210 -1.846 805.45 84.266 

NDSU0620 g213 -3.812 498.60 0.1260 

NDSU0728 g215 -1.315 0.5590 0.3680 

NDSU10999 g217 2.027 0.3200 91.927 

NDSU15989 g218 0.845 1.4960 42.127 

NDSU161013 g219 -9.557 1073.9 0.1410 

NDSU31011 g220 -6.570 779.88 0.2070 

NDSU41000 g221 -2.861 268.46 750.82 

NDSU7997 g222 4.255 0.2970 195.35 

NDSU81000 g224 4.160 767.10 0.1380 

NDSU91013 g225 2.429 0.0640 91.927 

Nilla 1022 g290 0.167 383.53 241.32 

Nilla glossy g179 2.289 345.17 137.89 

NU 51084 g299 -3.004 0.3450 379.23 

Oro g182 1.609 498.60 141.72 

Orpal g183 1.502 364.35 0.1120 

Polo canola g184 -0.901 0.4220 164.71 

Printol g323 1.877 0.8820 222.17 

Prota g334 5.006 210.92 1068.7 

Q2 g72 3.328 1.0360 275.80 

Rang g325 -0.199 984.45 168.54 

Ratnik g73 1.130 575.31 229.83 

Regent g187 3.576 0.2680 0.0640 

Regina II g294 0.236 524.17 91.927 

Reston g327 -3.486 287.63 0.4370 

Rico g339 -2.253 0.0860 118.74 

Romeo g75 0.762 575.31 134.06 

Russia 5 g341 1.658 588.10 103.42 

S.V. Gulle g342 2.273 0.3110 275.80 

Seoul g190 -0.109 639.24 34.466 

Shang you g212 -2.019 1.4700 26.804 

Silex g78 3.413 325.99 68.943 

Sunrise g194 -2.592 178.96 1.1380 

Svalof gullen   g297 1.585 728.74 321.77 
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Table A10. List of germplasms and Heat Susceptibility Index (HSI) of three different traits under 

controlled condition (continued). 

  Heat Susceptibility Index (HSI) 

Genotypes Gen. number Total# Pod Sterile pod Pollen sterility 

Taiwan  g80 -0.501 172.56 1084.0 

Tokiwa g83 2.826 294.03 1.0800 

Tonus g302 1.143 805.45 126.40 

Topas g84 0.488 920.52 99.589 

Tower    g86 0.910 524.17 11.481 

Vostochno-sibirskii g96 -0.699 76.675 15.312 

Wasefuji g307 1.271 319.60 137.89 

Westar g99 -3.321 1.3810 103.42 

Willa g102 1.947 0.7030 0.0000 

Yonkkaichi kwo g203 1.529 76.675 183.86 

Yudal g205 1.588 485.81 0.6900 

 

Table A11. ANOVA for the five different traits of Brassica napus under field. 

Traits SV Df SS MS F-value Pr> F 

Plant height 

 

Rep 2 221.633 110.816 1.27 0.2822 

Genotype 84 40133.4 477.778 5.50 <.0001 

Raceme height Rep 2 438.407 219.203 4.47 0.0128 

Genotype 84 18598.0 221.404 4.52 <.0001 

No of pods per 

raceme  

 

Rep 2 158.713 79.3568 1.50 0.2262 

Genotype 84 17090.3 203.456 3.84 <.0001 

Pod length Rep 2 27.6141 13.8070 27.97 <.0001 

Genotype 84 160.022 1.90502 3.86 <.0001 

Abortion 

 

Rep 2 26.5613 13.2806 1.89 0.1549 

Genotype 84 950.620 11.3169 1.61 0.0049 

 

Table A12. Correlation among the traits under natural heat stress in the field.  

Traits Plant ht Raceme ht 

 

Pods on main 

raceme 

Pod length 

 

 

Plant ht --------     

Raceme ht 0.43***     

Pods on main 

raceme 

0.39*** 0.69***    

Pod length 0.0073 ns 0.12 ns 0.044 ns   

Abortion 0.0052 ns 0.06 ns 0.34**  0.023 ns  

  *, **, and *** = significantly different at 0.05 0.01, and 0.001 levels of probability, respectively; ns=not significant 

at P=0.05. 
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Table A13. Statistical summary of significant markers associated with five different traits of B. napus under field condition. 

Marker 

 

Chr Pos Log 10 P R2  

(%) 

Allele 

1 

#  

Obs 

Mean Allele 

2 

# 

Obs 

Mean Het 

Allele  

# 

Obs 

Mean 

Plant height              

chrC08_32368215 C08 32368215 2.40E-05 24 A 01 134.0 G 77 96.80 R 07 92.40 

chrC03_545192 C03 545192 2.61E-05 24 G 52 94.10 T 18 103.5 K 15 98.50 

chrCnn_rand_78509836 Cnn_rand 78509836 2.99E-05 23 C 07 98.40 T 72 95.10 Y 06 116.5 

chrAnn_rand_765860 Ann_rand 765860 3.12E-05 24 G 40 96.50 T 02 131.5 K 43 95.70 

chrC03_372591 C03 372591 6.60E-05 23 G 49 92.40 0 00 0000 R 36 103.0 

chrC07_2726204 C07 2726204 8.22E-05 22 A 04 113.3 G 74 95.50 R 07 102.0 

chrA01_7984469 A01 7984469 9.21E-05 22 C 03 113.3 G 25 99.00 S 57 95.10 

chrC04_21172310 C04 21172310 9.42E-05 18 A 79 95.80 C 03 120.2 m 03 101.8 

chrC06_5174439 C06 5174439 1.00E-04 22 A 05 91.10 G 78 96.40 R 02 129.5 

chrA05_20106451 A05 20106451 1.02E-04 22 A 07 98.30 T 77 96.30 W 01 134.0 

chrA06_6086476 A06 6086476 1.15E-04 21 C 01 106.0 T 68 98.40 Y 16 89.70 

chrC07_38565142 C07 38565142 1.57E-04 21 A 62 98.50 G 13 91.80 R 10 93.70 

chrA03_22665672 A03 22665672 1.79E-04 21 A 08 108.8 G 03 100.0 R 74 95.40 

chrA05_7059071 A05 7059071 1.87E-04 20 A 02 104.8 G 78 95.80 R 05 111.2 

chrA01_2767171 A01 2767171 1.98E-04 20 A 80 97.30 C 04 80.50 m 01 134.0 

chrC03_8183959 C03 8183959 2.04E-04 20 C 63 96.40 T 07 115.5 Y 15 90.40 

chrCnn_rand_70816687 Cnn_rand 70816687 2.09E-04 20 A 07 108.8 G 55 95.60 R 23 96.40 

chrCnn_rand_70816709 Cnn_rand 70816709 2.10E-04 20 A 10 112.6 G 48 93.90 R 27 96.50 

chrCnn_rand_70816722 Cnn_rand 70816722 2.10E-04 20 C 15 91.80 T 58 96.70 Y 12 104.2 

chrCnn_rand_50738072 Cnn_rand 50738072 2.24E-04 20 A 05 96.70 T 79 96.40 W 01 134.0 

chrA10_6853378 A10 6853378 2.47E-04 20 A 02 131.3 G 70 95.60 R 13 98.70 

chrC07_29694210 C07 29694210 2.53E-04 19 G 69 95.60 T 02 131.3 K 14 98.40 

chrC05_4296983 C05 4296983 2.76E-04 20 A 69 95.60 C 02 131.3 m 14 98.40 

chrCnn_rand_67537689 Cnn_rand 67537689 2.79E-04 20 A 04 124.3 G 76 95.00 R 05 104.5 

chrA03_15121547 A03 15121547 2.85E-04 19 G 04 80.50 T 80 97.20 K 01 134.0 
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Table A13. Statistical summary of significant markers associated with five different traits of B. napus under field condition 

(continued). 

Marker 

 

Chr Pos Log 10 P R2  

(%) 

Allele 

1 

#  

Obs 

Mean Allele 

2 

# 

Obs 

Mean Het 

Allele  

# 

Obs 

Mean 

chrCnn_rand_993352 Cnn_rand 993352 2.97E-04 19 A 20 94.90 C 39 99.80 m 26 94.10 

chrC07_6805964 C07 6805964 2.97E-04 19 A 14 95.60 C 47 99.60 m 24 92.40 

chrC06_9550868 C06 9550868 3.29E-04 19 A 77 96.50 T 06 91.80 W 02 129.5 

chrA01_1046271 A01 1046271 3.62E-04 19 A 64 98.90 C 01 95.70 m 20 90.50 

chrA03_rand_254503 A03_rand 254503 3.92E-04 19 A 07 92.40 C 75 96.30 m 03 123.2 

chrA03_20343861 A03 20343861 4.45E-04 18 A 12 105.5 G 61 96.50 R 12 90.30 

chrA04_rand_1171770 A04_rand 1171770 4.55E-04 19 A 75 98.40 G 07 86.30 R 03 85.20 

chrC05_31856881 C05 31856881 4.70E-04 18 C 74 95.60 T 09 108.9 Y 02 91.60 

chrC09_39788737 C09 39788737 5.01E-04 18 A 07 86.30 G 75 98.40 R 03 85.20 

chrC04_47240683 C04 47240683 5.29E-04 18 A 05 91.40 G 78 96.40 R 02 129.5 

chrA06_16667786 A06 16667786 5.54E-04 18 C 55 94.90 T 01 134.0 Y 29 99.30 

chrA07_15185460 A07 15185460 5.69E-04 17 A 73 94.90 C 03 115.0 m 09 107.0 

chrA07_15185534 A07 15185534 5.69E-04 17 A 19 88.90 G 19 99.80 R 47 98.90 

Raceme height              

chrC01_15689071 C01 15689071 1.74E-05 22 G 59 39.70 T 20 36.80 K 06 51.70 

chrC01_15689086 C01 15689086 5.77E-05 20 C 55 40.00 T 25 37.50 Y 05 50.10 

chrA02_1133295 A02 1133295 8.39E-05 20 A 25 37.50 T 55 40.00 W 05 50.10 

chrC01_26101660 C01 26101660 1.18E-04 19 A 25 37.50 T 55 40.00 W 05 50.10 

chrA10_1216770 A10 1216770 1.19E-04 16 C 67 39.90 G 03 29.80 S 15 41.90 

chrC01_rand_397524 C01_rand 397524 1.40E-04 19 A 76 39.20 G 02 29.30 R 07 50.50 

chrCnn_rand_53426788 Cnn_rand 53426788 1.77E-04 18 A 73 39.30 C 04 37.60 m 08 46.40 

chrC05_39333990 C05 39333990 1.82E-04 18 A 34 36.60 C 04 32.50 m 47 42.80 

chrA08_4189934 A08 4189934 1.90E-04 18 A 03 28.40 T 69 41.30 W 13 34.90 

chrA10_1216766 A10 1216766 2.70E-04 14 G 34 36.60 T 04 32.40 K 47 42.90 

chrC03_5318108 C03 5318108 3.13E-04 17 A 77 39.40 G 02 25.00 R 06 50.30 

chrC03_5318113 C03 5318113 3.13E-04 17 A 58 37.60 G 22 43.30 R 05 51.40 
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Table A13. Statistical summary of significant markers associated with five different traits of B. napus under field condition 

(continued). 

Marker 

 

Chr Pos Log 10 P R2  

(%) 

Allele 

1 

#  

Obs 

Mean Allele 

2 

# 

Obs 

Mean Het 

Allele  

# 

Obs 

Mean 

chrC03_5318131 C03 5318131 3.13E-04 17 C 22 43.30 T 58 37.60 Y 05 51.40 

chrC06_5134034 C06 5134034 3.30E-04 17 C 02 51.20 G 43 42.60 S 40 36.40 

chrC05_39333995 C05 39333995 3.49E-04 17 G 01 15.50 T 47 40.80 K 37 39.30 

chrA03_19993874 A03 19993874 3.73E-04 17 A 12 40.60 T 71 40.20 W 02 25.00 

chrCnn_rand_67444895 Cnn_rand 67444895 3.85E-04 17 A 07 51.90 G 46 38.70 R 32 38.90 

chrC03_45955764 C03 45955764 4.00E-04 17 C 02 29.30 T 66 39.80 Y 17 41.20 

chrC05_1570548 C05 1570548 4.07E-04 17 C 02 29.30 T 78 39.60 Y 05 48.10 

chrC09_13311085 C09 13311085 4.25E-04 17 C 16 34.10 T 60 40.00 Y 09 48.90 

chrA08_9665215 A08 9665215 4.53E-04 17 A 77 40.20 C 05 37.20 m 03 36.00 

chrC03_5316671 C03 5316671 4.55E-04 16 G 46 38.20 T 28 39.50 K 11 47.70 

chrA07_14328514 A07 14328514 4.60E-04 16 A 44 38.00 T 33 40.80 W 08 46.30 

chrCnn_rand_22215315 Cnn_rand 22215315 5.10E-04 16 G 17 36.30 T 65 40.90 K 03 36.80 

chrA04_18703171 A04 18703171 5.35E-04 16 A 18 37.50 G 64 40.70 R 03 36.80 

chrC07_35337162 C07 35337162 5.83E-04 16 C 07 43.60 T 76 39.80 Y 02 29.20 

chrC07_35337167 C07 35337167 5.83E-04 16 G 77 40.10 T 06 40.90 K 02 29.30 

chrA09_10329126 A09 10329126 6.05E-04 16 G 55 37.80 0 00 0000 K 30 43.60 

chrA08_6410089 A08 6410089 6.11E-04 16 T 54 37.70 0 00 0000 Y 31 43.60 

chrC06_34432380 C06 34432380 6.75E-04 16 C 12 42.20 T 51 37.10 Y 22 44.90 

chrC06_34432382 C06 34432382 6.75E-04 16 C 70 40.00 T 02 29.30 Y 13 40.90 

chrC08_16828733 C08 16828733 7.07E-04 16 G 58 40.50 T 03 39.30 K 24 38.50 

chrA09_10329146 A09 10329146 7.58E-04 16 A 57 40.20 G 03 39.30 R 25 39.20 

chrA04_18419248 A04 18419248 7.68E-04 15 A 34 37.80 G 44 39.80 R 07 49.80 

chrA08_9665217 A08 9665217 7.73E-04 15 A 20 37.30 C 57 38.80 m 08 53.80 

chrC01_14005097 C01 14005097 7.84E-04 15 C 11 43.70 G 65 38.60 S 09 44.30 

Pods on main raceme              

chrA10_rand_2092893 A10_rand 2092893 9.42E-05 21 A 43 27.90 G 28 30.00 R 14 37.00 
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Table A13. Statistical summary of significant markers associated with five different traits of B. napus under field condition 

(continued). 

Marker 

 

Chr Pos Log 10 P R2  

(%) 

Allele 

1 

#  

Obs 

Mean Allele 

2 

# 

Obs 

Mean Het 

Allele  

# 

Obs 

Mean 

chrA10_rand_2092900 A10_rand 2092900 9.42E-05 21 C 62 30.70 T 12 33.10 Y 11 23.00 

chrA09_26370461 A09 26370461 1.27E-04 21 A 71 29.00 T 02 27.00 W 12 37.10 

chrAnn_rand_10002128 Ann_rand 10002128 2.98E-04 19 C 02 27.00 G 71 29.00 S 12 37.10 

chrAnn_rand_10002131 Ann_rand 10002131 2.98E-04 19 A 11 32.50 G 64 30.80 R 10 22.60 

chrC05_8102132 C05 8102132 3.17E-04 19 G 28 33.60 T 13 25.80 K 44 29.10 

chrC03_8003052 C03 8003052 3.56E-04 19 A 16 25.90 G 11 39.30 R 58 29.40 

chrC05_20590198 C05 20590198 4.01E-04 18 C 14 30.00 T 61 29.30 Y 10 34.70 

chrC09_3590238 C09 3590238 4.56E-04 18 A 78 30.00 G 05 22.80 R 02 50.50 

chrC09_13198438 C09 13198438 4.72E-04 18 A 32 27.80 C 42 30.00 m 11 37.00 

chrAnn_rand_10002158 Ann_rand 10002158 5.31E-04 18 A 44 30.10 G 27 27.10 R 14 35.70 

chrCnn_rand_61532934 Cnn_rand 61532934 6.26E-04 17 A 28 27.20 G 43 30.10 R 14 35.70 

chrA03_15507989 A03 15507989 6.30E-04 17 A 27 27.10 G 44 30.10 R 14 35.70 

chrCnn_rand_1663164 Cnn_rand 1663164 6.41E-04 17 A 28 32.50 G 15 22.80 R 42 31.00 

chrA03_15507990 A03 15507990 7.41E-04 17 A 10 29.10 G 17 25.10 R 58 31.70 

chrA02_8494949 A02 8494949 7.54E-04 17 C 34 30.50 T 10 38.60 Y 41 27.60 

chrC01_3055220 C01 3055220 8.91E-04 17 C 04 30.00 T 73 28.80 Y 08 41.60 

chrC04_27753800 C04 27753800 8.97E-04 17 A 49 27.90 T 28 33.30 W 08 31.70 

chrC04_27753821 C04 27753821 8.97E-04 17 A 28 33.30 G 49 27.90 R 08 31.70 

chrC09_3590304 C09 3590304 8.98E-04 17 C 06 33.00 G 50 31.50 S 29 26.90 

chrC09_3590301 C09 3590301 9.38E-04 17 C 50 31.50 T 06 33.00 Y 29 26.90 

chrC09_3590341 C09 3590341 9.38E-04 17 C 47 31.60 T 08 32.50 Y 30 27.00 

chrC01_9232903 C01 9232903 9.47E-04 17 A 04 31.40 T 61 28.20 W 20 35.60 

chrA07_2464161 A07 2464161 9.81E-04 17 C 26 29.60 G 48 28.80 S 11 36.80 

chrC08_23407953 C08 23407953 9.86E-04 16 A 55 28.00 G 03 26.90 R 27 34.50 

Pod length              

chrC02_33478452 C02 33478452 7.34E-06 26 A 26 6.40 G 47 6.90 R 12 5.87 
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Table A13. Statistical summary of significant markers associated with five different traits of B. napus under field condition 

(continued). 

Marker 

 

Chr Pos Log 10 P R2  

(%) 

Allele 

1 

#  

Obs 

Mean Allele 

2 

# 

Obs 

Mean Het 

Allele  

# 

Obs 

Mean 

chrC09_43471822 C09 43471822 1.24E-05 25 A 25 6.50 G 44 6.90 R 16 5.97 

chrAnn_rand_11544915 Ann_rand 11544915 3.50E-05 23 A 38 6.60 G 39 6.80 R 08 5.62 

chrC03_58651519 C03 58651519 3.72E-05 23 A 11 7.00 G 68 6.70 R 06 5.37 

chrCnn_rand_43507482 Cnn_rand 43507482 4.06E-05 22 C 69 6.70 T 10 7.00 Y 06 5.37 

chrA01_23211171 A01 23211171 5.48E-05 22 A 01 4.30 G 70 6.70 R 14 6.21 

chrA05_20319571 A05 20319571 6.24E-05 22 C 02 6.90 T 69 6.80 Y 14 5.75 

chrA05_20319586 A05 20319586 6.24E-05 22 C 58 6.80 T 22 6.10 Y 05 6.59 

chrC07_40163429 C07 40163429 6.27E-05 22 A 09 6.80 C 43 6.90 m 33 6.14 

chrC07_40163415 C07 40163415 8.82E-05 21 A 31 6.80 T 22 6.10 W 32 6.80 

chrA05_20248573 A05 20248573 9.87E-05 21 A 07 7.40 G 68 6.60 R 10 5.97 

chrA05_20360257 A05 20360257 1.10E-04 20 G 28 6.80 T 23 6.86 K 34 6.30 

chrC09_43485851 C09 43485851 1.20E-04 20 C 12 5.90 G 64 6.70 S 09 6.76 

chrC03_rand_6258549 C03_rand 6258549 1.32E-04 20 A 22 6.70 C 57 6.70 m 06 5.40 

chrA10_16471895 A10 16471895 1.42E-04 20 C 74 6.70 T 07 6.80 Y 04 5.25 

chrA09_32428648 A09 32428648 1.61E-04 20 A 11 7.20 C 60 6.70 m 14 5.98 

chrC01_14825053 C01 14825053 1.74E-04 19 C 21 6.90 T 45 6.80 Y 19 6.00 

chrC02_12836241 C02 12836241 1.75E-04 19 A 34 6.80 T 37 6.80 W 14 5.77 

chrC01_14825092 C01 14825092 1.80E-04 19 G 40 6.90 T 15 6.00 K 30 6.50 

chrA01_23210566 A01 23210566 1.85E-04 19 A 37 6.80 G 34 6.80 R 14 5.77 

chrC03_1389931 C03 1389931 2.04E-04 19 C 51 6.70 T 26 6.70 Y 08 5.51 

chrC06_27373215 C06 27373215 2.77E-04 19 A 49 6.70 G 26 6.80 R 10 5.72 

chrCnn_rand_5115828 Cnn_rand 5115828 2.77E-04 19 A 19 6.40 G 55 6.80 R 11 6.07 

chrA03_7472879 A03 7472879 2.78E-04 19 G 75 6.70 T 05 7.10 K 05 5.30 

chrC02_3679554 C02 3679554 3.15E-04 18 C 06 6.80 T 77 6.70 Y 02 4.31 

chrA03_rand_701774 A03_rand 701774 3.23E-04 18 A 02 4.90 T 76 6.60 W 07 7.45 

chrC02_rand_3648671 C02_rand 3648671 3.40E-04 18 A 07 6.20 G 73 6.70 R 05 5.44 
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Table A13. Statistical summary of significant markers associated with five different traits of B. napus under field condition 

(continued). 

Marker 

 

Chr Pos Log 10 P R2  

(%) 

Allele 

1 

#  

Obs 

Mean Allele 

2 

# 

Obs 

Mean Het 

Allele  

# 

Obs 

Mean 

chrC07_42164245 C07 42164245 3.45E-04 18 C 62 6.70 T 02 4.40 Y 21 6.58 

chrC01_16905608 C01 16905608 3.56E-04 18 A 63 6.70 T 02 4.40 W 20 6.60 

chrA09_32405078 A09 32405078 3.64E-04 18 A 64 6.50 G 17 7.10 R 04 5.48 

chrC02_33559449 C02 33559449 4.00E-04 18 A 42 6.60 T 02 4.30 W 41 6.72 

chrA08_11770647 A08 11770647 4.26E-04 18 A 59 6.70 T 20 6.90 W 06 5.21 

chrA09_28427974 A09 28427974 4.33E-04 18 C 57 6.70 T 20 6.90 Y 08 5.68 

chrC03_12372983 C03 12372983 4.35E-04 18 G 68 6.70 T 14 6.60 K 03 4.90 

chrC03_12372984 C03 12372984 4.35E-04 18 C 52 6.70 T 19 7.00 Y 14 5.89 

chrA03_4124353 A03 4124353 5.00E-04 17 A 55 6.70 C 22 6.80 m 08 5.62 

chrA05_19555932 A05 19555932 5.11E-04 17 G 55 6.70 T 22 6.80 K 08 5.60 

chrA04_rand_325342 A04_rand 325342 5.18E-04 17 C 72 6.70 T 08 6.90 Y 05 5.23 

Pod Abortion              

chrA03_4072206 A03 4072206 5.20E-06 27 A 09 14.9 T 40 10.1 W 36 8.06 

chrC02_13281695 C02 13281695 9.16E-06 26 A 16 7.70 G 20 13.5 R 49 8.90 

chrC02_13209276 C02 13209276 2.22E-05 23 A 70 8.90 C 04 9.00 m 11 15.6 

chrC02_13209244 C02 13209244 2.22E-05 23 C 04 9.00 T 70 8.90 Y 11 15.6 

chrC02_13271272 C02 13271272 2.57E-05 23 C 48 8.50 G 29 12.6 S 08 7.31 

chrA03_25984973 A03 25984973 2.70E-05 24 A 51 8.40 G 30 12.5 R 04 6.28 

chrC04_5062497 C04 5062497 3.18E-05 24 C 33 12.1 G 36 7.80 S 16 9.42 

chrC04_5062481 C04 5062481 3.18E-05 24 G 66 10.9 0 00 000 K 19 5.90 

chrC02_13184955 C02 13184955 5.11E-05 22 C 43 9.20 T 07 14.6 Y 35 9.42 

chrA07_1117639 A07 1117639 5.74E-05 23 A 76 9.20 G 03 12.3 R 06 14.9 

chrA09_31926968 A09 31926968 6.27E-05 22 A 76 9.20 G 03 12.3 R 06 14.9 

chrC02_10389605 C02 10389605 8.71E-05 18 C 03 22.9 T 69 9.8 Y 13 6.41 

chrA05_22801086 A05 22801086 1.08E-04 22 C 07 5.90 T 64 10.9 Y 14 6.25 

chrAnn_rand_19954418 Ann_rand 19954418 1.24E-04 21 C 39 9.90 T 09 16.2 Y 37 8.05 
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Table A13. Statistical summary of significant markers associated with five different traits of B. napus under field condition 

(continued). 

Marker 

 

Chr Pos Log 10 P R2  

(%) 

Allele 

1 

#  

Obs 

Mean Allele 

2 

# 

Obs 

Mean Het 

Allele  

# 

Obs 

Mean 

chrC02_13281718 C02 13281718 1.29E-04 21 A 17 7.40 G 45 11.5 R 23 8.12 

chrC04_18664330 C04 18664330 1.32E-04 20 A 46 11.5 G 17 7.6 R 22 7.88 

chrC03_53189663 C03 53189663 1.66E-04 20 C 47 9.30 T 08 3.2 Y 30 12.1 

chrC04_rand_988002 C04_rnad 988002 1.85E-04 20 A 06 3.70 T 72 10.2 W 07 10.0 

chrA05_22800912 A05 22800912 2.35E-04 19 A 02 16.7 G 77 9.3 R 06 13.3 

chrCnn_rand_40497348 Cnn_rand 40497348 2.38E-04 19 A 06 16.8 G 37 10.5 R 42 8.10 

chrCnn_rand_40497358 Cnn_rand 40497358 2.38E-04 19 G 05 4.00 T 80 10.1 0 00 000 

chrC03_10545577 C03 10545577 2.51E-04 20 C 05 4.00 T 80 10.1 0 00 000 

chrC05_22964001 C05 22964001 2.65E-04 16 C 80 10.1 T 05 4.0 0 00 000 

chrC02_30590926 C02 30590926 2.87E-04 20 C 76 9.20 T 02 20.9 Y 07 12.0 

chrA10_506637 A10 506637 3.07E-04 16 A 71 9.50 G 03 20.8 R 11 8.38 

chrA10_506670 A10 506670 3.07E-04 16 T 50 11.1 0 00 00 Y 35 7.90 

chrA10_506671 A10 506671 3.07E-04 16 A 05 18.9 G 76 9.2 R 04 7.87 

chrC02_16620103 C02 16620103 3.07E-04 19 C 10 15.1 G 69 9.1 S 06 7.99 

chrA02_18851161 A02 18851161 3.13E-04 19 A 69 9.10 G 10 15.1 R 06 7.99 

chrCnn_rand_5438858 Cnn_rand 5438858 3.15E-04 19 A 70 9.10 G 10 15.1 R 05 7.82 

chrC04_5456736 C04 5456736 3.70E-04 19 A 06 18.6 G 70 9.0 R 09 9.48 

chrA07_758005 A07 758005 3.74E-04 18 C 71 9.00 G 06 17.3 S 08 10.7 

chrA01_5035031 A01 5035031 3.79E-04 19 A 54 9.80 G 14 12.8 R 17 7.11 

chrC08_19108482 C08 19108482 4.16E-04 19 A 61 9.90 G 08 15.6 R 16 6.33 

chrC04_5469752 C04 5469752 4.17E-04 19 A 50 11.2 G 04 6.0 R 31 7.89 
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Table A14. List of candidate genes and their functions associated with the identified QTL for five different traits of B. napus under 

natural heat stress.  Gene annotation and functions are described using TAIR 10 database. 

Gene model  

 

 

Chromosome_marker Gene 

start 

Gene end Dist. 

From 

gene 

(kb) 

Gene annotation Gene function References 

 

Plant Height        

BnaA01g05900D chrA01_2767171 2737963 2740864 29 Core-2/I-branching beta-

1,6-N-

acetylglucosaminyltransfer

ase family protein 

involved in plant 

development by guiding 

the cleavage of miRNAs 

Lin et al. 

(2015) 

BnaC03g01080D chrC03_545192 495332 497922 50 C2H2-like zinc finger 

protein 

Pay important roles in 

plant growth and 

development 

Chrispeels 

HE et al 

(2000) 

BnaC03g01240D chrC03_545192 560518 561348 15 C2H2-type zinc finger 

family protein 

Play important roles in 

plant growth and 

development 

Chrispeels 

HE et al 

(2000) 

BnaC03g01090D chrC03_545192 499303 500034 46 FASCICLIN-like 

arabinogalactan-protein 11 

Involved in plant growth, 

development and response 

to abiotic stress 

Zang et al. 

(2015) 

BnaC03g01200D chrC03_545192 541294 543191 4.0 Heavy metal 

transport/detoxification 

superfamily protein  

Associated with plant 

growth and development 

Hall (2002) 

BnaC03g01300D chrC03_545192 576852 580223 32 iron regulated 2 Associated with Iron (Fe) 

availability for plants 

which is an essential 

mineral element for plant 

growth and development 

Yang et al. 

2013 

BnaC03g00970D chrC03_545192 455153 460800 90 ubiquitin-protein ligase 4 Involved in several 

biological processes 

including hormonal 

control of vegetative 

growth 

Mazzucotell

i et al. 

(2006) 

BnaC06g04590D chrC06_5174439 5223860 5229566 49 ABC-2 type transporter 

family protein 

Involved in plant growth, 

development and response 

to abiotic stresses. 

Kang et al. 

(2011) 

BnaC07g36580D chrC07_38565142 38592380 38596801 27 amino acid transporter 1 Support plant growth and 

development. 

Ortiz-Lopez 

et al. (1999) 
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Table A14. List of candidate genes and their functions associated with the identified QTL for five different traits of B. napus under 

natural heat stress.  Gene annotation and functions are described using TAIR 10 database (continued). 

Gene model  

 

 

Chromosome_marker Gene 

start 

Gene end Dist. 

From 

gene 

(kb) 

Gene annotation Gene function References 

 

BnaC07g36450D chrC07_38565142 38548562 38549495 17 ethylene-responsive 

nuclear protein / ethylene-

regulated nuclear protein 

(ERT2) 

Regulates plant growth 

and development through 

cell elongation, cell 

division etc 

Sakai et al. 

(1998) 

BnaC07g36460D chrC07_38565142 38549584 38549897 16 ethylene-responsive 

nuclear protein / ethylene-

regulated nuclear protein 

(ERT2) 

Regulates plant growth 

and development through 

cell elongation, cell 

division etc 

Sakai et al. 

(1998) 

BnaC07g36630D chrC07_38565142 38614676 38617462 50 gibberellin 2-oxidase 8 Regulate plant growth Fang Lo et 

al. (2008) 

BnaC07g36370D chrC07_38565142 38507328 38509045 58 LSD1 zinc finger family 

protein 

Associated with abiotic 

stress response to help 

plant growth 

Guan et al. 

(2016) 

BnaC07g04420D chrC07_6805964 6889281 6889526 83 callose synthase 5 Involved in Cell wall 

development in plants 

Maeda et al. 

(2014) 

BnaC08g34260D chrC08_32368215 32380223 32380891 12 H(+)-ATPase 2 Involved in plant growth 

and development 

Schubert 

(1997) 

Raceme height        

BnaA02g02460D chrA02_1133295 1084194 1086329 49 Core-2/I-branching beta-

1,6-N-

acetylglucosaminyltransfer

ase family protein 

Involved in plant 

development by guiding 

the cleavage of miRNAs 

Lin et al. 

(2015) 

BnaA02g02600D chrA02_1133295 1163071 1164324 30 Plant calmodulin-binding 

protein-related 

Associated with Ca2+ 

binding and plant growth 

Ranty et al. 

(2006) 

BnaA03g40070D chrA03_19993874 20016598 20017965 23 Plant calmodulin-binding 

protein-related 

Associated with Ca2+ 

binding and plant growth 

Ranty et al. 

(2006) 

BnaA10g02380D chrA10_1216770 1225987 1227645 9.0 indoleacetic acid-induced 

protein 10 

Enhance plant growth 

under drought stress 

condition 

Yasin 

Ashraf et al. 

(2006) 

BnaA10g02280D chrA10_1216770 1182962 1184260 34 Protein kinase family 

protein 

Involved in stem 

elongation and vascular 

development  

Matschi et 

al. (2013) 
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Table A14. List of candidate genes and their functions associated with the identified QTL for five different traits of B. napus under 

natural heat stress.  Gene annotation and functions are described using TAIR 10 database (continued). 

Gene model  

 

 

Chromosome_marker Gene 

start 

Gene end Dist. 

From 

gene 

(kb) 

Gene annotation Gene function References 

 

BnaC01g28340D chrC01_26101660 26015923 26019679 86 auxin response factor 1 Regulates plant growth 

and development 

Li et al. 

(2016) 

BnaC05g03130D chrC05_1570548 1498282 1499295 72 mitogen-activated protein 

kinase kinase kinase 18 

Act as signal transporter 

for cell division and plant 

growth. 

Krishna 

Sinha et al. 

(2011) 

BnaC05g41640D chrC05_39333990 39284968 39287221 49 AP2/B3-like 

transcriptional factor 

family protein 

Play a crucial role in plant 

growth 

Song et al. 

(2013) 

BnaC07g31130D chrC07_35337162 35326546 35327913 11 Plant calmodulin-binding 

protein-related 

Associated with Ca2+ 

binding and plant growth 

Ranty et al. 

(2006) 

BnaC08g11450D chrC08_16828733 16841218 16843655 12 H(+)-ATPase 5 Involved in cell growth 

and development through 

energy supply 

Schubert 

(1997) 

BnaCnng23850D chrCnn_rand_22215315 22294422 22296810 79 glutamine synthase clone 

F11 

Involved in Cell wall 

development in plants 

Maeda et al. 

(2014) 

BnaCnng67880D chrCnn_rand_67444895 67522761 67524034 78 ACC oxidase 1 Favoring plant growth and 

lowering stress 

susceptibility 

Van de poel. 

(2014) 

BnaCnng67860D chrCnn_rand_67444895 67517034 67517342 72 AP2/B3-like 

transcriptional factor 

family protein 

Play a crucial role in plant 

growth 

Song et al. 

(2013) 

BnaCnng67850D chrCnn_rand_67444895 67511585 67513221 67 Core-2/I-branching beta-

1,6-N-

acetylglucosaminyltransfer

ase family protein 

Involved in plant 

development by guiding 

the cleavage of miRNAs 

Lin et al. 

(2015) 

Pods on main 

raceme 

       

BnaA09g36310D chrA09_26370461 26301650 26302519 69 basic helix-loop-helix 

(bHLH) DNA-binding 

superfamily protein 

Development and 

dehiscence of the seed and 

pod 

Hudson et 

al. (2015) 

BnaA09g36320D chrA09_26370461 26309405 26310301 61 basic helix-loop-helix 

(bHLH) DNA-binding 

superfamily protein 

Development and 

dehiscence of the seed and 

pod 

Hudson et 

al. (2015) 
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Table A14. List of candidate genes and their functions associated with the identified QTL for five different traits of B. napus under 

natural heat stress.  Gene annotation and functions are described using TAIR 10 database (continued). 

Gene model  

 

 

Chromosome_marker Gene 

start 

Gene end Dist. 

From 

gene 

(kb) 

Gene annotation Gene function References 

 

BnaA09g36330D chrA09_26370461 26316121 26317596 54 basic helix-loop-helix 

(bHLH) DNA-binding 

superfamily protein 

Development and 

dehiscence of the seed and 

pod 

Hudson et 

al. (2015) 

BnaA09g36490D chrA09_26370461 26377171 26378577 7.0 Protein kinase superfamily 

protein 

Involved in pollen 

abortion in barley 

Radchuk et 

al. (2006) 

BnaA09g36270D chrA09_26370461 26279973 26281656 90 Pyruvate kinase family 

protein 

Associated with early 

embryo abortion 

Zhang et al. 

(2014) 

BnaA10g30330D chrA10_rand_2092900 2167663 2172059 75 ARM repeat superfamily 

protein 

Self-incompatible  and 

reduced pod number 

Sharma et 

al. (2016) 

BnaA10g30160D chrA10_rand_2092900 2096464 2097400 4.0 Chaperone DnaJ-domain 

superfamily protein 

Involved in male sterility 

to reduce pod number 

Yang et al. 

(2009) 

BnaA10g30380D chrA10_rand_2092900 2185705 2187109 93 DNAJ heat shock N-

terminal domain-

containing protein 

heat shock protein make 

tolerance to heat and 

prevent fruit drop 

Zhao-Xia 

Ma et al. 

(2015) 

BnaA10g30100D chrA10_rand_2092900 2067086 2071217 26 Heat shock protein DnaJ 

with tetratricopeptide 

repeat 

Act as heat shock protein 

to reduce pod shedding 

Zhao-Xia 

Ma et al. 

(2015) 

BnaA10g30260D chrA10_rand_2092900 2128409 2129697 36 NAC domain containing 

protein 80 

Associated with stress 

response to maintain pod 

number 

Jin et al. 

(2013) 

BnaA10g30030D chrA10_rand_2092900 2031769 2031999 61 proline-rich family protein Associated with flower 

and pod development 

Girno et al. 

(2013) 

BnaA10g30230D chrA10_rand_2092900 2114701 2115945 22 Protein kinase superfamily 

protein 

Involved in pollen 

abortion in barley 

Radchuk et 

al. (2006) 

BnaAnng09390D chrAnn_rand_10002128 9962281 9963649 40 Adenine nucleotide alpha 

hydrolases-like 

superfamily protein 

Involved in male sterility  Mok et al. 

(2001) 

BnaAnng09400D chrAnn_rand_10002128 9968226 9969594 34 Putative endonuclease or 

glycosyl hydrolase 

related to early 

embryo abortion 

Zhang et al. 

(2014) 

BnaC01g05660D chrC01_3055220 3031434 3035679 24 Homeodomain-like protein Regulate anther 

dehiscence 

Wilson et al 

(2011) 

BnaC01g05710D chrC01_3055220 3049542 3052961 6.0 Protein kinase superfamily 

protein 

Involved in pollen 

abortion in barley 

Radchuk et 

al. (2006) 
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Table A14. List of candidate genes and their functions associated with the identified QTL for five different traits of B. napus under 

natural heat stress.  Gene annotation and functions are described using TAIR 10 database (continued). 

Gene model  

 

 

Chromosome_marker Gene 

start 

Gene end Dist. 

From 

gene 

(kb) 

Gene annotation Gene function References 

 

BnaC01g05800D chrC01_3055220 3076562 3079532 21 Protein kinase superfamily 

protein 

Involved in pollen 

abortion in barley 

Radchuk et 

al. (2006) 

BnaC01g14090D chrC01_9232903 9284682 9286256 52 cytochrome P450, family 

706, subfamily A, 

polypeptide 1 

Involved in pollen tube 

development and 

fertilization 

Zhao et al. 

(2015) 

BnaC01g14110D chrC01_9232903 9294948 9297353 62 Leucine-rich repeat protein 

kinase family protein 

Involved in abnormal 

anther development 

Jia et al.( 

2008) 

BnaC03g15870D chrC03_8003052 8002560 8004660 0 Protein kinase superfamily 

protein 

Involved in pollen 

abortion in barley 

Radchuk et 

al. (2006) 

BnaC09g06050D chrC09_3590341 3680596 3681937 90 Pyruvate kinase family 

protein 

Associated with early 

embryo abortion 

Zhang et al. 

(2014) 

BnaC09g06060D chrC09_3590341 3681993 3682974 92 Pyruvate kinase family 

protein 

Associated with early 

embryo abortion 

Zhang et al. 

(2014) 

Pod length        

BnaA03g09410D chrA03_4124353 4221654 4223252 97 2-oxoglutarate (2OG) and 

Fe(II)-dependent 

oxygenase superfamily  

Involved with increased 

pod dehiscence creating 

oxidative stress 

Leisner ea 

al. (2014) 

BnaA03g09160D chrA03_4124353 4125191 4127377 1.0 Cysteine/Histidine-rich C1 

domain family protein 

Involved in Tapetal 

Programmed Cell Death 

and pollen grain sterility 

Zhang et al. 

(2014) 

BnaA03g09300D chrA03_4124353 4182313 4182795 58 heat shock protein 18.2 Associated with male 

sterility 

Kim et al. 

(2001) 

BnaA03g09030D chrA03_4124353 4074792 4077497 50 zinc finger (C3HC4-type 

RING finger) family 

protein 

Cellular regulation in 

plants 

Wu et al. 

(2014) 

BnaA03g09400D chrA03_4124353 4209494 4210678 85 zinc finger (C3HC4-type 

RING finger) family 

protein 

Cellular regulation in 

plants 

Wu et al. 

(2014) 

BnaA05g28600D chrA05_20319571 20279526 20281705 40 cellulose synthase like A14 Associated young seedpod 

development 

Park et al. 

(2013) 

BnaA05g28670D chrA05_20319571 20306046 20307716 14 Cysteine/Histidine-rich C1 

domain family protein 

Involved in Tapetal 

Programmed Cell Death  

Zhang et al. 

(2014) 
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Table A14. List of candidate genes and their functions associated with the identified QTL for five different traits of B. napus under 

natural heat stress.  Gene annotation and functions are described using TAIR 10 database (continued). 

Gene model  

 

 

Chromosome_marker Gene 

start 

Gene end Dist. 

From 

gene 

(kb) 

Gene annotation Gene function References 

 

BnaA05g28870D chrA05_20319571 20369400 20372057 50 Homeodomain-like 

superfamily protein 

Associated with anther 

development 

Wilson et al. 

(2011) 

BnaA05g28800D chrA05_20319571 20346755 20348752 27 syntaxin of plants 71 Involved in pollen tube 

growth 

Sharma et al. 

(2014) 

BnaA09g48540D chrA09_32405078 32502371 32504041 97 cellulose synthase 5 Associated young seedpod 

development 

Park et al. 

(2013) 

BnaA09g48520D chrA09_32405078 32496839 32497309 92 Plant self-incompatibility 

protein S1 family 

severely reduced pollen 

coats and cause male 

sterility 

Samuel et al. 

(2009) 

BnaA09g48530D chrA09_32405078 32497556 32500147 92 Plant self-incompatibility 

protein S1 family 

severely reduced pollen 

coats and cause male 

sterility 

Samuel et al. 

(2009) 

BnaA10g25580D chrA10_16471895 16428223 16429725 44 cytochrome P450, family 

77, subfamily A, 

polypeptide 9 

Involved in pollen tube 

development and 

fertilization 

Zhao et al. 

(2015) 

BnaA10g25830D chrA10_16471895 16566363 16566758 94 Plant self-incompatibility 

protein S1 family 

severely reduced pollen 

coats and cause male 

sterility 

Samuel et al. 

(2009) 

BnaA10g25840D chrA10_16471895 16570300 16571845 98 Plant self-incompatibility 

protein S1 family 

severely reduced pollen 

coats and cause male 

sterility 

Samuel et al. 

(2009) 

BnaC01g21150D chrC01_14825053 14802563 14804403 22 ubiquitin family protein Involved in several 

biological processes 

including hormonal 

control of vegetative 

growth 

Mazzucotelli 

et al. (2006) 

BnaC01g23340D chrC01_16905608 16998104 17000946 92 Malectin/receptor-like 

protein kinase family 

protein 

Involved in cell 

elongation and vascular 

development 

Matschi et 

al. (2013) 

BnaC02g06930D chrC02_rand_3648671 3698436 3703165 50 cellulose synthase-like D3 Associated young seedpod 

development 

Park et al. 

(2013) 
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Table A14. List of candidate genes and their functions associated with the identified QTL for five different traits of B. napus under 

natural heat stress.  Gene annotation and functions are described using TAIR 10 database (continued). 

Gene model  

 

 

Chromosome_marker Gene 

start 

Gene end Dist. 

From 

gene 

(kb) 

Gene annotation Gene function References 

 

BnaC02g06690D chrC02_rand_3648671 3570561 3573201 78 glutamine synthetase 1;4 Involved in B-defficiency 

and pod development 

Bargaz et al. 

(2015) 

BnaC02g06890D chrC02_rand_3648671 3680400 3681999 32 syntaxin of plants  21 Involved in pollen tube 

growth 

Sharma et 

al. (2014) 

BnaC03g22510D chrC03_12372984 12432046 12433221 59 basic helix-loop-helix 

(bHLH) DNA-binding 

superfamily protein 

Development and 

dehiscence of the seed and 

pod 

Hudson et 

al. (2015) 

BnaC03g02780D chrC03_1389931 1377638 1378027 12 auxin response factor 19 Regulates plant growth 

and development 

Li et al. 

(2016) 

BnaC07g38990D chrC07_40163415 40103302 40106755 60 AGAMOUS-like 24 Floral transition as well as 

flower and pod 

development 

Yu et al. 

(2002) 

BnaC07g38970D chrC07_40163415 40096372 40100341 67 P450 reductase 1 pollen abortion with 

reduced number of 

elongated siliques 

Bak et al. 

(2011) 

BnaC09g41640D chrC09_43471822 43543421 43544193 72 Core-2/I-branching beta-

1,6-N-

acetylglucosaminyltransfer

ase family protein 

Involved in plant 

development by guiding 

the cleavage of miRNAs 

Lin et al. 

(2015) 

BnaC09g41650D chrC09_43471822 43544268 43545376 72 Core-2/I-branching beta-

1,6-N-

acetylglucosaminyltransfer

ase family protein 

Involved in plant 

development by guiding 

the cleavage of miRNAs 

Lin et al. 

(2015) 

BnaC09g41340D chrC09_43471822 43390602 43393373 81 glutamine synthetase 1;4 Involved in B-defficiency 

and pod development 

Bargaz et al. 

(2015) 

Pod Abortion        

BnaA05g33780D chrA05_22801086 22807580 22808846 6.0 Adenine nucleotide alpha 

hydrolases-like 

superfamily protein 

Involved in male sterility  Mok et al. 

(2001) 

BnaA05g33680D chrA05_22801086 22736816 22737232 64 arabinogalactan protein 6 Involved in pollen wall 

development and pollen 

tube growth 

Lin et al. 

(2014) 
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Table A14. List of candidate genes and their functions associated with the identified QTL for five different traits of B. napus under 

natural heat stress.  Gene annotation and functions are described using TAIR 10 database (continued). 

Gene model  

 

 

Chromosome_marker Gene 

start 

Gene end Dist. 

From 

gene 

(kb) 

Gene annotation Gene function References 

 

BnaA05g33830D chrA05_22801086 22826424 22828539 25 cyclophilin 38 Associated with drought 

stress and fruit drop 

Kelish et al. 

(2014) 

BnaA05g33960D chrA05_22801086 22890974 22893289 90 DP-E2F-like protein 3 causes severe defects 

during ovulation and 

fertilization 

Chi (2010) 

BnaA05g33770D chrA05_22801086 22805746 22807215 5.0 myb domain protein 57 Associated with drought 

stress respose (tolerance) 

to reduce abortion 

Baldoni et 

al. (2015) 

BnaA05g33660D chrA05_22801086 22723364 22725252 78 Protein kinase superfamily 

protein 

Involved in pollen 

abortion in barley 

Radchuk et 

al. (2006) 

BnaA05g33820D chrA05_22801086 22823882 22826375 23 Protein kinase superfamily 

protein 

Involved in pollen 

abortion in barley 

Radchuk et 

al. (2006) 

BnaA07g01350D chrA07_1117639 1079325 1079800 38 zinc ion binding Cellular regulation and 

act as micronutrient to 

reduce pod abortion 

Wu et al. 

(2014) 

BnaC02g17570D chrC02_13281695 13199749 13200702 82 AGAMOUS-like 15 Associated with 

embryonic development 

Hill (2007) 

BnaC02g17610D chrC02_13281695 13220239 13222779 61 Protein phosphatase 2C 

family protein 

Involved in drought stress 

and Abscicic acid 

production 

Su et al. 

(2016) 

BnaC02g17580D chrC02_13281695 13201203 13202136 80 sulfur E2 Associated with heat 

stress and decrease the 

number of seed per plant  

Muguet  et 

al. (2015) 

BnaC04g07270D chrC04_5456736 5440327 5442725 16 chaperone protein dnaJ-

related 

Involved in male sterility 

and cause sterile pod 

Yang et al. 

(2006) 

BnaC04g07270D chrC04_5456736 5440327 5442725 16 chaperone protein dnaJ-

related 

Involved in male sterility 

and pod sterility 

Yang et al. 

(2006) 

BnaC04g07470D chrC04_5456736 5513477 5517264 57 Cyclin/Brf1-like TBP-

binding protein 

Involved in meiotic 

division and fruit 

development 

Yang et al. 

(2006) 

BnaC04g07470D chrC04_5456736 5513477 5517264 57 Cyclin/Brf1-like TBP-

binding protein 

Involved in meiotic 

division and fruit 

development 

Yang et al. 

(2006) 
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Table A14. List of candidate genes and their functions associated with the identified QTL for five different traits of B. napus under 

natural heat stress.  Gene annotation and functions are described using TAIR 10 database (continued). 

Gene model  

 

 

Chromosome_marker Gene 

start 

Gene end Dist. 

From 

gene 

(kb) 

Gene annotation Gene function References 

 

BnaC04g07360D chrC04_5456736 5460518 5460967 4.0 F-box family protein Reduced flower fertility 

and reduce pod set 

Ariizumi et 

al. (2011) 

BnaC04g07360D chrC04_5456736 5460518 5460967 4.0 F-box family protein Reduced flower fertility 

and reduce pod set 

Ariizumi et 

al. (2011) 

BnaC04g01120D chrC04_rand_988002 912838 913631 75 arabinogalactan protein 16 Involved in pollen wall 

development and pollen 

tube growth 

Xiao et al. 

(2014) 

BnaC04g01270D chrC04_rand_988002 1002167 1003856 14 ARID/BRIGHT DNA-

binding domain;ELM2 

domain protein 

 Involved in embryonic 

development 

https://en.wi

kipedia.org/

wiki/ 

ARID_doma

in 

BnaC04g01250D chrC04_rand_988002 984082 987459 4.0 cyclic nucleotide gated 

channel 3 

Involved in meiotic 

division and fruit 

development 

Yang et al. 

(2006) 

BnaC04g01080D chrC04_rand_988002 904940 905783 83 cytokinin response factor 5 Prevent flower abortion in 

Lupin 

Song et al. 

(2015) 

BnaC04g01230D chrC04_rand_988002 971440 972082 17 Homeodomain-like 

superfamily protein 

Regulate anther 

dehiscence 

Wilson et al. 

(2011) 

BnaC04g01390D chrC04_rand_988002 1062714 1064045 75 NAC domain containing 

protein 6 

Associated with strjiaess 

response to prevent pod 

abortion 

Jin et al. 

(2013) 

BnaC05g26700D chrC05_22964001 22907120 22910098 57 ARM repeat superfamily 

protein 

Pollen become self-

incompatible and cause 

pod abortion 

Sharma et 

al. (2016) 

BnaC05g26680D chrC05_22964001 22881981 22883636 82 cytochrome P450, family 

705, subfamily A, 

polypeptide 27 

pollen abortion with 

reduced number of 

elongated siliques 

Bak et al. 

(2011) 

 

 

https://en.wikipedia.org/wiki/
https://en.wikipedia.org/wiki/
https://en.wikipedia.org/wiki/
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Table A15. Daily weather data of July 3, 2014 to July 23, 2014, during flowering to pod setting 

stage of canola in this study (https://ndawn.ndsu.nodak.edu). 

Fargo 

Date Max Air Temp 

(°F) 

Min Air Temp 

(°F) 

Avg Temp 

(°F) 

Diurnal Temp 

Range (°F) 

Avg Bare 

Soil Temp (°F) 

2014-07-03 77 49 63 28 67 

2014-07-04 84 63 73 21 68 

2014-07-05 95 67 81 28 77 

2014-07-06 83 69 76 14 76 

2014-07-07 82 61 71 21 72 

2014-07-08 75 59 67 16 70 

2014-07-09 77 57 67 20 72 

2014-07-10 84 59 72 25 71 

2014-07-11 87 65 76 22 76 

2014-07-12 82 59 70 23 73 

2014-07-13 75 53 64 22 69 

2014-07-14 68 50 59 19 64 

2014-07-15 73 47 60 26 67 

2014-07-16 79 51 65 28 72 

2014-07-17 82 62 72 20 74 

2014-07-18 85 64 75 22 76 

2014-07-19 82 61 71 20 77 

2014-07-20 94 68 81 26 81 

2014-07-21 92 67 80 25 81 

2014-07-22 78 61 69 17 75 

2014-07-23 79 56 68 22 75 

Averages: 82 59 70 22 73 

Max: 95 69 81 28 81 

Min: 68 47 59 14 64 

Std. Dev.: 7 6 6 4 4 

Table A16. Genotypes, plant introduction number and collection site/origin of the accession used 

for the study. 

Genotypes Plant Introduction number Collection site/origin 

Aviso Not available Canada 

Bingo PI 546468 USA 

BO-63 Ames 15651 Canada 

Brio PI 458919 France 

Celebra PI 538766 Sweeden 

Colza PI 469756 South Korea 

Comet PI 649130 Sweden 

Conquest Not available Canada 

Cougar Not available Canada 

Crystal PI 601261 Sweden, Malmohus 

 

https://ndawn.ndsu.nodak.edu/
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Table A16. Genotypes, plant introduction number and collection site/origin of the accession 

used for the study (continued). 

Genotypes Plant Introduction number Collection site/origin 

delta PI 543937 Sweden 

Drakkar Not available France 

Eckendorfer Mali PI 469784 South Korea 

Evvin PI 633131 Russian Federation 

France 1 PI 469791 France 

Galant Not available Serbia 

Galaxy Ames 15938 Sweden 

Global PI 601200 Sweden  

Golden PI 649126 Canada 

Gora PI 458949 Germany 

Gulle PI 458936 Sweden 

Gullivar PI 458937 Sweden 

Hi-Q Not available Canada 

IR-2 PI 531280 Hungary 

Janetzkis PI 469826 South Korea 

Jasna Not available Serbia 

Kanada Not available Poland 

Kosa PI 458951 Germany 

Koubun PI 469841 South Korea 

Legend PI 633118 USA 

Mali  PI 469894 South Korea 

Mazowiecki PI 311730 Polland 

Midas PI 431571 Canada 

Miekuro Dane  PI 469901 South Korea 

Miekuro Dane  PI 469901 South Korea 

Nabo PI 469944 Korea South 

NDSU 0472 Not available USA 

NDSU 0473 Not available USA 

NDSU 0474 Not available USA 

NDSU 0619 Not available USA 

NDSU 0620 Not available USA 

NDSU 0728 Not available USA 

NDSU 0729 Not available USA 

NDSU 1099 Not available USA 

NDSU 151000 Not available USA 

NDSU 15989 Not available USA 

NDSU 161013 Not available USA 

NDSU 31011 Not available USA 
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Table A16. Genotypes, plant introduction number and collection site/origin of the accession 

used for the study (continued). 

Genotypes Plant Introduction number Collection site/origin 

NDSU 41000 Not available Canada 

NDSU 7997 Not available USA 

NDSU0726 Not available USA 

NDSU81000 Not available USA 

NDSU91013 Not available USA 

Nilla 1022  PI 469947 South Korea 

NU 41737 PI 649135 Turkey 

NU 51084 PI 633124 Sweden  

NU 51084  PI 633124 Sweden Malmohus 

O 84 PI 478340 Chaina 

Oro PI 458930 Canada  

Orpal PI 458968 France 

Polo canola Ames 26635 USA 

Premier PI 470009 South Korea 

Printol PI 552810 USA 

Prota PI 458955 Germany 

Q2 Not available Canada 

Rang PI 470013 South Korea 

Ratnik Not available Serbia 

Regent PI 431572 Canada  

Regina II Ames 1669 Canada  

Reston PI 649152 USA 

Romeo PI 458971 France 

Russia 5 PI 470021 Former Soviet Union 

S.V. Gulle PI 470032 South Korea 

Seoul PI 537090 South Korea 

Silex Not available Canada 

Sunrise PI 597352 USA 

Svalof gullen   PI 470033 South Korea 

Taiwan  PI 470039 Taiwan 

Tokiwa PI 470049 South Korea 

Tonus PI 470050 South Korea 

Topas PI 601201 Sweden 

Tower    PI 431574 Canada  

Turret PI 365644 Canada  

Vostochno-sibirskii PI 633126 Russian Federation 

Wasefuji PI 470054 South Korea 

Westar Ames 26653 Canada 

Willa PI 470058 South Korea 
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Table A17. List of genotypes and their phenotypic mean under field conditions. 

Genotypes Gen. 

number 

plant 

height 

(cm) 

Raceme 

height 

(cm) 

Pods on 

main 

raceme 

Pod 

length 

(cm) 

Abortion 

from main 

raceme 

Pollen 

sterility 

(%) 

Aviso g366 87.33 39.47 30.67 7.157 7.609 0.330 

Bingo g5 134.0 36.67 27.67 7.397 9.639 0.333 

BO-63 g235 98.33 39.73 29.00 6.470 4.598 1.667 

Brio g147 106.0 37.87 27.00 6.900 3.704 0.000 

Celebra g310 92.00 28.00 23.00 6.783 5.797 1.000 

Colza g9 79.00 32.40 18.67 7.407 8.929 1.333 

Comet g10 86.00 36.13 38.67 5.457 8.621 2.000 

Conquest g11 68.00 33.40 31.33 7.623 5.319 36.00 

Cougar g12 86.67 32.40 25.67 6.130 19.48 1.000 

Crystal g13 105.4 60.33 48.33 7.637 6.897 0.660 

Czyzowski g243 131.3 39.00 33.67 7.387 4.950 1.333 

Delta g113 108.3 42.67 37.00 5.970 15.31 2.000 

Drakkar g16 100.0 42.40 27.67 8.210 9.639 0.333 

Eckendorfer mali g247 104.8 54.47 39.67 5.880 1.681 0.660 

Evvin g119 96.00 32.40 17.33 5.587 11.53 0.666 

France 1 g124 90.00 36.33 28.33 6.366 7.059 1.660 

Galant g25 103.6 28.13 28.67 5.917 3.488 0.333 

Galaxy g127 88.30 47.33 28.67 7.206 11.62 0.000 

Global g345 95.67 46.33 42.67 6.903 8.594 1.330 

Golden g30 105.0 35.40 27.67 6.297 12.04 0.000 

Gora g131 98.40 55.07 45.33 7.180 2.206 0.660 

Gulle g66 90.00 35.90 24.00 7.407 4.167 0.333 

Gulliver g31 128.6 61.13 52.67 6.807 8.861 1.330 

Hi-Q g34 81.00 41.33 44.00 7.823 11.36 2.667 

IR-2 g261 109.0 46.13 29.00 7.235 8.046 0.330 

Janetzkis g139 102.0 38.60 18.33 6.648 14.54 1.000 

Jasna g357 109.0 37.20 25.67 7.650 19.48 0.333 

Kanada g43 95.00 40.93 26.33 7.655 7.595 1.667 

Kosa g148 96.67 30.87 19.67 6.200 16.94 0.333 

Koubun g149 94.33 34.93 32.00 6.323 5.208 1.330 

Legend g48 86.33 33.60 18.33 5.987 1.818 0.000 

Mali g163 92.40 34.27 27.33 6.863 4.878 0.000 

Mazowiecki g316 82.67 26.87 23.00 6.269 15.94 0.000 

Midas g166 97.67 38.67 26.33 6.423 15.19 1.660 

Miekuro Dane g167 88.33 43.00 22.33 7.663 4.478 3.000 

Nabo g177 94.20 36.27 20.67 5.032 3.226 1.333 

NDSU0472 g208 104.6 39.80 27.00 7.210 16.04 0.330 

NDSU0473 g209 111.0 47.67 37.67 6.603 30.08 0.330 

NDSU0474 g210 83.67 15.50 28.67 6.210 23.25 3.000 

NDSU0619 g211 75.67 35.20 22.33 5.981 20.89 0.000 
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Table A17. List of genotypes and their phenotypic mean under field conditions (continued). 

Genotypes Gen. 

number 

plant 

height 

(cm) 

Raceme 

height 

(cm) 

Pods on 

main 

raceme 

Pod 

length 

(cm) 

Abortion 

from main 

raceme 

Pollen 

sterility 

(%) 

NDSU0726 g214 72.10 24.33 13.00 5.936 7.692 1.330 

NDSU0728 g215 106.6 53.80 39.33 6.967 8.475 0.660 

NDSU0729 g216 106.0 31.00 22.67 7.000 10.29 0.330 

NDSU10999 g217 80.67 39.60 36.33 6.887 10.09 1.660 

NDSU151000 g105 97.33 45.53 41.33 6.097 6.452 0.000 

NDSU15989 g218 86.00 38.67 33.00 7.480 22.22 1.330 

NDSU161013 g219 83.00 44.33 36.00 6.103 13.88 0.330 

NDSU31011 g220 100.0 37.27 22.33 7.113 16.41 0.330 

NDSU41000 g221 99.00 58.60 39.00 7.673 5.983 0.000 

NDSU7997 g222 95.33 44.40 36.33 7.490 4.587 1.000 

NDSU81000 g224 103.6 37.80 34.33 7.717 6.796 0.330 

NDSU91013 g225 93.00 44.80 36.67 6.683 6.364 2.330 

Nilla 1022 g290 96.80 45.87 28.00 6.143 5.952 0.333 

NU 41737 g318 125.0 44.00 39.67 4.277 6.723 1.330 

NU 51084  g299 129.0 51.67 44.33 6.980 4.511 1.000 

O 84 g320 105.6 47.20 27.33 4.347 3.659 0.660 

Oro g182 107.0 46.07 29.67 6.530 2.247 0.000 

Orpal g183 95.67 34.87 26.33 7.241 11.39 0.660 

Peace g69 90.67 33.20 22.00 5.370 15.15 0.660 

Polo Canola g184 77.67 29.87 14.33 7.249 9.302 1.333 

Premier g333 94.33 28.27 23.00 7.047 10.14 0.333 

Printol g323 91.33 29.47 22.33 6.343 8.955 1.000 

Prota g334 90.67 34.53 25.33 6.920 6.579 1.660 

Q2 g72 95.67 47.33 37.67 6.520 8.850 2.000 

Ratnik g73 98.33 43.80 34.00 5.803 3.922 1.660 

Regent g187 101.6 31.67 27.67 5.993 12.04 2.333 

Regina II g294 108.3 38.20 27.00 7.223 2.469 0.000 

Reston g327 94.33 44.80 38.00 4.900 8.772 0.660 

Romeo g75 100.0 35.00 27.67 6.403 10.84 0.330 

Russia 5 g341 94.33 43.27 31.67 6.203 4.211 0.333 

Seoul g190 84.30 56.60 34.33 7.420 8.738 1.000 

Silex g78 102.6 43.00 27.00 6.047 16.04 0.330 

Sunrise g194 81.00 29.87 17.00 6.907 13.72 1.660 

Svalof gullen   g297 102.0 42.47 36.00 6.583 10.18 8.667 

Taiwan  g80 86.40 38.57 24.00 4.423 8.333 0.330 

Tokiwa g83 72.50 27.53 19.33 6.433 17.24 0.000 

Tonus g302 105.6 49.67 29.67 7.350 8.989 1.330 



  

  171 
 
 

Table A17. List of genotypes and their phenotypic mean under field conditions (continued). 

Genotypes Gen. 

number 

plant 

height 

(cm) 

Raceme 

height 

(cm) 

Pods on 

main 

raceme 

Pod 

length 

(cm) 

Abortion 

from main 

raceme 

Pollen 

sterility (%) 

Topas g84 108.6 34.20 29.00 6.317 2.299 1.667 

Tower g86 88.00 37.07 31.00 6.773 12.903 2.333 

Turret g303 99.00 46.00 52.33 5.600 20.382 3.667 

Vostochno-

sibirskii 

g96 103.2 49.27 28.33 6.417 10.588 0.330 

Wasefuji g307 108.6 59.47 31.67 6.527 11.579 0.330 

Westar g99 95.67 31.07 32.00 6.953 12.500 1.333 

Willa g102 95.67 40.93 31.67 7.260 11.579 1.330 
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Figure A1. Phenotypic distribution of three different traits under heat stress (A) Pollen sterility 

(B) Sterile or aborted pods (C) Number of pods on main raceme. 
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Figure A2. Phenotypic distribution of five different traits under field condition (A) Plant height 

(cm) (B) Raceme height (cm) (C) Number of pods on main raceme (D) Pod length (cm) (E) 

Flower and pod abortion. 

  


