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ABSTRACT 

The five-parameter logistic minus one-parameter model is a hybrid between the five-

parameter model and the four-parameter model used for the relationship between concentration 

and response.  The four-parameter model includes the maximum and minimum concentration, 

slope, and the median concentration level 𝐸𝐶50.  The five-parameter model add an asymmetric 

factor which is important due to asymmetry of the sigmoid curve.  This model, however, is more 

difficult to fit due to the addition of the fifth parameter, which is why the 5PL-1P model is used 

so that the asymmetric factor is taken into account but has less parameters.  For the 5PL-1P 

model, D-optimal designs are obtained to estimate the model parameters effectively. Then we 

compare the D-optimal designs to the designs that are used to study the 5PL-1P model in real 

toxicity assessment and show that they work better than the original designs by comparing their 

efficiencies and comparing MSEs through simulation studies. 
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1. INTRODUCTION 

Experimental design is imperative when planning an experiment, particularly in science 

and medical research.  Research in these areas are notorious for their high costs, and in medical 

research, the potential harm to its subjects.  An optimal design can greatly minimize these and 

still provide accurate results and potentially even save time.  However, an optimal design is 

based off of an original design on which it improves upon and thus, is not the initial design of the 

study.  This is important because, even though an initial experiment is conducted with a chosen 

design, future experiments can be done more effectively.  One popular experiment in biostatistics 

is the study between a dose or concentration and its response.  There are a variety of models used 

to study this relationship, each of which takes on slightly different parameters or number of 

parameters.   

The five-parameter logistic minus one-parameter model for the relationship between 

concentration level and response is the focus of this paper and is a hybrid between both the five-

parameter model and the four-parameter model.  The five-parameter logistic model takes into 

account the minimum dose, maximum dose, slope, median effective dose concentration, and the 

asymmetric factor, but due to its five parameters, is more difficult to fit to a model.  The four-

parameter logistic model is much easier to fit, however, it does not take the asymmetric factor 

into account.  This is a problem due to the classic sigmoid curve being associated with logistic 

models that are not always symmetric.  The five-parameter logistic minus one-parameter model 

has four parameters but differs from the four-parameter logistic function by having an 

asymmetric parameter instead of the minimum parameter found in the 4PL (Dawson et al., 

2012).  This is still a relatively new model with very little research.  
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Dawson et al. (2012) studied the differences between the 4PL and 5PL-1P model in 

relationship to various chemicals, each with seven to eight concentration levels in the design, to 

see the effect of adding in an asymmetric factor.  In the past, it has been assumed that the curves 

associated with the concentration-response relationship are symmetric.  However, there may be 

new evidence that some curves may be asymmetric, which can affect the model results.  The 4PL 

and 5PL-1P models each have four parameters, the only difference being the minimum dose in 

the 4PL model and the asymmetric factor in the 5PL-1P model.  In the study, it was found that 

the 5PL-1P models had higher 𝑟2 and median effective concentration 𝐸𝐶50 values, and lower 

residual sum of square values.  This all indicates that the addition of an asymmetric factor does 

impact the results, and due to the high 𝑟2 and low residual sum of squares, it may provide more 

accurate results than the model without this parameter. 

One important research area, which pertains to the data in this paper, is toxicology, or the 

research of harmful substances.  The two compounds that were chosen from the 72 original 

datasets are bromoacetonitrile, abbreviated as BRAN, and chloracetonitrile, abbreviated as 

CLAN (Dawson et al., 2010).  Each of these chemicals have three separate exposure times: 15, 

30, and 45 minutes, which creates a total of six separate scenarios or datasets.  These chemicals 

are considered haloacetonitriles which are the by-products from disinfecting water and is known 

to have an impact on DNA (Bromoacetonitrile, 2016).  The tests were conducted using a 

machine called the Microtox® which utilizes bioluminescent bacteria in order to determine the 

effect of the bromoacetonitrile and chloracetonitrile compounds (Dawson et al., 2010). These 

two chemicals, which were previously in Dawson et al. (2012), used to analyze the addition of an 

asymmetric factor in the model, are not the only chemicals that have exhibited asymmetry.  

Another study, which looked at the toxicity of insecticides on a biological system, found an 
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asymmetric sigmoid curve for the relationship between insecticide level and percentage of insect 

mortality (Yu, 2015).  A nutritional study regarding the relationship between xenobiotic 

concentration and response, also presented a sigmoid curve that was not symmetric (Hathcock, 

1982).  Because some toxicology studies are proving to have some asymmetry, the 5PL-1P 

model could have a large impact in the future. 

The D-optimal design for the 5PL-1P model is studied in this paper due to the interest in 

finding the parameter estimates.  This is found by maximizing the determinant of the Fisher 

information matrix of the model parameters.  The D-optimal design is then compared to the 

original design in the motivational study (Dawson et al., 2012) to see how the D-optimal design 

works better than the original design for studying the 5PL-1P model.  This will be evaluated by 

looking at the efficiency between the two designs and then with the parameter mean squared 

errors from simulations for both the D-optimal and original design.  The D-optimal design could 

provide a design with fewer concentration levels, which could provide more accurate results at a 

smaller cost.  Chapter 2 will go through the optimality criterion, more specifically the D-

optimality criterion, then the general equivalence theorem and the V-algorithm which will be 

used in an algorithm to find the D-optimal designs.  Chapter 3 will discuss this model further and 

provide the parameter estimates for all six combinations of the two chemicals and the three 

exposure times.  In chapter 4, we will find the D-optimal designs for the 5PL-1P model using an 

algorithm that encompasses the V-algorithm, general equivalence theorem, and the Newton 

Raphson method.  In chapter 5, we will examine the efficiency of the D-optimal designs over the 

original designs.  In chapter 6, there will be a simulation of the study using the D-optimal 

designs and original designs, and their mean square errors will be compared.  Finally, a 

conclusion will be given at the end. 
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2. BACKGROUND 

 

This section will go over the background of optimal designs, more specifically D-optimal 

designs, that will be later used in this paper, in regards to a toxicology study.  In toxicology, 

researchers focus their studies on hazardous chemicals.  Optimal designs are used in order to 

estimate parameters while reducing sample size and minimizing the variance for each parameter.  

This is important because when researchers are setting up an experiment it allows for a smaller 

sample to be used which lowers costs while restricting the usage of these harmful chemicals that 

are being tested. 

2.1. Optimal Design Criteria 

Using an optimal design allows a researcher to use smaller samples with a greater 

precision in estimating the parameters.  This can reduce costs and time significantly.  A design is 

represented by  

𝜉 = (
𝑥𝑖
𝑤𝑖
)
𝑖=1

𝑘

 

where 𝑥𝑖 refers to the 𝑖th concentration level and 𝑤𝑖 =
𝑛𝑖

𝑁
 is the weight for each of those 

concentrations.  In real studies, the closest integer to 𝑤𝑖𝑁 will become the replication size 𝑛𝑖 for 

the 𝑖th concentration level.  Optimal designs minimize or maximize the optimality criterion 

𝜓{𝑀(𝜉, 𝜽)}, where 𝑀(𝜉, 𝜽) denotes the Fisher information matrix for the parameters 𝜽.   

2.2. D-optimal Design 

 D-optimal design is the focus of this paper and is often used to estimate the parameters of 

a model.  This design is beneficial due to it minimizing the variance for the models’ parameters 

in some sense.  The idea of D-optimal designs is to maximize the determinant of the Fisher 

information matrix.  The D-optimality criterion is 
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𝜓 = max
𝜉
|𝑀(𝜉, 𝜽)| 

2.3. The General Equivalence Theorem 

 The general equivalence theorem is use to validate optimal designs and in this paper’s 

case, specifically the D-optimal design (Kiefer, 1958).  Using the Fisher information matrix 

𝑀(𝜉, 𝜽), the directional derivative of convex function 𝜓{ } with regards to 𝜉̅ is 

𝜙(𝑥𝑖, 𝜉) = lim
𝛼→0+

1

𝛼
[𝜓{(1 − 𝛼)𝑀(𝜉, 𝜽) + 𝛼𝑀(𝜉̅, 𝜽)} − 𝜓{𝑀(𝜉, 𝜽)}] 

where 𝜉 represents the design matrix and 𝜽 is the parameter vector.  To solve this, first the 

derivative of the design matrix must be calculated by 

𝜉′ = (1 − 𝛼)𝜉 + 𝛼𝜉̅ 

where 𝜉̅ is the measure on which unit mass is put at the point 𝑥𝑖.  When the derivative of the 

design matrix 𝜉′ is put into the Fisher information matrix instead of just the design 𝜉, then the 

following is obtained 

𝑀(𝜉′, 𝜽) = (1 − 𝛼)𝑀(𝜉, 𝜽) + 𝛼𝑀(𝜉̅, 𝜽) 

This theorem has the following assumptions for a given design 𝜉∗: 

1. 𝜉∗ minimizes 𝜓{𝑀(𝜉, 𝜽)}. 

2. 𝜉∗ maximizes the minimum concentration 𝑥𝑖 over the design space 𝜙(𝑥𝑖, 𝜉). 

3. The minimum over the design space 𝜙(𝑥𝑖, 𝜉) equals zero when the points support the 

given design 𝜉∗. 

This theorem will later be applied to the V-algorithm. 

 

2.4. V-Algorithm 

 The V-algorithm is an iterative method that is often used to calculate D-optimal designs 

and was introduced by Fedorov, Klimko, and Studden (1972).  This algorithm starts with some 
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initial design 𝜉0.  For the initial design 𝜉0, a uniform design with 𝑠 + 1 concentration levels can 

be used.  Here 𝑠 represents the number of parameters in the model.  At the 𝑛th iteration, this 

algorithm maximizes the standardized variance 𝑑𝑛 by following the General Equivalence 

Theorem, 

𝑑𝑛(𝑥, 𝜽) = 𝑔(𝑥)
𝑇𝑀−1(𝜉𝑛, 𝜽)𝑔(𝑥) 

where 𝑥 ∈ 𝜒 and 𝑔(𝑥) is the gradient of the mean response function.  A point 𝑥 is chosen from 

the design space 𝜒 so that it maximizes the standardized variance 

�̅�𝑛(𝑥, 𝜽) = max
𝑥
𝑑𝑛(𝑥, 𝜽) 

The chosen point 𝑥 will then be used in the next iteration.  After each iteration, the Fisher 

information matrix is updated: 

𝑀(𝜉𝑛+1, 𝜽) = (1 − 𝛼𝑛+1)𝑀𝑛(𝜉𝑛, 𝜽) + 𝛼𝑛+1𝑔(𝑥)𝑔(𝑥)
𝑇 

where 𝛼𝑛+1 =
1

𝑛+1
.  The iterations will stop and 𝜉𝑛 becomes the D-optimal design when 

𝑑𝑛(𝑥, 𝜽) = 𝑔(𝑥)
𝑇𝑀−1(𝜉𝑛, 𝜽)𝑔(𝑥) − 𝑠 ≤ 𝜀 

where 𝑠 is the number of model parameters and 𝜀 = 10−6.   
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3. MODEL 

In order to obtain D-optimal designs for nonlinear models, the parameters of the model 

will need to first be estimated.  This section will cover the five-parameter minus one-parameter 

model and its parameter estimates based on the six combinations of chemical compounds and 

exposure times as well as its Fisher information matrix. 

3.1. The General Model 

The five-parameter logistic minus one-parameter function differs from the four-parameter 

logistic function by having an asymmetric parameter instead of the minimum parameter found in 

the 4PL (Dawson et al., 2012).  The continuous response (effect) for the 𝑖th concentration level 

and 𝑗th replication is modeled by 

 𝑌𝑖𝑗 = 𝑓(𝑥𝑖, 𝜽) + 𝜀𝑖𝑗  

where 

𝜀𝑖𝑗~𝑁(0, 𝜎
2) 

𝑖 = 1, 2, … , 𝑘  

𝑗 = 1, 2, … , 𝑛𝑖 

∑𝑛𝑖

𝑘

𝑖=1

= 𝑁 

and the variance 𝜎2 is assumed to be unknown.  The mean response at the 𝑖th concentration level 

is following the 5PL-1P model: 

𝑓(𝑥𝑖, 𝜽) =
𝜃1

[1 + (
𝜃2
𝑥𝑖
)
𝜃3

]

𝜃4
  

 where 𝜃1 = maximum effect, 𝜃3 = slope, 𝜃4 = asymmetric factor, and 𝑥𝑖 = 𝑖th concentration 

level.  The parameter 𝜃2 represents a function of 𝐸𝐶50: 
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𝜃2 = 𝑓(𝐸𝐶50) = 𝐸𝐶50 ∗ 10
[
1
𝜃3
log(21/𝜃4−1)]

 

that when the asymmetric factor 𝜃4 = 1, then 𝜃2 = 𝐸𝐶50.  The 𝐸𝐶50 is the median concentration 

level and represents the concentration level corresponding to 50% of the difference between the 

maximum and minimum effect.   

3.2. Model Fitting 

In order to show the dose-response relationship under the 5PL-1P model, the model was 

fit to the dataset collected in Dawson et al. (2010).  This was done using the nls function in R, 

which is often used to fit nonlinear models.  Among the many different chemicals, two chemical 

compounds were used: BRAN and CLAN, and the dose response was recorded at three different 

times: 15, 30, and 45 minutes, there will end up being six different sets of parameter estimates 

corresponding to all the combinations of chemical compound and time recorded.  Each 

concentration level had two replications so the sample size for each of the six scenarios is 14.  

The design that was originally used in the Dawson et al. (2010) is in Table 1, where the top row 

represents the concentration levels for each compound and the bottom row represents the weight 

for each of those levels.  Since the weight is the same for each concentration level, the same 

number of replications will be used for each. 

Table 1. Original Designs for the Two Compounds. 

𝜉𝑂
𝐵𝑅𝐴𝑁 = (

0.1655
1
7⁄

0.3089
1
7⁄

0.5765
1
7⁄

1.0762
1
7⁄

2.0089
1
7⁄

3.75
1
7⁄

7
1
7⁄
) 

𝜉𝑂
𝐶𝐿𝐴𝑁 = (

8.273
1
7⁄

15.44
1
7⁄

28.83
1
7⁄

53.81
1
7⁄

100.5
1
7⁄

187.5
1
7⁄

350
1
7⁄
) 

 

The nls function in R requires estimated starting values for the parameters.  The starting 

values for the BRAN concentration in the nls function would be 𝜃2 = 1, 𝜃3 = 1, 𝜃4 = 1, and 
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then the maximum concentration 𝜃1 came from the maximum dose response for each time.  The 

parameter estimates for BRAN are in Table 2. 

Table 2. Parameter Estimates for the Compound BRAN. 

Exposure 

Time (minutes) 

Maximum 

Concentration 

𝜃1 

𝜃2 
Hillslope 

𝜃3 

Asymmetric 

Factor 

𝜃4 

15 128.1528 2.3244 0.9791 1.5470 

30 103.2062 1.6336 1.5402 0.8235 

45 100.97883 1.08130 1.70242 0.71926 

 

Since 𝜃2 represents a function of the median concentration level, 𝐸𝐶50, the parameter estimates 

were used in order to calculate the 𝐸𝐶50 as well and displayed in Table 3. 

Table 3. 𝑬𝑪𝟓𝟎 Estimates for the Compound BRAN. 

Exposure 

Time (minutes) 

Median Concentration Level 

𝐸𝐶50 

15 4.162388 

30 1.363926 

45 0.8140715 

 

The starting values for the CLAN concentration in the nls function would be 𝜃2 = 65, 

𝜃3 = 1, 𝜃4 = 1, and then the maximum concentration 𝜃1 coming from the maximum dose 

response for each time.  Due to the difference range of dose response for the CLAN compound, 

the second parameter 𝜃2 had to increase.  All values in the dose range where tested to find the 

optimum starting value for this parameter and it was found that 65 was the best value to use for 

all three times.  The parameter estimates for CLAN are in Table 4. 
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Table 4. Parameter Estimates for the Compound CLAN. 

Exposure 

Time (minutes) 

Maximum 

Concentration 

𝜃1 

𝜃2 
Hillslope 

𝜃3 

Asymmetric 

Factor 

𝜃4 

15 105.7901 204.3502 1.5494 0.8279 

30 100.78867 119.55175 1.89378 0.56313 

45 100.73194 75.21709 1.87647 0.54536 

 

The 𝐸𝐶50 values were also calculated for the CLAN compound in Table 5. 

Table 5. 𝑬𝑪𝟓𝟎 Estimates for the Compound CLAN. 

Exposure 

Time (minutes) 

Median Concentration Level 

𝐸𝐶50 

15 171.2787 

30 74.89999 

45 45.5369 

 

3.3. Checking the Model Fit 

After the parameter estimates were found, it was essential to check how those estimates 

fit the data.  Figures 1 to 6 are plots of each compound and exposure time combination for the 

dose concentration, represented by x, and the dose response, represented by y, with the 

corresponding estimated model.  It is clear by the plots that all six models are well-fit as the data 

closely follow each curve.  One thing to note however is the change in the curves as the exposure 

time increases.  Figures 1 and 3 for the exposure time of 15 minutes show only slight curvature 

in the fitted line.  As the time increases to 30 minutes, the fitted line takes on a more defined 

curve, as seen in Figures 2 and 4.  By the time of 45 minutes, the fitted lines in Figures 3 and 5 

have a severe curvature.  It is assumed that these parameter estimates are reasonable parameter 

values for the 5PL-1P model and will be used to find D-optimal designs later.
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Figure 1. Fitted Curve for BRAN at Exposure Time 15. 
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Figure 2. Fitted Curve for BRAN at Exposure Time 30. 
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Figure 3. Fitted Curve for BRAN at Exposure Time 45. 
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Figure 4. Fitted Curve for CLAN at Exposure Time 15. 
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Figure 5. Fitted Curve for CLAN at Exposure Time 30. 
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Figure 6. Fitted Curve for CLAN at Exposure Time 45. 
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3.4. Fisher Information Matrix 

The Fisher information matrix is an essential component in finding the D-optimal design.  

The initial step to finding the Fisher information matrix is by calculating the gradient of the mean 

function 𝑓(𝑥𝑖, 𝜽): 

𝑔(𝑥𝑖) = (
𝑓(𝑥𝑖, 𝜽)

𝑑𝜃1

𝑓(𝑥𝑖, 𝜽)

𝑑𝜃2

𝑓(𝑥𝑖, 𝜽)

𝑑𝜃3

𝑓(𝑥𝑖, 𝜽)

𝑑𝜃4
)

𝑇

 

                          =

(

 
 
 
 
 
 
 
 
 
 
 

1

[1 + (
𝜃2
𝑥𝑖
)
𝜃3

]
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It is then used so that the Fisher information matrix,  

𝑀(𝜉, 𝜽) =∑𝑤𝑖𝑔(𝑥𝑖) 𝑔(𝑥𝑖)
𝑇 

under the five-parameter minus one-parameter model on page 6, can be obtained, where i 

corresponds to each concentration level and 𝜉 is all values of weighted values 𝑤𝑖 and 

concentrations 𝑥𝑖.  Note that this form is only true when the error 𝜀 follows a Normal distribution 

with a mean of zero and a variance of 𝜎2.  The Fisher information matrix plays an important role 

to obtain the D-optimal designs since the D-optimal design maximizes the determinant of the 

Fisher information matrix.  This matrix can be seen on the next page. 
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4. D-OPTIMAL DESIGN 

This section will look at the D-optimal designs for the six combinations of the chemical 

compound and the exposure times in the 5PL-1P model.  The D-optimal designs is used very 

efficiently when the goal is to estimate the model parameters so the researcher can study the 

dose-response relationship.  But in order to find the D-optimal designs, for nonlinear models, the 

model parameter values 𝜽 must be known or prespecified because the Fisher information matrix 

for nonlinear models strongly depends on the parameter values 𝜽.  So here, it is assumed that the 

parameter estimates from the six scenarios are the true values of 𝜽 and are used to find the D-

optimal designs for the 5PL-1P model. 

D-optimal designs are found by maximizing the Fisher information matrix of the 5PL-1P 

Model.  So the D-optimal design is 𝜉𝐷 = max
𝜉
|𝑀(𝜉, 𝜽)|, and the general equivalence states that 

𝜉𝐷 is the D-optimal design if and only if 

𝑔(𝑥)𝑇𝑀−1(𝜉𝐷 , 𝜽)𝑔(𝑥)

4
≤ 1 

where the equality holds when 𝑥 is one of the concentration levels in 𝜉𝐷.  This equivalence 

theorem is used in an algorithm to obtain the D-optimal design numerically.  In this study, the 

algorithm in Hyun, Wang, and Yang (2015) is used in R and it utilizes the V-algorithm and the 

Newton Raphson Method.  They modified the YBT algorithm created by Yang, Biedermann and 

Tang (2013), which finds optimal designs for nonlinear models very efficiently.  However, the 

YBT algorithm can be a slow procedure when the initially selected concentration levels are far 

from the optimal concentration levels.  The modified algorithm uses the V-algorithm in order to 

select concentration levels closer to the optimal levels, which speeds up the process.  

Here I will introduce a brief idea about the modified algorithm.  The modified algorithm 

begins with the V-algorithm which is used to find the initial concentration levels.  This is done 
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by running the V-algorithm 𝑟 times, where 𝑟 > 𝑠 + 1, and then selecting the last 𝑠 + 1 distinct 

concentration levels among all selected concentration levels, where 𝑟 is a prespecified number, 

such as 10 or 30, and 𝑠 represents the number of parameters.  Since there are four parameters in 

the 5PL-1P model, the last five concentration levels will be used as the initial concentration 

levels and will move on to the next step.  This next step is the Newton Raphson Method, which 

will use those initial concentration levels to find the optimum weights corresponding to them. 

𝜉 = (
𝑥1 … 𝑥𝑠+1
𝑤1
∗ … 𝑤𝑠+1

∗ ) 

It is good to note that some concentration values may drop out of the design for having a weight 

close to zero.  It will then find a value of 𝑥∗ such that 

max
𝑥∗

 
𝑔(𝑥)𝑇𝑀−1(𝜉,𝜽)𝑔(𝑥)

4
  

where 𝑔(𝑥) represents the gradient of the mean response function and 𝑀−1(𝜉, 𝜽) is the inverse 

of the Fisher information matrix using the initial design.  The final step is to see if, by the general 

equivalence theorem, 

𝑔(𝑥∗)
𝑇𝑀−1(𝜉, 𝜽)𝑔(𝑥∗)

4
− 1 ≤ 𝜀 

where 𝜀 is equal to 10−6.  If this is satisfied, then the iteration will stop and the resulting design 

𝜉 will equal the D-optimal design 𝜉𝐷.  However, if this is not satisfied, then it will go back to the 

Newton Raphson Method with the 𝑥∗ value added to the design,  

𝜉 = (
𝑥1 … 𝑥𝑠+1 𝑥∗
𝑤1
∗ … 𝑤𝑠+1

∗ 𝑤∗
∗) 

and find another concentration value to maximize the formula above.  This will continue until the 

condition is satisfied. 



 

21 

The original designs from Douglas Dawson (2007) consisted of seven concentration 

levels with only two different designs: one for the BRAN compound and one for the CLAN 

compound.  The design did not change for the three exposure times.  Under the given parameter 

values in Tables 2 and 4, the D-optimal designs for the 5PL-1P model have four concentration 

levels with equal weight.  Since the selected concentration levels were changed by the different 

parameter values, each of the six different combinations of the chemical compound and exposure 

time generated its own unique D-optimal design.  The resulting D-optimal designs are in Table 6 

where the top row corresponds to the concentration levels and the bottom row correspond to their 

given weight. 

Table 6. D-Optimal Designs for the Six Combinations. 

𝜉𝐷
𝐵𝑅𝐴𝑁−15 = (

0.33 1.33 3.78 7.00
0.25 0.25 0.25 0.25

) 𝜉𝐷
𝐶𝐿𝐴𝑁−15 = (

24.0 90.8 212.7 350.0
0.25 0.25 0.25 0.25

) 

𝜉𝐷
𝐵𝑅𝐴𝑁−30 = (

0.26 1.01 2.84 7.00
0.25 0.25 0.25 0.25

) 𝜉𝐷
𝐶𝐿𝐴𝑁−30 = (

14.7 63.9 161.7 350.0
0.25 0.25 0.25 0.25

) 

𝜉𝐷
𝐵𝑅𝐴𝑁−45 = (

0.18 0.70 2.03 7.00
0.25 0.25 0.25 0.25

) 𝜉𝐷
𝐶𝐿𝐴𝑁−45 = (

9.8 42.1 116.8 350.0
0.25 0.25 0.25 0.25

) 

 

For example, for the chemical compound BRAN at a 15-minute exposure time, the D-

optimal design assigns 25% of the trials conducted to each of the concentration levels: 0.33, 

1.33, 378, and 7.00.  This will then minimize the variance of estimating the model parameters 𝜽 

so the dose-response relationship can be accurately estimated. 

To verify that these designs follow the D-optimality criteria, their sensitivity functions, 

𝑑(𝑥𝑖 , 𝜽) = 𝑔(𝑥𝑖)
𝑇𝑀−1(𝜉, 𝜽)𝑔(𝑥𝑖) 
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where 𝜉𝐷 is the obtained D-optimal design, are plotted in Figures 7 to 12.  The maxima of 

𝑑(𝑥𝑖, 𝜽) in 𝑥𝑖  𝜖 𝜒  is bounded horizontally above by one.  So the curve in each of these plots 

reaches their peak at the concentration levels 𝑥𝑖 in their D-optimal design. 

 

 

Figure 7.  Sensitivity Function Plot for BRAN at Exposure Time 15. 
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Figure 8. Sensitivity Function Plot for BRAN at Exposure Time 30. 
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Figure 9. Sensitivity Function Plot for BRAN at Exposure Time 45. 
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Figure 10.  Sensitivity Function Plot for CLAN at Exposure Time 15. 
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Figure 11.  Sensitivity Function Plot for CLAN at Exposure Time 30. 
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Figure 12.  Sensitivity Function Plot for CLAN at Exposure Time 45. 
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5. EFFICIENCY 

Since the parameter estimates of the chemical compounds BRAN and CLAN and their 

corresponding exposure times are used to obtain the D-optimal designs, we can check the 

efficiency of the original designs compared to the D-optimal designs.  The efficiency was 

calculated for each of the six scenarios by dividing determinant for the original design’s Fisher 

information matrix by the determinant for the D-optimal design’s Fisher information matrix for 

each of the six designs and taking it to the power of 1/4: 

𝑒𝑓𝑓𝐷 = (
|𝑀(𝜉𝑂 , �̂�)|

|𝑀(𝜉𝐷 , �̂�)|
)

1/4

 

where O represents the original design and D represents the D-optimal design.  The calculated 

efficiencies and corresponding percent of additional samples required to provide the same 

accuracy as the D-optimal design does are in Table 7 below. 

Table 7. Efficiencies for the Six Models. 

Compound 

Exposure 

Time Efficiency 

% More Samples Needed 

100 (
1

𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦𝐷
− 1) 

BRAN 15 0.866267 15.43785 

BRAN 30 0.887015 12.73767 

BRAN 45 0.8880933 12.60078 

CLAN 15 0.8012226 24.80926 

CLAN 30 0.8698052 14.96827 

CLAN 45 0.8871641 12.71872 

 

Based on these efficiency values, it does appear that the D-optimal design proves to be 

better.  For the BRAN compound at time 30 and 45 as well as the CLAN compound at time 45, it 

would take approximately 13% more samples for the original design to match the D-optimal 

design.  This slightly increases for the BRAN compound at time 15 and the CLAN compound at 

time 30 to approximately 15%.  The greatest difference appears to be for the CLAN compound at 
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time 15 with approximately 25% more samples for the designs to be equivalent.  We can observe 

that the original designs used to fit the 5PL-1P model for the six scenarios are not too bad, but it 

is obvious that the accuracy can be increased by using the D-optimal designs.  
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6. SIMULATION 

Through simulation studies, we can check the performance of the D-optimal designs to 

estimate model parameters and compare it with the original designs. There were 1000 

simulations for each of the six scenarios.  Response values are simulated for both the original 

designs and the D-optimal designs under the 5PL-1P model on page 6.  For 𝜽, the estimates for 

each of the six scenarios in Tables 2 and 4 are used as the true values.  The sample sizes 14 and 

28 are used in the simulations, where 14 was the original sample size in Dawson et al. (2012), 

and we see how it changes when the sample size 𝑁 increases to 28.   

For the original design, the seven concentration levels were placed into the mean 

response function 𝑓(𝑥𝑖 , 𝜽) to generate the seven corresponding predicted 𝑦 values.  Those seven 

predicated responses were then used to randomly generate two 𝑦 values each when 𝑁 = 14 and 

four 𝑦 values each when 𝑁 = 28 using a normal distribution with the nrorm function in R given 

that the standard deviations for the six scenarios are: 

Table 8. Residual Standard Error for the Six Models. 

 Exposure Time 

Compound 15 Minutes 30 Minutes 45 Minutes 

BRAN 0.8876 0.8003 0.5917 

CLAN 0.846 0.6589 0.68 

 

For the D-optimal design, the four optimal concentration levels in Table 6 were also 

placed into the mean response function 𝑓(𝑥𝑖, 𝜽) to generate the corresponding predicted 𝑦 

values.  When 𝑁 = 14, three 𝑦 values each for the lowest and highest concentration levels and 

four 𝑦 values each for the middle two concentration levels are generated.  The reason why the D-

optimal designs do not have equal replications is due to the sample size 14 not being able to 

divide evenly by the number four.  So there will be slightly higher weight this time to the middle 
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two concentrations.  Once the response values are calculated, then each model is refit with their 

corresponding 14 concentrations and response effects using the nlm function in R.  Then the 

mean squared error (MSE) is calculated for each design for each simulation: 

𝑀𝑆𝐸 =
∑(𝜽𝑇 − �̂�)2

1000
 

where 𝜽𝑇 are the true parameter values and �̂� are the parameter estimates for each simulation.  

The mean square error for the original designs’ and D-optimal designs’ parameters are then 

compared to see which design is better.  The MSE shows the quality of an estimator, and the 

lower MSE value tells us that the estimator is more accurate.  From Tables 9 to 14, all six 

combinations of compound and exposure time have smaller mean square error values for the D-

optimal design than the original design. 

Table 9. Original and D-Optimal Design Mean Squared Error for BRAN at Time 15 

when the Sample Size Equals 14. 

 Mean Squared Error (MSE) 

Design 

Maximum 

Concentration 

𝜃1 

𝜃2 
Hillslope 

𝜃3 

Asymmetric 

Factor 

𝜃4 

Original 358.59676437 0.96204253 0.06039432 0.90061684 

D-Optimal 253.93142192 0.88707942 0.04677891 0.69407818 

 

Table 10. Original and D-Optimal Design Mean Squared Error for BRAN at Time 30 

when the Sample Size Equals 14. 

 Mean Squared Error (MSE) 

Design 

Maximum 

Concentration 

𝜃1 

𝜃2 
Hillslope 

𝜃3 

Asymmetric 

Factor 

𝜃4 

Original 4.16014568 0.03877797 0.01995154 0.01933491 

D-Optimal 2.67016629 0.03410884 0.01403019 0.01567006 
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Table 11. Original and D-Optimal Design Mean Squared Error for BRAN at Time 45 

when the Sample Size Equals 14. 

 Mean Squared Error (MSE) 

Design 

Maximum 

Concentration 

𝜃1 

𝜃2 
Hillslope 

𝜃3 

Asymmetric 

Factor 

𝜃4 

Original 0.568513261 0.006797097 0.008326326 0.005551599 

D-Optimal 0.352139157 0.004189896 0.004577633 0.003249384 

 

Table 12. Original and D-Optimal Design Mean Squared Error for CLAN at Time 15  

when the Sample Size Equals 14. 

 Mean Squared Error (MSE) 

Design 

Maximum 

Concentration 

𝜃1 

𝜃2 
Hillslope 

𝜃3 

Asymmetric 

Factor 

𝜃4 

Original 166.1844215 1285.8108881 0.1499704 0.1601099 

D-Optimal 10.09408 1.084983 0.1009763 0.09916476 

 

Table 13. Original and D-Optimal Design Mean Squared Error for CLAN at Time 30  

when the Sample Size Equals 14. 

 Mean Square Error (MSE) 

Design 

Maximum 

Concentration 

𝜃1 

𝜃2 
Hillslope 

𝜃3 

Asymmetric 

Factor 

𝜃4 

Original 2.550605259 60.044586155 0.024602409 0.005045965 

D-Optimal 1.466548658 49.918306733 0.015777633 0.003492685 

 

Table 14. Original and D-Optimal Design Mean Squared Error for CLAN at Time 45  

when the Sample Size Equals 14. 

 Mean Squared Error (MSE) 

Design 

Maximum 

Concentration 

𝜃1 

𝜃2 
Hillslope 

𝜃3 

Asymmetric 

Factor 

𝜃4 

Original 0.800843526 23.148848292 0.01541577 0.003195462 

D-Optimal 0.512629456 18.027613363 0.009551908 0.002236515 

 

This simulation was conducted a second time but for the larger sample size of 28.  Once 

again for the D-optimal design, the four optimal concentration levels were also placed into the 

mean response function 𝑓(𝑥𝑖, 𝜽) to generate the corresponding predicted 𝑦 values.  When 𝑁 =
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28, seven 𝑦 values are generated for each concentration level.  This time there are equal 

replications for each of the four concentration levels.  Besides the difference in sample size, the 

simulation was done identically to the previous one.  Tables 15 to 20 provide the MSE values for 

all six scenarios for simulations using the original and D-optimal designs.  Once again, the MSE 

values are lower for the D-optimal designs than the original designs. 

Table 15. Original and D-Optimal Design Mean Squared Error for BRAN at Time 15  

when the Sample Size Equals 28. 

 Mean Squared Error (MSE) 

Design 

Maximum 

Concentration 

𝜃1 

𝜃2 
Hillslope 

𝜃3 

Asymmetric 

Factor 

𝜃4 

Original 189.44245106 0.55950587 0.03288836 0.40609078 

D-Optimal 138.50499781 0.53656172 0.02762743 0.33210241 

 

Table 16. Original and D-Optimal Design Mean Squared Error for BRAN at Time 30  

when the Sample Size Equals 28. 

 Mean Square Error (MSE) 

Design 

Maximum 

Concentration 

𝜃1 

𝜃2 
Hillslope 

𝜃3 

Asymmetric 

Factor 

𝜃4 

Original 1.892005791 0.020262262 0.009918884 0.009050211 

D-Optimal 1.246671896 0.015844758 0.006731355 0.006794351 

 

Table 17. Original and D-Optimal Design Mean Squared Error for BRAN at Time 45  

when the Sample Size Equals 28. 

 Mean Square Error (MSE) 

Design 

Maximum 

Concentration 

𝜃1 

𝜃2 
Hillslope 

𝜃3 

Asymmetric 

Factor 

𝜃4 

Original 0.283391865 0.003282052 0.004144244 0.002612257 

D-Optimal 0.164588317 0.002136183 0.002456894 0.001561186 
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Table 18. Original and D-Optimal Design Mean Squared Error for CLAN at Time 15  

when the Sample Size Equals 28. 

 Mean Squared Error (MSE) 

Design 

Maximum 

Concentration 

𝜃1 

𝜃2 
Hillslope 

𝜃3 

Asymmetric 

Factor 

𝜃4 

Original 0.1298222 1.199471 0.0001113812 0.00009968976 

D-Optimal 0.05875716 0.8114535 0.00004192186 0.00005925953 

 

Table 19. Original and D-Optimal Design Mean Squared Error for CLAN at Time 30  

when the Sample Size Equals 28. 

 Mean Squared Error (MSE) 

Design 

Maximum 

Concentration 

𝜃1 

𝜃2 
Hillslope 

𝜃3 

Asymmetric 

Factor 

𝜃4 

Original 1.167300297 26.873699455 0.011302609 0.002125242 

D-Optimal 0.767176672 23.557844922 0.008181628 0.001643100 

 

Table 20. Original and D-Optimal Design Mean Squared Error for CLAN at Time 45  

when the Sample Size Equals 28. 

 Mean Squared Error (MSE) 

Design 

Maximum 

Concentration 

𝜃1 

𝜃2 
Hillslope 

𝜃3 

Asymmetric 

Factor 

𝜃4 

Original 0.391656258 11.380449782 0.006815518 0.001537013 

D-Optimal 0.233079773 8.939986380 0.004815156 0.001075364 
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7.  CONCLUSION 

 This paper studied D-optimal designs for the 5PL-1P model.  This model is a hybrid 

between the 4PL and 5PL models for the relationship between concentration level and response 

effect.  The 4PL model takes into account the minimum and maximum effect, median 

concentration level 𝐸𝐶50, and the slope.  However, it has been found that there is some 

asymmetry in this relationship.  So the 5PL model takes in the same parameters as the 4PL 

model, but adds an asymmetric factor.  But when you reach five parameters in a nonlinear 

model, it can be difficult to fit.  This is why one parameter was taken out of the 5PL model, the 

minimum effect factor, to create the 5PL-1P model. 

 Dawson et al. (2012) studied the 5PL-1P model to fit data in toxicology.  In this paper, 

two chemical compounds, BRAN and CLAN, were borrowed from that study in order to obtain 

D-optimal designs for the 5PL-1P model and compare them with the original experimental 

design used in their study. 

 Based on the parameter estimates from the Dawson et al. (2012) study’s data, the D-

optimal designs were obtained using the modified algorithm from Hyun, Wang, and Yang 

(2015).  The D-optimal designs for the 5PL-1P model had four concentration levels containing 

the upper bound of the concentration levels, which is 7 for the BRAN compound and 350 for the 

CLAN compound, and the other three levels are changed by the different parameter values.  In 

addition, the D-optimal designs had equal weights for the four concentration levels. 

 It was observed that the D-optimal designs worked better than the original design by 

looking at the efficiency and conducting simulations.  The efficiency was calculated for each of 

the six scenarios and remained in the 0.8 area.  This means that the original design needed 

approximately twelve to twenty-four percent more samples in order to reach the accuracy of the 
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D-optimal designs.  Simulations using the original design and D-optimal were conducted to 

compare their mean squared errors.  Since all the MSE values were lower for the D-optimal 

designs, it suggested that they were more accurate than the original designs. 

 In this paper, the D-optimal designs were obtained from prespecified parameter values.  

In the future, this study can be extended to obtain the D-optimal designs for the 5PL-1P model 

that works well for unknown parameter values.  For this, a Bayesian approach or multistage 

approach can be applied to construct a robust D-optimal design. 
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APPENDIX A. R CODES TO FIT THE MODELS 

BRAN <- c(0.1655,0.3089,0.5765,1.0762,2.0089,3.75,7) 

bran15a <- c(2.303,4.668,11.33,22.55,38.73,61,81) 

bran15b <- c(0.486,4.649,11.99,21.94,37.65,61.12,81.67) 

bran30a <- c(6.017,10.59,23.11,42.06,65.77,84.83,94.7) 

bran30b <- c(5.24,12.02,25.08,43.81,65.13,84.61,94.91) 

bran45a <- c(10.58,19.58,37.37,60.87,81.42,93.35,97.92) 

bran45b <- c(8.789,20.97,38.16,61.51,81.15,93.3,97.91) 

 

CLAN <- c(8.273,15.44,28.83,53.81,100.5,187.5,350) 

clan15a <- c(2.901,4.555,8.504,16.43,33.84,55.92,78.29) 

clan15b <- c(1.193,3.389,9.372,17,35.28,56.17,78.36) 

clan30a <-c(6.401,11.83,21.92,38.11,61.79,82.44,94.17) 

clan30b <- c(5.096,10.27,21.81,37.62,62.48,82.12,94.08) 

clan45a <- c(10.69,20.38,35.42,56.09,78.41,92.21,97.64) 

clan45b <- c(9.76,18.15,35.24,56.1,78.94,92.04,97.74)  

 

##BRAN-15 Parameters## 

bran15 <- c(cbind(bran15a,bran15b)) 

x <- rep(BRAN,times=2) 

y <- bran15 

DataFrame <- data.frame(x,y) 

Fit <- 

nls(y~max/((1+(xb/x)^(hillslope))^(s)),DataFrame,start=list(max=81.67,xb=1,hillslope=1,s=1)) 

 

##BRAN-30 Parameters## 

bran30 <- c(cbind(bran30a,bran30b)) 

x <- rep(BRAN,times=2) 

y <- bran30 

DataFrame <- data.frame(x,y) 

Fit <- 

nls(y~max/((1+(xb/x)^(hillslope))^(s)),DataFrame,start=list(max=94.91,xb=1,hillslope=1,s=1)) 

 

##BRAN-45 Parameters## 

bran45 <- c(cbind(bran45a,bran45b)) 

x <- rep(BRAN,times=2) 

y <- bran45 

DataFrame <- data.frame(x,y) 

Fit <- 

nls(y~max/((1+(xb/x)^(hillslope))^(s)),DataFrame,start=list(max=97.92,xb=1,hillslope=1,s=1)) 

 

##CLAN-15 Parameters## 

clan15 <- c(cbind(clan15a,clan15b)) 

x <- rep(CLAN,times=2) 

y <- clan15 

DataFrame <- data.frame(x,y) 
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Fit <- 

nls(y~max/((1+(xb/x)^(hillslope))^(s)),DataFrame,start=list(max=78.36,xb=65,hillslope=1,s=1)) 

 

##CLAN-30 Parameters## 

clan30 <- c(cbind(clan30a,clan30b)) 

x <- rep(CLAN,times=2) 

y <- clan30 

DataFrame <- data.frame(x,y) 

Fit <- 

nls(y~max/((1+(xb/x)^(hillslope))^(s)),DataFrame,start=list(max=94.17,xb=65,hillslope=1,s=1)) 

 

##CLAN-45 parameters## 

clan45 <- c(cbind(clan45a,clan45b)) 

x <- rep(CLAN,times=2) 

y <- clan45 

DataFrame <- data.frame(x,y) 

Fit <- 

nls(y~max/((1+(xb/x)^(hillslope))^(s)),DataFrame,start=list(max=97.74,xb=65,hillslope=1,s=1)) 
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APPENDIX B. R CODES FOR THE EFFICIENCIES 

infor <- function(T,x) { 

 f1 <- 1 / ((1+(T[2]/x)^T[3])^T[4]) 

 f2 <- -1 * T[1] * T[3] * T[4] * ((T[2]/x)^T[3]) * ((((T[2]/x)^T[3])+1)^(-1*T[4]-1)) 

 f3 <- -1 * T[1] * T[4] * ((T[2]/x)^T[3]) * log(T[2]/x) * ((((T[2]/x)^T[3])+1)^(-1*T[4]-1)) 

 f4 <- -1 * T[1] * ((((T[2]/x)^T[3])+1)^(-1*T[4])) * log(1+((T[2]/x)^T[3])) 

 f = matrix(cbind(f1,f2,f3,f4)) 

 f%*%t(f) 

} 

 

upinfor <- function(W,T,x) { 

 k = length(x) 

 last_infor=infor(T,x[k]) 

 infor=(1-sum(W))* last_infor 

 for (i in 1:(k-1)) { 

  infor = infor + W[i] * infor(T,x[i]) 

 } 

 infor 

} 

 

##BRAN - Other Design## 

BRAN <- c(0.1655,0.3089,0.5765,1.0762,2.0089,3.75,7) 

weight1 <- c(1/7,1/7,1/7,1/7,1/7,1/7) 

T15b = c(128.1528,2.3244,0.9791,1.5470) 

T30b = c(103.2062,1.6336,1.5402,0.8235) 

T45b = c(100.97883,1.08130,1.70242,0.71926) 

M15b <- upinfor(weight1,T15b,BRAN) 

M15b 

detM15b <- det(M15b) 

detM15b 

M30b <- upinfor(weight1,T30b,BRAN) 

M30b 

detM30b <- det(M30b) 

detM30b 

M45b <- upinfor(weight1,T45b,BRAN) 

M45b 

detM45b <- det(M45b) 

detM45b 

 

##BRAN - D-Optimal## 

weight2 <- c(0.25,0.25,0.25) 

x15b <- c(0.33,1.33,3.78,7.00) 

x30b <- c(0.26,1.01,2.84,7.00) 

x45b <- c(0.18,0.70,2.03,7.00) 

T15b = c(128.1528,2.3244,0.9791,1.5470) 

T30b = c(103.2062,1.6336,1.5402,0.8235) 
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T45b = c(100.97883,1.08130,1.70242,0.71926) 

do_M15b <- upinfor(weight2,T15b,x15b) 

do_M15b  

d0_detM15b <- det(do_M15b) 

d0_detM15b 

do_M30b <- upinfor(weight2,T30b,x30b) 

do_M30b  

d0_detM30b <- det(do_M30b) 

d0_detM30b 

do_M45b <- upinfor(weight2,T45b,x45b) 

do_M45b  

d0_detM45b <- det(do_M45b) 

d0_detM45b 

 

##BRAN Efficiency## 

eff15b <- (detM15b/d0_detM15b)^(1/4) 

eff15b 

eff30b <- (detM30b/d0_detM30b)^(1/4) 

eff30b 

eff45b <- (detM45b/d0_detM45b)^(1/4) 

eff45b 

 

 

 

##CLAN - Other Design## 

CLAN <- c(8.273,15.44,28.83,53.81,100.5,187.5,350) 

weight1 <- c(1/7,1/7,1/7,1/7,1/7,1/7) 

T15c = c(105.7901,204.3503,1.5294,0.8279) 

T30c = c(100.78867,119.55175,1.89378,0.56313) 

T45c = c(100.73194,75.21709,1.87647,0.54536) 

M15c <- upinfor(weight1,T15c,CLAN) 

M15c 

detM15c <- det(M15c) 

detM15c 

M30c <- upinfor(weight1,T30c,CLAN) 

M30c 

detM30c <- det(M30c) 

detM30c 

M45c <- upinfor(weight1,T45c,CLAN) 

M45c 

detM45c <- det(M45c) 

detM45c 

 

##CLAN - D-Optimal## 

weight2 <- c(0.25,0.25,0.25) 

x15c <- c(24.0,90.8,212.7,350.0) 
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x30c <- c(14.7,63.9,161.7,350.0) 

x45c <- c(9.8,42.1,116.8,350.0) 

T15c = c(105.7901,204.3503,1.5294,0.8279) 

T30c = c(100.78867,119.55175,1.89378,0.56313) 

T45c = c(100.73194,75.21709,1.87647,0.54536) 

do_M15c <- upinfor(weight2,T15c,x15c) 

do_M15c  

d0_detM15c <- det(do_M15c) 

d0_detM15c 

do_M30c <- upinfor(weight2,T30c,x30c) 

do_M30c  

d0_detM30c <- det(do_M30c) 

d0_detM30c 

do_M45c <- upinfor(weight2,T45c,x45c) 

do_M45c  

d0_detM45c <- det(do_M45c) 

d0_detM45c 

 

##CLAN Efficiency## 

eff15c <- (detM15c/d0_detM15c)^(1/4) 

eff15c 

eff30c <- (detM30c/d0_detM30c)^(1/4) 

eff30c 

eff45c <- (detM45c/d0_detM45c)^(1/4) 

eff45c  
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APPENDIX C. R CODES FOR THE SIMULATION 

library(nplr) 

######################## BRAN 15 #################### 

n <- 1000 

yB <- matrix(1,nrow=n,ncol=28) 

yD <- matrix(1,nrow=n,ncol=28) 

X1 <- matrix(1,nrow=n,ncol=28) 

X2 <- matrix(1,nrow=n,ncol=28) 

y1 <- 1 

y2 <- 1 

m <- 0 

p <- 0 

MSE_B <- 0 

MSE_D <- 0 

mseD <- 1 

mseB <- 1 

theta_B <- matrix(1,nrow=n,ncol=4) 

theta_D <- matrix(1,nrow=n,ncol=4) 

 

xB <- c(0.1655,0.3089,0.5765,1.0762,2.0089,3.75,7) 

xD_B15 <- c(0.33,1.33,3.78,7.00) 

max <- 128.1528 

xb <- 2.3244 

hillslope <- 0.9791 

s <- 1.5470 

y_B <- max/((1+(xb/xB)^(hillslope))^(s)) 

y_D <- max/((1+(xb/xD_B15)^(hillslope))^(s)) 

 

T=c(max,hillslope,xb,s) 

 

f = function(T,X) { 

  (T[1])/(1+(T[2]/X)^T[3])^T[4] 

} 

 

for(i in 1:n) { 

  theta <- c(128.1528,2.3244,0.9791,1.5470) 

  RSE <- 0.8879 

  xB <- c(0.1655,0.3089,0.5765,1.0762,2.0089,3.75,7) 

  xD_B15 <- c(0.33,1.33,3.78,7.00) 

  m <- 0 

  p <- 0 

  ####Original Design#### 

  for(j in 1:7) { 

    for(k in 1:4) { 

      h <- k+m 

      yB[i,h] <- rnorm(1,y_B[j],RSE) 
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      X1[i,h] <- xB[j] 

    } 

    m <- m + 4 

  } 

  x1 <- X1[i,] 

  y1 <- yB[i,] 

   

  ####Newton-Raphson for Original Design#### 

  ff_B = function(T) { 

    sum((f(T,x1)-y1)^2) 

  } 

  result = nlm(ff_B,p=c(128,2.3,0.9,1.5)) 

  theta_B[i,1] <- result$estimate[1] 

  theta_B[i,2] <- result$estimate[2] 

  theta_B[i,3] <- result$estimate[3] 

  theta_B[i,4] <- result$estimate[4] 

  ####D-Optimal Design#### 

  for(j in 1:4) { 

    for(k in 1:7) { 

      h <- k+p 

      yD[i,h] <- rnorm(1,y_D[j],RSE) 

      X2[i,h] <- xD_B15[j] 

    } 

    p <- p + 7 

  } 

  x2 <- X2[i,] 

  y2 <- yD[i,] 

   

  ####Newton-Raphson for D-Optimal Design#### 

  ff_D = function(T) { 

    sum((f(T,x2)-y2)^2) 

  } 

  result = nlm(ff_D,p=c(128,2.3,0.9,1.5)) 

  theta_D[i,1] <- result$estimate[1] 

  theta_D[i,2] <- result$estimate[2] 

  theta_D[i,3] <- result$estimate[3] 

  theta_D[i,4] <- result$estimate[4]  

   

  ####Final MSE Calculations#### 

  mseD = (theta_D[i,] - theta)^2 

  MSE_D = MSE_D + mseD 

  mseB = (theta_B[i,] - theta)^2 

  MSE_B = MSE_B + mseB 

} 

MSE_B/1000 

MSE_D/1000 
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######################## BRAN 30 #################### 

n <- 1000 

yB <- matrix(1,nrow=n,ncol=28) 

yD <- matrix(1,nrow=n,ncol=28) 

X1 <- matrix(1,nrow=n,ncol=28) 

X2 <- matrix(1,nrow=n,ncol=28) 

y1 <- 1 

y2 <- 1 

m <- 0 

p <- 0 

MSE_B <- 0 

MSE_D <- 0 

mseD <- 1 

mseB <- 1 

theta_B <- matrix(1,nrow=n,ncol=4) 

theta_D <- matrix(1,nrow=n,ncol=4) 

 

xB <- c(0.1655,0.3089,0.5765,1.0762,2.0089,3.75,7) 

xD_B30 <- c(0.26,1.01,2.84,7.00) 

max <- 103.2062 

xb <- 1.6336 

hillslope <- 1.5402 

s <- 0.8235 

y_B <- max/((1+(xb/xB)^(hillslope))^(s)) 

y_D <- max/((1+(xb/xD_B30)^(hillslope))^(s)) 

 

T=c(max,hillslope,xb,s) 

 

f = function(T,X) { 

  (T[1])/(1+(T[2]/X)^T[3])^T[4] 

} 

 

for(i in 1:n) { 

  theta <- c(103.2062,1.6336,1.5402,0.8235) 

  RSE <- 0.8003 

  xB <- c(0.1655,0.3089,0.5765,1.0762,2.0089,3.75,7) 

  xD_B30 <- c(0.26,1.01,2.84,7.00) 

  m <- 0 

  p <- 0 

 

  ####Original Design#### 

  for(j in 1:7) { 

    for(k in 1:4) { 

      h <- k+m 

      yB[i,h] <- rnorm(1,y_B[j],RSE) 

      X1[i,h] <- xB[j] 
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    } 

    m <- m + 4 

  } 

  x1 <- X1[i,] 

  y1 <- yB[i,] 

   

  ####Newton-Raphson for Original Design#### 

  ff_B = function(T) { 

    sum((f(T,x1)-y1)^2) 

  } 

  result = nlm(ff_B,p=c(103,1.6,1.5,0.8)) 

  theta_B[i,1] <- result$estimate[1] 

  theta_B[i,2] <- result$estimate[2] 

  theta_B[i,3] <- result$estimate[3] 

  theta_B[i,4] <- result$estimate[4] 

   

  ####D-Optimal Design#### 

  for(j in 1:4) { 

    for(k in 1:7) { 

      h <- k+p 

      yD[i,h] <- rnorm(1,y_D[j],RSE) 

      X2[i,h] <- xD_B30[j] 

    } 

    p <- p + 7 

  } 

  x2 <- X2[i,] 

  y2 <- yD[i,] 

   

  ####Newton-Raphson for D-Optimal Design#### 

  ff_D = function(T) { 

    sum((f(T,x2)-y2)^2) 

  } 

  result = nlm(ff_D,p=c(103,1.6,1.5,0.8)) 

  theta_D[i,1] <- result$estimate[1] 

  theta_D[i,2] <- result$estimate[2] 

  theta_D[i,3] <- result$estimate[3] 

  theta_D[i,4] <- result$estimate[4]  

   

  ####Final MSE Calculations#### 

  mseD = (theta_D[i,] - theta)^2 

  MSE_D = MSE_D + mseD 

  mseB = (theta_B[i,] - theta)^2 

  MSE_B = MSE_B + mseB 

} 

MSE_B/1000 

MSE_D/1000 
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######################## BRAN 45 #################### 

n <- 1000 

yB <- matrix(1,nrow=n,ncol=28) 

yD <- matrix(1,nrow=n,ncol=28) 

X1 <- matrix(1,nrow=n,ncol=28) 

X2 <- matrix(1,nrow=n,ncol=28) 

y1 <- 1 

y2 <- 1 

m <- 0 

p <- 0 

MSE_B <- 0 

MSE_D <- 0 

mseD <- 1 

mseB <- 1 

theta_B <- matrix(1,nrow=n,ncol=4) 

theta_D <- matrix(1,nrow=n,ncol=4) 

 

xB <- c(0.1655,0.3089,0.5765,1.0762,2.0089,3.75,7) 

xD_B45 <- c(0.18,0.70,2.03,7.00) 

max <- 100.97883 

xb <- 1.08130 

hillslope <- 1.70242 

s <- 0.71926 

y_B <- max/((1+(xb/xB)^(hillslope))^(s)) 

y_D <- max/((1+(xb/xD_B45)^(hillslope))^(s)) 

 

T=c(max,hillslope,xb,s) 

 

f = function(T,X) { 

  (T[1])/(1+(T[2]/X)^T[3])^T[4] 

} 

 

for(i in 1:n) { 

  theta <- c(100.97883,1.08130,1.70242,0.71926) 

  RSE <- 0.5917 

  xB <- c(0.1655,0.3089,0.5765,1.0762,2.0089,3.75,7) 

  xD_B45 <- c(0.18,0.70,2.03,7.00) 

  m <- 0 

  p <- 0 

 

  ####Original Design#### 

  for(j in 1:7) { 

    for(k in 1:4) { 

      h <- k+m 
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      yB[i,h] <- rnorm(1,y_B[j],RSE) 

      X1[i,h] <- xB[j] 

    } 

    m <- m + 4 

  } 

  x1 <- X1[i,] 

  y1 <- yB[i,] 

   

  ####Newton-Raphson for Original Design#### 

  ff_B = function(T) { 

    sum((f(T,x1)-y1)^2) 

  } 

  result = nlm(ff_B,p=c(100.9,1,1.7,0.7)) 

  theta_B[i,1] <- result$estimate[1] 

  theta_B[i,2] <- result$estimate[2] 

  theta_B[i,3] <- result$estimate[3] 

  theta_B[i,4] <- result$estimate[4] 

   

  ####D-Optimal Design#### 

  for(j in 1:4) { 

    for(k in 1:7) { 

      h <- k+p 

      yD[i,h] <- rnorm(1,y_D[j],RSE) 

      X2[i,h] <- xD_B45[j] 

    } 

    p <- p + 7 

  } 

  x2 <- X2[i,] 

  y2 <- yD[i,] 

   

  ####Newton-Raphson for D-Optimal Design#### 

  ff_D = function(T) { 

    sum((f(T,x2)-y2)^2) 

  } 

  result = nlm(ff_D,p=c(100.9,1,1.7,0.7)) 

  theta_D[i,1] <- result$estimate[1] 

  theta_D[i,2] <- result$estimate[2] 

  theta_D[i,3] <- result$estimate[3] 

  theta_D[i,4] <- result$estimate[4]  

   

  ####Final MSE Calculations#### 

  mseD = (theta_D[i,] - theta)^2 

  MSE_D = MSE_D + mseD 

  mseB = (theta_B[i,] - theta)^2 

  MSE_B = MSE_B + mseB 

} 
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MSE_B/1000 

MSE_D/1000 

 

 

######################## CLAN 15 #################### 

n <- 2 

yC <- matrix(1,nrow=n,ncol=28) 

yD <- matrix(1,nrow=n,ncol=28) 

X1 <- matrix(1,nrow=n,ncol=28) 

X2 <- matrix(1,nrow=n,ncol=28) 

y1 <- 1 

y2 <- 1 

m <- 0 

p <- 0 

MSE_C <- 0 

MSE_D <- 0 

mseD <- 1 

mseC <- 1 

theta_C <- matrix(1,nrow=n,ncol=4) 

theta_D <- matrix(1,nrow=n,ncol=4) 

 

xC <- c(8.273,15.44,28.83,53.81,100.5,187.5,350) 

xD_C15 <- c(24.0,90.8,212.7,350.0) 

max <- 105.7901 

xb <- 204.3503 

hillslope <- 1.5294 

s <- 0.8279 

y_C <- max/((1+(xb/xC)^(hillslope))^(s)) 

y_D <- max/((1+(xb/xD_C15)^(hillslope))^(s)) 

 

T=c(max,hillslope,xb,s) 

 

f = function(T,X) { 

  (T[1])/(1+(T[2]/X)^T[3])^T[4] 

} 

 

for(i in 1:n) { 

  theta <- c(105.7901,204.3503,1.5294,0.8279) 

  RSE <- 0.846 

  xC <- c(8.273,15.44,28.83,53.81,100.5,187.5,350) 

  xD_C15 <- c(24.0,90.8,212.7,350.0) 

  m <- 0 

  p <- 0 

 

  ####Original Design#### 

  for(j in 1:7) { 
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    for(k in 1:4) { 

      h <- k+m 

      yC[i,h] <- rnorm(1,y_C[j],RSE) 

      X1[i,h] <- xC[j] 

    } 

    m <- m + 4 

  } 

  x1 <- X1[i,] 

  y1 <- yC[i,] 

   

  ####Newton-Raphson for Original Design#### 

  ff_C = function(T) { 

    sum((f(T,x1)-y1)^2) 

  } 

  result1 = nlm(ff_C,p=c(105.7,204.3,1.5,0.8)) 

  theta_C[i,1] <- result1$estimate[1] 

  theta_C[i,2] <- result1$estimate[2] 

  theta_C[i,3] <- result1$estimate[3] 

  theta_C[i,4] <- result1$estimate[4] 

   

  ####D-Optimal Design#### 

  for(j in 1:4) { 

    for(k in 1:7) { 

      h <- k+p 

      yD[i,h] <- rnorm(1,y_D[j],RSE) 

      X2[i,h] <- xD_C15[j] 

    } 

    p <- p + 7 

  } 

  x2 <- X2[i,] 

  y2 <- yD[i,] 

   

  ####Newton-Raphson for D-Optimal Design#### 

  ff_D = function(T) { 

    sum((f(T,x2)-y2)^2) 

  } 

  result2 = nlm(ff_D,p=c(105.7,204.3,1.5,0.8)) 

  theta_D[i,1] <- result2$estimate[1] 

  theta_D[i,2] <- result2$estimate[2] 

  theta_D[i,3] <- result2$estimate[3] 

  theta_D[i,4] <- result2$estimate[4]  

   

  ####Final MSE Calculations#### 

  mseD = (theta_D[i,] - theta)^2 

  MSE_D = MSE_D + mseD 

  mseC = (theta_C[i,] - theta)^2 
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  MSE_C = MSE_C + mseC 

} 

MSE_C/1000 

MSE_D/1000 

 

 

######################## CLAN 30 #################### 

n <- 1000 

yC <- matrix(1,nrow=n,ncol=28) 

yD <- matrix(1,nrow=n,ncol=28) 

X1 <- matrix(1,nrow=n,ncol=28) 

X2 <- matrix(1,nrow=n,ncol=28) 

y1 <- 1 

y2 <- 1 

m <- 0 

p <- 0 

MSE_C <- 0 

MSE_D <- 0 

mseD <- 1 

mseC <- 1 

theta_C <- matrix(1,nrow=n,ncol=4) 

theta_D <- matrix(1,nrow=n,ncol=4) 

 

xC <- c(8.273,15.44,28.83,53.81,100.5,187.5,350) 

xD_C30 <- c(14.7,63.9,161.7,350.0) 

max <- 100.78867 

xb <- 119.55175 

hillslope <- 1.89378 

s <- 0.56313 

y_C <- max/((1+(xb/xC)^(hillslope))^(s)) 

y_D<- max/((1+(xb/xD_C30)^(hillslope))^(s)) 

 

T=c(max,hillslope,xb,s) 

 

f = function(T,X) { 

  (T[1])/(1+(T[2]/X)^T[3])^T[4] 

} 

 

for(i in 1:n) { 

  theta <- c(100.78867,119.55175,1.89378,0.56313) 

  RSE <- 0.6589 

  xC <- c(8.273,15.44,28.83,53.81,100.5,187.5,350) 

  xD_C30 <- c(14.7,63.9,161.7,350.0) 

  m <- 0 

  p <- 0 

  ####Original Design#### 



 

53 

  for(j in 1:7) { 

    for(k in 1:4) { 

      h <- k+m 

      yC[i,h] <- rnorm(1,y_C[j],RSE) 

      X1[i,h] <- xC[j] 

    } 

    m <- m + 4 

  } 

  x1 <- X1[i,] 

  y1 <- yC[i,] 

   

  ####Newton-Raphson for Original Design#### 

  ff_C = function(T) { 

    sum((f(T,x1)-y1)^2) 

  } 

  result = nlm(ff_C,p=c(100,119,1.8,0.5)) 

  theta_C[i,1] <- result$estimate[1] 

  theta_C[i,2] <- result$estimate[2] 

  theta_C[i,3] <- result$estimate[3] 

  theta_C[i,4] <- result$estimate[4] 

   

  ####D-Optimal Design#### 

  for(j in 1:4) { 

    for(k in 1:7) { 

      h <- k+p 

      yD[i,h] <- rnorm(1,y_D[j],RSE) 

      X2[i,h] <- xD_C30[j] 

    } 

    p <- p + 7 

  } 

  x2 <- X2[i,] 

  y2 <- yD[i,] 

   

  ####Newton-Raphson for D-Optimal Design#### 

  ff_D = function(T) { 

    sum((f(T,x2)-y2)^2) 

  } 

  result = nlm(ff_D,p=c(100,119,1.8,0.5)) 

  theta_D[i,1] <- result$estimate[1] 

  theta_D[i,2] <- result$estimate[2] 

  theta_D[i,3] <- result$estimate[3] 

  theta_D[i,4] <- result$estimate[4]  

   

  ####Final MSE Calculations#### 

  mseD = (theta_D[i,] - theta)^2 

  MSE_D = MSE_D + mseD 
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  mseC = (theta_C[i,] - theta)^2 

  MSE_C = MSE_C + mseC 

} 

MSE_C/1000 

MSE_D/1000 

 

 

######################## CLAN 45 #################### 

n <- 1000 

yC <- matrix(1,nrow=n,ncol=28) 

yD <- matrix(1,nrow=n,ncol=28) 

X1 <- matrix(1,nrow=n,ncol=28) 

X2 <- matrix(1,nrow=n,ncol=28) 

y1 <- 1 

y2 <- 1 

m <- 0 

p <- 0 

MSE_C <- 0 

MSE_D <- 0 

mseD <- 1 

mseC <- 1 

theta_C <- matrix(1,nrow=n,ncol=4) 

theta_D <- matrix(1,nrow=n,ncol=4) 

 

xC <- c(8.273,15.44,28.83,53.81,100.5,187.5,350) 

xD_C30 <- c(9.8,42.1,116.8,350.0) 

max <- 100.73194 

xb <- 75.21709 

hillslope <- 1.87647 

s <- 0.54536 

y_C <- max/((1+(xb/xC)^(hillslope))^(s)) 

y_D <- max/((1+(xb/xD_C45)^(hillslope))^(s)) 

 

T=c(max,hillslope,xb,s) 

 

f = function(T,X) { 

  (T[1])/(1+(T[2]/X)^T[3])^T[4] 

} 

 

for(i in 1:n) { 

  theta <- c(100.73194,75.21709,1.87647,0.54536) 

  RSE <- 0.68 

  xC <- c(8.273,15.44,28.83,53.81,100.5,187.5,350) 

  xD_C45 <- c(9.8,42.1,116.8,350.0) 

  m <- 0 

  p <- 0 
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  ####Original Design#### 

  for(j in 1:7) { 

    for(k in 1:4) { 

      h <- k+m 

      yC[i,h] <- rnorm(1,y_C[j],RSE) 

      X1[i,h] <- xC[j] 

    } 

    m <- m + 4 

  } 

  x1 <- X1[i,] 

  y1 <- yC[i,] 

   

  ####Newton-Raphson for Original Design#### 

  ff_C = function(T) { 

    sum((f(T,x1)-y1)^2) 

  } 

  result = nlm(ff_C,p=c(100,75,1.8,0.5)) 

  theta_C[i,1] <- result$estimate[1] 

  theta_C[i,2] <- result$estimate[2] 

  theta_C[i,3] <- result$estimate[3] 

  theta_C[i,4] <- result$estimate[4] 

   

  ####D-Optimal Design#### 

  for(j in 1:4) { 

    for(k in 1:7) { 

      h <- k+p 

      yD[i,h] <- rnorm(1,y_D[j],RSE) 

      X2[i,h] <- xD_C45[j] 

    } 

    p <- p + 7 

  } 

  x2 <- X2[i,] 

  y2 <- yD[i,] 

   

  ####Newton-Raphson for D-Optimal Design#### 

  ff_D = function(T) { 

    sum((f(T,x2)-y2)^2) 

  } 

  result = nlm(ff_D,p=c(100,75,1.8,0.5)) 

  theta_D[i,1] <- result$estimate[1] 

  theta_D[i,2] <- result$estimate[2] 

  theta_D[i,3] <- result$estimate[3] 

  theta_D[i,4] <- result$estimate[4]  

   

  ####Final MSE Calculations#### 
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  mseD = (theta_D[i,] - theta)^2 

  MSE_D = MSE_D + mseD 

  mseC = (theta_C[i,] - theta)^2 

  MSE_C = MSE_C + mseC 

} 

MSE_C/1000 

MSE_D/1000 
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APPENDIX D. R CODES FOR THE SMALL-SAMPLE SIMULATION 

library(nplr) 

######################## BRAN 15 #################### 

n <- 1000 

yB <- matrix(1,nrow=n,ncol=14) 

yD <- matrix(1,nrow=n,ncol=14) 

X1 <- matrix(1,nrow=n,ncol=14) 

X2 <- matrix(1,nrow=n,ncol=14) 

y1 <- 1 

y2 <- 1 

m <- 0 

p <- 0 

MSE_B <- 0 

MSE_D <- 0 

mseD <- 1 

mseB <- 1 

theta_B <- matrix(1,nrow=n,ncol=4) 

theta_D <- matrix(1,nrow=n,ncol=4) 

 

 

xB <- c(0.1655,0.3089,0.5765,1.0762,2.0089,3.75,7) 

xD_B15 <- c(0.33,1.33,3.78,7.00) 

max <- 128.1528 

xb <- 2.3244 

hillslope <- 0.9791 

s <- 1.5470 

y_B <- max/((1+(xb/xB)^(hillslope))^(s)) 

y_D <- max/((1+(xb/xD_B15)^(hillslope))^(s)) 

 

T=c(max,hillslope,xb,s) 

 

f = function(T,X) { 

  (T[1])/(1+(T[2]/X)^T[3])^T[4] 

} 

 

for(i in 1:n) { 

  theta <- c(128.1528,2.3244,0.9791,1.5470) 

  RSE <- 0.8879 

  xB <- c(0.1655,0.3089,0.5765,1.0762,2.0089,3.75,7) 

  xD_B15 <- c(0.33,1.33,3.78,7.00) 

  m <- 0 

  p <- 0 

  ####Original Design#### 

  for(j in 1:7) { 

    for(k in 1:2) { 

      h <- k+m 
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      yB[i,h] <- rnorm(1,y_B[j],RSE) 

      X1[i,h] <- xB[j] 

    } 

    m <- m + 2 

  } 

  x1 <- X1[i,] 

  y1 <- yB[i,] 

   

  ####Newton-Raphson for Original Design#### 

  ff_B = function(T) { 

    sum((f(T,x1)-y1)^2) 

  } 

  result = nlm(ff_B,p=c(128,2.3,0.9,1.5)) 

  theta_B[i,1] <- result$estimate[1] 

  theta_B[i,2] <- result$estimate[2] 

  theta_B[i,3] <- result$estimate[3] 

  theta_B[i,4] <- result$estimate[4] 

  ####D-Optimal Design#### 

  k=1 

  for(j in 1:4) { 

    h=0 

    if(j==1 || j==4) { 

      for(k in 1:3){ 

        if(j==1) { 

          h = k 

          yD[i,h] <- rnorm(1,y_D[j],RSE) 

          X2[i,h] <- xD_B15[j] 

          K=k+1 

        } 

        if(j==4) { 

          h = k + 11 

          yD[i,h] <- rnorm(1,y_D[j],RSE) 

          X2[i,h] <- xD_B15[j] 

          k=k+1 

        } 

      } 

    } 

    if(j==2 || j==3) { 

      for(k in 1:4) { 

        if(j==2) { 

          h = k + 3 

          yD[i,h] <- rnorm(1,y_D[j],RSE) 

          X2[i,h] <- xD_B15[j] 

          k=k+1 

        } 

        if(j==3) { 
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          h = k + 7 

          yD[i,h] <- rnorm(1,y_D[j],RSE) 

          X2[i,h] <- xD_B15[j] 

          k=k+1 

        } 

      } 

    } 

  } 

  x2 <- X2[i,] 

  y2 <- yD[i,] 

   

  ####Newton-Raphson for D-Optimal Design#### 

  ff_D = function(T) { 

    sum((f(T,x2)-y2)^2) 

  } 

  result = nlm(ff_D,p=c(128,2.3,0.9,1.5)) 

  theta_D[i,1] <- result$estimate[1] 

  theta_D[i,2] <- result$estimate[2] 

  theta_D[i,3] <- result$estimate[3] 

  theta_D[i,4] <- result$estimate[4]  

   

  ####Final MSE Calculations#### 

  mseD = (theta_D[i,] - theta)^2 

  MSE_D = MSE_D + mseD 

  mseB = (theta_B[i,] - theta)^2 

  MSE_B = MSE_B + mseB 

 

} 

MSE_B/1000 

MSE_D/1000 

 

######################## BRAN 30 #################### 

n <- 1000 

yB <- matrix(1,nrow=n,ncol=14) 

yD <- matrix(1,nrow=n,ncol=14) 

X1 <- matrix(1,nrow=n,ncol=14) 

X2 <- matrix(1,nrow=n,ncol=14) 

y1 <- 1 

y2 <- 1 

m <- 0 

p <- 0 

MSE_B <- 0 

MSE_D <- 0 

mseD <- 1 

mseB <- 1 

theta_B <- matrix(1,nrow=n,ncol=4) 
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theta_D <- matrix(1,nrow=n,ncol=4) 

 

xB <- c(0.1655,0.3089,0.5765,1.0762,2.0089,3.75,7) 

xD_B30 <- c(0.26,1.01,2.84,7.00) 

max <- 103.2062 

xb <- 1.6336 

hillslope <- 1.5402 

s <- 0.8235 

y_B <- max/((1+(xb/xB)^(hillslope))^(s)) 

y_D <- max/((1+(xb/xD_B30)^(hillslope))^(s)) 

 

T=c(max,hillslope,xb,s) 

 

f = function(T,X) { 

  (T[1])/(1+(T[2]/X)^T[3])^T[4] 

} 

 

for(i in 1:n) { 

  theta <- c(103.2062,1.6336,1.5402,0.8235) 

  RSE <- 0.8003 

  xB <- c(0.1655,0.3089,0.5765,1.0762,2.0089,3.75,7) 

  xD_B30 <- c(0.26,1.01,2.84,7.00) 

  m <- 0 

  p <- 0 

   

  ####Original Design#### 

  for(j in 1:7) { 

    for(k in 1:2) { 

      h <- k+m 

      yB[i,h] <- rnorm(1,y_B[j],RSE) 

      X1[i,h] <- xB[j] 

    } 

    m <- m + 2 

  } 

  x1 <- X1[i,] 

  y1 <- yB[i,] 

   

  ####Newton-Raphson for Original Design#### 

  ff_B = function(T) { 

    sum((f(T,x1)-y1)^2) 

  } 

  result = nlm(ff_B,p=c(103,1.6,1.5,0.8)) 

  theta_B[i,1] <- result$estimate[1] 

  theta_B[i,2] <- result$estimate[2] 

  theta_B[i,3] <- result$estimate[3] 

  theta_B[i,4] <- result$estimate[4] 
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  ####D-Optimal Design#### 

  k=1 

  for(j in 1:4) { 

    h=0 

    if(j==1 || j==4) { 

      for(k in 1:3){ 

        if(j==1) { 

          h = k 

          yD[i,h] <- rnorm(1,y_D[j],RSE) 

          X2[i,h] <- xD_B30[j] 

          K=k+1 

        } 

        if(j==4) { 

          h = k + 11 

          yD[i,h] <- rnorm(1,y_D[j],RSE) 

          X2[i,h] <- xD_B30[j] 

          k=k+1 

        } 

      } 

    } 

    if(j==2 || j==3) { 

      for(k in 1:4) { 

        if(j==2) { 

          h = k + 3 

          yD[i,h] <- rnorm(1,y_D[j],RSE) 

          X2[i,h] <- xD_B30[j] 

          k=k+1 

        } 

        if(j==3) { 

          h = k + 7 

          yD[i,h] <- rnorm(1,y_D[j],RSE) 

          X2[i,h] <- xD_B30[j] 

          k=k+1 

        } 

      } 

    } 

  } 

  x2 <- X2[i,] 

  y2 <- yD[i,] 

 

   

  ####Newton-Raphson for D-Optimal Design#### 

  ff_D = function(T) { 

    sum((f(T,x2)-y2)^2) 

  } 
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  result = nlm(ff_D,p=c(103,1.6,1.5,0.8)) 

  theta_D[i,1] <- result$estimate[1] 

  theta_D[i,2] <- result$estimate[2] 

  theta_D[i,3] <- result$estimate[3] 

  theta_D[i,4] <- result$estimate[4]  

   

  ####Final MSE Calculations#### 

  mseD = (theta_D[i,] - theta)^2 

  MSE_D = MSE_D + mseD 

  mseB = (theta_B[i,] - theta)^2 

  MSE_B = MSE_B + mseB 

} 

MSE_B/1000 

MSE_D/1000 

 

######################## BRAN 45 #################### 

n <- 1000 

yB <- matrix(1,nrow=n,ncol=14) 

yD <- matrix(1,nrow=n,ncol=14) 

X1 <- matrix(1,nrow=n,ncol=14) 

X2 <- matrix(1,nrow=n,ncol=14) 

y1 <- 1 

y2 <- 1 

m <- 0 

p <- 0 

MSE_B <- 0 

MSE_D <- 0 

mseD <- 1 

mseB <- 1 

theta_B <- matrix(1,nrow=n,ncol=4) 

theta_D <- matrix(1,nrow=n,ncol=4) 

 

xB <- c(0.1655,0.3089,0.5765,1.0762,2.0089,3.75,7) 

xD_B45 <- c(0.18,0.70,2.03,7.00) 

max <- 100.97883 

xb <- 1.08130 

hillslope <- 1.70242 

s <- 0.71926 

y_B <- max/((1+(xb/xB)^(hillslope))^(s)) 

y_D <- max/((1+(xb/xD_B45)^(hillslope))^(s)) 

 

T=c(max,hillslope,xb,s) 

 

f = function(T,X) { 

  (T[1])/(1+(T[2]/X)^T[3])^T[4] 

} 
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for(i in 1:n) { 

  theta <- c(100.97883,1.08130,1.70242,0.71926) 

  RSE <- 0.5917 

  xB <- c(0.1655,0.3089,0.5765,1.0762,2.0089,3.75,7) 

  xD_B45 <- c(0.18,0.70,2.03,7.00) 

  m <- 0 

  p <- 0 

   

  ####Original Design#### 

  for(j in 1:7) { 

    for(k in 1:2) { 

      h <- k+m 

      yB[i,h] <- rnorm(1,y_B[j],RSE) 

      X1[i,h] <- xB[j] 

    } 

    m <- m + 2 

  } 

  x1 <- X1[i,] 

  y1 <- yB[i,] 

   

  ####Newton-Raphson for Original Design#### 

  ff_B = function(T) { 

    sum((f(T,x1)-y1)^2) 

  } 

  result = nlm(ff_B,p=c(100.9,1,1.7,0.7)) 

  theta_B[i,1] <- result$estimate[1] 

  theta_B[i,2] <- result$estimate[2] 

  theta_B[i,3] <- result$estimate[3] 

  theta_B[i,4] <- result$estimate[4] 

   

  ####D-Optimal Design#### 

  k=1 

  for(j in 1:4) { 

    h=0 

    if(j==1 || j==4) { 

      for(k in 1:3){ 

        if(j==1) { 

          h = k 

          yD[i,h] <- rnorm(1,y_D[j],RSE) 

          X2[i,h] <- xD_B45[j] 

          K=k+1 

        } 

        if(j==4) { 

          h = k + 11 

          yD[i,h] <- rnorm(1,y_D[j],RSE) 
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          X2[i,h] <- xD_B45[j] 

          k=k+1 

        } 

      } 

    } 

    if(j==2 || j==3) { 

      for(k in 1:4) { 

        if(j==2) { 

          h = k + 3 

          yD[i,h] <- rnorm(1,y_D[j],RSE) 

          X2[i,h] <- xD_B45[j] 

          k=k+1 

        } 

        if(j==3) { 

          h = k + 7 

          yD[i,h] <- rnorm(1,y_D[j],RSE) 

          X2[i,h] <- xD_B45[j] 

          k=k+1 

        } 

      } 

    } 

  } 

  x2 <- X2[i,] 

  y2 <- yD[i,] 

   

  ####Newton-Raphson for D-Optimal Design#### 

  ff_D = function(T) { 

    sum((f(T,x2)-y2)^2) 

  } 

  result = nlm(ff_D,p=c(100.9,1,1.7,0.7)) 

  theta_D[i,1] <- result$estimate[1] 

  theta_D[i,2] <- result$estimate[2] 

  theta_D[i,3] <- result$estimate[3] 

  theta_D[i,4] <- result$estimate[4]  

   

  ####Final MSE Calculations#### 

  mseD = (theta_D[i,] - theta)^2 

  MSE_D = MSE_D + mseD 

  mseB = (theta_B[i,] - theta)^2 

  MSE_B = MSE_B + mseB 

} 

MSE_B/1000 

MSE_D/1000 

 

######################## CLAN 15 #################### 

n <- 1000 
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yC <- matrix(1,nrow=n,ncol=14) 

yD <- matrix(1,nrow=n,ncol=14) 

X1 <- matrix(1,nrow=n,ncol=14) 

X2 <- matrix(1,nrow=n,ncol=14) 

y1 <- 1 

y2 <- 1 

m <- 0 

p <- 0 

MSE_C <- 0 

MSE_D <- 0 

mseD <- 1 

mseC <- 1 

theta_C <- matrix(1,nrow=n,ncol=4) 

theta_D <- matrix(1,nrow=n,ncol=4) 

 

xC <- c(8.273,15.44,28.83,53.81,100.5,187.5,350) 

xD_C15 <- c(24.0,90.8,212.7,350.0) 

max <- 105.7901 

xb <- 204.3503 

hillslope <- 1.5294 

s <- 0.8279 

y_C <- max/((1+(xb/xC)^(hillslope))^(s)) 

y_D <- max/((1+(xb/xD_C15)^(hillslope))^(s)) 

 

T=c(max,hillslope,xb,s) 

 

f = function(T,X) { 

  (T[1])/(1+(T[2]/X)^T[3])^T[4] 

} 

 

for(i in 1:n) { 

  theta <- c(105.7901,204.3503,1.5294,0.8279) 

  RSE <- 0.846 

  xC <- c(8.273,15.44,28.83,53.81,100.5,187.5,350) 

  xD_C15 <- c(24.0,90.8,212.7,350.0) 

  m <- 0 

  p <- 0 

   

  ####Original Design#### 

  for(j in 1:7) { 

    for(k in 1:2) { 

      h <- k+m 

      yC[i,h] <- rnorm(1,y_C[j],RSE) 

      X1[i,h] <- xC[j] 

    } 

    m <- m + 2 
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  } 

  x1 <- X1[i,] 

  y1 <- yC[i,] 

   

  ####Newton-Raphson for Original Design#### 

  ff_C = function(T) { 

    sum((f(T,x1)-y1)^2) 

  } 

  result1 = nlm(ff_C,p=c(105.7,204.3,1.5,0.8)) 

  theta_C[i,1] <- result1$estimate[1] 

  theta_C[i,2] <- result1$estimate[2] 

  theta_C[i,3] <- result1$estimate[3] 

  theta_C[i,4] <- result1$estimate[4] 

   

  ####D-Optimal Design#### 

  k=1 

  for(j in 1:4) { 

    h=0 

    if(j==1 || j==4) { 

      for(k in 1:3){ 

        if(j==1) { 

          h = k 

          yD[i,h] <- rnorm(1,y_D[j],RSE) 

          X2[i,h] <- xD_C15[j] 

          K=k+1 

        } 

        if(j==4) { 

          h = k + 11 

          yD[i,h] <- rnorm(1,y_D[j],RSE) 

          X2[i,h] <- xD_C15[j] 

          k=k+1 

        } 

      } 

    } 

    if(j==2 || j==3) { 

      for(k in 1:4) { 

        if(j==2) { 

          h = k + 3 

          yD[i,h] <- rnorm(1,y_D[j],RSE) 

          X2[i,h] <- xD_C15[j] 

          k=k+1 

        } 

        if(j==3) { 

          h = k + 7 

          yD[i,h] <- rnorm(1,y_D[j],RSE) 

          X2[i,h] <- xD_C15[j] 
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          k=k+1 

        } 

      } 

    } 

  } 

  x2 <- X2[i,] 

  y2 <- yD[i,] 

 

   

  ####Newton-Raphson for D-Optimal Design#### 

  ff_D = function(T) { 

    sum((f(T,x2)-y2)^2) 

  } 

  result2 = nlm(ff_D,p=c(105.7,204.3,1.5,0.8)) 

  theta_D[i,1] <- result2$estimate[1] 

  theta_D[i,2] <- result2$estimate[2] 

  theta_D[i,3] <- result2$estimate[3] 

  theta_D[i,4] <- result2$estimate[4]  

   

  ####Final MSE Calculations#### 

  mseD = (theta_D[i,] - theta)^2 

  MSE_D = MSE_D + mseD 

  mseC = (theta_C[i,] - theta)^2 

  MSE_C = MSE_C + mseC 

} 

MSE_C/1000 

MSE_D/1000 

 

######################## CLAN 30 #################### 

n <- 1000 

yC <- matrix(1,nrow=n,ncol=14) 

yD <- matrix(1,nrow=n,ncol=14) 

X1 <- matrix(1,nrow=n,ncol=14) 

X2 <- matrix(1,nrow=n,ncol=14) 

y1 <- 1 

y2 <- 1 

m <- 0 

p <- 0 

MSE_C <- 0 

MSE_D <- 0 

mseD <- 1 

mseC <- 1 

theta_C <- matrix(1,nrow=n,ncol=4) 

theta_D <- matrix(1,nrow=n,ncol=4) 

 

xC <- c(8.273,15.44,28.83,53.81,100.5,187.5,350) 
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xD_C30 <- c(14.7,63.9,161.7,350.0) 

max <- 100.78867 

xb <- 119.55175 

hillslope <- 1.89378 

s <- 0.56313 

y_C <- max/((1+(xb/xC)^(hillslope))^(s)) 

y_D<- max/((1+(xb/xD_C30)^(hillslope))^(s)) 

 

T=c(max,hillslope,xb,s) 

 

f = function(T,X) { 

  (T[1])/(1+(T[2]/X)^T[3])^T[4] 

} 

 

for(i in 1:n) { 

  theta <- c(100.78867,119.55175,1.89378,0.56313) 

  RSE <- 0.6589 

  xC <- c(8.273,15.44,28.83,53.81,100.5,187.5,350) 

  xD_C30 <- c(14.7,63.9,161.7,350.0) 

  m <- 0 

  p <- 0 

  ####Original Design#### 

  for(j in 1:7) { 

    for(k in 1:2) { 

      h <- k+m 

      yC[i,h] <- rnorm(1,y_C[j],RSE) 

      X1[i,h] <- xC[j] 

    } 

    m <- m + 2 

  } 

  x1 <- X1[i,] 

  y1 <- yC[i,] 

   

  ####Newton-Raphson for Original Design#### 

  ff_C = function(T) { 

    sum((f(T,x1)-y1)^2) 

  } 

  result = nlm(ff_C,p=c(100,119,1.8,0.5)) 

  theta_C[i,1] <- result$estimate[1] 

  theta_C[i,2] <- result$estimate[2] 

  theta_C[i,3] <- result$estimate[3] 

  theta_C[i,4] <- result$estimate[4] 

   

  ####D-Optimal Design#### 

  k=1 

  for(j in 1:4) { 
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    h=0 

    if(j==1 || j==4) { 

      for(k in 1:3){ 

        if(j==1) { 

          h = k 

          yD[i,h] <- rnorm(1,y_D[j],RSE) 

          X2[i,h] <- xD_C30[j] 

          K=k+1 

        } 

        if(j==4) { 

          h = k + 11 

          yD[i,h] <- rnorm(1,y_D[j],RSE) 

          X2[i,h] <- xD_C30[j] 

          k=k+1 

        } 

      } 

    } 

    if(j==2 || j==3) { 

      for(k in 1:4) { 

        if(j==2) { 

          h = k + 3 

          yD[i,h] <- rnorm(1,y_D[j],RSE) 

          X2[i,h] <- xD_C30[j] 

          k=k+1 

        } 

        if(j==3) { 

          h = k + 7 

          yD[i,h] <- rnorm(1,y_D[j],RSE) 

          X2[i,h] <- xD_C30[j] 

          k=k+1 

        } 

      } 

    } 

  } 

  x2 <- X2[i,] 

  y2 <- yD[i,] 

   

  ####Newton-Raphson for D-Optimal Design#### 

  ff_D = function(T) { 

    sum((f(T,x2)-y2)^2) 

  } 

  result = nlm(ff_D,p=c(100,119,1.8,0.5)) 

  theta_D[i,1] <- result$estimate[1] 

  theta_D[i,2] <- result$estimate[2] 

  theta_D[i,3] <- result$estimate[3] 

  theta_D[i,4] <- result$estimate[4]  
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  ####Final MSE Calculations#### 

  mseD = (theta_D[i,] - theta)^2 

  MSE_D = MSE_D + mseD 

  mseC = (theta_C[i,] - theta)^2 

  MSE_C = MSE_C + mseC 

} 

MSE_C/1000 

MSE_D/1000 

 

 

######################## CLAN 45 #################### 

n <- 1000 

yC <- matrix(1,nrow=n,ncol=14) 

yD <- matrix(1,nrow=n,ncol=14) 

X1 <- matrix(1,nrow=n,ncol=14) 

X2 <- matrix(1,nrow=n,ncol=14) 

y1 <- 1 

y2 <- 1 

m <- 0 

p <- 0 

MSE_C <- 0 

MSE_D <- 0 

mseD <- 1 

mseC <- 1 

theta_C <- matrix(1,nrow=n,ncol=4) 

theta_D <- matrix(1,nrow=n,ncol=4) 

 

xC <- c(8.273,15.44,28.83,53.81,100.5,187.5,350) 

xD_C30 <- c(9.8,42.1,116.8,350.0) 

max <- 100.73194 

xb <- 75.21709 

hillslope <- 1.87647 

s <- 0.54536 

y_C <- max/((1+(xb/xC)^(hillslope))^(s)) 

y_D <- max/((1+(xb/xD_C45)^(hillslope))^(s)) 

 

T=c(max,hillslope,xb,s) 

 

f = function(T,X) { 

  (T[1])/(1+(T[2]/X)^T[3])^T[4] 

} 

 

for(i in 1:n) { 

  theta <- c(100.73194,75.21709,1.87647,0.54536) 

  RSE <- 0.68 
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  xC <- c(8.273,15.44,28.83,53.81,100.5,187.5,350) 

  xD_C45 <- c(9.8,42.1,116.8,350.0) 

  m <- 0 

  p <- 0 

   

  ####Original Design#### 

  for(j in 1:7) { 

    for(k in 1:2) { 

      h <- k+m 

      yC[i,h] <- rnorm(1,y_C[j],RSE) 

      X1[i,h] <- xC[j] 

    } 

    m <- m + 2 

  } 

  x1 <- X1[i,] 

  y1 <- yC[i,] 

   

  ####Newton-Raphson for Original Design#### 

  ff_C = function(T) { 

    sum((f(T,x1)-y1)^2) 

  } 

  result = nlm(ff_C,p=c(100,75,1.8,0.5)) 

  theta_C[i,1] <- result$estimate[1] 

  theta_C[i,2] <- result$estimate[2] 

  theta_C[i,3] <- result$estimate[3] 

  theta_C[i,4] <- result$estimate[4] 

   

  ####D-Optimal Design#### 

  k=1 

  for(j in 1:4) { 

    h=0 

    if(j==1 || j==4) { 

      for(k in 1:3){ 

        if(j==1) { 

          h = k 

          yD[i,h] <- rnorm(1,y_D[j],RSE) 

          X2[i,h] <- xD_C45[j] 

          K=k+1 

        } 

        if(j==4) { 

          h = k + 11 

          yD[i,h] <- rnorm(1,y_D[j],RSE) 

          X2[i,h] <- xD_C45[j] 

          k=k+1 

        } 

      } 
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    } 

    if(j==2 || j==3) { 

      for(k in 1:4) { 

        if(j==2) { 

          h = k + 3 

          yD[i,h] <- rnorm(1,y_D[j],RSE) 

          X2[i,h] <- xD_C45[j] 

          k=k+1 

        } 

        if(j==3) { 

          h = k + 7 

          yD[i,h] <- rnorm(1,y_D[j],RSE) 

          X2[i,h] <- xD_C45[j] 

          k=k+1 

        } 

      } 

    } 

  } 

  x2 <- X2[i,] 

  y2 <- yD[i,] 

   

  ####Newton-Raphson for D-Optimal Design#### 

  ff_D = function(T) { 

    sum((f(T,x2)-y2)^2) 

  } 

  result = nlm(ff_D,p=c(100,75,1.8,0.5)) 

  theta_D[i,1] <- result$estimate[1] 

  theta_D[i,2] <- result$estimate[2] 

  theta_D[i,3] <- result$estimate[3] 

  theta_D[i,4] <- result$estimate[4]  

   

  ####Final MSE Calculations#### 

  mseD = (theta_D[i,] - theta)^2 

  MSE_D = MSE_D + mseD 

  mseC = (theta_C[i,] - theta)^2 

  MSE_C = MSE_C + mseC 

} 

MSE_C/1000 

MSE_D/1000 


