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ABSTRACT 

Few other woody plants embody the preeminence of temperate woody plants in garden 

cultivation like the lilacs. In spite of their relationship, the trees lack the diversity of cultivated 

floral forms observed within the shrub lineages. Typical selection and cross-pollination schemes 

within the tree lilacs or between trees and shrubs have failed to yield the diversity of colors and 

fragrances on a tree form. With somatic fusion in Citrus spp. as a guideline for Syringa spp. 

protoplast isolation and culture, experiments were designed to optimize the conditions through 

somatic fusion. Protoplast isolation experiments revealed yield increases with increased exposure 

to cell wall degrading enzymes as well as losses in viability with increased exposure. 

Electrofusion experiments yielded somatic hybrids, yet further investigation is necessary to 

optimize the fusion electroporation settings and beyond. 
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CHAPTER 1. INTRODUCTION 

The genus of lilacs (Syringa) is comprised of many temperate garden plants made 

popular over the long history of gardening. Their diversity in flower form, color and fragrance 

make them a sight to behold in the early spring through mid-summer. The botanical name 

Syringa comes from the Greek word syrinx meaning hallow stem. The most common name for 

Syringa, however, likely derives its common name from the Persian word lilak or lilaf, which 

means blue. However, the tree form lilacs lack a blue floral color in any cultivated variety. 

Nevertheless, the tree lilacs have been an economically important ornamental tree since the 

description of Peking lilac (Syringa pekinensis Rupr.) in 1742 by Pierre d’ Incarville and 

represents the first recorded lilac collection for garden use in Europe. The floral characteristics of 

the tree lilacs have placed them morphologically close to the privets (Ligustrum spp.) and have 

such led to differences in opinion regarding their taxonomic position. The similarity of the floral 

morphology between Ligustrum spp. and the Syringa series Ligustrina explains the taxonomic 

series naming of the Ligustrina. The dehiscent scimitar shaped capsules of the Ligustrina 

distinguish the Syringa and as such place them outside of the Ligustrum genera, which has a non-

dehiscent berry-like drupe (Dirr, 1998). The Ligustrina are categorized as trees, but depending 

on the species may be found to grow with habit characteristics of a large shrub. Syringa 

pekinensis represents the smaller of the two species reaching a mature height ranging 2-5(-10) m, 

while the range spans 4-10(-15) m with S. reticulata (Blume) H. Hara (Fiala and Vrgutman, 

2008). In addition to the two to three-week mid-summer floral display the more attractive 

features of the tree lilacs include a beautiful cherry-like, sometimes, exfoliating bark. The bark 

can range in color from an orange to red brown or brown and mature from a smooth to peeling 

texture developing into scaly brown to gray (Dirr, 1998; Fiala, 1998). 
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Tree Lilac Origins and Cultivation 

Originating from the south central parts of Manchuria (southwestern Inner Mongolia) to 

the Japanese island of Hokkaido the tree lilacs have evolved under a myriad of conditions, which 

make them particularly well suited for their cultivation in a wide array of conditions. Their 

adaptability and beauty in floral display have made them an appealing source of mid-summer 

blooming ornamental trees. Tree lilacs thrive when the environment has cooler summers and 

freezing winters (Dirr, 1998). The ability to reliably set abundant flowers and fruit is consistent 

with an evolutionary history in temperate climates, requiring a vernalization period (Fiala and 

Vrgutman, 2008). The tree lilacs have few insect problems that plague their cultivation. Lilac 

borers and scale insects are the most common insect problems, while diseases such as bacterial 

blight, Phytophthora and powdery mildew plague landscape level trees under stressful conditions 

(Dirr, 1998). Their adaptability to a wide variety of landscape level sites make them suitable for 

mass plantings, specimen trees and are even tolerant of saline conditions, which make them well 

suited as a boulevard tree. 

The taxonomic placement of the tree lilacs within the genus Syringa has been debated 

since western botanists first encountered them in the orient (Fiala and Vrgutman, 1998). Today 

the placement of the tree lilacs is recognized as paraphyletic to the genus and according to Li et 

al. (2012) represent one of six sub-classifications, called series, within genus Syringa. 

Parsimonious tree construction from maximum parsimony and Bayesian inference analysis place 

the series: Pinnatifoliae, Ligustrae, Ligustrina, Villosae, and Pubescentes divergent from within 

series Syringa 17.67 million years ago (mya) (Li et al., 2012). The taxonomic relationship of the 

tree lilacs places the series Ligustrina divergent from Ligustrae (Ligustrum spp.), approximately 

11.39 mya, and series Villosae thereafter at 9.65 mya during the warming in the middle Miocene 
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(Li et al., 2012). The divergence of these groups meant the adaptive capacity for the shrubs to 

produce beautiful pinks, lilac, and violet to blue colored flowers or the loss of that ability in the 

trees. The more recent evolution and dissemination of the Ligustrina throughout the world, are 

owed to the movement of seeds from several individual collection trips throughout China from 

1742 to present (Fiala and Vrgutman, 2008). Today seed propagation is still one of the most 

common forms of plant proliferation for the species of tree lilacs. 

Commercialization and Production 

The widespread popularity of the genus has a market demand that supports several 

nurseries throughout the world that devote a majority of their crop production capacity to the 

group. At some nurseries in the US, tree lilacs are the single most important production crops as 

compared to any other product category in cultivation. Cultivated varieties, hereafter cultivar, of 

the trees lilacs are often a challenging species to produce clonally from vegetative or hardwood 

shoot cuttings. Most frequently the trees are propagated by grafting or in vitro micropropagation. 

These successful cultivation of tree lilac through these techniques are very skill dependent and 

labor intensive. The skilled practitioner in the nursery trade must seed propagate trees in orders 

of magnitude in excess of the actual annual needs to yield a continual source of useful seedling 

rootstocks. The rootstock onto which a scion is grafted, or as often the case with Syringa 

reticulata budded, needs to have the vigor and stem diameter that will best suit the nurseryman’s 

needs. The care and culture of landscape ready trees of three plus feet can take between three and 

five years to cultivate. Often the number one limiting factor to the economical production of tree 

lilacs is the cost of propagation. Alternative propagation strategies, such as in vitro propagation 

have also been challenging for producers and researchers alike (G. Suttle, personal 

communication). To date, the publications on the in vitro clonal propagation of lilac do not 
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include any form of tree lilac. The publications that do work with the tree lilacs often source their 

explant material from seeds or seedlings. The nurseries who produce them are typically 

unwilling to share their experience with public entities. 

Improvement of Ligustrina 

Lilacs, particularly the shrubs, have been cultivated for their fragrant and showy flowers, 

but in spite of their relationship, the trees do not share the diversity of cultivated forms. Selection 

and hybridization schemes in the tree lilacs have successfully introduced cultivars with variations 

of foliage color and variegation, flower panicle size or floret density, bark color or textural 

difference, as well as changes in mature habit. However, these strategies have not been able to 

provide the marketplace with cultivars of diverse flower color or fragrance. Though often 

described as having a creamy white to yellow flower color, the floral display may confound the 

appearance of color as anthers are formed on elongated filaments that extend well beyond the 

corolla. As of yet a solitary variation in flower color has been identified in a single plant of 

undescribed origin out of Beijing Botanical Gardens known in the commercial trade as Syringa 

pekinensis ‘Zhang Zhiming’ Beijing Gold™ (Chicagoland Grows®, Inc., 2012). Any 

improvement in floral color or fragrance characteristics in the tree lilacs would diversify the 

color palette of mid-summer blooming ornamental trees. 

In the development of improved plant characteristics, traditional plant breeding 

approaches with controlled crossing and recurrent selection can be challenging with long lived 

perennial species. Juvenility period, the maturity period from the seedling stage to mature 

flowering stage of development, can be long in woody perennials. The juvenile period can vary 

from three months with some rosaceous species and hybrids or up to several decades as with 

some magnolias. The juvenile period of S. reticulata may take anywhere from three to six years 
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depending on several factors including but not limited to the growing conditions and provenance 

of the original propagule. These challenges are compounded by the heterozygosity within 

landrace selections and the lack of trait fixation found in commercially available cultivars. These 

challenges make the plant improvement process of trees and other woody ornamentals protracted 

in outcome and in terms of the human lifespan may require intergenerational efforts to complete 

a particular goal. As such scouting landraces and naturalized stands for standing variation is the 

more common approach to tree improvement. 

In efforts to diversify the floral habits of the tree lilacs, attempts to hybridize the various 

taxonomic series has led to a long history of failures (Kim & Jansen, 1998; Fiala and Vrugtman, 

2008; J. Alexander III, personal communication). The true nature of the sexual incompatibilities 

between lilac series are not entirely known. As described above, the tree lilacs are paraphyletic 

within subgenus Syringa and having evolved most recently from the series of Villosae 9.65 

million years ago (Li, 2012). This evolutionary history has formed the approach to look at more 

recent divergence for probable compatibility in the development of interseries hybrids. 

Conversely, early divergence of these different series may be appealing to increase the 

germplasm background for future developments. 

Previous attempts at interserial hybridization between tree and shrub lilacs by Nathan 

Maren and Dr. David Zlesak of the University of Wisconsin-River Falls resulted in the 

appearance of a fertilized zygote. Failure to completely develop a functional endosperm suggest 

delayed incompatibility resulting in the abortion of seed before complete maturation. An 

approach commonly applied to vegetatively propagated crops, would be to induce auto-

tetraploidy in both species of the hybrid cross and attempt further crossing. The mating of two 

autopolyploids can yield plants that maintain typical bivalent pairing at meiosis, where gametes 
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form double the typical haploid chromosome number and result in the production of fertile 

offspring. This phenomenon is often exploited in the production of sterile plants such as bananas, 

watermelon, and citrus. However, this is a long-term process as the recovery of true 

autopolyploids and rearing those plants to a flowering stage will likely take years before either 

parents flower. 

In vitro techniques in plant improvement may be a great approach to forging 

interspecific, or interserial, hybrids. Somatic hybridization is one such in vitro technique in plant 

improvement that has demonstrated the ability to overcome the barriers of sexual incompatibility 

across species and familial divides. Somatic hybridization or protoplast fusion is a procedure in 

hybridization whereby somatic cells of one genotype isolated from their cell walls (protoplasts) 

are fused with protoplasts of another genotype. The resulting hybrids offer the opportunity to 

introduce characteristics of the cytoplasm from both parents that may otherwise be excluded in 

typical sexual fertilization. In spite of somatic hybridization being a valuable tool in bringing 

together the heritable characteristics of distantly related species, the technique has yet to reach its 

full potential in the plant sciences (Grosser et al. 2005). Supporting the use of this technique in a 

hereto unexplored genus provides an opportunity to study the mechanisms and conditions that 

affect the culturing of plant protoplasts. This research will provide benchmark studies into the 

research and eventual introduction of a series tree form lilac with a diverse color and aroma 

palate. 
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 CHAPTER 2. IN VITRO CULTURE AND REGENERATION 

Abstract 

The in vitro establishment of lilac (Syringa spp.) plant tissues for micropropagation or 

biotechnological purposes can be challenging. Several sources of lilac (Syringa spp.) explant 

tissues were used to establish an in vitro grown stock for experimentation. Experiments to 

regenerate whole plants directly from clonal somatic tissues via adventitious organogenesis 

directed the formulation of treatments in proceeding trials, but did not generate whole lilac 

plants. Concomitant replication of previous studies in somatic embryogenesis from zygotic 

embryos yielded somatic embryos with reproducible, albeit low, yields of regenerated tissues. 

Environmental manipulations such as temperature, hormone formulation, cytokinin: auxin ratio 

and hormone concentration, were targeted for the directed manipulation of somatic tissues to a 

regeneration competent condition. Internodal stem segments or leaf mesophyll tissues from in 

vitro grown plants were applied to treatment mediums with a modified woody plant medium 

basal salt formulation with factor level variation in thidiazuron (TDZ) (0, 1.4, and 4.0 μM) and 

naphthalene acetic acid (NAA) (0, 5, 10, 20 μM) for a competence inductive period of two 

weeks. Tissues were subsequently cultured onto a common somatic embryo inductive media. 

Somatic embryos did not form on any treatments following subculture. 

Introduction 

In vitro propagation of plant tissues and the establishment of aseptic cultures has a 

dramatic impact on plant physiology. The establishment phase of micropropagation is 

characterized by an acclimatization period that results in drastic shifts in morpho-physiological 

arrangements including how plant mineral nutrition is acquired and translocated as well as a shift 

from autotrophy to heterotrophy (George et al., 2008). This process is generally genotype and 
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physiological age dependent and may affect the duration of stage one establishment and 

stabilization. Stabilization of in vitro culture is marked by the serially similar response of sub-

cultured explants on exposure to new media. The stabilization phase may be short or may require 

multiple strategies to overcome the natural barriers and stress responses (McCown, 2000). 

Common challenging responses to the initiation of cultures includes the formation of 

tannins, phenolic acids, plant defensive compounds and other wound responsive cellular 

developments. These responses may be classified in the hypersensitive responses associated with 

biotic stressors (Ikeuchi et al., 2013). Lilacs (Syringa spp.) in particular produce high volumes of 

secondary metabolites during the early stages of in vitro culture. The common lilacs (S. vulgaris 

L.) predominantly produce hydroxyphenylethanol glycosides whereas the tree lilacs (S. 

reticulata (Blume) H.Hara and S. pekinensis Rupr.) produce secoirioid glucosides (Ellis et al., 

1983; Bi et al., 2011). While some of these products have been used in medicinal tinctures for 

their expectorant, anti-asthmatic and antioxidant properties, these responses can have a drastic 

negative impact on the establishment and stabilization of micropropagation in vitro. 

The challenges of introducing woody tissues into the in vitro environment can be 

compounded by plant anatomical features such as bud scales, bark exfoliation and pubescence 

that harbor insect and microorganism contaminants. Researchers apply several different 

techniques to eliminate these contaminants via tissue exposure to sodium hypochlorite solutions, 

long duration water rinses and even exposure to solutions containing heavy metals like a silver 

nitrate that also serve to reduce the ethylene mediated defensive response (Janick, 1986). 

Alternatively, control of explant contaminant load can be accomplished through close monitoring 

and pest management of the vegetative shoots during development. Vegetative shoot forcing is 

one method in nursery culture that has addressed production volume short-falls. Dormant woody 
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stems are encouraged to develop vegetative shoots when cut stems are exposed to carbohydrate 

containing solutions. Vegetative growth may benefit from the inclusion of plant growth 

regulating substances such as cytokinins and gibberellins (Preece, 2008). As found in the post-

harvest preservation of cut floral stems the inclusion of citric acid or acidification of the forcing 

solution helps to increase vascular system conductivity and mitigate problems of microorganism 

contamination (Durkin, 1981). 

Some responses to the acclimatization of in vitro culturing can be detrimental to the 

establishment of cultures while other responses offer exploitable opportunities. The phenomenon 

of callus formation, and totipotency or ability of a single cell to form a whole plant, is essential 

for the regeneration of whole plants for many biotechnological applications. In the context of 

tissue and organ specialization, called differentiation, original explant source has a significant 

effect on the ability to respond to hormonal signaling, or competence, for the formation of de 

novo shoots or somatic embryos (George et al., 2008; Liu et al., 2003; Sugiyama, 1999).  

Iwase et al. (2011) reported that wound induced calluses in Arabidopsis thaliana (L.) 

Heynh. have expression patterns more consistent with the development of new shoots as 

compared to calluses induced on auxin rich media. Whereas calluses formed on auxin rich 

substrates appeared as a mass of tissue with an organizational structure and gene expression 

patterns similar to that of root initials (Atta et al., 2009; Sugimoto et al., 2010; Iwase et al., 

2011). The dedifferentiation of plant cells from terminally differentiated tissues requires cells to 

undergo a cascade of changes within the cell. These modifications permit the continued growth 

and development of signal responsive competent cells (Iwase et al., 2011). Some of the 

morphological feature changes are measurable and have been correlated to embryogenic 
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regeneration capacitance in Pea (Pisum sativum L.), grass pea (Lathyrus sativus L.) as well as the 

model species Medicago truncatula Gaertn. and Arabidopsis thaliana (Ochatt et al., 2010). 

The pinnacle of differentiation in woody plants results in the physiological ability to form 

flowers and reproduce. Since maturity or physiological age in explants is believed to be one of a 

few most important determinants in the successful yield of whole plants from protoplasts most 

experimenters choose to utilize embryos, seedlings, embryogenic calluses or suspension cells 

(Liu et al., 2003; Ochatt et al., 1995; Dos Santos et al., 1980). In plant gametogenesis there is an 

increasing amount of information to suggest a whole genome epigenetic change in the forming of 

microspores and megaspores (She et al., 2013). 

The thermal and photoperiodic impact on flowering and crop productivity have been 

understood by farmers long before DNA was understood to be the unit of inheritance. The ability 

of the entire plant to successfully mature and reproduce requires whole organism communication 

and regulation to mitigate aberrant changes in chromatin and histone marks from environmental 

influences (King, 2015). As found in field plant reproductive biology, phase changes in 

morphology can be encouraged by the directed applications of environmental stressors like 

osmotic, temperature or hormonal stress (Poethig, 1990; Von Aderkas and Bonga, 2000). Plant 

regeneration from somatic cells in vitro is marked by changes similar changes in methylation, 

demethylation, and chromatin remodeling to those found in situ (Xu & Huang, 2014; De-la Peña 

et al., 2015). These changes provide the necessary access for active transcription and foster 

changes in the regulation of micro-RNA’s and other transcription factors (Gordon et al., 2007; 

Mirouze and Paszkowski, 2011; Pulianmackal et al., 2014). Biotin, a metabolism coenzyme 

associated with mitochondrial and cytoplasmic carboxylases, plays a significant role in cell 

signaling and has been more recently implicated with a direct role in directing the recruitment of 
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histone modifying transferases in animals (Hassan and Zempleni, 2006; Nikolau et al., 2003). In 

plants the role of biotin, thiamine, riboflavin and several of the B vitamins have played important 

roles in the development of somatic embryos, adventitious organogenesis, and the rearing of 

rescued embryos from wide hybrid crosses (Al-Khayri, 2001; Von Arnold, 2008). These 

considerations follow in the experiments that were executed in the attempt to culture and rear 

whole plants in vitro. 

Materials and Methods 

Introduction of Explants in situ Sources 

Dormant woody stems were collected after an approximate minimum accumulation of 

2000 chilling hours on the campus of North Dakota State University (NDSU; Fargo, ND, USA). 

Stems were trimmed roughly 2 cm on either side of a dormant bud and placed in a sealable glass 

vessel. A sufficient volume of a 10% household bleach (8.25%–NaOCl) solution (0.825% v/v 

solution of sodium hypochlorite with additional 0.1% polysorbate) was added to immerse the 

tissues. Vessels were sealed and vigorously shaken for 5-20 minutes before they were placed in a 

laminar flow cabinet. The solution was decanted and replaced by a minimum of three exchanges 

of distilled deionized water (ddH2O) (18.2 MΩ) or until bubbles from the polysorbate containing 

solution were eliminated. Tissues were then trimmed at the bicipital end to expose green healthy 

vascular tissue and placed into prepared sterile test tubes containing nutritive media as described 

in the initiation of cultures section below. 

Vegetative Shoot Production from Dormant Hardwood Explants 

Separate solutions were prepared in advance of explant exposure or transfer to new 

solutions. Solution A contained a 4% (w/v) sucrose with 0.2% activated charcoal (AC) in ddH2O 

adjusted to 3.5±0.1 pH with 1 N HCl. Solution B contained 20 μM 6-Benzyladenine (BA) and 
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2% (v/v) Plant Preservation Mixture (PPM™, a proprietary biocide affecting key enzymes in the 

Krebs cycle and the electron transport chain; Plant Cell Technology, 1823 Jefferson Place NW, 

Washington D.C., 20036, USA) in ddH2O water adjusted as necessary to 3.5±0.1 pH with 1 N 

HCl or 1 N KOH . The two solutions were autoclaved at 121 °C at 15 PSI for 20 min. then stored 

in the dark at 4 °C before use. Preceding initial or subsequent culture approximately 10mL of 

each solution were mixed in sterilized 25 X 100 mm test tubes. 

Dormant woody stems were collected after an approximate minimum accumulation of 

2000 chilling hours on the campus of NDSU. Explants were trimmed to three or four node 

explants of 5-8 mm in diameter. A length of internode at the bicipital end was left for continual 

trimming of the explants during shoot elongation. Buds that would be immersed in shoot forcing 

solution were removed to prevent rapid contamination of the solution. A clean blunt cut was 

made to the distal end roughly 5-10 mm away from the closest vegetative bud to prevent 

desiccation of the vasculature. A long angled cut was made at the bicipital end of the explant 

preceding their introduction to solutions. Explants were transferred on a 2 to 3-day cycle into 15-

20 mL solutions containing equal volumes of solutions A and B. When mucilaginous masses 

accumulated at the bicipital end explants were lightly brushed in a 70% ethanol solution. All 

explants were re-trimmed with a long angled fresh cut and transferred to new solutions. Explants 

were grown in an incubator (Model 818, Precision Scientific, 170 Marcel Drive, Winchester, VA 

22602, USA) with 16/8-hour light (36-40 μmol s-1)/dark cycling with concomitant ambient 

temperature fluctuation of 23/20 °C. 

Initiation of Cultures 

Potted plants of Nathan Maren’s personal collection were stored in underground storage 

space. The underground storage space consisted of a plastic covered earthen floor crawl space 
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under the individual’s residence in a dark condition around 5-10 °C. Plants were periodically 

watered to maintain humidity as moisture was drawn from the pot or tissue. Etiolated vegetation 

was trimmed from S. xprestoniae ‘Dancing Druid’, S. xprestoniae ‘Miss Canada’, S. xprestoniae 

‘Donald Wynman’, S. xprestoniae ‘James Macfarlane’, and S. xprestoniae ‘Minuet’ and placed 

in sealable plastic bags during transport to the facilities of NDSU. Aseptic introduction of tissues 

followed the same procedure outlined in the introduction of explants from in situ sources section. 

Explants were introduced into vessels containing prepared medium formulations as described by 

Murashige and Skoog (1962) (MS), Driver and Kuniyuki (1984) (DKW), or Lloyd and McCown 

(1980) (WPM). Unless otherwise noted, the following and all remaining procedures within this 

section were conducted in a horizontal laminar flow hood. Test tubes (25 X100 mm) containing 

each medium formulation containing 3% sucrose, either 2 μM thidiazuron (TDZ) or 6-

benzylaminopurine (BA), and were adjusted to a final 5.8 pH. Agar (0.7% w/v) was melted into 

solution and poured into before autoclaving at 121 °C at 15 PSI for 20 minutes. When phenolic 

acid residues accumulated in new cultures, tissues were trimmed upon transfer to new culture 

vessels as necessitated by population size. 

Standard Micropropagation 

Plants were sub-cultured on a four-week growing cycle on WPM based media. Syringa 

Woody Plant Medium (SWPM) (Appendix Table A-1.) in addition to the basic WPM media 

formulation contained 50% of carbohydrates as D-Maltose (M588; PhytoTechnology 

Laboratories®, P.O. Box 12205, Shawnee Mission, KS 66282, USA), 5 µM trans-Zeatin (Z007; 

Caisson Laboratories, 836 South 100, East Smithfield, UT 84335, USA), 1.45 µM Calcium D-

gluconate monohydrate (G4625; Sigma-Aldrich® Co., 3050 Spruce Street, St. Louis, MO 53103, 

USA), 277 µM additional Myo-Inositol, and increased nitrogen ion contents. Ammoniacal 
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nitrogen and potassium nitrate were added to match ammonium to nitrate ratios similar to those 

described in MS through the addition of 18.7 mM ammonium nitrate and 16.3 mM potassium 

nitrate. Mediums were adjusted in accordance with a post autoclaving pH of 5.4 as this varied on 

the size of the pre-autoclave batch size. Mediums were solidified with a combination of 0.4% 

w/v agar and 0.14% w/v Gelrite® (CP Kelco U.S., Inc., Cumberland Center II, 3100 Cumberland 

Boulevard Suite 600, Atlanta, Georgia 30339, USA) The final Syringa spp. micropropagation 

media manipulations included a 50% exchange of sucrose for maltose. 

Regeneration of Whole Plants from Differentiated Somatic Tissues 

In vitro grown tissues at the end of a four week growing cycle were harvested for tissues 

(leaves or internodal stem segments) in the conduct of regeneration experiments. Internodal stem 

segments from S. xchinensis or leaves from S. xprestoniae ‘Dancing Druid’ were trimmed from 

nodes and placed in a petri dish of sterilized ddH20 while accumulating sufficient explant 

volume to fill a couple of treatments. Explants were applied to SWPM (Appendix Table A-1) 

mediums containing an additional 1 g•L-1 malt extract (218630, Becton, Dickinson and 

Company, 1 Becton Drive Franklin Lakes, New Jersey 07417, USA), 1 g•L-1 Amicase®  (Kerry 

Group Services Ltd., Prince’s Street, Tralee, Co. Kerry, V92 EH11, Ireland), 0.01 mg•L-1 D-

biotin (B140, PhytoTechnology Laboratories®), 400 mg•L-1 L-Glutamine (G229, 

PhytoTechnology Laboratories®), 3.5% w/v sucrose, 1.5% w/v maltose and a factorial 

arrangement treatment of TDZ (0, 1.4, 4.0 μM) and NAA (0, 5, 10, 20 μM). Treatments were 

cultured in an incubator with a diurnal cycle with eight hours in the dark at 23 °C and varying 

day to day temperatures between 25-36 °C for 16 hours at 36-40 μmol s-1 of light for the 

competence induction phase (Fig. 2-1). After two weeks of culture on competence inductive 

treatments two to three whole explants were sub-cultured to test tubes or 60 mm petri dishes.  
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Fig. 2-1. Environmental control regime for the competence induction phase of regeneration 

experiments. 

Somatic embryogenesis mediums contained the same basic SWPM media composition 

outlined in the competence induction treatments with 50% of the nitrogen content, 1 mg•L-1 

riboflavin (R9504, Sigma-Aldrich®, Co), 5μM 2-(N-morpholino)ethanesulfonic acid (MES) 

(M825, PhytoTechnology Laboratories®). 

Results and Discussion 

Introduction from Dormant Woody Tissues. 

Many attempts were made to introduce tissues from the landscape to initiate cultures of 

several species and cultivars. As found in Rosa spp., the best tissues were often derived from the 

second and third sub-terminal nodes of the previous growing seasons most vigorous shoots Hsia 

and Korban (1996). Smaller diameter woody explants were significantly wounded during the 

disinfestation procedure with the standard 10% v/v sodium hypochlorite solution. Disinfestation 

treatments of lower exposure time would result in loss of cultures due to contamination. Larger 

diameter explants would precociously exude phenolic acids into the media, which would 
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eventually cause the vasculature to become necrotic and most likely prevented continued flow of 

nutrition to growing shoots.  

Plants etiolated at 5-10 °C in underground storage in February of 2014 were the best 

explant source for initiation of cultures. Many of these tissues were aseptically introduced into 

culture without incident. Promotion of vegetative shoot growth from dormant landscape tissues 

followed these successes. Constriction of the vasculature predominated the early attempts with 

this technique. Bacterial streaming and the rapid accumulation of phenolic acids appeared to be 

the most common causes of cambial discoloration and/or necrosis. To maximize shoot growth a 

fresh cut was made to the bicipital end and placed in fresh sterile solutions on a 2-3 day cycle. 

The addition of 0.1% AC (w/v) and PPM™ (1% v/v) was particularly effective at reducing the 

rate of wound closure between subcultures. To prevent the potential neutralizing activity of AC 

on plant hormones before explant exposure the forcing solution was split into two separate 

solutions. PPM™ could be and was substituted with more effective antibiotic(s) with some 

aseptic culture of Ulmus americana, Prunus glandulosa, and Magnolia xloebneri being 

introduced. Initiation of cultures from shoot forcing treatments were more variable in their 

acclimatization to culture than were etiolated shoots from whole plants. Shoot forcing treatments 

that included gibberellic acid (GA) during elongation fared poorly in the subsequent culturing of 

shoots. Yang and Reed (1991) found that bud break on shoots forced in solutions containing GA 

were developmentally hastened with insufficient chilling hours whereas some treatments that had 

accumulated sufficient chilling hours were deleterious. 

Many cultures of lilac were initiated on MS media containing 2 μM TDZ. New shoots 

initiated on WPM media containing 2.2 μM BA had a reduced number of vitreous shoots 

produced and reduced the amount of callus growth at the bicipital end of new explants. This is 
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likely more related to the choice of cytokinin than the media formulation, though the incidence 

of vitreous shoot development was never eliminated. During the acclimatization of cultures, the 

effect of TDZ had a lasting effect on the proliferation of calluses and shoot growth in subsequent 

cultures. Plants grown on BA containing media were variable in response when subcultured onto 

common media. Whereas explants derived from shoots grown on TDZ containing media would 

often grow several shoots when subcultured onto new mediums. Many of TDZ grown shoots 

were vitreous, or encourage lateral bud to develop new shoots before the end of a subculture. The 

progression and decline of cultures beseeched an alternative plant growth medium formulation. 

Plants of several varieties would show nutritional deficiency symptoms such as speckling of the 

leaf blade, followed by collapse of the petiole, loss of the upper leaves and finally girdling the 

apices. Dr. Deborah McCown of Knight Hollow Nursery Inc. (7911 Forsythia Ct, Middleton, WI 

53562, USA), a wholesale producer of micropropagated ornamentals specializing in Syringa 

spp., recommended an increase in the nitrogen content of the WPM basic formulation, the 

addition of calcium gluconic acid, exchange of BA for ZEA, use of a combinatorial gel matrix 

with agar and gelrite and greater attention to post-autoclave pH. Proportional species 

manipulation of nitrogen to MS levels, the addition of 1.44 mM calcium gluconate and exchange 

of 2.0 μM BA for 5 μM ZEA promoted the development of a regular and predictable cyclic 

growth for most cultivars. The final Syringa spp. micropropagation media manipulations 

included a 50% exchange of sucrose for maltose based on the significant increase in growth rates 

observed in suspension cultures of S. pekinensis ‘Zhang Zhaming’. 

In attempts to regenerate whole plants from terminally differentiated tissues, a series of 

experiments were pursued. Testing different basic formulations of tissue culture media at the 

outset of micropropagation and adventive regeneration resulted in little variation between the MS 
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and WPM. Experiments tested dark inductive periods to light treatments. All treatments 

contained combinations of a full factor level treatment varying a single auxin (2,4-

Dichlorophenoxyacetic acid (2,4-D), Naphthalene Acetic Acid (NAA)) and single cytokinin 

(Thidiazuron (TDZ), 6-Benzyladenine (BA), and Trans-Zeatin (ZEA)). Early unrepeated 

experiments revealed no significant differences between the media formulations during attempts 

at direct organogenesis. Media formulation was abandoned as a treatment factor by the fifth run 

of experiments and all subsequent runs of the experiment were conducted in an incubation 

chamber per the conditions outlined in the materials and methods.  

As found in Azadirachta indica A. Juss, low concentrations of TDZ tended to promote nodular 

green callus (Murthy and Saxena, 1998). These findings are consistent with the outcomes of 

Syringa spp. treatments as shown in Fig. 2-2. A sample of tissues at the subculture from the 

competence inductive period were dissected and examined microscopically. Internodal stem 

segments had developed callus with patterns consistent with the formation of an embryonic 

suspensor. The suspensor elements were localized to the vascular tissues, and most prominent 

with treatments of low or no TDZ and mid to high rates of NAA. Furthermore, these tissues 

developed a polarity-based difference in callus color and derivation. Later examinations of 

undisturbed tissues left in contact with the competence inductive treatments revealed a large 

population of cells with an angular shape and abundant green flecking consistent with the 

overdevelopment of tracheid cells of the vascular xylem. 

Thidiazuron as a plant growth regulator treatment for in vitro regeneration has been 

commonly tested and successfully applied within the Oleaceae (Hammatt, 1994; Karami et al., 

2009). The caveat, as reported by Murthy et al. (1998) is the accumulation of TDZ and the 
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Fig. 2-2. Callus growth response from competence induction treatments. 

Left to right: Naphthalene acetic acid (NAA) 0, 5, 10, 20 μM; Top to bottom: Thidiazuron (TDZ) 

0, 1.4, 4 μM 

residual effect on subsequent culture of shoots for in vitro use or ex vitro establishment. Syringa 

micropropagation cultures frequently responded during early cultivation. The appearance of rich 

green calluses on embryogenesis inductive treatments suggest a correlation between the outcome 

and TDZ. Per the observations on cell developments from competence induction treatments, it 

would be worth testing directed morphogenesis in Syringa with greater attention on the effect of 

duration of exposure. Pulse treatments, short term exposure to hormones or other ques, of high 

levels of auxins or cytokinins is consistent with the reports in the literature. In Arabidopsis 

thaliana explants, Gordon et al. (2007) reported changes in fluorescently labeled reporters of 

auxin responsive DR5 expression inside of the first five days of culture, which subsequently 
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diminished thereafter. The change in abundance of suspected suspensor cells to those more 

consistent in appearance with vascular tracheids suggest the proportion population of different 

cell types proliferated differently over time. Preliminary experiments were conducted to test if 

tissue severance from the original explant would promote the development of the cells of interest 

only, but all tissues failed within seven days.  

The changes that plant cells undergo in the development of de novo organs is a complex 

process with phases of development that vary between species (Ochatt et al. 2010). In broader 

fields of biology and medicine, new horizons in the development of therapies for cancer and 

tissue loss are evolving with continued stem cell research. Studies focusing on the promotion of 

tissue specific somatic cells to dedifferentiate and develop a pluripotent condition has become 

routine in stem cell research (L. Reynolds, personal communication). The integration of 

reprogramming signals such as the transcription factors: c-Myc, Oct3/4, Sox2, and Klf4 have 

been demonstrated to induce pluripotency in stem cells of human, monkey, pig, rat, mouse, dog 

and rabbit (Takahashi and Yamanaka, 2006; Liao et al., 2009; Li et al., 2009; Liu et al., 2008; 

Esteban et al., 2009; Shimada et al., 2009; Honda et al., 2010). In plant systems, plant growth 

regulating substances and nutritional composition are often manipulated to direct differentiation. 

However, the link between hormone signaling and its effects on tissue developmental fate is an 

indirect pathway complexed by many of the aforementioned pre-conditions. The application 

transcription factors via direct delivery of purified proteins or plasmids may someday provide a 

convenient means to direct regeneration.  
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CHAPTER 3. PROTOPLAST ISOLATION AND FUSION 

Abstract 

Few other woody plants embody the preeminence of temperate woody plants in garden 

cultivation like the lilacs. In spite of their relationship, the trees lack the diversity of cultivated 

floral forms observed within the shrub lineages. Typical selection and cross-pollination schemes 

within the tree lilacs have revealed few inherent variations and interspecies crosses have 

repeatedly failed between the two groups. Somatic hybridization is an in vitro technique in plant 

improvement that has demonstrated the ability to overcome the barriers of sexual incompatibility 

across species and familial divides. Protoplast isolation experiments examined various enzyme 

concentrations, formulations, and durations of exposure on protoplast liberation and viability. 

Leaf tissues from in vitro grown plants representing the taxonomic series Syringa (Syringa 

xchinensis) and series Villosae (S. xprestoniae ‘Dancing Druid’) were used as source material for 

those experiments. Protoplast quantity and quality were significantly affected by the interaction 

of enzyme treatments and the duration of exposure (P < 0.05). Equal volumes of leaf derived 

protoplasts of S. xchinensis or S. xprestoniae ‘Dancing Druid’ were mixed with fluorescein 

diacetate (FITC) labeled protoplasts derived from zygotic embryos of S. reticulata ‘Ivory Silk’ 

for electrofusion experiments. The alignment field strength and duration were kept constant to 

test permeation voltage strength and application duration for differences in hybrid yield. Flow 

cytometric analysis revealed putative hybrid signals in all treatment conditions. Differences in 

field strength or application duration treatments were not revealed to have a significant impact on 

hybrid yield. 
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Introduction 

The first studies in protoplast isolation were done by the work of JAF Klercker in 1892 

(Klercker, 1892). Klercker (1982) used leaves of the water plant Stratiotes aloides L. dissected to 

release the cellular contents into a hypertonic solution for further examination. The work was 

forgotten until the isolation and commercial productions of pectinase and cellulase enzymes from 

bacteria (Davey et. al 2005a). These cell wall digesting enzymes were pivotal in bringing 

reproducible results to the study of “naked” cells of cell wall bound organisms. Today the 

isolation of protoplasts involves a composite of enzymes that break down the glycosidic linkages 

in large and small chain branched polysaccharides that make up the cell wall and intercellular 

pectin. The enzyme cocktail with other media components are empirically designed to liberate 

high volumes of protoplasts of similar condition. Protoplast isolation and culture can be utilized 

for a number of different purposes from transient gene expression assays in plant and fungal 

physiology studies to applications like somatic fusion.  

Regeneration of whole plants from differentiated tissues can be elusive without 

compounding the organismal need to restore a functional cell wall, metabolism and cytokinesis. 

As expected with other tissue culture systems, genotype is a significant contributor to the success 

of protoplast isolation and culture (Liu et al., 2003). Though tissues may be isolated from any 

number of plant parts, explant source and physiological age have been shown to have a 

significant impact on the regeneration capacity of isolated protoplasts (Davey et al., 2005a; 

Davey et al., 2005b; Eeckhaut, 2013; Liu et al. 2003). In applied plant breeding efforts, at least 

one parent in the hybridization scheme is a regeneration competent tissue source such as an 

embryogenic callus, embryo tissues or leaves of juvenile plants (Grosser. J. personal 

communication).  
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The waxy cuticle and epidermis of plant tissues are evolutionary adaptations to regulate 

interactions with the environment. As such these protective layers can inhibit the access of 

protoplast digestive solutions and limit the liberation of protoplasts from their cell walls. When 

isolating protoplasts, manipulation of the osmotic environment is essential to the liberation of 

protoplasts from their cell walls and subsequent maintenance of cell turgor (Klercker, 1892). The 

manipulation of solution osmolarity is usually accomplished by varying sugar or sugar alcohol 

concentrations in the mediums used for various applications during protoplast preparation and 

use. The treatment of tissues in a hypertonic solution before enzyme exposure is called 

plasmolysis. Plasmolysis conditioning reduces vacuole water content and plasma membrane 

contact with the cell wall thus providing greater contact of digestive solutions with the cell wall. 

Plasmolysis was essential for Ochatt (1994) who in the early 1990’s isolated Forsythia 

xintermedia ‘Spring Glory’ and other lilac species. 

The components of the digestion media are fairly conserved between experiments and 

experimenters for studies in protoplast research (Liu et al., 2003). The digestion or isolation 

medium components are similar in composition to the plasmolysis media with tissue source 

specific osmoticum adjustments and the addition of enzymes. Plasmolysis and isolation media 

often contain calcium, magnesium, potassium and phosphates to assist in the maintenance of 

plasma membrane stability (Liu et al., 2003). The most common basic protoplast preparation 

solution, Cell Protoplast Wash (CPW), is similar in composition to the commonly used 

phosphate buffered saline solutions used in other biological systems research (Banks and Evans, 

1976).  

Protoplast isolation treatments are often conducted in the dark to prevent media 

photooxidation and free radical interactions with liberated protoplasts. A protocol of best fit for 
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each variable component is empirically derived. The most common variables in a protoplast 

isolation experiment vary duration of exposure to the quality, quantity, and proportions of 

different enzyme combinations. Additional constituents such as pH buffers (2-(N-morpholino) 

ethanesulfolic acid (MES), monosodium or monopotassium phosphates) and phenolic acid 

binding agents such as polyvinylpyrrolidone (PVP) may be added for the mitigation of cellular or 

organelle damage during the digestion process.  

Once protoplasts have been liberated from their cell walls, observations on cell size will 

indicate how media osmolarity is affecting the cellular solution equilibrium. The consideration of 

the size variance bear effects on the incidence of spontaneous fusion, recovery of the cell and the 

restoration of mitosis. Plasmolysis is not only a favorable practice for liberating mesophyll 

derived protoplasts, but has furthermore been found to reduce spontaneous cell fusion incidence 

(Davey et al., 2005b). The importance of monitoring the osmolar equilibrium of medium and 

protoplast cannot be overstated as protoplast liberation is rarely the end goal. The successful 

application of somatic fusion or treatments involved in DNA uptake require some level of 

plasma membrane disruption.  

Once protoplasts are liberated from their cell walls, protoplasts are purified to eliminate 

enzyme solutions and unusable cellular debris. A strained and rinsed suspension of the protoplast 

digest is then purified via equilibrium (isopycnic) centrifugation on a solution density gradient. A 

low density solution is carefully layered over a higher density solution utilizing varying sugars, 

sugar alcohols, or poly-sucrose (i.e. Ficoll®). Purification of the digested material in a Percoll® 

(GE Healthcare Bio-Sciences, P.O. Box 643065 Pittsburgh, PA 15264, USA) density gradient 

(colloidal suspension of PVP coated silica) may help to precipitate phenolic acid contaminants if 

necessary. The principle of the technique permits the suspension of the digest solution in either 
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the high or low density solution as long as the difference between the solution concentration 

favors suspending the viable protoplasts.  

Quantification of protoplasts can be made with most standard hemocytometers with a 

slide and cover slip depth and adjustments to protoplast solution density can be made to a typical 

0.5-10 X 106 cells•mL-1 depending on the needs of the system. Validation and quantification of 

protoplast viability is conducted via fluorescein diacetate (FDA) staining of protoplasts. 

Fluorescein diacetate is readily mobile across the plasma membrane and once met with 

biologically active esterase cleaves the molecule to liberate fluorescein that accumulates within 

the cytosol. The assay itself is a particularly convenient tool for routine examinations and the 

evaluation of treatment conditions on of protoplast colonies. 

De Filippis et al. (2000) reported an almost two-fold advantage in electrofusion 

byproducts over chemically induced fusion. Their report cited several advantages, including an 

increase in the potential for the regeneration of hybrid plants over that of simply isolated 

products alone. Among those observations in electrically stimulated hybrids were the increased 

oxygen consumption profiles, as compared to chemically fused hybrids, as well as greater 

membrane and organelle integrity (De Filippis et al., 2000). 

The principles of protoplast culture, particularly osmoticum, play an important role in 

electrofusion with additional caveats. The electrofusion solution ionic conductivity will change 

the effective field strength applied during the alignment and fusion phases. For fusion to occur a 

neighboring cell, must be in close contact when the plasma membranes disassociate. Cell contact 

in electrofusion is brought about by the application of a dielectrophoretic field where an 

alternating current passes through the cells as the result of greater intracellular electrical 

conductivity than that of the fusion solution. During diploinduction the anode and cathode circuit 
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closes as neighboring cells come in greater cell-to-cell contact in what has been referred to as a 

pearl chain. Estimations on protoplast yield and mean cell size impact the choice of the 

biparental solution density and field strength necessary for reversible electrical breakdown in 

plasma membrane integrity (Zimmerman et al., 1974). The resulting contact between cells and 

the simultaneous application of a direct field current permit the transient plasma membrane 

disruption in those cells in contact with one another. The minimum applied field strength voltage 

necessary for membrane potential breakdown between two adjoining cells is two volts 

(Zimmerman et al., 1974). The critical field strength necessary for membrane breakdown is 

related to contact and which changes with cell size and so critical field strength is estimated as 

two volts divided by 75% of the mean cell diameter (cm) of the two parental populations in 

solution (Zimmerman et al., 1974). Many permutations on the number of pulses and voltages 

applied have been evaluated but empirical evaluations and the best parameter settings are unique 

to each system. Aggregation of protoplasts of common origin may complicate the process and 

the occurrence for autopolyploidy is common. The (pre)treatments that results in the greatest 

yield of true hybrids is thereby the determinant of the system success. 

Protoplast isolation, and fusion where applicable, are stressful procedures and their 

subsequent culturing is paramount to the regeneration of whole plants. As mentioned above, low 

voltage electrical stimulation has been demonstrated to aid in the restoration of the cell cyclic 

growth and development, but several other factors determine the ability to restore the cell wall 

and subsequent mitotic division (De Filippis et al., 2000; Davey et al., 2005a&b). The ability to 

restore the cell growth and development cycle stems from the capacity of those cell lines to 

respire and their competence for hormonal signal perception. Cell wall formation may occur 

within an hour after isolation of protoplasts; however, as was the case for Forsythia xintermedia 
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and other woody plants cell wall development may lag for several days (Ochatt et al. 1994, 

Ochatt et al. 1995). For forsythia and lilacs, the microcallus to callus phase can take up to a 

month before final plating (Ochatt, S. personal communication). The culturing phase requires 

cells to be nurtured in a progressively reduced osmolarity toward the final culture osmoticum 

while directing the signals necessary for typical metabolism and cytokinesis. 

Materials and Methods 

Leaf explant tissues for the conduct of all protoplast isolation and fusion experiments 

were derived from in vitro grown plants sub-cultured on a four-week growing cycle on modified 

(WPM) Lloyd and McCown (1980) based media termed Syringa Woody Plant Medium (SWPM) 

(Appendix Table A-1.). In addition to the basic WPM media formulation contained 50% of 

carbohydrates as D-Maltose (M588; PhytoTechnology Laboratories®, P.O. Box 12205, Shawnee 

Mission, KS 66282, USA), 5 µM trans-Zeatin (Z007; Caisson Laboratories, 836 South 100, East 

Smithfield, UT 84335, USA), 1.45 µM Calcium D-gluconate monohydrate (G4625; Sigma-

Aldrich® Co., 3050 Spruce Street, St. Louis, MO 53103, USA), 277 µM additional Myo-

Inositol, and increased nitrogen ion contents. Ammoniacal nitrogen and potassium nitrate were 

added to match ammonium to nitrate ratios similar to those described in MS through the addition 

of 18.7 mM ammonium nitrate and 16.3 mM potassium nitrate. Mediums were adjusted in 

accordance with a post autoclaving pH of 5.4 as this varied on the size of the pre-autoclave batch 

size. Mediums contained 10 g•L-1 sucrose and10 g•L-1 maltose and were solidified with a 

combination of 0.4% w/v agar and 0.14% w/v Gelrite® (CP Kelco U.S., Inc., Cumberland 

Center II, 3100 Cumberland Boulevard Suite 600, Atlanta, Georgia 30339, USA)  
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Protoplast Isolation 

Plants at the end of a four-week subculture cycle were used for experiments involving 

leaf tissues for protoplast isolation. Protoplast culture medium (designated medium 81) was 

modeled after the Citrus spp. protoplast culture medium (Grosser et al., 2010). Citrus spp. 

protoplast culture medium is principally designed from 8P medium (Kao and Michayluk, 1975) 

to contain at least the levels of the macro- and micronutrient basic salts, as well vitamins utilized 

in Murashige and Tucker (1969). Medium 81 is a protoplast culture medium designed principally 

on 8P, containing tissue culture media components with the macro- and micronutrient basic salts, 

as well as vitamins utilized in SWPM. In addition, 150 mg•L-1 additional Amicase® (A2427; 

Sigma-Aldrich®, Co) casein acid hydrosylate (Liu et al., 2013), 5mM 2-(N-

morpholino)ethanesulfonic acid (MES) and 1% polyvinylpyrolidone (PVP10; Sigma-Aldrich®, 

Co) were added to the culture medium per the recommendations of Dr. Sergio Ochatt (personal 

communication). Mediums were adjusted to a pH of 5.5 as necessary with 1 NHCL or 1 NKOH 

and then filter sterilized.  

Leaf tissues were collected into 100 mm sterile petri dishes containing 8 mL of 0.6M 81 

protoplast culture medium until approximately 2-3g of leaf tissue had been collected. Leaves 

were finely cut using a double edged razor blade and set aside for a brief plasmolysis period of 

15-25 minutes (Ochatt, 1994). After the plasmolysis period, enzyme solutions (Table 3) 

containing varying concentrations of cellulase or pectinase solutions were diluted into the 0.6M 

81 medium and gently distributed before 15 minutes of vacuum infiltration at 50 kPa. Treatments 

were blocked by replicate since collecting sufficient tissue volumes and procedures involved in 

processing were time consuming. All plates were sealed with Parafilm® M (Bemis®, P.O. Box 

2968, Oshkosh, WI 54903, USA) and placed on an incubating shaker at ~30 rpm, 28°C in the 
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dark. Digestion solutions were sampled at designated timeframes of 16, 24, and 32 ±2 hours of 

digestion for analysis. Samples were collected by placing a 100 µm cell strainer into each 

treatment and drawing 1 mL of the digestion slurry. Samples were placed in 1.5 mL 

microcentrifuge tubes and spun at 900 rpm for 9 minutes. 850 µL of the supernatant was 

removed and the pellet was suspended in the same volume of a CPW medium containing 25% 

(w/v) sucrose (CPW25S; Banks and Evans, 1976). 

Table 3-1. Enzyme digestion solution concentrations on dilution 

 

Microscopy analysis 

Protoplasts were stained with fluorescein diacetate according to Power et al. (1989). 

Stained protoplast solutions were added to a 0.1 mm Neubauer improved hemocytometer and 

examined under x10 magnification on the Zeiss Axio Imager M2 platform. Standard brightfield 

images and fluorescence images captured on the DAPI channel were captured on the Zeiss 

 Enzyme 

Category I 

Proportion 

(w/v) 

Enzyme 

Category II 

Proportion 

(w/v) 

Enzyme 

Category III 

Proportion 

(w/v) 

1 Onozuka 

RS1 

1.0% Hemicellulase2 0.75%   

2 Onozuka 

RS1 

1.0% Hemicellulase2 1.00%   

3 Onozuka 

RS1 

1.0% Hemicellulase2 0.75% Driselase®3 0.10% 

4 Onozuka 

RS1 

1.0% Macerozyme R-

101  

0.75%   

5 Onozuka 

RS1 

1.0% Macerozyme R-

101 

1.00%   

6 Onozuka 

RS1 

1.0% Macerozyme R-

101 

0.75% Driselase®3 0.10% 

1. Yakult Pharmaceutical Industry Co., Ltd., 16-21 Ginza 7-Chome, Chuo-Ku,Tokyo 104-

0061 Japan. 

2. No. H2125, Sigma-Aldrich, Co., 3050 Spruce Street St. Louis, MO 53103, USA. 

3. No. D9515, Sigma-Aldrich, Co., 3050 Spruce Street St. Louis, MO 53103, USA. 

(Driselase is a registered trademark of ASKA Animal Health Co. Ltd.) 
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AxioCam HRc Rev3. Manual counts of all images were conducted from image acquisitions. 

Only those data within the focal plane that could readily be distinguished as plant cells were 

counted into total counts. Minimum distinguishing features included a rounded (not angular) 

appearance and the presence of a surrounding cell boundary (plasma membrane). Viability 

counts were made on the basis of presence of fluorescence in 365-nm channel images and the 

presence of a veritable cell count in bright field images as shown in Fig. 3-1. 

Flow cytometry  

The remaining sample volume from replicates were spun at 900 rpm for 9 minutes. 850 

µL of the supernatant was removed and the pellet was suspended in the same volume of a LB01 

solution (Dolezal et al., 1989). Tubes were placed on ice in the absence of light for a period of 5-

20 min. Data was collected on minimum of 100,000 events on a polygonal gate set to on the 

biparametric contour plot of the FL2-A (585/40nm) versus FL3-A (≥675nm) fluorescence 

emission channels as described by D.W. Galbraith (2009) or a maximum of 10 min of data 

collection. Figure 3-2 is a graphical representation of the parameters used in the evaluation of the 

cytometry data. 

 

Fig. 3-1. Microscope slide example used in the evaluation of protoplast counts and viability.  

Left. Fluorescent image capture of fluorescein diacetate stained (viable) protoplasts captured on 

the DAPI band pass filter. Middle. Overlay of the fluorescent image and bright field image used 

in the determination of viable protoplast count. Right. Standard bright field image. 
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Fig. 3-2. Flow cytometric analysis of protoplast isolation treatments. 

Top. Left. Biparametric contour plot of the FL2-A (585/40nm) versus FL3-A (≥675nm) 

fluorescence emission from a consensus plot of a typical protoplast isolation treatment with 

Syringa xchinensis. Top. Middle. Biparametric contour of the FL3-A versus FL2-A plot on 

which final cell counts were gated. Top. Right. Uniparametric histogram of the consensus peaks 

for a typical protoplast isolation treatment. Bottom. Left. Biparametric contour plot of the FL2-A 

versus FL3-A fluorescence emission from a consensus plot of a typical protoplast isolation 

treatment with S. xprestoniae ‘Dancing Druid’ Bottom. Middle. Biparametric contour of the 

FL3-A versus FL2-A plot on which final cell counts were gated. Bottom. Right. Uniparametric 

histogram of the consensus peaks for a typical protoplast isolation treatment. 

Somatic Fusion 

Protoplasts were digested from in vitro grown leaves of both S. xchinensis and S. 

xprestoniae ‘Dancing Druid’ as outlined in the protoplast isolation section for parent A in fusion 

experiments. Protoplast digest solutions were washed and purified according to procedure outline 

in protocol 10.3 in Grosser et al. (2010). Parent B was derived from excised zygotic embryos of 
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S. reticulata ‘Ivory Silk’. Mature seeds were first acid scarified in 96% H2SO4 for approximately 

three min and then continuously rinsed in distilled water until embryo excision. Once excised 

seeds were held in a 3% sucrose solution (3.5 pH) with additional 0.006% Carbenicillin and 

Cefotaxamine until 1-2 min disinfestation with a 1% sodium dichloroisocyanurate dihydrate 

(NaDICC; D253, PhytoTechnology Laboratories®, P.O. Box 12205, Shawnee Mission, KS 

66282, USA) solution. Seeds were rinsed thoroughly in a 13% D-mannitol CPW (CPW13M) 

solution before placement in 60 mm petri dishes. Rinse solutions were removed with a Pasteur 

pipette and 4 mL of CPW13M containing 30 μM of fluorescein 5-isothiocyanate (FITC; F7250, 

Sigma-Aldrich®, Co) Embryos were coarsely chopped with a flame sterilized double edged razor 

blade followed by the addition of 1.5 mL of enzyme solution 6 (see Table 1). Dishes were sealed 

in Parafilm®, wrapped in aluminum foil and placed on an incubating rotary shaker at 28° C and 

30 rpm for 16-24 hours. Protoplast purification proceeded as described for leaf protoplasts, 

modified where 13% D-mannitol containing CPW (CPW13M) solution was used in place of 

CPW25S and a 9% D-mannitol containing CPW (CPW9M) solution was overlain for creation of 

the density gradient. 

Electrofusion solutions and the preparation of protoplast from each parent followed 

protocol 10.6 as described in Grosser et al. (2010). Protoplast quantitation was evaluated under 

standard bright field microscopy and adjustments to protoplast density were made to 0.5 x 106 

cells•mL-1. Following the preliminary procedural evaluations outlined in Nissing (2007) square 

wave pulse number was evaluated on the 200μm microfusion chamber slide. Final fusion 

treatments were conducted in the Eppendorf Helix Fusion chamber. 125 μL of each population 

were homogeneously mixed in the Helix Fusion chamber cuvette. Electroporation setting 

evaluations commonly applied a pre- and post-fusion alignment setting of 1.6 V for 95 s and 3 
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bursts of all varying combinations of the square wave pulse voltage settings of 1000, 2000, and 

4000 V•cm-1 and either 40 or 80 μs durations. Ten minutes were allotted for protoplast hybrids to 

regain their conformation before the cuvette was disturbed. The fusion core was rinsed with 1 

mL of protoplast culture media and subsequently transferred to a microcentrifuge tube and 

placed in a low light condition while the remaining treatment replicates were accumulated. 

Flow Cytometric Analysis of Hybrid Protoplasts 

As the ability to distinguish flow cytometry output relies heavily on relative measures 

and differences in fluorescent signal intensity, a number of positive and negative controls were 

examined. Preliminary and unreplicated controls were used to determine plausible hybrid 

locations within the biparametric contour and uniparamentric histogram plots. Chlorophyll 

autofluorescence was used as the alternative fluorescent signature to identify or distinguish 

hybrids. Leaf mesophyll derived protoplasts were stained with FITC to represent the hybrid 

population. Pure unbiased protoplast solutions of each parental type were run with each 

experiment as shown in Fig.3-3. Homogenous mixes of the pure parental lines suspended in 

fusion media were mixed immediately before analysis to prevent possible spontaneous fusion. 

Flow cytometric analysis of protoplast fusion hybridization treatments were used to establish a 

hybrid count as the gating procedure is shown in Fig. 3-4. Uniparametric histograms of ungated 

FL1-A channel output were rough gated and concurrently gated with FL3-A channel histograms. 

The final gating was adopted to fit the maximum value within each heterogeneous hybrid 

population. As such a different between population and as such was unique to cultivar by cultivar 

combination as best shown in Fig. 3-4 D vs. H. 

 



 

39 

 

 

Fig. 3-3. Biparametric plots of control samples used in the evaluation of somatic fusion hybrid 

populations. 

All plots are the biparametric representations of the FL3-A (≥675nm) versus FL1-A (530/30nm) 

fluorescence emission. Contours on parallel axes represent uniparametric histograms and relative 

signal strength contributing to the biparametric plots. From left to right: A-1. Consensus plot 

from Syringa reticulata ‘Ivory Silk’ protoplasts stained with Fluorescein 5-isothiocyanate 

(FITC). A-2. Homogenous mix of protoplasts from FITC stained S. reticulata ‘Ivory Silk’ and S. 

xchinensis. A-3. Consensus plot from S. xchinensis protoplasts. B-1. Consensus plot from S. 

reticulata ‘Ivory Silk’ protoplasts stained with FITC. B-2. Homogenous mix of protoplasts from 

FITC stained S. reticulata ‘Ivory Silk’ and S. xprestoniae ‘Dancing Druid’. B-3. Consensus plot 

from S. xprestoniae ‘Dancing Druid’ protoplasts.  
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Fig. 3-4. Flow cytometric analysis of protoplast fusion hybridization. 

A. Biparametric contour plot of the FL3-A (≥675nm) versus FL1-A (530/30nm) fluorescence 

emission from a single plot of a typical protoplast fusion treatment between Syringa xprestoniae 

‘Dancing Druid’ and Syringa reticulata ‘Ivory Silk’. B. Biparametric contour of the FL3-A 

versus FL1-A plot on which final hybrid counts were determined. These were preceded by gating 

on the FL2-A versus FSC-A region of panel D. C. Uniparametric histogram of the FL3-A 

emission with ungated FL1-A (grey) compared to gated FL1-A (red) D. Biparametric gating 

procedure applied to on the FL2-A versus FSC-A region of panel E. Biparametric contour plot of 

the FL3-A versus FL1-A fluorescence emission from a single plot of a typical protoplast fusion 

treatment between S. xchinensis and S. reticulata ‘Ivory Silk’. F. Biparametric contour of the 

FL3-A versus FL1-A plot on which final hybrid counts were determined. These were preceded 

by gating on the FL1-A (red) uniparamentric histogram region of panel H. G. Uniparametric 

histogram of the FL1-A emission with ungated FL3-A (grey) compared to gated FL3-A (red) D. 

Uniparametric histogram of the FL1-A emission resulting from the FL3-A subpopulation gates 

(G) with ungated FL1-A (grey) compared to gated FL1-A (red)   
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Experimental Design and Statistical Analysis 

Experiments in protoplast isolation were conducted as a repeated measures experiment of 

a randomized complete block design with three replications. Replicate blocks were randomized 

during the filling of experimental treatments and all treatments were treated as complete at the 

washing of digest solutions with CPW25S. Images of treatments were taken in random order as 

were the flow cytometric analyses. Genotypes were run in separate experiments and all 

experiments were repeated once. Data was analyzed with the mixed procedure in SAS (version 

9.3, SAS Institute, Cary, NC) and time was grouped to define the heterogeneity of the covariance 

R matrix. An unstructured covariance matrix estimation was specified for the covariance 

structure of G. Random statements: run*trt run*duration run*trt*duration were used to for the F 

test was applied in the estimation the least square means and differences in least square means. 

Experiments in protoplast fusion were conducted as a randomized complete block design 

with three replications. Treatments were randomized within blocks during the filling of 

experimental treatments and all treatments were treated as complete on the addition of protoplast 

culture medium. Flow cytometric analysis followed the treatment order. Genotypes were run in 

separate experiments and all experiments were repeated once. Data was analyzed with the mixed 

procedure in SAS (version 9.3, SAS Institute, Cary, NC). The random statements: run rep(run) 

run*volts run*durat run*volts*durat were set to ensure the correct F test was applied in the 

estimation the least square means and differences in least square means. 

Results and Discussion 

According to Liu et al. (2003), longer durations of exposure of the explant tissue to 

digestive solutions increases protoplast yield. In the isolation of lilac protoplasts longer digestion 

exposures did yield higher volumes of lilac protoplasts in several treatments (P < 0.05). 
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However, wide variations in yield preclude the detection of smaller differences in treatments and 

mandate refinement of technique. The most probable causes for variation are related to 

experimental design errors and the variation that arises when up to six hours lapse between 

replicates of the same treatments. Treatments containing hemicellulases from Aspergillus niger 

were significantly different (P< 0.05) from several other treatments with the exception of enzyme 

treatment combinations of similar composition as shown in Fig. 3-5. The value of hemicellulase 

and the knowledge gained from continued inclusion in future tests was evident in the first 

experiments and did not change with time. The manufacturing label list a large range of the 

effective unit concentration (0.3-3.0 units/mg) and narrow glycolytic activity. By comparison the 

macerating enzymes in either Macerozyme R-10 or Driselase® readily produce sufficient 

volumes of protoplasts for further work. Treatments containing Driselase®, in particular, were 

 

Fig. 3-5. Mean comparisons (±SE) of total protoplast per microliter yields as determined by 

microscopy data. 
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very effective at the low concentrations used. Treatments containing Driselase® at higher 

exposure times liberated indistinguishable protoplast yields from those with many of the 

Macerozyme containing treatments. The diversity of glycolytic activity, as reported by the 

vendor, in Driselase® provide a reasonable explanation for the insignificant differences between 

treatments three, four and five (see Table 3-1.) at 32 hours of digestion. This may also indicate a 

plausible explanation as to why the flow cytometry analysis yielded such disparate results from 

microscopic analysis. 

Many of the Macerozyme + Driselase® replicates in either genotype contained a solution 

rich in tissues and organelles. The tissue diversity and quantity would rarely perturb the 

microscopy analysis, but would occasionally congest the sampling tube on the flow cytometer 

and add to the total event count for a given sample. The upper limit for event sampling was 

frequently met within a very small fraction of the sample and the impact of sample size is the 

most probable explanation for a wide variance. 

The optimization of the digestion and early release of protoplasts from their cell walls 

yield poor environmental conditions under increased exposure times leading to losses in cell 

viability (Ortin-Parraga and Burgos, 2003). The Flowjo v10.0 cytometer data analysis suite 

helped to evaluate the fcs flow cytometry data to look for patterns in cell size and complexity. 

Measurements on mean cell size with FSC-A and various comparisons of other parameters were 

attempted, but determined a size calibration standard was needed to make such estimates. Total 

events were compared to the relative debris content were evaluated with several of the plot 

parameter comparisons available with the four channel BD Accuri C6 output.  

Since removal of the epidermis is not a viable option for all plants it becomes apparent 

that preplasmolysis, vacuum infiltration, and the ability to finely dissect leaves with minimal 
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damage become increasingly important. While it may or may not be necessary to assess and 

optimize all of these options in future research a clear understanding of their roles will be 

important. Specifically, the procedure must attempt to mitigate cell damage and subsequent 

release of plant phenolic residues into the digestion solution. As a practitioner becomes familiar 

with the protoplast isolation system the timeframes for preparation and practical use of 

protoplasts place an idealized timeframe for digestion incubation at around 12-16 hours.  

 

Fig. 3-6. Representation of significant (P < 0.05) least square means from viable and total 

protoplast yields of Syringa xchinensis. 

Optimizing the procedures preceding further protoplast manipulations must focus on 

maximum protoplast liberation, to within a 3-12 hour timespan. The pattern demonstrated in Fig. 

3-6 is representative of the loss in protoplast viability over time, but may or may not capture the 

peak viable yield only representative of one side of the distribution and furthermore not evident 

in viable count histograms (Fig. 3-7). Most digestion solutions, regardless of formulation, are 
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utilized around one to two percent (Liu et al., 2003). The best case scenario with dicotyledonous 

leaf tissues would be where the epidermis can be removed mechanically or chemically with little 

tissue damage to the underlying cells. In transient expression assays with Arabidopsis thaliana 

protoplasts, leaves have been physically pulled apart by adhering tape to either side of a leaf and 

pulling them apart (Wu et al., 2009). While this technique appears at the outset to improve short-

term protoplast yield, the challenges in the maintenance of sterile cultures would need to be 

addressed. Removal of the epidermis alone would likely improve protoplast yields, but the waxy 

cuticle alone has been inhibitory in preliminary screenings utilizing surfactants and highly acidic 

or basic solutions. 

  
Fig. 3-7. Mean comparisons (±SE) of viable protoplast per microliter yield. 

Hand-counting protoplasts is advantageous for being able to distinguish patterns. The 

pattern that seems to arise in free protoplasts is that cells with varying chloroplast content appear 

to have differential fluorescence emissions when stained with the cell viability indicator FDA. In 
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order to determine how these cell types might arise in the byproducts of the protoplast digestion 

slurry, it was simply a matter of looking at the transverse sections of a typical leaf blade. In the 

transverse sections of a dicotyledonous plant leaf blade it is possible to distinguish a few 

elements that are common: the cuticle, epidermis, palisade layer, spongy mesophyll, the vascular 

bundle(s), and supporting tissues. The distinction worth noting is where the cells with the most 

abundant chloroplasts reside (chlorenchyma) and where cells with lower chloroplast abundance 

localize (collenchyma) as seen with the transverse section of Syringa vulgaris (Fig. 3-8.). It is in 

this perspective that one can establish that these differences may have a relationship associated 

with another phenomenon observed in other plant in vitro applications: regeneration.  

The parenchymatous cells of the leaf blade are thought to be the most plastic and make 

them well suited to handle the in vivo stresses of wound responses or the reinforcement of tissues 

as a result of tropisms such as light (phototropism), gravity (gravitropism), or touch  

 

Fig. 3-8. Syringa vulgaris transverse leaf blade section. 

Copyright © 2012 by Mihai Costea [ref. DOL47250] http://www.phytoimages.siu.edu. Figure 

used with permission by Mihai Costea. 



 

47 

 

(thigmotropism). Moreover, the plasticity of these tissues make them an excellent tissue source 

for studies in plant biology, biotechnological applications and genetics studies. Often the 

treatments that are applied in a regeneration procedure include the wounding of the leaf tissue or 

the placement of the leaf tissue in an abaxial or adaxial orientation on treatment media. Such was 

the case for Estruch et al. (1991) who found that cytokinin overexpression led to adventive bud 

formation on the adaxial surface of the leaf in close proximity to the vascular system. The 

histological patterns that arise in regeneration from leaf tissue appears to be a phenomenon of 

varied study in the recent past, but has been documented as early as 1959 with Begonia spp. 

leaves by Schraudolf and Reinhardt (1959). According to Fahn (1994), attention to the 

vasculature commonly involves description of the active bundle sheath cells as well as the 

supporting tissues that surround them. Attfield and Evans (1991) went on to support Torrey’s 

1986 description of the adventive organogenesis in tobacco (Nicotiana tabacum) as having a 

similar organizational position as the adventive tissues found in the root pericycle. These root 

pericycle tissues are the source of tissue.  

In personal communication with biologist Mihai Costea, a biologist at Wilfred Laurier 

University with histological experience in Syringa and the Oleaceae, the abundance of these 

cells within the leaf tissue not only localize to the venation on many dicotyledonous plants, but 

are furthermore most abundant at the base of leaf blades. Their appearance under a typical 

compound microscope is also reminiscent of another kind of cell: a meristem. According to Fahn 

(1990), meristems are usually thin-walled more isodiametric in shape, and rich in protoplasm. 

When meristematic cells are liberated from their cell walls they can furthermore be characterized 

by their lack of pigmented plastids, which are often in the proplastid (undifferentiated) stage of 

development (Fahn, 1990). 
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The aforementioned distinguishing features of leaf blade also have an impact on the 

consideration to utilize native chlorophyll as a means to distinguish the hybrid populations. 

While chloroplasts emit a strong fluorescent signal, variation in the signal strength may yield 

reduced hybrid detection. Regardless, the hybrid populations derived from the various 

electroporation settings revealed no significant differences in treatments. Treatments applied 

regularly produced somatic fusion hybrids (Fig 3-9), yet the yields of these different groups was 

small. The individual runs of hybridization treatments had significant voltage treatment effects in 

the S. xprestoniae ‘Dancing Druid’ x S. reticulata ‘Ivory Silk’ populations, yet the outcome in the 

second run did not confirm the same results. 

 

Fig. 3-9. Protoplast fusion hybridization and heterogeneous mix of plant protoplasts. 

Left is a representation of pearl chain alignment under dielectrophoretic field conditions 

following fusion (x40). Right is a fluorescent image of FITC labeled protoplasts (green) 

chlorophyll emission (red) and characteristic oblong shape associated with suspected hybrids 

(orange) (x40). 

 

The challenge in identifying hybrids in the number of plots that can be generated is no 

small task. The challenge of purifying channel data on a two dimensional plot are two-fold. Once 

the population resulting from a subset of the population of other plots (gating) are plotted in the 

same or different channel distribution plots, a shift in the intensity (as shown in Fig. 3-4. E vs. F) 

can result and parent or grandparent gates may need to be adjusted accordingly. When multiple 
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gating parameters need to be used to find the sub: sub-populations it is fastest to set the gating 

parameters concurrently. There is no substitute for experience, and each plot may require 

additional fine resolution adjustment to set the gates in accordance with the data as it was 

plotted. The last and perhaps most important issue is that hybrids present data from both 

populations in the entire plot. The unique signature of hybrids may not be evident in any of the 

typical uniparamentric histograms or biparametric contour plots. Three dimensional 

representations of biparametric contour plots (terrain plots) presented the data in a way that 

clearly identified features unique to hybrid populations. Unfortunately, software malfunctions 

prevented their presentation here. Redenbaugh et al. (1982) utilized a single channel versus a 

representation of two channels (proportional) in terrain plots to identify the fluorescent signal 

composition of hybrids.  The means to distinguish different populations based on the fluorescent 

signals is a prerequisite to sort the heterokaryon population from the heterogeneous fusion mix. 

References 

Attfield, E.M. and P.K. Evans. 1991. Developmental pattern of root and shoot organogenesis in 

cultured leaf explants of Nicotianum tabacum cv. Xanthi nc. J. Exp. Bot. 42(234): 51-57. 

Banks, M.S. and P.K. Evans. 1976. A comparison of the isolation and culture of mesophyll 

protoplasts from several Nicotiana species and their hybrids. Plant Sci. Lett. 7:409-416. 

Galbraith, D.W. 2009. Simultaneous flow cytometric quantification of plant nuclear DNA 

contents over the full range of described angiosperm 2C values. Cytometry Part A. 

75A:692-698. 

Davey M.R., P. Anthony, J.B. Power, and K.C. Lowe. 2005a. Plant protoplast technology: 

Current status. Acta Phys Plant 27(1):117-129. 

Davey M.R., P. Anthony, J.B. Power, and K.C. Lowe. 2005b. Plant protoplasts: Status and 

biotechnological perspectives. Biotech. Adv. 23:131-171. 

De Filippis, L.F., R. Hampp, and H. Ziegler. 2000. Membrane permeability changes and 

ultrastructural abnormalities observed during protoplast fusion. J. Plant Phys. 156:628-

634. 



 

50 

 

Doležal, J., P. Binarová, and S. Lucretti. 1989. Analysis of nuclear DNA content in plant cells by 

flow cytometry. Biologia Plantarum (Praha). 31(2):113-120. 

Eeckhaut, T., P.S. Lakshmanan, D. Deryckere, E. Van Bockstaele, and J. Van Huylenbroeck. 

1991. Progress in plant protoplast research. Planta. 238:991-1003. 

Fahn, A. 1990. Plant anatomy. 4th ed. Pergamon Press. Oxford, New York. 

Grosser, J.W., M. Ćalović, and E.S. Louzada. 2010. Protoplast fusion technology – Somatic 

hybridization and cybridization, p. 175–198. In: M.R. Davey and P. Anthony. Plant cell 

culture: Essential methods. Wiley-Blackwell. The Atrium, Southern Gate, Chichester, 

West Sussex, PO19 8SQ, UK. 

Kao, K.N. and M.R. Michayluk. 1975. Nutritional requirements for growth of Vicia hajastana 

cells and protoplasts at a very low population density in liquid media. Planta. 126:105-

110.  

Klercker J.A.F. 1892. Eine methode zur isolierung lebender protoplasten. Ofvers. Vetensk. 

Akad. Forh. Stokh. 9: 463-475. 

Liu, J., X. Xu, X. Deng. 2003. Protoplast isolation, culture and application to genetic 

improvement of woody plants. J. Food Agri. & Envir. 1(3-4):112-120.    

Liu, C.P., L. Yang, H.L. Shen, and J.M. Cong. 2013. Somatic embryogenesis and plant 

regeneration from immature embryo cotyledons of Syringa reticulata Blume var. 

Mandshurica Hara. Prop. Orn. Plants. 13(2):65-72. 

Lloyd, G. and B. McCown. 1980. Commercially feasible micro-propagation of Mountain Laurel 

(Kalmia latifolia), by use of shoot-tip culture. Proc. Intern. Plant Prop. Soc. 30:421-427.  

Murashige, T., D.P.H. Tucker. 1969. Growth factor requirements of Citrus tissue culture. Proc. 

First Intl. Citrus Symp. 3:1155–1161.  

Nickrent, D.L., Costea, M., Barcelona, J.F., Pelser, P.B. & Nixon, K. 2006 onwards) 

PhytoImages. Available from: http://www.phytoimages.siu.edu.  

Nissing, E., A. Müller, and N. Weiß. 2007. Determinations of suitable electrofusion parameters 

for the somatic hybridization of mint protoplasts with the Eppendorf Multiporator®. 

Applications. Note142:1-5. 

Ochatt, S.J. 1994. Plant regeneration from protoplasts of Forsythia X intermedia cv. Spring 

Glory. Abstracts IAPTC VIII Int. Congr. Plant Tiss Cult. Florence, Italy: 27. 

Ochatt, S.J., and E.M. Patat-Ochatt. 1995. Protoplast technology for the breeding of top-fruit 

trees (Prunus, Pyrus, Malus, Rubus) and woody ornamentals. Euphytica 85:287-294 

Kluwer Academic Publishers, Netherlands. 



 

51 

 

Power, J.B., M.R. Davey, M.S. McLellan, and D. Wilson. 1989. Laboratory manual: Plant tissue 

culture. Plant Genetic Manipulation Group. Dept. of Botany. Univ. of Nottingham. 

Schraudolf, H. and J. Reinert. 1959. Nature. 184:465-466. In: Plant Propagation by tissue 

Culture.(George EF & Sherrington PD.eds.) 1984. Eastern Press, England. 

Torrey, J.G. 1986. Endogenous and exogenous influences of the regulation of lateral root 

formation. p. 31-66. In: M.B. Jackson. Developments in plant and soil sciences. Vol. 20. 

New root formation in plants and cuttings. Martinus Nijhoff Publishers. Dordrecht.  

Wu, F.H., S.C. Shen, L.Y. Lee, S.H. Lee, M.T. Chan and C.S. Lin. 2009. Tape-Arabidopsis 

sandwich - a simpler Arabidopsis protoplast isolation method. Plant Meth. 5:16 doi: 

10.1186/1746-4811-5-16. 

Zimmerman, U., G. Pilwat, and F. Rieman. 1974. Dielectric breakdown of cell membranes. 

Biophys. J. 14:881-899.  



 

52 

 

CHAPTER 4. MOLECULAR MARKER ESTABLISHMENT FOR THE 

IDENTIFICATION OF HETEROKARYONS 

Abstract 

The application of marker assisted selection is essential in the development of somatic 

fusion hybrids. Auto-polyploidization is inevitable when contact between heterogeneous cells is 

left to chance. While simple karyotype and phenotypic assessments can be made on cell colonies 

and eventually on regenerated plants, subsequent culturing of cell colonies of unknown hybrid 

origin is costly. A molecular marker based assay was developed in preparation of assays used to 

differentiate heterokaryons from allopolyploids. Introns within low-copy nuclear genes were 

targeted to identify polymorphic markers for marker assisted selection. Since low-copy nuclear 

coding sequences have an increased selective pressure for sequence integrity these regions would 

be unlikely to give rise to an informative polymorphism. Insertion or deletion (indel) mutations 

within non-coding introns, may give rise to informative and cost effective molecular markers. In 

the development of a suite of informative markers we targeted four genes within the flavanol and 

anthocyanin biosynthetic pathways. Intron spanning degenerate primers were designed based on 

the BLAST consensus sequence alignments from members of the core eudicots. Preliminary 

screenings revealed the highest consistency and information content when exonic primers 

spanning intron 2 of a putative dihydroflavonol 4-reductase (DFR) gene was applied to the 13 

Syringa species, S. hybrids and additional genera tested from within the Oleaceae. Amplicon 

sequencing revealed consistent 5-13 base pair differences unique to each taxonomic series of 

Syringa tested. As a codominant marker system these kinds of markers can be a very effective 

means to identify and distinguish heterokaryons and allopolyploids in a diverse population of 

similar hybrids. 
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Introduction 

Since the 1970’s, molecular marker assisted selection (MAS) has been a tool that has 

allowed breeders the opportunity to move from phenotypic scoring novel germplasm to a 

genotypic selection system. The utility of MAS is vast and can be applied to marker trait 

associations for characteristics of interest, taxonomic ordering and phylogenetic studies. The 

applications of molecular markers are increasingly important for scientists and breeders to 

understand and apply. The applications of the marker system, and the resources at a breeders 

disposal are important considerations in the integration of MAS to the program. To date 

information on molecular marker systems suited for applied breeding purposes in lilac (Syringa 

spp.) improvement are not common. Microsatellites have been described in the species 

conservation efforts of S. josikaea (Lendvay et al., 2013) and germplasm collection integrity has 

been successfully maintained with the application of RAPD’s (Kochieva, et al. 2004).  

The correct identification of hybrids in the in vitro breeding of hybrids, somatic fusion, 

makes the successful application of molecular markers tantamount to success. When a 

heterogeneous population of protoplasts are stimulated with short electrical bursts, thousands of 

individual hybridization events occur simultaneously. These electrical impulses stimulate the 

transient cell membrane disruption and pore formation that permit spontaneous fusion of two or 

more cells. The inevitability for fusing multiple cells of the same species makes the process of 

culturing colonies of cells of unknown origin a daunting task to sort through. Verification of 

hybridity permits sorting through colonies to find a population of cells worthy of continued 

culture, and the effort involved in regeneration. One particular method to determine true 

heterokaryons, or cells with nuclear material derived from multiple origins, would be similar to 

the techniques applied in phylogenetic or diversity studies.  
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Low copy highly conserved genetic sequences have a low threshold tolerance for 

mutations and as such, few mutations have occurred throughout evolution. Mutations of these 

types of genes have a high opportunity cost since loss of function changes are potentially lethal. 

As the coding sequences would have an increased pressure for the maintenance of sequence 

integrity these regions would be highly unlikely to give rise to an informative marker. However, 

the variations giving rise to an informative insertion or deletions (indels) may be found in the 

less conserved intron regions of the sequence (Sang, 2002; McClean et al., 2004 & 2007). Since 

non-coding intron regions have a reduced impact on the plant physiology, mutations within the 

intron may give rise to informative molecular markers. The indels could be readily identified 

through a simple polymerase chain reaction (PCR) based assay where the primers are based on 

the forward 5’ end of the exon sequence and the reverse of the 3’ end of the downstream coding 

sequence that reside on either side of an intron of interest. Different alleles could readily be 

scored through differential sorting of amplicons based on the length of fragment sequences in an 

electrophoretic gel (McClean et al., 2004).  

Sequences like that of dihydroflavonol 4-reductase (DFR), chalcone isomerase (CHI), 

flavanone 3-hydroxylase (FHT), and flavonol synthase (FLS) are examples of highly conserved 

low copy genetic sequences that are involved in the flavonol and anthocyanin biosynthetic 

pathway. The nucleotide sequence has been determined in a number of species and as such can 

give a predictive genetic primer design template. The 20 amino acids that make up proteins are 

coded by 64 possible codon combinations. Therefore, multiple codon sequences can give rise to 

the same translated amino acid; called degeneracy. Multiple species with alignment of nucleotide 

sequences of the same gene can also give rise to the same translated protein sequence yielding 

differences in areas where a primer may be chosen; called redundancy. Alignment of sequenced 
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DFR genes from multiple genera with a shared evolutionary history can elucidate introns flanked 

with exons of satisfactory shared homology for primer design.  

Materials and Methods 

Plant Material  

Leaf tissues were sampled for the analysis of sequence diversity. Plants of different 

taxonomic series were originally selected on phylogenetic similarities between the different 

groups with greater, moderate and divergent evolutionary histories (Kim and Jansen, 1998; Li et 

al., 2012). The cultivars included in this study included representatives from four taxonomic 

groups of the Syringa series Ligustrina: S. pekinensis 'Zhang Zhiming' (01), S. pekinensis 

‘Morton’ (12), series Syringa: S. xchinensis (03), series Pubescentes: S. 'Penda' (24), and series 

Villosae: S. xprestoniae ‘Miss Canada’ (06), S. xprestoniae ‘James Mcfarlane’ (05), S. 

xprestoniae ‘Donald Wynman’ (07), S. xprestoniae ‘Minuet’ (13), S. xprestoniae ‘Dancing 

Druid’ (14).  

DNA Isolation, PCR Amplification and Sequence Analysis 

Leaf tissues were excised from tissue culture grown plants and landscape plantings on the 

campus of North Dakota State University (NDSU; Fargo, ND, USA). Approximately 500-1000 

mg of tissue was collected from each sample species, frozen in liquid nitrogen and stored at -80 

°C until all tested varieties had been accumulated. Under liquid nitrogen the tissue was crushed 

and approximately 50-100 mg of coarse ground tissue was collected for extraction using the IBI 

Scientific Genomic Plant DNA Mini Kit (IB47231, IBI Scientific 9861 Kapp Court Peosta, IA 

52068, USA). DNA concentration was quantified on the NanoDrop™ 2000 spectrophotometer 

(ND-2000, Thermo Fisher Scientific, 81 Wyman Street, Waltham, MA 02451, USA). DNA 

concentration was adjusted to 15-20 ng/µL by adding MilliQ water or concentrated on a Savant 
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DNA120 vacuum concentrator. Tissue samples were preliminary screened with a degenerate 

primer set as described in McClean et al. (2004). The DFR nucleotide sequences from Forsythia 

xintermedia (Y09127.1), Capsicum annuum (JN885196.1), Camellia sinensis (AY648027.1), 

Fragaria vesca (KC894053.1), Solenostemon scutellarioides (EF522155.1 & EF522156.1), 

Torenia hybrida (AB012924.1), Mimulus aurantiacus (EU305679.1 & EU305680.1), Angelonia 

angustifolia (KF285561.1 & KJ817183.1), Erythranthe lewisii (KJ011136.1), and Scutellaria 

viscidula (FJ605512.1) were aligned with Multalin software 

(http://multalin.toulouse.inra.fr/multalin/ multalin.html) to assess intron and exon sequence 

diversity for plausible intron spanning primer sites (Corpet, 1988). Primers were designed based 

on sequence data from Forsythia x intermedia (Y09127.1) spanning the second intron as forward 

5’-GTG TTC ACT TCC TCT GCT GGA ACT GT-3’ (FiDFR-i2) and reverse 5’-GGG AGT 

TAA CAT CCG AAC TAG TGA AGT A-3’ (FiDFR-e2r). Fifteen nanograms of DNA were 

used for each cultivar and amplified using the reagent concentrations described in Brady et al. 

(1998) and amplification conditions of 94 °C for 3 min; 45 cycles of 94 °C for 20 seconds, 55 °C 

for 30 seconds, and 72 °C for 1 min; 1 cycle of 72 °C for 10 min. Amplified fragments were then 

purified on a 2% agarose containing Tris-borate-EDTA (TBE) gel. Fragments were cut from the 

gel and further purified with the Wizard® SV Gel and PCR Clean-up System (A9281, Promega 

Corporation 2800 Woods Hollow Road, Madison, WI 53711, USA). Amplified fragments were 

sequenced on the ABI 3730xl DNA Sequencers by Eton Biosciences (Eton Bioscience, Inc. 5820 

Oberlin Drive, Suite 108, San Diego, CA 92121, USA). Sequence data were aligned with 

Multalin (Corpet, 1988). 
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Results and Discussion 

Preliminary screenings with degenerate primers specific to anthocyanin and flavonol 

genes (CHI, FLS, FHT, and ANS) demonstrated conservation of sequence integrity for low copy 

nuclear genes. At varying annealing temperatures these primer sets were indicative of some of 

the diversity within Syringa spp. Consistency within the original assessments required 

refinement for downstream analysis of somatic fusion hybrids. Degenerate primers from DFR 

regularly amplified greater information content and were subsequently targeted for refinement 

through primer redesign and expansion of the original assessment panel.  

Changing the pairing affinity for the DNA and the primer sets by lowering annealing 

temperature yielded expected changes in the number of amplified bands. Multiple bands from S. 

xprestoniae ‘Miss Canada’ along with the predominant bands from the other cultivars were 

sequenced to assess the amplification of intron 2 of DFR. Early attempts had a variety of 

sequences that would align to nonspecific regions of the genome. The first redesigned primer set, 

as described within the materials and methods section, was designed within the exon to provide 

an increase in the amount of conserved exon sequence present for alignment purposes. 

Sequence diversity for the tested varieties demonstrated indel polymorphisms unique to 

each taxonomic series (Fig. 4-1.). Common indels grouped taxonomic series together without 

exception in the panel assessed. The Villosae series was the only group to have a SNP at the 

sixth base pair downstream of the forward primer (Fig. 4-2.). This SNP uniquely distinguished S. 

xprestoniae ‘Miss Canada’ from the remainder of the group. The conservation of sequence data 

within the tested population bolsters the utility of low copy nuclear molecular markers for the 

screening of a somatic fusion hybrid population. 
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Fig. 4-1. Nucleotide polymorphisms among tested Syringa spp. intron 2 of dihydroflavonol 4-

reductase.  

Black letters indicate consensus sequence. Gray letters indicate low consensus sequence. Dashes 

(-) indicate indels. (01) Syringa pekinensis ‘Zhang Zhaming’, (03) Syringa xchinensis, (05) 

Syringa xprestoniae ‘James Mcfarlane’, (06) S. xprestoniae ‘Miss Canada’, (07) S. xprestoniae 

‘Donald Wynman’, (12) Syringa reticultata, (13) S. xprestoniae ‘Minuet’, (14) S. xprestoniae 

‘Dancing Druid’, (24) S. ‘Penda’. 

 
            1                                    35             50 

S.xpres.14  TCAGTAGAAG GAAGTTTTGA CGAAGCAATT CATGTCTGTG AAGGAGTATT 

S.xpres.05  TCAGTAGAAG GAAGTTTTGA CGAAGCAATT CATGTCTGTG AAGGAGTATT 

S.xpres.13  TCAGTAGAAG GAAGTTTTGA CGAAGCAATT CATGTCTGTG AAGGAGTATT 

S.xpres.07  TCAGTAGAAG GAAGTTTTGA CGAAGCAATT CATGTCTGTG AAGGAGTATT 

S.xpres.06  TCAGTAGAAG GAAGTTTTGA CGAAGCAATT CATGGCTGTG AAGGAGTATT 

Consensus   TCAGTAGAAG GAAGTTTTGA CGAAGCAATT CATGtCTGTG AAGGAGTATT 

Fig. 4-2. Single nucleotide polymorphism (SNP) located 5 bases downstream of the forward 

primer (FiDFR-i2) within the Villosae taxonomic series of the genus Syringa. 

(05) Syringa xprestoniae ‘James Mcfarlane’, (06) S. xprestoniae ‘Miss Canada’, (07) S. 

xprestoniae ‘Donald Wynman’, (13) S. xprestoniae ‘Minuet’, (14) S. xprestoniae ‘Dancing 

Druid’ 
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S.xchin.03  CTAATTAACT AATCCA---- --------AG GTGCTTTTTG CCTTTGAAAT AGA------- ----AAGATA TAATCTTCAA AATGACAGAA TGAAGTGATC 

S.xpres.14  ATTATTAATT AACACACACC TATTGGAAAA GGTGCTTCTG CTTTTGAAAT ACGT------ --ACAAAATT TAATCTTCAA AATGACAGAA TGAAGTGATC 

S.xpres.05  ATTATTAATT AACACACACC TATTGGAAAA GGTGCTTCTG CTTTTGAAAT ACGT------ --ACAAAATT TAATCTTCAA AATGACAGAA TGAAGTGATC 

S.xpres.07  ATTATTAATT AACACACACC TATTGGAAAA GGTGCTTCTG CTTTTGAAAT ACGT------ --ACAAAATT TAATCTTCAA AATGACAGAA TGAAGTGATC 

S.xpres.13  ATTATTAATT AACACACACC TATTGGAAAA GGTGCTTCTG CTTTTGAAAT ACGT------ --ACAAAATT TAATCTTCAA AATGACAGAA TGAAGTGATC 
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APPENDIX 

Table A-1. Composition of Syringa micropropagation media 

 mass (mg•L-1) μM 

Organics   

Myo-Inositol 150 832.5933 

Glycine 2 26.6418 

Nicotinic Acid 0.5 4.061738 

Pyridoxine HCl 0.5 2.431907 

Thiamine HCL 1 2.964984 

Phosphates & Oxides   

Potassium Phosphate Monobasic 174.26 1280.514 

Boric Acid 6.2 100.2701 

Sodium Molybdate 0.25 1.033485 

Nitrates   

Ammonium Nitrate 1231.4 15384.81 

Potassium Nitrate 1242 12284.87 

Calcium Nitrate 556 2354.436 

Calcium   

Calcium Chloride 96 653.0612 

Calcium Gluconate 650 214.1439 

Sulfates   

Magnesium Sulfate Heptahydrate 374.52 1519.474 

Manganese Sulfate Monohydrate 22.3 131.937 

Zinc Sulfate Heptahydrate 8.6 29.91304 

Cupric Sulfate Pentahydrate 0.25 1.001201 

Potassium Sulfate  990 5681.166 

Iron   

Disodium Ethylenediaminetetraacetic Acid 37.25 100.0698 

Ferrous Sulfate Heptahydrate 27.85 100.1799 

Carbohydrates   

Sucrose 10000  

Maltose 10000  

Gelling Agents   

Agar 4000  

Gelrite® (Gellan Gum) 1400  

pH (post autoclavation target) 5.4  
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Table A-2. Analysis of variance for the effects of hybrid counts and hybrid portion for both 

experimental runs of the Syringa xchinensis X S. reticulata ‘Ivory Silk’ tests of the Epppendorf 

Multiporator® electroporation settings (1000, 2000, and 4000 V•cm-1) and 40 or 80 μs of voltage 

application. 

Effect Num 

DF 

Den 

DF 

F Value Pr > F 

volts 2 11 0.17 0.8429 

durat 1 11 2.28 0.1595 

volts*durat 2 11 1.67 0.2332 

Run 1 Hybrid counts 

Effect Num 

DF 

Den 

DF 

F Value Pr > F 

volts 2 10 0.02 0.9831 

durat 1 10 1.87 0.201 

volts*durat 2 10 1.18 0.3455 

Run 2 Hybrid counts 

Effect Num 

DF 

Den 

DF 

F Value Pr > F 

volts 2 11 0.32 0.7328 

durat 1 11 3.24 0.0992 

volts*durat 2 11 2.38 0.1388 

Run 1 Hybrid portion 

Effect Num 

DF 

Den 

DF 

F Value Pr > F 

volts 2 10 0.02 0.9809 

durat 1 10 1.74 0.2167 

volts*durat 2 10 1.17 0.3491 

Run 2 Hybrid portion 
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Table A-3. Analysis of variance for the effects of hybrid counts and hybrid portion for both 

experimental runs of the Syringa xprestoniae ‘Dancing Druid’ X S. reticulata ‘Ivory Silk’ tests 

of the Epppendorf Multiporator® electroporation settings (1000, 2000, and 4000 V•cm-1) and 40 

or 80 μs of voltage application. 

Effect Num 

DF 

Den 

DF 

F Value Pr > F 

volts 2 10 5.43 0.0253 

durat 1 10 2.82 0.1242 

volts*durat 2 10 0.07 0.9337 

Run 1 Hybrid counts 

Effect Num 

DF 

Den 

DF 

F Value Pr > F 

volts 2 10 6.62 0.0148 

durat 1 10 3.12 0.108 

volts*durat 2 10 1.98 0.1892 

Run 2 Hybrid counts 

Effect Num 

DF 

Den 

DF 

F Value Pr > F 

volts 2 10 5.43 0.0254 

durat 1 10 2.82 0.1238 

volts*durat 2 10 0.07 0.9334 

Run 1 Hybrid portion 

Effect Num 

DF 

Den 

DF 

F Value Pr > F 

volts 2 10 3.75 0.0608 

durat 1 10 0.23 0.6392 

volts*durat 2 10 3.88 0.0566 

Run 2 Hybrid portion 
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Table A-4. Analysis of variance for the effects of enzyme treatment and duration of exposure on 

microscope collected data of protoplast counts and viable protoplast counts as well as flow 

cytometric collected data on total protoplast counts for Syringa xchinensis. 

Effect Num 

DF 

Den 

DF 

F Value Pr > F 

trt 5 5 7.08 0.0255 

Duration 2 2 7.16 0.1226 

trt*Duration 10 10 2.16 0.1205 

Flow cytometric collected data on protoplast counts 

Effect Num 

DF 

Den 

DF 

F Value Pr > F 

trt 5 5 7.41 0.0232 

Duration 2 2 7.21 0.1218 

trt*Duration 10 10 3.43 0.0325 

Fluorescence microscopy collected data on viable protoplast counts 

Effect Num 

DF 

Den 

DF 

F Value Pr > F 

trt 5 5 6.14 0.0341 

Duration 2 2 84.39 0.0117 

trt*Duration 10 10 9.56 0.0007 

Bright field microscopy collected data on total protoplast counts 
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Table A-5. Analysis of variance for the effects of enzyme treatment and duration of exposure on 

microscope collected data of protoplast counts and viable protoplast counts as well as flow 

cytometric collected data on total protoplast counts for Syringa xprestoniae ‘Dancing Druid’. 

Effect Num 

DF 

Den 

DF 

F Value Pr > F 

trt 5 5 21.47 0.0022 

Duration 2 2 2.11 0.322 

trt*Duration 10 10 1.72 0.2036 

Flow cytometric collected data on protoplast counts 

Effect Num 

DF 

Den 

DF 

F Value Pr > F 

trt 5 5 6.35 0.0318 

Duration 2 2 3.18 0.2393 

trt*Duration 10 10 3.48 0.0309 

Fluorescence microscopy collected data on viable protoplast counts 

Effect Num 

DF 

Den 

DF 

F Value Pr > F 

trt 5 5 21.44 0.0022 

Duration 2 2 8.34 0.107 

trt*Duration 10 10 4.72 0.011 

Bright field microscopy collected data on total protoplast counts 

 


