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ABSTRACT 

This study investigated the concurrent validity of two accelerometer-based physical 

activity (PA) monitors, the wrist-worn Fitbit Flex, and ActiGraph’s hip-worn GT3X+. 

Specifically, we examined the relationship, differences, and level of agreement between Fitbit 

and GT3X+ sedentary behavior (SED) and moderate-to-vigorous PA (MVPA) estimates. 

Sixty-seven adults (mean age: 47.1 ± 14.1, female: 73.1%) from North Dakota State 

University wore the Fitbit and GT3X+, and logged any sleep and non-wear time, for seven 

consecutive days in free-living conditions. GT3X+ estimates were calculated using ActiGraph 

Freedson, Troiano, and Freedson’s VM3 cut-points. Fitbit estimates were calculated via Fitabase. 

Only data during waking hours where both PA monitors were worn were analyzed.   

Fitbit and GTX+ estimates strongly correlated. Fitbit produced similar SED (mean 

difference = -35.83 minutes (min)/day), but significantly higher MVPA (mean differences = -

59.7 – 77.41 min/day) to GT3X+. As the mean volume of MVPA increased, so did differences 

between Fitbit and GT3X+ estimates. 
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INTRODUCTION 

Physical activity (PA) is essential for maximizing well-being and reducing the burden of 

chronic disease. Indeed, the many health benefits associated with PA are well documented.1,2 

Performing PA may lower resting blood pressure, improve fasting blood glucose levels, reduce 

depressive symptoms, and enhance quality of life.3,4 In addition, engaging in regular PA may 

protect against disease and premature death.5 Results from epidemiological studies demonstrated 

a clear dose-response relationship between PA and all-cause mortality. Findings from the 

Harvard Alumni and Aerobics Center Longitudinal studies showed that adults with higher levels 

of PA have a lower risk of pre-mature death.6-8 Subsequent studies demonstrated this protective 

effect extends to disease morbidity. Prospective studies, such as the Nurses’ Health study, 

provide evidence of PA’s protective effect against pre-mature mortality in women. Adults 

engaging in little to no PA are at greater risk than active counterparts for chronic diseases such as 

CHD,9 type 2 diabetes (T2D),10 hypertension,11 and certain cancers, such as breast cancer in 

women and colon cancer in both men and women.12,13 These results join a wide body of evidence 

supporting the notion of a dose-response relationship between habitual PA and health   

benefits.14-16 

As a result of accumulated evidence on relationships between PA and health, researchers 

and public health officials recognized the advantages of engaging in regular PA. In 1995, Centers 

for Disease Control and Prevention (CDC) and American College of Sports Medicine (ACSM) 

published PA recommendations emphasizing the value moderate intensity PA and not merely 

exercise which typically consisted of vigorous intensity PA aimed at improving fitness.17 These 

recommendations proposed that all adults acquire at least 30 minutes of moderate intensity PA 

on most or all days of the week. The American Heart Association (AHA) and ACSM updated 
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these recommendations in 2007, highlighting the significance of moderate-to-vigorous PA 

(MVPA). The update broadened the previous CDC/ACSM recommendations by endorsing a 

minimum weekly volume of MVPA achieved in bouts ≥ 10 minutes. This amount of weekly PA 

was considered the minimum needed to obtain health benefits from PA. However, adults were 

encouraged to exceed the minimum dose to realize further health benefits and protect against 

undesired weight gain.   

Supported by previously published PA recommendations, in 2008, the Department of 

Health and Human Services published the first ever Physical Activity Guidelines for 

Americans.18 The guidelines outlined the benefits associated with regular PA and established a 

weekly PA prescription for adults as well as guidelines for other populations such as adolescents 

and older adults. Similar to the previous recommendations, the current PA guidelines set forth a 

minimum weekly PA volume of “health-enhancing” PA, differentiating this from “baseline” PA 

which was simply PA limited to low-intensity activities of daily living. Adults could achieve the 

minimum health-enhancing PA through: 1) ≥150 minutes of moderate intensity PA per week, 2) 

≥ 75 minutes vigorous intensity PA per week, or 3) accumulating any equivalent combination of 

MVPA, performed in bouts lasting ≥ 10 minutes. Individuals who do not accumulate this 

recommended level of weekly PA are considered “inactive”, whereas PA beyond the 

recommended level is encouraged as it confers greater health benefits. To simply communicate 

this PA recommendation, a popular adage emerged stating some PA is good, more is better.5  

Despite the substantial efforts to promote PA, most Americans do not adhere to these PA 

guidelines.19,20 Data from surveillance systems such as the National Health and Nutrition 

Examination Survey (NHANES) or National Health Interview Study (NHIS) show less than half 

of the U.S. adult population are adequately active.20,21 However, surveillance data has typically 
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relied on subjective measures of PA (i.e., self-reported questionnaires) and limitations of self-

report are evident including misinterpretations of the meaning of survey questions and social 

desirability of responses.22,23 Given PA was measured by self-reported questionnaires in these 

surveillance systems, levels of PA in American adults can be significantly lower if objectively 

surveyed.24,25 In fact, recent studies utilizing objective PA measures suggest less than 10 % of 

the US adult population actually achieve the minimum PA guidelines, whereas rates from self-

report were near 60%.20,26  

Several objective instruments are available for measuring PA. Doubly Labeled Water 

(DLW) method is widely accepted as the gold standard measure of physical activity energy 

expenditure (PAEE) in free-living conditions. However, DLW is expensive and cumbersome 

because it requires collection and processing of urine samples. Indirect calorimetry (IC) 

measures the ratio of oxygen and carbon dioxide consumption and production to provide 

estimates of energy expenditure (EE). IC has been used in laboratory settings, but recently 

developed portable models facilitate its use in field settings. Compared with DLW technique, 

portable IC is less invasive and provides measures across all dimensions of PA including 

frequency, intensity, duration, and energy expenditure. For these reasons, portable IC offers 

considerable promise as a criterion method for studies that validate various types of physical 

activity monitor in field-based settings. 

Accelerometer-based PA monitors are small, lightweight, and inconspicuously worn, 

requiring minimal subject burden and can detail PA intensity, duration, and frequency.  

Accelerometers are particularly appealing for monitoring PA in free-living settings. Due to 

improvements in battery life and memory capacity, many accelerometers can provide continuous 

PA monitoring for multiple weeks. ActiGraph accelerometers are one of the most widely used to 
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measure PA in free-living conditions.27,28 The earlier models of ActiGraph accelerometer were 

uniaxial (1 vertical), thus only capable of detecting vertical accelerations.29 However, the most 

recent model of ActiGraph accelerometer, GT3X+, detects movement in three planes (vertical, 

anteroposterior, and mediolateral) with well-established accuracy.30-32 Due to its high validity 

and feasibility, GT3X+ was the method of choice for measuring PA in NHANES 2011 – 2014, 

which is one of the most representative surveillance system in the U.S.33  

The emergence of accelerometer-based PA monitors has been well-received the growing 

availability of similar accelerometers in the consumer electronics market. Many commercially-

marketed PA monitors are designed to provide  immediate PA feedback, helping consumers 

monitor their own daily PA levels.34 A recent study examined the accuracy of several most 

popular consumer-based PA monitors in measuring PAEE in a lab setting. Among eight different 

monitors, the Fitbit monitors were second and third most accurate, following only the Sensewear 

Armband, when the estimates of PAEE were compared with IC.35 However, this study only 

assessed pre-determined activities, mostly common examples of leisure-time PA (LTPA), such 

as various walking or jogging. These activities were performed in-succession for only 5 minutes 

at a time in a laboratory setting. Though the Fitbit monitors appeared to produce similar PAEE 

estimates as IC, it is unknown whether this accuracy would persist in free-living conditions in 

which individuals perform unscripted activities.  

Furthermore, few studies have examined the accuracy of wrist-worn PA monitors. One 

advantage of wrist-worn accelerometers is their ability to detect upper-body movement while 

still providing reasonably accurate estimates of PA in various populations. For example, the 

GT3X+, placed at the wrist, accurately predicted PA energy expenditure compared to IC in 

manual wheelchair-bound subjects.36 Other studies have established the validity of wrist-worn 
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accelerometers for estimating PA in other populations such as children37 and pregnant women.38 

Additionally, wrist-worn accelerometers may appear less burdensome to users than other bodily 

placements, potentially increasing the feasibility for PA monitoring research.39 To this point, 

there has been a rapid increase in the sales of wrist-worn accelerometer-based PA monitors, with 

the Fitbit Flex among the top selling models on the consumer market.40 Nonetheless, the validity 

of this device for estimating PA is unknown. 

Purpose of the Study 

The purpose of this study was to determine the concurrent validity of the Fitbit Flex 

accelerometer in a free-living condition. Specific aims of this thesis were: 

1. To determine the correlations of SED and MVPA measurements between Fitbit Flex and 

ActiGraph GT3X+. 

2. To compare the mean differences in SED and MVPA estimates between the Fitbit Flex 

and ActiGraph GT3X+. 

3. To examine the agreement of SED and MVPA estimates between the Fitbit Flex and 

ActiGraph GT3X+. 

Scope (Delimitations)  

Participants were student, faculty, and staff population at North Dakota State University. 

We used a previously validated accelerometer, ActiGraph GT3X+, as the criterion.  

Significance  

Several subjective and objective methods are available to measure PA. There are a 

number of well-known weaknesses with subjective assessment methods.41 Recall bias and error 

may lead to over- or underestimation of PA. In addition, subjective methods may lack the 

accuracy to detail specific components PA such duration or intensity. Current practices in PA 
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research favor objective measurement of PA variables.28,30 Recent trends in consumer electronics 

suggest that laypersons are interested in personal monitors that provide user-friendly feedback of 

PA variables. This “data-driven” movement may present an opportunity to promote PA through 

self-monitoring.42,43 However, the validity of these monitors is not well established. Therefore, 

results from this study will provide evidence for the accuracy and utility of new objective PA 

monitoring options for field-based studies.  

Limitations of the Study 

1. The accelerometers are not waterproof. Subjects were asked to remove them when 

participating in water sports or bathing.  

2. Hip-worn accelerometers have limited ability to measure upper body movement.  

Definition of Terms 

1. Physical activity: Any bodily movement that is produced by skeletal muscle 

contractions, which significantly increases energy expenditure.44  

2. Sedentary behavior (SED): Physical activity that is characterized by an absolute rate 

of energy expenditure ≤1.5 MET.45 

3. Moderate-to-vigorous physical activity (MVPA): Physical activity characterized by 

an absolute rate of energy expenditure between 3.0 and 6.0 METs.17  

4. Accelerometer: devices that detect and measure the velocity of position displacements 

with respect to reference axes over time.46 

5. Metabolic equivalent (MET): An estimate of the rate of energy expenditure of 

physical activity. One MET represents a metabolic cost of 3.5 ml/kg/min. 
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REVIEW OF LITERATURE 

Health Benefits of Physical Activity  

Physical Activity (PA) is any skeletal muscle movement that requires energy expenditure 

(EE),44 which includes many types of intentional and unplanned activities at a variety of 

intensities in occupational and leisure-time settings.2 Performing PA improves plasma glucose 

and blood pressure regulation and may attenuate depressive symptoms.3,47 In addition, PA may 

reduce the risk of premature mortality as well as morbidity of chronic diseases such as coronary 

heart disease (CHD),48 type 2 diabetes,49 and stroke.50 In a landmark study, Morris and 

colleagues found that men with occupations requiring routine PA were less likely to die of CHD 

than their sedentary co-workers.51 In the Harvard Alumni study, men who regularly engaged in 

leisure-time PA (LTPA) were also less likely to die from any cause compared to their least active 

peers.6 Other large sample studies have also demonstrated that regularly active women are less 

likely to die from all-causes and cardiovascular diseases compared to inactive women.52,53 

Overall, research consistently demonstrates PA confers health benefits to both men and women, 

with more PA resulting in greater health benefits.54  

Early PA research presented the notion of a dose-response relationship between PA and 

longevity. Results from the Harvard Alumni study revealed a graded inverse association between 

LTPA and all-cause mortality. Compared to inactive men reporting less than 500 

kilocalories/week of LTPA, men expending more than 500 kilocalories/week through moderate-

to-vigorous intensity PA (MVPA) experienced a 27% reduced risk of all-cause mortality, with no 

further benefits from higher volumes of PA (> 2500 kcal/week) on both all-cause and 

cardiovascular disease mortality.6 A subsequent study with the same cohort examined the 

influence of PA intensity on all-cause mortality.55 Self-report activities were classified into light, 
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moderate, and vigorous intensity based on metabolic equivalent (MET) values established in the 

compendium of physical activities. The investigators used these MET values and time estimates 

to calculate the participants’ weekly PAEE (kcal/week).56 When considering different patterns of 

PA by intensity, only vigorous intensity PA upheld a consistent inverse association with all-

cause mortality in men across EE categories. Light intensity PA was not associated with a 

protective benefit, whereas men experienced the greatest benefit from moderate intensity PA 

volumes between 760 – 1400 kcal/week, with additional PA yielding no additional benefit. 

Similarly, in the Aerobics Center Longitudinal Study (ACLS) cohort, “highly active” men 

(reporting some vigorous intensity PA) were less likely to die from any cause compared to 

moderately active (some moderate intensity but not vigorous intensity PA) or inactive men (no 

MVPA).57  

An inverse dose-response relationship between cardiorespiratory fitness (CRF) and 

longevity was also reported in the ACLS. Researchers evaluated CRF of healthy men and 

women (ages 20 – 88 y.) by a maximal treadmill exercise test with duration of the test (in 

seconds) serving as the indicator of CRF. Age- and sex-specific quintiles of CRF were 

established, with the lowest fifth in each age and sex group were assigned into the low fitness 

category, with increasing fitness group constituting the second through fifth quintiles. The 

quintiles were further grouped into low (1st quintile), moderate (2nd and 3rd quintiles), and high 

(4th and 5th quintiles) fitness categories.8,58 Subjects were followed up to 15 years to determine 

deaths.8 Risk of death from any causes was three times higher in low fit men (RR = 3.44, CI 95% 

[2.05, 5.77]) and over four and one half times higher in women (RR = 4.65, 95% CI [2.22, 9.75]) 

in the low fit group (the lowest 20%, 1st quintile) compared to the highly fit group (the highest 

20%, 5th quintile). The observed inverse relationship between CRF and risk of all-cause mortality 
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persisted even after adjusting for other risk factors for CVD such as smoking, alcohol 

consumption, diabetes, and hypertension.58 Although there was a U-shaped relationship between 

all-cause mortality and CRF in women who were known smokers, had high blood cholesterol, or 

reported health status as unhealthy, all-cause mortality was significantly lower for women with 

moderate CRF compared to low CRF. These results suggest low fitness is a considerable risk-

factor all-cause mortality.  

Evidence suggests PA not only protects against all-cause mortality, but also pre-mature 

mortality from specific causes such as stroke or certain cancers. In the Harvard Alumni study, 

researchers assessed self-reported LTPA in 11,130 male subjects at baseline and at 11-yr. follow-

up. Weekly EE (kcal/week) was calculated and subjects were categorized into quintiles of EE. 

Compared to the least active group (< 1000 kcal/week), moderately active men, expending 

between 2000 – 2999 kcal/week, had nearly half the risk of death from stroke (RR = 0.54, 95% 

CI [0.38, 0.76]).59 Similarly , risk for stroke is inversely associated with PA in women.60 

Researchers assessed LTPA in female subjects (N = 72,488) at baseline and every other year of 

an 8-year follow-up period. Subjects were then categorized into quintiles of weekly LTPA 

volume (MET h/week) based on self-reported PA. Relative risk of death from ischemic stroke 

was inversely associated with LTPA, even after adjusting for several covariates such as age, 

BMI, menopausal status, hypertension, and family history of heart attack.  

Risk of cancer mortality is generally inversely associated with PA, but, the strength of the 

evidence depends on the type of cancer and sex.61 Evidence from the ACLS cohort suggests CRF 

protects against risk of death from all cancers in men.62 Compared to the lowest CRF group, 

relative risk of death from cancer in the second lowest CRF category was 0.54 (95% CI 0.35 – 

0.84). In male subjects, further increases in CRF conferred additional protective benefit against 
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any cancer death. The same study also investigated this relationship in a cohort of women but the 

inverse relationship between risk for cancer mortality and CRF did not reach significance. 

However, PA has been shown to reduce the risk of death from breast cancer. Rockhill and 

colleagues observed a dose-response effect of MVPA on risk of breast cancer in a large cohort of 

women representing nearly 2 million person-years.63 Compared to women achieving less than 

one hour of MVPA/week, those with more weekly MVPA saw a 12 – 18% reduced risk of breast 

cancer death over a 12-year period. McTiernan and colleagues reported similar findings in a 

prospective study of over 74,000 post-menopausal women.64 Past lifetime and recent MVPA 

were both inversely associated with risk of breast cancer. As with the Rockhill et al. study, the 

magnitude of risk reduction was greatest for women reporting the most PA (more than 7 hours 

MVPA/week).  

In men, the risk of lung cancer is inversely associated with PA. In a cohort of Norwegian 

men (n = 53, 242), subjects reporting usual moderate-to-vigorous LTPA of at least 4 hours/week 

experienced a 25% reduced risk of lung cancer compared to sedentary counterparts.65 A further 

decrease in risk was observed in the most active men reporting engaging in at least 4 hours of 

weekly MVPA for the purpose of maintaining fitness or competitive sports (RR = 0.71 95% CI 

[0.52, 0.97]). Results from the Harvard Alumni study further support the notion of a dose-

response effect from PA on lung cancer. In a group of 13,905 men (mean age = 60.2 ± 9.5 yr.), 

researchers observed a significant inverse trend in relative risk of lung cancer in subjects 

expending 1000 – 1999, 2000 -2999, and ≥3000 kcal/week in MVPA compared to those 

expending less than 1000 kcal/week.13 Relative risks were 0.87 (95% CI 0.64 – 1.18), 0.76 (0.52 

– 1.11), and 0.61 (0.41 – 0.89) (P for trend = .008) across categories of weekly MVPA EE ≥ 

1000 kcal compared to the reference category (< 1000 kcal/week).66 Even after controlling for 
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covariates such as smoking status and smoking intensity, the dose-response trends remained 

significant.  

Research has highlighted the potential health benefits of PA, yet much of, the U.S 

population remains inactive resulting in a substantial burden to public health. Chronic diseases 

constitute over half of the top 10 causes of death in the US.67 Considering the fact that recent 

estimates suggest nearly 10% of all deaths in the US are at least partially attributable to physical 

inactivity, the need to promote PA cannot be overemphasized.68  

Physical Activity Recommendations and Adherence 

In 2008, the Department of Health and Human Services issued the first ever physical 

activity guidelines for Americans.18 These guidelines, building on previously published PA 

recommendations,1,2,17 provided a comprehensive PA reference for adults. In brief, they advise 

adults achieve a minimum weekly volume of 150 min of moderate intensity PA or 75 min of 

vigorous intensity PA or combination thereof. The current PA guidelines also indicate that bouts 

of PA should last no less than 10 minutes per session, PA should be distributed over multiple 

days per week, and adults should strive to avoid inactivity. The guidelines also provided broad 

classifications differentiating levels of weekly MVPA: highly active (>300 minutes of moderate-

intensity PA or MVPA equivalent), sufficiently active (achieving 150 - 300 minutes of moderate-

intensity PA or MVPA equivalent), insufficiently active (less than 150 minutes of MVPA 

equivalent) and inactive (no MVPA bouts ≥ 10 minutes). Evidence suggests achieving the 

minimum weekly dose of MVPA is associated with multiple health benefits including reduced 

risk for premature death, coronary heart disease, and type 2 diabetes.18 Additional health 

benefits, such as weight loss or maintenance, are possible but adults may need to exceed the 

minimum MVPA threshold and possibly include dietary modifications.18 
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Despite the clear benefits of PA, years of surveillance data show the majority of U.S. 

adults do not achieve the recommended level of PA.2,17,21,26 Large surveillance systems such as 

the Behavioral Risk Factor Surveillance System (BRFSS), the National Health and Nutrition 

Examination Study (NHANES), and the National Health Interview Survey (NHIS) have 

provided trends of PA participation in U.S. adults. The surveys collect PA data via self-report 

interviews. Based on 2001 and 2003 BRFSS data, the CDC estimated that about 54% of the U.S. 

adult population was insufficiently active (less than 150 minutes/week of moderate-intensity 

PA).69 The 2012 NHIS data approximate 50% of the U.S. adult population meet the minimum 

aerobic PA recommendations, but only 21% met both aerobic and muscle strengthening 

recommendations.70 Similarly, data from NHANES 2003 -2004 estimates 51% of the adult 

population met the recommendation of 150 minutes/week of moderate-intensity PA.20 However, 

using accelerometer-determined data from a subgroup of the 2003 – 2004 NHANES population 

sample, Troiano and colleagues reported adherence rates below 5% for both adult males and 

females.20  

Recent surveillance data have substantiated the discrepancies between self-report and 

objectively-determined population PA patterns. Tucker, Welk, and Beyler compared NHANES 

2005 – 2006 self-report and accelerometer-determined PA estimates.26 The authors compared 

adherence rates to the U.S. PA Guidelines using three separate PA analyses criteria. Individuals 

were categorized as performing “adequate” PA if they achieved 1) ≥ 150 min. MVPA / week 2) 

≥ 150 min. / week moderate PA plus at least two bouts of vigorous intensity PA, and 3) 

accumulated ≥ 500 MET-minutes / week of MVPA. The first two analyses calculated MVPA 

when performed in bouts lasting 10 or more consecutive minutes. The third analysis considered 

total minutes of all MVPA regardless of bout duration. Using the first two criteria, estimates of 
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adherence to the guidelines were 62.0 % for self-report and less than 10% for accelerometer-

determined PA. Even using the more liberal PA criteria (sum of all minutes of MVPA regardless 

of bout duration), less than half the population achieved the minimum recommended weekly 

dose of MVPA.   

Healthy People 2020 set a goal of increasing the proportion of the adult population 

achieving both the minimum PA guidelines as well as the “highly active” criteria of > 300 

minutes per week of moderate or > 150 minutes per week of vigorous, or equivalent MVPA 

combination. Through the U.S. PA Guidelines, public health officials have sought to translate the 

evidence-based health benefits of PA into manageable, actionable steps. Recent reduction in the 

proportion of U.S. adults maintaining an inactive lifestyle may suggest the public is responding, 

yet PA levels of the U.S. adult population has remained relatively unchanged, with less than 50% 

meeting minimum PA Guidelines.71 Many occupational settings have become increasingly 

sedentary.72 In addition, the appeal of leisure-time sedentary activities may discourage PA.73 

Furthermore, recent population surveillance studies demonstrate that these figures based on self-

report data may greatly overestimate actual population PA levels.20,26 This national PA initiative 

may benefit from increased feasibility of objectively measuring PA to enhance population PA 

surveillance and improve PA promotion efforts.  

Methods of Assessing Physical Activity 

Subjective Physical Activity Measures: Self-report Questionnaires 

Researchers have used a number of subjective and objective methods to assess PA. 

Large-scale surveillance systems and prospective studies have relied upon self-report methods, 

for assessing PA. The advantages of self-report PA measures include minimal subject burden and 

feasibility for administering to large subject samples. Several disadvantages associated with self-
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report PA include subject recall bias and question interpretation error, social desirability, large 

variances in PA outcomes between self-report instruments, as well as limited accuracy and 

validity.41 Self-report instruments vary by the recall period, type of activity, means of 

administration, and PA outcomes measured. Thus, the validity and reliability of PA 

questionnaires needs to be established before use in research. The subsequent paragraphs 

describe characteristics of specific PA questionnaires.  

The Stanford Seven-day Physical Activity Recall questionnaire (PAR) is an interviewer-

administered self-report instrument. The PAR has respondents daily time spent sleeping and 

engaging in moderate, hard, and very hard activities over the past week. Researchers may 

calculate total weekly PA, minutes spent in PA intensities, as well as EE from PA. The reliability 

and validity of PAR has been assessed in a variety of populations and with several objective 

criteria, with reliability estimates ranging from ρ = 0.08 – 0.99.74 Sallis and colleagues 

demonstrated the PAR had reasonable reliability for estimating hard and very hard PA (ρ = 0.31, 

ρ = 0.61, p<.05, respectively), but not for moderate PA.75 Hayden-Wade and colleagues found 

participants tended to overestimate PA compared to accelerometer-determined (TriTrac) PA.24 

Correlations coefficients between accelerometer and both in-person and telephone-administered 

PAR PA estimates were similar (r = .41 and r = .43 [no p-value reported], respectively). 

Correlations between accelerometer and PAR PA estimates were considerably stronger for very 

hard PA compared to hard and moderate PA for both in-person (r =  0.74, 0.43, 0.33, 

respectively) and over-the-phone recall (r = 0.78, 0.39, 0.26, respectively). In other studies the 

PAR has demonstrated significant correlations with the Caltrac accelerometer as criterion for 

total and vigorous PA, whereas estimates of moderate activities have been equivocal.76,77   
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The Minnesota Leisure-time Physical Activity Questionnaire assesses usual LTPA during 

the past 12 months. An interviewer inquires on subjects’ typical participation in sporting and 

recreational activities from a pre-determined list. Interviewers are trained to prompt respondents 

estimate PA duration and frequency over the course of a year.78 These estimates are multiplied 

by a pre-assigned intensity value and calculated to estimate weekly PA levels or EE by PA 

intensity category. Total PA from the questionnaire have correlated moderately with 

accelerometer-determined PA as well as CRF (Vo2 max).78 However, the instrument appears to 

lack sensitivity to both moderate and light intensity PA compared to 48-hr PA logs.78 Likewise, 

in a group of Spanish women (n = 250, 18 – 61 yr.) self-report vigorous intensity PA estimates 

demonstrated strong correlation with duration of a treadmill maximal fitness test compared to 

moderate PA (ρ = 0.51, 0.13, p < 0.05, respectively), while light intensity PA did not 

significantly correlate with treadmill time.79  

The International Physical Activity Questionnaire (IPAQ) is a self-report instrument with 

multiple short- and long-form versions. The IPAQ can be self-administered or via telephone 

correspondence and has been developed for use in multiple countries. Both long (31 items) and 

short-form (nine items) IPAQ provide estimates of weekly PA (min) minutes categorized by 

activity and intensity. EE estimates are calculated by multiplying minutes of PA by MET values 

assigned to each activity. Craig and colleagues examined the reliability and validity of multiple 

short and long-form IPAQ versions.80 Repeatability were similar for both long and short-forms 

(pooled ρ = .81, [95% CI 0.79 – 0.82] ρ = 0.76 [95% CI 0.73 – 0.77], respectively). IPAQ 

validity was assessed using PA output from a hip-worn ActiGraph accelerometer (then operating 

as Computer Science and Applications, Inc. [CSA]) as the criterion. Total PA from both long and 
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short-forms showed modest correlations with CSA-determined PA (pooled ρ = 0.33 95% CI 0.26 

– 0.39] and ρ = 0.30 [95%CI 0.23 – 0.36]).  

Subsequent research on the IPAQ suggested that the instrument may not be sensitive to 

moderate PA. Hagstromer and colleagues compared previous 7-day PA estimates from IPAQ 

(long form) to accelerometer in 46 male and female subjects.81 Questionnaire-determined 

vigorous intensity PA (VPA) significantly correlated with ActiGraph-determined VPA estimates 

(ρ = 0.63, p<.001). When considering MVPA, the correlation between subjective and objective 

instruments was attenuated, but remained significant (ρ = 0.36, p<.001). When only moderate 

intensity PA was examined, the relationship was no longer significant.  

National surveys within the US also collect PA data through self-report. Most notably, 

the Behavioral Risk Factor Surveillance System (BRFSS) is the largest U.S. surveillance system 

and annually gathers state-specific, and nationally representative, outcomes on various risk 

factors related to both communicable and non-communicable disease. Though state-specific data 

is collected, nationally representative outcomes can be derived from BRFSS.71 However, 

fundamental differences in assessing PA may affect its ability to accurately estimate national PA 

adherence compared to NHANES and NHIS. In 2001 - 2007, the BRFSS PA questions prompted 

responses regarding the weekly duration and frequency of both moderate and vigorous LTPA. 

Prior to 2001, and more recently (2008 – 2010), the BRFSS assessed non-occupational PA with 

one dichotomous item.82 Comparing 2005 PA estimates from all three national surveillance 

systems, Carlson et al reported substantially larger estimates of the proportion of the US adult 

population meeting the Healthy People 2010 PA objectives according to BRFSS than NHIS or 

NHANES.71 Further analysis demonstrated these potentially inflated estimates persisted from 

2001 – 2007. 
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Compared to objective PA measures, researchers have reported varying validity of 

BRFSS questionnaires for assessing PA. Strath and colleagues compared 7-day PA outcomes 

between the 2001 BRFSS and a accelerometer plus heartrate monitor in 25 subjects.83 The 

authors reported no significant differences in mean MVPA minutes/day between BRFSS and 

monitor output. In addition, the BRFSS demonstrated significant agreement with objective 

criterion for identifying subjects meeting the 2010 healthy people PA recommendations for 

moderate (≥30 minutes/day, ≥ 5 days/week) or vigorous intensity PA(≥20 minutes/day, ≥ 3 

days/week)  (κ = 0.40 and 0.58, respectively). However, results of this study are limited as 

subjects wore the ActiGraph (then operating as MTI) accelerometer on the wrist and thigh and 

the PA was assessed for a shorter period than typically calculated by the BRFSS. 

Yore and colleagues compared BRFSS and objective measure PA outcomes in 55 

subjects over 22 days.84 Researchers examined subjects’ self-report PA, using BRFSS 2001 

survey, during first (baseline and second survey) and third weeks (final survey). Subjects also 

wore a pedometer and hip-mounted ActiGraph accelerometer for seven consecutive days during 

the second week. Correlations between BRFSS and ActiGraph suggest self-report is more 

closely related to objectively-measured, moderate versus vigorous intensity PA (ρ = 0.17 – 0.26; 

ρ = 0.52 – 0.63, respectively). Contrasting with the findings from Strath et. al, BRFSS estimates 

exhibited relatively poor agreement with ActiGraph in discriminating those achieving Healthy 

People 2010 PA objectives on both first and third surveys for moderate intensity PA (κ = 0.31, 

95% CI [0.09, 0.53]), and particularly for vigorous intensity PA (κ = 0.17, 95% CI [0.01, 0.32]; κ 

= 0.26, 95% CI [0.10, 0.43], respectively). 

The limitations of self-report are established. As illustrated in the aforementioned studies, 

compared to objective measures, self-report PA assessments typically have wide outcomes 
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ranges within and between subjects. Variability may be largely due to recall error. Individuals 

tend to inaccurately recall PA less intense PA more so than vigorous intensity PA. In addition, 

lengthy recall periods may be particularly prone to shorter recall self-assessments. These may be 

particularly problematic for researchers trying to calculate PA outcomes since many adults spend 

a majority of waking hours in sedentary to moderate activities. In addition, PA at these intensity 

levels may accrue in sporadic bouts whereas vigorous activities are typically structured or 

planned. Thus, researchers have explored other means of quantifying PA. 

Objective Physical Activity Measures: Indirect Calorimetry and Doubly-Labeled Water  

Indirect calorimetry (IC) is a commonly used objective monitoring technique for 

assessing PA and estimating EE in both laboratory and field settings. Indirect calorimetry is not a 

direct measure of EE (e.g. heat loss), but rather, allows calculations of EE from direct measures 

of gas exchange. That is, IC measures the volumes of ventilated respiratory gases; the 

composition of these expired gases can be analyzed to determine the oxygen (O2) and carbon 

dioxide (CO2) content and calculate oxygen uptake (V̇O2) as well as CO2 production (V̇CO2).
85  

Because the metabolic cost of substrate utilization is known, approximations of EE from gas 

exchange measurements are possible.85 Traditional approaches to IC were often limited to lab 

settings (i.e. hood ventilator techniques), or required cumbersome, time sensitive collections of 

expired air in bags for later analysis (i.e. Douglas bag).85,86 Due to technological advancements, 

computerized IC units, such as metabolic carts, are now preferred to the Douglas bag technique 

as they allowed for continuous, real-time monitoring of respiratory gases. Barring errors in 

calibration,  computerized IC output has been show to yield equivalent values to the Douglas bag 

for total gas expired or inspired, fractions of O2 (FeO2 and CO2 (FeCO2) 
 in expired gases, as well 

as calculations for V̇O2, minute ventilation, and respiratory exchange ratio (RER).87 Even with 
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automated calibrations and calculations, metabolic carts were historically confined to laboratory 

settings due to limitations in portability.87  

Recently, portable IC models have been developed to allow for mobile PA assessment. 

The Cosmed K4b2 and Care Fusion Oxycon Mobile are two commonly used portable IC devices 

used in PA research. Whereas early versions of these portable IC were limited to measuring 

ventilation over discrete time periods, both K4B2 and Oxycon Mobile models are able to yield 

breath-by-breath measurements of expired gases. With these capabilities, the K4b2
 has 

demonstrated equivalent V̇O2 estimates compared to Douglas bag during indoor stationary 

cycling at work intensities < 250 watts, and during outdoor running at speeds ranging from 8 – 

22 km/h.88,89 Similarly, Oxycon Mobile’s V̇O2 measurements are comparable to DB during 

indoor cycling at submaximal and maximal efforts.90 Oxycon Mobile has further demonstrated 

accurate and stable metabolic measurements compared to DB criterion in high-wind and humid 

environmental settings.91  

Despite its accuracy and utility to serve as criterion reference for determining the validity 

of other PA monitoring methods,35,92,93 portable IC instruments are not well-suited for large-

scale, free-living PA monitoring. Software needed to process portable IC output is expensive and 

the units themselves may be deployed for limited periods due to battery life. Compared to other 

smaller portable PA monitors, portable IC units are not inconspicuous. These drawbacks reduce 

the feasibility of using IC to monitor PA of larger populations in free-living settings.  

The doubly labeled water (DLW) method is considered the gold standard method for 

determining EE in free-living settings. The method dates back as early as the 1950s when used in 

animal studies,94 yet it was Schoeler and colleagues who first fully utilized the technique to 

estimate EE in human subjects in the early 1980s.95,96 The technique requires subjects to ingest 
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baseline amounts of isotopes 2H and 18O and subsequent analysis of the labeled isotopes in 

urinary samples gathered at baseline (shortly after ingesting the isotope) and after a set period, 

typically 4 – 21 days.97 The proportion of these elements remaining in the urine is representative 

of the amount of carbon dioxide expelled due to metabolic processes.94 Equations have been 

formulated to determine the total amount of EE over a given period.96,98 To determine the 

quantity of EE from PA each subject’s resting metabolic rate and energy intake must be 

considered.99 Therefore, with careful dietary monitoring and laboratory analysis of the residual 

isotope samples, EE estimates are possible.  

The accuracy and minimal subject burden of the DLW technique makes it favorable for 

collecting data in free-living settings, but due to high cost and inability to determine precise daily 

patterns of PA, it is not widely utilized in large scale free-living PA research. Studies have 

reported mean group-level energy expenditure estimates from DLW falling within five percent 

(kcal/day) or less compared to IC-determined or food intake and body mass composition 

criterion.95,96,100 Subsequently, DLW has served as a criterion to assess the validity of EE 

estimates from other PA assessment tools such as accelerometers, self-report instruments, and 

heartrate (HR) monitors.27,99,101 However, DLW cannot detail the patterns of PA associated with 

these EE estimates. Additional PA assessment tools can overcome this primary disadvantage, but 

necessitate additional costs and subject compliance. In addition, the technique is expensive given 

the cost per use per subject of the 2H and 18O isotope solutions.   

Objective Physical Activity Measures: Heartrate Monitors 

Heartrate (HR) monitoring is a technique that has been widely used to objectively 

measure PA in both laboratory and field settings. It is well-established that HR increases linearly 

with oxygen uptake during PA, particularly PA incorporating whole-body movements.102 Since 
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most HR monitors can record HR data over a period of hours or days allowing calculations of 

PA duration, intensity, and frequency, they are a convenient way to monitor PA.  

Despite the convenience and ease of deployment in field settings, HR monitoring carries 

limitations for objective PA monitoring. Several factors may impact individual heartrate with 

little impact oxygen consumption. Training status, age, ambient temperature, and psychological 

distress impact heartrate during rest.103-105 An individual’s hydration and training status, quantity 

of muscle mass recruited for movement, and body position all affect heartrate during PA.106-109 

Nonetheless, researchers have employed HR monitoring with some efficacy for assessing group-

level PA.  

Early studies attempted to predict total daily EE from HR output. Individual regression 

prediction equations were derived from comparing HR output to a criterion, such as IC, during 

PA and sedentary activities. Daily HR data were then recorded and mean HR data used to 

estimate daily total EE. Because the method did not account for sources of daily HR variability 

even at relatively similar levels of PA and sedentary behavior (SED), it proved unreliable for 

predicting EE.106  

The development of the “heartrate flex” (HRFlex) method improved EE estimates from 

HR data. The technique involves individual calibration of heartrate data. Researchers determine a 

minimum heartrate threshold for each subject by comparing HR data to a criterion during a 

graded exercise protocol. The method asserts that below this HRFlex threshold a subject’s EE is 

equivalent to resting EE, which is estimated through standard calculations of resting metabolic 

rate.110 Above that threshold, HR is assumed to rise in a relatively linear fashion with increased 

oxygen consumption. Given thorough calibration, there may be little difference between HR-

predicted and IC-determined EE.92,111 Ceesay and colleagues demonstrated a high correlation 
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between actual and HR-estimated EE in twenty subjects performing PA and various sedentary 

activities over a 21-hour period (r = 0.94, SE = 109 kcal/day). At the group level, mean EE 

estimates were minimal, with a mean nonsignificant difference of -1.2% between indirect 

calorimetry and HRFlex methods.111  

Adequately accurate EE estimates are possible from HR data, but even individually 

calibrated predictions equations may exhibit wide variability, particularly within individuals. 

Livingstone and colleagues demonstrated wide individual variability in EE estimates using the 

HRFlex method compared to DLW in adults and adolescents. In the adult group (n = 14), mean 

EE estimates (kcal/day) from HR data were within two (+/- 17) percent (about 24 kcal/day) of 

DLW. However, individual differences in daily EE estimates between HR compared to DLW 

ranged from -22.2% to +51.2% underestimating EE by as much as 1149 kcal/day or 

overestimating as much as 1,618 kcal/day.112 In a similar study  of 36 adolescents (7 – 15 years 

old), Livingstone and colleagues demonstrated error rates between HR and DLW-determined EE 

(kcal/day) ranging from -16.7% to +18.8% or – 261 to + 330 kcal/day.113 

Even though HR monitoring may produce reasonable group-level estimates of daily EE, 

it is vulnerable to daily sources of heartrate variability such as ambient temperature or type of PA 

performed. Researchers have conceded that the HR calibration methods work best for estimating 

EE based on the activities by which the calibration equations were produced.106,111 Furthermore, 

individuals may spend most of their waking hours in sedentary or light-intensity activities 

resulting in a majority of HR output ranging near the HRFlex threshold where individually 

calibrated predictions equations are most likely to error.111 In addition, the HRFlex technique 

requires time consuming individual calibration in order to be moderately effective. Such tedious 

calibration practices may not be feasible for large scale population monitoring. Some researchers 
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have attempted to use alternative prediction models to estimate PA in larger groups. Though 

such methods may accurately rank subjects by PA level, there is wide variability between 

observed and predicted daily EE estimates, especially for individuals.114,115 As such, without 

observation or time consuming individual calibration, it may not be feasible to accurately 

distinguish PA patterns and estimate EE from HR alone. 

Objective Methods: Accelerometers 

General Function 

Accelerometers are instruments that are frequently employed as objective sensors for 

human activity monitoring. Early uses of accelerometer-based devices date back to the World 

War II era where they were mostly used in military aviation applications.116 Today, 

accelerometers are widely manufactured and utilized in research and commercial applications for 

monitoring human movement. For example, accelerometers may be used in devices that used to 

provide biomechanical feedback to patients completing rehabilitation exercises;117 monitor 

human sleep patterns;118 quantify and promote daily PA.119,120  

Technical Aspects and Functions of Accelerometer-based Activity Monitors 

Accelerometer technology has advanced over time. Some of the early accelerometers, 

such the ActiGraph (formerly operating as Computer Science and Applications, Inc. (CSA) and 

later as Manufacturing Technology Incorporated (MTI)) 7164 model, contained piezoelectric 

cantilever beam sensors.29 Industry improvements enabled new steady-state sensor technologies 

known as microelectromechanical system (MEMS), which featured greater memory capacity 

while still becoming smaller and more efficient.121 These sensors operate using capacitive or 

piezoelectric sensors; accelerometers with capacitive sensors are more common than those with 

piezoelectric sensors.46 The ActiGraph GT3X+, for example, is equipped with a capacitive 
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accelerometer in which a reference mass is suspended by spring-like fixtures with two electrical 

plates opposing similar fixed plates. External forces can cause the mass to move resulting in a 

change in charge between the plates that is proportional to the intensity of the acceleration.122,123  

Accelerometers operate by recording accelerations relative to the input force within 

distinct time intervals (also known as epochs).46 In contrast to other motion sensors that utilized a 

switch-style sensors (e.g. pedometers), resulting in a dichotomous all-or-none output, 

accelerometer data reflect the frequency, duration, and intensity of all accelerations within a 

given range and direction.124 Briefly, accelerometers that are most sensitive to inertial forces in a 

single plane of motion are described as uniaxial. Early approaches to accelerometer-based PA 

monitoring research maintained that vertical accelerations captured near the body’s center of 

mass may best reflect the wide range of accelerations during ambulatory activities.125,126 Thus, 

some of the earliest monitor PA monitors oriented their accelerometers to detect accelerations in 

the vertical plane.127 The most common accelerometers are multiaxial, comprised of multiple 

sensing units oriented to two or more orthogonal planes of motion, namely the vertical (x), 

horizontal (y) and frontal (z) axes.128 With multiaxial devices, acceleration data may be 

processed separately or in some combination reflecting the accelerations of two or more planes 

of motion. Some data suggests PA estimates from multiaxial devices is more accurate than those 

from uniaxial devices.129,130 However, data processing may be more influential on PA estimates 

than the number of axis used to monitor PA.27,28,30 

The initial recording of the acceleration signals is dependent on the accelerometer’s 

parameters (e.g. dynamic range, sensitivity, and signal filtering) uniquely established by the 

manufacturer, though many devices designed for monitoring PA are similar in capacity.131 

Researchers may choose different monitors based on available resources, the intended outcome 
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of interest or desired bodily placement.124 It is beyond the scope of this review to compare the 

initial calibration differences between accelerometer-based PA monitors. Typically, they exhibit 

similar attributes, with battery and memory capacity allowing for multi-day deployment and data 

storage, dynamic ranges between 0.5 – 9.0 g, and frequency sampling up to 160 hz.123,132,133 Most 

human movement falls within these ranges, with some very vigorous activity achieving over 

12g.134 

Application to Accelerometer-based Physical Activity Monitoring 

Because accelerometer data can reflect the intensity, duration, and frequency of motion, 

researchers have been interested in obtaining PA estimates using accelerometer data. A multitude 

of uniaxial and multiaxial accelerometer devices are commercially available and designed to 

monitor PA. Single sensor monitors have been the most commonly used accelerometer-based 

devices in PA research, but others may utilize multiple sensing units placed simultaneously on 

the body (e.g. IDEEA), or incorporate accelerometers and other types of sensors such as 

inclinometer (e.g. ActivPAL) or skin sensors (e.g. BodyMedia SenseWear armband). Typical PA 

outcomes of interest include EE, minutes of PA spent in MET-based intensities, bouts of PA, and 

steps. 

Bodily placement of single sensor accelerometers includes the wrist, upper arm, upper 

thigh, hip, and ankle.125 Hip placement may be the best placement of a single accelerometer for 

detecting free-living activities, but accelerometers worn at the hip lack sensitivity to upper body 

movement as well as inclination changes (i.e. walking up steps).93,125 Wrist-worn accelerometers 

are not uncommon, but there is little research establishing the validity of wrist placement for PA 

monitoring. Adding additional acceleration data from a wrist-worn accelerometer to hip-worn 

data may not substantially improve the accuracy of EE estimates over hip data alone, and would 
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require additional resources or increased costs for research.135 Despite its limitations, PA 

estimates from single sensor accelerometers placed at the hip have proven utility for objectively 

monitoring PA patterns and producing accurate estimates of PA.136 For example, ActiGraph-

determined mean EE estimates have been comparable to DLW-measured total EE over seven to 

10-day periods.101,137 Though ActiGraph-determined EE estimates exhibited wide individual 

variability, they produced the least variation compared to self-report, pedometer, and other 

accelerometer-determined EE estimates.  

In laboratory settings, accelerometer data have demonstrated high correlations with gold 

standard PA measures such as directly observed steps and IC-determined EE during treadmill-

based activities.138,139 When applied in simulated free-living protocols incorporating activities 

across the spectrum of PA intensities, accelerometers produce acceptable estimates of group-

level PA;35 but they under- and overestimate PA outcomes for most individual activities.140  

Data Processing Techniques: Linear Regression Equations and Other Methods 

Accelerometers do not directly measure PA variables (e.g. steps, METs, energy 

expenditure). Rather, raw accelerometer data is a summary of accelerations (positive and 

negative) captured in a certain plane of motion.126 Typically raw accelerations are represented by 

a unitless data point called counts, within a discrete period, referred to as an epoch.46 Though 

counts do not have an inherent meaning, they can be analyzed post data collection and 

interpreted to estimate the PA variables of interest.133,141 Researchers achieve these estimates 

through value calibration, a process where count output is analyzed with respect to output from a 

reference standard (e.g. indirect calorimetry) in order to derive PA estimates.141 Count-based 

outcomes may vary depending on the device selected and post-collection data processing 

technique applied.141   
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Several linear regression prediction equations have been developed in laboratory settings 

to calculate count-based output into METs which can then be used to estimate EE or time spent 

in different intensities of PA compared to a criterion measure such as IC.124 ActiGraph count 

output has demonstrated moderate to strong correlations with IC-determined METs (r = 0.56 – 

0.88, p < .01).135,142,143 Numerous MET prediction equations exist for the ActiGraph uniaxial 

accelerometer alone.93 Most equations are based on treadmill and over-ground walking protocols 

with few equations derived from other recreational and domestic activities such as golfing, 

washing dishes, vacuuming, or playing with children.135,142,143 Other MET prediction equations 

have been developed for ActiGraph’s triaxial models.144  

In an effort toward improving PA prediction outcomes, researchers have further explored 

advanced methods for processing accelerometer data. Hidden Markov, random forest, and 

artificial neural network models represent a range of advanced techniques introduced for 

translating accelerometer data into estimates of meaningful PA outcomes. Some evidence 

suggests that implementing one of these approaches may be improve PA estimates over single 

linear regression equations.31,132,145 However, there is a lack of agreement on which approach is 

the best or standardized best practice for utilizing accelerometer data for predicting EE outcomes 

in free-living settings.146,147 Researchers continue to favor these instruments for large-scale 

population monitoring and seek to refine methods of estimating PA outcomes from 

accelerometer data.20,148 Due to the ease of application and ability to assess PA patterns at the 

group-level, linear regression equations are useful to predict PA outcomes from accelerometer 

data. In fact, it is commonly used in PA research today, and recently to evaluate nationally 

representative U.S. adult PA patterns.20,26    
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Researchers have been interested in incorporating additional data from other sensors to 

improve the monitoring and predictive capabilities of accelerometer-based devices. Findings 

suggest using data from pressure sensors or heartrate monitors with accelerometer data is more 

accurate than single sensor devices, but may face limitations.149 In the early 1990s, Bouten and 

colleagues pioneered PA monitoring with a triaxial device that later called a Tracmor. The 

authors suggested that movement may better be assessed by combining measures from all three 

axis. They proposed that the relationship between accelerometer output and EE was would be 

improved using triaxial output represented by the integral sum of acceleration data from three 

orthogonal planes, known as vector magnitude (VM).129 The authors concluded that data from all 

three orthogonal planes was superior to VT accelerations alone, but that using quadratic 

prediction equations was not superior to using traditional linear regression techniques. Energy 

expenditure estimates derived using the vector magnitude of accelerometer output demonstrated 

a strong correlation with IC-determined EE during sedentary and walking activities (r = 0.95, p< 

0.001). Bouten et. al extended this approach in a one-week study of 30 subjects in free-living 

settings and identified an attenuated but significant correlation (r = 0.53, p < 0.01) between 

Tracmor VM and DLW-determined mean daily EE from waking metabolic expenditure. Energy 

expenditure estimates from the best single linear regression equation would accurately predict 

EE within 15% of actual EE for sedentary and walking activities. When walking alone was 

predicted best by the linear regression equation, predicted EE was within an average of 5% of 

measured EE. The highest correlation was between Tracmor output and mean EE from PA, or 

Physical Activity Level (PAL) (r = 0.58, p < 0.001). The authors concluded that, despite the lack 

of precise, individual PA estimates when employing linear regression analysis, the technique 

may be useful for ranking and grouping subjects based on overall PAL. Even when incorporating 
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additional acceleration data from multiple axes, it appears that no one linear regression equation 

is able to accurately predict PA variables across all PA intensities.93,149   

Chen and Sun investigated the predictive quality of a triaxial accelerometer using both 

linear and nonlinear equations over a range of activities and PA intensities over two 24-hour 

periods.130 Their results suggest that nonlinear prediction equations may improve EE estimates 

compared to linear regression equations, particularly for estimating time spent in SED and light-

intensity PA. When applying a generalized nonlinear model to accelerometer data for 125 

participants, the predicted mean total EE/day was not significantly different from mean IC-

measured total EE/day, whereas this outcome was significantly underestimated by the 

generalized linear prediction equation. Estimates of total daily EE in sedentary to vigorous 

intensities were calculated and compared to IC-measured EE within those intensities. Though the 

nonlinear model was the only model to accurately predict EE in SED and light intensity PA, the 

linear model was the only model that was not significantly different from IC for total EE in 

MVPA, and only on the day in which subjects performed structured PA (i.e. walking and 

stepping). For the “normal day,” which only included self-selected PA, both nonlinear and linear 

equations underestimated estimates of EE in MVPA. Furthermore, the fact that both linear and 

nonlinear prediction equations were not significantly different from IC-determined EE during 

walking activities suggests that linear prediction equations are most accurate at estimating PA 

and EE when the data analyzed is similar to the activities used to formulate the value calibration. 

Though these findings suggest alternative prediction models, versus single linear models, may 

further improve estimates of PA outcomes from accelerometer data, these improvements might 

only be realized for estimating outcomes from certain types of PA or PA intensities. Since 

ActiGraph monitors are the most widely studied accelerometer-based devices in PA research, 
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this review will provide further explain the validity of select linear prediction equations 

developed for ActiGraph monitors.29 

Linear Regression Validity Studies 

Freedson, Melanson, and Sirard developed one of the most widely utilized count-based 

cut-point criteria for the ActiGraph.142 These researchers examined vertical axis counts of the 

ActiGraph 7164 compared to oxygen consumption during level treadmill walking at various 

speeds (4.8, 6.4, and 9.7 km/hour). ActiGraph output was sensitive to changes in oxygen 

consumption as treadmill speed increased, demonstrating a strong correlation with VO2 (r = 

0.88). Researchers regressed the actual rate of EE (METs) on accelerometer output for each 

subject. A general regression prediction equation was derived and cross-validated on a separate 

sample (n = 15) with no significant difference in actual (IC-determined) and predicted 

(ActiGraph count-based) MET values. Count-based cut-points were then determined to express 

the intensity of PA based on ActiGraph output. The resulting count ranges were 0 – 1952, 1953 – 

5724, 5725 – 9498, and > 9498 for light, moderate, vigorous, and very vigorous intensities, 

respectively.150 Additionally, a separate regression prediction equation was developed to directly 

estimate EE from count-based data. This EE prediction equation demonstrated a very strong 

correlation with actual EE (r = 0.93) and produced non-significant mean differences of less than 

0.50 kcal/min compared to IC in the cross-validated group. Certain drawbacks emerge when 

performing value calibration from such a limited number of activities and data points. That is, 

the accelerometer data were collected and summed for minute interval for only three activities 

that represented PA and did not include SED. Given the steady state nature of the protocol, one 

minute epochs may be adequate, but may not reflect subtle shifts EE possible from a variety of 
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activities, particularly in free-living settings. Furthermore, the equation may lack sensitivity in 

distinguishing SED and light intensity PA.149  

Whereas the Freedson ActiGraph cut-points were derived largely from treadmill walking 

and jogging, Swartz and colleagues calibrated ActiGraph vertical axis count output from a 

variety of household chores and recreational activities.135 The participants wore ActiGraph 

monitors on the hip and wrist and a portable IC unit while performing several activities such as 

golfing (carrying or pulling clubs), playing with kids outdoors, sweeping, and walking while 

carrying a weighted item. Both, hip- and wrist-worn ActiGraph counts were significantly 

correlated with IC-determined MET (r = 0.563, p < .001 and r =.181, p < 0.01, respectively), but 

the addition of data from wrist-worn ActiGraph to hip-worn data did not substantially increase 

the correlation between ActiGraph counts and actual MET (r = 0.586, p < 0.001). The estimated 

EE (MET) were regressed on activity counts from hip-, wrist-, and hip and wrist-worn data. The 

regression equation with activity counts from the wrist alone explained only 3% of the variance 

in EE across the activities, whereas activity counts from the hip alone as well as hip and wrist 

explained over 30% of the variance, respectively. Given modest improvements in EE prediction 

by combining wrist and hip count data, it is questionable whether adding additional acceleration 

data from another site merits the additional investment of time and money. Accordingly, activity 

count output from the hip alone only to develop cut-point criteria for moderate and vigorous 

intensity PA (574 – 4945 counts/min. and > 4945 counts/min., respectively). Compared to the 

Freedson equation, the Swartz equation provided a lower threshold for moderate intensity PA but 

substantially higher x-intercept, essentially condensing the range for both light intensity PA and 

SED. In subsequent validation studies, the ActiGraph EE estimates using the Swartz equation 
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tended to improve EE estimates for non-treadmill, moderate intensity activities, but 

overestimated lighter intensity activities and underestimated vigorous intensity PA.93,151  

Several alternative prediction equations and cut-points have been proposed for ActiGraph 

count output. For example, ActiGraph accelerometer data were incorporated into the on-going 

NHANES population surveillance study in 2003. Researchers calibrated ActiGraph count output 

by analyzing a weighted average combination of previously established cut-point criteria for the 

ActiGraph 7164.152 The resulting cut-points for are 2020 - 5998 counts/min and > 5998 

counts/min for moderate and vigorous-intensity PA, respectively. Troiano et al. used these cut-

points to patterns of daily MVPA in a subsample of the NHANES participants (n = 1828, ages 

20 – 59 y.).20 These cut-points have been applied in other studies of the 2003 – 2004 and 2005 – 

2006 NHANES data to further describe the PA patterns of the U.S. adult population.26,152 

However, these cut-points are designed to estimate MVPA only, and cannot distinguish between 

light-intensity PA and SED.  

Crouter and colleagues proposed that the use of two regression equations to analyze VT 

counts would reduce the likelihood of misclassifying PA by analyzing the pattern of count output 

(i.e. the coefficient of variation). The authors suggested this approach would help distinguish 

walking and running from other activities.153 The coefficient of variation was calculated by 

analyzing six 10-second intervals within a 60-second epoch. Steady-state activities were those 

with an average coefficient of variation < 10 counts per 10-seconds throughout the minute 

interval; other activities comprised an average coefficient of variation of 10 or more counts per 

minute. In contrast to previous regression equations that adopted a linear prediction model, the 

authors determined that exponential and cubic models were most appropriate for the steady-state 

and lifestyle-type activity, respectively. In a cross-validation group, data were analyzed using the 
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two-equation models as well as Freedson and Swartz linear models. The Crouter two-equation 

model EE estimates proved superior to Freedson and Swartz models; it accurately predicted EE 

for both individual activities and all activities combined. Yet the Swartz equation estimates were 

not significantly different to actual EE at the aggregate level. Despite the promise of the two-

equation method, subsequent validation research in a free-living population demonstrated that 

the approach did not provide accurate EE estimates; it instead misclassified SED and light-

intensity PA compared to IC-criterion.154  

Triaxial accelerometers offer the potential for improved PA estimates through additional 

count data from the transverse and antero-posterior axes. Yet, when using similar data treatment 

approaches, the PA estimates may not be substantially different from those obtained from 

uniaxial accelerometer data. For example, previous research has demonstrated the strong 

comparability of VT axis output between several generations of uniaxial and dual-axial 

ActiGraph monitors.29 Most recently researchers have demonstrated that ActiGraph’s triaxial 

monitor, the GT3X, supports the comparability between generations of Actigraph monitors, but 

have proposed new MET prediction equations utilizing the triaxial VM count output.31,144 

Subsequent research comparing EE estimates from the Sasaki VM equation to estimates from the 

Freedson equation showed both equations produced estimates with large mean absolute percent 

errors (MAPE). Average MAPE for light, moderate, and vigorous intensity activities errors were 

lower for Sasaki equation (86.0%, 28.0%, and  21.0%, respectively) compared to Freedson 

equation estimates (95.4%, 47.7%, and 24.0%, respectively).155 It should be noted that this 

protocol included many static (e.g. standing, typing at computer) and sedentary activities (e.g. 

reading a book while seated). Previous research suggests that special analysis should be applied 

to ActiGraph output for determining time spent in sedentary activities.156,157 and these techniques 
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were not applied in this study. Notwithstanding, these results suggest using additional count data 

from multiple axes may not substantially improve PA estimates over VT axis estimates when 

utilizing linear regression prediction techniques. 

Further highlighting the variability between prediction equations and count-based cut-

point ranges for PA intensity categories, Matthews and colleagues examined both laboratory- 

and field-based acceleration data to determine the likely upper and lower limits of activity counts 

for moderate intensity PA. The best prediction model yield limits 760 – 5724 counts/min for 

moderate intensity PA.158 Other ActiGraph predictions equations have proposed moderate 

intensity limits as low as 191 counts/minute and as high as 7526 counts/minute. Researchers 

have suggested this reflects the variability in activities used to derive these prediction equations. 

As such, there is not currently a single regression prediction equation able to accurately predict 

PA across all intensity categories. However, as these select studies suggest, regression-based 

prediction equations are suitable for estimating MVPA from ActiGraph accelerometer at the 

group level despite presenting large variability at the individual level. 

Unlike cut-points established for MVPA, there is less variation in thresholds for 

classifying SED. Self-report evidence suggests a majority of Americans may spend substantial 

amounts of waking hours in sedentary activities, necessitating accurate and objective measures 

of SED. Matthews et al. attempted to objectively estimate time spent in SED from 2003 – 2004 

NHANES accelerometer data by applying a cut-point of < 100 count/min. to define SED.148 

However, there is a lack evidence supporting the validity of this cut-point compared to gold-

standard measures or other activity count cut-point criteria. In fact, some evidence suggests an 

activity count threshold of 150 counts/minute improves SED estimates by being less vulnerable 

to spurious bodily movements during sedentary activities.156 Nonetheless, research has shown 
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ActiGraph yields equivalent estimates of SED using the <100 counts/minute compared to 

ActivPAL-determined sedentary time, a standard criterion for SED in free-living settings, thus 

supporting the validity of this count-based threshold.156,159  

Consumer-based Physical Activity Monitors 

Industry Growth  

Recent consumer electronic sales trends reflect an increasing public interest in PA 

monitoring.40 Consumer-marketed activity trackers, or ‘wearables’, are advertised as electronic 

accessories, designed to be fashionable and functional while still providing feedback on various 

PA outcomes (e.g. steps, EE, stairs climbed), as well as, in some cases, estimates of sleep 

quality.118 Some devices allow the user to track and compare themselves with others on the 

various outcomes via social media or other online platforms. Manufacturers largely rely on 

accelerometer technology in these devices, though certain models may incorporate other 

technology such as GPS or LED optical pulse meters. Recent market sales analysis show rapid 

industry growth for “wearable” technology products.40,160 Fitness-related tracking devices are the 

most commonly reported in consumer data.161 The Fitbit Company has lead this sector of the 

industry, boasting the largest consumer sales in 2014.160,162 These products may present an 

advantage to researchers regarding subject compliance since the burden of wearing a device is 

lessened by the social and functional appeal of the devices.42,163 However, to date, very few 

published studies exist which substantiate the claims that these devices can measure various PA 

outcomes.  
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Validity of Consumer-based Physical Activity Monitors 

Lee and Welk compared EE estimates from several consumer-based PA monitors (e.g. 

Fitbit, Jawbone, Basis B1, BodyMedia FIT) to IC criterion, finding moderate to strong 

correlations (r = 0.32 - 0.81) and wide ranging MAPE(13 – 48%).35 Fitbit devices outperformed 

all but one PA monitor (BodyMedia FIT) in this study. Similar comparison studies have also 

observed Fitbit devices may yield more accurate PA estimates (e.g. EE, steps) compared to 

several other consumer-marketed devices (e.g. Nike Fuel band, Polar loop, Misfit Shine).35,164 

Fitbit monitors have also been utilized as a PA intervention tool and PA monitor in unique 

populations (e.g. clinical COPD patients, transfemoral amputees).43,120,165 Given notable 

consumer interest in Fitbit monitors and their current utilization in PA monitoring research, the 

remaining section will focus on reviewing existing literature on the validity of Fitbit monitors. 

Validity of Fitbit Hip-Worn Monitors 

The majority of evidence supporting the validity and reliability of Fitbit monitors comes 

from studies of its hip-worn models. Some studies explored the validity of the Fitbit step count 

feature against other objective criteria, namely direct observation, accelerometer, and pedometer. 

Hip-worn Fitbit step estimates have demonstrated strong agreement with directly observed step 

counts across a wide range of treadmill and self-paced walking speeds in both adult and elderly 

populations.166-168 The lowest agreement reported between Fitbit and directly observed step 

counts (ICC (2,1) = 0.70) was found in a group of 30 elderly stroke survivors with a mean gait 

speed of 0.84 (± 0.34) m/s. Other studies have reported mean error percentages of 8% or less in 

apparently healthy adult samples.166,167 Similarly, Fitbit step-counts have compared well to other 

PA monitors step estimates. Gusmer et. al reported strong mean correlations (0.97, p < 0.01 and r 

= 0.99, p < 0.01) between Fitbit and ActiGraph’s GT1M step estimates during slow and brisk 
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treadmill walking (mean = 1.11 and 1.36 m/s, respectively). Fitbit monitors have produced 

equivalent step estimates when compared to Yamax and Omron pedometers, but may 

overestimate mean steps per day compared to ActiGraph monitors.169,170  

Evidence supports the reliability of Fitbit monitors for estimating EE and steps. In a study 

comparing the reliability of EE and step estimates from two hip-worn Fitbit models (Fitbit Ultra 

and Fitbit Tracker) compared to IC and ActiCal, both Fitbit models produced strong inter-

instrument correlations for step estimates during walking and stepping activities (r = 0.88 – 0.99; 

r = 0.88 – 0.96, respectively).171 Both Fitbit Tracker and Fitbit Ultra demonstrated stronger 

correlations with IC-criterion EE measures during treadmill walking and jogging (r = 0.56 – 

0.70; r = 0.81 – 0.87, respectively) and attenuated correlations during stepping activity (r = 0.18; 

r = 0.58, respectively). Thus, while Fitbit monitor output appears to have high reliability within a 

certain model; different Fitbit models may not necessarily produce similar PA estimates during 

all activities.  

Most studies of hip-worn Fitbit monitors have examined the validity of Fitbit’s EE 

estimates compared to other PA monitors and IC-criterion. Group-level Fitbit EE estimates have 

demonstrated strong correlations with IC-determined EE (r = 0.78 - .81)35,164 but have much 

wider range for individual activity correlations (r = 0.18 – 0.87).171 Like other accelerometer-

based monitors, Fitbit tend to over- and under-estimate the metabolic cost of individual 

activities, with mixed results for group-level estimates.172  

In fact, some research suggests Fitbit EE may not be accurate without additional user 

input.173 Danneker and colleagues found that Fitbit significantly underestimated total EE 

compared to IC, with a mean error rate of 28.7 % over the course of four hours.173 After 

classifying the activities on Fitbit’s proprietary online interface, the authors reported non-
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significant differences between Fitbit and IC estimates, with a mean error rate of 12.9%, 

suggesting hip-worn Fitbit monitors may not be suitable for monitoring PA in free-living settings 

without additional user input. In a similar study, EE estimates from Fitbit were not significantly 

different from IC during several treadmill-based and simulated free-living activities, with a small 

mean bias of less than 5 kcal/6 minutes reported.172 The inconsistent results between the studies 

may stem from differences in the activity protocol chosen to simulate free-living activities. The 

study by Danneker et al. consisted of activities that are especially challenging to hip-worn 

monitors, including several sedentary activities with little to no lower-body movement, such as 

seated computer work, standing, or lying down. Of eight the physical activities, only two 

involved level walking. Though standing, sweeping, inclined walking and cycling are not 

necessarily uncommon to typical free-living setting, they may not well-represent the majority of 

daily non-sedentary activity, which constituted only a small portion of the short protocol. Thus, 

the accuracy of the Fitbit may depend not only on the type of PA, but on the proportion time 

spent in PA versus sedentary activities.  

Nonetheless, research has shown Fitbit monitors provide reasonable group-level 

estimates of PA and may outperform competitor devices. In one study the Fitbit Zip and Fitbit 

One models demonstrated the lowest MAPE (10.1 and 10.4%, respectively) and were the only 

consumer-marketed devices, along with the Nike Fuel band, to fall within 10% equivalence of IC 

criterion.35 When compared to all other consumer-marketed devices (except the body Media 

FIT), both Fitbit Zip and Fitbit One EE estimates demonstrated the highest correlations with IC-

determined EE (r = .807, r = 0.808, p < 0.01, respectively). The authors note the Body Media FIT 

“…is a consumer version of a research-based, armband monitor known as the SenseWear 

armband.”35 These results support the author’s findings in which the hip-worn Fitbit device had 
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the second highest mean correlation (r = 0.70) and second lowest MAPE (14%) of eight 

consumer-marketed devices.35 The study activities were performed in controlled (laboratory) 

settings but simulated lifestyle activities, including several seated activities with some upper-

body movement but little lower-body movement; this suggests that at the group level, Fitbit 

monitors may be suitable for free-living PA surveillance. 

Few studies have investigated the validity of Fitbit monitors for estimating PA outcomes 

in truly free-living settings. In fact, to our knowledge only one study investigated the accuracy of 

Fitbit monitors for estimating time spent in specific PA intensities with data from obtained in 

free-living settings. Rosenberger and colleagues examined the validity of PA classification 

estimates of a hip-worn Fitbit in a free-living setting.170 The hip-worn ActiGraph GT3X+ served 

as the criterion for light and MVPA. At the individual level, Fitbit underestimated EE for light-

intensity by an average of 64 minutes and overestimated EE MVPA by an average of 76 minutes 

per participant over a 24-hour period. When compared to ActivPAL criterion, the Fitbit also 

overestimated time spent in SED activity. However, Fitbit SED estimates were comparable to 

GT3X+, overestimating SED time by an average of 34 and 48 minutes per participant, 

respectively.170 Group-level error were represented by MAPE and equivalence testing. Fitbit 

demonstrated the highest error (MAPE >60%) for MVPA (min / 24-hours), followed by light-

intensity PA and SED (MAPE > 20% and >10%, respectively), compared to ActiGraph and 

ActivPAL criterion.170 Previous research has shown a strong correlation between EE estimates 

from hip-worn Fitbit and ActiGraph monitors.35 However, the presence of a strong relationship 

between EE estimates does not equate to strong agreement on PA classification. These data echo 

previous validity research showing that accelerometer-based PA estimates may be valid at the 
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group-level, but no single, accelerometer-based monitor is perfectly-suited to quantify all types 

and intensities of PA.93  

Validity of Fitbit Wrist-Worn Monitors 

Even fewer studies have examined the validity of the Fitbit wrist-worn monitors. 

Previous researchers have explored whether accelerometer data from a wrist-worn monitor alone, 

or added to hip-worn data, improves the accuracy of accelerometer-based PA estimates.135,175 

Previous findings have been inconclusive, with some evidence indicating wrist-worn monitors 

may slightly improve PA estimates compared to hip-worn accelerometer output alone.135 In one 

study comparing EE estimates from several consumer-marketed PA monitors, including the 

wrist-worn Fitbit Flex, to IC-determined EE from sedentary, aerobic exercise, and resistance 

training activities, the Fitbit Flex outperformed competitor monitors and produced the smallest 

mean bias in EE estimates compared to IC.164 As with previous studies of Fitbit monitors, Fitbit 

EE output were highly correlated with IC-determined EE (r = 0.78, p < 0.01), second only to the 

Body Media Core armband. Though Fitbit failed to achieve 10% equivalency with IC, overall 

group-level estimates were closer to achieving equivalency than most other competitor monitors. 

Individual level error was highest for aerobic exercise and lowest for SED, with all mean 

absolute error percentages reported above 20% for activity specific domains.  

Though the wrist-worn Fitbit appears to produce comparable, if not superior group-level 

PA estimates compared to other consumer-based PA monitors, activity specific PA estimates 

may differ substantially from other validated monitors used in PA research. In the 

aforementioned study, ActiGraph EE estimates achieved 10% equivalence testing with IC-

determined EE. Mean individual EE estimate errors were greater for ActiGraph than Fitbit for 

sedentary and resistance training activities, but they were substantially lower than Fitbit for 
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aerobic exercise.164 Fitbit estimates were likely closer to actual EE during sedentary activities 

and resistance exercise because the hip-worn ActiGraph would not have been sensitive to the 

nuanced arm movements during SED, such as desk work or fidgeting during “active standing.” 

However, a majority of EE in this 80-minute protocol would have occurred during exercise bouts 

(aerobic and resistance exercise). Resistance training included mostly upper body- and some 

lower body-dominant activities that were self-selected by participants. It is reasonable to infer 

that subjects may have self-selected more upper-body dominant exercises during resistance 

training, thus, leading to improved EE estimates from Fitbit compared to ActiGraph. Since 

accelerometers only predict PA based on movement (accelerations), total EE attributed to this 

domain may have been less than aerobic exercise, and these estimates would not be able to 

account for additional EE used to move external loads or due to excess post-exercise oxygen. 

Furthermore, if subjects demonstrated various arm patterns during treadmill walking or jogging 

it might have attenuated Fitbit PA estimates during aerobic exercise, explaining the greater 

MAPE compared to ActiGraph, a device that has been validated for estimating EE during 

ambulatory activities. It is uncertain if the results of this study reflect the predictive validity of 

the wrist-worn Fitbit monitors in free-living settings.  

Consumer-marketed PA monitors hold promise for multiple research applications, 

including population-level PA surveillance or integration into PA interventions. Yet, due to a 

lack of research in free-living settings, their utility is yet to be determined, particularly for wrist-

worn monitors such as the Fitbit Flex.  

Summary 

Several health benefits are possible by regularly engaging in PA such as lowered risk of 

pre-mature death, improved quality of life, and improved physiological functioning.4,58,176 



 

42 

 

Despite public health documents that both disseminate these benefits and outline the quantity of 

PA needed to achieve them, the majority of adults in the United States to do not meet these 

weekly PA recommendations.20 In addition to copious amounts of SED characterizing the 

leisure-time of a majority of Americans, self-report PA research suggests that many adults also 

overestimate the amount and intensity of their own PA.177,178  

Objective PA measures may be beneficial to accurately monitoring and effectively 

promoting PA. Current gold standard objective PA tools, namely IC and DLW, are costly and are 

not easily deployable to large population in free-living settings. On the other hand, low-cost and 

inconspicuous objective monitors such as HR monitors or pedometers, provide limited PA 

information or are vulnerable to error from other physiological influences. However, 

improvements in accelerometer-based PA monitors show promise for objectively monitoring and 

estimating PA. Due to their small size, they can be worn inconspicuously by users in everyday 

settings. Increased memory capacity and battery efficiency without increases in monitor size 

allows them to be deployed for several days or weeks at a time. Weighing less than 50g, many 

accelerometer-based monitors used in research can monitor PA for a week or more without 

recharging.46,123 Furthermore, modern accelerometer-based PA monitors do not require regular 

maintenance whereas previous accelerometer technology would lose calibration over time or 

with wide temperature shifts.123  

There are clear limitations and weaknesses associated with using linear prediction 

equations and count-based cut-points to estimate PA from accelerometer data.141 Because 

accelerometers record accelerations, they are unable to readily record EE and PA during weight-

bearing activities that may or may not incorporate static muscle contraction. Similarly, 

accelerometers may not readily detect PA of body segments that are functioning relatively 
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independent of the device attachment point. Cycling is a good example of an activity that is 

particularly challenging to hip-worn and wrist-worn monitors. Water-based activities like 

swimming are also challenging since most accelerometer devices are not submergible. 

Misclassification of individual activities is likely when utilizing regression prediction equations 

to estimate PA from accelerometer data. Yet, researchers with basic statistical analysis skills can 

easily apply the technique which have proven validity. Furthermore, current device software may 

even automate processing the data. Researchers may favor using multiple PA monitoring devices 

or using advanced statistical analysis, but these options may not always be feasible if additional 

time and resources are not available.  

Detecting everyday movement patterns is paramount for assessing daily PA across a 

range of activities and intensities. Despite the limitations known for using accelerometers to 

estimate PA, they are objective instruments and able to monitor a wide range of activities with 

minimal cost and user burden; they are feasible for large scale free-living PA monitoring.   
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METHODOLOGY 

The purpose of this study was to determine the concurrent validity of the Fitbit Flex 

accelerometer in a free-living condition. We hypothesized that estimates of time spent in MVPA 

and SED would not significantly differ between Fitbit and the ActiGraph GT3X+ (GT3X+).  

Participants 

A convenient sample of 67 adults from the North Dakota State University volunteered to 

participate in the study. Participants were recruited via University email listservs, posted fliers, 

and word-of-mouth. Participants were eligible to participate if they were a University student or 

employee, were at least 18 years of age or older and could attend one of the orientation meetings. 

North Dakota State University’s Institutional Review Board approved the study and all 

participants voluntarily consented to participate in the study.  

Instruments 

Fitbit Flex 

The Fitbit Flex (Fitbit Inc., San Francisco, CA), is an accelerometer-based physical 

activity monitor that is 3.2 cm long and weighs less than 15 grams (including wrist-band).179 It 

features a MEMs tri-axial accelerometer which tracks movement in three planes (mediolateral, 

vertical, anteroposterior). The monitor continually acquires data and with onboard storage 

capacity for approximately seven days of data without syncing. Data is transferred via Bluetooth 

technology to the Fitbit application program interface (API) either through Fitbit’s mobile app or 

a Bluetooth dongle connected to a computer. Users are able to access personal physical activity 

estimates via the Fitbit dashboard (Fitbit.com). The dashboard is a cloud-based interface, which 

provides real-time estimates and daily summaries of PA including steps, EE, ambulatory 

distance, and “active minutes.”   
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The Fitbit dashboard provides limited resolution of PA estimates (approximately 15 

minutes) and does not allow easy access to export PA data. Fitabase (Small Steps Labs, LLC, 

San Diego, CA) is a third-party online-based service marketed toward research applications of 

Fitbit devices. Fitabase has an access to Fitbit’s API which manages and houses the data for 

Fitbit.com’s online users. Fitabase subscribers are able to view and export data of specific PA 

variables at daily, hourly, and minute-by-minute resolutions. We utilized Fitabase services to 

acquire minute-by-minute SED and PA estimates for each participant. 

ActiGraph GT3X+  

ActiGraph (Pensacola, FL) currently offers multiple models of tri-axial accelerometer-

based devices. The ActiGraph GT3X+ is a lightweight (19 g), tri-axial MEMs accelerometer-

based monitor with a dynamic range of -/+ 6 G.180 Users may choose sampling frequencies from 

30 Hz to 100 Hz. We chose a sampling rate of 30hz (over one-minute epochs) as this range 

should adequately capture most accelerations due to human movement.133 Accelerations are 

recorded and stored in raw format. Using ActiGraph’s proprietary software, ActiLife, users can 

select data filtering options to obtain count-based device output. Users can then obtain SED and 

PA estimates through ActiLife by selecting from previously established count-based criteria or 

specifying data-treatment parameters. 

Data from ActiGraph accelerometer were downloaded and scored using ActiLife version 

6.11.4 (ActiGraph Corp., Pensacola, FL). Non-wear time and sleep time were defined using Choi 

(2011)157 criteria and participants’ sleep logs, and excluded from the analysis. Minute-by-minute 

activity counts from accelerometer were then scored using three different cut-points Freedson 

(1998), Troiano (2008), and Freedson VM3 (2011), and reduced as time spent in sedentary, light, 

and moderate-to-vigorous physical activity. Fitbit non-wear time were defined individually by 



 

46 

 

removing sleep time and any non-wear time recorded on participant sleep logs. Fitbit data were 

then individually matched to each participant’s GT3X+ wear time. For our comparisons, only 

data from waking hours where both devices were worn, as determined by ActiLife wear-time 

analysis and participant wear time logs, were considered. 

Procedures 

All participants reported to group orientation session where they were briefed on the 

purpose of the study and how to wear and use the PA monitors. Participants voluntarily 

consented to be in the study and completed a demographic questionnaire before beginning the 

protocol. Participants simultaneously wore the Fitbit and ActiGraph monitors for seven 

consecutive days. Participants were instructed to wear all devices during all waking and sleep 

hours except during bathing and recreational water activities (e.g. swimming). Participants wore 

a Fitbit monitor on the dorsal aspect of the non-dominant wrist, secured by a Fitbit wristband, 

like a watch. The ActiGraph GT3X+ monitor was worn on the dominant hip in-line with the 

midline of the thigh and the approximate peak of the iliac crest. The GT3X+ was secured onto 

subject’s pant or belt by a belt clip, with a semi-elastic leash clipped to a different part of the 

pant for added security. Participants kept a log of any non-wear time during waking hours, 

extraordinary amounts of PA, and daily sleep times.  

An email was sent to participants three days prior to the conclusion of the data period 

reminding them to charge the Fitbit once, preferably during the overnight hours, and continue 

wearing all devices during waking hours until the conclusion of the data period. At the 

conclusion of the data collection period, all devices and participant logs were personally 

retrieved by the investigators and data downloaded immediately.  
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Statistical analysis 

ActiGraph-determined PA (Freedson, Troiano, and Freedson VM3 cut-point criteria) 

served as the criterion reference for all comparisons. Due to unequal sample size, we used the 

Welch’s T-test to assess differences in daily PA and SED between the participant groups 

(Students vs. faculty and staff). Pearson correlations were used to determine the relationship 

between Fitbit and GT3X+. Repeated measures one-way analysis of variance (ANOVA) served 

to examine differences in estimates of SED and MVPA, comparing estimates from Fitbit with 

those from GT3X+ using three different cut-points (only two cut-points for SED estimates).  

Repeated measures ANOVA was preferred over multiple t-tests to reduce the likelihood of 

committing a Type-I error for SED and MVPA comparisons. Bland-Altman plots were used to 

illustrate any potential bias between GT3X+ and Fitbit daily estimates of SED and MVPA. All 

data analyses were conducted using IBM SPSS 24.0 for Windows (SPSS, Armonk, NY). Alpha 

level of 0.05 defined significance for all statistical analysis.  
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MANUSCRIPT 

Surveillance of physical activity (PA) is vital for better understanding of the relationship 

between PA and specific health outcomes. Although limitations of self-report are evident, 

historically surveillance data have relied on subjective measures of PA such as self-reported 

questionnaires.71,80,83 Accelerometers are particularly appealing for PA monitoring in free-living 

conditions; several accelerometer-based devices have been used in PA research applications.28 

ActiGraph accelerometer is the most widely used to measure PA in research and surveillance 

systems.27,28 For example, due to its high validity and feasibility, the ActiGraph GT3X+ was the 

method of choice for measuring PA in NHANES 2011 – 2014, one of the most representative 

surveillance system in the U.S.33  

Researchers have used the strong correlations between accelerometer and IC output to 

devise count-based prediction models for PA outcomes such as minutes of PA in MET categories 

or energy expenditure (EE).135,142,143 Using regression equations with accelerometer counts (i.e. 

counts/60 second) as a predictor, several activity count cut-points have been developed to 

estimate the amount of time spent in different intensities of PA (e.g. minutes of vigorous PA). 

Among those cut-points, two developed by Freedson et al., and one developed by Troiano et al. 

are most widely utilized cut-points for estimating time spent in varying intensities of PA 

including sedentary, light, moderate, and vigorous PA.99,137,142,149,155 However, PA estimates may 

significantly vary depending on cut-point criteria applied to accelerometer output, which 

primarily caused by inconsistency in monitor placement types and duration of activities used to 

calibrate the equation.93,181,182 As such, there is no single cut-point criteria able to accurately 

classify accelerometer-based PA estimates across all intensity categories and activities.93 Thus, 

studies investigating the validity of PA monitors with an accelerometer-based criterion may be 
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limited by utilizing only one cut-point prediction model. Nonetheless, the Freedson cut-points 

have produced acceptable estimates of MVPA even when compared to more recent 

cutpoints.93,149,181 

Fitbit is a leading manufacturer of accelerometer-based PA monitors sold in the consumer 

electronics.160,162 Given the popularity and acceptability of these consumer-based PA monitors, 

there may be an opportunity to use them as a research tool. Few studies have examined the 

validity of Fitbit, but most used only hip-worn Fitbit models in controlled settings.35,171,173 Fitbit 

step estimates have demonstrated strong agreement with directly observed step counts across a 

wide range of walking speeds in both adult and elderly populations.166-168 Group-level Fitbit EE 

estimates have demonstrated strong correlations with IC-determined EE, but correlations were 

lower at individual-level. .35,164,171 Previous research also shows Fitbit tend to over- and under-

estimate the metabolic cost of individual activities, with mixed results for group-level 

estimates.172 Nonetheless, Fitbit monitors provide reasonable group-level estimates of PA.35  

Fewer studies have assessed the accuracy of Fitbit’s wrist-worn PA monitor, the Fitbit 

Flex. One laboratory-based study showed the Fitbit Flex produced EE estimates highly 

correlating with IC-determined EE, but overestimated EE for specific activity domains (e.g. 

aerobic activity).164 Other research has shown the hip-worn Fitbit PA classification estimates 

greatly differ with ActiGraph criterion for classifying MVPA.170 Therefore, the purpose of this 

study was to examine the concurrent validity of the wrist-worn Fitbit Flex compared to the hip-

worn ActiGraph GT3X+ utilizing three different cut-point criteria in a free-living condition.  
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Methods 

Participants 

A convenient sample of 67 participants (age: 47.1 ± 14.1 years, Female: 73.1%) was 

recruited from the North Dakota State University students, faculty and staff by email, posted 

fliers, and word-of-mouth. Participants who were under the age of 18, pregnant, physical 

disabled, or unable to engage in regular PA as recommended by a physician, were not eligible to 

be in the study. The North Dakota State University Institutional Review Board approved the 

study and all participants voluntarily provided consent to participate in the investigation.  

Instruments 

The Fitbit Flex (Fitbit, Inc., San Francisco, CA), is a physical activity monitor that is 3.2 

cm long and weighs less than 15 grams (including wrist-band).179 It features a tri-axial 

accelerometer and continually acquires data and with onboard storage capacity for approximately 

seven days of data without syncing. Data is transferred via Bluetooth technology to the Fitbit 

application program interface (API) either through Fitbit’s mobile app or a Bluetooth dongle 

connected to a computer. Since the Fitbit dashboard provides limited resolution of PA estimates 

and does not allow users to export PA data without a premium subscription, we chose to access 

minute-by-minute data for the Fitbit Flex through an online-based third-party service (Small 

Steps Labs, LLC, San Diego, CA). Fitabase subscribers are able to view and export data of 

specific PA variables at daily, hourly, and minute-by-minute resolutions from the Fitbit API.  

ActiGraph (ActiGraph Corp., Pensacola, FL) currently offers multiple models of tri-axial 

accelerometer-based devices. The ActiGraph GT3X+ is a lightweight (19 g), tri-axial 

accelerometer-based device with a dynamic range of -/+ 6 G.180 Users may choose sampling 

frequencies from 30 Hz to 100 Hz. We chose a sampling rate of 30hz (with one-minute epochs) 
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as this range should adequately capture most accelerations due to human movement.133 Data 

from GT3X+ accelerometer were downloaded and scored using ActiLife version 6.11.4 

(ActiGraph Corp., Pensacola, FL). 

Participants kept a log of any non-wear time during waking hours and daily sleep times. 

Participants were also instructed to note any days that included extraordinary amounts of PA that 

may appear unusually high for their typical routine (i.e. running a half-marathon).  

Procedures 

Participants completed an orientation session and began the free-living protocol after 

voluntarily consenting to be in the study and completing a demographic questionnaire. 

Participants simultaneously wore the Fitbit and GT3X+ monitors for seven consecutive days 

during all waking and sleep hours except during bathing and recreational water activities (e.g. 

swimming). Participants wore a Fitbit monitor on the dorsal aspect of the non-dominant wrist, 

similar to a watch. The GT3X+ monitor was worn on the dominant hip in-line with the midline 

of the thigh and the approximate peak of the iliac crest. At the conclusion of the data collection 

period, all devices and participant logs were personally retrieved by the investigators and 

ActiGraph data downloaded immediately. 

Data reduction 

Non-wear time and sleep time were defined using Choi (2011)157 criteria and 

participants’ sleep logs respectively, and were excluded from the analysis. No participants noted 

any extraordinary PA during the protocol. Thus, all minute-by-minute activity counts during 

validated waking hours from GT3X+ accelerometer were then scored into daily time spent in 

sedentary, light, and moderate-to-vigorous physical activity (min/day) using three different cut-

points Freedson (1998), Troiano (2008), and Freedson VM-3 (2011, MVPA only). Similarly, 
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Fitbit wear time was validated by removing sleep and non-wear time from the participant sleep 

log. Fitbit minute-by-minute data were then time synced to corresponding GT3X+ validated 

wear time. Thus, only data from waking hours where both devices were worn, as determined by 

ActiLife wear-time analysis and participant wear time logs, were considered. 

Statistical Analysis 

Pearson correlations were used to determine the relationship between estimates from 

Fitbit and those from GT3X+. Due to unequal sample size, we used the Welch’s T-test to assess 

differences in daily PA and SED between the groups (Students vs. faculty and staff). To avoid 

committing a Type-I error with SED and MVPA comparisons, repeated measures one-way 

analysis of variance (ANOVA) served to examine differences in SED and MVPA estimates, 

comparing Fitbit estimates and those from GTX+ using three different cut-points (only two cut-

points used for SED comparisons). Significant overall ANOVA was followed by pair-wise 

comparisons using Bonferroni adjustment. Bland-Altman (BA) plots were used to illustrate any 

potential systematic bias between GT3X+ and Fitbit SED and MVPA estimates. All data 

analyses were conducted using IBM SPSS 24.0 for Windows (SPSS, Armonk, NY). Alpha level 

of 0.05 was set to define significance for all statistical analyses.  

Results 

Subject characteristics are summarized in Table 1. The sample was relatively 

homogenous, mostly female and non-Hispanic white. Participant ages ranged 20 – 70 years (y).  

Given the distinctive age range and occupational status represented in the sample, the mean daily 

minutes of PA and SED were presented separately for students and the faculty/staff (Table 2). 

Participants recorded an average of 5.9 valid wear days (14.9 hours/day) over the 7-day period 

indicating high compliance with the protocol. Participants spent the majority of waking hours in  
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SED and least amount of waking hours in MVPA. Between groups, students spent less time in 

SED and more time in MVPA compared to faculty and staff. The Welch’s T-test results showed 

students achieved significantly more MVPA and significantly less SED than faculty and staff. 

However, the comparison between groups was not integral to the intended analysis. Thus, we 

combined data from the entire sample (n = 67) for the remainder of the analysis.  

Table 1. Participant characteristics by occupational status.  

 Students 

(N = 11) 

Faculty/Staff 

(N = 56) 

Total  

(N = 67) 

Age (mean years ± SD*) 23.0  ± 1.4  45.4 ± 12.5  47.1 ± 14.1  

    

Sex (%)    

 Male  63.6 80.4 26.9 

 Female  36.4 19.6 73.1 

    

Ethnicity (%)     

 Non-Latino 100.0 100.0 100.0 

    

Race (%)    

 Asian  9.1 1.8 3.0 

 White 90.9 98.2 97.0 

    

BMI (mean kg/cm2 ± SD) 25.4 ± 2.1 26.0 ± 4.8 25.9 ± 4.4 

*SD: standard of deviation 
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Table 2. Mean valid wear days and mean daily minutes of MVPA and SED. 

 Students 

(n = 11) 

Faculty/Staff 

(n = 56) 

Total 

(n = 67) 

Valid Wear Days (±SD*) 5.9 ± 1.4 5.8 ± 1.2 5.9 ± 1.2 

    

SEDa (min/day ±SD)    

 Fitbit  586.1 ± 72.3 645.0 ± 92.5 635.3 ± 91.7 

 GT3X+ (Freedson) 560.4 ± 90.2 607.2 ± 90.7 599.5 ± 91.6 

 GT3X+ (Troiano) 560.4 ± 90.2 607.2 ± 90.7 599.5 ± 91.6 

 GT3X+ (VM3†)  -- -- -- 

    

MVPAb (min/day ±SD)    

 Fitbit  141.1 ± 23.4 100.5 ± 29.3 107.1 ± 32.1 

 GT3X+ (Freedson) 51.0 ± 16.3 25.5 ± 16.0 29.7 ± 18.6 

 GT3X+ (Troiano) 48.8 ± 15.8 24.3 ± 15.8 28.3 ± 18.2 

 GT3X+ (VM3) 74.3 ± 20.8 42.2 ± 21.7 47.4 ± 25.5 

*SD: standard of deviation 
†VM3: sedentary behavior estimates were not available from the Freedson VM3 cut-points.  
aSED: sedentary behavior 
bMVPA: moderate-to-vigorous physical activity  

We found strong correlations for SED estimates (r = .89, P < 0.01) between GT3X+ and 

Fitbit (Table 3). For MVPA, the correlations between Fitbit and GT3X+ were moderately strong 

across the ActiGraph cut-points applied (r = .66 - .77, P < 0.01).   

Table 3. Pearson Correlations between Fitbit and GT3X+ SED and MVPA estimates.  

  

Fitbit 

GT3X+ 

(Freedson)  

GT3X+ 

(Troiano) 

GT3X+ 

(VM3) 

SEDa Fitbit 1 .89* .89* -- 

 GT3X+ (Freedson)  1 1.00* -- 

 GT3X+ (Troiano)   1 -- 

      

MVPAb Fitbit 1 .67* .66* .77* 

 GT3X+ (Freedson)  1 .99* .88* 

 GT3X+ (Troiano)   1 .87* 

 GT3X+ (VM3)    1 

*p < .01 
aSED: sedentary behavior 
bMVPA: moderate-to-vigorous physical activity 
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Results of one-way ANOVA revealed significant differences between Fitbit and GT3X+ 

criteria for MVPA [F(3, 264) = 159.28, p < .01] and SED [F(2, 198) = 3.41, p < .05]. Significant 

differences remained only for MVPA pair-wise comparisons (Table 4). Fitbit significantly 

overestimated MVPA compared to all GT3X+ criteria by notably wide margins. The mean 

differences in MVPA estimates between Fitbit and GT3X+ were 60 (VM3), 77 (Freedson), and 

79 min/day (Troiano), respectively. There were no significant differences in daily SED estimates 

between Fitbit and GT3X+ Freedson and Troiano cut-point criteria.   

Table 4. Mean differences between GT3X+ and Fitbit SED and MVPA estimates.   

Intensity  Comparison  

Mean Difference 

(min/day± SD) 95% CI 

SEDa Freedson - Fitbit -35.83 (42.74) [-74.05; 2.40] 

 Troiano - Fitbit -35.83 (42.74) [-74.05; 2.40] 

    

MVPAb Freedson - Fitbit -77.41 (23.94)* [-88.44; -66.39] 

 Troiano - Fitbit -78.83 (24.34)* [-89.86; -67.80] 

 VM3 - Fitbit -59.70 (20.64)* [-70.73; 48.67] 

*p < .0167 
aSED: sedentary behavior 
bMVPA: moderate-to-vigorous physical activity  

BA plots revealed that there is not an apparent bias in the agreement for SED estimates 

between the two devices (Figure 1). However, for MVPA, BA plots suggest Fitbit increasingly 

overestimates MVPA compared to GT3X+ as mean volume of MVPA increases (Figure 2).  
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Figure 1. Bland-Altman plots illustrating level of agreement between GT3X+ and 

Fitbit SED and PA classification estimates. Dashed lines show 95% limits of 

agreement (± 1.96 SD). 

Figure 2. Bland-Altman plots illustrating level of agreement between GT3X+ MVPA 

and Fitbit MVPA classification estimates. A) Freedson cut-points. Dashed lines show 

95% limits of agreement (± 1.96 SD). 
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B) 

 

C) 

 

Figure 2. Bland-Altman plots illustrating level of agreement between GT3X+ MVPA 

and Fitbit MVPA classification estimates (continued). B) Troiano cut-points. C) VM3 

cut-points. Dashed lines show 95% limits of agreement (± 1.96 SD). 
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Discussion  

This study sought to compare the accuracy of the Fitbit Flex PA monitor against a 

previously validated accelerometer, the ActiGraph GT3X+, for classifying PA intensity in free-

living settings. Our results demonstrated moderate to strong significant relationships between the 

Fitbit and GT3X+ monitors for SED and PA estimates. Though Fitbit tended to overestimate 

SED compared to GT3X+, these differences were not statistically significant. However, Fitbit 

MVPA estimates significantly differed from all GT3X+ estimates. The observed differences 

show there were greater discrepancies between Fitbit-determined MVPA estimates and GT3X+ 

cut-point criteria developed from single axis regression equations (i.e. Freedson and Troiano cut-

points). However, regardless of GTX+ cut-points used, Fitbit overestimated mean daily MVPA 

by nearly an hour or more. Furthermore, BA plots showed these differences increased as volume 

of MVPA increased, suggesting that Fitbit may systematically overestimate MVPA compared to 

GT3X+. 

Previous research has shown strong correlations for EE, step, and MVPA estimates 

between hip-worn Fitbit models and ActiGraph GT3X+.35,171,183,184 Similarly, Fitbit Flex and 

GT3X+ MVPA estimates have strongly correlated in studies of young adult and elderly 

populations, with the latter study also reporting moderate correlations for LPA.185,186 Our results 

show the MVPA correlations between Fitbit and GT3X+ estimates fall between that of these two 

studies. Differences in methodologies may partially explain these differences. Sushames et al., 

used a protocol lasting less than 24 hours, with a mix of scripted PA and free-living activity.184 

Alharbi and colleagues investigated free-living activity over a 4-day period with elderly subjects 

in a clinical population.185 Our study collected free-living data over a longer period and with a 
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more diverse age-range of healthy adults. Thus, the longer study protocol in our investigation 

may better represent the correlations between Fitbit and GT3X+ in free-living conditions.  

That Alharbi et al. found stronger MVPA correlations than ours may be explained by 

differences in participant characteristics. The authors reported lower correlations between Fitbit 

and GT3X+ MVPA estimates for females versus males.185 Whereas their study sample was 

mostly male, a majority of our participants were female. A similar investigation to ours found 

that over a 14-day study period, male participants spent greater time in MVPA than females, 

though the latter achieved more vigorous PA as proportion of total daily MVPA.187 Our study 

shows greater discrepancies between Fitbit and GT3X+ for vigorous PA than moderate PA. 

These results may explain the lower correlation for MVPA found in our study comprised mostly 

of female participants. As other researchers have suggested, future studies should consider 

investigating the impact of participant sex on differences in PA estimates between PA 

monitors.188  

Few studies have assessed the Fitbit Flex classification estimates for SED, particularly in 

free-living settings. Compared to IC criterion Fitbit Flex underestimates SED EE where as 

GT3X+ overestimated SED EE, though these findings were derived from a short protocol 

including only 20 minutes of SED.164 A different study with an extensive free-living protocol 

showed Fitbit Flex overestimated the mean daily proportion of time spent in SED by 23% 

compared to GT3X+.187 Previous research has shown accelerometers placed at the hip 

demonstrate less count variability than wrist and ankle placement over a wide range of sedentary 

and physical activities.175,189 It may be that a hip-worn device may be better suited to capturing 

SED than a wrist-worn device. Indeed, recent evidence suggests a hip-worn Fitbit may yield 

similar SED estimates as GT3X+ in free-living settings, whereas SED estimates from a wrist-
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worn Fitbit are overestimated.170 Nonetheless, our results show that, overall, Fitbit-determined 

SED estimates were not significantly greater than GT3X+-determined SED. 

It may be that neither Fitbit Flex nor the ActiGraph GT3X+ are ideal monitors for 

estimating SED in free-living settings. To the point, defining count-based criteria for SED is 

inconsistent and may be operationalized to include variables such as posture, a variable not 

captured by the Fitbit Flex.190 The GT3X+ has the low-frequency option, allowing the user to 

increase the monitor’s sensitivity to movement by lowering the frequency threshold for recording 

accelerations. However, based on current evidence, it is unclear whether researchers should 

enable the low-frequency extension feature when initializing the ActiGraph if the goal is to 

specifically monitor SED.156,191 

Though the Freedson and VM3 cut-points were derived from accelerometer output using 

different numbers of axis (i.e. vertical axis only versus vector magnitude of three axes), research 

has demonstrated that the equations perform similarly compared to IC-criterion.31,155 

Furthermore, though there is some evidence linear regression prediction equations from triaxial 

output may be superior to vertical axis output alone, the magnitude of the differences may be 

small, and these differences have not been tested between ActiGraph’s triaxial and single-axis 

linear regression equations in free-living settings.149 In our study, the MVPA estimates were 

significantly different between Freedson and Troiano cut-points compared to VM3 cut-points. 

However Fitbit MVPA estimates were consistently significantly higher than any GT3X+ 

estimates. Thus, we simply refer to the Freedson cut-points when discussing the comparisons of 

the Fitbit to GT3X+ MVPA estimates. 

Our results show the Fitbit Flex and GT3X+ produce very different estimates of MVPA. 

Specifically, Fitbit Flex overestimated mean daily MVPA by nearly an hour, or more, compared 
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to the ActiGraph GT3X+. The hip-worn Fitbit One has overestimated MVPA compared to 

GT3X+, with researchers reporting mean absolute percent errors of over 60%.170 In our study 

Fitbit discrepancies may be exaggerated further due to the wrist placement of the Fitbit Flex. 

Indeed, Rosenberger and colleagues found that a hip-worn accelerometer has nearly twice the 

sensitivity in capturing MVPA than did a wrist-worn accelerometer.175  

Recently Nelson and colleagues found Fitbit Flex overestimated the metabolic cost of 

walking (3.3 – 4.6 METs) and jogging (7.0-7.9 METs) activities compared to IC criterion.188 

However, the activities were only performed for five minutes. In our study, participants averaged 

nearly 30 minutes of ActiGraph-determined MVPA per day. Thus, we might expect the 

magnitude of the discrepancy between ActiGraph- and Fitbit-determined MVPA to be much 

greater. In support of this explanation in our analysis of the BA plots of Fitbit and GT3X+ 

MVPA, each data plot was below zero, indicating the Fitbit flex overestimated mean daily 

MVPA for each participant. We also observed a negative slope for the fit line, suggesting that 

this discrepancy tends to increase as total mean daily MVPA volume increases. Other research 

has found similar systematic bias for Fitbit Flex step estimates, but not for EE estimates.164,185,186 

The strengths of this investigation include the length of the free-living protocol, the wide 

age range represented in the participant sample, and high number of valid wear days. Only one 

previous study has investigated the wrist-worn Fitbit in a protocol lasting at least seven days and 

that study only included 19 subjects between ages 19 – 37.187 In addition, our investigation 

included a wrist-worn consumer-based accelerometer-based monitor, which are more popular 

than hip worn models and may potentially increase compliance in future research studies. Lastly, 

our investigation utilized the ActiGraph accelerometer-based monitor as a criterion measure 
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using three validated prediction equations. Previous investigations have typically only compared 

the validity of consumer-based monitors to ActiGraph using one cut-point criteria.35,170,184 

Certain limitations of this study must be considered when interpreting our results. Fitbit 

does not currently have a wear time validation mechanism per se, though other researchers have 

applied typical validation approaches to minute-by-minute Fitbit data where 60 consecutive 

minutes of no PA during waking hours are assumed to be non-weartime.187 Thus, it is not 

possible to truly know if such occurrences are due to non-wear time or extensive SED. 

Limitations of using ActiGraph for assessing SED have been reported; however, previous 

research has shown acceptable estimates of SED compared to ActivPAL and IC criterion.159,188 

Both Fitbit Flex and GT3X+ are not completely water proof. Thus, we were unable to capture 

activities such as swimming or bathing for this analysis.   

In conclusion, our data suggest that though the Fitbit Flex SED estimates are not 

significantly different from GT3X+, the monitors do not produce equivalent estimates of MVPA. 

In particular, the Fitbit Flex overestimates MVPA compared to GT3X+ regardless of the use of 

different cut-points. On-going population surveillance will benefit from improved objective 

monitoring options that will maximize subject compliance and data accuracy. Improving the 

accuracy of MVPA monitoring is paramount to increasing population adherence to the Physical 

Activity Guidelines for Americans. Consumer-based PA monitors, such as the Fitbit Flex, show 

promise for promoting PA adherence to the general public by allowing individuals to self-

monitor daily PA. However, if the Fitbit Flex overestimates MVPA, this may reduce the 

likelihood that an individual would meet or exceed the minimum recommended MVPA. Further 

research is needed to investigate the accuracy and precision of Fitbit Flex PA classification 

estimates in free-living settings.   
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SUMMARY  

This study investigated the concurrent validity of two accelerometer-based PA monitors 

in a free-living condition. Specifically, we compared the SED and PA estimates of wrist-worn 

consumer-based PA monitor, the Fitbit Flex, to the hip-worn ActiGraph PA monitor, GT3X+. 

NDSU students, faculty, and staff participants wore the monitors simultaneously for seven 

consecutive days. Aside from maintaining their day-to-day lifestyle, participants kept a daily log 

indicating sleep and wake times as well as any large amounts of physical activity outside of their 

normal routine (i.e. running a half marathon). 

To determine Fitbit and GT3X+ SED and PA estimates, we first validated wear time 

during waking hours. Non-wear time for ActiGraph was determined by using both a previously 

validated non-wear time algorithm (Choi criteria)157 and participants’ logs indicating sleep and 

non-wear time. Similarly, Fitbit wear time was determined by subtracting sleep and non-wear 

time recorded in participant logs from Fitabase data. GT3X+ and Fitbit validated wear-time 

output were time stamp matched, minute-by-minute, so that only data from periods of 

simultaneous wear time were considered for analysis. GT3X+ daily SED and PA estimates were 

then calculated using three previously validated cut-point criteria (i.e. Freedson, Troiano, and 

Freedson’s VM3 cut-points).20,142,144 Fitbit SED and PA estimates were determined using 

Fitabase, a third party service which generates data reports for specific Fitbit PA monitors from 

the Fitbit API. Fitabase subscribers are able to obtain daily, hourly, and minute-by-minute totals 

of steps, EE, as well as time spent in SED, LIPA, and MVPA.   

When comparing estimates between GT3X+ and Fitbit, we observed strong correlations 

for SED estimates (r = .891, P < 0.01), but only moderately correlated for MVPA estimates (r = 

.658 - .766, P < .01). Repeated one-way ANOVA showed Fitbit and GT3X+ SED and MVPA 
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estimates were significantly different. After applying post hoc adjustments, differences in SED 

estimates were no longer significant, but MVPA estimates remained significant regardless of 

which ActiGraph cut-points were applied. Compared to ActiGraph Freedson, Troiano, and VM3 

cut-points, Fitbit overestimated mean daily MVPA by 77, 79, and 60 min/day, respectively. We 

did not observe any apparent bias between Fitbit and GT3X+ SED estimates (mean difference = 

35.83). However, BA plots illustrated that Fitbit consistently overestimated MVPA compared to 

GT3X, and these differences increased as mean daily volume of MVPA increased.  

Few studies have compared Fitbit and GT3X+ SED PA estimates in free-living settings. 

Recent evidence shows the Fitbit Flex overestimates MVPA and SED over seven days compared 

to GT3X+.187 Likewise, our results show large discrepancies between the Fitbit Flex and GT3X+ 

MVPA estimates, and inconclusive differences in SED estimates. Taken together, our results 

suggest Fitbit Flex may not be a suitable measure of MVPA in free-living conditions. Currently 

researchers (and users) are unable to access raw count data from Fitbit Flex. Access to this data 

would allow researchers to directly compare count-based output between the monitors and 

further our understanding of the relationship between the Fitbit Flex and GT3X+ PA estimates. 

Though not a primary aim of this study, we found significant differences in daily SED 

and MVPA between students and professional employees. Our sample included 11 students as 

well as 56 faculty and staff from the North Dakota State University campus. It is interesting to 

note that, on average, students achieved about 30 minutes more MVPA and 51 minutes less SED 

than faculty and staff. It is possible that the different occupations lend themselves to different 

amounts of PA, particularly upper-body movement that may account for these differences. Age 

could possibly explain these differences, as PA generally tends to decrease as age increases.20 

Yet, overall this sample was relatively active, with both students and professional University 
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employees attaining an average of 48 minutes of MVPA per day. This daily average would be 

enough to achieve the recommended amount of weekly MVPA. Thus, it is possible that both 

student and professional employees regularly engaged in leisure-time PA, but that students also 

were less sedentary as a function of their occupation. Previous Fitbit validation studies in free-

living conditions have been limited to small convenience samples while laboratory studies have 

assessed scripted PA from common leisure-time and household activities (e.g. walking, 

resistance training exercises, or folding laundry).164,187,188 Future studies should consider 

investigating larger samples to include representation from numerous occupations to further 

examine the validity of the Fitbit Flex PA estimates across diverse occupational patterns of adult 

PA.  

In conclusion, though the Fitbit Flex is popular consumer-based physical activity 

monitor, there is little research validating its PA classification estimates in a free-living 

condition. This study demonstrated that Fitbit Flex and GT3X+ produce similar SED but 

substantially different MVPA estimates in free-living conditions. If it is to be used as tool for PA 

surveillance tool, further research is needed to determine the validity of the Fitbit Flex PA 

estimates, especially by including larger samples representing multiple occupational and age 

groups to capture diverse patterns of PA. 
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