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ABSTRACT 

The goal of this project was to examine benefits of developing a DDGS-based extract for 

human food consumption. The antioxidant activity of extracts derived from corn and distillers’ 

dried grains with solubles (DDGS) was determined. Adding 1% DDGS extract to chips 

significantly decreased peroxide value and hexanal content compared to the control and 

potentially lengthened the oxidation induction period. Supercritical carbon dioxide was 

successful in producing extracts with similar phytochemical content, but adding 0.05% extract to 

crackers did not significantly reduce oxidation, although the DDGS extract may have lengthened 

the induction period. Tocopherols and lutein significantly decreased during oxidation and likely 

provided antioxidant benefits while phytosterol content did not significantly change.  
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GENERAL INTRODUCTION 

Production of ethanol from corn has increased more than 10 fold in the last decade 

(USDA-ERS 2016). Despite increased production, profit margins for ethanol have tightened. The 

net return per gallon of ethanol has been cut in half since 2005 (Hofstrand 2016). Ethanol 

byproducts are a substantial source of revenue in ethanol production (Liu & Rosentrater 2011). 

Distillers Dried Grains with Solubles (DDGS) are the principal coproduct of ethanol production. 

An average of 35 million metric tons (MMT) of DDGS are produced annually from ethanol 

production with a record 40 MMT produced in 2015; corn is the primary source for ethanol in 

the USA (USDA-ERS 2016; RFA 2016). DDGS account for over 20% of the revenue from 

ethanol production, with additional revenue from corn distiller’s oil (CDO) (Hofstrand 2016; 

Irwin 2016). Ethanol production would not be profitable without revenue from coproducts. 

DDGS have the potential for further development to increase the economic viability of the 

ethanol industry (Liu & Rosentrater 2011). 

DDGS are a nutritionally dense byproduct of corn ethanol production. DDGS are sold as 

a commodity, mostly for animal feed. Phytochemicals, including tocopherols, carotenoids and 

phytosterols, are naturally found in corn and DDGS. The antioxidant potential of these 

phytochemicals has been demonstrated for decades; however, a lack of research exists on DDGS 

oil for human consumption. DDGS-based oil extract could provide antioxidant benefits, 

including extending the shelf-life of food. 

Antioxidants are important to extending shelf-life by preserving food quality. Oxidation 

produces negative sensory attributes that can make food undesirable. Synthetic antioxidants are 

effective at preventing oxidation at low levels of inclusion. Approved synthetic antioxidants, 
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such as BHA and TBHQ, are limited to addition of 0.02% (200 ppm) on a fat basis (Pokorny 

2007). 

Consumers are demanding more foods with natural ingredients and thus the food industry 

is striving to meet this demand. Natural antioxidants are extracted from plants for use as food 

additives. While natural antioxidants are effective at reducing oxidation, limited sources are 

available. Natural antioxidants generally require higher addition concentrations than synthetic 

antioxidants to be effective. Tocopherols and carotenoids are generally recognized as safe 

(GRAS) and regulated under good manufacturing practices (GMP) in the United States (Pokorny 

2007). International standards limit carotenoids to addition of 100 ppm in snack foods. 

Tocopherol additive limits are not defined in snack foods, but are defined for many other food 

products from cheese to chocolate. Addition of tocopherols in fat spreads and cereal based 

desserts is limited to 500 ppm (Codex Alimentarius 2016). As natural antioxidants would meet 

the needs of both consumers and food producers, developing DDGS based antioxidants could be 

beneficial. In addition, with food waste emerging as a major societal concern, finding new ways 

to preserve food quality using ingredients from waste products could improve relations between 

the consumer and the food industry. 

The goal of this project was to examine benefits of developing a DDGS-based extract for 

human food consumption. Natural extracts were tested in low moisture foods, such as chips and 

crackers, to identify a potential antioxidant benefit.  Phytochemicals were quantified through 

high performance liquid chromatography (HPLC) and gas chromatography (GC).  Primary and 

secondary lipid oxidation products were monitored. Sensory evaluation was conducted in 

crackers over 90 days to demonstrate oxidative stability and consumer acceptance. This study 
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showed the benefits of a DDGS extract at higher concentrations. Future work should aim to raise 

antioxidant concentration in the DDGS extract and optimize the incorporation level.   
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1. LITERATURE REVIEW 

1.1. Ethanol Production 

1.1.1. Overview of the Ethanol Industry 

The modern ethanol industry emerged in the United States in the 1970’s. The production 

of ethanol increased gradually until a surge in production in the early 2000’s; government 

mandates promoted increases in the ethanol production (Liu and Rosentrater 2011). The Energy 

Policy Act of 2005 implemented Renewable Fuel Standard (RFS). Renewable energy standards 

were further strengthened in 2007 with the passage of the Energy Independence and Security Act 

(EISA), which required the United States to increase renewable fuel production to 36 billion 

gallons by 2022, from 9 billion gallons in 2008 (NDEC 2014). These policies have encouraged 

long-term investment in ethanol that has greatly impacted the Nation’s energy sector (RFA 

2013). The ethanol industry contributes $44 billion to the Unites States economy per year and 

accounts for about 10% of the oil produced in the United States annually (RFA 2013; EIC 2014; 

NDEC 2014). 

Ethanol has many uses and is produced from a variety of raw goods. Cereal grains were 

the original source, as they were fermented to produce alcohol for human consumption. Alcohol 

distilleries now comprise a very small fraction of ethanol production, as biofuel manufacturing 

has grown to the primary sector. Biofuels can be produced from many plants including cereal 

grains, oilseeds, sugary crops, legumes and perennial grasses (Liu and Rosentrater 2011). Corn 

has become the dominant source of fuel ethanol production in the United States and corn based 

DDGS are nearly ubiquitous. 

Dry-grind corn ethanol production is the dominant method for producing ethanol from 

corn.  In dry milling, the whole kernel is milled, cooked, and fermented (Figure 1). The 
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fermentation process utilizes the starch fraction of corn. Starch is converted to sugar and 

fermented to produce ethanol. The remaining non-fermentable components are collectively 

known as whole stillage. Whole stillage is separated into a liquid and solid fractions. The liquid 

fraction becomes thin stillage, which is partially recycled and dried to become condensed 

distillers solubles (CDS). Recent advances in the ethanol industry have promoted the extraction 

of oil from CDS by centrifugation; the extracted oil can be used in animal feed or biodiesel 

production, adding value to the ethanol process (Ciftci and Temelli 2014; RFA 2014). 

 
Figure 1. Dry grind ethanol process (RFA 2014). 

 

The solid fraction of whole stillage, known as wet cake, can be sold as feed or dried. Wet 

cake has a short shelf life due to high moisture content and thus has few practical large-scale 

uses. Distillers wet grains (DWG) often spoils in less than a week. In addition, DWG has 

different flow characteristics than dried distillers’ grains (DDG) and requires special handling 
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techniques, which make it less ideal for commercialization (Liu and Rosentrater 2011). 

Typically, wet cake is incrementally dried from approximately 65% moisture to 12% moisture, 

thus forming DDG. CDS often is recombined during the drying process to produce distillers 

dried grains with solubles (DDGS).  Many consider DDGS a coproduct of ethanol production, as 

opposed to a byproduct, due to its importance to the ethanol industry (Liu and Rosentrater 2011).  

For example, DDGS accounted for over 20% of revenue from ethanol production in 2015, which 

is increased from around 12% of total revenue in 2005 (Hofstrand 2016). 

1.1.2. Corn 

1.1.2.1. Corn Composition 

Corn is the most widely used crop for ethanol production. Corn, also known as maize, is 

a member of the grass family Gramineae (Kent and Evers 1994). Dent corn is the most 

prominent class grown in the United States and is preferred for ethanol production. Corn 

produces the largest kernel of the cereal grains. The corn kernel is composed of a tip cap, 

pericarp, endosperm and germ. The endosperm is 82% of the kernel, while the pericarp and germ 

consist of 6% and 12%, respectively (Liu and Rosentrater 2011). Starch can compose more than 

80% of nutrients, but is often 60-80%, and entirely located in the endosperm. Fiber, protein and 

ash make up about 10%, 8% and 1% of the kernel, respectively (Shukla and Cheryan 2001). 

Lipids comprise only 3-6% of the whole kernel.  However, lipids are concentrated in the germ, 

containing approximately 45-50% oil, which is 85% of the total kernel lipid content (CRA 2006; 

Majoni and Wang 2010). Most lipids are in the form of triacylglycerides.  Linoleic acid is the 

predominant fatty acid in corn, followed by oleic, palmitic, stearic and linolenic with 49.8%, 

33.4%, 14.0% 2.0% and 1.5%, respectively (Kent and Evers 1994). Phospholipids, glycolipids, 

and free fatty acids also are found in corn (Moreau et al 2001; Moreau and Hicks 2005). A 
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distinct feature of corn is the relatively high amounts of phytochemical compounds, including 

phytosterols, tocopherols and carotenoids, found in the lipid extracts of corn (Hall III and Zhao 

2011). 

1.1.3. Distillers Dried Grains with Solubles  

1.1.3.1. Overview of DDGS 

DDGS are the primary coproduct of ethanol production. Thirty-five million metric tons 

(MMT) of DDGS are produced annually from ethanol production with 40 MMT being produced 

in 2015. Approximately $5 billion worth of DDGS were produced from corn ethanol production 

in 2015, of which, one third is exported (RFA 2014; 2016; USDA-ERS 2016). DDGS account 

for more than 20% of revenue for ethanol production (Hofstrand 2016). 

DDGS are currently sold almost exclusively as livestock feed. Distillers grains have been 

proven to be valuable in the diets of beef cattle, dairy cattle, poultry, sheep, swine and other 

animals (Babcock et al 2008). DDGS are desirable as an animal feed, in part, due to the high 

protein and energy density.  Macro- and micro- nutrient contents within DDGS are often 

inconsistent, which may reduce the value as animal feed (Cromwell et al 1993; Belyea et al 

2006). However, DDGS are still a popular source of nutrition at a controlled portion of animal 

diets (US Grain Council 2012). Utilization of distillers’ grains as animal feed can reduce feed 

costs to farmers (Masa’deh et al 2011; 2012). The price of DDGS is highly dependent on corn 

and, to a lesser extent, soybean prices (Hoffman and Baker 2011). 

Removing oil from DDGS has been used as an additional source of revenue for ethanol 

producers; therefore, reduced fat DDGS have been researched as feed for various animals. High-

fat diets reduce milk production in dairy cows; research shows that low-fat DDGS increased milk 

production compared to other feed sources (Babcock and other 2008).  Lowering fat content in 
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DDGS did not seem to negatively affect egg production when incorporated into hen diets 

(Purdum et al 2014). In addition, fat content of DDGS has little effect on swine metabolism (US 

Grain Council 2012). This research suggests that reduced lipid DDGS can be an advantageous 

source of animal feed. 

1.1.3.2. DDGS Composition 

The ethanol production process significantly affects the composition of DDGS. Nutrient 

composition often differs between ethanol facilities. Variability can be attributed to the 

processing conditions, but may also be an effect of the methods used for composition analysis 

(Belyea et al 2004; Spiehs et al 2002). In addition, corn genotype and growing location affects 

DDGS nutritional content. Compared to corn, the percent of protein, fat and fiber is increased by 

approximately three-fold in DDGS, mostly due to the removal of starch.  Leguizamon et al 

(2009) found approximately 4 times the lipid content in DDGS compared to corn. DDGS contain 

approximately 5% starch, 30% protein, and 5% ash (Liu 2011).  

Approximately 90% of ethanol is produced by dry grind production (RFA 2014).  Dry 

grinding is often preferred over wet milling due to lower capital investment (Liu and Rosentrater 

2011). Dry mills use the entire kernel whereas wet mills concentrate the starch component by 

separating various components of the corn kernel. Dry milling lends itself to producing distillers’ 

grains with higher phytochemical content compared to wet milling. Phytochemical 

concentrations are dependent on location. Tocopherols are more concentrated in the germ 

whereas tocotrienols are more evenly distributed between germ and fiber. Tocols are likely 

degraded somewhat due to heat used during ethanol production, but total tocol concentration in 

DDGS is comparable to corn kernel oil (Moreau et al 2011). Carotenoids are highly concentrated 
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in endosperm, but nearly void in the germ (Moreau et al 2000).  This explains why DDGS oil has 

up to 33 times more carotenoids than corn germ oil (Moreau et al, 2007).   

Reduced-oil DDGS have become more popular due to increased efficiency in the ethanol 

industry. Various processes have since been developed for removing oil from ethanol byproducts 

(Cantrell and Winsness 2009). Over 85% of ethanol plants have added the capacity to extract oil, 

known as Corn Distillers Oil (CDO), from ethanol stillage (RFA 2014). As a result, the 

nutritional composition of the majority of DDGS has changed over the last decade. Lipid content 

of DDGS, prior to CDO extraction, varied between 9.7-12.7% of dry matter (Cromwell et al 

1993; Spiehs et al 2002; Belyea et al 2004; Winkler et al 2007; Robinson et al 2008; Kim et al 

2008; Liu 2009; Stein et al 2009; Leguizamon et al 2009; Masa’deh et al 2011; Moreau et al 

2011). CDO extraction can remove between 30-70% of oil from stillage; most DDGS now 

contain 7-9 percent oil. DDGS sold as feed can be as low as 5% fat (Shurson et al 2012). An 

evaluation of multiple ethanol plants from Illinois, Indiana, Iowa, Michigan, Minnesota, 

Nebraska, North Dakota and South Dakota showed that fat content in DDGS varied between 6-

13% during 2011 and 2012 (Anonymous 2012). Recent macronutrient data from DDGS using 

the dry grinding ethanol process (with CDS oil extraction) consist of approximately 89.4% dry 

matter, 28.3% protein, 7.3% fat and 6.9% fiber (RFA 2014). With this amount of fat, oxidation 

could be a problem.   

1.2. Oxidation 

1.2.1. Overview of Oxidation 

Oxidative stability is important to nutritional and sensory attributes of food (Kamal-Eldin 

2006). Lipid oxidation encompasses many complex interactions between lipids, oxygen and 

other various components. A consequence of lipid oxidation is the decomposition of fatty acids 
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into volatiles compounds; volatiles affect sensory characteristics and often promote further 

oxidation. Lipid oxidation reduces food quality. Oxidative rancidity is a general term for the 

production of unwanted aromas and flavors due to lipid oxidation (McClements and Decker 

2008). 

Oxygen is important to food oxidation because it is a powerful oxidant. Oxidants remove 

electrons from other reactants. The oxidant power of oxygen can change depending on its outer 

electron state. Ground state oxygen is referred to as triplet oxygen. Singlet oxygen appears in a 

higher energy state; the difference is the position of electrons in the outer orbital. Singlet oxygen 

has electrons in both orbitals whereas the the triplet oxygen contains electrons within a single 

orbital. The singlet state is less stable and thus more highly reactive.  

The oxygen state is important as it affects both the products of oxidation and 

circumstances under which oxidation will occur. Singlet oxygen is formed by photo-excitation. 

Storage conditions can inhibit photooxidation thus preventing the formation of singlet oxygen 

species. Autoxidation by triplet oxygen is more dependent on other factors. Oxidation can be 

catalyzed by temperature, enzymes, and metals (St. Angelo 1992). Understanding the mechanism 

of oxidation is important for choosing the correct method of quantifying oxidation (Decker et al 

2010). 

The basic steps in oxidation include initiation, propagation and termination. Lipid radical 

first form during initiation. Initiation can occur by abstraction of a hydrogen atom or homolytic 

cleavage of hydroperoxides. Propagation is the formation of new radicals from existing radicals. 

Proliferation of free radicals is an integral part of lipid oxidation. Termination is the interaction 

of free radicals to form non-radical molecules (Frankel 1998l; Pokorny et al 2001). 
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Lipid oxidation products are affected by the location of hydrogen extraction. Initiation 

often occurs when a hydrogen is removed from an unsaturated lipid, creating an alkyl radical 

(Figure 2).  The allylic carbon (the carbon adjacent to a carbon-carbon double bond) has low 

bond dissociation energy; therefore, hydrogen abstraction occurs preferably from allylic carbons 

in autoxidation.  Increasing unsaturation increases the likelihood of initiation. Bis-allylic carbons 

(i.e. carbon located directly between 2 sets of double bonds) are often found in polyunsaturated 

fatty acids. A bis-allylic carbon has a high potential for hydrogen abstraction due to surrounding 

instability. For example, linoleic acid (18:2) is 10-40 times more susceptible to autoxidation 

compared to oleic acid (18:1) and the induction times for each fatty acid at 25°C are 19 and 82, 

hours respectively (McClements and Decker 2008; Belitz et al 2009).  Hydrogen abstraction 

takes place at the bis-allylic carbon, which is followed by a rearrangement of double bonds to 

stabilize the free radical (Figure 3).  

 
Figure 2. Initiation and propagation of unsaturated lipids (Vickers et al 2001). 

 



 

12 

 
Figure 3. Hydrogen abstraction in lipid oxidation (McClements and Decker 2008). 

Location of hydrogen abstraction within polyunsaturated lipids (A), creation of a carbon centered 

radical (B) and shift in double bond placement to stabilize the radical (C).  

Hydrogen abstraction can occur at different locations for autoxidation and 

photooxidation, as a result of the oxygen species involved. Flavors and aromas generated are 

dependent on the type of oxidation and the specific lipid being oxidized. Oleic acid (18:1) can 

result in four different alkyl radicals in autoxidation, which in turn can each produce a variety of 

volatile compounds (Pokorny et al 2001). 

Propagation occurs when oxygen reacts with the alkyl radical to form a peroxyl radical. 

The peroxyl radical extracts a hydrogen from another unsaturated lipid, initiating additional 

radical formation, and forming a hydroperoxide (Figure 4) (McClements and Decker 2008). The 

interaction of two radicals to destroy both radicals is known as termination.  Termination rarely 

occurs at low radical concentrations (Pokorny et al 2001) 
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Hydroperoxide breakdown results in lower molecular weight volatiles associated with 

rancidity. Alkoxyl radicals are highly energetic intermediate products of hydroperoxide 

oxidation. The carbon bond adjacent to the alkoxyl radical is cleaved to form smaller compounds 

(McClements and Decker 2008). Secondary oxidation products are often aldehydes or ketones 

that produce flavors and aromas (Kamal-Eldin 2006).  

 
Figure 4. Formation of oxidation products from linoleic acid (Shi and Ho 1994). 

 

1.2.2. Quantification 

Primary oxidation products are an important assay for oxidation.  Lipid hydroperoxides 

are primary oxidation products. The iodometric titration method is the standard for calculating 
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peroxide value. Hydroperoxides will oxidize iodide to iodine, which turns purple in the presence 

of starch.  Titration with sodium thiosulfate returns iodine to iodide. Peroxide value is expressed 

as milliequivalents of oxygen per kilogram of oil (meq/kg) (McClements and Decker 2008). The 

titration method has many positive aspects, but can be time consuming and labor intensive, and 

requires relatively large amounts of sample. In addition, titration involves visually determination 

of an end point, which may increase human error and reduce test sensitivity.  Iodometric titration 

is sensitive to approximately 0.5 meq/kg.  Other methods have been developed for quantifying 

primary oxidation products, but the titration method is still generally favored (Shahidi and Zhong 

2005).   

Secondary oxidation products also must be quantified to produce an accurate indication 

of oxidation (Shahidi and Zhong 2005).  Primary oxidation products increase during the initial 

phase of oxidation, but will eventually deteriorate as secondary oxidation products form (Figure 

5).  

 
Figure 5. Concentration of primary and secondary oxidation products over time (Labuza and 

Dugan 1971). 

 

Secondary oxidation products include a wide variety of compounds. Lipid content and 

oxidation conditions should determine the method for quantifying secondary products. Some 
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common methods for quantifying secondary oxidation products include the thiobarbituric acid 

(TBA) test, p-anisidine value (p-AnV), totox value, carbonyl content, oil stability index (OSI) 

and hydrocarbon assays (Shahidi and Zhong 2005). 

The content of certain hydrocarbons are known to change with the degree of oxidation. 

Hexanal is the predominant secondary product of linoleic acid oxidation (Belitz et al 2009).  

Hexanal has been useful in measuring antioxidant efficiency and shows a relationship to sensory 

perceptions (Sanches-Silva et al 2004; Shahidi and Zhong 2005). The path for hexanal 

production from linoleic acid involves peroxide formation followed by decompostition (Figure 

4). Other volatiles may have greater impact on rancid flavors and aromas, but high hexanal 

concentration can be better for analysis (Pokorny et al 2001). 

Hexanal can be quantified by various gas chromatography methods. Static headspace 

methods are relatively easy to perform and reliably measures hexanal in foods such as potato 

chips (Azarbad and Jeleń 2014). Static heaspace is not as sensitive as some other methods, but 

these methods are good for measuring hexanal at high concentrations. The headspace solid-phase 

microextraction (HS-SPME) method has been used for GC determination of hexanal in potato 

crisps. In HS-SPME, a coated fused silica fiber sits above a sample where the volatiles are 

allowed to equilibrate in the headspace and onto the fiber. The volatiles are desorbed from the 

fiber when placed in the injection port of the GC and separated as volatiles move throught the 

column (Sanches-Silva et al 2004).  

1.2.3. Antioxidants in Corn and DDGS 

1.2.3.1. Overview of Mechanism of Antioxidant Action 

Antioxidants inhibit oxidation by interacting with free radicals. Antioxidants work by 

various methods; the main antioxidant categories include inhibitors and chain breaking 
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antioxidants. Singlet oxygen quenchers are preventative inhibitors by reducing the high-energy 

singlet oxygen to the triplet state, a less reactive oxygen species. Carotenoids and, to a lesser 

extent, tocopherols have single oxygen quenching potential (Pokorny et al 2001). Antioxidants 

may also inhibit free radicals or scavenge radical species (Hall III and Zhao 2011). Hydrogen 

donation is a chain-breaking mechanism where the antioxidant donates a hydrogen to terminate a 

radical; the antioxidant is generally stabilized by resonance within a phenolic structure. 

Antioxidants also can work synergistically by combining multiple oxidation prevention 

mechanisms (Pokorny et al 2001).  

Natural antioxidants, such as tocopherols, are nearly ubiquitous in nature and play a vital 

role in maintaining life. Consumers often prefer natural antioxidants for perceived health 

benefits. Some natural antioxidants are more favorable than their synthetic counterparts. 

Synthetic tocopherols are racemic whereas natural tocopherols have right-handed chirality 

making natural tocopherols more effective as a dietary source of vitamin E (Pokorny et al 2001).  

Additionally, natural carotenoids are mostly found in the all-trans form, which has the greatest 

vitamin A activity (McClements and Decker 2008). 

1.2.3.2. Tocols 

Tocochromanols, also referred to as tocols, are a group of monophenols that can be 

divided into two groups: tocopherols and tocotrienols. Tocopherols consist of a chromal ring 

with a saturated phytyl side chain. The phytyl tail of tocotrienols is unsaturation at the 3, 7 and 

11 carbons.  Each group has four isomers (α-, β-, γ-, or δ-), which differ by the number and 

position of the methyl groups (Figure 6). 
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Figure 6. Methyl group location in tocopherol and tocotrienol isomers (adapted from Hall III and 

Zhao 2011). 

 

Corn contains approximately 30 ppm tocopherols, but can vary between 7 and 86 ppm 

depending on genotype (Kurilich and Juvik 1999). Tocopherols are approximately three-fold 

greater than tocotrienols in corn (Panfili et al 2003).  The most prominent tocol is γ-tocopherol, 

usually constituting greater than 50% of total tocol content.  The β-isomers of both tocopherol 

and tocotrienol are sparsely found in corn.  While tocopherols are highly concentrated in the 

germ (90%), tocotrienols are more evenly distributed throughout the kernel (Messias et al 2015; 

Weber 1987).  Milling can have a significant impact on tocol concentration considering the 

disparity between kernel components (Table 1).  
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Table 1. Tocol content from various corn fiber oil, refined corn oil, whole kernel oil and corn 

germ oil shown as the mean data of multiple sources. 

 Total Tocols α-Ta γ-T δ-T α-T3b γ-T3 δ-T3 

Oil  ------------------------------------- μg/g ------------------------------------ 

Corn Fiberc 578    0    79   36   15 378 70 

Refined Corn Oild 787 185  555   26    9   13   3 

Whole Kernele 2000 407 1051   93 156 269 25 

Corn Germf 2164 184 1758 107   26   97 28 
a T = tocopherols  
b T3 = tocotrienols (c) (Moreau and Hicks 2006)  
d data adapted from (CRA 2006; Schwartz et al 2008)  
e data adapted from (Moreau and Hicks 2006; Moreau et al 2010)  
f data adapted from (Kamal-Eldin and Anderson 1997; Moreau and Hicks 2006; Moreau et al 

2010; Tuberoso et al 2007; Winkler-Moser and Breyer 2011) 

Lipids extracted from DDGS are of some interest as a source of valuable nutrients 

including tocopherols (Liu 2011). The non-starch nutrients in corn can become concentrated to 

3-4 times higher levels in DDGS (Moreau et al 2011). However, tocols are sensitive to heat and 

may be destroyed in processing (CRA 2006; Čukelj et al 2010; Fardet et al 2008; Moreau et al 

2010). Refined corn oil contains about 1/3 the total tocol concentration compared to corn germ 

oil, which is due to the oil refining process. Depending on the study, DDGS and corn can contain 

relatively similar amounts of tocols; however, Winkler-Moser et al (2009) found much higher 

levels of tocols in DDGS (Tables 2). DDGS oil has better oxidative stability than natural 

vegetable oils, possibly due to the high concentration of antioxidants (Winkler-Moser and Breyer 

2011). 

  



 

19 

Table 2. Tocol content (μg/g) in DDGS oil from literature. 

Solvent Total Tocols α-Ta γ-T δ-T α-T3b γ-T3 δ-T3 

 ----------------------------------------- μg/g ---------------------------------------- 

Hexaned  1820 190 950 51 16 460 15 

Hexanee 1801 194 948 51 155 453 NRc 

Hexanef 2866 296 761 48 471 1210 80 

Hexaneg 1803 178 875 250 100 250 19 

Pet Etherh 1265 111 687 NR 123 116 228 

SCCO2
d 1710 260 830 58 13 450 NR 

SCCO2
i 1682 144 889 NR 163 112 374 

Mean 1849 196 848 91 149 436 143 

(% of total)  (10.6%) (47.9%) (3.5%) (7.3%) (21.2%) (6.4%) 

a T = tocopherols  
b T3 = tocotrienols  
c NR = not reported  
d data adapted from (Winkler et al 2007)   
f data adapted from (Winkler-Moser et al 2009)  
g data adapted from (Winkler-Moser and Breyer 2011)  
h data adapted from (Winkler et al 2007) 
i data adapted from (Ciftci et al 2012) 

Vitamin E is a collective group of lipid-soluble antioxidants, of which, tocopherols are 

the most prominent (Schwartz et al 2008).  Tocols act as a chain breaking antioxidants by 

donating a hydrogen to a free peroxyl radical (Traber 2007). The hydroxyl group on the C6 

position of the phenolic ring functioning to reduce free radicals by hydrogen donation (Figure 7).  

The resonance within the phenol group stabilizes the tocol, preventing the spread of radical 

species. Tocopherols can also act as antioxidants by trapping alkoxyl radicals (Hall III and Zhao 

2011). 
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Figure 7. Proposed tocopherol radical scavenging mechanism (Hall III and Zhao 2011). 

 

Tocopherols are known to have very high antioxidant properties (Winkler-Moser 2011). 

Burton et al (1985) considered tocopherols to be the main antioxidant in stabilizing vegetable 

oils. Tocopherols have been shown to extend the lag phase of oxidation in corn oil (Lindsay 

2008). Vegetable oils are stabilized most effectively at an optimal level of supplementation 

(Kamal-Eldin and Appelqvist 1996). Natural levels of tocopherols stabilize corn oil effectively 

while excessively high amounts of tocopherol can facilitate oxidation. High concentrations 

promote prooxidant interactions within oil systems. For example, α-tocopherols are considered 

the most efficient peroxyl radical scavenger among tocopherols, but side reactions may promote 

propagation (Kamal-Eldin 2006; Yanishlieva et al 2002).  Furthermore, α-tocopherols are better 

antioxidants at low concentration, while γ-tocopherols are more effective at higher 

concentrations (Fuster et al 1998; Yanishlieva et al 2002). While tocotrienols are not as 

prominent in nature and have not been studied as thoroughly, they have many benefits and 

potentially greater antioxidant properties in some circumstances (Sen et al 2007). 
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The vitamin E activity found in both tocopherols and tocotrienols may be linked to health 

benefits (Sen et al 2007). Human and animal studies suggest E-vitamins reduce oxidative stress 

(Martin et al 1996; Golestani et al 2006). Tocopherols and tocotrienols prevent the oxidation of 

polyunsaturated lipids in cell membranes by the same mechanism described above (Traber, 

2007). Tocopherols may reduce risk of cancer and heart disease (Burton and Traber 1990; 

Burton 1994). Some research suggests that α-tocopherols are the primary tocochromanol isomer 

in preventing cellular oxidation within humans due to the greater affinity for transport proteins 

(Traber 2007; Traber and Atkinson 2007). Plasma concentrations of α-tocopherols are correlated 

with reduced rates of cause-specific mortality; however, vitamin E supplementation does not 

seem to correlate with reduced risk of mortality, possibly due to reduced affinity of artificial 

tocopherols by human tocopherol transport proteins (Wright et al 2006; Traber 2007).  

1.2.3.3. Phytosterols 

Phytosterols are plant steroids that can be subdivided into sterols and stanols. Phytosterol 

structures consists of three 6-carbon rings, a 5-carbon ring, and a variable carbon side chain.  

Stanols are saturated while sterols have an unsaturated ring structure. Hundreds of known 

phytosterol compounds exist due to variations in the carbon side chain and degree of saturation 

(Moreau et al 2002). 

The aleurone layer of the corn caryopsis is likely the source of phytosterol production 

(Moreau et al 2000). In contrast to tocopherols, the germ contains the lowest percentage of free 

phytosterols in corn. The germ still contains the most total phytosterols due to higher lipid 

content, but the aleurone and fiber have the highest concentration (Figure 8).  Commercial corn 

oil contains only germ oil; therefore, the loss of phytosterols in fiber and aleurone results in a 

substantial reduction of phytosterols in commercial corn oil (CRA 2006).  
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Figure 8. Percent free phytosterol in extracts from fiber, aleurone, germ and whole kernel 

compared to total concentration of free phytosterols in each fraction. 

Data adapted from (Jiang and Wang 2005; Leguizamon et al 2009; Liu 2009; Moreau et al 2000; 

2001; 2002; Stein et al 2009). 

 

Sitosterol is predominant in corn oil, but stigmasterol, campesterol, sitostanol, 

cycloartenol campestanol and sigmastanol are also present (Figure 9) (Jiang and Wang 2005). 

Distribution of common phytosterols is relatively similar throughout the kernel (Figure 10). 

 
Figure 9.  Structure of common phytosterols found in corn (Winkler-Moser 2011). 
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Figure 10.  Distribution of prominent phytosterols in the fiber, aleurone and germ of corn 

(adapted from Jiang and Wang 2005; Moreau et al 2000; 2002). 

 

Phytosterols can be found in free form or bound to fatty acids, phenolics and 

carbohydrates (Toivo et al 2001). The 3-OH group on the “A ring” becomes an ester or 

glycosidic linkage in bound phytosterols (Moreau et al 2002).  Sterol esters can be unique to 

cereals such as corn, including some hydroxycinnamate esters (Figure 11), also known as 

ferulates (Moreau et al 2002). In studies by Moreau et al (1999; 2001), approximately 54% and 

12% of sterols from corn were bound to fatty esters and ferulates, respectively; only 33% kernel 

phytosterols were unbound.  The germ contains about half of all free phytosterols in the kernel.  

Most esterified phytostanols are in the aleurone layer, which is removed in commercial corn oil 

extraction (Moreau et al 2000; Winkler-Moser et al 2012).  
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Figure 11. Example of phytosterol fatty esters and ferulates found in corn (adapted from Moreau 

et al 2002). 

 

Phytosterol can be quantified by gas chromatography. Sample preparation generally 

involves releasing bound phytosterols to their free form. Alkaline hydrolysis with ethanolic KOH 

is sufficient for breaking phytosterol ester bonds (Figure 11).  Glycosidic linkages require acid 

hydrolysis, but steryl glycosides are rare in corn (Moreau et al 1996; 2000; 2002). Phytosterol 

derivitization often is used for GC analysis to improve volatility and peak resolution.  

Trimethylsilyl ether derivitization is common (Moreau et al 2002; Winkler-Moser 2011). 

A relatively wide range of phytosterol quantities have been reported in DDGS. This can 

likely be attributed to multiple reasons including extraction techniques and the variability in 

corn.  Total phytosterol content appears to be about twice as high in DDGS oil compared corn oil 

(Leguizamon et al 2009).  Sitosterol and campesterol are the most prominent sterols in both corn 

and DDGS oil (Table 3).  
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Table 3. Phytosterol content (mg/g) in DDGS oil from literature. 

Solvent 
Total 

Phytosterols 

Campe-

sterol 

Stigma-

sterol 

β-sito-

sterol 

5-aventa-

sterol 

Campe-

stanol 

Sito-

stanol 

 ----------------------------------------- mg/g ------------------------------------------ 

Hexaneb  16.2 2.5 0.8 8.1 0.7 1.1 2.7 

Hexanec 11.5 NRa NR NR NR 1.1 2.6 

Hexaned 21.7 3.0 1.1 10.3 0.9 NR NR 

Hexanee 22.0 NR NR NR NR 1.4 3.7 

Pet Etherf 12.4 3.0 1.1 7.9 0.3 NR NR 

SCCO2b 15.8 2.5 0.1 7.9 0.1 NR NR 

SCCO2g 15.9 3.6 1.6 10.2 0.5 NR NR 

Mean 16.5 2.9 1.0 8.9 0.6 1.2 3.0 

(% of total)  (18.4%)b (6.0%) (54.9%) (3.0%) (6.6%) (16.8%) 

a NR = not reported  

b data adapted from (Winkler et al 2007)  

c data adapted from (Leguizamon et al 2009)  

d data adapted from (Winkler-Moser and Breyer 2011)  

e data adapted from (Moreau et al 2011)  
f data adapted from (Ciftci et al 2012)  

Phytosterols may contribute to antioxidant effects in some foods. The antioxidant activity 

of phytosterols appears to be linked to reduced polymerization in frying oil held at high 

temperatures. Polymerization is a common sign of oxidation in frying oils and thus steryl 

ferulates maintain oil freshness. The antioxidant benefits appear to be linked to some specific 

structural components only found in some phytosterols. According to Gordon and Magos (1983), 

“sterols with an ethylidene group in the side chain are most effective as antioxidants.” Some 

phytosterols can interrupt autoxidation by reacting with lipid free radicals to form stable free 

radicals. Stigmasterol, -sitosterol and cholesterol were ineffective antioxidants in a frying oil 

(180C) application while 5-avenasterol was effective at 0.1% of lipid content (Gordon and 

Magos 1983). Yoshida and Niki (2003) suggests that campesterol and -sitosterol act as 

antioxidants while stigmasterol accelerates oxidation. 
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Another proposed mechanism for antioxidant activity from phytosterols is due to the 

attachment of phenolic acids. Phenolic acids are effective antioxidants. They likely act as 

antioxidants through hydrogen donation or radical scavenging. Winkler and Vaughn (2009) 

suggest steryl ferulates in DDGS oil contribute antioxidant activity. Similar steryl ferulates found 

in other cereals have been shown to be good antioxidants (Nyström et al 2005; Xu et al 2001).  

Phytosterols esterified to phenolic acids, such as hydroxycinnamate esters found in corn, are 

chain breaking antioxidants (Hall and Zhao 2011). 

The health effects of phytosterols are considered more significant than antioxidant 

activity (Hall III and Zhao 2011). Cereal oils are one of the best sources of natural phytosterols. 

Sterols are known for their cholesterol-lowering potential by preventing the absorption of 

cholesterol in the intestines (Ostlund et al 2002). Dietary phytosterol consumption reduces serum 

low density lipoproteins, which are related to increased heart disease, without altering high 

density lipoproteins, which are associated with good heart health.  Free sterols are the 

physiologically active form, but bound sterols are mostly hydrolyzed in the intestines. Stanol and 

stanyl esters have been shown to have strong enough cholesterol-lowering effects to warrant a 

health claim for food containing sufficient amounts. In addition to containing tocopherols and 

carotenoids, corn fiber oil is considered a heart healthy oil for its natural phytostanol content 

(Leguizamon et al 2009; Moreau et al 2002).  

1.2.3.4. Carotenoids 

Carotenoids are 40 carbon tetraterpenoids that include two groups: carotenes and 

xanthophylls. Xanthophylls contain oxygen while carotenes do not. Carotenoids with at least one 

terminating non-hydroxylated β-ionone ring can be converted into retinal, and thus, contain 
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Vitamin A activity; β-carotene and β-cryptoxanthin are provitamin-A carotenoids.  Lutein and 

zeaxanthin are hydroxylated, which prevent conversion to retinal.   

Many fruits and vegetables are good sources of carotenoids. Tomatoes and carrots are 

relatively well known sources due to their vibrant color; however, other lesser known sources 

include spinach and dried apricots. Carotenoids are fairly unstable and so processing conditions 

such as temperature and pH can be destructive (Rao and Rao 2007). Corn is a unique source of 

carotenoids in cereals grains (Pokorny et al 2001). Carotenes are generally associated with 

orange pigments and make up a very small percentage of carotenoids in corn; the majority of 

carotenoids in corn are xanthophylls, which appear yellow. The most prominent carotenoids in 

corn include lutein, zeaxanthin, β-cryptoxanthin and β-carotene (Figure 12). 

 
Figure 12. Structure of carotenoids found in corn (adapted from Ross 2007). 
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Carotenoid content is highly variable in corn.  Average total carotenoid content is around 

10 ppm (Kurilich and Juvik 1999; Panfili et al 2004). However, values depend on a variety of 

circumstances. Carotenoid content in corn can vary greatly by genotype (Kurilich and Juvik 

1999; Weber 1987). Processing and extraction techniques also affect the carotenoid content 

(Moreau et al 2010). Ethanol extraction yielded a total carotenoid content of 324.5 μg/g in corn 

oil, compared to 60.7 μg/g from hexane extraction (Moreau et al 2007). In addition, carotenoids 

are not evenly distributed throughout the corn kernel. Unlike tocopherols and phytosterols, the 

endosperm contains a high concentration of carotenoids (Table 4) (Weber 1987; Moreau et al 

2010). Conventional refining of corn oil removes the majority of carotenoids, making 

commercial corn oil a poor source (CRA 2006).  

Table 4. Comparison of carotenoid concentration from oil extracted from the germ and whole 

kernel of corn. 

 
Total 

Carotenoids 
β-Carotene Lutein Zeaxanthin β-Cryptoxanthin 

 ----------------------------------------- μg/g ----------------------------------------- 

Germ 2.3 0.0 1.4 0.9 0.0 

Kernel 85.0 14.2 42.8 21.5 6.5 
a data adapted from (Moreau et al 2010) 

Carotenoid content is higher in DDGS compared to corn (Table 5). Winkler-Moser and 

Breyer (2011) found 75.02 μg total carotenoids per gram DDGS oil. The ratio of xanthophylls 

and carotenes was similar in both corn and DDGS, with xanthophylls being more prominent 

(Winkler and Vaughn 2009; Moreau et al 2010). 
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Table 5. Carotenoid content (μg/g) in DDGS oil from literature. 

Solvent Total Carotenoids β-Carotene Lutein Zeaxanthin β-Cryptoxanthin 

 ---------------------------------------- μg/g ---------------------------------------- 

Hexanea    66.3 4.5 34.6 23.3 3.9 

Hexaneb   75.0 0.9 46.7 24.2 3.3 

Pet Etherc   89.0 2.0 47.0 35.0 4.0 

SC-CO2
c 107.0 3.0 57.0 42.0 5.0 

Mean    84.3 2.6  46.3  31.1  4.1  

(% of total)  (3.2%) (55.1%) (36.5%) (4.9%) 

a data adapted from (Winkler-Moser et al 2009)  

b data adapted from (Winkler-Moser and Breyer 2011)  

c data adapted from (Ciftci et al 2012)  

Carotenoids are effective antioxidants by scavenging peroxyl radicals and singlet oxygen 

species. Carotenoids are among the best-known singlet oxygen scavengers. A series of 

conjugated double bonds make it possible for carotenoids to participate in physical quenching of 

reactive oxygen species. The conjugated structure dissipates energy from singlet oxygen. 

Carotenoids can return singlet oxygen to a stable triplet energy state without altering their 

structure (Akoh and Min 2002). Physical quenching allows carotenoids to participate in several 

antioxidant interactions. Carotenoids also can scavenge lipid peroxyl radicals; however, chemical 

quenching of radicals only accounts for 0.05% of carotenoid antioxidant activity (Stahl and Sies 

2003). Radical species are stabilized by a variety of proposed mechanisms. Chemical quenching 

changes the carotenoid structure, resulting in color loss (Krinsky and Yeum 2003). Synergistic 

effects also have been seen with other phytochemicals such as tocopherols (Stahl and Sies 2003; 

Subagio and Morita 2001). Carotenoids can participate in prooxidant interaction. Carotenoids are 

highly reactive to molecular oxygen and can be unstable in certain environments. The prooxidant 

effect is increased at higher oxygen pressure and carotenoids concentrations (Stahl and Sies 

2003).  
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Carotenoids are beneficial for human health. Carotenoids may prevent a variety of 

chronic diseases (Paiva and Russel 1999; Rao and Rao 2007). Their antioxidant properties 

protect cellular membranes from oxidative damage (Sies and Stahl, 1995). Some carotenoids 

have provitamin A activity because they are converted to retinol; vitamin A deficiency has many 

negative consequences (Akoh and Min 2002; Lindsay 2008). Non-provitamin A carotenoids also 

are linked to many health benefits. Strong evidence links lutein and zeaxanthin to eye health.  

Lutein and zeaxanthin are found in the macula lutea of the retina while other carotenoids are not.  

Stahl and Sies (2003) suggest that lutein and zeaxanthin are special because they “can be 

incorporated into membranes in higher amounts than other carotenoids”.  Dietary lutein and 

zeaxanthin are correlated to lower rates of macular degeneration, as well as reducing risk of 

some types of cancer (Ribaya-Mercado and Blumberg 2004). Antioxidant activity is the most 

likely mechanism for carotenoid health benefits but various alternative reasons have been 

suggested. While some epidemiological studies show benefits of increasing dietary intake, other 

studies suggest higher levels of carotenoids have been linked to negative health outcomes (Rao 

and Rao 2007). However, limited studies have been completed using 100% pure carotenoids. 

This is likely due to difficulty during extraction 

1.3. Supercritical Fluid Extraction 

The primary states of matter (solid, liquid and gas) are conditional on both temperature 

and pressure. Gases can be compressed or cooled to liquids, with the reverse being true when 

going from liquids to gases. When pressure and temperature are increased beyond a critical 

point, substances can exist in a state that exhibits properties inherent to both liquids and gases. 

This is considered a supercritical state (Figure 13) (Mukhopadhyay 2000).  
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Figure 13. Pressure-temperature diagram (Mukhopadhyay 2000). 

 

Carbon dioxide is a desirable solvent for use in supercritical extraction since it is 

inexpensive and readily available. Furthermore, carbon dioxide is “Generally Recognized as 

Safe” (GRAS) and leaves no residue in the extract. As a byproduct of ethanol production, CO2 

could potentially be recycled within an ethanol plant, reducing overall greenhouse effects 

(Mukhopadhyay 2000).   

Supercritical carbon dioxide (SC-CO2) has been used as a commercial solvent since the 

1980’s (King and Bott 1993). Supercritical carbon dioxide is considered a clean, safe, 

inexpensive and environmentally friendly solvent.  Special solvent properties stem from the 

ability to flow as a liquid while penetrating matrices like a gas. Gaseous properties include low 

viscosity and high diffusivity, which promotes fast penetration into a matrix. SC-CO2 also 

maintains the dissolving properties inherent to liquids. Furthermore, solute selectivity can be 

changed by adjusting pressure and temperature (Mukhopadhyay 2000). 
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Cosolvents can also increase extraction efficiency. Small concentrations of a cosolvent 

can increase extraction efficiency by altering polarity and solvent strength (Mukhopadhyay 

2000). Cocero and Calvo (1996) found increasing ethanol concentration increased solubility of 

sunflower oil in SC-CO2 extraction; the addition of ethanol may increase phospholipid 

extraction, but decrease free fatty acid content. Carotenoids are fairly insoluble in carbon 

dioxide, but addition of ethanol as a cosolvent considerably increases the solubility of both lutein 

and β-carotene (Jay et al 1991). Moreover, ethanol may open the structure of proteins found in 

corn to expose trapped carotenoids, allowing for greater extraction. The inclusion of 15% ethanol 

entrainer in SC-CO2 extraction improved the removal of carotenoids from corn gluten (Sessa et 

al 2003). However, ethanol may decrease tocopherol separation; limiting to 5% cosolvent is 

recommended (Mukhopadhyay 2000).  

Particle size is an additional factor in lipid extraction. Efficiency of phytochemical 

extraction in corn was increased tenfold by grinding (Moreau et al 1996). Corn is milled to less 

than 500 m prior to ethanol extraction, but particles swell to create an average DDGS particle 

size of 700 m with high variability (Liu 2008; 2009). Oil extraction is higher in corn and DDGS 

when particles are reduced to less than 700 m (Liu 2010). This suggest that the hammer milling 

of corn prior to ethanol production is sufficient for oil extraction, but DDGS require further 

milling, possibly due to swelling during ethanol production. Although particle size was not 

specified, Ciftci et al (2012) reduced DDGS using a coffee grinder when determining optimal 

SC-CO2 extraction parameters.  

1.4. Conclusion 

DDGS are a potential source of natural antioxidants.  Tocopherols, phytosterols and 

carotenoids are more concentrated in DDGS than corn. Tocopherols and carotenoids are well 
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known antioxidants, in addition to having potential health benefits.  Phytosterols benefit heart 

health and can convey antioxidant activity in some forms. The lipophilic properties of these 

phytochemicals allow them to be concentrated in lipid extracts. Supercritical fluid extraction can 

be used to create an antioxidant-rich extract from DDGS and corn.  This extract can be tested in 

food for antioxidant activity.   
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2. PROBLEM STATEMENT 

2.1. Summary of Literature Review 

Distillers dried grains with solubles are a major byproduct of corn ethanol production.  

DDGS are primarily valued as animal feed due to high energy density and protein content; 

however, the DDGS has not been used as a source of phytochemicals. DDGS contain 

carotenoids, tocopherols and phytosterols. Utilizing the full nutritional potential from DDGS 

could provide additional revenue to the ethanol industry. 

Phytochemical concentration can be highly variable in both corn and DDGS. The stated 

nutrient content is dependent on corn genotype, processing techniques and analytical methods 

(Liu 2011). Literature generally indicates that DDGS have a higher concentration of 

phytochemical than corn (Table 6).  The dry grind ethanol process removes starch from corn, in 

effect, concentrating the non-starch components of corn. Phytochemicals may be degraded 

somewhat by heat used in ethanol production. 

Table 6. Carotenoid, tocol and phytosterol content in hexane extracted corn and DDGS oil. 

 Carotenoids Tocols Phytosterols 

 ----------------------------- mg/g ----------------------------- 

DDGS oila 0.075 2.9 21.7 

Corn kernel oilb  0.061c 2.0 17.9 
a Winkler-Moser et al 2011 
b Moreau et al 2007; 2011  

Lipid oxidation is a natural process that negatively affects food quality.  Oxidation 

produces hydroxyl radicals by hydrogen abstraction from fatty acids. In the presence of oxygen, 

hydroperoxyl radicals are formed; lipid hydroperoxyl radicals can proliferate quickly and break 

down into smaller volatiles, such as aldehydes and ketones.  Volatiles produce off flavors and 

aromas associated with rancidity. 
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Natural antioxidants are integral to controlling oxidation. Preventing oxidation is a major 

concern in the food industry. Tocopherols, carotenoids and phytosterols have all been shown to 

possess antioxidant activity in various ways. Tocopherols are monophenols with chain breaking 

potential by either donating a hydrogen or trapping a lipid radical. Carotenoids are highly 

efficient singlet oxygen quenchers due to the conjugated structure. Carotenoids also can 

scavenge lipid peroxyl radicals. Phytosterols are more known for dietary health benefits, but 

some steryl esters are considered good antioxidants. 

Supercritical carbon dioxide extraction is a unique extraction method with potential 

benefits for producing a natural antioxidant extract. Supercritical fluids contain the flow 

characteristics and dissolving properties of a fluid while incorporating the low viscosity and high 

diffusivity of a gas. Solubility characteristics can be manipulated by adjustments in pressure and 

temperature.  Supercritical CO2 is a clean, safe, inexpensive and environmentally friendly solvent 

(Mukhopadhyay 2000). 

Ciftci et al (2012) optimized corn DDGS extraction using SC-CO2. The highest yield of 

total lipids, carotenoids, tocopherols and phytosterols were produced by SC-CO2 at 49.6 MPa 

and 70°C.  Both Ciftci et al (2012) and Winkler et al (2007) observed phytochemical extraction 

from DDGS by SC-CO2 to be comparable to Soxhlet extraction using petroleum ether and 

hexane. 

2.2. Objectives  

Objective 1: Produce an antioxidant-rich extract from both DDGS and corn. 

Objective 2: Determine the effect of extracts on oxidation in low moisture food and 

quantify potential antioxidants during oxidation of low moisture food. 
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2.3. Hypotheses 

Objective 1: DDGS extract will have higher concentrations of tocopherols, phytosterols 

and carotenoids compared to a corn.  

Objective 2: Extracts from DDGS and corn will reduce oxidation in low moisture food 

with antioxidant benefits being related to the concentrations of carotenoids, tocopherols and 

phytosterols.  
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3. PAPER 1: ANTIOXIDANT ACTIVITY OF CORN AND DRY 

DISTILLERS’ GRAINS IN CHIPS 

3.1. Abstract 

Antioxidant-rich extracts were produced by hexane extraction from corn and distillers 

dried grains with solubles (DDGS). Corn and DDGS extract contained 18.2 and 14.8 mg/g 

phytosterols, 719 and 929 g/g tocopherols, and 20 and 74 g/g xanthophylls, respectively. The 

phytochemical-rich extracts were incorporated in chip formulas at 1%, and evaluated for shelf 

stability. Peroxide value and hexanal were significantly lower in chips with DDGS extracts, but 

the extracts did not significantly increase phytochemical concentrations in the chips. DDGS 

extract appears to lengthen the oxidation induction period in chips. Tocopherols and lutein 

decreases significantly during oxidation, thus likely acting as an antioxidant while phytosterols 

did not change during oxidation.  

3.2. Introduction 

Limited research has been conducted regarding the use of DDGS in human food. 

Research has focused on the high fiber and protein content in distillers’ grains. Dietary fiber 

promotes multiple health benefits including weight control, improved plasma lipid profile, 

glucose control and may help prevent Type 2 diabetes, colon cancer and obesity (AACC 2001; 

ADA 2002). Protein from distillers’ grains may contribute to gluten replacement in foods for 

individuals with Celiac Disease (Liu and Rosentrater 2011). Researchers have tried incorporating 

distillers’ grains in food for more than 30 years. Over 20 studies on nearly 50 food products were 

conducted during the 1980’s; interest waned, due to negative sensory qualities and functional 

challenges (Rosentrater and Krishnan 2006). Wu et al (1987) successfully incorporated distillers’ 

grains into spaghetti, but sensory characteristics were affected significantly by the addition of 
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distiller’s grains.  Researchers have continued to look for solutions to technical and sensory 

problems associated with distillers’ grains. 

More recent research has reexamined distillers’ grains in food (Wu et al 1990; Liu et al 

2011; Ciftci and Temelli 2014). Beverage distilleries provide the bulk of distillers’ grains being 

tested in human food; DDGS from ethanol production have not been studied extensively in food 

applications (Liu and Rosentrater 2011). However, as DDGS have become more plentiful and 

remain inexpensive, more research has been incentivized. Breads and cookies have been popular 

vectors for incorporating DDGS in food. Other products include baked goods, pastas, extruded 

products and blended ingredients. While some studies claim successful incorporation of DDGS 

in food, utilization of DDGS in food does not appear to have become popular (Rosentrater and 

Krishnan 2006; Saunders et al 2013; Pourafshar et al 2014; 2015).  

The lipid components of DDGS have not been as widely studied in human food. Winkler-

Moser and Vaughn (2009) tested the DDGS oil extracts in stabilizing frying oil; the extract was a 

distillate of DDGS oil with a high concentration of steryl ferulates. The rate of polymerized 

triacylglycerols from oxidation in frying oils was reduced with the DDGS extract. In addition, 

the steryl ferulates appeared to protect added tocopherols, which also inhibit oxidation. 

Phytochemicals of interest in DDGS include tocopherols, carotenoids and phytosterols, 

which are all lipophilic and thus extracted by non-polar solvents. The lipid extraction method is 

dependent on many factors including polarity, cost, and environmental impact. Multiple 

researchers have compared methods of from DDGS (Ciftci et al 2012; Winkler et al 2007). 

Hexane extraction is a popular solvent for lipid extraction due to its low polarity and moderate 

boiling point. Ethanol also has been explored as a solvent, but was not considered as effective 

(Singh and Cheryan 1998).  However, ethanol extraction of DDGS produced far, i.e. about five 
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times more, carotenoids than hexane extraction, but the increased efficiency has not been found 

in other studies (Moreau et al 2007).  While solvent extraction is considered the most efficient 

method for removing lipids, it poses many problems including capital investment, regulations, 

oil quality and safety. Solvent extraction of DDGS has not been adopted in ethanol plants in the 

United States. Centrifugation is commonly used for extracting CDO from DDGS for use in 

biofuels and animal food (Liu and Rosentrater 2011; Moreau et al 2010). 

Oxidation in low-moisture foods is extremely complicated. In vitro studies can be used to 

measure the total antioxidant capacity; however, antioxidant capacity may not correlate well to 

oxidative stability in food due to the complexity of food systems. Oxidative stability is more 

predictive when tested on a case-by-case basis in food systems (Barden and Decker 2013).  

Antioxidant activity in low-moisture food is difficult to predict for a variety of reasons 

(Barden and Decker 2013). Variables, such as polarity, concentration and side reaction volatility, 

can determine the effectiveness of antioxidants.  Emulsions, generally seen in low-moisture food, 

require antioxidants be present at the interface to be effective. Low-moisture foods, such as chips 

and crackers, receive the best protection from hydrophobic antioxidants as they are most likely to 

partition at the oil-water interface (Barden et al 2015). Furthermore, many low-moisture foods 

are expected to maintain a relatively long shelf-life. Oxidation is affected by water activity. 

Oxidation is slowest in food with water activity between 0.2-0.5, which includes most low 

moisture foods (Labuza et al 1972). Extending the induction phase is critical to oxidative 

stability in low moisture food; however, antioxidants that are only effective after the induction 

phase may not provide any benefit to sensory qualities (Nanditha and Prabhasankar 2009). 

Lastly, the antioxidant should not themselves alter the sensory attributes of food. 
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Accelerated shelf-life studies are used to measure antioxidant effectiveness. Higher 

temperatures allow for faster analysis of oxidation and can be correlated to room temperature 

analysis. However, certain foods can produce anomalous results at temperatures above 50C, 

possibly due to reactions such as non-enzymatic browning. Tocopherols have also been shown to 

be less effective at higher temperatures. Studies at, or below 40C are common for accelerated 

oxidation studies (Labuza and Dugan 1971).  

Corn and DDGS contain substantial amounts of lipid-soluble phytochemicals. The 

objective of this study was to test the antioxidant activity of a DDGS and corn extracts obtained 

from hexane extraction in chemically leavened pita chips. The amount of natural antioxidant 

added is regulated under GMP in the United States. The antioxidant-rich extracts should extend 

the shelf-life of chips by reducing oxidation. 

3.3. Materials and Methods 

3.3.1. Chemicals and Materials 

3.3.1.1. Samples 

Distillers’ dried grains were obtained from three local ethanol facilities: Hankinson 

Renewable Energy (Hankinson, ND), Bushmills Ethanol (Atwater, MN), and Tharaldson Energy 

(Casselton, ND). Corn was obtained from 3 sources: O’Brien Seed Inc. (Mayville, ND), Greg 

LePlant (Fargo, ND) and Specialty Commodities (Fargo, ND). Corn and DDGS were stored at 

40C in closed 5 gallon buckets to prevent light exposure. 

3.3.1.2. Chemicals 

Hexane for oil extraction was purchased from Avantor Performance Materials (Central 

Valley, PA). Ethanol (95%) was purchased from NDSU chemical stockroom (Fargo, ND). 

HPLC-grade organic solvents, including hexane, isopropanol (IPA), methanol, methyl-tert-butyl-
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ether (MTBE), dichloromethane, and chloroform, were purchased from VWR (Randor, PA). 

Laboratory grade granular potassium iodide and American Chemical Society (ACS) grade 

glacial acetic acid were also obtained from VWR. Sodium thiosulfate and potassium hydroxide 

(85%) were obtained from Thermo Fisher Scientific (formerly Alfa Aesar, Ward Hill, MA).  

Ultra-high purity (UHP) hydrogen (99%) was obtained from PraxAir Distribution, Inc. (Fargo, 

ND). Pyridine and N,O-bis(trimethylsilyl) trifluoroacetamide with trimethylchlorosilane 

(BSTFA + 1% TMCS) were purchased from Sigma-Aldrich (St. Louis, MO) in addition to 

standards for hexanal (98%), campesterol (65%), -sitosterol (95%), 5-cholestane (97%), lutein 

(95%) and zeaxanthin (95%).  Tocopherol standards for  -, -, and -isomers (99% purity) were 

purchased from Supelco (Bellefont, PA). 

3.3.2. Experimental Design 

Shelf stability of chips over time was evaluated (Chapter 3.3.3.1). An extract was created 

by hexane extraction from corn and DDGS. Extracts were added to chips subjected to 

accelerated storage conditions and periodically sampled throughout the shelf life study (55 days). 

The experiment was organized as a Random Complete Block Design (RCBD) with 3 repetitions 

and 3 treatments. Treatments consisted of chips with DDGS extract, corn extract and a control 

group made without extract. 

3.3.3. Methods 

3.3.3.1. Preparation of extracts from corn and DDGS 

Oil from corn and DDGS were extracted with hexane using a large soxhlet extraction unit 

overnight (12 hours). Prior to extraction, corn was milled via a Fitzmill hammer mill 

(Fitzpatrick Company Elmhurst, IL) at Northern Crops Institute (NCI). DDGS were milled using 

a lab scale Polymix Micro Hammer Mill (Kinematic, New York) with a 1.0 mm screen. All 
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particles passed through a 25 mesh (710 m) sieve. Hexane was removed by rotary evaporator 

under vacuum at 60 MPa/40C. Impurities were removed by separating the bottom organic layer 

after centrifuging oil for 20 minutes at 4000 rpm (2510 x g) and 0C. The remaining oil was used 

as the antioxidant-rich extract. The final corn and DDGS extract was an equal mixture (by 

weight) of extract from the three corn and ethanol DDGS sources, respectively. 

3.3.3.2. Chip Baking  

To determine antioxidant potential, extracts were added to chemically leavened pita chips 

that were then subjected to accelerated shelf life storage. The chip formula was provided by NCI 

(Figure A1 and Table A3, Appendix). Chips were made using equipment in the NCI bake lab. 

Lipids in chips were contributed from White Spray Pastry Flour (ConAgra, enriched), and soy 

based shortening (Crisco, contains TBHQ and citric acid). All chips were made from the same 

ingredient batch of ingredients and all repetitions were completed within one week. Each batch 

of chips constituted an experimental unit. Extracts were added to dough at 1% total lipid weight. 

All ingredients were added together and dough was mixed for 6 minutes in a Hobart mixer at 

speed setting 2. Dough was hand rolled into 40 g balls and pressed for 1.2 seconds in a Dough-

Pro tortilla maker at 180C. Tortillas were cut into triangular chips. Chips were baked in a 

convection oven for approximately 2 minutes at 290C. Batches of each treatment were made on 

three separate days for repetition.  

3.3.3.3. Accelerated Shelf Life Study 

Each batch of chips was placed in an open ziplock bag. The ziplock bag was placed in a 

brown paper bag to protect from photo-oxidation. The batches were stored in ovens at 40C for 

the duration of the accelerated shelf life study. Approximately 60 g of chips were removed 

periodically and frozen (-13C) until they could be analyzed.  
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3.3.3.4. Hexanal Analysis 

Fatty acid profile showed linoleic acid (18:2) to be one of the major fatty acids in the 

chips; therefore, hexanal was assayed as an indicator for secondary oxidation products. Hexanal 

was measured by headspace using an Agilent 7820A Gas Chromatographer with a ZB-wax (60 

m x 0.25 mm x 0.25 μm) column from Phenomenex (Torrance, CA). Samples were introduced 

by solid phase microextraction (SPME) according to a modified method for potato chips 

(Azarbad & Jeleń 2014). At least 1 g of chips were ground in a coffee grinder and approximately 

0.2 g were added to a 4 mL vial with 1 mL water. The vials were capped with a Supelco 

PTFE/Silicone Septa, and vortexed for 60 seconds. The vial was partially submerged in 99°C 

water for 20 minutes. The tip of a Supelco SPME Fiber Assembly (Bellefonte, PA) was inserted 

through the septa so that the 100 μm polydimethylsiloxane coating was exposed in the headspace 

of the vial for at least 10 minutes as the vial was partially submerged in a 60°C water bath. The 

coating was retracted into the fiber assembly, transferred to the injection port of the GC and the 

filament exposed after inserting through the GC septa.  At least 5 minutes were allowed for 

desorption of volatiles from the injection port (270°C). The helium carrier was 33.7 ml/min and 

initial oven temperature (40°C) was increased by 10°C/min to 180°C. Detector temperature was 

290°C. The run was completed in 25.5 minutes and hexanal was quantified using a hexanal 

standard up to 500 ppm (R2 = 0.96) in ground crackers. Hexanal eluted at 6.7 minutes (Figure 

A4).  

3.3.3.5. Oil Sample Preparation 

All remaining analysis methods were conducted on lipids extracted from chips. 

Extraction was done at room temperature using hexane. Approximately 50 g of chips were 

ground by a coffee grinder and evenly added to 50 mL centrifuge tubes.  The centrifuge tubes 
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were filled to 45 mL with hexane and the lid was tightened.  The centrifuge tubes were covered 

with aluminum foil to exclude light and revolved for 1 hour on a VWR platform shaker.  The 

samples were then centrifuged for 20 minutes at 4000 rpm (2510 x g). The hexane was decanted 

into test tubes and dried under nitrogen. 

3.3.3.6. Hydroperoxide Analysis 

Peroxide value was measured as the primary oxidation product using titration with 

sodium thiosulfate AOCS Official Method Cd 8-53 (AOCS 1997) as modified by Crowe and 

White (2001). Approximately 0.5 g of oil were weighed into a 25 mL Erlenmeyer flask. Three 

mL of acetic acid:chloroform (3:2) were added to the flask. The reaction was initiated by 

pipetting 50 L of saturated potassium iodide solution. After exactly 60 seconds, 3 mL of 

Millipure water was added; 0.5 mL of a 1% starch solution was added as an indicator followed 

by titration with 0.001-0.01 N sodium thiosulfate solution depending on expected peroxide 

value. 

3.3.3.7. Tocopherol Analysis 

Tocopherol and carotenoid contents were measured by HPLC using a Waters 2795 

chromatography separation module with a Waters 2996 Photodiode Array Detector (PDA). The 

HPLC method for tocopherols was modified from Winkler et al (2007) by normal phase using a 

Luna-5-NH2-100A (250 x 4.6 mm) column from Phenomenex. The mobile phase consists of 

98:2 v/v hexane/IPA with a continuous flow rate of 1.5 mL/min. Prior to analysis, oil samples 

were reconstituted in 100% hexane and vortexed for 60 seconds. Samples were not filtered. 

Tocopherols were analyzed at 295 nm (Figures A7 and A8). A standard curve was produced for 

α-, γ-, and δ- tocopherols for concentrations up to 10,000 ppm (all tocols R2 = 0.99).   
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3.3.3.8. Carotenoid Analysis 

The carotenoid separation method was modified from Gupta et al (2015); modifications 

include reverse phase separation using a YMC (Kyoto, Japan) Carotenoid-S-3 m, 250 x 4.6 

mm, column. The mobile phase consists of (A) methanol/water (98:2, v/v) and (B) MTBE. The 

gradient elutes 80:20 (% A/B) at 1.4 mL/min for the first 2 min, followed by linear gradient 

change to 60:40 (A:B) by 12 minutes. Starting at 12 min, the flow rate reduces to 1.0 mL/min 

and gradient of 0:100 (A:B) and finally returns to 1.4 mL/min and 80:20 (A:B) between 13-20 

minutes. Standard curve was produced for lutein and zeaxanthin at concentrations up to 300 ppm 

(lutein and zeaxanthin R2 = 0.99).  Carotenoids absorbance was analyzed at 450 nm (Figures A5 

and A6). Prior to analysis, oil samples were reconstituted in 25:75 v/v methanol/MTBE and 

vortexed for 60 seconds. Samples were not filtered due to preliminary studies showing a 

reduction of carotenoids from filtering.  

3.3.3.9. Phytosterol Analysis 

Phytosterol analysis occurred using a modified method described by Winkler et al (2007). 

Approximately 25 mg of oil were added to a test tube. The internal standard, 5α -cholestane, was 

added by reconstituting in chloroform and drying under nitrogen. Oil was saponified with 2 N 

ethanolic KOH for 1 hour at 60°C. Nonsaponifiable material was extracted twice with hexane 

and dried under nitrogen, then transferred to a 0.25 mL vial insert. Phytosterol derivatization 

occurred by adding 100 μL of both pyridine and BSTFA + 1% TMCS and heating at 60°C for 45 

minutes. Samples were injected by auto sampler (1 L) using a UHP hydrogen carrier with a 

1:50 injector split. 

Phytosterols were analyzed using an Agilent 7820A gas chromatograph with a flame 

ionization detector (FID). An Agilent J&W (Santa Clara, CA) DB-1701 (30 m x 0.32 mm x 1 
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m) column was used for phytosterol separation based on methods from Winkler-Moser and 

Vaughn (2009). The column internal diameter and coating thickness were different from the 

referenced work due to column availability. The original elution parameters from referenced 

articles did not work with this column, so pressure was increased by increasing the flow rate to 

1.5 mL/min, which resulted in good separation. Column temperature started at 250°C for 30 

seconds and increased at 10 mL/min to 270°C, then held for 27 minutes, increased to 280°C at 

10 mL/min and held for 3.5 minutes (Figure A9). Standards of campesterol and β-sitosterol were 

made by creating a serial dilution in chloroform up to 500 ppm (campesterol and β-sitosterol, R2 

= 0.99). Standards were added to 0.25 mL vial inserts and dried under nitrogen and derivitized as 

described above. Conversion factor from the nearest calculated phytosterol peak was used to 

quantify other phytosterols. 

3.3.3.10. Statistical Analysis 

Data was analyzed using Statistical Analysis Software (SAS). Data was arranged in an 

RCBD split plot in time design. Mean values for variables were compared using the Bonferroni 

correction. Differences were considered significant at 95% confidence. 

3.4. Results 

3.4.1. Extract Composition 

Hexane was used to extract oil by soxhlet extraction to create an antioxidant-rich extract 

from corn and DDGS. Phytosterols, tocopherols and carotenoids were comparable to related 

research (Table 7). Extracts contained lower phytosterols and tocopherols than expected, but the 

DDGS extract contained more carotenoids than DDGS extracts found literature. High variability 

is known to be found in both corn and DDGS, so the differences are not unexpected (Kurilich 

and Juvik 1999).  
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Table 7. Phytochemical content of extracts from corn and DDGS compared to relevant literature. 

 Corn DDGS 

Component    Literaturea       Extract    Literatureb       Extract 

 -------------------------------------- (g/g) -------------------------------------- 

Total Phytosterols 21100   (1200) 18200    (2900)    16200   (700)    14800   (400) 

Campesterol   4200   (1900)   5700    (1100)      2000      NR      4500   (100) 

-sitosterol   9300     (400)   6600      (800)      7500      NR      5500   (100) 

α-T      186       (53)       60        (11)        194       (5)          84       (1) 

𝛾-T      936       (14)     659      (123)        948     (17)        838     (55) 

𝛾-T3 (g/g)     234       (35)     ND        453       (3)        ND 

𝛾-T (g/g)     119       (37)     ND          51       (2)            7     (12) 

Lutein (g/g)       10         (0)       10          (2)          35       (2)          43       (2) 

Zeaxanthin (g/g)       16         (1)       10        (10)          23       (0)          31       (2) 

Results are the average of triplicate with standard deviation in parenthesis. 
a data adapted from (Moreau et al 2007; 2011)  
b data adapted from (Winkler-Moser and Vaughn 2009) 

 The total phytosterol content for corn (18.2 mg/g) and DDGS (14.8 mg/g) extracts were 

about 90% of comparable literature (Table 7). Six distinct peaks were identified in GC analysis 

of phytosterols. Campesterol and -sitosterol peaks were identified by standards. Other peaks 

were present and identified by comparing to literature using similar methods. Phytosterol content 

was highest in -sitosterol and campesterol, which accounted for about 37% and 30%, 

respectively. Estimates for stigmasterol, campestanol, sitostanol and avenasterol were 

approximately 10%, 9%, 9% and 4%, respectively, for both corn and DDGS extracts. Winkler-

Moser and Vaughn (2009) suggest that campestanol and sitostanols are mainly bound as steryl 

ferulates, which would contribute 1.4 mg/g and 1.3 mg/g steryl ferulates, respectively; DDGS oil 

contains 4.0 mg/g steryl ferulates (Winkler-Moser and Vaughn 2009). 

Total tocol content for corn (720 g/g) and DDGS (930 g/g) extracts were 

approximately half the levels found in literature. Tocotrienols were not identified, and account 

for much of the discrepancy compared to literature. However, tocopherols also were lower than 



 

48 

anticipated. The composition of tocopherols for both extracts was approximately 90% 𝛾-

tocopherols, 9% α-tocopherols and less than 1% 𝛾-tocopherols. While ratios were similar, 

DDGS extract contained about 30% more tocopherols than corn extract and had far less 

variability between samples. Winkler-Moser and Vaughn (2009) utilized a dual UV and 

fluorescence detector, which would likely be more sensitive to smaller peaks than the UV 

detector alone, used in this study. The lack of fluorescence detections may explain why 

tocotrienols were not observed in most samples. 

Xanthophyll content in the DDGS extract was more than 350% above that in the corn 

extract. Xanthophylls were higher in DDGS extract reported in literature levels reported in 

Winkler-Moser and Vaughn (2009), with 43 g/g lutein and 31 g/g zeaxanthin, while corn 

extract was lower reported in literature values, with 10 g/g lutein and 10 g/g zeaxanthin. There 

was extremely high variability in carotenoid content in corn extracts, which has been reported 

previously (Kurilich and Juvik 1999). Neither -cryptoxanthin or -carotene were identified in 

either extract. 

3.4.2. Shelf-Life Study 

3.4.2.1. Oxidation 

Peroxide value and hexanal content are indicators of oxidation. Neither alone adequately 

represents oxidation because hydroperoxides decompose into secondary oxidation products, 

hexanal being one of many.  The peroxide value was significantly lower in chips containing 

DDGS extract (15.9 meq/kg) than the corn extract (18.6 meq/kg) and control (19.3 meq/kg) 

treatments during the 55 days of storage (LSD = 2.3 meq) (Figure 14). Hexanal content also was 

significantly lower in chips containing DDGS extract (4.8 ppm) than corn extract (6.0 ppm) and 

control (6.0 ppm) treatments (LSD = 1.0 ppm) (Figure 15).  
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Figure 14. Peroxide value during accelerated storage of chips.  

*Note: bars denote standard error. 

 

 
Figure 15. Hexanal content during accelerated storage of chips. 

*Note: bars denote standard error. 

 

Refined oil is considered rancid when peroxide value reaches 10 meq/kg (Gunstone 

1996). The control group exceeded 10 meq/kg at 20 days of storage (10.6 meq/kg) while DDGS 

and corn extract stayed below this threshold at 20 days of storage (8.5 meq/kg and 9.8 meq/kg, 

respectively).  However, the difference is not statistically significant. At no storage time was the 

mean statistically significant between treatments for peroxide value or hexanal content. An 
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effective antioxidant for low-moisture food should extend the oxidation induction period.  It 

appears the induction period ends sometime between 10 and 20 days. The DDGS extract may in 

fact prolong the induction period by a few days. The exact number of days each treatment 

prolonged rancidity to the 10 meq/kg threshold can only be estimated because the 10 meq/kg 

level was not reached on days that the PV was measured. Instead, through extrapolating, the corn 

and DDGS extracts may prolong freshness by 1 and 5 days, respectively, at 40C storage 

compared to the control (Figure 16). Additional shelf life studies can be conducted to analyze the 

benefits under non-accelerated conditions. A Q10 value is used for shelf-life at various 

temperatures. The Q10 value shows the relationship between storage when the temperature is 

raised by ten degrees. However, Q10 may be flawed as oxidation products are not produced 

linearly (Barden and Decker 2016). The complexity of food systems makes the translation from 

accelerated storage to natural conditions difficult, but methods are available to adequately 

analyze antioxidant activity (Frankel and Meyer 2000). 

  

 
Figure 16. Accelerated storage of chips passing induction period. 
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3.4.2.2. Antioxidants 

Tocopherols, phytosterols and lutein are found naturally in wheat flour and were detected 

in control and treatment groups. Conversely, zeaxanthin is not native to wheat flour; zeaxanthin 

content in 1% DDGS and corn extracts (0.3 g/g and 0.1 g/g, respectively) did not increase 

concentrations above the detection limit in chip oil. Treatments did not significantly increase 

tocopherol and lutein concentrations in chips. Tocopherol concentration in chips was highly 

variable compared to concentrations added from extracts. The mean tocopherol content in 

control chips at time zero was about 600 g/g  57 g/g. The tocol contribution from 1% corn 

and DDGS extracts were approximately 6 g/g and 9 g/g, respectively, well below the standard 

deviation. Likewise, lutein content from 1% corn extract (0.1 g/g) and DDGS extract (0.4 g/g) 

was similar to the 0.26 g/g standard deviation for the control at time zero (0.127 g/g). DDGS 

extract had a noticeable increase in lutein concentration, but it was not statistically significant. 

Phytosterols in chips were about 10 times more concentrated than tocopherols and 1,000 times 

more concentrated than lutein. Total phytosterol content was greater in corn (5.3 mg/g  0.7 mg) 

and DDGS (5.2 mg/g  0.5 mg) treatments than the control (4.9 mg/g  0.4 mg), but the increase 

was not statistically significant. The composition of phytosterols in chips is very similar to 

extracts, ordering from -sitosterol > campesterol > stigmasterol  campestanol  sitostanol > 

avenasterol. Neither extract significantly increased phytosterol content of crackers.  

Tocopherols and lutein likely contributed antioxidant activity in chips (Figure 17). 

Through the entire study, tocopherol content in chips ranged from 60-700 g/g, which is within 

the range suggested to have antioxidant properties in literature (50-1,000 g/g) (Deiana et al 

2002; Winkler-Moser and Vaughn 2009). Autoxidation generally results in chemical alteration of 

an antioxidant, so depletion of a phytochemical may correlate to its antioxidant activity. 
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Tocopherols and carotenoids loss appear to have an induction period of about 20 days, where 

concentrations remain above 80%, followed by hastening decline. Both -tocopherols and -

tocopherols significantly decreased by 30 days of storage while -tocotrienols and -tocopherols 

did not significantly decrease until day 40 and 45, respectively.  -Tocopherol had the highest 

rate of degradation in frying oils (Winkler et al 2012). -Tocopherol started at the highest 

concentration and declined to the lowest residuals by the end of the study; this may suggest that 

-tocopherol was the most active antioxidant, but may also indicate a lack of stability. Literature 

suggests antioxidant activity of tocopherols at 37C proceeds from  >  >  > , which follows 

closely to the degradation seen in chips (Nanditha and Prabhasankar 2009).  
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Figure 17. Tocopherol (T) and tocotrienol (T3) residuals in chips without (control) and with corn 

and DDGS extracts. 

 

Lutein acted similar to tocopherols and likely produced some antioxidant benefits (Figure 

18). Carotenoid content in chips was less than 1% the concentration of tocopherols. Low 

concentrations of carotenoids are very effective singlet oxygen quenchers, but have less impact 
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on autoxidation. Carotenoids and tocopherols have been shown to have synergetic properties, but 

synergistic effects were found at higher carotenoid concentrations than used in this study 

(Schroeder et al 2006). Similar to tocopherols, lutein significantly decreased by 30 days of 

storage and continued to decrease through the end of the study. The reduction in lutein appeared 

to coincide with the increase in peroxide value.  
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Figure 18. Lutein (Lut) and phytosterol (P) residuals in chips without (control) and with corn and 

DDGS extracts.  

 

Phytosterols did not decrease throughout the study (Figure 18). Previous studies have 

shown phytosterols to be effective antioxidants at higher temperatures by preventing 
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polymerization in frying oil (Gordon and Magos 1983). Temperature may be a factor in 

phytosterol antioxidant activity. Furthermore, studies often focus on the activity of steryl 

ferulates rather than phytosterols alone (Winkler-Moser and Vaughn 2009; Wang et al 2002). 

Phytosterols required saponification before analysis, which cleaves the ester bond between the 

phytosterol and ferulate components; therefore, these methods would not measure ferulate 

content. Regardless, this study does not provide evidence for antioxidant activity from 

phytosterols in the chips. 

3.5. Conclusion 

Phytochemical-rich extracts can be made from corn and DDGS. The DDGS extract 

contained higher concentrations of tocopherols and carotenoids. Adding 1% DDGS extract 

significantly reduced oxidation products in chips while corn extract did not. Tocopherols and 

lutein appear to contribute antioxidant activity. Results suggest DDGS is a potential source of 

natural antioxidants in low-moisture food.  

The actual contribution to antioxidant activity of tocopherols, carotenoids and 

phytosterols cannot be determined given that the compounds were not tested in isolation. Similar 

to the research by Winkler and Vaughn (2009), “the exact contribution of each component and 

possible synergisms would be impossible to elucidate under these conditions”. Tocols and lutein 

appear to be providing antioxidant activity, while phytosterols were unchanged. A better 

understanding of the antioxidant contributions may be possible if each treatment had a 

significantly different concentration of phytochemicals; future research could test increasing 

amounts of extract and increase sampling during important oxidation events. 
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4. PAPER 2: ANTIOXIDANT ACTIVITY OF CORN AND DRY 

DISTILLERS’ GRAINS IN CRACKERS 

4.1. Abstract 

Antioxidant-rich extracts were produced by SC-CO2 extraction from corn and DDGS. 

Corn and DDGS extract contained 16.9 and 14.6 mg/g phytosterols, 682 and 1127 g/g 

tocopherols, and 71 and 75 g/g xanthophylls, respectively. The phytochemical-rich extracts 

were incorporated in cracker formulas at 0.05% and evaluated for shelf stability. Extracts did not 

significantly reduce oxidation products or increase phytochemical concentrations in crackers. 

Tocopherols and lutein decreased significantly during oxidation, thus likely acting as antioxidant 

activity while phytosterols did not change during oxidation.  

4.2. Introduction 

Supercritical carbon dioxide (SC-CO2) extraction is a “green” alternative to lipid 

extraction using organic solvents. Wang et al (2007) found superior extraction capability from 

sorghum DDGS using SC-CO2 extraction compared to hexane extraction. SC-CO2 has been 

explored for corn and DDGS (Ciftci and Temelli 2011; 2013). Ciftci et al (2012) optimized SC-

CO2 extraction conditions for DDGS. The optimal extraction parameters for total lipids, 

carotenoids, tocols and phytosterols were produced at 49.5 MPa and 70°C; the concentration of 

each phytochemical was greater using SC-CO2 than soxhlet extraction with petroleum ether 

(Table 8). 

Antioxidant activity of tocopherols and carotenoids has been established. Studies have 

shown tocopherol antioxidant activity to be best at 500 g/g (ppm). Addition of 500 ppm for 

natural antioxidants is common in many lipid studies (Seppanen et al 2010). 
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Table 8. Comparison of soxhlet extraction (petroleum ether) and SC-CO2 extraction reported by 

Ciftci et al (2012). 

The primary concern of lipid oxidation is the deleterious effect on sensory perceptions. 

The extent of lipid oxidation can be measured through laboratory assays; however, consumers 

choose food based on taste, which may not correlate perfectly with laboratory testing (Tepper 

and Trail 1998). The complexity of food systems makes it nearly impossible to test all the 

variables associated with oxidation. However, sensory analysis is very important in evaluating 

the oxidative stability of food. In addition, the antioxidants should not themselves alter the 

sensory perceptions of food. Phytosterols, tocopherols and carotenoids are well suited for bakery 

products because they do not alter sensory attributes (Quilez et al 2003; 2006).  

4.3. Materials and Methods 

4.3.1. Chemicals and Materials 

4.3.1.1. Samples 

Distillers’ dried grains were obtained from three local ethanol facilities: Hankinson 

Renewable Energy (Hankinson, ND), Bushmills Ethanol (Atwater, MN), and Tharaldson Energy 

(Casselton, ND). Corn was obtained from 3 sources: O’Brien Seed Inc. (Mayville, ND), Greg 

LePlant (Fargo, ND) and Specialty Commodities (Fargo, ND). Corn and DDGS were stored at 

40C in closed 5 gallon buckets to prevent light exposure. 

4.3.1.2. Chemicals 

HPLC-grade liquid CO2 was purchased from Praxair Distribution, Inc. (Fargo, ND) with 

a dip tube. Hexane for oil extraction was purchased from Avantor Performance Materials 

 Lipids Carotenoids Tocols Phytosterols 

 % ----------------------------- mg/g ----------------------------- 

Soxhlet   9.2 0.09 1.3 12.4 

SC-CO2 11.2 0.11 1.5 15.9 



 

59 

(Central Valley, PA). Ethanol (95%) was purchased from NDSU chemical stockroom (Fargo, 

ND). HPLC-grade organic solvents, including hexane, isopropanol (IPA), methanol, methyl-tert-

butyl-ether (MTBE), dichloromethane, and chloroform, were purchased from VWR (Randor, 

PA). Laboratory grade granular potassium iodide and American Chemical Society (ACS) grade 

glacial acetic acid were also obtained from VWR. Sodium thiosulfate and potassium hydroxide 

(85%) were obtained from Thermo Fisher Scientific (formerly Alfa Aesar, Ward Hill, MA).  

Ultra-high purity (UHP) hydrogen (99%) was obtained from PraxAir Distribution, Inc. (Fargo, 

ND). Pyridine and N,O-bis(trimethylsilyl) trifluoroacetamide with trimethylchlorosilane 

(BSTFA + 1% TMCS) were purchased from Sigma-Aldrich (St. Louis, MO) in addition to 

standards for hexanal (98%), campesterol (65%), -sitosterol (95%), 5-cholestane (97%), lutein 

(95%) and zeaxanthin (95%).  Tocopherol standards for  -, -, and -isomers (99% purity) were 

purchased from Supelco (Bellefont, PA). 

4.3.2. Experimental Design 

The shelf stability of crackers over time was evaluated (Chapter 4.3.3.1). An extract was 

created by SC-CO2 extraction from corn and DDGS. Extracts were added to crackers and then 

subjected to accelerated storage conditions and periodically sampled throughout the shelf life 

study (90 days). The experiment was organized as a Random Complete Block Design (RCBD) 

with 3 repetitions and 3 treatments. Treatments consisted of crackers with DDGS extract, corn 

extract and a control group made without extract.  

4.3.3. Procedure 

4.3.3.1. Supercritical Carbon Dioxide extraction of corn and DDGS 

Unlike experiment 1, milled corn and DDGS were mixed prior to extraction from the 

three corn and ethanol DDGS sources, respectively. Two extraction cartridges were packed with 
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5-6 g of corn or DDGS. SC-CO2 extraction was conducted using an ISCO SFX-210 supercritical 

extraction unit (Lincoln, NE) with a 260D syringe pump. Extraction pressure and temperature 

were set at 49.5 MPa and 70°C according to optimal parameters specified by Ciftci et al (2012). 

The 260D syringe pump fit 260 mL liquid CO2. Flow rate was manually maintained near 10 

mL/min, which generally allowed 20-minute dynamic extractions; however, extraction time was 

not always consistent. Extraction time slowly shortened (from a peak of 30 minutes to as low as 

10 minutes at a flow rate of 10 ml/min), likely due to reduced CO2 density as the volume of 

liquid CO2 in the source tank dropped. Extract was collected in test tubes. Multiple extractions 

were conducted to collect a sufficient quantity of extract. Extract was not further processed 

because no wax precipitate formed after cooling and centrifugation, which has been reported in 

literature (Rebolleda et al 2012). 

4.3.3.2. Cracker baking  

To determine antioxidant potential, extracts were added to crackers and then subjected to 

accelerated shelf life storage. The cracker formula was adapted from the U.S. Wheat Association 

using equipment in the NCI bake lab (Figures A2 and A3). White Spray Pastry Flour (ConAgra, 

enriched), soy based shortening (Crisco, contains TBHQ and citric acid) and soy lecithin 

contributed to cracker lipid content. Extracts were added to dough at 0.05% of lipid weight. 

Ingredients were mixed at 35°C by mixing for 2 minute on the 1st speed and 9 minutes on the 2nd 

speed using a Hobart mixer with a double spiral attachment. Dough was rested for 90 minutes 

prior to sheeting with a Rondo dough sheeter. Dough was sheeted to about 2 mm, cut into 

squares and stacked into 6 layers. Laminated dough was slowly sheeted to 1mm and cut into 

approximately 3/4” squares. Crackers were baked on a mesh band in a deck oven at 225°C for 

approximately 6 minutes. 
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4.3.3.3. Accelerated Shelf Life Study 

Each batch of crackers was placed in an open ziplock bag. The ziplock bag was placed in 

a brown paper bag to protect from photo-oxidation. Crackers were held at 40°C protected from 

photo-oxidation. Samples were removed periodically and frozen until analysis. Sampling 

frequency was dependent on degree of oxidation based on lab results. 

4.3.3.4. Hexanal Analysis 

Fatty acid profile showed linoleic acid (18:2) to be one of the major fatty acids in the 

chips; therefore, hexanal was assayed as an indicator for secondary oxidation products. Hexanal 

was measured by headspace using an Agilent 7820A Gas Chromatographer with a ZB-wax (60 

m x 0.25 mm x 0.25 μm) column from Phenomenex (Torrance, CA). Samples were introduced 

by solid phase microextraction (SPME) according to a modified method for potato chips 

(Azarbad & Jeleń 2014). At least 1 g of chips were ground in a coffee grinder and approximately 

0.2 g were added to a 4 mL vial with 1 mL water. The vials were capped with a Supelco 

PTFE/Silicone Septa, and vortexed for 60 seconds. The vial was partially submerged in 99°C 

water for 20 minutes. The tip of a Supelco SPME Fiber Assembly (Bellefonte, PA) was inserted 

through the septa so that the 100 μm polydimethylsiloxane coating was exposed in the headspace 

of the vial for at least 10 minutes as the vial was partially submerged in a 60°C water bath. The 

coating was retracted into the fiber assembly, transferred to the injection port of the GC and the 

filament exposed after inserting through the GC septa.  At least 5 minutes were allowed for 

desorption of volatiles from the injection port (270°C). The helium carrier was 33.7 ml/min and 

initial oven temperature (40°C) was increased by 10°C/min to 180°C. Detector temperature was 

290°C. The run was completed in 25.5 minutes and hexanal was quantified using a hexanal 
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standard up to 500 ppm (R2 = 0.96) in ground crackers. Hexanal eluted at 6.7 minutes (Figure 

A4).  

4.3.3.5. Oil Sample Preparation 

Oil extraction for laboratory analysis was altered from the previous experiment to 

improve efficiency. Approximately 50 g of crackers were ground by mortar and pestle. Ground 

crackers were added to a 250 mL Erlenmeyer flask; hexane was added to approximately 150 mL, 

covered by tin foil and stirred for 1 hour. The mixture was centrifuged for 20 minutes at 4000 

rpm (2510 g), then poured through Whatman number 1 filter paper. Hexane was removed by 

rotary evaporator at 40C. Oil samples were frozen until they could be analyzed.  

4.3.3.6. Hydroperoxide Analysis 

Peroxide value was measured as the primary oxidation product using titration with 

sodium thiosulfate AOCS Official Method Cd 8-53 (AOCS 1997) as modified by Crowe and 

White (2001). Approximately 0.5 g of oil were weighed into a 25 mL Erlenmeyer flask. Three 

mL of acetic acid:chloroform (3:2) were added to the flask. The reaction was initiated by 

pipetting 50 L of saturated potassium iodide solution. After exactly 60 seconds, 3 mL of 

Millipure water was added; 0.5 mL of a 1% starch solution was added as an indicator followed 

by titration with 0.001-0.01 N sodium thiosulfate solution depending on expected peroxide 

value. 

4.3.3.7. Tocopherol Analysis 

Tocopherol and carotenoid contents were measured by HPLC using a Waters 2795 

chromatography separation module with a Waters 2996 Photodiode Array Detector (PDA). The 

HPLC method for tocopherols was modified from Winkler et al (2007) by normal phase using a 

Luna-5-NH2-100A (250 x 4.6 mm) column from Phenomenex. The mobile phase consists of 
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98:2 v/v hexane/IPA with a continuous flow rate of 1.5 mL/min. Prior to analysis, oil samples 

were reconstituted in 100% hexane and vortexed for 60 seconds. Samples were not filtered. 

Tocopherols were analyzed at 295 nm (Figures A7 and A8). A standard curve was produced for 

α-, γ-, and δ- tocopherols for concentrations up to 10,000 ppm (all tocols R2 = 0.99).   

4.3.3.8. Carotenoid Analysis 

The carotenoid separation method was modified from Gupta et al (2015); modifications 

include reverse phase separation using a YMC (Kyoto, Japan) Carotenoid-S-3 m, 250 x 4.6 

mm, column. The mobile phase consists of (A) methanol/water (98:2, v/v) and (B) MTBE. The 

gradient elutes 80:20 (% A/B) at 1.4 mL/min for the first 2 min, followed by linear gradient 

change to 60:40 (A:B) by 12 minutes. Starting at 12 min, the flow rate reduces to 1.0 mL/min 

and gradient of 0:100 (A:B) and finally returns to 1.4 mL/min and 80:20 (A:B) between 13-20 

minutes. Standard curve was produced for lutein and zeaxanthin at concentrations up to 300 ppm 

(lutein and zeaxanthin R2 = 0.99).  Carotenoids absorbance was analyzed at 450 nm (Figures A5 

and A6). Prior to analysis, oil samples were reconstituted in 25:75 v/v methanol/MTBE and 

vortexed for 60 seconds. Samples were not filtered due to preliminary studies showing a 

reduction of carotenoids from filtering.  

4.3.3.9. Phytosterol Analysis 

Phytosterol analysis occurred using a modified method described by Winkler et al (2007). 

Approximately 25 mg of oil were added to a test tube. The internal standard, 5α -cholestane, was 

added by reconstituting in chloroform and drying under nitrogen. Oil was saponified with 2 N 

ethanolic KOH for 1 hour at 60°C. Nonsaponifiable material was extracted twice with hexane 

and dried under nitrogen, then transferred to a 0.25 mL vial insert. Phytosterol derivatization 

occurred by adding 100 μL of both pyridine and BSTFA + 1% TMCS and heating at 60°C for 45 



 

64 

minutes. Samples were injected by auto sampler (1 L) using a UHP hydrogen carrier with a 

1:50 injector split. 

Phytosterols were analyzed using an Agilent 7820A gas chromatograph with a flame 

ionization detector (FID). An Agilent J&W (Santa Clara, CA) DB-1701 (30 m x 0.32 mm x 1 

m) column was used for phytosterol separation based on methods from Winkler-Moser and 

Vaughn (2009). The column internal diameter and coating thickness were different from the 

referenced work due to column availability. The original elution parameters from referenced 

articles did not work with this column, so pressure was increased by increasing the flow rate to 

1.5 mL/min, which resulted in good separation. Column temperature started at 250°C for 30 

seconds and increased at 10 mL/min to 270°C, then held for 27 minutes, increased to 280°C at 

10 mL/min and held for 3.5 minutes (Figure A9). Standards of campesterol and β-sitosterol were 

made by creating a serial dilution in chloroform up to 500 ppm (campesterol and β-sitosterol, R2 

= 0.99). Standards were added to 0.25 mL vial inserts and dried under nitrogen and derivitized as 

described above. Conversion factor from the nearest calculated phytosterol peak was used to 

quantify other phytosterols. 

4.4. Results 

4.4.1. Extract Composition 

Supercritical carbon dioxide extraction was used to create an antioxidant-rich extract 

from corn and DDGS. Compared to hexane extracts in the previous study, SC-CO2 extracts 

contained more tocols and carotenoid, but less phytosterols for both corn and DDGS extracts. 

Phytosterols, tocopherols and carotenoids in DDGS were comparable to related research on SC-

CO2 extraction using the same parameters (Table 9). Extracts contained lower phytosterols and 

tocopherols than expected, but the DDGS extract contained more carotenoids than DDGS 
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extracts reported in literature. The standard deviation was far smaller in supercritical extraction 

compared to the previous study (chapter 3.4.1) using hexane extraction. Extracts were mixed and 

homogenized after extraction, whereas ground corn and DDGS were mixed together before SC-

CO2 extraction in this experiment. This suggests extraction method and sample handling may 

impact results; however, comparing the two extraction methods does highlight the large variation 

in phytochemical content in corn sources and, to a lesser extent, DDGS. 

Table 9. Phytochemical content of SC-CO2 extracts from corn and DDGS compared to DDGS 

extract in literature using optimal extraction parameters. 

Component 
Corn DDGS DDGS Literaturea 

----------------------------- (g/g) ----------------------------- 

Total Phytosterols  16900   (600) 14600   (1000) 15900    (900) 

Campesterol    5200   (200)   4400     (200)   3600    (700) 

B-sitosterol    6200   (300)   5500     (500) 10100  (2200) 

α-T        61     (65)     254       (24) 144      (20) 

𝛾-T      565       (3)     609       (47) 889      (82) 

𝛾-T3        55     (17)     136         (0) 112      (12) 

𝛾-T          0       (0)     128       (29) 374      (36) 

Lutein        41       (2)       41         (6)   57        (8) 

Zeaxanthin        30     (23)       33         (5)   42        (6) 

Results are the average of triplicate with standard deviation in parenthesis. 
a adapted from (Ciftci et al 2012) 

 

Extracts contained an estimated 16.9 and 14.6 mg/g phytosterols for corn and DDGs 

extracts, respectively. The total content for corn and DDGS extracts were lower than previous 

hexane extracts, but the composition of phytosterols was nearly identical. 

Total tocol content for corn extract (682 g/g) was slightly less compared to hexane 

extracts, but higher in the DDGS extract (1127 g/g) by about 200 g/g. Tocotrienols were 

identified, which accounts for a large portion of the greater tocol content in SC-CO2 extracts, but 

α-tocopherols and 𝛾-tocopherols also were higher while 𝛾-T decreased. The 𝛾-tocopherols and 

𝛾-tocopherols were only 68 and 34%, respectively, of the SC-CO2 extract that was reported 
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previously (Ciftci et al 2012). The composition of tocols in DDGS extract consisted of 54, 23, 

12, and 11% while corn extract contained 83, 9, 8, and 0% of 𝛾-tocopherols, α-tocopherols, 𝛾-

tocotrienols and 𝛾-tocopherols, respectively.  

Both extracts had similar carotenoid concentration, which also is comparable to hexane 

extracts. Lutein concentrations were highest among carotenoids, accounting for 41 and 43 g/g 

in corn and DDGS extracts, respectively. Xanthophylls made up 33 and 30 g/g of the corn and 

DDGS extracts, respectively.  

4.4.2. Shelf-Life Study 

4.4.2.1. Oxidation 

Peroxide value and hexanal content were not significantly affected by either treatment. 

Compared to chip oxidation in paper 1, crackers oxidized more slowly; sampling intervals were 

lengthened to ensure adequate supply throughout the accelerated study. Peroxide value 

significantly increased by 70 days of storage at 40C while hexanal content did not change 

significantly. Hexanal has been established as a good indicator of oxidation. However, peroxide 

values exceeded the rancidity threshold of 10 g/g by 40 days of accelerated storage. The DDGS 

extract treatment contained lower peroxide values at days 20 and 40 (7.0 and 14.5 meq/kg, 

respectively) compared to the control (8.3 and 16.2 meq/kg, respectively) and corn extract 

treatments (8.4 and 19.4 meq/kg, respectively). Based on extrapolating between samples, 

peroxide values cross the 10 meq/kg threshold at 23, 24 and 28 days for corn extract, control and 

DDGS extract, respectively (Figure 19). DDGS extract provided approximately 4 days of 

extended freshness at 40C. 
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Figure 19. Peroxide value during accelerated storage of crackers 

*Note: bars denote standard error. 

 

 
Figure 20. Hexanal during accelerated storage of crackers. 

*Note: bars denote standard error. 
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Figure 21. Accelerated storage of crackers passing induction phase (10 meq/kg). 

*Note: bars denote standard error. 
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variability in the third repetition was only high later in storage, accelerated storage conditions 

may have altered the oxidation rate. Temperature or oxygen concentration could have fluctuated 

within the storage ovens. The third repetition may be a poor indicator of the treatment effects; 

however, removing the third treatment greatly decreases the power of the statistical model, 

making it much more difficult to find statistical significance. When removing repetition three, 

DDGS extract contains significantly less hexanal, but peroxide value was not significantly 

different between treatments.   

4.4.2.2. Antioxidants 

DDGS extract had significantly higher -tocotrienol and -tocopherol concentrations but 

other phytochemicals were not significantly different. Phytochemical content of corn extract was 

not significantly higher compared to other extracts  

The mean tocopherol content in control crackers at time zero was 588 g/g  102 g. 

Extracts were added at 500 g/g (0.05%) to convey commercial usage of natural extracts. Corn 

and DDGS extracts contributed 0.3 g and 0.6 g tocols per gram lipid, respectively, orders of 

magnitude below the standard deviation. The significantly higher -tocotrienol and -tocopherol 

contents in the DDGS treatment compared to the control were unexpected. Concentration of -

tocotrienol in crackers at time zero was higher by 15 g/g (control = 68 g/g  11 g/; DDGS 

treatment = 83 g/g  6 g/g) in crackers with DDGS extract that was expected to increase -

tocotrienol concentration by only 0.07 g/g. Similarly, concentration of -tocopherol in crackers 

at time zero was also higher by 15 g/g (control = 128 g/g  18 g/g; DDGS treatment = 136 

g/g  15 g/g) by adding the DDGS extract, which was expected to increase -tocopherol 

concentration by 0.06 g/g. Considering none of the other phytochemicals were increased by the 

added extracts, this increase may be from analytical or sampling error, rather than an actual 
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benefit of adding 0.05% DDGS extract. However, interactions between tocopherols may be 

responsible for these results. -Tocopherols could play a protective role for - and -tocols, 

similar to the interaction seen between ascorbic acid and tocols. Ascorbic acid has a well-

established ability to protect α-tocopherol from degradation by regenerating tocopherol radicals 

back to the parent tocopherol (Frankel 1998; Pokorny et al 2001). Slow disappearance of -

tocotrienols and -tocopherols may be explained by regeneration and recycling by -

tocopherols. 

Corn and DDGS extracts at 500 g/g were expected to contribute about 0.02 g/g of both 

lutein and zeaxanthin to crackers. Zeaxanthin was not detected in crackers. Lutein content was 

not significantly increased in crackers with corn or DDGS extract (1.5 g/g  0.1 g/g and 

1.6g/g  0.2g/g, respectively) compared to the control crackers (1.5 g/g  0.1 g/g) at time 

zero.  

Phytosterols are prevalent in wheat flour and concentration in crackers was much greater 

than tocopherols and carotenoids. The composition of phytosterols was almost identical, ordering 

from -sitosterol > campesterol > stigmasterol  campestanol  sitostanol > avenasterol. The 

extract addition did not have a significant effect on phytosterol concentration in crackers.  

Tocopherols and lutein appear to provide antioxidant activity. Residual tocols had a lag 

period followed by a linear decline, which was similar to Winkler and Moreau (2009). All tocols 

significantly decreased within the first 20 days of storage while lutein took slightly longer, 

significantly decreasing by 40 days of storage. Lutein, -tocopherol and -tocopherol decreased 

at a fairly consistent rate throughout storage, i.e. significant changes occurred every 20-40 days. 

In contrast, -tocotrienol and -tocopherol showed little change after the initial drop in 

concentration. Similar to the conclusion from paper 1, -tocotrienol and -tocopherol are likely 
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not as active in antioxidant reactions compared to lutein, -tocopherol and -tocopherol. 

Phytosterols do not decrease through storage, and even appear to increase slightly, although not 

significantly. The increase is phytosterol concentration is likely due to sampling effect. 

Regardless, phytosterols are unlikely to be providing antioxidant benefits unless steryl ferulates 

are producing side reactions that cannot be observed in this study. Even though tocopherols and 

lutein are likely antioxidants, the added extract does not significantly improve stability of 

crackers. The treatment by time interaction was not significant for any phytochemical at any 

time.  

While natural antioxidants, such as tocopherols, are generally added to food at 

concentrations at or below 500 g/g, natural extracts are often added at higher concentrations 

(Bhale et al 2007; Seppanen et al 2010). Since the extract antioxidant potential is related to 

specific phytochemicals, the extract addition level may not have been sufficient.   
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Figure 22. Tocopherol (T) and tocotrienol (T3) residuals in crackers without (control) and with 

corn and DDGS extracts. 
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Figure 23. Lutein (Lut) and phytosterol (P) residuals in crackers without (control) and with corn 

and DDGS extracts. 
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4.5. Conclusion 

Supercritical carbon dioxide extraction created very similar extracts as hexane extraction, 

but neither extract successfully reduced oxidation at 0.05%. Tocopherols and lutein appeared to 

contribute antioxidant benefits, but the concentration added by corn and DDGS extracts were too 

low to affect oxidation. 
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5. OVERALL CONCLUSION 

DDGS are a plentiful coproduct of ethanol production with a high concentration of 

phytochemicals. Natural antioxidant extracts can be created by traditional solvent extraction with 

hexane, but SC-CO2 extraction can create a very similar extract while being safer and more 

environmentally friendly. 

Adding 1% DDGS extract reduced oxidation products in chips. DDGS extracts have the 

potential for extending shelf-life of low-moisture food. The corn extract contained less 

tocopherols and carotenoids, but more phytosterols and did not reduce oxidation. Tocopherols 

and carotenoids significantly reduced oxidation while phytosterols did not. This suggests that the 

antioxidant activity is largely related to tocopherols and carotenoids from the extract.  

Adding extracts from SC-CO2 at 0.05% to crackers did not affect oxidation. Tocopherols 

and carotenoids did not significantly increase once the extracts were added to crackers at 0.05%. 

However, the shortening (Crisco) in crackers contained antioxidants (TBHQ and citiric acid), 

which may have reduced the impact of the antioxidant extracts. Reducing the initial antioxidant 

content in crackers could have shown benefits from the antioxidant extract, but the conditions of 

this study suggest that the extracts’ phytochemical concentration was too low to reduce oxidation 

in crackers at 0.05%.   
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6. FUTURE WORK 

DDGS extract showed promise as an effective antioxidant at 1% addition while corn 

extract did not; however, 0.05% of either extract was too low. The oxidative stability of crackers 

appears to be related to tocopherol and lutein concentration.  

Future research to increasing antioxidants should be considered. First, the extracts could 

be added at various concentrations above 0.05%. However, consideration to identifying an 

optimal addition level should be considered. Furthermore, the antioxidant activity could be tested 

on a reduced phytochemical baseline level. Changing the flour or shortening used in the baked 

product may increase the effect of an added antioxidant, or research to eliminate the antioxidant 

contribution of the commercial lipid could be evaluated. Another approach could be to increase 

phytochemical concentration in the extract. Non-phytochemicals can be removed by various 

processes to increase antioxidant concentration. For instance, free fatty acids, which are 

relatively high in DDGS oil (6.8%), might be removed by distillation (Winkler-Moser and 

Vaughn 2009). Saponification also could be explored. Steryl ferulates also could be analyzed for 

potential antioxidant properties. 

Sensory analysis can be conducted in coordination with laboratory analysis. Quantitative 

descriptive analysis uses a trained panel to identify sensory attributes. This type of sensory 

analysis can be used to determine human perceptions of oxidation in food and sensory attributes 

relate to laboratory data.  
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APPENDIX 

Table A1. References contributing to nutritional analysis of corn. 

Macronutrients Tocopherols 

 Jiang and Wang 2005  CRA 2006 

 Kent et al 1994  Kamal-Eldin and Anderson 1997 

 Leguizamon et al 2009   Kurilich and Juvik 1999 

 Liu 2009  Moreau and Hick 2006 

 Moreau et al 2000  Moreau et al 1996 

 Moreau et al 2001   Moreau et al 2001 

 Moreau et al 2003  Moreau et al 2010 

 Moreau et al 2006  Moreau et al 2011 

 Moreau 2011  Panfili et al 2003 

 Stein et al 2009  Schwartz et al 2008 

   Tuberoso et al 2007 

   Winkler-Moser and Breyer 2011 

Phytosterols Carotenoids 

 Jiang and Wang 2005  Kurilich and Juvik 1999 

 Leguizamon et al 2009   Moreau et al 2010 

 Liu 2009  Panfili et al 2004 

 Moreau et al 1996  Tuberoso 2007 

 Moreau et al 2000  Weber 1987 

 Moreau et al 2001   Winkler-Moser 2011 

 Moreau et al 2003   

 Moreau 2011   

 Stein et al 2009   
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Table A2. References contributing to nutritional analysis of DDGS 

Macronutrients Phytosterols 

 Belyea et al 1998  Ciftci et al 2012 

 Belyea et al 2004  Leguizamon et al 2009 

 Cheng et al 2014  Majonji and Wang 2010 

 Ciftci and Temelli 2014  Moreau et al 2011  

 Ciftci et al 2012  Srinivasan et al 2007 

 Cromwell et al 1993  Winkler et al 2007 

 Kim et al 2008  Winkler-Moser et al 2010 

 Leguizamon et al 2009  Winkler-Moser and Breyer 2011 

 Liu 2009 Tocopherols 

 Masa'deh et al 2011  Ciftci et al 2012 

 Moreau et al 2011  Moreau et al 2010 

 Robinson et al 2009  Moreau et al 2011 

 Saunders et al 2013  Winkler-Moser et al 2007 

 Spiehs et al 2002  Winkler-Moser et al 2009 

 Srinivasan et al 2007  Winkler-Moser and Breyer 2011 

 Stein et al 2009 Carotenoids 

 Winkler et al 2007  Ciftci et al 2012 

   Moreau et al 2010 

   Winkler-Moser et al 2009 

   Winkler-Moser and Breyer 2011 

 

Table A3. Chip recipe. 

 Control Corn DDGS 

 ---------------------------%------------------------------ 

Pastry Flour  62 62 62 

Shortening    4   4   4 

Salt    1   1   1 

Baking Powder    1   1   1 

Water  32 32 32 

Treatment extract    0   0.04a   0.04 
a equal to 1% of lipid content 
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Figure A1. Chip recipe provided by NCI. 

Basics	of	Wheat	and	Flour	Quality	Short	Course-	Tortilla	formula	

Tortilla		 Baker's	%	 Grams	

Pastry	Flour	 100	 500	

Shortening	 6	 30	

Salt	 1.5	 7.5	

Water	 68	 340	

Baking	Powder	 1.28	 6.4	

	

Procedure:	

1. Ingredients	were	mixed	for	6-7	min.			
2. Dough	was	placed	in	the	proof	cup	for	10	min.	resting.	
3. Dough	was	cut	(45	g.	pieces)	and	molded.	
4. Dough	was	baked	for	1.2	sec	in	Dough-pro	tortilla	maker	and	sheeted	(Scale:	thick).		

5. Sheeted	tortilla	was	baked	for	2	minutes	at	550°F.	
6. Tortillas	were	rested	for	cooling	and	evaluated.	
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Figure A2. Cracker recipe and baking instructions. 
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Figure A3. Cracker processing instructions. 
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Figure A4. GC chromatogram of headspace analysis of rancid crackers. Hexanal peak is shown 

at 6.7 minutes.  

 

 
Figure A5. HPLC chromatogram of lutein (3.7 min) and zeaxanthin (3.9 min) standards. 

 

 
Figure A6. HPLC chromatogram showing carotenoid analysis of cracker oil. Lutein peak is 

observed at 3.7 minutes. 
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Figure A7. HPLC chromatogram of -tocopherol (4.7 min), -tocopherol, (9.0 min) and -

tocopherol (12.9 min) standards.  

 

 
Figure A8. HPLC chromatogram of tocopherol analysis of cracker oil.  

Tocopherols shifted from the retention times in standard analysis but tocopherols are identified 

through observing the fingerprint and analyzing spiked samples. The chromatogram shows -

tocopherols (3.2 min), -tocopherol, (5.7 min), -tocotrienols (6.2 min) and -tocopherol (8.0 

min). 

 

 
Figure A9. GC chromatogram of phytosterol analysis of cracker oil.  

The chromatogram shows campesterol (21.5 min), campestanol, (22.1 min), stigmasterol (22.6 

min), -Sitosterol (25.7 min), sitostanol (26.4 min) and avenasterol (26.9 min). 
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Table A4. ANOVA of peroxide value in chips. 

Source DF Sum of Squares Mean Square F-value Pr > F 

Batch   2   713 356   48.6 <0.0001 

Treatment   2   180   90   12.3   0.0001 

Batch*Treatment   2   180   90     9.4   0.0305 

Time   8 7160 895 122.2 <0.0001 

Batch*Time    8 7160 895   18.0 <0.0001 

Treatment*Time 16   163   10     1.4   0.2074 

Error 32   234     7   

Total 80 9282    

 

Table A5. ANOVA of hexanal content in chips. 

Source DF Sum of Squares Mean Square F-value Pr > F 

Batch   2   51.8 25.9   27.1 <0.0001 

Treatment   2   27.0 13.5   14.1 <0.0001 

Batch*Treatment   2   27.0 13.5     7.4   0.0456 

Time   8 227.6 28.5   29.7 <0.0001 

Batch*Time    8 227.6 28.5     4.1   0.0083 

Treatment*Time 16   29.2   1.8     1.9   0.0589 

Error 32   30.6   1.0   

Total 80 485.7    
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Table A6. ANOVA of peroxide value in crackers. 

Source DF Sum of Squares Mean Square F-value Pr > F 

Batch   2   2715 1358   31.0 <0.0001 

Treatment   2     758    379     8.7   0.0012 

Batch*Treatment   2     758   379     2.0   0.2569 

Time   7 18447 2635   60.1 <0.0001 

Batch*Time    7 18447 2635     6.0   0.0023 

Treatment*Time 14     544     39     0.9   0.5812 

Error 28   1227     44   

Total 71 30670    

 

Table A7. ANOVA of hexanal content in crackers. 

Source DF Sum of Squares Mean Square F-value Pr > F 

Batch   2 1111 555 4.7 0.0246 

Treatment   2   673 337 2.9 0.0868 

Batch*Treatment   2   673 337 1.1 0.4214 

Time   4 1343 336 2.9 0.0585 

Batch*Time    4 1343 336 1.4 0.3264 

Treatment*Time   8 1031 129 1.1 0.4154 

Error 16 1885 118   

Total 44 9253    

 


