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ABSTRACT 

Amylose and amylopectin, the mostly resistant and soluble forms of starch, respectively, 

are two forms of starch present in the granule. In this study, we examined the effect of a new 

cooking method, microwave steaming, on soluble starch and resistant starch in order to 

determine and determined that this method may be used as a more efficient means to cook tuber 

material for starch analysis. Using the steaming method, we found clones present in the North Dakota 

State University potato breeding program with unique levels of soluble or resistant starch. Clones with 

high or low levels of soluble or resistant starch displayed diverse granule sizes, pasting characteristics, 

gelatinization temperatures, and amylose and amylopectin molecular weight and abundance. 

Greenhouse-grown tubers were found to contain more soluble and resistant starch content than field-

grown tubers, implying that greenhouse-grown tubers cannot be used to screen genotypes for 

starch content.  	
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CHAPTER 1.  A REVIEW OF POTATO STARCH VARIABILITY AND ITS 

INFLUENCE IN PRODUCT DEVELOPMENT 

Abstract 

 Potato starch is an important source of energy for many societies in the world and is also 

used in a variety of industrial applications.  From a nutritional standpoint, soluble and resistant 

forms of starch, and their ratios, contribute to the glycemic index of food products.  While 

soluble starch (SS) is known for its positive correlation with glycemic response, resistant starch 

(RS) has received attention for its health benefits, due to its similarity to dietary fiber.  RS serves 

a beneficial role in gut microbial flora and assists in blood glucose control.  A variety of 

modification processes are available for starch, in order to develop products tailored to consumer 

needs.  This review summarizes potato starch, its uses for consumer applications, and highlights 

the need to produce improved potato cultivars that provide specific starch profiles for innovative 

applications. 

Introduction 

As an economically important staple crop across the world, the potato (Solanum 

tuberosum L.)  has large scale production, consumption, and affordability.  Potato is the most 

important non-cereal crop consumed in more countries than any other crop produced for 

consumption (CIP International Potato Center 2016).  In 2015, the total value of production for 

potatoes was over $230 million, ranked fourth in value behind canola, barley, and hay (USDA 

2015).  About 30% of starch utilized within Europe and the US is used for consumption, where 

around 70% is utilized for industrial applications (Lillford and Morrison 1997). According to a 

recent review by Zaheer and Akhtar (2014), potatoes range in size, color, shape, starch content, 
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and flavor.  There are over 4,000 varieties of potato worldwide (CIP International Potato Center 

2016).  

Many types of potato are grown for their unique starch attributes for specific end uses.  

Starch is composed of a mostly linear chain of α (1à4) linked D-glucose called amylose and a 

highly branched chain of α (1à4) D-glucose with α (1à6) branch points called amylopectin 

(Smith 2001).  The total starch present among potato genotypes has been shown to be about 9 to 

23% of the fresh weight (Burlingame et al. 2009) and between 66 and 80% of the dry matter (Liu 

et al. 2003 and Liu et al. 2007).  Levels of amylose and amylopectin contribute to the glycemic 

index.  The potential for carbohydrates to raise blood-glucose levels is referred to as the 

glycemic index (GI) (Jenkins et al. 1981).  Foods with a GI above 70 are considered as high GI, 

whereas foods with a value of 56-69 are considered medium GI, and foods with a GI under 55 

are considered low GI (ISO Standard 26642:2010).  Studies have shown potatoes to range in  GI 

from 56 to 104, indicating that consuming different genotypes elicit different glycemic responses 

(Fernandes et al. 2005, Henry et al. 2005, Leeman et al. 2005, Atkinson et al. 2008).  

Since one single potato variety will not provide the appropriate attributes needed for 

every product, it is important to screen various cultivars and potato selections in order to find the 

most appropriate clone for specific end uses.  Techniques have been developed in order to 

identify the most applicable potato genotype for a distinct industrial purpose (Singh et al. 2007).  

Potatoes, made primarily out of starch, may undergo modifications in order to meet consumer 

needs (Kraak 1992).  Although potato producers are interested in increasing their domestic and 

global market shares, the media often associates potatoes with obesity, diabetes, and other 

nutritional issues.  Contrary to the popular assumption that the potato provides negative attributes 

to human health, potatoes have been shown to be beneficial to the human diet (Stelljes 2001).  
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The purpose of this review is to introduce a variety of relatively recent studies that are related to 

factors that affect potato starch.  The likelihood for a cultivar to possess strong desirability for a 

specific market depends on a wide variety of factors including specific gravity, dry matter 

content, and characterization of starch attributes (Haase 2003). 

Starch Content and Digestibility 

 Raw potato starch consists of large amounts of RS that is converted to digestible starch 

after cooking.  Foods high in rapidly digested starch have a high GI and elicit high insulin 

demand (Augustin et al. 2002).  Jenkins et al. (1981) describes GI as the response of test foods 

compared to reference foods, such as glucose and white bread.  Amylopectin typically makes up 

70-80% of the available starch in the potato tuber, with the rest consisting of amylose (Zeeman et 

al. 2010).  Amylopectin and amylose production are under enzymatic control.  Granule-bound 

starch synthase (GBSS) is responsible for the production of amylose (Fulton et al. 2002), while 

many enzymes are responsible for amylopectin production (Smith 2001).  GBSS also is capable 

of elongating amylopectin chains (Denyer et al. 1996).  These enzymes are responsible for the 

production of starch granules in potato (Zeeman et al. 2010).  The ratio of amylose to 

amylopectin, as well as their molecular structure influence, determine the end use of the potato’s 

application (Blazek and Copeland 2008). Genotype and environment were shown to be the most 

significant factors contributing to variations in starch profiles among genotypes (Bach et al. 

2013). 

Amylose content and gelatinization temperature have both been shown to have a positive 

correlation with granule size (Geddes et al. 1965).  Immature tubers contain a higher ratio of 

amylose and sucrose, compared to mature tubers (Jansky and Fajardo 2016).  An increase in 

tuber growth from 1.0 to 2.5 cm in diameter has been shown to increase the starch content from 
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11.4 to 16.0% in white-skin potatoes, and from 6.6 to 11.5% in red-skin varieties (Qudrat-I-

Khuda et al. 1964).  This study also concluded that white-skinned potato stores more starch at all 

stages of growth, compared to red-skinned potato.  

Three enzymes are responsible for the breakdown of straight-chain starches: α-amylase 

(α- 1,4-glucan glucanohydrolase; EC: 3.2.1.1), β-amylase (α-1,4-glucan malto- hydrolase; EC: 

3.2.1.2), and α-glucosidase (α-1,4-glucosidase; EC 3.2.1.20) (Zobel et al. 2009).  Amylopectin is 

a larger molecule than amylose, resulting in a larger surface area for amylolytic attack (Singh et 

al. 2010).  The tight coiling of amylose also provides resistance to breakdown (Taiz and Zeiger 

2010).  The degradation of these starch chains is important in digestion, additionaly, the rate at 

which these starch chains are broken down is correlated with the glycemic index of the potato 

(Ek et al. 2012). 

Retrogradation of starch occurs when starch recrystallizes during storage of starch paste 

or other products that contain starch.  Retrogradation was first observed in 1852 (Boussingault 

1852).  This outcome influences food quality and other applications.  The definition of 

retrogradation is the linkage of starch chains into organized crystalline structures (Eerlingen and 

Delcour 1995).  Amylose, the linear branched starch, is the most susceptible to retrogradation 

due to its few branching sites (Tharanathan 2002).  Amylose that has undergone crystallization 

results in resistance to amylase activity.  Retrogradation of amylopectin is slow due to its highly 

branched nature (Miles et al. 1985).  The process of retrogradation must be taken into account 

when extracting potato starch for food and industrial purposes in order to ensure the best quality 

of the product. 

Repeated retrogradation has been studied on waxy potato starch, in order to determine 

structural differences (Xie et al. 2014).  The maximum level of slowly digestible starch reached 
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in this study after repeated retrogradation was 40.41% (Xie et al. 2014).  Other characteristics of 

the starch, including melting temperature range, onset temperature, and melting enthalpy also 

were studied.  These analyses are important when preparing starch material for industrial 

products. 

Gelatinization of starch is a process of breaking various intermolecular bonds within 

molecules of starch in the presence of water, ultimately causing the starch granules to swell 

(Parker and Ring 2001).  The water that is absorbed by the starch granule is irreversible.  As a 

result, the starch mixture turns viscous and transparent.  Gelatinization is a common practice in 

the food industry that alters viscosity properties of the material that the starch is contained within 

(Parker and Ring 2001).  The process of gelatinization also makes starch more susceptible to 

enzyme activity (Noda et al. 2008). 

Structural and gelatinization characteristics were recently studied in five wild type potato 

starches, five amylose-free potato starches, and four high-amylose potato starches (Gomand et al. 

2009).  The molecular size of amylose and amylopectin were studied, along with amylopectin 

chain length distribution, crystallinity, and granular structure.  Researchers found that wild-type 

potato starch granules were larger than amylose-free potato starch and high-amylose potato 

starch (Gomand et al. 2009).  

A recent study examined starch fractions within a variety of potato genotypes after 

cooking and after cooking and storing cold (Monro et al. 2008).  RS, rapidly digestible, and 

slowly digestible starch were measured within nine commercial potatoes from New Zealand, and 

also in 37 lines from a potato breeding program.  Starch fractions were examined right after 

cooking, or after the cooked tuber material was stored at 4°C for 44 hours.  In the immediately 

cooked potatoes, the potatoes consisted of 68% rapidly digestible starch, 3% slowly digestible 
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starch, and 3.9% RS based on mean and across-cultivar range on a dry matter basis (Monro et al. 

2008).  Cooling of the cooked tuber material resulted in altered starch fractions consisting of 

44% rapidly digestible starch, 23% slowly digestible starch, and 7% RS.  The study showed that 

the 37 potato lines within the breeding program contained 7-37% slowly digestible starch and 

12-27% RS in the cooked-cooled potatoes.  Clearly, cooling of cooked potato material has an 

impact on the starch profile of potato.  The results indicated that the glycemic index of selected 

potatoes may be decreased after cooling of cooked potato.  Differences in starch levels among 

potato lines should be taken into consideration when utilizing plant breeding as a means of 

altering the starch profile.  

Salts have a significant effect on the properties of starch.  Salting-out ions have been 

shown to increase gelatinization temperature and enthalpy, whereas salting-in ions have been 

shown to have the opposite effect (Zhou et al. 2014).  Since the phosphate monoester groups in 

potato starch are negatively charged, the result is an ionic repulsion, weakening the organization 

of starch molecules and increasing the water-binding capacity (Zhou et al. 2014).  This explains 

why salts have the ability to alter physicochemical properties within potato starch.  

Environmental growing conditions also have been shown to have a significant effect on 

starch.  Three potato cultivars (Shepody, Innovator, and Russet Burbank) were grown at two 

distinct locations in Canada (New Brunswick and Manitoba) (Chung et al. 2014).  As a result of 

the study, the amount of total starch from dried potato was shown to be higher in cultivars grown 

in New Brunswick, than cultivars grown in Manitoba.  The cultivar Innovator had the highest 

total starch, compared to the other two.  This study concluded that growing conditions influence 

starch crystalline and molecular structures (Chung et al. 2014).  Cultivar by location has a 
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significant effect and should be taken into account when growing cultivars for a desired starch 

profile.   

With high-amylopectin starches on the rise for industrial purposes, like pastes and films, 

waxy potato cultivars have been developed for the purpose of improved material characteristics.  

Šimková et al. (2013) examined 16 potato cultivars, grown at five locations over four years, for 

changes in total starch, amylose, phosphorus content, and starch grain size.  Cultivar was shown 

to have an affect on all parameters (starch, amylose, phosphorus, and starch granule size).  

Location and year were also shown to have a significant, but lower, effect.  There was no 

significant effect of year on amylose levels.  Similar to the study by Chung et al. (2014), 

Šimková et al. (2013) found growing location to influence starch properties.  

Industrial Applications and Genetic Improvement 

Potatoes are produced into a variety of forms including French fries, chips, baked, and 

mashed.  As no single potato cultivar has been shown to be appropriate for all food applications, 

screening of cultivars is needed for specific end use, for their ability to provide optimum 

processing performance, and maximum product quality (Singh et al. 2005).  Growing conditions, 

genotype, and tuber physiological age affect potato quality for processing (Freitas et al. 2012).  

Cultivar differences are mainly responsible for the variation in processed potato products 

(Arvanitoyannis et al. 2008).  Approximately 30% of starch used in Europe and the US is used as 

native starch for consumption; whereas about 70% is used for industrial purposes (Lillford and 

Morrison 1997). 

Potato starch is used in industrial applications such as, but not limited to, adhesives, 

paper, textiles, and biodegradables.  Starch has traditionally been used in functions of thickening 

and adhesion, but demand for plant-based biodegradables has increased (Rosentrater and Otieno 
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2006).  Researches have focused attention on modified starches for properties including stability, 

shelf life, expansion, and texture (Kraak 1992).  Various alterations are applicable to starch in 

order to produce specific applications, such as water resistant material (Peltonen and Harju 

1996), biodegradable films (Jobling 2004), and microcapsules for small molecules (Korus et al. 

2003).  Although starch from potato provides good texture stabilization and regulation in food 

applications, the low shear resistance, thermal decomposition and resistance, and high level of 

retrogradation have limited native starch use in industrial applications (Cousidine 1982).  

However, modification of starch can improve its functional characteristics (Hermansson and 

Svegmark 1996).  Modifications are generally performed by etherification, esterification, cross-

linking, and grafting (Singh et al. 2007).  The structure and composition of starch granules 

differs across plants and ultimately affects the functions and specific properties of starches from 

different crops.  A unique characteristic found within potato starch is the high level of phosphate 

groups linked covalently to the C3 and C6 positions of the glucose units (Hizukuri et al. 1970).  

The phosphate groups associated with the glucose monomers give potato starch a high power of 

swelling, which is related to pasting behavior and to rheological properties (Sitohy et al. 2000).  

Potato starch also has been known for its applicability in films and other synthetic 

polymers.  A recent study examined the material properties of genetically modified potatoes with 

varying amylopectin structure and amylose content.  As a result of genetic modification, potato 

starch with high levels of amylose and an increase in amylopectin chain length was produced 

(Menzel et al. 2015).  The modified starch content also resulted in different granule morphology 

due to the compositional change.  The increase in amylose and change in amylopectin structure 

improved the starch’s ability to form a film with enhanced tensile properties.  The long chains of 

amylopectin were shown to be involved in the intertwined molecular network.  The high amylose 
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content and long-chain amylopectin produced a cohesive film with a coarse surface and 

enhanced physical properties that have potential to be used as barrier coatings (Menzel et al. 

2015). 

  Freeze-thaw ability is important to consider for many applications, especially those with 

cold storage of starchy products.  Due to lack of amylose, waxy starch has relatively improved 

freeze-thaw stability when compared to normal starches (Zheng and Sosulski 1998).  Potatoes 

may be advantageous in cold storage applications due to their high amylopectin content.  

Health Concerns and Nutrient Content 

The potato requires continued genetic improvement, to accommodate the needs of a 

changing world, due to increased demands for a healthier potato (Douches et al. 1996).   

The modern potato breeder has an opportunity to incorporate genomes that produce potatoes 

with unique starch characteristics desired for specific markets.  Potato breeding is a difficult task 

due to inherent biological factors including cytoplasmic and nuclear sterility, tetrasomic 

inheritance, and inbreeding depression (Douches et al. 1996). Male sterility in potatoes results 

from the absence of pollen (Salaman and Lesley 1922). Unfavorable genes can remain “hidden” 

due to the tetraploid nature of the potato (Lindhout et al. 2011), resulting in limited genetic gain 

through traditional breeding. Inbreeding reduces the fitness of a species and has been studied for 

centuries. Darwin (1876) first demonstrated inbreeding depression. 

 In a review by Willet et al. (2002), it was noted that potatoes are rich in a variety of 

essential nutrients including carbohydrates, proteins, vitamin C, vitamin B6, magnesium, 

potassium, and fiber.  Potatoes play an influential role in the production of the antioxidant 

defense system by contributing essential nutrients including vitamins, β-carotene, polyphenols, 

and minerals.  Incorporating potatoes into the diet provides a good source of energy and 
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nutrients; however, potatoes have been associated with undesirable health effects.  Due to their 

purported high glycemic index, potatoes are perceived as bad for health.  Diets with high 

glycemic indices have been associated with increased risk of diabetes and cardiovascular disease 

(Willet et al. 2002).  This supports the need to produce and examine improved cultivars of potato 

that have increased health benefits and a reduced glycemic index.  

A recent study (Tahvonen et al. 2006) compared cooking method, peeling method, and 

processing method on the glycemic response of 22 healthy volunteers.  Volunteers were chosen 

based on normal health and normal glucose resistance.  As a result of this study, it was 

determined that cooking method, peeling method, and processing method (slicing or mashing) 

did not influence the glycemic index.  However, cooling and cold storage were found to lower 

the glycemic index of the potato product by nearly 25%.  Reheating of the cooled and cold-

stored potato product did not influence the glycemic index compared to the cooled potato.  After 

cooling, amylose goes through retrogradation, resulting in more crystalline starch and an increase 

in resistance to digestive enzymes (Miles et al. 1985), explaining why the glycemic index 

decreases for cold cooked potatoes compared to hot, cooked potatoes. 

Potato Storage Influence on Starch 

Storage is an important requirement in order to prolong the shelf life of potatoes past the 

growing season.  Good storage conditions should be met in order to prevent a large amount of 

weight loss, invasion of pathogens, and the growth of sprouts (Schippers 1976).  These ideal 

conditions include protection from light, and temperature and humidity control (Schippers 1976).  

Although weight loss is considered an economic factor comparable to yield reduction, it also is a 

factor that affects tuber appearance (Schippers 1976).  Tuber weight loss occurs via transpiration 

and respiration (Schippers 1976).  Weight loss between five and 10 percent will cause tubers to 
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feel progressively soft and they will begin to wrinkle at 8 or 9 percent (Schippers 1976).  

Deteriorated tubers cannot be used for table stock or for other uses, with the exception of 

livestock feed or starch extraction, implying that storage conditions for potatoes are extremely 

important for maintenance.   

Formation of reducing sugars is of importance during potato storage.  Starch is the source 

of sugars that are produced during low temperature induced sweetening (Isherwood 1973).  

Greater amylolytic activity was found in tubers stored at low, compared to high, temperatures 

(Bielinska-Czarnecka and Bialek 1977; Nowak 1977).  The hydrolysis rate of α-amylase, β-

amylase, and debranching enzyme have been shown to increase sharply during the first weeks of 

storage at 4°C; however, the activity of these enzymes increased slightly or remained constant 

when stored at 10°C (Cottrell et al. 1993).  Although variety plays a role in the development of 

reducing sugars, storage conditions also contribute to this undesirable attribute.  Once sugar 

formation begins, storage continuation influences the sugar level (Schippers 1976).  Immature 

tubers contain a higher amount of sucrose, compared to mature tubers (Schippers 1976) and a 

higher ratio of amylose in starch, compared to mature tubers (Jansky and Fajardo 2016).  Degree 

of brownness of chips (and similarly French fries) is a result of the level of reducing sugars 

(glucose and fructose) in the tuber (Schippers 1976).  Upon frying, the sugars react with amino 

acids in the Maillard reaction, resulting in colored compounds that affect chip color and flavor 

(Shallenberger et al. 1959).  Enzymatic conversion occurs simultaneously with starch synthesis 

from sugar and potato respiration (Singh et al. 1976).  Respiration converts sugars into carbon 

dioxide and water and is highly temperature dependent; an increase in temperature results in an 

increase in respiration (Singh et al. 1976).  A reduced rate in respiration is desired in order to 

achieve longer storage periods and reduced weight loss (Singh et al. 1976). 
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The end use of potatoes determines the storage conditions utilized.  Generally, potatoes 

used for chips are stored at 10 to 12.8°C, those for French fries are kept at 7.2 to 8.8°C, and fresh 

and seed potatoes are kept near 4.4°C (The Potato Association of America 2010).  

Reconditioning is known as increasing the storage temperature for tubers to 15 or 20°C.  The 

result of reconditioning on chipper varieties may decrease the level of reducing sugars via 

respiration, converting the sugars into starch (Schippers 1976).  Varieties may be more or less 

sensitive to changes in storage conditions (Schippers 1976). Potatoes purchased fresh are usually 

advised to be stored unrefrigerated in a cool dark place (5.6-12.8°C); higher temperatures 

promote sprouting and cooler temperatures induce sugar accumulation (Woodell et al. 2009). 

Kaur et al. (2009) compared starch properties of 11 potato cultivars at storage 

temperatures of 4, 8, 12, 16, and 20°C for 120 days.  The researchers reported that the amount of 

amylose, as well as the swelling power, increased as the storage temperature increased.  The 

amount of small-sized granules was more pronounced in potatoes that were stored at 4°C.  The 

potatoes that were stored at 20°C exhibited a higher peak viscosity, set back, along with gel 

hardness, gumminess, and chewiness, than potatoes that were stored at the lower temperatures.  

The amylose content indicated a positive correlation with setback and gumminess.  Swelling 

power was significantly positively correlated with hot-paste viscosity and peak viscosity.  The 

results of this study may provide insight into proper storage techniques to maintain potato 

qualities for specific starch attributes and end uses. 

Conclusions and Future Improvements 

Although it is known that crystalline and amorphous regions are present within the 

granule, and that amylopectin forms the basis of the semi-crystalline starch granule, the precise 

location of amylose within the starch granule is often debated (Jane 2006).  However, amylose is 
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proposed to be interspersed among amylopectin within the granule (Zobel 1988).  Further 

advances are necessary in order to determine the specific pathway in which the granule is 

produced and also degraded after gelatinization.  These improvements, along with further 

understanding of variables that influence starch content, can aid in proper handling of starch 

material in order to provide optimum quality in products.  

 Screening of cultivars is necessary to determine their specific end use, as well as their 

capacity to contribute optimum processing performance and quality, since no single potato 

cultivar has been shown to be applicable for all food and industrial applications.  Potato starch 

profiles vary due to genotype, environmental factors, and storage conditions.  Further research 

regarding environmental and storage influence on starch profiles is necessary to maintain desired 

starch characteristics for product developments and industrial applications.  
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CHAPTER 2.  COOKING METHOD ASSESSMENT: IMPACT ON STARCH 

CONTENT 

Abstract 

The potato is a valued crop providing carbohydrate calories to the human diet.  Complex 

carbohydrates in potato consist of amylose and amylopectin, making up the starch granule.  The 

granule undergoes gelatinization after cooking, resulting in accessibility for digestive enzymes.  

Although baking and boiling potatoes for starch analysis is common, these techniques are time 

consuming when a large number of samples are to be analyzed.  Steaming in microwave-safe 

bags is a relatively new technique that has not previously been studied for starch assessment 

purposes and could provide for a more efficient means to analyze a large number of samples.  

The research objective was to determine whether cooking method (baked, boiled, or steamed) 

influences soluble starch (SS) and/or resistant starch (RS) levels of potato genotypes.  Three 

varieties (Red Norland, Russet Burbank, and Yukon Gold) were evaluated.  Additionally, 

samples were examined from two temperatures (hot (60°C) and chilled overnight (4°C)).  

Results indicated that for both SS and RS, variety, cooking method, temperature, cooking 

method x temperature, and variety x cooking method x temperature were significant factors.  The 

insignificance of variety x cooking method indicates that the three cooking methods did not 

influence SS or RS levels among varieties, implying steam bags may serve as a more efficient 

means for cooking and preparing a large number of potato genotypes for starch quantification. 

Introduction 

 Potato (Solanum tuberosum L.) is a carbohydrate-rich staple crop, contributing a variety 

of vitamins and nutrients, including vitamins B1, B2, and B6, and C, as well as minerals such as 

potassium, magnesium, and phosphorus (Burlingame et al. 2009).  Dietary energy intake is 
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composed of 40-75% available carbohydrate, in which starch is the most abundant (Nantel 

1998).  Although the potato has been negatively viewed in the media, due to its high 

carbohydrate nature and relatively high glycemic index, the potato yields more nutrient-dense 

food more quickly, on less land area, and in harsher climates than any other major food crop 

(FAO, 2005).  Worldwide, potato has the ability to contribute to improved diets, resulting in 

reduced mortality rates caused by malnutrition.  

Starch is packaged into granules that consist of varying amounts of amylose, a straight 

chain polyglucan, and amylopectin, a branched glucan (Zobel 1988).  Cooking disturbs the starch 

granule, providing access to digestive enzymes.  Soluble starch (SS) consists of starch that 

undergoes degradation by enzymes, such as α-amylase, β-amylase, and amyloglucosidase, and is 

utilized for energy in the body (Zobel et al. 2009).  Resistant starch (RS) consists of starch 

degradation products that are unable to be absorbed by the small intestine and pass to the large 

intestine (Berry 1986).  Amylopectin typically makes up 70-80% of the available starch in 

cooked potato, with the rest consisting of amylose (Zeeman et al. 2010). 

 Amylose is a straight chain polysaccharide composed of approximately 1000 α-D-(1-4) 

linked glucose units, while amylopectin is a highly branched polysaccharide compromised of 

approximately 4,000 glucose units with branches formed from α-D-(1-6) linkages (Haralampu 

2000 and Sharma et al. 2008).  Resistant starch (RS) is referred as a type of starch that resists 

digestion and passes through the gastrointestinal tract, where it functions as dietary fiber and 

prebiotic.  A prebiotic is described as a non-digestible food component that stimulates the growth 

and/or activity of bacteria in the colon (Gibson and Roberfroid 1995).  Indigestible starch is 

referred to as starch that has not been hydrolyzed within 120 min after being consumed (Fuentes-

Zaragoza et al. 2011).  Carbohydrates are broken down into glucose after consumption.  The 
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potential for carbohydrates to raise blood-glucose levels, compared to either pure glucose or 

white bread, is referred to as the glycemic index (GI) (Jenkins et al. 1981).  Foods with a GI 

above 70 are considered high, whereas foods with a value of 56-69 are considered medium, and 

foods with a GI under 55 are considered low (ISO Standard 26642:2010).  The GI of potatoes 

ranges from 56, to as high as 104, depending on the genotype and service method (Soh and 

Brand-Miller 1999, Fernandes et al. 2005, Henry et al. 2005, Leeman et al. 2005a, Atkinson et al. 

2008, Leeman et al. 2008, and Kinnear et al. 2011). 

 The relationship between carbohydrate digestion and glycemic index requires a different 

classification system than that of quantification of amylose and amylopectin content.  This 

classification consists of rapidly digestible (RDS), slowly digestible (SDS), and RS.  RDS and 

SDS compromise the starch that is hydrolyzed within the first 20 and 21-120 minutes of 

consumption, respectively (Fuentes-Zaragoza et al. 2011).  RS is undigested until it enters the 

large intestine and is utilized by gut microflora (Brown et al. 1997). RS is fermented by 

anaerobic microflora in the colon, releasing short chain fatty acids that can be used as metabolic 

substrates (Johnson and Gee 1996). As an ingredient in food products, RS has a lower calorie 

value (8 kJ/g), than fully digestible starch (15 kJ/g); however, it can be introduced into food 

products, such as baked goods, without influencing processing properties, or the overall 

appearance and taste of the end product (Rochfort and Panozzo 2007).  RS may not be digested 

in the body due to various reasons.  The molecular structure is compact, limiting the accessibility 

of digestive enzymes and providing resistance of digestion of raw starch granules (Haralampu 

2000).  Starch granules are structured in a manner that prevents digestive enzymes from 

hydrolyzing them (Nugent 2005).  Starch granules undergo gelatinization under heat stress, 

restricting the molecules' accessibility to digestive enzymes. Gelatinization occurs after starch 
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granules are heated during the cooking process of potatoes; intra- and inter- chain hydrogen 

bonds present between amylose and amylopectin are hydrolyzed, causing water molecules to 

bind with the hydroxyl groups (Parker and Ring 2001). However, starch gels that are cooled 

following heat stress can form starch crystals that are resistant to enzymatic hydrolysis.  This 

process is known as retrogradation (Nugent 2005).  Chemically modified starches that have 

altered etherisation or cross-bonding are unable to be hydrolyzed by digestive enzymes (Lunn 

and Buttriss 2007).  

Potatoes can be prepared by several different cooking methods prior to consumption, 

including baking, boiling, microwaving, and frying.  Studies have been performed on different 

potato varieties and indicate that cooked potatoes consist mostly of rapidly digested starch 

(Leeman et al. 2005b), which elicits a high glycemic index (Atkinson et al. 2008).  Although 

potatoes provide many vitamins and minerals, some nutritionists advise that potatoes should be 

substituted with a carbohydrate evoking a lower glycemic index, in order to reduce the risk of 

chronic diseases (Brand-Miller et al. 2009).  Most potato varieties generate a medium to high 

glycemic index; however, there are some varieties that elicit a low glycemic response (Ek et al. 

2012). The method of preparation of cooked potato also influences GI (Kinnear et al. 2011). 

 The purpose of this study was to determine whether microwave steaming, which has not 

been investigated previously as a preparation method for starch analysis, affects SS or RS levels 

of potato genotypes.  Although studies have been performed comparing baking and boiling 

(Raatz et al. 2016), the microwave steam bag method has not been previously employed.  
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Materials and Methods 

Potatoes 

Three commercial varieties (Red Norland, Russet Burbank, and Yukon Gold) grown by 

the NDSU Potato Research team and area growers during the 2014 growing season were used in 

this study. Russet Burbank and Yukon Gold were produced with irrigation, while Red Norland 

was from a non-irrigated site.  The potatoes were stored at 3.3°C for approximately four months 

prior to analysis. Each variety was subjected to three cooking methods (baked, boiled or steamed 

using Ziploc® Zip’n Steam bags) and evaluated at two service temperatures: hot (60°C) and 

chilled overnight (4°C).  

Starch Analysis 

Two tubers of each variety were used for starch analysis.  Evenly sized tubers were 

processed in one of three ways: 1) washed, pierced, wrapped in tinfoil, and baked in an oven at 

177°C (350°F) for 1 hour (baked); 2) washed, peeled, cut into identically sized pieces (2.5 cm2) 

and boiled in water at 100°C for 15 minutes until tender (boiled); and 3) washed, peeled, cut into 

identically sized pieces (2.5 cm2) and placed into a Ziploc® Zip’n Steam bag, and microwaved 

(1200W) for 4 minutes on high (steamed).  The cooked tubers were then riced and mixed for 

each variety. 

 SS and RS were determined using the Megazyme Resistant Starch Assay (K-RSTAR, 

Megazyme International Ireland, Ltd, Co. Wicklow, Ireland) kit.  A modified miniaturization of 

the assay, as described by Raatz et al. (2016) was utilized, with the incorporation of sodium 

azide, in order to prevent alteration of the starch profile by microbes.  Samples of potato were 

prepared and analyzed in triplicate.  Riced samples of potato (0.50 g) were weighed into 15 ml 

centrifuge tubes and 4 mL of pancreatic amylase solution (10 mg/mL) (3U/mL 
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amyloglucosidase)/sodium azide (0.03%) was added into each tube.  The tubes were capped and 

placed into a continuous shaking water bath at 37°C at 100 rpm for precisely 16 hrs.  

 Termination of the hydrolysis reaction was performed by adding 4 mL of 95% ethanol to 

each sample.  Recovery of RS was performed by centrifugation (2000 x g, 10 min at RT).  The 

supernatant, containing SS, was decanted into 100 ml volumetric flasks.  The RS pellet was 

washed an additional two times with 8 mL of 50% ethanol, centrifuged (2000 x g, 10 min at RT), 

and decanted into 100 ml volumetric flasks.  

 The pellet containing RS was dissolved by adding 2 mL of 2 M KOH along with 

vigorous stirring, within an ice-water bath over a magnetic stirrer.  The RS solution was 

neutralized by adding 8 mL of 1.2 M sodium acetate buffer (pH 3.8) and immediately adding 0.1 

mL amyloglucosidase.  The samples were incubated in a water bath at 50°C for 60 min.  The 

contents in the tube were diluted 1:10 using a 100 mL volumetric flask.  Aliquots of each 

solution were centrifuged (1500 x g, 10 min), 40 µL of the supernatant was transferred to 2.0 mL 

microtubes, and was mixed with 1.2 mL glucose oxidase-peroxidase-4-aminoantipyrine reagent 

(Megazyme Resistant Starch Assay, Megazyme International Ireland Ltd, Co. Wicklow, Ireland).  

The microtubes were placed in a water bath at 50°C for 20 min.  The mixtures were transferred 

to a 96-well plate, where the absorbance was read against a reagent blank at 510 nm, utilizing a 

microplate reader (SpectraMax 190, Molecular Devices, Sunnyvale, CA, USA).   

 The SS supernatant in the 100 mL volumetric flasks was filled to 100 mL with 100 mM 

sodium acetate buffer and mixed.  A 1:2 dilution of the SS solution, composed of 20 µL SS 

solution and 20 µL deionized water, was added to 2.0 mL microtubes, along with 4 µL of dilute 

amyloglucosidase (300 U/mL) and 1.2 mL glucose oxidase-peroxidase-4-aminoantipyrine 

reagent (Megazyme Resistant Starch Assay, Megazyme International Ireland Ltd, Co. Wicklow, 
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Ireland).  Samples were placed in a 50°C water bath for 20 minutes.  The samples were then 

transferred to a 96-well plate, where the absorbance was read against a reagent blank at 510 nm 

utilizing a microplate reader (SpectraMax 190, Molecular Devices, Sunnyvale, CA, USA).  Two 

replicates of each sample were analyzed for moisture content.  SS and RS content was calculated 

using the dry weight of each variety.  Approximately 0.5 g of cooked tuber material for each 

variety was placed into glass tubes, placed in a freezer overnight, and freeze-dried for 2 days.  

The resulting dry weight was calculated using the following formula: 1-(weight following freeze 

drying/weight following cooking).  

Statistical Analysis 

 The effects of cooking method (baked, boiled, or steamed) and service temperature (hot 

or chilled), and their influences on the SS and RS content in three potato varieties (Red Norland, 

Russet Burbank, and Yukon Gold) was evaluated using a 3-way analysis of variance (ANOVA).  

A factorial model was used with Factor A as variety, Factor B as cooking method, and Factor C 

as temperature.  A generalized linear model (GLM ANOVA) was conducted using SAS 9.3 

(SAS Institute, Inc., Cary, NC).   

Results and Discussion 

Soluble Starch 

 SS refers to the fraction of starch that is hydrolyzed by digestive enzymes.  Multiple 

studies have shown that RS is composed of a linear molecule of α-1,4-D-glucan, which typically 

consists of retrograded amylose, and has a molecular weight that is relatively low (1.2 x 105 Da) 

(Tharanathan 2002).  Although baking and boiling potatoes for starch analysis is common, these 

techniques are time consuming when a large number of samples are to be analyzed.  Steaming in 
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microwave-safe bags is a relatively new technique that has not previously been explored for its 

influence on SS or RS levels.  We hypothesized that this cooking method would not differ from 

baking or boiling.  Each variety was hypothesized to vary in SS and RS, since genotype was 

shown to be a significant factor contributing to variations in starch profiles (Bach et al. 2013).  

The ANOVA output for SS is shown in Table 2.1.  The significance of the three-way interaction 

(variety x cooking method x temperature) indicates that there is a two-way interaction that varies 

across levels of a third variable.  To further analyze the three-way interaction, the two-way 

interactions are discussed.  Although variety x cooking method lacked significance, the 2-way 

interaction plotted against different levels of temperature (hot and cold) expressed significant 

differences for SS.  The significance of cooking method x temperature indicates that there was an 

interaction between cooking method and temperature on SS.  Although the baked and steamed 

cooking methods varied by magnitude, with SS found to be more present in samples that were 

analyzed hot compared to cold, the steaming method resulted in a lower level of SS when the  

Table 2.1.  Analysis of variance for soluble starch for Red Norland, Yukon Gold, and Russet 
Burbank using three cooking methods (baked, boiled, or steamed in steam bags), and two 
service temperatures (hot (60°C) and chilled overnight (4°C)). 

Source DF Type III SS MS F  Pr > F 

Replicate 2 57965.89 28982.95 2.05 0.14ns 

Variety 2 264603.21 132301.61 9.36 0.01* 

Cooking Method 2 240754.91 120377.45 8.51 0.01* 

Variety x Cooking Method 4 85169.73 21292.43 1.51 0.22ns 

Temperature 1 126107.22 126107.22 8.92 0.01* 

Variety x Temperature 2 23821.52 11910.76 0.84 0.44ns 

Cooking Method x Temperature 2 132551.61 66275.81 4.69 0.02* 

Variety x Cooking Method x Temperature 4 182863.69 45715.92 3.23 0.02* 

*significant at α≤0.05, ns = not significant at α≥0.05. 
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samples were analyzed hot compared to samples that were analyzed after refrigeration. 

Significance was shown for temperature x cooking method, suggesting that temperature 

impacted SS levels when factored by cooking method.  

Analysis of variance indicated a lack of significance for variety x temperature and variety 

x cooking method, the source of variation most meaningful to this study.  The lack of 

significance of variety x cooking method shows that SS did not have an interactive affect 

between variety and cooking method.  This result indicates that the steam bag cooking method 

did not differ from the baking and boiling cooking method and could be used as a more efficient 

means of cooking tuber material for SS analysis.  Although previous studies have used baking 

and boiling as a means to cook potatoes for starch analysis, these methods are not sufficient for 

examining a large number of potato varieties.  Baking potatoes takes about an hour and boiling 

takes up four burners and takes 15-20 minutes at a time, whereas microwave steaming potatoes 

takes four minutes and can allow two clones to cook at once.  The lack of significance of variety 

x temperature shows that variety and temperature did not have an interactive effect on SS.  This 

insignificance indicates that cooked potato samples could be used at either service temperature 

without impacting the SS levels, however, the temperature was shown to vary across levels of 

cooking method when factored by variety, as discussed in the three-way interaction.  

 Significance was observed for the single effects of variety, cooking method, and 

temperature.  Replicates were not significantly different.  As expected, the three varieties used 

had varying levels of SS.  Yukon Gold had a significantly higher average SS value (535.1 mg/g) 

than Red Norland (406.3 mg/g) and Russet Burbank (372.7 mg/g) (LSD = 80.6).  Red Norland 

and Russet Burbank were not significantly different from one other.  Cooking method also was 
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found to be a significant source of variation, with the baked potatoes containing a significantly 

higher average level of SS (527.6 mg/g) than boiled (419.0 mg/g) or steamed potatoes (367.4  

mg/g), which were not significantly different (LSD = 80.6).  Temperature was also a significant 

source of variation, with the hot service temperature containing a significantly higher average SS 

level (486.4 mg/g) than a cold service temperature (389.7 mg/g), which was expected. 

Retrogradation of starch occurs when starch recrystallizes during cooling of starch paste or other 

products that contain starch (Sharma et al. 2008). Therefore, it is not surprising that the hot 

service temperature displayed a higher SS level than the cold service temperature. 

When comparing SS levels across variety, cooking method, and service temperature 

(Figure 2.1), SS levels were significantly higher when a hot service temperature was used, 

compared to a cold service temperature with baked samples of Yukon Gold and Red Norland, 

boiled samples of Yukon Gold and Russet Burbank, and steamed samples of Yukon Gold.  There 

was no significant difference between hot and cold service temperatures on SS for Russet 

Burbank baked, and Red Norland boiled and steamed.  SS was significantly higher when a cold 

service temperature was used for steamed Russet Burbank.  These results could provide insight 

into producing an edible potato product with a relatively lower glycemic index. 
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Figure 2.1.   Soluble starch levels (mg/g dry weight) for three varieties, three cooking 
methods (baked, boiled, and steamed), and two service temperatures (hot and cold).  
SE for hot = 35.8; SE for cold = 28.4. LSD = 202.55.  

Resistant Starch 

The ANOVA output for RS is presented in Table 2.2.  The significance of variety x 

cooking method x temperature indicates that there is a two-way interaction that varies across 

levels of a third variable.  To further analyze the three-way interaction for RS, the two-way 

interactions are discussed.  Although variety x cooking method lacked significance, the 2-way 

interaction plotted against different levels of temperature (hot and cold) were significantly 

different for RS. The significance of cooking method x temperature indicates that the samples 

analyzed hot differed from the samples analyzed after refrigeration when factored by cooking 

method.  Cold samples from steamed potatoes (158.1 mg/g), and cold and hot samples of baked 

potatoes (157.8 mg/g and 140.1 mg/g, respectively) had the highest levels of RS and were not 

significantly different.  Hot samples of boiled and steamed potatoes had significantly lower 

levels of RS (91.8 mg/g and 81.5 mg/g).  The significance of the single effects are further 
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discussed.  Temperature x cooking method was significant, indicating that RS levels were 

impacted by temperature when factored by cooking method. 

Table 2.2.  Analysis of variance for resistant starch for Red Norland, Yukon Gold, and Russet 
Burbank using three cooking methods (baked, boiled, or steamed in steam bags), and two 
service temperatures (hot (60°C) and chilled overnight (4°C)). 

Source 
 

DF 
 

SS 
 

MS 
 

F  
 

Pr > F 

Replicate 2 876.63 438.31 0.44 0.65ns 

Variety 2 16592.16 8296.08 8.30 0.01* 

Cooking Method 2 15521.93 7760.96 7.76 0.01* 

Variety x Cooking Method 4 5699.11 1424.78 1.42 0.25ns 

Temperature 1 24667.07 24667.07 24.67 0.01* 

Variety x Temperature 2 5212.62 2606.31 2.61 0.09ns 

Cooking Method x Temperature 2 8333.14 4166.57 4.17 0.02* 

Variety x Cooking Method x Temperature 4 11255.56 2813.89 2.81 0.04* 

*significant at α ≤0.05, ns = not significant at α ≥0.05. 

ANOVA indicated a lack of significance for variety x temperature and variety x cooking 

method, the source of variation most meaningful to this study.  The lack of significance of 

variety x cooking method shows that variety and cooking method did not have an interactive 

affect on RS levels.  This indicates that the steam bag cooking method did not differ from the 

baking and boiling methods, and may be used to analyze a large number of potato clones for RS 

more efficiently.  The lack of significance for variety x temperature shows that variety and 

temperature did not have an interactive affect on RS.  This indicates that cooked potato samples 

can be used at either service temperature without impacting RS levels.  However, temperature 

was shown to vary across levels of cooking method when factored by variety, as discussed in the 

three-way interaction.  The significance of cooking method x temperature suggests that there was 

an interaction between cooking method and temperature on RS, but may have contributed mostly 

due to temperature since service temperature was highly significant. 
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Results indicated significance for the single effects of variety, cooking method, and 

temperature on RS levels.  There was no significance between replicates.  As expected, the three 

varieties used had varying levels of RS.  Bach et al. (2013) found genotype to be a contributing 

factor to varying starch levels.  Yukon Gold had a significantly higher average RS value (147.6 

mg/g) than Red Norland (125.2 mg/g) and Russet Burbank (104.7 mg/g) (LSD = 21.4).  The 

significance of variety on RS is contradictory to a study performed by Raatz et al. (2016); they 

did not find a difference in RS levels between the varieties Yukon Gold, Red Norland, and 

Russet Burbank.  However, the steam bag method was not incorporated into their study. The 

varieties used by Raatz et al. (2016) were grown at different locations in North Dakota and 

Minnesota in the 2013 growing season, which also could explain the variation in results.  It was 

not clear whether the clones used by Raatz et al. (2016) were grown at the same location or how 

and for how long the potatoes were stored prior to analysis. Although genotype is a contributing 

factor, the effects of temperature, precipitation, and other climatic factors has been shown to 

impact starch production in potato genotypes grown at the same location in different years (Bach 

et al. 2013).   

Significantly higher average RS levels were found in baked (149.0 mg/g) compared to 

steamed (119.8 mg/g) and boiled (108.8 mg/g) (LSD = 21.4); the latter two were not 

significantly different from one another.  This result agreed with that of Raatz et al. (2016), who 

also found that baked potatoes had a higher level of RS than boiled.  Potatoes analyzed with a 

cold service temperature had a significantly higher average RS level (147.2 mg/g) than potatoes 

analyzed at a hot service temperature (104.5 mg/g) (LSD = 17.5), which was expected.  A 

previous study performed by Kinnear et al. (2011) indicated that cooling of potatoes resulted in a 

reduction in GI between 0-50%, depending on the variety.  Starch from potatoes that are cooled 
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after cooking undergo retrogradation and become resistant to enzymatic digestion (Sharma et al. 

2008). 

Yukon Gold was significantly higher in SS and RS than either Red Norland or Russet 

Burbank (Figure 2.1 and Figure 2.2).  Red Norland and Russet Burbank were not significantly 

different for SS and RS.  Higher levels of SS and RS were found for baking, compared to boiling 

and steaming methods.  Raatz et al. (2016) also observed baked potatoes to have higher RS 

content than boiled potatoes; however, Raatz et al. (2016) did not measure the SS content and 

only compared baking and boiling.  The boiling and steaming methods were not significantly 

different from one another for SS and RS.  The hot service temperature had significantly higher 

SS and RS levels than the cold.  Gelatinized starch recrystallizes after cooling into a more solid 

state, which is less susceptible to pancreatic amylase; however, a small fraction of mainly 

retrograded amylose was found to remain even after reheating of potato (Englyst et al. 1992).  

Kingman and Englyst (1994) indicated that cooked potatoes have mostly rapidly digestible starch 

and only a small fraction of unhydrolysed starch after 20 minutes of incubation with pancreatin 

and amyloglucosidase; cooled potatoes had more RS compared to cooked potatoes due to 

recrystallization. Although precautionary measures were performed in order to prevent 

retrogradation during analysis, perhaps retrogradation took place, resulting in starch that was not 

physically accessible for hydrolysis enzymes.  

RS levels were not impacted by variety for the three cooking methods, thus steaming may 

be utilized in studies determining RS.  Steaming, using microwave-safe steam bags, is an 

efficient means to cook a large numbers of tuber samples for starch analysis compared to baking 

and boiling.  Baking potatoes takes about an hour and boiling requires minimally 15-20 minutes 
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at a time.  However, the steam bags take four minutes in the microwave and it is possible to cook 

two samples at once.  

When comparing RS content across variety, cooking method, and service temperature 

(Figure 2.2), RS was significantly higher when a cold service temperature was used with boiled 

samples of Yukon Gold and Red Norland, baked samples of Red Norland, and steamed samples 

of Yukon Gold, Russet Burbank, and Red Norland.  Interestingly, all cooking methods for Red 

Norland contained higher levels of RS when analyzed at a cold service temperature compared to 

a hot service temperature, which was not necessarily the case for the other clones.  Raatz et al. 

(2016) found chilled potatoes to contain more RS than hot potatoes.  The mean RS level across 

all clones for cold samples (147.2 mg/g) was significantly higher than the hot samples (104.5 

mg/g) (LSD = 17.5), agreeing with the results from Raatz et al. (2016).  

The glycemic index of starch-based foods may depend on a variety of factors, including the 

amylose: amylopectin ratio, starch gelatinization, water content, and the temperature at which the 

starch was cooked (Fuentes-Zaragoza et al. 2010).  Variability in amylose content may 

demonstrate most of the variation in glycemic index values of rice, as well as other foods, due to 

the slower digestibility of amylose compared to amylopectin (Brand-Miller et al. 1992).   

A study performed by Kinnear et al. (2011) determined that the effects of cooling on the 

glycemic index of potatoes varied for genotype; however, the glycemic response could not be 

explained by the consumption of amylose, rapidly digestible starch, slowly digestible starch, or 

RS examined in vitro.  Due to the resistant nature of amylose, RS is expected to consist more of 

amylose than amylopectin (Englyst et al. 1992).  On the contrary, a study performed by Soh and 
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Figure 2.2.  Resistant starch levels (mg/g dry weight) for three varieties, three cooking 
methods (baked, boiled, and steamed), and two service temperatures (hot and cold).  SE for 
hot = 9.4; SE for cold = 7.2. LSD = 51.5.  

Brand-Miller (1999) indicated that potatoes have an exceptionally high glycemic index, 

regardless of variety, cooking method, and tuber maturity.  Immature tubers contain a higher 

ratio of amylose and sucrose compared to mature tubers (Jansky and Fajardo 2016).  

Tahvonen et al. (2006) determined that cooking method (boiled or baked), peeling method 

(carbo- or steam- peeled), and processing method (slicing or mashing) did not influence the 

glycemic index; however, cooling and cold storage were found to lower the glycemic index of 

the potato product by nearly 25%.  After cooling, amylose goes through retrogradation, resulting 

in more crystalline starch and an increase in resistance to digestive enzymes (Morris 1990).  GI 

is primarily determined by the level of carbohydrate consumed; however, other dietary factors 

also influence GI, such as lipids, proteins, and fiber (Welch et al. 1987, Bjorck et al. 1994, and 

Foster-Powell and Miller 1995). 
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 Yukon Gold had a significantly higher SS value than Russet Burbank and Red Norland, 

which did not significantly differ.  In previous work, Bach et al. (2013) found genotype, as well 

as environment, to be the most significant factors contributing to variations in starch profiles 

among different genotypes.  It is likely that Yukon Gold has unique genetic features that 

contribute to a higher level of SS.  Research has not previously been performed on the variability 

in SS among potato genotypes.  

Unlike results obtained from Jackson et al. (2013), which concluded that the varieties 

Yukon Gold, Russet Burbank, and Red Norland did not differ in their RS levels, the variety 

Yukon Gold was found to have a significantly higher level of RS than Russet Burbank and Red 

Norland in our study.  Russet Burbank and Red Norland were not found to differ in their RS 

levels.  This difference in significance may be due to a variety of factors, such as growing 

conditions and post harvest storage.  Variation of starch profiles has been shown to differ due to 

environmental effects, especially due to location by year interactions, suggesting that a complex 

effect of temperature and moisture influences the production of starch profiles (Bach et al. 2013).  

Although Jackson et al. (2013) used the same varieties and they were also grown in North 

Dakota, it is possible that the varieties were grown under different environmental conditions or 

impacted by storage temperature and duration, resulting in differing starch profiles from those 

we had discovered.  It is not clear whether Jackson et al. (2013) examined varieties from the 

same growing environment or whether they were examined fresh or after storage. 

 Baked potatoes were shown to have a significantly higher level of SS compared to boiled 

and steamed, which were not different.  Although the average dry weight for steamed potatoes 

(28.7%) was higher than baked (24.1%) and boiled (21.9%), this alone does not explain the 

differences in SS among cooking methods.  Perhaps the temperatures reached for each cooking 
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method had an impact on the enzymatic activity or starch content.  Further research is needed to 

confirm this speculation.  Baked potatoes in our study were also found to contain higher amounts 

of RS.  This result agrees with that of Raatz et al. (2016), which concluded that baked 

preparations of the varieties Red Norland, Yukon Gold, and Russet Burbank contained higher RS 

content than boiled potatoes.  Although differences were detected for each cooking method, it is 

important to note that variety x cooking method was not significant, indicating that for each 

variety, none of the three cooking methods impacted the amount of SS or RS.  Thus, we can 

conclude that the Ziploc® Zip’n Steam bags may provide an efficient means to cook potato 

material in order to rapidly screen a large number of clones. 

Conclusion 

 Although previous studies have examined the affect of baking and boiling potatoes for 

means of RS analysis, limited research has been performed on SS levels in potato.  In order to 

screen a large number of clones for SS and RS, the baking and boiling methods are not ideal due 

to the labor and time demands required. The purpose of this study was to determine whether 

steaming in microwavable steam bags, which takes four minutes for two clones at a time, 

affected the SS and RS levels of tubers, compared to baking and boiling.  Results indicated that 

variety x cooking method was not significantly different, indicating that for each variety, the 

cooking methods did not vary from one another.  Thus, the microwavable steam bags can be 

implemented in research for SS and RS analysis. 
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CHAPTER 3.  EVALUATION OF PARENTAL GENOTYPES AND ADVANCING 

POTATO SELECTIONS FROM THE NDSU POTATO BREEDING PROGRAM FOR 

STARCH ATTRIBUTES 

Abstract 

 Potato starch is unique compared to other sources of starch due to the large granule size 

and texture.  Potato starch is used in various applications, including binding and thickening 

agents, anti-caking mixtures, pastes, pharmaceuticals, and biodegradables.  The North Dakota 

State University (NDSU) potato improvement team has developed clones with high levels of 

starch and associated quality characteristics for French fry and chip processing.  However, 

specific starch profiles of this germplasm have not been explored previously.  A total of 219 

clones were examined from the NDSU potato breeding program from potatoes grown at Baker, 

MN, and Absaraka, ND.  Unique clones were found with varying levels of soluble and resistant 

starch.  These may be further examined for their applicability in utilization and manufacture of 

products. 

Introduction 

 Almost 70% of starch used in the US and Europe is used for industrial applications, 

whereas approximately 30% is used for consumption (Lillford and Morrison 1997).  Although 

the potato contributes mostly carbohydrates to the human diet, other vitamins and nutrients are 

often over looked.  For example, potatoes are high in potassium, with baked (with skin) and 

French-fries containing more potassium per 100g than banana (USDA 2013).  Regardless of the 

additional vitamins and nutrients in the potato, potatoes have been perceived as bad for health, 

due to their relatively high glycemic index (Miller 1994).  The potential for carbohydrates to 

raise blood-glucose levels compared to a reference food, such as pure glucose or white bread, is 
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referred to as the glycemic index (GI) (Jenkins et al. 1981).  Foods with a GI above 70 are 

considered as high GI, whereas foods with a value of 56-69 are considered medium, and foods 

with a GI under 55 are considered low (ISO Standard 26642:2010).  The GI of potatoes ranges 

from 56 to as high as 104, depending upon the genotype (Fernandes et al. 2005, Henry et al. 

2005, Leeman et al. 2005a, Atkinson et al. 2008). 

Amylose and amylopectin are linear and branched molecules, respectively, that make up 

the starch granule.  Amylopectin typically makes up 70-80% of the available starch in the potato 

tuber (Zeeman et al. 2010), with the rest consisting of amylose; however, studies of different 

potato cultivars have indicated that cooked potatoes contain mostly rapidly digestible starch 

(Leeman et al. 2005b), as well as a high GI response (Atkinson et al. 2008).  Starch, which has 

not been hydrolyzed within 120 min after being consumed, is considered indigestible (Fuentes-

Zaragoza et al. 2011).  Three enzymes are responsible for the breakdown of straight-chain 

starches: α-amylase (α- 1,4-glucan glucanohydrolase; EC: 3.2.1.1), β-amylase (α-1,4-glucan 

malto-hydrolase; EC: 3.2.1.2), and α-glucosidase (α-1,4-glucosidase; EC 3.2.1.20) (Zobel et al. 

2009).  Amylopectin is a larger molecule than amylose, resulting in a larger surface area for 

amylolytic attack (Singh et al. 2010).  The tight coiling nature of amylose also provides 

resistance to breakdown (Taiz and Zeiger 2010).  Degradation of these starch chains is important 

in digestion and the rate at which these starch chains are broken down is correlated to the GI of 

the potato (Ek et al. 2012).  A lower rate of digestion of starch will reduce post-prandial blood 

glucose and insulin responses following consumption (Ek et al. 2012).  A feature common 

among low GI foods is that they generally contain a fraction of starch that resists degradation by 

amylases (Fredriksson et al. 2000).  
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When starch granules are heated during the cooking process of potatoes, intra- and inter- 

chain hydrogen bonds present between amylose and amylopectin are hydrolyzed, causing water 

molecules to bind with the hydroxyl groups (Parker and Ring 2001).  This process is called 

gelatinization and is known to disrupt the crystalline structure in the granule.  Gelatinization 

results in an increase in solubility and swelling of the granule, a reflection of the interactive 

strength between starch chains (Sitohy et al. 2000).  The starch can undergo an irreversible phase 

transition after increased heating, where the structural organization and native crystallinity are 

lost (Jenkins and Donald 1998).  

Cooling of starch results in reassociation of starch polymers that retrograde gradually 

(Nugent 2005).  Amylose molecules have been shown to retrograde more quickly than 

amylopectin molecules, which may take minutes to hours (Ring et al. 1987; Sievert and Wursch 

1993).  Linear amylose chain reassociation is inhibited by the presence of amylopectin (Sievert 

and Wursch 1993).  The long chain properties of amylose also may contribute to the restriction 

of chain reassociation (Chung and Liu 2009).  Soluble starch (SS) refers to starch that undergoes 

enzymatic degradation, and is used for energy in the body (Zobel et al. 2009).  Resistant starch 

(RS) is composed of starch degradation products that cannot physically be absorbed by the small 

intestine and pass to the large intestine (Berry 1986).  Starch that is retrograded has been shown 

to be more resistant to digestion (Englyst et al. 1992).  

Textural properties of industrial products that incorporate starch are associated with 

physicochemical and functional properties (Singh et al. 2005). Starches with low levels of 

amylose have a waxy texture and contribute to improved freeze-thaw stability (Zheng and 

Sosulski 1998), which is desired in the food industry.  The undesirable brown color in potato 

chips and fries is a result of the Maillard reaction, which occurs between reducing sugars and 
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free amino acids (Schallenberger et al.  1959). Cold-sweetening resistant potatoes contain higher 

levels of amylose and lower amylopectin levels than varieties susceptible to cold sweetening 

(Barichello et al. 1990).   

The purpose of this study was to determine if clones present within the North Dakota 

State University potato breeding program possessed unique starch properties.  Cultivars have 

been shown to differ in total starch and amylose content (Šimková et al. 2013).  Clones in this 

study were expected to vary in SS and RS levels because genotype was shown to be a significant 

factor contributing to variations in starch profiles (Bach et al. 2013).  

Materials and Methods 

Genotypes 

Two hundred nineteen clones were grown at two locations (Absaraka, ND, and Baker, 

MN) in 2014 on non-irrigated land.  From Baker, 199 clones were investigated, and 43 

genotypes from Absaraka were examined.  Of the genotypes analyzed from Absaraka, 23 of the 

clones were also studied from Baker.  Three check cultivars (Red Norland, Russet Burbank, and 

Yukon Gold) were used for each set of clones analyzed.  Red Norland and Russet Burbank came 

from potato grower fields and Yukon Gold from research plots at Inkster in 2014.  Russet 

Burbank and Yukon Gold were produced with irrigation.  Clones were stored at 3.3° C for 12-16 

months, depending on when the clones were analyzed.  Three replicates were used for each 

clone, including the check varieties. 

Starch Analysis 

 Based on the results obtained from Chapter 2, Ziploc® Zip’n Steam bags were used as a 

cooking method for our study.   Two tubers of each clone were washed, peeled, cut into 
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identically sized pieces (2.5 cm2), placed into a Ziploc® Zip’n Steam bag, and microwaved 

(1200W) for 4 minutes on high (steamed).  Following cooking, cooked tuber tissue was riced and 

mixed. SS and RS was determined using the Megazyme Resistant Starch Assay (K-RSTAR, 

Megazyme International Ireland, Ltd, Co. Wicklow, Ireland) kit.  A modified miniaturization of 

the assay was utilized (Raatz et al. 2016).  Samples of potato were analyzed in triplicate.  Riced 

samples of potato (0.50 g) were weighed into Corning® 15 ml centrifuge tubes and 4 mL of 

pancreatic amylase solution (10 mg/mL) (3U/mL amyloglucosidase)/sodium azide (0.03%)) was 

added into each tube.  Tubes were capped and placed into a continuous shaking water bath at 

37°C at 100 rpm for precisely 16 hrs.  

 Termination of the reaction was performed by adding 4 mL of 95% ethanol to each 

sample tube.  Recovery of RS was performed by centrifugation (2000 x g, 10 min at RT).  The 

supernatant, containing SS, was decanted into 100 ml volumetric flasks.  The RS pellet was 

washed an additional two times with 8 mL of 50% ethanol, centrifuged (2000 x g, 10 min at RT), 

and decanted into 100 ml volumetric flasks.  

 The pellet containing RS was dissolved by adding 2 mL of 2 M KOH, along with 

vigorous stirring, within an ice-water bath, over a magnetic stirrer.  The RS solution was 

neutralized by adding 8 mL of 1.2 M sodium acetate buffer (pH 3.8) and immediately adding 0.1 

mL amyloglucosidase.  The samples were incubated in a water bath at 50°C for 60 min.  The 

contents in the tube were diluted 1:10 using a 100 mL volumetric flask.  Aliquots of each 

solution were centrifuged (1500 x g, 10 min), 40 µL of the supernatant was transferred to 2.0 mL 

microtubes, and was mixed with 1.2 mL glucose oxidase-peroxidase-4-aminoantipyrine reagent 

(Megazyme Resistant Starch Assay, Megazyme International Ireland Ltd, Co. Wicklow, Ireland).  

The microtubes were placed in a water bath at 50°C for 20 min.  The mixtures were transferred 
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to a 96-well plate where the absorbance was read against a reagent blank at 510 nm, utilizing a 

microplate reader (Multiskan FC, Thermo Scientific, Finland).  

 The SS supernatant in the 100 mL volumetric flasks was filled to 100 mL with 100 mM 

sodium acetate buffer and mixed.  A 1:2 dilution of the SS solution, composed of 20 µL of the 

SS solution and 20 µL deionized water, was added to 2.0 mL microtubes, with 4 µL of dilute 

amyloglucosidase (300 U/mL) and 1.2 mL glucose oxidase-peroxidase-4-aminoantipyrine 

reagent (Megazyme Resistant Starch Assay, Megazyme International Ireland Ltd, Co. Wicklow, 

Ireland); samples were placed in a 50°C water bath for 20 minutes.  Samples were then 

transferred to a 96-well plate, where the absorbance was read against a reagent blank at 510 nm, 

utilizing a microplate reader (Multiskan FC, Thermo Scientific, Finland).  Two replicates of each 

sample were tested for moisture content. 

Statistical Analysis 

 Variation among genotypes was determined by analysis of variance (ANOVA) using 

PROC MIXED (SAS Institute 2012).  Genotypes were compared (α ≤ 0.05) using SAS 9.3.  A 

protected mean separation test was conducted using PROC MIXED (SAS Institute 2012).  

Variation among market types was analyzed by analysis of variance (ANOVA) using Tukey’s 

Range Test (SAS Institute 2012).  Market types were compared (α ≤ 0.05) using SAS 9.3. 

Results and Discussion 

Differences in Soluble and Resistant Starch by Location 

Starch profile analysis was performed for 219 clones, grown at Baker, MN, and 

Absaraka, ND, within the NDSU Potato Breeding Program, in order to assess differences in SS 

and RS levels.  Three control varieties were used (Yukon Gold, Russet Burbank, and Red 



	

47 
 

Norland) for the comparative analysis with the 219 genotypes.  A total of 12 genotypes could be 

analyzed at a time with the resistant starch assay kit (K-RSTAR, Megazyme International 

Ireland, Ltd, Co. Wicklow, Ireland), including the three control varieties, over a period of two 

days. 

 Differences in SS and RS among locations are presented in Table 3.1.  Potatoes grown at 

Baker, MN, had significant differences for SS among clones.  However, no significant 

differences were detected between genotypes grown at Baker, MN, for RS.  Potatoes grown at 

Absaraka, ND, showed no significant differences for SS or RS among genotypes.  The difference 

in significance for SS between locations may be explained by environmental factors.  Although 

genotype is a contributing factor, the influence of temperature, precipitation, and other climatic 

factors have been shown to impact rapidly digested, slowly digested, and RS in potato genotypes 

grown at the same location in different years (Bach et al. 2013).  Yearly interactions were not 

measured in our study. However, Baker, MN, and Absaraka, ND, had similar growing 

conditions.  The clones grown in Baker, MN, contributed to a higher degree of freedom than 

Absaraka, ND, which also may have contributed to the difference in significance for SS between 

locations.  

Table 3.1.  Results of the type 3 test of fixed effects from PROC MIXED for soluble and 
resistant starch from potato clones grown at Baker, MN, and Absaraka, ND, in 2014. 

Location Starch Type Source Numa DF Denb DF F Pr > F 
Baker, MN Soluble Genotype 201 44 1.60 0.03* 
 Resistant Genotype 201 44 1.27 0.18ns 

Absaraka, ND Soluble Genotype 45 10 1.77 0.17ns 

 Resistant Genotype 45 10 1.61 0.21ns 

aNum = numerator 
bDen = denominator 
*significant at α≤0.05, ns = not significant at α≥0.05. 
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 Unique clones within the NDSU Potato Breeding program were discovered with 

significantly higher and lower levels of SS (Table 3.2).  ND102687AB-1Russ, ND113256C-2R, 

and Lenape contained the highest amount of SS, at 358.9 mg/g, 350.0 mg/g, and 347.3 mg/g, 

respectively (dry weight basis).  ND113438CB-8R and ND113419CB-1R had the lowest levels 

of SS at 117.9 mg/g, and 134.3 mg/g, respectively, based on dry weight.  ND113517ABC-9 had 

the highest level of RS (152.1 mg/g) and ND102921C-3 had the lowest (40.9 mg/g), although 

they were not found to be significantly different in our model.  Our statistical model indicated 

that clones grown at Absaraka, ND, did not differ in their SS or RS levels. SS and RS levels, as 

well as the percentage of SS and RS discovered, are listed in Tables A.1 and A.2. 

Table 3.2.  Unique potato clones found within NDSU germplasm resources compared to control 
varieties, for soluble and resistant starch, grown at Baker, MN, in 2014. 

  
 

Clone 

Soluble 
Starch 
(mg/g) 

  
 

Clone 

Resistant 
Starch   
(mg/g) 

Highest 5 ND102687AB-1Russ 358.9  a* ND113517ABC-9 

 

152.1 
 ND113256C-2R 350.0 ab ND102822CAB-1 

 

143.1 
 Lenape 347.3 ab ND113163-1 

 

137.5 
 ND113043B-6RY 340.2 b ND102549TB-2Russ 

 

129.4 
 ND102719B-1Russ 

 
338.5 b ND113517ABC-6 

 

127.9 
Lowest 5 ND113487C-1 171.6 d ND113438CB-8R 

 

54.0 
 ND113418CB-2RY 

 

159.4 de ND102990B-3R 

 

49.1 
 Inka Dawn 

 

158.9 de ND113060-1 

 

47.4 
 ND113419CB-1R 

 

134.3 ef ND102903-1R 

 

46.0 
 ND113438CB-8R 117.9 f ND102921C-3 

 

40.9 
Controls Red Norland 230.8 c Red Norland 75.0 

 Russet Burbank 224.6 c Russet Burbank 81.4 
 Yukon Gold 235.6 c Yukon Gold 91.3 
 Mean 246.6  Mean 85.8 
 LSD (α = 0.05) 18.6  LSDa (α = 0.05) 8.9 

*Different letters signify means are significantly different using PROC MIXED (α ≤ 0.05). 
adifferences between clones for resistant starch were not detected, so a protected mean square 
was used.  
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The control varieties, Red Norland, Russet Burbank, and Yukon Gold, were not shown to 

differ significantly in their SS levels.  This result contradicts the study from Chapter 2, in which 

Yukon Gold was found to produce significantly higher amounts of SS, compared to Russet 

Burbank and Red Norland.  This contradiction could be due to the number of clones analyzed in 

this study compared to Chapter 2, since clones were found to contain significantly higher and 

lower levels of starch compared to Red Norland, Russet Burbank, and Yukon Gold.  The control 

varieties showed intermediate SS levels compared to the unique clones that had relatively high  

or low levels of SS (Figure 3.1).  Our results for SS levels in Russet Burbank and Red Norland 

were similar to that seen from Chapter 2; however, Yukon Gold had a higher level of SS in 

Chapter 2 (535.3 mg/g) compared to this study (230.8 mg/g). Tubers used in Chapter 2 were 

examined approximately four months after harvest, where tubers utilized in this study were  

 

Figure 3.1.  Unique clones grown at Baker, MN with highest or lowest levels of soluble starch 
(mg/g) based on dry weight.  Error bars represent ±SE.  LSD for soluble starch (mg/g) = 18.6.1 
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stored 12-16 months, although the same storage conditions were used.  Once sugar formation 

begins during storage of tubers, storage continuation influences the sugar level (Schippers 1976), 

suggesting that the tubers stored for a longer period of time should produce more SS. It is unclear 

why Yukon Gold displayed lower SS content after longer storage duration. 

Stored tubers of Russet Burbank and Yukon Gold have been found to contain 28.8% and 

27.5% amylose, respectively (Fajardo et al. 2013).  Little information is available from other 

studies regarding SS content in potato.  Instead, potato starch has been analyzed in terms of 

rapidly and slowly digested starch (Bach et al. 2013), amylose and amylopectin content (Noda et 

al. 2004; Fajardo et al. 2013), and glycemic elicitation (Ek et al. 2012).  Amylose and 

amylopectin are not considered completely soluble or insoluble, respectively.  However, amylose 

is more difficult to hydrolyze than amylopectin and more enzymes are able to degrade 

amylopectin than amylose, contributing to the variability in digestion rates of these two forms of 

starch (Taiz and Zeiger 2010).  This suggests that there is more amylopectin degraded into SS 

and more amylose present in the RS fraction, although research is needed in order to verify this.  

Our study found similar results to Fajardo et al. (2013) in terms of RS for Yukon Gold (27.9%); 

however, Russet Burbank had slightly lower results, at 24.5% (Table A.1).  Further research is 

required to correctly compare our RS levels to amylose content as reported by Fajardo et al. 

(2013).  Amylose levels of at least 50% are considered nutritionally desirable, due to the high 

fiber content and low glycemic index (Behall and Hallfrisch 2002).  The control varieties showed 

intermediate RS levels compared to the unique clones that had relatively high or low levels of RS 

(Figure 3.2).  Our RS levels were similar to the results reported in Chapter 2 for varieties 

examined while hot.  
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Figure 3.2.  Unique clones grown at Baker, MN, with highest or lowest levels of 
resistant starch (mg/g) based on dry weight.  Error bars represent ±SE.  The 
statistical model used did not find differences in resistant starch between clones.  

Differences in Soluble and Resistant Starch by Market Class 

Various market classes of potato clones were used in this study, including dual-purpose, 

frozen processing, chip processing, specialty, germplasm, fresh, and flake.  The analysis of 

variance for market types analyzed at Baker, MN, and Absaraka, ND, is presented in Table 3.3.  

Significant differences were found for SS and RS among market types grown at both locations.  

Although studies have been performed that examine the starch profiles of various clones, no 

known research has been performed on the starch profiles between specific market types.  Mean 

starch profiles for market classes grown at Baker, MN, and Absaraka, ND, are presented in Table 

3.4.  Frozen and flake market types were not grown at Absaraka, ND.  From Baker, MN, there 

were 14 dual-purpose, 19 frozen processing, 34 specialty, 41 germplasm, 45 fresh, 45 chip 

processing, and one flake market class analyzed.  From Absaraka, ND, eight dual-purpose, 11 

specialty, one germplasm, 11 fresh, and 12 chip processing market genotypes were analyzed.  
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Table 3.3.  Analysis of variance for potato market classes grown at Baker, MN, and Absaraka, 
ND, in 2014. 

Location Starch 

Type 

Source DF SS MS F Pr > F 
Baker, MN Soluble Market 

Type 

6 46954.15 7825.69 2.66 0.02* 
  Error 586 1720962.77 2936.80   
  Corrected 

Total 

592 1767916.92    
 Resistant Market 

Type 

6 69894.34 11649.06 9.57 0.01* 

  Error 590 718364.01 1217.57   

  Corrected 

Total 

596 788258.35    

Absaraka, ND Soluble Market 

Type 

4 50722.59 12680.65 3.95 0.05* 

  Error 124 397832.70 3208.33   

  Corrected 

Total 

128 448555.29    

 Resistant Market 

Type 

4 12099.53 3024.88 5.72 0.01* 

  Error 124 65602.70 529.05   

  Corrected 

Total 

128 77702.23    

*significant at α≤0.05, ns = not significant at α≥0.05. 

 The flake market type was found to have the highest SS level at Baker, MN (323.6 mg/g).  

The chip processing market type had the highest level of RS (104.6 mg/g) and the flake market 

type had the lowest level of RS (53.3 mg/g), among all classes from Baker, MN.  The high and 

low levels of SS and RS, respectively, of the flake market type from Baker, MN, may be 

explained by the low number of clones analyzed for this market class.  

The levels of starch in potato cells, as well as the size and shape of the granules, 

influence the final texture (Linehan and Hughes 1969;  McComber et al. 1994).  Textural 

properties have been associated with physicochemical and functional properties (Singh et al. 

2005).  Research on specific potato market classes and their desired starch profiles is limited.  

Amylose, the mostly resistant form of starch, is undesirable in some applications in the food 

industry (Potze 1976).  Waxy starches, which contain low levels of amylose, have improved 

freeze-thaw stability (Zheng and Sosulski 1998), which is desired in the food industry.  Native 

potato starch is not usually optimal for specific applications.  In order to obtain the properties 

needed for specific end uses, modifications of starch are performed (Zobel 2009). 
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Table 3.4.  Average soluble and resistant starch levels between market classes and growing 
locations. 

 Location 
 Baker, MN Absaraka, ND 

Market Class Soluble (mg/g) Resistant (mg/g) Soluble (mg/g) Resistant (mg/g) 
Dual purpose 266.8b* 74.6bc 212.0a 92.4b 

Frozen 

processing 

260.4b 93.8ab na** na 
Specialty 255.5b 79.9ab 177.5a 99.7ab 

Germplasm 245.1b 84.1ab 200.6a 95.9b 
Fresh 244.6b 78.6ab 195.6a 103.4ab 
Chip 257.8b 104.6a 229.6a 119.0a 
Flake 323.6a 53.3c na na 

* Different letters signify means are significantly different using Tukey’s Range Test (α ≤ 
0.05). 
**The frozen and flake market classes were not analyzed from genotypes grown at Absaraka. 

 Sugar levels in the tuber are an important component affecting the quality of processed 

products, such as chips, French fries, and other fried products.  Sugar levels in potato are affected 

by several factors, including environmental, cultural practices during tuber maturation, storage 

(Kumar et al. 2004), and genotype (Stevenson et al.1964).  The Maillard reaction, which occurs 

between reducing sugars and free amino acids, is responsible for the undesirable brown color in 

fried potato products (Schallenberger et al.  1959). Fructose, glucose, and sucrose concentrations 

present in the native tuber contribute to chip color variation (McCann et al. 2010).  Potatoes that 

are resistant to cold sweetening contained higher levels of amylose and lower amylopectin levels 

and had more intact granules when introduced to α-amylase, than varieties susceptible to cold 

sweetening (Barichello et al. 1990).  According to our results, clones within the chip processing 

market class have a significantly higher level of RS, suggesting that higher levels of amylose 

may contribute to improved chip color and quality.  Potato clones used for frozen products 

posses similar qualities as chip processing market clones, although higher sugar content can be 

tolerated (Smith and Davis 1977). 
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 Starch from potato is preferred by the food industry due to the low level of lipids and 

protein, and thus good paste clarity (Glicksman 1969).  Potato starch dextrins are advantageous 

over other sources of starch for adhesives due to their remoistenability and rheology, resulting in 

a desirable direct tack (Zobel 2009).  The textile industry also produces better products with 

potato starch, due to its film properties (Kerr 1950).  Potato, tapioca, and waxy maize starch have 

desirable traits in oil drilling technology, because of their excellent fluid loss properties (Kraak 

1992).  Potato starch also is preferred as a precoat on filters due to large granule size (Zobel 

2009).   

Conclusion 

 The North Dakota State University (NDSU) potato improvement team has developed 

clones with high levels of starch and associated quality characteristics for French fry and chip 

processing.  However, specific starch profiles of this germplasm have not previously been 

explored.  The objectives of this research were to evaluate parental genotypes and advancing 

potato selections from the NDSU potato breeding program for starch attributes, focusing on the 

genetic diversity, contained within this germplasm collection and to aid in the development of 

novel products.  Results indicated that the germplasm has unique starch profiles that may aid in 

the development of diverse products, such as pharmaceuticals, coatings, textiles, and 

biodegradables.  Clones grown at Baker, MN, displayed significant differences for SS; however, 

no differences were found for RS at this location.  Clones grown at Absaraka, ND, did not vary 

in SS or RS content, possibly due to the lower number of clones analyzed from this location, 

compared to Baker, MN.  Market types analyzed from Baker, MN, and Absaraka, ND, indicated 

significant differences in SS and RS.  Further examination is required for a better understanding 

of the factors impacting starch profiles, such as storage temperature, storage duration, and 
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environment.  Additional research is required to determine the amount of amylose and 

amylopectin that make up the SS and RS fractions.     
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CHAPTER 4.  PHYSICOCHEMICAL ASSESSMENTS OF UNIQUE POTATO 

GENOTYPES 

Abstract 

Starch samples from 12 diverse potato clones, compared to three commercial varieties 

(Red Norland, Russet Burbank, and Yukon Gold), were isolated and their physicochemical 

properties investigated.  These clones were selected based on their unique soluble starch (SS) 

and/or resistant starch (RS) levels.  Six clones were chosen based on their relatively high or low 

levels of SS, and six clones were chosen due to their relatively high or low levels of RS.  The 

research objective was to establish a foundation of fine chemistry research to further explain the 

unique SS and/or RS content that these clones elicit.  Starch granules from the pith (center) and 

near the cortex (outer flesh) of the tubers were examined by Scanning Electron Microscopy.  

Granules ranged in length from 3 µm to 92 µm.  Starch granule length is important for specific 

industrial applications, such as filters, and aids in explaining the digestion of starch.  Pasting 

profiles were examined by rapid visco analyzer (RVA), which showed different pasting profiles 

for clones.  Gelatinization characteristics, studied using differential scanning calorimetry (DSC), 

exhibited different gelatinization parameters.  Isolated starch samples were examined by high 

performance size exclusion chromatography (HPSEC), in order to determine amylopectin and 

amylose molecular weights and abundance.  Amylopectin and amylose percentages ranged from 

77.5% to 83.7% and 16.3% to 22.5%, respectively.  Differences in amylopectin and amylose 

molecular weight also were found.  The results of this study indicated that diverse potato clones 

within the NDSU breeding program possess starch with unique physicochemical characteristics.  

This may provide insight into the development of various products, including bioplastics, 

coatings, textiles, and pharmaceuticals from these or similar genotypes. 
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Introduction 

 Potato starch is unique, compared to starch from cereal grains, due to its large granule 

size, relatively long amylose and amylopectin chain lengths, the phosphate linkages on 

amylopectin, and its ability to form viscous gels upon heating and subsequent cooling 

(Vasanthan et al. 1999).  Although considerable differences have been found between potato 

varieties for their physicochemical properties (Yusuph et al. 2003), environmental factors have 

been shown to contribute to the variation in granule size, amylose content, pasting properties, 

and thermal properties  (Kaur et al. 2007a).  Analysis of physicochemical properties in potato 

starch is influential on the development of products such as biodegradables, water binding 

agents, adhesives, and food items. 

Starch occurs naturally as granules of different sizes, shapes, size variation, and forms 

(Tester et al. 2004).  Degradation of these granules depends on a variety of influences, including 

molecular structure, reaction conditions, and enzyme specificity (Buleon et al. 1998; Yook and 

Robyt 2002).  Examination of the enzyme hydrolysis on starch granule size has been performed 

(Kasemwong et al. 2008; Sushil et al. 2010), and the general conclusion is that smaller granules 

undergo enzymatic hydrolysis more quickly than larger granules due to their higher available 

surface area. Physicochemical properties have been examined for potato starch previously 

(Hoover 2001).  However, physicochemical properties have not been examined for genotypes 

from the NDSU potato breeding program.  The objective of this research was to examine the 

granule size, pasting profile, gelatinization characteristics, and composition of dried starch from 

potato genotypes that were found to have unique starch profiles based on soluble (SS) and 

resistant starch (RS) levels.  The outcome of this study may provide insight for applications of 

potato starch in various industries, including bioplastics, pharmaceuticals, coatings, and textiles.  
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Materials and Methods 

Genotypes 

Fifteen clones, including three commercially acceptable control cultivars (Red Norland, 

Russet Burbank, and Yukon Gold), were chosen for physicochemical evaluation (Table 4.1).  

These clones were selected based on unique SS and RS levels found in Chapter 3, in addition to 

selection based on availability of tuber material.  The clones were grown at Absaraka, ND, 

without irrigation in 2014. Red Norland and Russet Burbank came from potato grower fields, 

and Yukon Gold, from research plots at Inkster, ND, in 2014.  Russet Burbank and Yukon Gold 

were produced with irrigation, while all other genotypes were produced under non-irrigated 

conditions.  

Table 4.1.  Clones selected for physicochemical assessment based on soluble and 
resistant starch levels. 

  
 

Clone 

Soluble 
Starch 
(mg/g) 

  
 

Clone 

Resistant 
Starch   
(mg/g) 

Highest 3 ND102687AB-1Russ 358.9  a* ND113517ABC-9 

 

152.1 
 Lenape 347.3 ab ND102549TB-2Russ 

 

129.4 
 ND113508C-4 337.4 b ND113517ABC-6 

 

127.9 
Lowest 3 ND113487C-1 171.6 d ND113060-1 

 

47.4 
 Inka Dawn 

 

158.9 de ND102903-1R 

 

46.0 
 ND113438CB-8R 117.9 f ND102921C-3 

 

40.9 
Controls Red Norland 230.8 c Red Norland 75.0 

 Russet Burbank 224.6 c Russet Burbank 81.4 
 Yukon Gold 235.6 c Yukon Gold 91.3 
 Mean 246.6  Mean 85.8 
 LSD (α = 0.05) 18.6  LSDa (α = 0.05) 8.9 

*Different letters signify means are significantly different using PROC MIXED (α ≤ 
0.05). 
adifferences between clones for resistant starch were not detected, so a protected mean 
square was used.  
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Starch Granule Morphology 

Raw potatoes were stored at 3.3°C until ready for SEM (Scanning Electron Microscopy) 

evaluation.  Potatoes were cut crosswise with a knife and a cork borer was used to remove plugs 

from two areas near the cortex and near the pith of the potatoes.  Plugs were immediately placed 

into a hole drilled into a brass sample-holder cryostub (JEOL USA, Peabody, Massachusetts, 

USA), which was supplied with Teflon feet in order to isolate it thermally from the SEM stage, 

and allowed to warm at a slower rate.  Plugs of potato were secured in the hole utilizing Tissue-

Tek O.C.T. Compound (Sakura Finetek USA, Inc., Torrance, California). The cryostub 

containing the potato tissue was submerged in liquid nitrogen and after complete freezing of the 

sample the tissue that extended out of the hole above the surface of the cryostub was fractured 

using a razor blade that was previously cooled in liquid nitrogen. Any excess fractured potato 

tissue was removed and discarded. The brass holder was then inserted into the SEM holder, 

where it was positioned onto a stage of a variable-pressure scanning electron microscope (SEM; 

JEOL JSM-6490LV, JEOL USA, Peabody, Massachusetts).  Samples were held in the SEM 

vacuum for 5-10 minutes, in order for the surface moisture/frost to sublimate prior to examining 

the fractured surface.  Images were acquired within a 10 minute window.  Backscattered electron 

images were acquired in a low-vacuum mode at a pressure of 30 Pascals. The images taken were 

used for starch granule size distribution analysis by comparing the reference bar to the granules 

present in the images. 

A Tukey-Kramer test was performed on starch granule length and widths.  However, due 

to the variation in the number of granules analyzed between each scanning electron micrograph, 

multiple honest significant difference (HSD) values were calculated.  Thus, HSD values are not 

presented in the granule size distribution tables.  
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Dried Potato Flour 

 Potatoes were washed, peeled, cut into thin slices, and placed in the freezer overnight.  

Frozen potatoes were then freeze-dried for three days, ground to a fine texture, and used for 

determination of pasting properties, gelatinization characteristics, and molecular weight and 

chain length distribution. 

Pasting Properties 

 Dried potato flour was used for the determination of pasting profile, gelatinization 

properties, and amylose and amylopectin content and molecular weight.  Two replicates were 

performed.  The pasting profile of the dried potato samples were analyzed according to the 

AACC-I approved method 76-21.01 (AAC-I, 2009) with a rapid visco analyzer (RVA). The 

samples (3.5g on a 14% moisture basis) were weighed into a can containing 25% water.  The 

samples and water were mixed vigorously and the can was loaded into the RVA. Peak viscosity, 

hot paste viscosity, breakdown, cold paste viscosity, setback, and peak time were determined. 

Gelatinization Characteristics 

 Starch gelatinization properties were measured with a Perkin-Elmer Differential 

Scanning Calorimeter, DSC-7.  Dried potato flour samples of 3.5 mg were weighed into 

aluminum pans and 8µl of deionized water was added. Sealing of the pans was performed 

hermetically, and pans were stored at room temperature overnight prior to analysis.  The samples 

were heated from 10 to 100°C at 10°C/min. The reference was an empty aluminum pan. Onset 

(To), peak (Tp), enthalpy of gelatinization (ΔH), and end (Tc) were obtained from the curve using 

the data processing software equipped with the DSC instrument (Kim et al. 1997).  
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Starch Molecular Weight  

 Amylose and amylopectin content and molecular weight were examined.  Potato starch 

was isolated from dried potato flour by defatting and precipitating the starch.  Defatting was 

initiated by adding 2.5 mL methanol to 30-40 mg of each sample and heating at 100°C for 30 

minutes, followed by centrifugation for 5 minutes at 2,000 RPM.  Samples were decanted and 

dried in an oven at 55°C. Starch extraction was initiated by adding 2 mL potassium 

hydroxide/urea solution (4.5 mL 1.0 M KOH with 0.5 mL 6.0 M urea), followed by heating for 

15 minutes at 100°C. Starch was precipitated by adding 6 mL 95% ethanol (3 mL at a time) prior 

to centrifugation for 5 minutes at 2,000 RPM and then dried.  Defatted potato samples were 

prepared for high performance size exclusion chromatography (HPSEC) by treating with KOH 

and urea, as described by Grant et al.  (2002) with modifications (Simsek et al. 2012).  

Approximately 30 mg of starch was solubilized by adding 4.5 mL KOH (1.0 M) and 0.5 mL urea 

(6.0 M) and heated for 90 minutes at 100°C. After solubilizing, 1.0 mL aliquots were neutralized 

with 1.0 M HCl. The samples were filtered through a hydrophilic 0.45 µm nylon syringe filter, 

prior to running HPSEC.  Samples were examined using an Agilent 1200 series high 

performance liquid chromatography (HPLC) system (Agilent Technologies, Santa Clara, CA, 

USA), which was supplied with an auto sampler, a refractive index (RI) detector, and a Wyatt 

Dawn Helios-II multi-angle light scattering (MALS) detector. Starch separation was performed 

with an Ultrahydrogel guard column and Ultrahydrogel 1000 and Ultrahydrogel linear size 

exclusion columns (Waters, Milford, MA, USA).  The temperature of the column and detector 

was fixed at 50°C. HPLC-grade water was used for the mobile phase and was pumped at a flow 

rate of 0.4 mL/min with an injection volume of 60 µL. Control and integration were conducted 

with a personal computer (PC) equipped with a ChemStation (HP ChemStation for LC Rev. 
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A.04.01), in order to determine the percent amylose and amylopectin present.  Calculation of 

molecular weights (Mw) for amylose and amylopectin were performed on Astra 6.0.5. data 

processing software (Wyatt Technology Corporation, Santa Barbara, CA, USA).  The RI value 

was defined according to You  et al. (1999).  Data was normalized from Pullulan standards prior 

to baseline corrections and peak alignments. Molar mass calculations were performed using the 

Berry model, with a fit degree of two and a second-order polynomial fit. The Berry model 

utilizes mathematical equations to examine the light scattering intensity and scattering angle 

given off by molecules in light scattering systems (Berry 1966). 

Statistical Analysis 

Significance of granule size morphology was performed using Tukey-Kramer’s test for 

significance using SAS 9.3 (SAS Institute, 2012).  All other analyses were replicated two times 

(n=2).  Analyses of variance (ANOVA p=0.05) mean values and least significant differences 

were determined by Fischer’s least significant difference (LSD) using SAS 9.3 (SAS Institute, 

2012). 

Results and Discussion 

Starch Granule Morphology 

 Starch granule morphology was determined using scanning electron microscopy 

(SEM), and is presented in Table 4.2.  A Tukey-Kramer test was performed on starch granule 

length and widths. Granules were examined from tuber tissue near the pith and cortex of tubers 

to determine whether granules were evenly distributed.  Although the clones used for this study 

expressed unique SS and/or RS levels based on cooked tuber tissue, SEM images were analyzed 

from raw potato.  Heating starch granules in the presence of water breaks down the granule and 
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causes gelatinization (McGee 1984).  Excessive swelling after cooking results in ruptured cells 

and extrusion of gelled starch (Reeve 1967). For these reasons, raw potato was utilized for SEM 

images. 

The length of granules near the cortex ranged from 3.0 µm to 92.0 µm (Table 4.2).  

ND102549TB-2Russ displayed the least variation (13.0-45.0 µm), and ND113508C-4 displayed 

the largest variation (12.0-92.0 µm).  The width of granules near the cortex ranged from 3.0 µm 

to 52 µm (Table 4.2).  ND113438CB-8R had the least variation (16.0-33.0 µm) and 

ND113508C-4 had the largest variation (3.0-52.0 µm).  The length of granules near the pith 

ranged from 4.0 µm to 78.0 µm. ND113438CB-8R and ND102549TB-2Russ had the least 

variation (30.0-54.0 µm and 12.0-36.0 µm, respectively); Yukon Gold had the largest variation 

(6.0-78.0 µm).  The width of granules near the pith ranged from 3.0 µm to 112.0 µm.  

ND113438CB-8R had the least variation (21.0-34.0 µm) and ND102549TB-2Russ had the most 

variation (7.0-112.0 µm).  Genetic variation has previously been demonstrated to influence 

granule morphology (Fajardo et al. 2013).  

Although it has been reported that granule size distribution and length vary between the 

pith and the cortex (Reeve 1967), the mean lengths and widths for all of the clones used in this 

study are similar near the both the cortex and pith (average granule length equaled 24.2 µm and 

24.4 µm for granules near the cortex and pith, respectively; average granule width equaled 17.6 

µm and 17.9 µm for granules near the cortex and pith, respectively).  However, when granule 

length distribution is presented (Table 4.3 and 4.4), we see variation in granule size between the 

pith and cortex.  Reeve (1967) examined the distribution of starch granule lengths in Russet 

Burbank, and found that larger granules, although prevalent near the pith, are less abundant 

compared to the storage parenchyma (between the pith and the cortex).  Our results indicated that 
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Russet Burbank remained consistent in its larger starch granule distribution (or lack thereof) 

(Table 4.3 and 4.4).  Most of the granule sizes for Russet Burbank near the cortex were between 

30 µm and 39 µm, whereas most of the granules near the pith ranged between 20 µm and 29 µm.  

Table 4.2.  Starch granule size distribution for raw potato tissue near the cortex and pith of the 
tuber. 

 Starch granule sizes (µm) 

 Length of cells 
cortex  
(µm) 

 Width of cells 
cortex  
(µm) 

 Length of cells  
pith  
(µm) 

 Width of cells  
pith 
(µm)     

Clone Mean Range  Mean Range  Mean Range  Mean Range 

ND102687AB-1Russ 28.8 12.0-56.0  22.6 7.0-48.0  21.0 11.0-55.0  16.0 10.0-30.0 

Lenape 23.5 4.0-52.0  19.0 4.0-34.0  34.8 7.0-50.0  26.2 7.0-68.0 

ND113508C-4 36.7 12.0-92.0  25.2 3.0-52.0  34.6 12.0-62.0  24.9 11.0-35.0 

ND113487c-1 

 

24.9 12.0-50.0  18.6 9.0-27.0  24.6 9.0-58.0  17.5 7.0-30.0 

Inka Dawn 

 

13.2 3.0-40.0  11.7 3.0-25.0  13.9 4.0-44.0  13.5 5.0-28.0 

ND113438CB-8R 30.9 15.0-53.0  24.5 16.0-33.0  37.9 30.0-54.0  26.4 21.0-34.0 

ND113517ABC-9 

 

20.7 5.0-53.0  13.9 5.0-33.0  22.1 6.0-49.0  15.3 4.0-29.0 

ND102549TB-2Russ 

 

26.5 13.0-45.0  17.1 9.0-33.0  20.7 12.0-36.0  20.4 7.0-112.0 

ND113517ABC-6 

 

34.0 10.0-52.0  22.4 12.0-33.0  22.0 4.0-42.0  17.3 3.0-32.0 

ND113060-1 

 

23.8 5.0-46.0  17.4 6.0-35.0  25.7 7.0-62.0  16.7 7.0-45.0 

ND102903-1R 

 

21.5 6.0-41.0  15.1 4.0-26.0  23.1 8.0-51.0  15.6 5.0-27.0 

ND102921C-3 

 

28.5 8.0-53.0  19.5 9.0-33.0  25.2 12.0-54.0  17.1 8.0-32.0 

Red Norland 23.1 8.0-48.0  17.0 7.0-39.0  25.0 10.0-45.0  16.0 7.0-25.0 

Russet Burbank 26.1 6.0-40.0  17.8 6.0-29.0  20.8 4.0-41.0  15.5 4.0-38.0 

Yukon Gold 22.6 4.0-46.0  17.1 6.0-36.0  25.9 6.0-78.0  20.9 5.0-50.0 

Mean 17.6   17.6   24.4   17.9  
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Table 4.3.  Size distribution of starch granules near the cortex for raw potato tissue of unique 
clones compared to industry standards (Red Norland, Russet Burbank, and Yukon Gold). 

 
 
 

Clone 

Total 
number 
granules 
measured 

% of Total granule sizes 

Length near cortex (µm) 
<10 10-19 20-29 30-39 40-49 50-59 60-69 

ND102687AB-1Russ 17 0 35 35 6 6 18 0 
Lenape 34 26 18 15 26 9 6 0 
ND113508C-4 23 0 22 22 22 13 9 13 
ND113487c-1 17 0 29 47 12 6 6 0 
Inka Dawn 53 30 51 15 2 2 0 0 
ND113438CB-8R 13 0 31 15 38 0 15 0 
ND113517ABC-9 35 11 43 23 23 0 0 0 
ND102549TB-2Russ 34 0 16 63 11 11 0 0 
ND113517ABC-6 25 0 16 20 28 32 4 0 
ND113060-1 52 10 33 29 13 15 0 0 
ND102903-1R 30 7 43 23 23 3 0 0 
ND102921C-3 25 4 12 44 20 16 4 0 
Red Norland 24 4 29 50 4 13 0 0 
Russet Burbank 21 10 24 14 48 5 0 0 
Yukon Gold 33 14 45 24 10 21 0 0 
	

Table 4.4.  Size distribution of starch granules near the pith for raw potato tissue of unique 
clones compared to industry standards (Red Norland, Russet Burbank, and Yukon Gold). 

 
 

Clone 

Total  
number 
granules 
measured 

% of Total granule sizes 

Length near pith (µm) 
<10 10-19 20-29 30-39 40-49 50-59 60-69 

ND102687AB-1Russ 31 0 65 19 6 6 3 0 
Lenape 25 4 20 20 20 16 12 8 
ND113508C-4 14 0 29 14 0 50 0 7 
ND113487c-1 18 6 28 44 17 0 6 0 
Inka Dawn 38 18 45 29 5 3 0 0 
ND113438CB-8R 12 0 0 8 67 17 8 0 
ND113517ABC-9 31 16 23 35 16 10 0 0 
ND102549TB-2Russ 14 0 43 43 14 0 0 0 
ND113517ABC-6 18 6 28 44 17 6 0 0 
ND113060-1 23 4 39 26 13 9 4 4 
ND102903-1R 25 17 21 42 13 0 8 0 
ND102921C-3 21 0 19 52 19 5 5 0 
Red Norland 17 0 35 35 6 24 0 0 
Russet Burbank 20 20 20 30 25 5 0 0 
Yukon Gold 19 10 25 40 10 10 0 5 
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however, this is not consistent with all of our results. For example, only 5% of Lenape’s granules 

near the cortex were at least 50 µm, whereas 20% of granules near the pith were at least 50 µm.  

No current research is available that suggests genotype influences the size distribution of starch 

granules near the pith compared to the cortex.  Granule size distributions have been reported to  

vary by storage temperature (Reeve 1967); however, the unique clones used in this study were all 

stored at the same temperature. 

Scanning micrographs of the commercial cultivars Red Norland, Russet Burbank, and 

Yukon Gold are presented in Figure 4.1.  The lengths, widths, and variation of the granules in 

these cultivars were intermediate compared to the other clones used in this study.  However, 

Yukon Gold expressed the largest variation in granule length near the pith (6.0-78.0 µm), 

although the average granule size near the cortex and the pith was similar to Red Norland and 

Russet Burbank.  Interestingly, most of the granule lengths for Red Norland, Russet Burbank, 

and Yukon Gold were between 20-29 µm, 30-39 µm, and 10-19 µm near the cortex, respectively 

(Table 4.3).  A recent study found starch granules of Russet Burbank to have an average length 

of 36.0 µm and width of 25.1 µm (Fajardo et al. 2013).  Our results indicated a smaller average 

length for Russet Burbank (26.1 µm and 20.8 µm near the cortex and the pith, respectively) and 

width (17.8 µm and 15.5 µm near the cortex and the pith, respectively. 

Granules from Russet Burbank have remained consistent during prolonged storage 

(Johnston et al. 1968).  Previous research on Yukon Gold starch granules reported the average 

length to be 34.5 µm and width to be 24.4 µm (Fajardo et al. 2013).  Our results indicated smaller 

average lengths (22.6 µm and 25.9 µm near the cortex and the pith, respectively) and widths 

(17.2 and 20.9 near the cortex and pith, respectively).  The differences in the average granule 

lengths could be explained by environmental factors, which have been demonstrated to influence  
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Figure 4.1.  Scanning electron micrographs of tuber flesh of Red Norland: pith 
(panel a) and cortex (panel b); Russet Burbank: pith (panel c) and cortex (panel 
d); and Yukon Gold: pith (panel e) and cortex (f).  All panels have a 
magnification of 400X, the bars represent 50 µm. Courtesy of Jayma Moore, 
Electron Microscopy Center, USDA-ARS Northern Crop Science Laboratory, 
North Dakota State University, Fargo, ND. 

starch granule sizes (Kaur et al. 2007a).  Kaur et al. (2007a) grew different genotypes in Gwalior, 

Jalandhar, Modipuram, and Patna, India, and found larger granule sizes from genotypes grown in 

Jalandhar, likely due to lower temperature.  Granule sizes have been shown to decrease with an 

increase in growing season temperature (Cottrell et al. 1995).  Perhaps the lower temperature 

range in ND compared to locations in India resulted in smaller granule sizes.  Results from 
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Fajardo et al. (2013) were analyzed from cultivars grown in WI, whereas our clones were grown 

in ND. WI generally has warmer day and night time temperatures in the primary potato 

production areas than North Dakota production areas.  

 Scanning electron micrographs of clones with unique SS levels are presented in Figure 

4.2.  Clones ND102687AB-1Russ, Lenape, and ND113508C-4 had significantly higher levels of 

SS, whereas ND113487c-1, Inka Dawn, and ND113438CB-8R had significantly low levels of 

SS.  Keeping in mind the magnification differences between images (Figure 4.2), the starch 

granules from the highest SS level clones appear to have a greater distribution of larger size 

starch granules (Figure 4.2a, 4.2b, 4.2c, 4.2d, 4.2e, and 4.2f) compared to starch granules from 

clones with low levels of SS (Figure 4.2g, 4.2h, 4.2i, 4.2j, 4.2k, and 4.2l).  Our size distribution 

data (Table 4.3 and 4.4) agrees that larger sized granules are more prevalent in ND102687AB-

1Russ, Lenape, and ND113508C-4.	

A study performed by Noda et al. (2005) on potato starch indicated that as granule size 

decreased, the hydrolysis rate of raw starch by amylase increased.  This indicates that smaller 

starch granules digest more quickly than larger granules.  Larger starch granules have a smaller 

surface area than smaller granules.  The substrate’s smaller surface area in the larger granules 

decreases the ability for amylase absorption.  The rate of amylase degradation on granules was 

not examined in our study, but may provide insight into the relationship between granule size 

and SS and RS levels found within our clones.  Although larger granule sizes have been 

associated with higher amylose content (Geddes et al. 1965), contradictory studies have found 

little to no differences in amylose content among various sized potato starch granules (Fujita et 

al. 1983, Chen et al. 2003, and Noda et al. 2005). However, it is not clear how the potatoes used  
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Figure 4.2.   Scanning electron micrographs of tuber flesh of ND102687AB-1Russ (panels a and 
b); Lenape (panels c and d), ); ND113508C-4 (panels e and f), ND113487c-1 (panels g and h), 
Inka Dawn (panels i and j), and  ND113438CB-8R (panels k and l).  Panels a, c, e, g, i, and k 
were analyzed near the pith, and panels (b, d, f, h, j, and l were analyzed near the cortex.  Panels 
a, b, k, and l have magnification of 500X,.  Panels c, d, e, f, g, h, i, and j have a magnification of 
400X.  The bars represent 50 µm. Courtesy of Jayma Moore, Electron Microscopy Center, 
USDA-ARS Northern Crop Science Laboratory, North Dakota State University, Fargo, ND. 
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for these studies were grown (irrigated vs. non-irrigated) or stored. Granules from potato are 

smooth-surfaced with oval and irregular shapes, whereas wheat granules are spherical and 

lenticular shaped (Singh et al. 2003).  Potato granules (<110 µm) are larger than wheat (<30 µm), 

corn (<25 µm), and rice (<20 µm) granules (Singh et al. 2003). 

 Scanning electron micrographs for clones with unique RS levels are presented in Figure 

4.3.  Clones ND113517ABC-9, ND102549TB-2Russ, and ND113517ABC-6 displayed high 

levels of RS. Clones ND113060-1, ND102903-1R, and ND102921C-3 expressed low levels of 

RS.  Our statistical design used for RS analysis in Chapter 3 indicated that differences were not 

significant for RS levels between clones.  RS consists of starch degradation products that are 

unable to be absorbed by the small intestine and pass to the large intestine (Berry 1986). There is 

not an obvious granule size difference when comparing the clones with high RS levels (Figure 

4.3a, 4.3b, 4.3c, 4.3d, 4.3e, and 4.3f) compared to clones with low RS (Figure 4.3g, 4.3h, 4.3i, 

4.3j, 4.3k, and 4.3l).  Although our size distribution data (Table 4.3 and 4.4) seems fairly 

consistent between the clones unique for RS, the clones with the lowest levels of RS all 

displayed large granule lengths (>50 µm near the pith), whereas the clones with the highest 

levels of RS did not display any granules larger than 49 µm near the pith.  Reeve (1967) 

examined raw potato starch and discovered that although large granules occur in the pith, they 

are minimal in abundance compared to the cortex of the tuber.  Interestingly, larger granules 

were more abundant near the pith of the tuber than the cortex for clones with unique RS levels.  

We do not believe that this difference in granule size distribution among pith and cortex of the 

potato contribute to the unique RS levels found within these clones because tuber samples used 

for RS analysis in Chapter 3 contained all tuber tissues mixed, and not a specific part of the tuber 

flesh. 
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Figure 4.3 Scanning electron micrographs of tuber flesh of ND113517ABC-9: pith (panel a) and 
cortex (panel b); ND102549TB-2Russ: pith (panel c) and cortex (panel d); ND113517ABC-6: 
pith (panel e) and cortex (panel f); ND113060-1: pith (panel g) and cortex (panel h); ND102903-
1R: pith (panel i) and cortex (panel j); and ND102921C-3: pith (panel k) and cortex (panel l).  
All panels have magnification of 400X, the bars represent 50 µm. Courtesy of Jayma Moore, 
Electron Microscopy Center, USDA-ARS Northern Crop Science Laboratory, North Dakota 
State University, Fargo, ND. 
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There is increasing interest in the use of plant-based material for non-food applications.  

Modified potato starches are produced in order to meet consumer needs and provide durable 

materials (Kraak 1992).  Derivatization of starch is used to adjust viscosity, improve stability, 

clarity, and to adjust dissolving rates and hydrophobicity (Kraak 1992). Arun et al. (2012) 

produced biodegradable starch composites from potato with nanocellulose and ramie textile 

fabric, but the potato starch used was purchased through a chemical manufacturer and did not 

identify specific starch characteristics.  However, Fonseca et al. (2015) evaluated the effect of 

oxidation on potato starch in biodegradable films for physiological, morphological, pasting, 

thermal, and gel parameters.  Results of the study indicated that oxidation did not affect the 

morphology of the granules or gelatinization temperature, but influenced paste characteristics. 

Fonseca et al. (2015) concluded that although films produced with oxidized starch had decreased 

tensile strength compared to native starch films, the oxidized starch films had lower water 

solubility, enabling the use of oxidized starch films in products with higher water activity.  

Potato and casein complexes, in the ratio of 1:1, have been formed into biodegradable polymers 

(Grega et al. 2003); Superior, a fresh market variety, was used in this study. Starch granules from 

Superior average in length from 16.9 µm to 32.2 µm, depending on maturity (Liu et al. 2003).  

Most of the clones used in our study fall into this range of average granule length, depending on 

whether the granules are analyzed near the cortex or the pith.  Thus, our clones may provide 

suitable characteristics for use in biodegradable polymers.  Additionally, potato starch has been 

used in pharmaceutical tablets; attributes include its easy preparation, release rate controllability, 

and possibility to incorporate drugs of high percentages with diverse chemical properties (Te 

Wierik et al. 1997).  Approximately 30% of starch used in Europe and the US is used as native 
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starch for consumption; whereas about 70% is used for industrial purposes (Lillford and 

Morrison 1997). 

Potatoes are popularly produced into a variety of forms including French fries, chips, 

baked, and mashed. Cultivar differences are mainly responsible for the variation in processed 

potato products (Arvanitoyannis et al. 2008). Texture properties of cooked potato, such as 

mealiness, consistency, and sogginess, are highly correlated with starch content (Kirkpatrick et 

al. 1951; Unrau and Nylund 1957).  Barrios et al. (1963) indicated that mealy potatoes had a 

higher proportion of large starch granules (>50 µm in diameter) than waxy cultivars.  The clones 

ND102687AB-1Russ, ND113508C-4, ND113438CB-8R, and Lenape, had over 15% of starch 

granules over 50 µm, depending whether they were analyzed near the pith or the cortex.  Further 

research is needed to correlate starch granule size in these clones with mealiness.  Waxy potato 

starch has good paste clarity and stability and can be used in the food and paper industry.  Waxy 

starches also have improved freeze-thaw stability, an important characteristic for frozen food 

products (Zheng and Sosulski 1998). Tuber starches have larger granules and lower levels of 

protein and lipids than cereals, providing a clearer paste (Jobling 2004).  

Pasting Properties 

The gelatinization behavior of starches from the 12 diverse clones identified in Chapter 3 

was studied using RVA and is reported in Table 4.5.  The clones with the highest levels of SS 

(ND102687AB-1Russ, Lenape, and ND113508C-4) had a significantly higher peak viscosity 

(PV) than the clones with the lowest levels of SS (ND113487C-1, Inka Dawn, and 

ND113438CB-8R). Clones with the greatest level of SS (ND102687AB-1Russ and Lenape) had 

a significantly higher hot paste viscosity (HPV) than the clones that had the lowest levels of SS; 

however, the third highest clone for SS, ND113508C-4, did not differ significantly from the 
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clone that had the third lowest level of SS, ND113487c-1.  The clones with the highest levels of 

RS (ND113517ABC-9, ND102549TB-2Russ, and ND113517ABC-6) had significantly higher 

cold paste viscosity (CPV) and setback (STB) than the clones with the lowest levels of RS 

(ND102921C-3, ND102903-1R, and ND113060-1).  

Table 4.5.  Gelatinization behavior based on Rapid Visco Analyzer (RVA) of starches 
from 12 potato clones with unique soluble or resistant starch levels, compared to 
industry standards (Red Norland, Russet Burbank, and Yukon Gold).  

 RVA* Pasting characteristicsb 

Clone PV* 
(cP**) 

HPV* 
(cP) 

BKD* 

(cP) 
CPV* 
(cP) 

STB* 
(cP) 

PT 
(min) 

ND102687AB-1Russ 5505g*** 3814a 1691j 5417a 1603a 3.8cde 
Lenape 7227b 3840a 3387c 4763c 923.0ef 3.7e 
ND113508C-4 7315ab 2674g 4642a 3486g 812.0fgh 3.3h 
ND113487c-1 

 

4885i 2668g 2217h 3662f 994.5de 3.9bcd 
Inka Dawn 

 

1151k 831.0k 320.0k 1272k 441i 4.7a 
ND113438CB-8R 2028j 1637j 391.5k 2069j 432.5i 4.0b 
ND113517ABC-9 

 

6126d 3131c 2995d 4194d 1063d 3.4gh 
ND102549TB-2Russ 

 

4825i 2855e 1970i 4224d 1369b 3.8de 
ND113517ABC-6 

 

7370a 3694b 3677b 4911b 1218c 3.8cde 
ND113060-1 

 

5740f 3056d 2684f 3886e 830.0fgh 3.9bc 
ND102903-1R 

 

5328h 2582h 2746f 3318h 737.0h 4.0b 
ND102921C-3 

 

5955e 3029d 2926de 3914e 886.0efg 3.3h 
Red Norland 5656f 2781f 2876e 3523g 742.5h 3.5fg 
Russet Burbank 6360c 2763f 3598b 3555fg 792.5gh 3.5f 
Yukon Gold 4796i 2261i 2535g 3089i 828.0fgh 3.3h 
Mean 5351 2774 2577 3686 911.4 3.7 
LSD 99.6 64.01 88.04 122 106.9 0.11 

* RVA = rapid visco analyzer, PV = peak viscosity, HPV = hot paste viscosity, 
BKD = breakdown, CPV = cold paste viscosity, STB = setback, PT = peak time. 
** cP = centipoise 
***Values with different letters are significantly different (α≤ 0.05) using Fischer’s LSD. 

Genotypic differences have been reported in the pasting profile (Leivas et al. 2013). 

Smaller starch granules are correlated with lower PV and BKD values (Noda et al. 2005). More 

than 80% of cortical starch granules for Inka Dawn were under 20 µm.  Inka Dawn had the 



	

78 
 

lowest values for PV (1151 cP) and BKD (320.0 cP).  Likewise, ND113508C-4 displayed the 

highest average length and width for granules near the cortex (36.7 µm and 25.2 µm, 

respectively), and also expressed one of the highest levels for PV (7315 cP) and BKD (4642 cP).  

Our results confirm that starch granule size is correlated with PV and BKD, as reported by Noda 

et al. (2005). 

Kaur et al. (2007b) observed that PV and CPV were lower for potato starches with small 

granules (1-20 µm).  The study also observed that BKD and STB were highest for large granule 

fractions and lowest for small granule fractions.  This agrees with our study, which found Inka 

Dawn to have the lowest mean granule length (13.9 and 13.2 µm for pith and cortex, 

respectively) and also the lowest PV, CPV, BKD.  Our results support the correlation between 

low PV, CPV, BKD, and STB values and small starch granule size reported by Kauer et al. 

(2007b).  Although ND113508C-4, the clone with the highest mean granule length near the 

cortex (36.7 µm) and third highest mean granule length near the pith (34.6 µm), had the highest 

BKD (4642 cP), the clone had the sixth lowest STB value (812 cP).  Perhaps the variability of 

starch granule lengths present in each clone accounted for these differences. Although 

ND113508C-4 contained large starch granule percentages near the pith (57% of the granules 

were at least 40 µm), 76% of the cortex granules were under 30 µm.  The raw potato flour used 

for this study was mixed from whole dried potato, resulting in various shaped granules for each 

clone. This may explain the low value of STB for ND113508C-4. 

Gelatinization Characteristics 

 Starch gelatinization is a process that describes the breakdown of intermolecular bonds of 

starch molecules and disruption of the starch granule structure (Zobel et al. 2009).  Gelatinization 

of starch and the separation of the cell wall are considered two of the main changes that occur in 
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potato tissue during heating.  Starch gelatinization occurs prior to retrogradation, which is a 

process in which gelatinized starch associates into a crystalline order (Atwell et al. 1988). DSC is 

widely used to study starch-water systems and potato tissue and was used in this study.  

Gelatinization characteristics were analyzed for our 12 unique genotypes; gelatinization 

temperatures and enthalpies are presented in Table 4.6.  Significant differences were found for 

all DSC parameters.  All clones, except Red Norland, Russet Burbank, and Yukon Gold, were 

selected at the same growing location and harvest period.  The clones were grown at Absaraka, 

ND, whereas Red Norland, Russet Burbank, and Yukon Gold were grown from various locations 

in 2014.  Geddes et al. (1965) found that small starch granules have a higher gelatinization 

temperature than larger starch granules; however, only the variety Pentland Crown, grown at the 

Scottish Plant Breeding Station in Scotland in 1962, was used for this conclusion.  Inka Dawn, 

which had the lowest mean granule length (13.2 µm and 13.9 µm near the cortex and pith, 

respectively), was the third highest clone for onset temperature for gelatinization, after Lenape 

and ND102687-1Russ.  Although a similar granule size measuring system was used, our results 

contradict those from Geddes et al. (1965), but may be further explained by genotypic 

differences. 

A previous study (Karlsson and Eliasson 2003) found that dry matter content and 

gelatinization temperature varied between the pith and other areas of the tuber.  The dried potato 

flour used in our study was a mixture of ground whole, raw potato.  The percentage of granule 

lengths over 20 µm in Inka Dawn was 19% for the cortex and 37% for the pith. Perhaps this 

variation in granule size among the pith and cortex influenced the gelatinization temperature.   
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Table 4.6.  Gelatinization temperatures and enthalpies, based on starches from 12 
potato clones with unique soluble or resistant starch levels, compared to industry 
standards (Red Norland, Russet Burbank, and Yukon Gold). 

 

* Values with different letters are significantly different (α≤ 0.05) using Fischer’s LSD. 

Karlsson and Eliasson (2003) also found that gelatinization temperature varied by 

genotype. Our results indicate that there is variation between starch granule size between the pith 

and cortex of the tuber and for genotype.  Further examination of the gelatinization temperatures 

between the pith and cortex may aid in understanding the relationship between granule size and 

gelatinization temperature. 

 
 
 

Clone 

Thermal properties 
 

Onset 
(°C) 

 
Peak 
(°C) 

 
Conclusion 

(°C) 

Temperature 
Range 
(°C) 

 
Enthalpy 

(J/g) 
ND102687AB-1Russ 68.5a* 73.3a 79.3a 10.9b 11.3bcd 
Lenape 68.7a 72.3b 77.3b 8.6cd 13.6a 
ND113508C-4 61.0i 66.9f 72.9g 11.9a 12.7abc 
ND113487c-1 

 

66.0de 69.6ef 75.6cde 9.6c 11.4bcd 
Inka Dawn 

 

67.9b 72.8b 78.6a 10.7b 5.39e 
ND113438CB-8R 67.0c 71.4c 79.6a 12.6a 7.3e 
ND113517ABC-9 

 

66.4d 70.0de 74.7ef 8.3d 10.0d 
ND102549TB-2Russ 

 

63.9h 70.5d 76.7bc 12.9a 11.2cd 
ND113517ABC-6 

 

66.2d 70.2d 75.6cde 9.4c 14.9a 
ND113060-1 

 

65.5ef 70.2d 76.2cd 10.7b 13.4ab 
ND102903-1R 

 

64.4g 69.0f 75.3de 10.9b 12.7abc 
ND102921C-3 

 

69.0ef 73.5f 73.5g 8.0d 12.7abc 
Red Norland 67.4bc 71.1c 76.1cd 8.8cd 11.1cd 
Russet Burbank 65.3f 69.1f 73.9fg 8.6cd 10.6cd 
Yukon Gold 67.5b 71.6c 76.2cd 8.7cd 12.7abc 
Mean 66.1 70.5 76.1 10.0 11.4 
LSD 0.5 0.6 1.1 0.9 2.0 
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Starch Molecular Weight 

Isolated potato starches were analyzed by HPSEC after defatting and precipitating the 

starch.  The percentage of amylopectin and amylose, as well as the molecular weights for both 

starch components, are presented in Table 4.7.  Potato starch is generally composed of 20-30% 

amylose, with the rest consisting of amylopectin (Hoover 2001).  Our data agrees with Hoover 

(2001); ND102687AB-1Russ had the highest percentage of amylopectin (83.70%) and Russet 

Burbank had the lowest (77.65%).  Russet Burbank had the highest percentage of amylose 

(22.54%), while ND102687-1Russ had the lowest (16.30%).  ND102903-1R had the highest Mw 

for amylopectin (2.45 × 107) and amylose (6.72 × 106).  ND102921C-3 had the lowest 

amylopectin Mw (1.02 × 107), while ND113517ABC-9 had the lowest amylose Mw  (1.17 × 106).  

Although larger granule sizes have been associated with higher amylose content (Geddes et al. 

1965), contradictory studies have found little to no differences in amylose content among various 

sized potato starch granules (Fujita et al. 1983, Chen et al. 2003, and Noda et al. 2005).  In our 

study, Russet Burbank displayed the highest percentage of amylose (22.54%) among clones.  

Interestingly, 53% of starch granules near the cortex of Russet Burbank were at least 30 µm.  On 

the contrary, 57% of granules near the cortex from ND113508C-4 were at least 30 µm; however, 

ND113508C-4 ranked third lowest in percent amylose, which was significantly lower than 

Russet Burbank.  Our data suggests that granule sizes are not associated with amylose content.  

Fajardo et al. (2013) examined amylose content in 20 cultivars grown at Hancock, WI, and 

indicated that genotype and environment contributed to variation for amylose content.  All of our 

clones, except Red Norland, Russet Burbank, and Yukon Gold, were selected from the same 

growing location and harvest period.  Thus, we believe that the differences in amylose and 

amylopectin percentage and molecular weights are due to genotypic differences.  Although our 
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clones were selected and examined based on the amount of SS and RS present, amylopectin and 

amylose are generally not considered completely soluble or insoluble, respectively. 

Table 4.7.  High performance size exclusion chromatography (HPSEC) parameters 
of starches from 12 potato clones with unique soluble or resistant starch levels, 
compared to industry standards (Red Norland, Russet Burbank, and Yukon Gold). 

 
 

Clone 

 
Amylopectin 

% 

 
Amylose 

% 

 
Amylopectin 

Mw × 107  

 
Amylose 
Mw × 106  

ND102687AB-1Russ 83.70a* 16.30g 1.76e 2.92c 
Lenape 79.77f 20.23b 1.38j 1.80g 
ND113508C-4 81.63b 18.37f 2.10b 2.33d 
ND113487c-1 

 

79.79f 20.21b 1.20l 1.30k 
Inka Dawn 

 

80.36d 19.64d 2.04c 1.54i 
ND113438CB-8R 81.10c 18.90e 1.74f 1.40j 
ND113517ABC-9 

 

79.75f 20.25b 1.35k 1.17n 
ND102549TB-2Russ 

 

81.24c 18.76e 1.07n 1.27l 
ND113517ABC-6 

 

81.26c 18.74e 1.65g 1.09o 
ND113060-1 

 

81.76b 18.24f 1.64h 3.35b 
ND102903-1R 

 

80.40d 19.60d 2.45a 6.72a 
ND102921C-3 

 

80.48d 19.52d 1.02o 1.56h 
Red Norland 80.01e 19.99c 1.17m 2.02e 
Russet Burbank 77.46g 22.54a 1.49i 1.23m 
Yukon Gold 79.65f 20.35b 1.78d 1.89f 
Mean 80.56 19.44 1.59 2.11 
LSD 0.18 0.18 0.02 0.01 

* Values with different letters are significantly different (α ≤ 0.05) using Fischer’s LSD.  
 

Amylopectin generally digests more quickly than amylose due to the higher number of 

reducing ends available for enzymatic degradation; however, the branch points on amylopectin 

are resistant to enzymatic hydrolysis by amylase (Miles et al. 1985).  Thus, we cannot determine 

the levels of amylopectin and amylose present in our SS and RS calculations. 
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Conclusion 

 Starch is an important component for diverse applications, such as food products, 

binding, textiles, films, biodegradables, and pharmaceuticals. Raw potato starch consists of large 

amounts of resistant starch (RS) that is converted to digestible starch after cooking. Foods high 

in rapidly digested starch have a high glycemic index (GI) and elicit high insulin demand 

(Augustin et al. 2002). Amylopectin typically makes up 70-80% of the available starch in the 

potato tuber, with the rest consisting of amylose (Zeeman et al. 2010).  The ratio of amylose and 

amylopectin determines the end use of the potatoes application. Separation of the two starch 

molecules for processing is costly and may lead to a high level of water waste. For this reason, 

applications that require potato starch must be selected based on their starch profile. 

 In this study, 12 potato clones, considered unique for their SS and/or RS content 

presented in Chapter 3, were analyzed for their granule morphology, pasting profile, 

gelatinization characteristics, and starch composition. The commercial cultivars Red Norland, 

Russet Burbank, and Yukon Gold also were examined. All of the clones were selected from the 

same location and harvesting period, except for the commercial cultivars, which were grown 

from various locations in North Dakota in 2014.  Thus, we believe that the variability in starch 

properties is due to genotypic factors.  

Our results concluded that there are unique granule size distributions between the clones. 

Starch granule length is important for specific industrial applications, such as filters, and aids in 

explaining the digestion of starch.  Significant differences were found between clones and 

commercial cultivars for their pasting characteristics for peak viscosity, hot paste viscosity, 

breakdown, cold paste viscosity, setback, and peak time.  Pasting occurs after heat treatment of 

starch and water suspensions, resulting in a highly viscous solution.  Pasting characteristics are 
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important in food and non-food applications, such as films and adhesives.  Differences were 

examined between clones and commercial cultivars for gelatinization temperatures for onset, 

peak, conclusion, and temperature range. Enthalpy differences were also displayed. Starch 

components, such as amylose and amylopectin percentage and molecular weight, varied between 

clones and commercial cultivars.  These results confirm that genotypic differences are present 

within the clones and commercial cultivars used in this study.  Our findings will aid in the 

development of products for diverse industries, and help potato breeders develop clones with 

unique starch profiles for specific end uses.  
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CHAPTER 5.  STARCH PROFILE VARIABILITY BETWEEN GREENHOUSE AND 

FIELD GROWN TUBERS 

Abstract 

 Diverse soluble (SS) and/or resistant starch (RS) levels have been discovered in the North 

Dakota State University (NDSU) potato breeding program germplasm. However, these clones 

only have been analyzed when grown in the field.  The purpose of this study was to determine 

whether clones grown in the greenhouse vary in their SS or RS concentration compared to clones 

grown in the field. Screening tubers of clones grown in the greenhouse versus the field could 

possibly provide a more rapid and efficient assessment.  A total of 48 clones were analyzed 

between the field locations of Baker, MN, Absaraka, ND, and from in the greenhouse.  Results 

indicated that growing environment significantly impacts SS and RS content.  Greenhouse-

grown clones contained significantly reduced levels of SS and RS compared to field grown 

tubers, indicating that there are environmental factors that dramatically impact the starch profiles 

within the clones.  The findings presented in this study suggest that greenhouse-grown tubers 

should not be used to analyze SS or RS content due to the large variation in the starch profile 

compared to field-grown tubers.  

Introduction 

 Chemically, starches are composed of polysaccharides consisting of α-D-glucose 

networked by α-D-(1—4) or α-D-(1—6) linkages.  Amylose, the mostly linear linked glucoses, 

and amylopectin, the highly branched glucoses, make up the starch granule.  Amylopectin is a 

larger molecule than amylose, resulting in a larger surface area for amylolytic attack (Singh et al. 

2010).  The potato typically is compromised of 70-80% amylopectin, with the remainder 

consisting of amylose (Zeeman et al. 2010).  Raw potato starch consists of large amounts of 
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resistant starch (RS) that is converted to digestible starch after cooking.  Foods high in starch 

rapidly digested to glucose have a high glycemic index (GI) and elicit high insulin demand 

(Augustin et al. 2002).  Starch is considered indigestible if it has not been hydrolyzed within 120 

min after being consumed (Fuentes-Zaragoza et al. 2011). 

Research has not been performed previously that compares soluble starch (SS) and RS 

levels of greenhouse-grown potatoes to field-grown potatoes.  The greenhouse offers advantages, 

including more control over environmental factors, and the opportunity to use tubers during 

convenient times of a breeding programs calendar.  The purpose of this research was to 

determine if starch profiles for clones grown in the greenhouse vary from those grown in the 

field.  

Materials and Methods 

Genotypes 

Forty-eight potato clones from the North Dakota State University potato breeding 

program were grown at two locations (Baker, MN and Absaraka, ND) in 2014; 45 from Baker, 

and 11 from Absaraka, were analyzed.  Eight clones were common to the two locations. Tubers 

were harvested from Baker on October 23 and Absaraka on October 10 in 2014.  The 48 

genotypes were also grown in the Agricultural Experiment Station greenhouse in 2016 at North 

Dakota State University (NDSU) in 10-12 inch clay pots (Table 5.1). 
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Table 5.1.  Clones grown at Absaraka, ND, Baker, MN, and in the 
greenhouse. 

Location 
Absaraka, ND Baker, MN Greenhouse 

ND102642C-2 90245.1 90245.1 
ND113207-1R 95043.11 95043.11 
ND113278-3 463-4 463-4 
Dakota Pearl Dakota Jewel Dakota Jewel 
Dakota Ruby Dakota Pearl Dakota Pearl 
Dakota Russet Dakota Ruby Dakota Ruby 
ND102775C-5RR Dakota Russet Dakota Russet 
ND113224C-
3Russ 

Dakota Trailblazer Dakota Trailblazer 
ND7743C-2RS Etb-6-21-3 Etb-6-21-3 
Romanze Etb-6-21-4 Etb-6-21-4 
Russet Norkotah Etb-6-5-5 Etb-6-5-5 

 
Gala Gala 

 
J103-K7 J103-K7 

 
J138-A12 J138-A12 

 
ND060735-4Russ ND060735-4Russ 

 
ND081557c-5P ND081557C-5P 

 
ND081571-3R ND081571-3R 

 
ND081577-1R ND081577-1R 

 
ND092019C-4Russ ND092019C-4Russ 

 
ND102663B-3R ND102642C-2 

 
ND102775C-5RR ND102663B-3R 

 
ND102921C-3 ND102775C-5RR 

 
ND102990B-2R ND102921C-3 

 
ND113060-1 ND102990B-2R 

 
ND113113B-1PSY ND113060-1 

 
ND113224C-3Russ ND113113B1PSY 

 
ND113230C-1 ND113207-1R 

 
ND113289C-1 ND113224C-3Russ 

 
ND113338C-3R ND113230C-1 

 
ND113460c-3PS ND113278-3 

 
ND113461-1RS ND113289C-1 

 
ND113461-2P ND113338C-3R 

 
ND113508C-4 ND113460C-3PS 

 
ND113526CB-1Russ ND113461-1RS 

 
ND113541-1 ND113461-2P 

 
ND4100C-19 ND113508C-4 

 
ND7743C-2RS ND113526CB-1Russ 

 
ND8068-5Russ ND113541-1 

 
ND8331Cb-2 ND4100C-19 

 
ND8527B-94Y ND7743C-2RS 

 
NDJL64BV-1R ND8068-5Russ 

 
Romanze ND8331Cb-2 

 
Russet Norkotah ND8527B-94Y 

 
Shepody NDJL64BV-1R 

 
WND8625-2Russ Romanze 

  
Russet Norkotah 

  
Shepody 

  
WND8625-2Russ 
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Starch Analysis 

Two tubers of each clone from each location were washed, peeled, cut into identically 

sized pieces (2.5 cm2), placed into a Ziploc® Zip’n Steam bag, and microwaved (1200W) for 4 

minutes on high (steamed).  Following cooking, tuber tissue was riced and mixed.  SS and RS 

was determined using the Megazyme Resistant Starch Assay (K-RSTAR, Megazyme 

International Ireland, Ltd, Co. Wicklow, Ireland) kit.  A modified miniaturization of the assay 

was utilized (Raatz et al. 2016).  Samples of potato were analyzed in triplicate.  Riced samples of 

potato (0.50 g) were weighed into Corning® 15 ml centrifuge tubes and 4 mL of pancreatic 

amylase solution (10 mg/mL) (3U/mL amyloglucosidase)/sodium azide (0.03%)) was added into 

each tube.  The tubes were capped and placed into a continuous shaking water bath at 37°C at 

100 rpm for precisely 16 hrs.  

 Adding 4 mL of 95% ethanol to each sample resulted in termination of the reaction.  

Recovery of RS was performed by centrifugation (2000 x g, 10 min at RT).  The supernatant, 

containing SS, was decanted into 100 ml volumetric flasks.  The RS pellet was washed an 

additional two times with 8 mL of 50% ethanol, centrifuged (2000 x g, 10 min at RT), and 

decanted into 100 ml volumetric flasks.  

 Adding 2 mL of 2 M KOH, along with vigorous stirring, within an ice-water bath, over a 

magnetic stirrer, dissolved the pellet containing RS.  The RS solution was neutralized by adding 

8 mL of 1.2 M sodium acetate buffer (pH 3.8) and immediately adding 0.1 mL 

amyloglucosidase.  The samples were incubated in a water bath at 50°C for 60 min.  The 

contents in the tube were diluted 1:10 using a 100 mL volumetric flask.  Aliquots of each 

solution were centrifuged (1500 x g, 10 min), 40 µL of the supernatant was transferred to 2.0 mL 

microtubes, and was mixed with 1.2 mL glucose oxidase-peroxidase-4-aminoantipyrine reagent 
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(Megazyme Resistant Starch Assay, Megazyme International Ireland Ltd, Co. Wicklow, Ireland).  

The microtubes were placed in a water bath at 50°C for 20 min.  The mixtures were transferred 

to a 96-well plate where the absorbance was read against a reagent blank at 510 nm utilizing a 

microplate reader (Multiskan FC, Thermo Scientific, Finland).  

 The SS supernatant in the 100 mL volumetric flasks was filled to 100 mL with 100 mM 

sodium acetate buffer and mixed.  A 1:2 dilution of the SS solution, compromised of 20 µL SS 

solution and 20 µL deionized water, was added to 2.0 mL microtubes, with 4 µL of dilute 

amyloglucosidase (300 U/mL) and 1.2 mL glucose oxidase-peroxidase-4-aminoantipyrine 

reagent (Megazyme Resistant Starch Assay, Megazyme International Ireland Ltd, Co. Wicklow, 

Ireland); samples were placed in a 50°C water bath for 20 minutes.  Samples were then 

transferred to a 96-well plate, where the absorbance was read against a reagent blank at 510 nm 

utilizing a microplate reader (Multiskan FC, Thermo Scientific, Finland).  Two replicates of each 

sample were analyzed for moisture content. 

Statistical Analysis 

 Variation between the field locations and greenhouse clones was analyzed by analysis of 

variance (ANOVA) using GLM (SAS Institute 2012).  Genotypes were compared (α ≤ 0.05) 

using SAS 9.3 (SAS Institute 2012).  A mean separation test was performed for the eight clones 

grown at all locations, using Fischer’s least significant difference (LSD) (α ≤ 0.05) using SAS 

9.3 (SAS Institute 2012). 
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Results and Discussion 

Soluble Starch 

Analysis of variance for SS levels of clones grown in three environments is presented in 

Table 5.2.  SS refers to the fraction of starch that is hydrolyzed by digestive enzymes.  Location 

x clone was significant, indicating that the clones, when grown in another environment, differed 

in their SS levels.  Bach et al. (2013) found genotype, as well as temperature, precipitation, and 

other environmental factors, to impact starch profiles for potato genotypes grown within the 

same location over different years, implying that there is a complex effect of moisture and 

temperature that results in varied starch profiles.  Previously, genotype and growing conditions 

had been reported to influence the composition and physical properties of starch granules 

(Cottrell et al. 1995), suggesting that growing locations and genotypes used in our study 

impacted the starch granule configuration and may have influenced the SS and RS levels.   

Replication within location was not significant, indicating that the starch levels of replicates 

within each growing environment were not significantly different.  Location was significant, 

indicating that significant differences were found for SS levels between the growing 

environments.  Clone was a significant factor, as expected, based on previous research (Bach et 

al. 2013) and our findings in Chapter 3 and 4.  Although our findings in Chapter 3 reported 

significant differences among clones grown at Baker, MN, for SS, our results indicated no 

significant differences among clones grown at Absaraka, ND.  However, sample size for 

Absaraka was small, compared to the number of clones analyzed for Baker. 
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Table 5.2.  Analysis of variance for soluble starch levels for clones grown at 
Baker, MN, Absaraka, ND, and in the greenhouse. 

Source DF SS MS F Pr>F 

Location 2 778326.5 389163.

3 

362.6 0.01* 

Replication(Location) 6 10999.8 1833.3 1.7 0.12ns 

Clone 47 289870.8 6167.5 5.8 0.01* 

Location x Clone 54 322989.7 5981.3 5.6 0.01* 

Error 20

2 

216807.0 1073.3   

Corrected Total 31

1 

1598035.8     

* significant at P≤0.05, ns= not significant at α≥0.05. 
ns = not significant 

Little information is available from other studies regarding SS content in potato.  Instead, 

potato starch has been analyzed in terms of rapidly and slowly digested starch (Bach et al.  

2013), amylose and amylopectin content (Noda et al. 2004), and glycemic elicitation (Ek et al. 

2012).  Amylose and amylopectin are not considered completely soluble or insoluble, 

respectively.  However, amylose is more difficult to hydrolyze than amylopectin, and more 

enzymes are able to degrade amylopectin than amylose, contributing to the variability in 

digestion rates of these two forms of starch (Taiz and Zeiger 2010).  This suggests that there is 

more amylopectin degraded into SS and more amylose present in the RS fraction, although 

research is needed to verify this.  Thus, we may not directly compare our findings to studies that 

compare SS levels via other definitions of starch.  Raatz et al. (2016) found that baked potatoes 

contained higher levels of RS than boiled potatoes for three commercial cultivars, indicating that 

cooking method impacts RS levels.  However, our results from Chapter 2 indicated no significant 

difference in SS or RS levels among the same cultivars used by Raatz et al. (2016) for baking, 

boiling, and steaming with microwavable steam bags. 
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A mean separation test was performed among the eight clones common to out three 

locations using Ficher’s LSD (Table 5.3).  SS and RS levels for all clones listed in Table 5.1 are 

presented in Tables A.3, A.4, and A.5.  Among the clones grown across all three growing 

environments, ND113224C-3Russ had the highest SS level (367.7 mg/g) when grown at 

Absaraka, ND, and ND102775C-5RR had the lowest when grown in the greenhouse (91.6 mg/g) 

(Table 5.3).  For all clones, except ND102775C-5RR, the SS content was highest from Baker, 

MN.  For all clones, except Dakota Ruby and Romanze, SS content was lowest when grown in 

the greenhouse.  

Our data suggests that the growing conditions at Baker, MN, during the 2014 growing 

season, positively impacted SS levels.  However, ND774C-3Russ displayed a significantly 

higher SS level when grown at Absaraka, ND, than any of the clones that were grown at all three 

locations (Table 5.3).  Clones grown in the greenhouse exhibited the lowest levels of SS 

compared to field grown clones.  Research has not been performed previously on the variability 

of SS or RS levels between greenhouse and field grown tubers.  However, environmental factors, 

such as temperature and rainfall, as well as soil attributes, may have contributed to these 

differences in RS.  The tubers in the greenhouse were watered daily, whereas field-grown tubers 

were grown under non-irrigated conditions.  The temperature in the greenhouse was kept 

consistent at 22.2°C (±4°C) during the day and 12.8°C (±4°C) at night, whereas temperatures at 

Baker, MN, ranged from 7.8°C to 24.4°C, and Absaraka, ND, ranged from 7.8°C to 26.7°C 

between June and September 2014.  

Nitrogen fertilization was shown to negatively impact starch content in potatoes (Bártová 

et al. 2011), although only raw tuber tissue was examined, our starch was extracted from cooked 

tuber tissue.  Cooking disrupts starch granules, making amylose and amylopectin susceptible to 
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Table 5.3.  Comparison of soluble and resistant starch levels (based on dry weight) for clones 
grown at Baker, MN, Absaraka, ND, and in the greenhouse. 

 Locationa 

Baker, MN Absaraka, ND Greenhouse 

 
 

Clone 

Soluble 
Starch 
(mg/g) 

Resistant 
Starch 
(mg/g) 

Soluble 
Starch 
(mg/g) 

Resistant 
Starch 
(mg/g) 

Soluble 
Starch 
(mg/g) 

Resistant 
Starch 
(mg/g) 

Dakota Pearl 238.0abcd* 77.4ab 200.5b 99.9ab 171.5a 30.5de 

Dakota Ruby 261.0abc 74.0ab 163.1b 108.1ab 177.5a 24.3ef 

Dakota Russet 273.0ab 90.9a 202.8b 87.2b 171.5a 40.9cd 

Russet Norkotah 231.9abcd 56.7bc 170.9b 117.0ab 132.0b 18.7ef 

Romanze 224.5bcd 41.0c 164.0b 91.1b 183.2a 26.7a 

ND102775C-5RR 220.7cd 94.3a 179.3b 127.8a 91.6c 13.8f 

ND113224C-3Russ 203.6d 61.5bc 367.7a 101.6ab 132.0b 56.0b 

ND7743C-2RS 279.9a 77.2ab 153.8b 94.4b 104.6c 53.9bc 

Mean 241.6 71.6 200.3 103.4 143.1 41.1 

LSD 51.5 29.1 60.4 32.3 21.0 13.7 
*Values with different letters are significantly different (α=0.05) using Fischer’s LSD. 

enzymatic degradation.  Perhaps the soil fertility differences between the field- and greenhouse-

grown potatoes impacted the SS levels and contributed to these differences between growing 

locations.  Bogucka (2014) found that an increase in soil-applied fertilizer resulted in a decrease 

in starch content and a higher proportion of smaller granules (<20µm). Similar results were 

obtained by Westermann et al. (1994), which found increased levels of nitrogen and potassium to 

negatively effect starch concentrations in field-grown Russet Burbank. 

Eppendorfer and Eggum (1992) studied the effect of nitrogen, phosphorus, potassium, 

and sulfur, as well as, three different levels of water, on total starch content in greenhouse-grown 

potatoes.  Results of this study indicated that a deficiency in phosphorus, potassium, or sulfur 

produced tubers with decreased starch content in boiled potatoes. Günel and Karadoğan (1997) 
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studied the effects of irrigation at three growth stages (planting, stolon initiation, and tuber 

bulking after available soil water dropped to 25%, 50%, and 75%).  Results indicated frequent 

irrigation during planting and stolon initiation to positively affect potato starch; however, 

frequent irrigation at the final growth stage had negative effects.  Research plots at Baker and 

Absaraka were supplied with about 90.7 kg of nitrogen prior to planting.  Greenhouse grown 

pots were fertilized at planting using a mixture of slow release and rapid release fertilizer and 

were not fertilized again, despite being watered twice daily. It is possible that soil and watering 

differences resulted in a decrease in total available starch in greenhouse-grown tubers, explaining 

the significant decrease in SS and RS content compared to field-grown tubers. 

 Harvest dates have been shown to influence starch content and granule characteristics 

(Noda et al. 2004).  Tubers harvested at later dates resulted in a significant increase in granule 

size and decrease in amylose content (Noda et al. 2004).  In contrast, Christensen and Madsen 

(1996) observed amylose levels to stay consistent during later tuber development stages.  Liu et 

al. (2003) reported dry matter to increase as the growth time increased.  The tubers grown in the 

greenhouse and field for our study were grown to full maturity. Therefore, environmental 

conditions, such as soil fertility and watering, must have contributed to more variation in SS and 

RS content than tuber maturity.  

Resistant Starch 

Analysis of variance between clones for RS levels grown in three different environments 

is presented in Table 5.4. Multiple studies have shown that RS is compromised of a linear 

molecule of α-1,4-D-glucan, which typically consists of retrograded amylose, and has a  
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Table 5.4.  Analysis of variance for resistant starch (based on dry 
weight) levels between clones grown at Baker, MN, Absaraka, ND, and 
in the greenhouse. 

Source DF SS MS F Pr>F 

Location 2 3748.4 1874.2 7.3 0.01* 

Replication(Location) 6 8745.4 1457.6 5.7 0.01* 

Clone 47 722930.4 15381.5 60.0 0.01* 

Location x Clone 54 794375.5 14710.7 57.4 0.01* 

Error 202 51812.7 256.5   

Corrected Total 311 1590189.9     

* significant at α≤0.05, ns= not significant at α≥0.05. 

molecular weight that is relatively low (1.2 x 105 Da) (Tharanathan 2002).  The significance of 

location x clone suggests that the clones, when grown in different environments, vary in their RS 

levels.  Genotypes grown in heated glasshouse conditions were shown to have higher amylose 

content in raw potato, compared to nonheated glasshouse and field conditions (Cottrell et al. 

1995).  Although amylose content was not directly analyzed in our study and our samples were 

examined after cooking, the clones grown in the greenhouse displayed dramatically lower levels 

of RS, which would contradict the findings of Cottrell et al. (1995).  Research has not been 

previously reported regarding the difference in amylose content in raw versus cooked potato.  

Amylose concentration was shown to decrease for cooked rice compared to raw rice (Jain et al. 

2012).  Perhaps soil conditions between the growing environments influenced RS content.  

Clones analyzed from the field were stored for a longer duration prior to analysis (approximately 

14 months) compared to greenhouse-grown tubers (about 4 months).  A study performed by 

Fajardo et al. (2013) reported that storage duration had little affect on amylose content compared 

to fresh tubers; however, tubers from Fajardo et al. (2013) were only stored for two months prior 
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to analysis.  Further research is required to determine the affect of prolonged storage on RS 

content.  

Replication(Location) was significant, indicating that the replicates within locations were 

significantly different.  This result was unexpected, as replicates were not anticipated to vary.  

Small changes in temperature or time during enzymatic hydrolysis could have contributed to 

these differences. Small changes in temperature have been shown to influence the saccharide 

composition after amylase degradation (Marchal et al. 1998).  However, temperatures and times 

during hydrolysis were kept consistent.  Repeated hydrolysis of samples may help determine the 

amount of RS not detected after our initial hydrolysis.  Pure amylose has been shown to be 

extremely resistant to enzymatic hydrolysis (Rendleman 2000), which is not surprising for starch 

that has undergone retrogradation.  Perhaps the differences between replicates found in our study 

are due to varying levels of retrograded starch, or due to room temperature changes during 

enzymatic hydrolysis.  Location was significant, suggesting that RS levels did varied between 

locations.  Results reported in Chapter 3 indicated that clones grown at Baker, MN, and 

Absaraka, ND, did not vary in RS levels, although significant differences were not compared 

between the locations.  Clone was a significant factor, implying that genotypes differed in their 

RS levels.  Our results from Chapter 3 did not find significant differences between clones grown 

at Baker, MN, or Absaraka, ND, for RS.  However, the sample size for Chapter 3 was much 

larger than this study, and the genotypes used in Chapter 3 were predominantly advanced or 

advancing selections, whereas this study used predominantly cultivars, perhaps intimating 

adaptability and more uniform performance for widely grown commercial cultivars 

The clone ND102775C-5RR had the highest level of RS when grown at Absaraka, ND 

(127.8 mg/g), and surprisingly had the lowest level of RS among all three growing environments 
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when grown in the greenhouse (13.8 mg/g) (Table 5.3).  Although genotypic differences were 

detected, there is evidence in our results indicating that RS content varies among growing 

environments.  There are various influences on starch content, including precipitation and 

temperature (Bach et al. 2013). 

Most clones grown at Absaraka, ND, have higher RS content, compared to clones grown 

at Baker, MN, and in the greenhouse (Figure 5.2).  Amylose content of at least 50% is desired for 

nutritional benefits resulting from high fiber content and a reduced glycemic index (Behall and 

Hallfrisch 2002).  Clones grown in the greenhouse have a significantly lower level of RS, 

indicating that these clones would likely elicit a higher glycemic index compared to clones 

grown at Baker, MN, and Absaraka, ND.  According to Abe et al. (1982), the hydrolysis of 

potato is impacted by the concentration of phosphorus; the higher the phosphorus content, the 

lower the hydrolysis rate.  Hydrolysis action by amylase is prevented by the esterified phosphate 

groups attached to residues of starch (Abe et al. 1982).  It is possible that soil used in the 

greenhouse had an increased level of phosphorus compared to the field locations, or the clones 

had a higher inherent phosphorus level, thus impacting the hydrolysis rates by amylase, 

preventing degradation of the starch granule.  Further examination is needed to determine which 

factors in the greenhouse cause such dramatic decreases in SS and RS content. 

Digestible and RS in raw potato starch have reported to be affected by genotypic and 

environmental factors (Bach et al. 2013).  Raw potato starch consists of large amounts of RS that 

is converted to digestible starch after cooking.  Cooking disrupts starch granules, making 

amylose and amylopectin susceptible to enzymatic degradation.  Little research is available 

regarding differing SS and RS profiles from cooked potatoes among different growing 

environments.  Although studies have compared cooked potato tissue from genotypes, these 
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studies describe starch as amylose and amylopectin content (Noda et al. 2004), and glycemic 

elicitation (Ek et al. 2012), and only describe RS among few genotypes (Raatz et al. 2016).  

More research is required to determine the amount of amylose and amylopectin that was 

converted to SS and RS, in order to more accurately compare our findings with other studies.  

Additional research also is required to provide insight into environmental factors impacting the 

starch profile among potato genotypes, especially greenhouse versus field grown environments.  

These parameters include precipitation differences, temperature, soil components, and tuber 

growth periods.   

Conclusion 

 The objective of this research was to determine whether SS and/or RS levels among 

clones within the North Dakota State University potato breeding program varied between 

greenhouse and field environments.  The microwave steam bag method was employed to cook 

tuber tissue for SS and RS analysis.  Clones grown at Baker, MN (45), and Absaraka, ND (11), 

were compared to 48 greenhouse-grown clones.  Of the clones grown at Absaraka, ND, eight of 

them were also grown at Baker, MN.  Clones that were grown in all three growing environments 

were compared for their SS and RS levels.  Results indicated that there is variability in SS and 

RS levels among clones and locations, suggestion that environmental factors impact the levels of 

SS and RS.  Greenhouse clones had significantly lower levels of SS and RS, most likely due to 

environmental conditions such as watering, temperature, and soil components that varied from 

the field grown clones.  Although other studies have compared starch from baked tuber tissue, 

most studies define starch as a percentage of amylose and amylopectin, or the glycemic index 

that they elicit.  Future research is required to determine the levels of amylose and amylopectin 

that contribute to SS and RS levels.  Further analysis should be performed regarding the effect of 
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environmental factors, tuber maturity, and storage conditions on tubers grown in the field and in 

the greenhouse. 
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CHAPTER 6.  CONCLUSION 

 Our studies show the diverse soluble starch (SS) and resistant starch (RS) content and 

characterizations found in the North Dakota State University (NDSU) potato breeding program 

germplasm.  Some genotypes may provide adequate starch characteristics that can be utilized in 

various industrial applications, such as biodegradables, pharmaceuticals, textiles, and filters.  

Still, the need for further assessment of the environmental and storage factors that influence 

starch profiles among the germplasm should be emphasized.  The development of clones with 

high or low levels of amylose or amylopectin is desired for certain applications.  The 

experimental approach consisted of examining the factors that influence starch content in potato 

(Chapter 1), determining the applicability of a more efficient cooking method, microwave 

steaming, to cook tuber material for starch analysis (Chapter 2), screening clones present in the 

NDSU potato breeding program for unique starch profiles (Chapter 3), examining the unique 

clones found in Chapter 3 for fine chemistry attributes using scanning electron microscopy 

(SEM), rapid visco analyzer (RVA), differential scanning calorimetry (RVA), and high 

performance size exclusion chromatography (HPSEC) (Chapter 4), and determining whether 

clones grown in the greenhouse differed from field-grown clones for SS and RS content (Chapter 

5). 

 In order to provide a more efficient examination of starch content, microwave steaming 

was shown to have no influence on SS and RS.  The microwave steam method was used in the 

remainder of our indicated specific clones present in the NDSU potato breeding program have 

uniquely high, or low, levels of SS or RS.  Distinct starch profiles were also indicated for market 

types, suggesting that the end-use of a genotype depends on the starch profile.   
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Unique clones found within the NDSU germplasm were further analyzed for their starch 

granule morphology, pasting properties, gelatinization characteristics, and starch molecular 

weight and chain length distribution.  These clones displayed varying granule size distributions, 

and exhibited significantly different parameters for fine chemistry characteristics.  Clones with 

unique starch characteristics may provide approproate attributes for specific industrial or 

nutritive product applications. 

 In order to examine a large number of clones for starch properties, efficiency and rapid 

assessment are preferred.  Greenhouse grown clones were compared to field grown clones for 

their SS and RS.  Results indicated that clones grown in the greenhouse contained significantly 

lower levels of SS and RS than field-grown clones, suggesting that environmental conditions 

impact the starch profile.  The duration of storage may have been a factor contributing to the 

altered starch profile, since greenhouse tubers were stored for approximately four months, 

whereas field-grown tubers were stored for 12-16 months prior to analysis.  Research and 

development for starch-based applications should examine clones grown from the field, as most 

applications desire high starch content.  However, for nutritive purposes, a low-starch potato is 

preferred. 

 Environmental conditions, such as soil fertility, rainfall, and temperature and storage 

conditions, such as duration, temperature, and humidity, have been shown to impact the starch 

profile.  Further research is needed to determine the factors that impact the starch profile in 

clones that may provide applicability to food or industrial products.  Unique clones in this study 

may provide insight into breeding and developing potato cultivars for specific starch profiles in 

order to obtain optimum starch characteristics for specific product applications. 
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APPENDIX 

Table A.1.  Soluble, resistant, and percent soluble and resistant starch present within 
clones grown at Baker, MN, in 2014.  
  

 Soluble 
Starch 
(mg/g) 

Soluble 
Starch 

% of total 

Resistant 
Starch 
(mg/g) 

Resistant 
Starch 

% of total 
   

Clone Market Class 
ND102647-3Russ Dual purpose 307.7 75.9 97.7 24.1 
ND1026638-3R Fresh 248.2 68.7 113.3 31.3 
ND102687AB-1Russ Frozen 

processing 
358.9 76.0 113.2 24 

ND102719B-1Russ Frozen 
processing 

338.5 77.4 98.7 22.6 
ND102735CB-4R Fresh 292.4 76.1 91.9 23.9 
ND102775C-5RR Specialty 228.0 65.5 120.0 34.5 
ND102800ABC-1 Germplasm 251.0 70.4 105.6 29.6 
ND102784B-3R Fresh 285.8 70.8 118.1 29.2 
ND102809AB-2 Germplasm 282.5 69.0 127.2 31.1 
ND102814CAB-1 Germplasm 289.8 71.9 113.1 28.1 
ND102822CAB-1 Germplasm 328.8 69.7 143.1 30.3 
ND102857CB-1 Chip processing 237.2 68.9 107.2 31.1 
ND102858CB-2 Chip processing 245.1 72.3 94.1 27.7 
ND113338C-3R Fresh 241.6 66.7 120.6 33.3 
ND102903-1R Fresh 273.2 85.6 46.0 14.4 
ND102908-4R Fresh 190.5 70.0 81.7 30.0 
ND102921C-3 Chip processing 243.9 85.7 40.9 14.4 
ND102990B-2R Fresh 259.7 74.6 88.6 25.4 
ND102990B-3R Fresh 205.8 80.7 49.1 19.3 
ND113060-1 Chip processing 196.3 80.5 47.4 19.5 
ND113065CB-12Russ Dual purpose 232.0 75.1 76.8 24.9 
ND113091B-2RY Specialty 207.4 75.5 67.4 24.5 
ND113207-1R Fresh 257.0 78.5 70.3 21.5 
ND113200B-1RY Specialty 230.0 71.4 92.0 28.6 
ND113100-1Russ Dual purpose 262.9 73.2 96.4 26.8 
ND113174B-2Russ Frozen 

processing 
321.0 74.9 107.4 25.1 

ND113163-1 Chip processing 256.2 65.1 137.5 34.9 
ND113203-2R Fresh 225.5 78.9 60.2 21.1 
ND113070B-1R Fresh 239.0 74.9 80.0 25.1 
ND113089B-2RY Specialty 225.8 76.5 69.5 23.5 
ND113300C-3RSY Specialty 282.9 77.5 82.4 22.6 
ND113289C-1 Chip processing 253.8 69.1 113.4 30.9 
ND113243ABC-2Russ Germplasm 252.9 73.2 92.7 26.8 
ND113174B-1Russ Frozen 

processing 
286.1 73.5 103.3 26.5 
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Table A.1.  Soluble, resistant, and percent soluble and resistant starch present within clones 
grown at Baker, MN, in 2014 (continued).  
   Soluble 

Starch 
(mg/g) 

Soluble 
Starch 

% of total 

Resistant 
Starch 
(mg/g) 

Resistant 
Starch 

% of total 

  
 

Clone Market Class 
ND113256C-2R Fresh 350.0 76.4 108.0 23.6 
ND113266C-3 Chip processing 298.1 77.6 86.2 22.4 
ND113337-4RS Specialty 276.4 73.8 98.1 26.2 
ND113224C-3Russ Frozen processing 242.7 74.3 83.8 25.7 
ND113307C-3 Chip processing 273.9 72.4 104.4 27.6 
793101.3 Germplasm 286.1 71.9 111.6 28.1 
463-4 Germplasm 205.0 75.1 68.1 24.9 
ND102733Cb-1R Fresh 240.4 77.4 70.3 22.6 
ND113335B-4R Fresh 255.2 77.4 74.7 22.6 
ND113338C-1R Fresh 289.6 72.2 111.4 27.8 
ND102721b-1Russ Dual purpose 252.4 77.9 71.5 22.1 
ND113230C-1 Chip processing 235.9 76.0 74.4 24.0 
ND113356B-2PEY Specialty 196.3 73.1 72.2 26.9 
ND113298-2RS Specialty 245.5 74.4 84.7 25.7 
90245.1 Germplasm 303.0 73.6 109.0 26.5 
93057.1 Germplasm 299.0 78.5 82.1 21.6 
All Blue Specialty 256.3 76.3 79.4 23.7 
95043.11 Germplasm 210.2 67.1 102.9 32.9 
Bison Fresh 250.5 74.1 87.4 25.9 
DakChip Chip processing 254.5 76.7 77.4 23.3 
Crystal Chip processing 285.7 74.6 97.4 25.4 
Dakota Crisp Chip processing 216.7 73.1 79.7 26.9 
Dakota Diamond Chip processing 237.5 74.2 82.5 25.8 
Lenape Germplasm 347.3 75.3 114.3 24.8 
Dakota Jewel Fresh 271.6 79.0 72.1 21.0 
Dakota Trailblazer Dual purpose 268.0 80.1 66.6 19.9 
Inka Dawn Specialty 158.9 71.1 64.5 28.9 
Gala Specialty 198.8 70.9 81.7 29.1 
Dakota Pearl Chip processing 259.3 73.3 94.6 26.7 
Dakota Russet Dual purpose 294.4 73.2 108.1 26.9 
Dakota Ruby Fresh 282.3 75.6 91.2 24.4 
Dakota Rose Fresh 252.7 81.5 57.5 18.5 
NorValley Chip processing 279.3 75.3 91.8 24.7 
Norland Fresh 258.0 73.1 95.2 27.0 
Norking Russet Fresh 228.6 75.2 75.3 24.8 
Stirling Chip processing 330.3 73.3 120.4 26.7 
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Table A.1.  Soluble, resistant, and percent soluble and resistant starch present within clones 
grown at Baker, MN, in 2014 (continued).  
   

Soluble 
Starch 
(mg/g) 

Soluble 
Starch 

% of total 

Resistant 
Starch 
(mg/g) 

Resistant 
Starch 

% of total 

  
 

Clone Market Class 
Snowflake Flakes 315.5 82.4 67.4 17.6 
Viking Fresh 233.0 75.9 74.0 24.1 
Shepody Frozen processing 215.8 70.1 92.0 29.9 
Russet Norkotah Fresh 223.8 75.9 70.9 24.1 
Romanze Fresh 216.4 79.7 55.2 20.3 
Ebt5-31-2 Germplasm 253.6 70.8 104.6 29.2 
AND99362B-1Russ Germplasm 194.5 63.8 110.2 36.2 
Etb-6-21-4 Germplasm 187.1 67.5 90.3 32.6 
Etb-5-31-3 Germplasm 178.3 65.7 93.1 34.3 
Etb-5-31-7 Germplasm 207.6 69.3 92.0 30.7 
Etb-6-5-3 Germplasm 234.3 71.9 91.7 28.1 
Etb-6-21-3 Germplasm 294.2 74.4 101.3 25.6 
Etb-6-5-5 Germplasm 255.8 74.6 87.2 25.4 
Etb-6-21-5 Germplasm 233.7 72.3 89.4 27.7 
J101-K6 Germplasm 235.4 73.9 83.3 26.1 
J138-A12 Germplasm 233.1 72.6 88.0 27.4 
J103-K7 Germplasm 283.0 77.2 83.5 22.8 
N142-71 Germplasm 244.4 73.1 90.1 26.9 
ND2861-1 Germplasm 202.2 76.0 63.7 24.0 
ND4100C-19 Germplasm 291.5 74.5 99.9 25.5 
ND4659-5R Fresh 266.3 76.5 81.8 23.5 
ND6956b-13 Germplasm 225.3 75.8 71.8 24.2 
ND7132-1R Fresh 204.7 74.8 68.8 25.2 
ND7743C-2RS Specialty 275.1 76.5 84.6 23.5 
ND7982-1R Fresh 229.6 71.2 92.7 28.8 
ND8068-5Russ Dual purpose 223.2 73.0 82.7 27.0 
ND8291C-2Russ Germplasm 276.9 77.0 82.7 23.0 
ND8304-2 Chip processing 236.0 74.6 80.2 25.4 
ND8331Cb-2 Chip processing 256.1 75.4 83.7 24.6 
ND8527B-94Y Specialty 212.5 70.6 88.5 29.4 
ND039166CB-53R Fresh 225.6 75.4 73.6 24.6 
ND049251B-9Russ Dual purpose 203.1 74.5 69.6 25.5 
ND050060CB-4R Fresh 199.4 72.1 77.3 27.9 
ND059804C-13 Germplasm 299.5 80.8 71.2 19.2 
ND060735-4Russ Dual purpose 262.0 81.5 59.6 18.5 
ND060761B-3Russ Dual purpose 311.8 77.9 88.5 22.1 
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Table A.1.  Soluble, resistant, and percent soluble and resistant starch present within clones 
grown at Baker, MN, in 2014 (continued).  

   Soluble 
Starch 
(mg/g) 

Soluble 
Starch 
% of 
total 

Resistant 
Starch 
(mg/g) 

Resistant 
Starch 

% of total 

  
 

Clone Market Class 
ND081557c-5P Specialty 238.8 78.8 64.4 21.3 
ND081571-2R Fresh 253.5 79.0 67.2 21.0 
ND081571-3R Fresh 270.5 74.0 94.9 26.0 
ND081764B-4Russ Dual purpose 334.4 76.8 100.8 23.2 
ND081577-1R Fresh 268.5 73.7 96.1 26.4 
ND091890-1RR Specialty 222.7 70.5 93.1 29.5 
ND091896ABC-3 Germplasm 307.4 75.5 99.9 24.5 
ND091905ABC-4 Germplasm 263.0 73.8 93.4 26.2 
ND091997BT-3Russ Frozen processing 278.6 77.3 82.0 22.8 
ND092018C-1 Germplasm 255.0 75.5 82.7 24.5 
ND092018C-3 Germplasm 249.9 72.3 95.7 27.7 
ND092019C-4Russ Germplasm 241.5 72.4 92.1 27.6 
ND092150b-5pinto Fresh 265.2 72.6 100.2 27.4 
NDJL78B-1R Fresh 236.6 71.6 94.1 28.5 
NDJL64BV-1R Fresh 285.4 77.6 82.4 22.4 
NDJL21C-1 Germplasm 192.3 71.9 75.1 28.1 
ND092049C-1 Germplasm 286.6 73.6 103.0 26.4 
ND092417-2R Fresh 251.0 72.5 95.1 27.5 
NDJL23C-1 Germplasm 198.3 72.4 75.8 27.6 
ND102573B-3R Fresh 206.7 69.2 92.0 30.8 
ND092355CR-2Russ Frozen processing 180.3 66.1 92.4 33.9 
ND102549TB-2Russ Frozen processing 274.6 68.0 129.4 32.0 
P2-4 Germplasm 291.5 75.8 92.9 24.2 
P2-5 Germplasm 252.8 68.3 117.2 31.7 
Q115-6 Germplasm 313.2 72.7 117.4 27.3 
WND8624-2Russ Dual purpose 239.9 73.2 87.8 26.8 
WND8625-2Russ Dual purpose 256.8 75.7 82.5 24.3 
ND113027c-5 Chip processing 270.1 76.6 82.7 23.5 
ND113030c-1 Chip processing 334.0 78.9 89.6 21.2 
ND113032-1RY Specialty 264.7 73.3 96.6 26.7 
ND113032-5RSY Specialty 330.7 73.7 118.0 26.3 
ND113033b-1R Fresh 243.5 74.0 85.6 26.0 
ND113035b-1 Chip processing 287.9 75.7 92.3 24.3 
ND113043B-6RY Specialty 340.2 76.3 105.6 23.7 
ND113043B-8RY Specialty 209.8 71.6 83.1 28.4 
ND113054b-3Y Specialty 337.5 78.3 93.8 21.8 
ND113085B-1Y Specialty 253.0 75.6 81.8 24.4 
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Table A.1.  Soluble, resistant, and percent soluble and resistant starch present within clones 
grown at Baker, MN, in 2014 (continued).  

   Soluble 
Starch 
(mg/g) 

Soluble 
Starch 
% of 
total 

Resistant 
Starch 
(mg/g) 

Resistant 
Starch 

% of total 

  
 

Clone Market Class 
ND113113B-1PSY Specialty 279.9 79.2 73.7 20.9 
ND113355B-4Russ Frozen processing 234.1 71.2 94.5 28.8 
ND113361c-2 Chip processing 204.4 73.1 75.3 26.9 
ND113361c-4 Chip processing 259.5 76.4 80.0 23.6 
ND113364B-3 Chip processing 230.3 76.9 69.1 23.1 
ND113370CAB-1 Chip processing 211.1 77.2 62.3 22.8 
ND113372CAB-5 Chip processing 257.9 77.4 75.5 22.7 
ND113374CAb-4 Chip processing 227.3 79.3 59.4 20.7 
ND113380AB-7Russ Frozen processing 195.8 70.5 81.9 29.5 
ND113387Ab-1y Specialty 220.1 74.3 76.0 25.7 
ND113386Ab-5 Chip processing 213.9 73.4 77.7 26.7 
ND113397c-1 Chip processing 252.8 75.9 80.2 24.1 
ND113398CB-1 Chip processing 193.0 68.6 88.4 31.4 
ND113406B-3Russ Frozen processing 232.8 74.4 80.3 25.7 
ND113409b-2Russ Frozen processing 272.9 71.6 108.1 28.4 
ND113418CB-2RY Specialty 159.4 70.3 67.5 29.8 
ND113419CB-1R Fresh 244.4 74.2 85.0 25.8 
ND113421CB-1R Fresh 134.3 69.2 59.6 30.8 
ND113429CB-2RY Specialty 194.9 70.5 81.8 29.6 
ND113438CB-1R Fresh 246.8 76.4 76.4 23.6 
ND113438CB-8R Fresh 117.9 68.6 54.0 31.4 
ND113460c-3PS Specialty 291.6 75.7 93.5 24.3 
ND113461-1RS Specialty 251.8 73.0 93.4 27.1 
ND113461-2P Specialty 256.6 73.4 93.0 26.6 
ND113461-3R Fresh 272.2 74.0 95.7 26.0 
ND113461-5RCS Specialty 307.9 75.2 101.6 24.8 
ND113461-6P Specialty 259.4 73.1 95.7 27.0 
ND113461-8PCS Specialty 221.8 73.0 82.0 27.0 
ND113461-10RCS Specialty 323.5 77.9 91.6 22.1 
ND113470C-6 Chip processing 277.7 72.4 106.1 27.7 
ND113470C-4 Chip processing 269.4 72.3 103.1 27.7 
ND113477C-2Russ Frozen processing 276.4 74.7 93.9 25.4 
ND113484B-5R Fresh 228.3 73.9 80.7 26.1 
ND113484B-7R Fresh 222.2 74.9 74.3 25.1 
ND113486C-5 Chip processing 299.6 76.6 91.5 23.4 
ND113487c-1 Chip processing 171.6 69.2 76.3 30.8 
ND113491C-8 Germplasm 238.0 72.0 92.6 28.0 
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Table A.1.  Soluble, resistant, and percent soluble and resistant starch present within clones 
grown at Baker, MN, in 2014 (continued).  

   Soluble 
Starch 
(mg/g) 

Soluble 
Starch 

% of total 

Resistant 
Starch 
(mg/g) 

Resistant 
Starch 

% of total 

  
 

Clone Market Class 
ND113497B-1Russ Dual purpose 177.4 72.4 67.7 27.6 
ND113485C-3Russ Frozen processing 248.0 76.3 77.2 23.7 
ND113502AB-2Russ Frozen processing 273.9 76.2 85.6 23.8 
ND113503AB-3Russ Frozen processing 275.3 71.7 108.9 28.3 
ND113508C-4 Chip processing 337.4 73.4 122.5 26.6 
ND113512ABC-4 Chip processing 199.3 72.2 76.8 27.8 
ND113509C-2 Chip processing 242.8 76.7 73.9 23.3 
ND113515ABC-6 Chip processing 327.9 73.8 116.2 26.2 
ND113517ABC-4 Chip processing 299.0 70.1 127.7 29.9 
ND113517ABC-6 Chip processing 285.8 69.1 127.9 30.9 
ND113517ABC-9 Chip processing 284.5 65.2 152.1 34.8 
ND113519ABC-5 Chip processing 294.3 71.4 118.0 28.6 
ND113526CB-1Russ Frozen processing 224.2 73.1 82.5 26.9 
ND113526CB-8Russ Frozen processing 242.8 68.6 110.9 31.4 
ND113529CB-2 Chip processing 222.6 74.8 74.9 25.2 
ND113533ABC-2 Chip processing 218.1 71.0 88.9 29.0 
ND113541-1 Chip processing 221.2 75.4 72.3 24.6 
NDD3375-112Y Specialty 230.5 77.7 66.0 22.3 
NDD3375-115Y Specialty 200.3 67.3 97.4 32.7 
Red Norland Fresh 224.6 73.4 81.4 26.6 
Russet Burbank Dual purpose 

Fresh 
230.8 75.5 75.0 24.5 

Yukon Gold Specialty 
 

235.6 72.1 91.3 27.9 
 Mean 246.6 74.0 

 
85.8 26.1 

2
6.1 

2
6.1 

 

 LSD (α=0.05) 18.6 na na na 
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Table A.2.  Soluble, resistant, and percent soluble and resistant starch present within clones 
grown in Absaraka, ND, in 2014.  

 
 
 

Clone Market Class 

Soluble 
Starch 
(mg/g) 

Soluble 
Starch 

% of total 

Resistant 
Starch 
(mg/g) 

Resistant 
Starch 

% of total 

ND102631AB-1 Chip processing 200.6 57.2 150.1 42.8 
ND102642C-2 Chip processing 192.1 59.6 130.4 40.4 
ND1026638-3R Fresh 185.0 62.2 112.6 37.9 
ND102775C-5RR Specialty 187.2 55.4 150.6 44.6 
ND102800ABC-1 Chip processing 288.6 64.3 160.3 35.7 
ND102809AB-2 Chip processing 207.2 61.5 129.8 38.5 
ND102858CB-4 Chip processing 215.3 63.4 124.4 36.6 
ND102879C-1Russ Dual purpose 219.8 69.6 96.2 30.5 
ND102903-1R Fresh 207.3 64.6 113.5 35.4 
ND102908-2RR Specialty 205.7 65.3 109.2 34.7 
ND113192AB-1Russ Dual purpose 233.3 67.6 111.6 32.4 
ND102922C-3 Chip processing 190.0 63.5 109.0 36.5 
ND102908-4R Fresh 213.3 67.0 105.2 33.0 
ND113096-1Russ Dual purpose 241.9 67.4 117.0 32.6 
ND113091B-2RY Specialty 168.2 59.6 113.9 40.4 
ND113065CB-1Russ Dual purpose 152.6 64.2 85.2 35.8 
ND113300C-3RSY Specialty 196.0 66.8 97.3 33.2 
ND113277-2 Chip processing 165.2 58.9 115.3 41.1 
ND113256C-2R Fresh 142.4 63.2 82.9 36.8 
ND113224C-3Russ Dual purpose 311.7 75.4 101.8 24.6 
ND113286B-6 Chip processing 224.1 69.6 98.1 30.5 
ND113207-1R Fresh 291.0 73.0 107.5 27.0 
ND113298-2RS Specialty 210.0 65.8 109.0 34.2 
ND113281B-2 Chip processing 214.2 65.6 112.3 34.4 
ND113278-3 Chip processing 245.8 67.9 116.5 32.2 
ND102597-3R Fresh 184.3 65.9 95.2 34.1 
ND113330-1Russ Dual purpose 193.0 69.1 86.3 30.9 
ND113337-4RS Specialty 165.3 60.8 106.5 39.2 
ND113356B-2PEY Specialty 188.2 65.6 98.8 34.4 
ND102745C-5R Fresh 169.1 63.7 96.6 36.4 
ND113338C-1R Fresh 219.3 58.7 154.5 41.3 
Inka Dawn Specialty 136.1 68.1 63.7 31.9 
Dakota Pearl Chip processing 210.9 68.1 99.0 32.0 
Dakota Ruby Fresh 173.4 61.8 107.2 38.2 
ND092150b-5pinto Specialty 201.7 65.1 108.3 34.9 
AH66-4 Dual purpose 200.7 71.4 80.4 28.6 
ND7779c-1 Chip processing 257.2 62.9 151.8 37.1 
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Table A.2.  Soluble, resistant, and percent soluble and resistant starch present within 
clones grown in Absaraka, ND, in 2014 (continued).  

   Soluble 
Starch 
(mg/g) 

Soluble 
Starch 

% of total 

Resistant 
Starch 
(mg/g) 

Resistant 
Starch 

% of total 
  

Clone Market Class 
NDJL19c-1 Germplasm 228.5 71.8 89.9 28.2 
ATND99331-2PintoY Specialty 154.2 66.0 79.5 34.0 
Russet Norkotah Fresh 198.9 64.2 111.0 35.8 
Romanze Fresh 191.9 69.3 85.1 30.7 
ND7743C-2RS Specialty 181.8 67.3 88.4 32.7 
Dakota Russet Dual purpose 230.8 74.0 81.2 26.0 
Russet Burbank Fresh 227.6 68.3 105.7 31.7 
Red Norland Fresh 192.5 62.6 115.0 37.4 
Yukon Gold Fresh 220.5 64.9 119.3 35.1 
 Mean 205.1 65.4 108.3 34.6 
 LSD (α=0.05) na na na na 
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Table A.3.  Soluble, resistant, and percent soluble and resistant starch present within 
clones grown at Absaraka, ND, in 2014. 

Clone 

Soluble 
Starch 
(mg/g) 

Soluble 
Starch  

% of Total 

Resistant 
Starch 
(mg/g) 

Resistant 
Starch 

% of Total 
ND102642C-2 184.2 63.1 107.6 36.9 
ND113207-1R 347.0 76.4 107.3 23.6 
ND113278-3 301.8 72.2 116.2 27.8 
Dakota Pearl 200.5 66.7 99.9 33.3 
Dakota Ruby 163.1 60.1 108.1 39.9 
Dakota Russet 202.8 69.9 87.2 30.1 
ND102775C-5RR 179.3 58.4 127.8 41.6 
ND113224C-3Russ 367.7 78.4 101.6 21.6 
ND7743C-2RS 153.8 62.0 94.4 38.0 
Romanze 164.0 64.3 91.1 35.7 
Russet Norkotah 170.9 59.4 117.0 40.6 

Mean 220.8 66.5 110.7 33.6 
LSD (α=0.05) 66.9 na 28.0 na 
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Table A.4.  Soluble, resistant, and percent soluble and resistant starch present within 
clones grown at Baker, MN, in 2014. 

Clone 

Soluble 
Starch 
(mg/g) 

Soluble 
Starch  

% of Total 

Resistant 
Starch 
(mg/g) 

Resistant 
Starch  

% of Total 
90245.1 309.3 73.5 111.4 26.5 
95043.11 216.4 67.3 105.3 32.7 
463-4 224.8 76.6 68.5 23.4 
Dakota Jewel 250.3 82.0 54.9 18.0 
Dakota Pearl 238.0 75.5 77.4 24.5 
Dakota Ruby 261.0 77.9 74.0 22.1 
Dakota Russet 273.0 75.0 90.9 25.0 
Dakota Trailblazer 246.7 83.3 49.4 16.7 
Etb-6-21-3 288.0 77.8 82.2 22.2 
Etb-6-21-4 180.9 71.8 71.2 28.2 
Etb-6-5-5 249.6 78.6 68.1 21.4 
Gala 177.4 73.3 64.5 26.7 
J103-K7 269.1 81.3 62.0 18.7 
J138-A12 219.2 76.7 66.5 23.3 
ND060735-4Russ 305.1 91.0 30.0 9.0 
ND081557c-5P 281.9 89.0 34.8 11.0 
ND081571-3R 313.6 82.8 65.2 17.2 
ND081577-1R 240.4 76.7 73.2 23.3 
ND092019C-4Russ 213.4 75.5 69.2 24.5 
ND102663B-3R 240.9 73.3 87.6 26.7 
ND102775C-5RR 220.7 70.1 94.3 29.9 
ND102921C-3 227.3 63.4 131.4 36.6 
ND102990B-2R 243.1 57.6 179.1 42.4 
ND113060-1 179.6 56.6 138.0 43.4 
ND113113B-1PSY 292.8 83.6 57.5 16.4 
ND113224C-3Russ 203.6 76.8 61.5 23.2 
ND113230C-1 255.8 77.4 74.9 22.6 
ND113289C-1 214.8 70.2 91.1 29.8 
ND113338C-3R 215.9 54.9 177.5 45.1 
ND113460c-3PS 319.0 79.1 84.2 20.9 
ND113461-1RS 279.2 76.9 84.1 23.1 
ND113461-2P 284.0 77.2 83.7 22.8 
ND113508C-4 335.1 66.6 168.1 33.4 
ND113526CB-1Russ 223.8 62.3 135.4 37.7 
ND113541-1 220.8 63.8 125.3 36.2 
ND4100C-19 277.5 78.0 78.4 22.0 
ND7743C-2RS 279.9 78.4 77.2 21.6 
ND8068-5Russ 228.0 75.2 75.2 24.8 
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Table A.4.  Soluble, resistant, and percent soluble and resistant starch 
present within clones grown at Baker, MN, in 2014 (continued). 

  Soluble 
Starch 
(mg/g) 

Soluble 
Starch 
(mg/g) 

Soluble 
Starch 
(mg/g) 

Soluble 
Starch 

% of Total 

Soluble 
Starch 

% of Total 

Soluble 
Starch 

% of Total 

Resistant 
Starch 
(mg/g) 

Resistant 
Starch 
(mg/g) 

Resistant 
Starch 
(mg/g) 

Resistant 
Starch 

% of Total 

Resistant 
Starch 

% of Total 

Resistant 
Starch 

% of Total 

 
Clone 

ND8331Cb-2 260.8 77.4 76.3 22.6 
ND8527B-94Y 217.3 72.8 81.1 27.2 
NDJL64BV-1R 257.1 81.0 60.4 19.0 
Romanze 224.5 84.6 41.0 15.4 
Russet Norkotah 231.9 80.3 56.7 19.7 
Shepody 224.0 74.2 77.8 25.8 
WND8625-2Russ 248.4 75.5 80.5 24.5 

Mean 247.3 75.0 86.2 25.1 
LSD (α=0.05) 67.4 na 28.3 na 
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Table A.5.  Soluble, resistant, and percent soluble and resistant starch present 
within clones grown in the greenhouse. 

Clone 

Soluble 
Starch 
(mg/g) 

Soluble 
Starch 

% of Total 

Resistant 
Starch 
(mg/g) 

Resistant 
Starch 

% of Total 
90245.1 136.1 89.0 16.8 11.0 
95043.11 110.9 90.1 12.2 9.9 
463-4 118.8 85.5 20.2 14.5 
Dakota Jewel 99.3 91.4 9.4 8.6 
Dakota Pearl 171.5 84.9 30.5 15.1 
Dakota Ruby 177.5 88.0 24.3 12.0 
Dakota Russet 171.5 80.7 40.9 19.3 
Dakota Trailblazer 188.5 81.5 42.7 18.5 
Etb-6-21-3 153.9 38.8 242.6 61.2 
Etb-6-21-4 85.3 37.5 142.1 62.5 
Etb-6-5-5 171.1 40.3 253.5 59.7 
Gala 126.0 90.4 13.4 9.6 
J103-K7 216.4 44.5 270.1 55.5 
J138-A12 184.5 44.8 227.0 55.2 
ND060735-4Russ 186.6 42.2 255.8 57.8 
ND081557C-5P 134.2 88.8 16.9 11.2 
ND081571-3R 149.1 84.5 27.3 15.5 
ND081577-1R 81.1 82.2 17.6 17.8 
ND092019C-4Russ 173.1 82.8 36.0 17.2 
ND102642C-2 158.2 42.6 212.9 57.4 
ND102663B-3R 75.8 91.0 7.5 9.0 
ND102775C-5RR 91.6 86.9 13.8 13.1 
ND102921C-3 153.8 83.4 30.6 16.6 
ND102990B-2R 120.4 74.7 40.7 25.3 
ND113060-1 182.2 76.1 57.3 23.9 
ND113113B1PSY 90.6 40.0 136.1 60.0 
ND113207-1R 129.1 38.2 208.7 61.8 
ND113224C-3Russ 132.0 70.2 56.0 29.8 
ND113230C-1 203.4 41.2 290.8 58.8 
ND113278-3 191.0 40.8 277.5 59.2 
ND113289C-1 153.5 41.8 214.0 58.2 
ND113338C-3R 209.2 48.8 219.7 51.2 
ND113460C-3PS 130.0 90.9 13.0 9.1 
ND113461-1RS 88.2 90.5 9.2 9.5 
ND113461-2P 75.9 88.5 9.9 11.5 
ND113508C-4 257.3 73.5 92.8 26.5 
ND113526CB-1Russ 159.2 91.2 15.4 8.8 
ND113541-1 115.0 72.0 44.7 28.0 
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Table A.5.  Soluble, resistant, and percent soluble and resistant starch 
present within clones grown in the greenhouse (continued). 

  Soluble 
Starch 
(mg/g) 

Soluble 
Starch 

% of Total 

Resistant 
Starch 
(mg/g) 

Resistant 
Starch 

% of Total 
 

Clone 
ND4100C-19 119.4 41.6 167.6 58.4 
ND7743C-2RS 104.6 66.0 53.9 34.0 
ND8068-5Russ 127.4 88.2 17.1 11.8 
ND8331Cb-2 178.9 77.2 52.9 22.8 
ND8527B-94Y 196.0 39.5 300.5 60.5 
NDJL64BV-1R 112.4 63.7 64.2 36.3 
Romanze 183.2 87.3 26.7 12.7 
Russet Norkotah 132.0 87.6 18.7 12.4 
Shepody 116.7 89.3 14.0 10.7 
WND8625-2Russ 149.7 83.9 28.7 16.1 
Mean 145.9 70.3 94.6 30.0 
LSD (α=0.05) 33.4 na 35.6 na 

 


