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ABSTRACT 

The goals of this research are to develop deeper understanding of the corrosion protection 

mechanism of Mg-rich primer (MgRPs), improve corrosion protection performance of MgRPs, 

and extend the application of MgRPs. To address these research goals, the following studies 

were performed: 

1. Early blistering problems encountered during constant immersion or ASTM B117 

exposure of top-coated MgRPs over AA2024-T3 substrate were investigated. The results suggest 

that hydrogen entrapment by topcoat, instead of Al corrosion, contributes significantly to the 

formation of early blistering. Meanwhile, simultaneous real-time hydrogen collection and open 

circuit potential measurement was demonstrated as a new method for studying the corrosion 

protection mechanism of MgRPs. Moreover, the gas generated from MgRPs was unequivocally 

identified as hydrogen by cyclic voltammetry.  

2. Degradation behaviors of MgRP in 1% NaCl solution and Dilute Harrison Solution 

(DHS) were compared through scanning electron microscopy, hydrogen volume collection and 

electrochemical tests. The effects of connection modes between Mg pigment and Al substrate, 

different ions on the formation and stability of Mg oxidation products, and cathodic reaction sites 

on the microstructure of MgRP were discussed. In addition, an in situ method for the estimation 

of remaining Mg pigment in MgRP was developed based on H2 volume collection. 

3. The effects of adding sodium benzoate (SB), sodium dodecylbenzenesulfonate 

(SDBS), and 8-hydroxyquinoline (HQ) to MgRP on its corrosion protection of AA 2024-T3 were 

investigated. The results show that addition of SB, SDBS and HQ into MgRP improved the 

corrosion protection performance of MgRP by decelerating the oxidation rate of Mg, improving 

coating barrier properties and inhibiting the corrosion of Al alloy substrate.  
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4. The (MgRP-powder topcoat) coating system was developed and characterized in this 

research for the corrosion protection of Al alloys. The results show that powder topcoat can be 

applied on top of MgRP through both fluidized bed and electrostatic spray methods. Moreover, 

this (MgRP-powder topcoat) coating system provided much longer corrosion protection time to 

Al substrate than the powder coat by itself, without degrading other coating properties. 
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CHAPTER 1. INTRODUCTION 

Aluminum alloys, such as 2000 and 7000 series, have been the primary structure 

materials used in high-loaded aircraft structures for more than 80 years due to its high strength, 

superior toughness, great fatigue resistance, and high strength-to-weight ratio
1-3

. However, 

corrosion of aluminum alloys, especially the copper-rich 2000 series, is one of the major 

problems for the aerospace industry
4-6

. The structure failure of aircraft caused by corrosion could 

be disastrous: aside from putting humans and public safety at risk, these failures lead to severe 

inconvenience and numerous economic losses
7
. Therefore, protect aluminum alloys against 

corrosion becomes one of the major tasks for the aerospace industry.  

Among all the corrosion prevention methods, protective coating is one of the most 

practical and effective methods.  In the aerospace industry, the corrosion protection of Al alloys 

still relies significantly on chromate pretreatments and chromate primer systems
8
. However, 

hexavalent chromium (Cr
6+

) is well known for its carcinogen nature
9-11

. Stringent regulations on 

the handling and use of Cr
6+

-containing materials have been enacted by most governments
12, 13

. 

Therefore, there exists a severe need to develop an environmental-friendly coating system for 

replacing the chromate-based primer or pretreatment systems.  

Mg-rich primers (MgRPs), in analogy to Zn-rich primers for steel, were first developed 

by Nanna, Battocchi and Bierwagen at North Dakota State University to provide cathodic 

protection for Al alloy substrate
14

. It is a very effective corrosion protective coating system to 

replace the chromate-based primer or pretreatment systems. The performance of MgRPs have 

been examined and studied using various techniques and shown equal or even better 

performance compared to the Cr-based coating systems
15-18

. The commercial product of MgRP 

(Aerodur
®
2100) was produced by Akzo Noble in 2007. Since then, investigation of corrosion 
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protection mechanism and further improvement of the performance of MgRP have been the topic 

of research by several researchers. Even though MgRP technology has advanced drastically since 

its conception, improvements are still occurring in MgRP technology, both in the academic and 

industrial laboratories and applications. 

As the extension of Mg-rich primer technology, four parts of research were conducted in 

this Ph.D. project. The first part of research was to address the early blistering problem observed 

on topcoated MgRPs during lab exposure. Research in this work found that during lab tests, 

hydrogen generated rapidly from MgRP. Entrapment of hydrogen by the topcoat is the cause of 

early blistering. In the second part of research, corrosion protection mechanisms of MgRP in 

different solutions were compared. New insights of the corrosion protection mechanism were 

proposed. In addition, a new method was developed for the estimation of MgRP lifetime. Deeper 

understanding of corrosion protection mechanism of MgRPs over Al alloys was developed in the 

first two parts of research.  In the third part of research, inhibitor-added MgRPs were formulated. 

These inhibitor-added MgRPs provide longer cathodic protection time and better coating barrier 

protection to Al substrate. Last, (Mg rich primer-powder topcoat) coating system was first 

developed in this research. The coating systems provided much longer corrosion protection time 

to Al substrate without degrading other coating properties. Successful development of this 

product extends the application of both MgRP and powder topcoat. In addition, it gives us 

guideline to develop other metal rich powder topcoat systems for the corrosion protection of 

various metal substrates. 

Details of these studies will be demonstrated in this dissertation in chapter 3-6. In 

addition, a literature review on the history, development and future perspective of MgRPs will be 

given in chapter 2. The dissertation will be concluded with summary and future work. 
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CHAPTER 2. LITERATURE REVIEW 

2.1. Introduction  

In aerospace industry, the corrosion protection of structural Al alloys is a major challenge. 

Structural Al alloys such as AA 2024 T-3 and AA7075 T-6 are specially designed alloys that 

impart excellent mechanical properties to aircraft, but are prone to corrosion due to the addition 

of the alloying elements, especially copper
1-3

. Currently, the corrosion protection of aircraft Al 

alloys still relies significantly on chromate pretreatments and chromate primer systems
4, 5

.  

However, hexavalent chromium has been recognized as a toxic and carcinogenic material
6, 7

. 

Most governments have enforced strengthen regulations on the handling and use of Cr
6+

-

containing materials
8, 9

. The total replacement of chromates has been one of the major targets of 

US DOD environmental R&D programs for more than 20 years
10

. In the European Union, Cr
6+

 

compounds will be completely forbidden by 2017
11

. Therefore, there exists a severe need to 

broaden the use of an environmental-friendly coating system to replace the chromate-coating 

systems.  

Many alternative options for the protection of aircraft Al alloys have been considered and 

tested by researchers
5
. Among which, magnesium rich primer (MgRP) first developed at North 

Dakota State University by Nanna, Battocchi and Bierwagen is by far the most promising total 

Cr free alternative to provide corrosion protection for Al alloy
10

.  The conception of MgRP was 

developed and tested in the early 2000s when it was realized that the particulate Mg pigments 

were available. The original work at NDSU generated a patent of “Magnesium rich coatings and 

coating systems” on 2004
12

. This technology was licensed to Akzo Nobel Aerospace Coatings 

and the first commercial product Aerodur
®
 2100 MgRP was launched in 2007. The performance 

of MgRP has been examined in the academic, industrial and military laboratories and 
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applications. This chrome free technology has repeatedly shown equal or superior corrosion 

protection performance compared to the Cr (VI) based primers
10, 13, 14

. In October 2014, the 

Aerodur
®
 2100 was approved to AMS 3095 and the newly released Mil-PRF-32239 

specification
15

. This will apply to all DOD-AF aircraft. The usage of MgRP is on the upsurge.   

This paper will review the research has been done on MgRPs and their qualifications for 

widespread use. Cathodic corrosion protection mechanism of MgRPs will be first presented for 

the better understanding of this primer technology. Focus will be given on important design 

issues of MgRPs, methods for the study/evaluation of MgRPs, and current development of high 

performance MgRPs. Finally, future perspective for MgRPs will be discussed. 

2.2. Cathodic protection of Al/Al alloys by MgRP 

The design hypothesis of MgRP was developed in analogy to the formulation of Zn-rich 

primer for the cathodic corrosion protection of steel. The corrosion of Al and the principle of 

cathodic protection can be explained by the Wagner-Traud mixed potential theory
16

. This theory 

consists of two hypotheses
17, 18

: (1) Any corrosion process can be divided into two or more 

partial oxidation and reduction reactions; (2) There is no net accumulation of electric charge 

during a corrosion process. That is, during corrosion of an electrically isolated metal sample, the 

total rate of oxidation must equal the total rate of reduction. 

In the case of Al corrosion 
19, 20

 in aqueous medium, the oxidation of Al proceeds 

according to the Equation (2.1): 

𝐴𝑙 → 𝐴𝑙3+ + 3𝑒                                                                (2.1) 

This reaction must be balanced by one or more simultaneous reduction reactions which 

capture the released electrons. In common aqueous medium, the following reduction reactions 

are thermodynamically possible: 
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(1) Reduction of H2O: 

2𝐻2𝑂 + 2𝑒 → 𝐻2 ↑ +2𝑂𝐻−                                                  (2.2) 

(2) Reduction of dissolved oxygen: 

𝑂2 + 2𝐻2𝑂 + 4𝑒 → 4𝑂𝐻− (Neutral or alkaline media)                       (2.3) 

𝑂2 + 4𝐻+ + 4𝑒 → 2𝐻2𝑂 (Acidic media)                                       (2.4) 

Each half-cell reaction has its own half-cell electrode potential and exchange current density. 

Corrosion occurs when at least one of the half-cell electrode potential of the reduction reactions 

(𝑒𝑐 ) is higher than that of the oxidation reaction (𝑒𝑎 ). The corrosion potential (𝐸𝐶𝑜𝑟𝑟) lies 

between 𝑒𝑐 and 𝑒𝑎 by polarization, according to the mixed potential theory (Figure 2.1).  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1. Diagram explaining corrosion of Al using mixed potential theory 
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When an excess of electron flow (through sacrificial anode or direct current source) is 

applied to the corroding Al electrode with Ecorr-Al and icorr-Al defined by mixed potential theory, 

the excess of electrons cause the electrode potential to shift negatively from Ecorr-Al to E’corr. In 

the case of using MgRP for the corrosion protection of Al, MgRP acts as sacrificial anode since 

Mg is more electroactive than Al
21, 22

. According to the mixed potential theory, the E’corr will be 

between Ecorr-Al and Ecorr-Mg. And the excess of electrons suppresses the rate of the anodic 

reaction of Al from icorr-Al to ia-Al, and increase the cathodic reduction reaction from icorr-Al to ic-Al, 

as shown in Figure 2.2. Consequently, the corrosion of Al is suppressed. At the same time, the 

corrosion of Mg is accelerated, as the rate of the anodic reaction of Mg increases from icorr-Mg to 

ia-Mg. The effect of cathodic protection is affected by the potential difference between Mg 

pigment and Al/Al alloys, resistance between Mg pigment and Al/Al alloys and relative exposed 

area of Mg pigment and Al/Al alloys
23, 24

. All these factors must be considered when formulating 

MgRPs.  

 
Figure 2.2. Diagram explaining cathodic protection of Al by Mg using mixed potential theory 
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2.3. Important design issues of MgRP  

The development of a high-performance MgRP is very complex, since many factors 

would significantly influence the final properties of MgRP. This section will focus the 

discussions on some critical considerations for the design of MgRP, including the effect of 

pigment volume concentration, the choice of binder systems and the influence of surface 

pretreatment.  

2.3.1. The effect of pigment volume concentration in MgRP 

Volume effects are extremely important in the design of metal-rich coatings, since 

cathodic protection effect and many other performance behaviors of metal-rich coatings are 

influenced by the pigment volume concentration (PVC) of metal pigment in the primer
25, 26

. It 

was observed that for a pigmented coating, the breaks in many performance behaviors, such as 

the permeability, rusting, blistering, and gloss curves occur at a more or less definite point
27, 28

. 

This point was defined by Asbeck and Van loo as critical pigment volume concentration (CPVC), 

where “there are just sufficient binders to fill completely the voids left between the pigment 

particles incorporated in the film after volatilization of all thinner”
 27

. Since CPVC is influenced 

by factors such as fundamental packing characteristics of the pigments, type of binder employed, 

types and amounts of special agents present, and fineness of grind of the system
29-31

, the 

parameter Λ (= PVC/CPVC, reduced pigment volume concentration) was introduced by 

Bierwagen in 1975 to offer a guidelines for paint formulation based on pigment volume changes 

once a resin-pigmentation combination is chosen
32

. By using Λ in predicting and interpreting 

paint film behavior, one can isolate those properties dependent on Λ and those based on the 

chemical nature of the raw materials of the paint
32-34

. 
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For effective sacrificial protection, the PVC of MgRP is usually formulated near or above 

the CPVC to ensure the total supply of Mg sacrificial anode material, and the electrical 

connectivity between Mg pigments as well as between Mg pigment and Al substrate. For 

example, Nanna and Bierwagen
22

 studied MgRPs at 43, 46 and 50% PVC in 3% NaCl solution 

by open circuit potential and electrochemical impedance spectroscopy methods. The data 

indicated that MgRP at 46% PVC, which was the estimated CPVC for this system, provided the 

most effective protection. Li, et al.
35

 determined the CPVC of MgRPs based on a two component 

epoxy resin through EIS measurement, and found that the CPVC was quite similar to the 

theoretical value 47.5%. They concluded that 50% PVC was the optimum in the formation of 

effective electrical contact. However, for coatings with Λ larger than 0.85, poor barrier 

protection was observed
25

. Thus, MgRPs formulated with Λ larger than 0.85 should be coated 

with a topcoat with low PVC to avoid a porous structure open to water/electrolyte intrusion.  

Besides poor barrier properties, rapid consumption of Mg pigment might also be a 

problem for MgRPs formulated at high PVC. At high PVC, a large percent of Mg pigment is 

readily exposed to electrolyte, and thus might cause unnecessary oxidation of Mg pigment, 

giving no cathodic protection, before the substrate needs protection due to the high reactivity of 

Mg. King and Scully
36

 investigated the effect of PVC in MgRPs through electrochemical 

methods, SEM and XRD analysis. They found that MgRPs with high PVC (65%) allowed a 

larger percent of the distributed Mg pigment to be utilized to protect remote defects. MgRPs with 

moderate PVC (45%) had a smaller amount of Mg available for remote protection. However, the 

remaining Mg pigment would be available to protect local defects as they occur throughout the 

coating’s lifetime. In addition, there is some evidence that the electrical connectivity of the metal 

pigment carries over from the PVC = CPVC to PVC = volume percolation threshold (∼30% by 
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volume for Zn spherical particles)
 37-39

. Therefore, sacrificial protection might occur even MgRPs 

are formulated at lower PVC, which suggests that a balanced PVC where MgRPs can provide 

effective and longtime sacrificial protection, as well as acceptable barrier properties might be 

possible. 

2.3.2. The effect of binders in MgRP 

Coating matrix / binder provides both cohesion within a coating and adhesion between 

coatings and substrates. In addition, binder properties also affect corrosion protection, thermal 

and mechanical properties of coatings
40, 41

. Traditionally, the most commonly used binder system 

for metal-rich primers is a two component epoxy system, due to its good wetting of metal-metal 

oxide surface, excellent adhesion to most substrates, and stability at high pH environment caused 

by metal corrosion
31

. Li, et al.
35

 investigated the effects of epoxy resin molecular mass, curing 

agent functionality, and epoxy/NH ratio on the performance of MgRPs. They found that among 

the binders tested, the optimized coating composition was based on the high MW epoxy resin, 

amide-functional curing agent, 1.0 epoxy/NH ratio and 50% PVC, which show very good 

corrosion protection for at least 3000 hrs of B117 salt spray exposure. Other binder systems have 

also been explored and tested for MgRPs. For example, Nanna and Bierwagen
22

 compared 

dynamic and mechanical properties, flammability, and corrosion protection effect of 

conventional epoxy binders and a hybrid silane modified epoxy-urea IPNs. They found MgRPs 

performed better with the hybrid silane modified epoxy-urea IPNs. Ravindran et al.
42

 found 

silane-modified glycidyl carbamate resins to be a promising binder system especially in the 

aspect of high temperature stability. All the above mentioned binder systems are solvent based. 

Considering the environmental effect and the progress in the coating industry, it would be 

desirable if MgRP could be formulated as powder primer. 
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2.3.3. The effect of surface pretreatment  

Surface pretreatments are usually applied to metal prior to the actual coating process to 

improve the adhesion between the substrate and coating and also to impart corrosion protection
43

. 

Most commonly used pretreatment techniques for aerospace Al alloys is chromate conversion 

coatings, which offer strong corrosion resistance properties
44

. However, hexavalent chromium 

poses environmental hazards and thus chromate conversion coatings are excluded from MgRP 

coating systems, which were developed to replace all chromates in coating systems and have 

been proved performing effectively over sandblasting/Prekote
® 

(nonfilm-forming, non-chrome 

surface pretreatment) pretreated Al / Al alloy substrates
10

.  

For MgRP, the electrical resistance imparted by the pretreatment should also be 

considered, since it might limit or delay sacrificial anode-based cathodic protection. Kannan, 

King, and Scully
45

 compared the role of conversion coatings, anodized coatings on the 

performance of MgRP on AA2024-T3 to clean and desmutted surfaces and those with a Prekote 

pretreatment. They found that conversion coatings and anodized coatings caused delayed 

galvanic coupling between MgRP and AA 2024-T3 substrate. The delayed time is influenced by 

the thickness and chemistry of pretreatments.  

More surface pretreatment methods were applied to metal surface to improve the 

performance of MgRP. For example, Schulz et al.
46

 used a plasma polymerization method to 

grow thin SiC-based films on Al-2024. They found the trimethylsilane derived films showed 

good barrier properties and did not negate the galvanic activity of the Mg-based primer anode. 

Lu et al. evaluated a micro-arc oxidation treatment on the performance of MgRP on AZ91D 

magnesium alloy
47

 and they also pretreated AZ91D magnesium alloy surface with silane 

pretreatment
48

. For both methods, they found the adhesive strength of the Mg-rich primer to 
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AZ91D alloy substrate is remarkably increased, and the failure time for the coating system is 

obviously prolonged after pretreatment. However, the electrical resistance imparted by the 

pretreatment was not investigated. They attribute the prolonged corrosion protection time to the 

improved barrier effect of the coating system, which impeded both the permeation of the 

electrolytes to the substrate and the diffusion of the corrosion products outward. 

2.4. Characterization and performance of MgRP 

Electrochemical techniques as well as chemical and surface analysis have been used to 

evaluate and study the performance of MgRPs in different environments as complements to the 

visual inspection and traditional coating characterization methods. 

2.4.1. Weathering tests 

Coating performance is significantly influenced by its service environment. That is to say, 

the same coating might show entirely different performance characteristics when exposed to 

different environments. The most reliable and easy-performed way to evaluate coating 

performance is to perform actual live weathering in the given climate
49, 50

. For example, 

AkzoNobel Aerospace Coatings and the Norwegian Air Force have been evaluating Aerodur 

2100 MgRP since 2010 by painting half an F16 with Aerodur 2100 based coating system (the 

Aerodur 2100MgRP primer was applied over Prekote pretreatment, and was topcoated with 

AkzoNobel’s advanced Military topcoat, Aerodur 5000). In 2012, after thorough evaluation on 

this flying platform as well as independent lab tests, the Royal Norwegian Air Force has decided 

to approve Aerodur 2100
51

. Also, US Department of Defense are testing up to 100 doors, port-

hole covers, and other small parts on the exterior of aircraft coated with MgRP systems that are 

performing in a more than satisfactory manner in use
52,53

. 
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While the actual live weathering test is the most accurate method, it is also the most time 

consuming. It may take several years or more to see the results. Many manufactures do not have 

several years to wait and see if a new and improved product is truly an improvement. In order to 

save time, accelerated weathering tests are often used for R & D, quality control and materials 

certification. Commonly, accelerated weathering tests are divided into two categories: outdoor / 

natural accelerated weathering tests and laboratory accelerated weathering tests
54, 55

. 

Outdoor accelerated weathering tests of MgRPs are usually conducted on sites of high 

known corrosion rates, such as Daytona Beach, FL
52

, rain forest and marine sites in Hawaii
56

, 

Kennedy Space Center, FL, and Charlottesville, Virginia
57,58

. At all test sites, MgRPs provided 

very effective and longtime protection to Al alloys. Even though outdoor accelerated weathering 

tests are generally agreed to be the most reliable tests in terms of correlation to the end-use 

service life, some variables exist that do not guarantee repeatable results, including variability 

due to climate, time of year, and test design
54

. Test standards such as ASTM D1014 and ASTM 

D 1654 could be used as guidelines for obtaining good outdoor exposure outcomes. 

Because there is a need for more rapid evaluations of the resistance of materials to 

weathering that can be obtained by outdoor exposure tests, devices that can simulate sun 

exposure, humidity, heat, corrosive conditions and etc. are generally used to accelerate the 

degradation. Historically, ASTM B117 continuous salt spray test is one of the most popular 

methods for the accelerated corrosion test. Also, it is the most widely used test to rank the 

corrosion protection effect of coatings on steel
59

. However, during more than 100 years of use, 

researchers have found out that the test results of B117 do not correlate well with the corrosion 

results seen in actual exposures. For example, the field exposure results show that topcoated 

MgRPs can provide very long time protection to Al alloys. But severe early blistering has been 
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observed during ASTM B117 test
53, 60

. This field vs. lab discrepancy suggests that more realistic 

accelerated weathering tests need to be developed for the qualification of the corrosion 

protection effect of metal-rich primers. Some improved laboratory accelerated corrosion tests 

such as ASTM G85 Prohesion test and customized tests
61-63

 have been developed. These tests 

introduced cyclic weathering, humidity, radiation, and temperature control to better simulate the 

actual environment. However, the correlation of the laboratory accelerated corrosion test results 

to the real service performance remains a problem
64, 65

.  

2.4.2. Electrochemical techniques 

Open circuit potential (OCP) measurement, galvanic current measurement, and 

potentiodynamic scan (PDS) are intuitional and simple ways to verify the cathodic protection 

provided by MgRP to Al/Al alloys. These methods are usually conducted on MgRP coated 

samples without a topcoat, because the high resistance of topcoat might modify the measured 

potential and current by introducing an ohmic potential drop. It is generally agreed that the OCP 

of a coated Al/Al alloy system should be at least 100 mV below the OCP of the substrate to 

realize effective cathodic protection
66

. Measurements of the OCP of MgRP coated Al alloys have 

proved that MgRP can polarized Al alloys to low enough potential and thus provide effective 

cathodic protection
21, 22, 67

. The cathodic protection ability of MgRP has also been proved 

through galvanic current measurement and PDS: cathodic current flows from MgRP coated Al 

alloy to an identical Al alloy without primer were detected by galvanic current measurement
36, 68, 

69
; while lower corrosion potential, smaller corrosion current were observed on MgRP coated Al 

alloys when compared to bared Al alloys in PDS
36, 70, 71

. In addition, the OCP changes of MgRP 

coated Al/Al alloy systems gave information of the status of the cathodic protection provided by 

the MgRP. For example, Nanna and Bierwagen proposed a three-period cathodic protection 
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mechanism provided by MgRPs through studying the OCP change of MgRP coated AA2024-T3 

in 3% NaCl solution
22

.  

Like all the electrochemical techniques, OCP and galvanic current measurements only 

measure the electrochemically well connected Mg pigments. It has been noticed that Mg 

pigments insulated by polymer matrix still preserved in MgRP after the OCP of MgRP coated 

AA 2024-T3 rose above the OCP of AA2024-T3 or after the current flow from MgRP coated Al 

alloy to an identical Al alloy without primer became anodic
36

. That is to say, the OCP, galvanic 

current measurements, or probably all electrochemical tests should be used cautiously as an 

indication of the depletion of Mg pigment, especially for short time exposure of MgRPs. 

EIS has been widely used for the study and evaluation of degradation behavior of MgRPs. Useful 

information, such as coating barrier properties, water uptake information, and coating 

degradation process could be obtained from EIS results
72, 73

. The barrier properties of MgRP 

based coating systems have been investigated through measuring the impedance at low 

frequency (lower than 1Hz)
67, 74

. Generally, if the impedance is above 10
9
 ohm, it means the 

coating can provide effective barrier protection.  If the impedance is below 10
6
ohm, the barrier 

protection is poor. The humidity changes between topcoat and MgRP have been studied by 

tracking the high frequency impedance (higher than 10 kHz) change through embedded sensors
75

. 

Besides the barrier properties and water uptake phenomena, more information, such as double 

layer capacitance, electrolyte diffusion process, and charge transfer resistance was obtained from 

EIS measurement by fitting the data to an equivalent electrical circuit model or transmission line 

model
69, 76-78

.  

ENM is another electrochemical method that has been applied to studying the 

performance of MgRPs
79, 80

. Studies by Allahar et al.
79

 showed that the change in the value of 
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noise resistance (Rn) was consistent with the changes in low frequency impedance, and the 

changes in the localization index (LI) supported that cathodic protection was due to a more 

uniform corrosion of the Mg particles, and the loss of cathodic protection resulted in a change 

toward a more localized corrosion. However, the trends for LI and shot noise parameter (q) were 

not monotonic and do not provide a simple relationship for tracking the real time loss of cathodic 

protection. Future work is necessary to understand and interpret the relationship between the 

parameters obtained from ENM and the features related to corrosion
81-83

. 

Traditional electrochemical techniques only give surface-averaged information on the 

system. The defect in a coating or the development of corrosion on a metal substrate usually 

occurs in a very small area. Therefore, localized techniques, such as scanning vibrating electrode 

technique (SVET) 
67, 74, 84

, scanning electrochemical microscopy (SECM) 
67, 74, 84

 and scanning 

Kelvin probe (SKP) 
85

 have been used to investigate the corrosion protection mechanism of 

MgRPs at smaller scale. It has been found that MgRPs provided cathodic protection to AA2024-

T3 substrate by both preventing pit nucleation and inhibiting the growth of the pre-existing pits
84

. 

2.4.3. Chemical and morphology analysis 

The performance of MgRPs depends critically on the severity of the environment of 

exposure, which affects the evolving voids in the primer, the Mg oxidation products, the 

migration of ions in primer film and etc. In order to better understanding the protection 

mechanism of MgRP, chemical and morphology analyses such as microscopy, SEM/EDX, FTIR, 

XRD, XPS, and Raman spectroscopy have been conducted to analyze Mg oxidation products and 

their distribution in MgRP. It was found that when the CO2 concentration was low, i.e., in the 

salt spray chamber, Mg hydroxide was formed. When the CO2 concentration was high, Mg 

carbonate was formed. Pathak et al. have suggested that the magnesium carbonate layer is thicker 
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and more compact than the magnesium hydroxide layer. The carbonate film inhibits both the 

anodic and the cathodic corrosion processes
86

. Field studies show that even though Mg is 

converted from the metallic state to a non-metallic compound, a system based on MgRPs still 

retains a high degree of corrosion resistance in long term exposure
14

. It is suggested by some 

researchers that besides cathodic protection, certain barrier protection developed through the 

precipitation of Mg oxidation products is possible
87

. Other protection mechanism such as 

dissolved Mg ions could also provide protection has also been proposed. 

Since Al is susceptible to basic corrosion, the pH changes on Al substrate under MgRPs 

were investigated. Maier et al.
85

 believed that cathodic corrosion of AA2024-T3 will occurs if 

the amount of CO2 is not enough to buffer OH
–
 from magnesium corrosion products and oxygen 

reduction. However, Bierwagen et al.
10

 have noted that the natural Mg oxidation products 

precipitate at pH around 10.5 and do not yield a pH high enough to corrode and dissolve Al (pH > 

11).  

As mentioned before, electrochemical techniques only sense the electrochemically well-

connected Mg pigments. King and Scully
36

 proposed two possible modes of galvanic protection: 

long-range protection of remote defects by well-connected Mg pigment and local or short-range 

protection by buried pigment particle. They developed a method based on XRD measurement for 

estimating the remaining capacity of MgRPs for each mode of protection.  

2.5. Current development of high-performance MgRPs  

The highly reactive nature of Mg and the intense galvanic action between Mg pigment 

and Al substrate cause rapid dissolution of Mg pigment, which reduces the time of cathodic 

protection. Thus, most improvements on MgRP have been focus on controlling the activity of 

Mg pigment, including using Mg alloys instead of pure Mg as pigment
88-90

, surface pretreatment 
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of Mg pigment
91-93

, and addition of corrosion inhibitive components into MgRP
68,94-98

. Out of the 

scope of controlling the activity of Mg pigment, only one research on nanostructured Mg 

composite coatings has been conducted
99

.  

2.5.1. Mg alloys as pigment in MgRP 

Xu et al.
89

 investigated three different Mg alloys (AM60, AZ91B, and LNR91) in 

pigmentary form in an epoxy-polyamide polymer system at various PVC values. Testing results 

showed that the primers with Mg alloys as pigments could provide cathodic protection to 

AA2024-T3 substrate, and pigments with smaller particle sizes and better controlled shapes 

would result in a better primer performance. Plagemann et al. produced zinc-magnesium 

pigments in different compositions and formulated them in zinc-magnesium rich coatings. A 

durability of more than 10,000 h in salt spray test was observed on AA 2024 unclad substrate
90

. 

Wang et al. found that a Mg-Al rich primer with 20% Mg and 30% Al show better protection and 

prolonged lifetime than a Mg-rich primer with 50% Mg. They believed the improved 

performance is because the addition of Al particles increased barrier property and inhibited 

intense galvanic coupling
88

. 

2.5.2. Surface pretreatment of Mg pigment 

Pathak et al.
91, 93 treated magnesium powder with aqueous carbonic acid and formulated 

the treated magnesium powder into a Mg-rich primer. They found that the Mg-rich primer 

formulated with the treated Mg powder performed better in the salt-fog test than the primer 

based on untreated Mg powder. Wang et al.
92 formulated Mg-rich primer with magnesium 

powder treated with phosphoric acid. They found the phosphate layer had no negative influence 

on the cathodic protection of the Mg-rich primer for Al alloy but can reduce the consumption 

rate of Mg particles. In addition, a phosphate compound layer was formed on the surface of 
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substrate alloy, which decreased the corrosion rate of Al alloy. The barrier effect of the primer is 

improved and the lifetime is extended. 

2.5.3. Addition of corrosion inhibitive components into MgRP 

Zuo et al.
64, 94-96

 examined the effect of 8-hydroxyquinoline (8-HQ), aluminum tri-

polyphosohate (SAP), ZnO and ceria on the corrosion performance of MgRP on AZ91D 

magnesium alloy. Their findings suggest that by adding corrosion inhibitive components into 

MgRP, the cathodic protection time of an MgRP could be prolonged through one of the 

following effects, such as formation of an insoluble complex on Mg particles, pH buffering 

effect, or increasing electrical conductivity between Mg particles. The barrier property of MgRP 

can be improved through increase physical crosslink density of the coating matrix or formation 

of insoluble Mg oxidation products that can fill the voids in primer.  Merten et al.
97

 observed 

anti-corrosion and anti-blistering effects on formulations containing Li2CO3, Mg(NO3)2, and a 

low percentage of Mg metal particulates. They found that Mg(NO3)2 can reduce blistering and 

Li2CO3 can enhance defect protection through facilitating the production of Mg(OH)2 and 

MgCO3 precipitates. Visser and Hayes
99

 formulated lithium salts into MgRP for anti-corrosion 

performance and reduced blistering. Optimal results were achieved with the use of 3-9 vol. % 

Li2CO3.  

2.5.4. Nanostructured Mg composite coatings  

Dennis et al.
100

 found a way to synthesized Mg nanoplatelets by the solution-phase 

reduction of MeMgCl using lithium naphthalide in anhydrous THF. A coating consists of 

dispersed Mg nanoplatelets in poly(ether imide) matrix was developed for the corrosion 

protection of steel
99

. The use of nanostructured Mg allows for reduced coating thicknesses and a 

smoother surface finish. Results showed that this nanostructured Mg composite coating 
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significantly outperform galvanized Zn and Zn-rich primer coatings of comparable thickness. 

2.6. Summary and future work 

MgRP has been proved to be a very promising environmental friendly alternative to the 

hexavalent chromate based coating systems. The technology has progressed drastically since its 

conception. However, deeper understanding of the corrosion protection mechanism and further 

improvement of MgRP for better performance and wider applications are still necessary. Most of 

the research on understanding the corrosion protection mechanism provided by MgRP focused 

on the effect of Cl
-
 and CO2, effects of other corrosive specials, such as NH4

+
 and SO4

2-
 on the 

corrosion behavior of MgRP haven’t been well discussed. Also, correlating lab and field 

performance of MgRP is currently difficult and the test standards used (often mis-used) for the 

qualification of MgRP, such as ASTM B117 have been challenged. More realistic accelerated 

weathering tests and qualification standards need to be developed. In addition, developing MgRP 

powder coat may be highly beneficial from environmental perspective. Continued progress in the 

field will yield MgRPs that possess better performance and wider applications. 
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CHAPTER 3. HYDROGEN EVOLUTION AND EARLY BLISTERING FROM 

MAGNESIUM RICH PRIMERS ON AA2024-T3
(1)

 

3.1. Abstract 

Early blistering was observed on topcoated magnesium-rich primers (MgRPs) over 

AA2024-T3 substrate under constant immersion or constant salt spray tests. Hydrogen evolution 

and the cause of early blistering were investigated in this research. Estimates are given for the 

first time for the amount of H2 generated from MgRPs with and without topcoats. The 

measurement results along with blister formation on glass substrate, hydrogen pressure 

estimation, adhesion testing, and SEM images support the claim that hydrogen entrapment by 

topcoat, instead of Al corrosion, contributes significantly to the formation of early blistering on 

topcoated MgRPs. Meanwhile, simultaneous real-time hydrogen collection and open circuit 

potential measurement were demonstrated as a new method for studying the corrosion protection 

mechanism of MgRPs. Moreover, the gas generated from MgRPs was unequivocally identified 

as hydrogen by cyclic voltammetry scanning. 

3.2. Introduction 

The Mg-rich primer (MgRP) system, in analogy to Zn-rich primers for steel, was first 

developed by Nanna, Battocchi, and Bierwagen at North Dakota State University
1, 2

. The system 

is an alternative to the toxic hexavalent chromium (Cr
6+

)-based coating systems now used to 

provide protection for Al alloy substrates
3-6

. It is the only true Cr-free corrosion protective 

coating system to date that matches and/or exceeds the protection afforded by Cr
6+

 pigments
7
. 

                                                           
(1)

 This chapter has been published in Corrosion (doi:http://dx.doi.org/10.5006/1817). The material in this chapter 

was co-authored by Junren Lin, Vinod Upadhyay, Xiaoning Qi, Dante Battocchi, and Gordon P. Bierwagen. Junren 

Lin had primary responsibility for conducting experiment, collecting and interpreting data. Junren Lin was the 

primary developer of the conclusions that are advanced here. Junren Lin also drafted and revised all versions of this 

chapter. Vinod Upadhyay and Gordon P. Bierwagen contributed to the conception of the work. Vinod Upadhyay, 

Xiaoning Qi, Dante Battocchi, and Gordon P. Bierwagen served as proofreaders and checked the data obtained by 

Junren Lin. 
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Studies showed that MgRP provided more than 10,000 h of corrosion protection to Al substrate 

under cyclic prohesion exposure
8
. In addition, topcoated MgRPs have been found effective on 

field exposure at all sites where MgRPs have been studied
9, 10

, and has been approved to AMS 

3095 and the newly released Mil-PRF-32239 specification
11

. However, severe early blistering 

has been observed on topcoated MgRPs during constant immersion or ASTM B117 constant salt 

spray testing
8, 12-16

. This field versus lab discrepancy has hampered the acceptance of MgRPs, as 

blistering has consistently been interpreted as an under-film corrosion failure. For example, some 

researchers suggest that early blistering on topcoated MgRPs is caused by anodic undermining 

aided by H2 production or cathodic corrosion of AA2024-T351 (UNS A92024).
(2),15

 This 

interpretation may have some validity in a Cr
6+

 protection system, but not  for MgRP systems, 

because much of the “blistering problems” have been solved by the use of inorganic and organic 

additives that decrease the rate of hydrogen evolution to the point that hydrogen can escape by 

diffusion instead of blister formation
17-18

. Some researchers have proposed that hydrogen 

entrapment by topcoat is the main cause for early blistering
8, 12

 based on the fact that a large 

number of hydrogen bubbles are observed when MgRPs are exposed without topcoats under 

constant immersion or the ASTM B117 condition.  

In this research, evidence is provided to support hydrogen entrapment as the major, if not 

the only, cause of early blistering on topcoated MgRPs. Also, blister formation is shown on a 

topcoated MgRP on glass substrate that cannot corrode. In addition, simultaneous real-time 

hydrogen collection and open circuit potential (OCP) measurement was used to study the 

corrosion protection mechanism of MgRPs. While there have been studies on the use of the H2 

measurement test on sheets of Mg, other metals, or metal alloys
19-23

, this research is the first to 

                                                           
(2)

 UNS numbers are listed in Metals and Alloys in the Unified Numbering System, published by the Society of 

Automotive Engineers (SAE International) and cosponsored by ASTM International. 
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apply the test to MgRPs. Because the mols of Mg pigment oxidized are equal to the mols of 

hydrogen generated, studying H2 evolution would be a new approach of studying the protection 

mechanism of MgRPs. Moreover, even though the gas generated from MgRPs is assumed to be 

hydrogen, no experiment has proven this assumption. In this paper, the gas was clearly identified 

by cyclic voltammetry scanning. 

3.3. Experimental procedures 

3.3.1. Materials and sample preparation 

The AA2024-T3 panels used in this study were purchased from Q-Lab
†
. The chemical 

composition of AA2024-T3 is shown in Table 3.1 as provided by the manufacturer. The glass 

panels were purchased from VWR International
†
. The epoxy resin system used was a two 

component system (Epon 828
†
 and Epikure 3164

†
) purchased from Hexion Inc. BYK 346

†
, from 

BYK-Chemi,
 
was used as dispersant, tert-butyl acetate (from TCI American

†
) and P-xylene 

(from Sunnyside Corporation
†
) were the solvents used. The Mg pigments were supplied by 

READE Advanced Materials
†
. The topcoat was Aerodur 5000

†
 military aircraft topcoat supplied 

by Akzo Nobel. The concentration of all of the solutions used in this research is expressed as 

wt%. 

The AA2024-T3 panels were blasted with Al2O3 grit to remove the oxide layer, grease, 

and oils. The panels were then rinsed with hexane until no residue was observed. The glass 

panels were cleaned with hexane. MgRPs were prepared by dispersing Mg pigments into the 

epoxy phase. The pigment volume concentration (PVC) was 40%. MgRPs were applied to 

AA2024-T3 panels and glass panels by air spray. MgRP coated panels were cured at room 

temperature for 7 d before being tested or topcoated. The thickness of the dry primer was 

                                                           
†
 Trade name. 
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approximately 55 µm (±10 µm) and the thickness of the topcoat was about 50 µm (±10 µm), as 

measured with a digital thickness gauge (Elcometer 345
†
) for AA2024-T3 panels and with a 

caliper for glass panels. The topcoated panels (on both AA2024-T3 and glass substrate) were 

scribed so electrolyte could easily penetrate MgRPs. Subsequent references to these two 

topcoated systems will be denoted as MgRP-Al-T and MgRP-G-T, respectively. 

Table 3.1. Percent chemical composition of AA2024-T3 used as a substrate in this research 

Al Cr Cu Fe Mg Mn Si Ti Zn Others (total) 

Bal. 0.1 3.8-4.9 0.5 1.2-1.8 0.3-0.9 0.5 0.15 0.25 0.15 

 

3.3.2. H2 identification by cyclic voltammetry measurement 

The cyclic voltammetry (CV) experiments were performed in 1 wt% NaCl solution. The 

setup, as shown in Figure 3.1(a), was used to detect gas generated from MgRPs. A MgRP-coated 

AA2024-T3 panel (MgRP-Al) was clamped to a glass cell with a 12 cm
2
 exposure area to 

generate gas. A saturated calomel electrode (SCE) was used as the reference electrode and two Pt 

electrodes were used as the working and counter electrode, respectively. The Pt electrodes were 

polished on a microcloth pad using a series of water-based alumina slurries (1 µm, 0.3 µm, and 

0.05 µm). Electrochemical cleaning was performed in H2SO4 (0.1 M) cycling between –0.5 VSCE 

and –1 VSCE. The CV scan started after exposing MgRPs for 30 min to the 1% NaCl solution to 

make sure that there was enough gas to react on the Pt surface. The CV scan was performed 

between –0.8 VSCE and 0.1 VSCE at a scan rate of 100 mV/s. The oxidation/reduction peaks of 

pure hydrogen gas were measured in a beaker with 1% NaCl solution purged with high purity 

hydrogen gas (Figure 3.1b). The same experiment was conducted in a beaker with 1% NaCl 

solution as control.  
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3.3.3. Formation of blisters on glass substrate 

The blister formation test was conducted by immersing MgRP-G-T in 3.5 wt% NaCl 

solution in a beaker. An X shaped scribe was made along the coating until the glass substrate was 

reached. The edges and back of the sample were sealed with tape to prevent leakage penetration 

of the electrolyte.  

 
Figure 3.1. Setups of cyclic voltammetry measure, (a) over MgRP, (b) without MgRP 

 

3.3.4. Hydrogen collection and open circuit potential measurement 

A full immersion hydrogen testing assembly was modified to simultaneously measure the 

OCP and the volume of H2 gas evolved on a MgRP-Al panel
22-23

. The experimental setup 

consisted of a glass funnel placed inside of a beaker. An inverted volumetric burette was attached 

to the end of a glass funnel to collect H2 bubbles. A MgRP-Al panel was placed at the bottom of 

the beaker, inside the glass funnel. The exposed area of the coating was 9 cm
2
. A wire was 

connected to the reverse side of the Al panel using conductive epoxy for OCP measurement. The 

edges and the back of the sample were sealed with epoxy and taped to prevent the penetration of 

electrolyte. SCE was used as the reference electrode. The same setup was used for the 
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measurement of scribed MgRP-Al-T panels. A schematic of the setup is shown in Figure 3.2. 

The electrolyte was saturated with H2 gas prior to exposing the MgRP sample by cathodically 

polarizing the electrolyte using two Pt electrodes. The potential was set at –1.5 VSCE for 6,000 s 

prior to any sample exposure. OCP was measured using a Gamry
†
 potentiostat. The test 

electrolyte was 3.5 wt% NaCl. The pH of the solution was 8.5. 

 

Figure 3.2. Experimental set-up to simultaneously collect evolved H2 gas and measure OCP 

 

3.3.5. Scanning electron microscope  

For scanning electron microscope (SEM) investigations, coating cross sections were 

prepared by ion mill using a JEOL IB09010CP
†
 cross-section polisher. Then samples were 

mounted on aluminum mounts and coated with gold using a Hummer II
†
 sputter coater. Images 

of the cross section of blisters were taken using a JEOL JSM-6490LV
†
 SEM in back scatter 

mode with 15 keV acceleration voltage.  
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3.3.6. Adhesion test 

Pull-off adhesion testing was conducted on MgRP-Al according to the ASTM D4541-09. 

Three sets of measurements were conducted. The dolly used for the test had a diameter of 14 mm 

and the pull off rate was 0.7 MPa/s. 

3.4. Results and discussion 

3.4.1. H2 identification 

Figure 3.3 shows the CV results recorded over MgRP-Al (dash line) in 1% NaCl solution, 

in 1% NaCl solution without MgRP (dot line), and in 1% NaCl solution without MgRP but 

purged with high purity hydrogen gas (solid line). When recorded in 1% NaCl solution without 

MgRP, the CV response shows no signal as a result of H2. When recorded in 1% NaCl solution 

above MgRP-Al, a large number of bubbles were observed, indicating the evolution of gas from 

MgRP. The oxidation/reduction peaks of the gas generated from MgRP were at the same 

position as the peaks obtained from high purity hydrogen, which confirms that the gas generated 

from MgRP was H2. 
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Figure 3.3. CV recorded in NaCl solution over MgRP, without MgRP, and purged with hydrogen 

 

3.4.2. Blister formation on glass substrate 

In order to totally exclude AA2024-T3 corrosion as a main cause of early blistering, 

immersion tests with glass substrates were conducted. The replacement of AA2024-T3 substrate 

does not stop the generation of H2, but eliminates the generation of AA2024-T3 corrosion 

product. If entrapment of H2, instead of corrosion of AA2024-T3, is the main cause of early 

blistering, then blisters should also be observed on glass substrates. As can be seen in Figure 3.4, 

blisters are observed on the MgRP-G-T after 3 d of constant immersion in 3.5% NaCl solution. 

The formation of blisters on glass substrate indicates that corrosion products of AA2024-T3 are 

not necessarily the cause of blistering. 
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Figure 3.4. Image of topcoated MgRP on glass substrate after constant immersion 

 

3.4.3. Hydrogen volume measurement and early blistering 

Figure 3.5 shows the volume of H2 collected as a function of time from MgRP-Al and 

MgRP-Al-T in 3.5% NaCl solution. For MgRP-Al, the volume of H2 increased rapidly in the first 

24 h. Then, the rate slowed until finally reaching an asymptotic plateau after 168 h of immersion. 

The amount of H2 collected from MgRP-Al after 200 h of immersion is 10.6 mL. For MgRP-Al-

T, the volume of H2 slowly increased and the amount of H2 collected from MgRP-Al-T after 200 

h of immersion is less than 2 mL. The volume of H2 collected from MgRP-Al-T is much less 

than those from MgRP-Al. This difference is a result of the barrier properties of topcoat, which 

hinder the penetration of electrolyte, as well as the escape of hydrogen gas from coating, 

permitting only slow diffusion loss of H2 from the surface.  

During the H2 measurement test, blisters were observed near the scribe on the topcoated 

MgRPs. Figure 3.6(a) shows the image of MgRP-Al-T after the H2 measurement test. The total 

area and volume of the blisters are estimated to be 0.07 cm
2
 and 0.014 cm

3
, respectively, by 

assuming the blisters are hemispherical (detailed estimation process is provided in Appendix). 
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The SEM image in Figure 3.6(b) clearly illustrates the cross section of a blister. The image 

shows no accumulation of corrosion product inside the blister that would attribute to the 

formation of a blister, which again indicates that corrosion of Al is not the cause of blistering.  

 

Figure 3.5. Volume of hydrogen collected as a function of time in 3.5% NaCl solution: (a) 

MgRP-Al, (b) MgRP-Al-T 

 

 

Figure 3.6. (a) Image of MgRP-Al-T after the H2 measurement test, (b) SEM image of cross-

section of blister 
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3.4.4. Determining the cause of early blistering 

Though some researchers suggest that corrosion of Al alloy is the main cause of early 

blistering
15

, results from this research exclude this cause. In addition, hydrogen entrapment by 

the topcoat (when presented) was observed during immersion test.  Therefore, early blistering is 

believed to form when the pressure generated by trapped hydrogen exceeds the adhesion strength 

between coatings and substrate. The adhesion strength between MgRP and AA2024-T3 substrate 

was measured using the pull-off adhesion test, and the value was 8.03±0.68 MPa. Next, the 

amount of trapped H2 that can cause greater pressure than the adhesion strength is estimated.  

According to ideal gas law, the pressure generated by trapped H2 can be calculated using 

Equation (3.1): 

𝑃𝑇 =
𝑛𝑇𝑅𝑇

𝑉𝑇
                                                           (3.1)                                                                        

where PT is the pressure produced by trapped H2, nT is the mols of trapped H2,  VT is the volume 

that trapped H2 occupied, R is the ideal gas constant (0.0826 L·atm/mol·K), and T is the 

temperature. 

Before blisters formed, H2 was trapped in voids between coatings and AA2024-T3 

substrate, so VT is a very small value. Consequently, very small amount of H2 trapped by topcoat 

will result in 𝑃𝑇 > 𝑃𝐴, and causes early blistering.  

After blister formation, the volume of blisters (Vb ≈ 0.014 cm
3
) is approximately the 

volume of trapped H2. Assuming the pressure generated by trapped H2 remained the same after 

blisters formed and equal to the adhesion strength between MgRP and AA2024-T3 substrate, 

then from Equation (3.1), if the mols of trapped H2 exceed 5.7×10
–5 

mol, then 𝑃𝑇 > 𝑃𝐴. 

From the independent hydrogen volume measurement discussed earlier and described in 

Figure 3.5, it was obtained that 10.6 mL of H2 were generated from MgRP without a topcoat, 
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which equals 4.3×10
–4 

mol of H2. Therefore, compared to non-topcoated MgRP, even if only 

15% of H2 was generated and trapped by topcoat, the pressure generated by trapped H2 exceeds 

the adhesion strength between MgRP and AA2024-T3 substrate. This result was obtained by 

assuming Vb≈VT. In fact, before blister formation, VT was much smaller than the volume of 

blisters, which means that much less H2 trapped by topcoat will cause early blistering. In 

addition, the discussion earlier was based on the average value of the adhesion strength. In fact, 

neither the adhesion strength nor the pressure generated by trapped H2 is homogeneous 

throughout the surface. In some spots, the pressure required to create a blister may be lower. 

Once the pressure generated by trapped H2 was greater than the adhesion strength locally, 

blisters formed. 

From the above estimation, it was successfully proven that the entrapment of H2 by the 

topcoat is the main cause of early blistering on topcoated MgRPs on AA2024-T3 substrate. The 

total area and volume of the blisters were estimated, and the interior of the blisters was observed 

by SEM. Compared to ASTM D714-02, which only evaluates the size, frequency, shape, and 

pattern of distribution of blistering by visual observation, this approach of evaluating blisters is 

more accurate and informative. Also, these findings of the cause of early blistering suggest that 

more realistic accelerated weathering tests need to be developed for the qualification of the 

corrosion protection effect of metal-rich primers. Tests developed for steel, which assume that 

corrosion products are the only source of blistering, have no validity when there is another 

source of blistering present. 

3.4.5. Hydrogen evolution rate and open circuit potential measurement 

Figure 3.7(a) shows the hydrogen evolution rate derived from Figure 3.5(a) as a function 

of time. Four distinct stages (Si, i = 1 to 4) are apparent in the data. The first stage (S1a) is 
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approximately the first hour of exposure where the hydrogen evolution begins and the rate of 

evolution is increasing. In the second stage (S2a), after initial exposure, the hydrogen evolution 

rate drops dramatically. The third stage (S3a) is the steady decrease of the hydrogen evolution 

rate between 24 h and 168 h, after which the hydrogen evolution rate decreases to an asymptotic 

plateau. 

The OCP data measured simultaneously are shown in Figure 3.7(b), which correspond 

very well to the earlier interpretation. In the first stage (S1b), the Eocp dropped from –1.0 V to –

1.3 V. Then the Eocp increase dramatically to –1.1 V by the end of the second stage (S2b). After a 

steady increase of Eocp in the third stage (S3b), the Eocp increased dramatically toward the 

potential of the bare AA2024-T3. As explained by Bierwagen and Battocchi
6, 24

, the first stage is 

the “activation” period. As the electrolyte diffuses through the coating, Mg pigments start to 

react. Thus, the hydrogen evolution rate increased and the Eocp dropped. The cathodic protection 

reached its peak at the end of this stage, reaching a maximum Mg-Al area ratio. Then the 

hydrogen evolution rate decreased and the Eocp increased as a result of the consumption of Mg 

pigment and the build-up of Mg corrosion products. As suggested
25

, there are two possible 

modes of protection by Mg pigments: long-range protection by well-connected Mg and local 

protection by isolated Mg pigments. It is quite possible that after the second stage, most of the 

well-connected Mg pigments have been consumed or covered with corrosion products. The 

gradual decrease in the hydrogen evolution rate and a steady increase of Eocp observed in the 

third stage could be a result of continued reaction of isolated Mg pigments. Finally, after 168 h 

of constant immersion, the hydrogen evolution rate decreased to an asymptotic plateau, and the 

Eocp increased dramatically toward the Eocp of bare AA2024-T3, which indicated a mass loss of 

detectable Mg pigments and a direct path to the underlying AA2024-T3. 
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Figure 3.7. (a) Hydrogen evolution rate of MgRP-Al as a function of time in 3.5% NaCl, (b) 

OCP of MgRP-Al as a function of time in 3.5% NaCl solution 

 

3.5. Conclusions 

1. The gas generated from MgRPs was unequivocally identified as hydrogen by cyclic 

voltammetry scan. 

2. Corrosion of AA2024-T3 is very unlikely to be the cause of early blistering, because 

(a) blisters were observed on topcoated MgRP on glass substrate (no Al present), and (b) on 

AA2024-T3 substrate, no Al corrosion product was observed inside the blisters. The pressure 

produced by trapped hydrogen was estimated and compared to adhesion strength between MgRP 

and AA2024-T3 substrate. The results suggest that trapped hydrogen is very likely to produce 

enough pressure to cause early blistering. 

3. Compared to ASTM D714-02, this approach of evaluating blisters seems to be more 

accurate and informative. Also, the findings of the cause of early blistering suggest that a more 
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realistic accelerated weathering test needs to be developed for the qualification of the corrosion 

protection effect of metal-rich coating systems. 

4. Simultaneous real-time hydrogen collection and open circuit potential measurement 

was demonstrated as a new approach for studying the protection mechanism of MgRPs. 

Hydrogen evolution rate and OCP results correspond to each other very well, which captured a 

four-period process: activation, long range and local protection by MgRPs, local protection by 

MgRPs, and mass loss of Mg pigments. 
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CHAPTER 4. DEGRADATION OF MAGNESIUM RICH PRIMERS OVER AA2024-T3 

DURING CONSTANT IMMERSION IN DIFFERENT SOLUTIONS 
(1)

 

4.1. Abstract 

Degradation of Mg-rich primer (MgRP) during constant immersion in 1 wt. % NaCl 

solution and in Dilute Harrison Solution was compared. The effects of different ions, Mg 

pigment connection modes, and cathodic reaction sites on the degradation of MgRP were 

discussed.  In addition, an in situ method for the estimation of remaining Mg pigment content in 

MgRP was developed based on H2 volume collection. The estimation confirmed that there was 

still Mg pigment preserved in MgRP for continued protection of Al even though the open circuit 

potential (OCP) of MgRP had risen above the OCP of bare AA2024-T3 substrate. 

4.2. Introduction 

The Mg-rich primer (MgRP) system first developed by Nanna, Battocchi and Bierwagen 

at North Dakota State University is an effecive Cr-free corrosion protective coating system that 

duplicates / exceeds the protection afforded by Cr
6+

 pigments
1-5

. The primary protection 

mechanism of MgRP is cathodic protection of Al substrate through sacrificial anodic reaction of 

Mg pigment
6-9

. Therefore, the protection efficiency of MgRP depends critically upon several 

factors, including the connection between Mg pigment, Al substrate and electrolyte, the 

corrosion behavior of Mg pigment under exposure condition, and the Mg pigment content in 

MgRP, etc. 

                                                           
(1)

 The material in this chapter was co-authored by Junren Lin, Dante Battocchi, and Gordon P. Bierwagen. Junren 

Lin had primary responsibility for conducting experiment, collecting and interpreting data. Junren Lin was the 

primary developer of the conclusions that are advanced here. Junren Lin also drafted and revised all versions of this 

chapter. Dante Battocchi, and Gordon P. Bierwagen served as proofreaders and checked the data obtained by Junren 

Lin. 
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Previous research on metal-rich primers
10-11

 has noticed that connection between metal 

pigment, substrate and exposure electrolyte play an important role on the corrosion protection by 

metal-rich primers. For example, Morcillo, et al.
11

 discussed different electronic and ionic 

conductive paths in zinc rich primers (ZRP). They found that the attack mechanisms for zinc 

particles in ZRP are different, depending on the connections between zinc paricles and steel 

substrate. King et al.
10

 suggested two possible modes of protection in MgRP: well-connected Mg 

pigment provides long range protection to remote defects while Mg pigment buried in the 

polymer matrix might provide local or short range protection. Built on previous research, a more 

general and comprehensive description of the connection modes between Mg pigment, Al 

substrate and electrolyte is proposed in this paper. The effects of the connection modes on the 

corrosion protection by MgRPs are discussed. The proposed connection modes also work for 

other metal-rich primer systems.  

The role of exposure condition in the degradation behavior of MgRP has been studied in 

previous research. Majority of the research has focused on the effect of Cl
-
 or CO2 on the 

corrosion protection by MgRP
12–15

. Dilute Harrison Solution (DHS), which consists of 0.35 wt% 

(NH4)2SO4 and 0.05 wt% NaCl in distilled water, has been used extensively in MgRP studies
15–17

. 

The incorporation of (NH4)2SO4 is considered to better emulate atmospheric conditions often 

encountered by airplanes (acid rain) than NaCl along. Research on the corrosion of Mg / Mg 

alloys in the presence of  NH4
+
 and SO4

2-
 has found different behavious from those in NaCl 

solution. Battochi, et al. 
16

have found for a Mg electrode smaller corrosion rates in NaCl than in 

DHS. Buggio et al. 
18

 have observed uniform corrosion and remarkable reactivity on AZ31 Mg 

alloy in the presence of NH4
+
. However, the effect of NH4

+
 and SO4

2-
 on the corrosion behavior 
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of MgRP hasn’t been well discussed. In this paper, degradation behaviors of MgRP during 

constant immersion in 1 wt. % NaCl solution and in DHS were compared. 

Lifetime of an MgRP relies significantly on Mg pigment content in the primer as the 

metal content defines the cathodic protection. Therefore, the information of the remaining Mg 

pigment content in an MgRP should aid in predicting the lifetime of an MgRP in various 

environments. XRD has been used to quantitativly assess the amount of elemental Mg 

remainging in MgRPs after full immersion
10

. The result revealed that Mg pigment that was 

buried in polymeric matrix was preserved in MgRPs after immersion, but electrochemical 

methods can not sense the buried Mg pigment. Therefore, methods that are capable to predict the 

lifetime of MgRPs more accurately should be developed, especially methods that would allow 

easy, non-destructive and in-situ measurement.  

This research compares the corrosion mechanism of Mg pigment and the degradation 

behaviors of MgRP in 1% NaCl solution and in DHS during constant immersion. Eventhough 

some evidence indicates that constant immersion produce results in disagreement with field 

experience, constant immersion remains a common test for the qualification of paint systems. 

The MgRP formula originally developed by NDSU was used in this reseach instead of a 

commercial product of MgRP, in order to eliminate the influence of unknown additives in 

commercial products. Dissolution of Mg pigment and immersion of Mg pellet electodes were 

performed to assess the corrosion rate and corrosion forms of Mg pigment in DHS and 1% NaCl 

solution. Electrochemical measurements, scanning electron microscope analysis and hydrogen 

volume collection were conducted on MgRP with no topcoat in order to  better observe the 

processes that occur in the primer when the topcoat is scratched or chinked.  
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4.3. Experimental procedures 

4.3.1. Materials and sample preparation 

The AA2024-T3 panels were purchased from Q-Lab
†
. The epoxy resin used in this study 

was a two component system (Epon 828 and Epikure 3164) purchased from Hexion Inc
†
. BYK 

346 (from BYK-Chemie
†
) was used as dispersant, tert-butyl acetate (from TCI American

†
) and 

p-xylene (from Sunnyside Corporation
†
) were the solvents used. The Mg pigment was supplied 

by READE Advanced Materials
†
. 

The AA2024-T3 panels were blasted with Al2O3 grit to remove the oxide layer, grease, 

and oils. The panels were then rinsed with hexane until no residues were observed. Mg-rich 

primer (MgRP) was prepared by dispersing Mg pigment into the epoxy phase. The pigment 

volume concentration was 40%. MgRP was applied to Al panels by air spray. MgRP coated 

panels were cured at room temperature for 7 days before being tested. The thickness of the dry 

primer was about 70 µm (±10 µm), which was measured with a digital thickness gauge 

(Elcometer 345
†
).  

Mg pellets were made by compressing Mg powder using an International Crystal 

Laboratories press
†
 at 4000 psi. The pellet was then mounted inside a Tefzel flat specimen holder 

purchased from Princeton Applied Research
†
. The exposed area was 1cm

2
. 

Two electrolytes: 1% NaCl solution and DHS were used in this research. The pH of 1% NaCl 

solution was 6.06±0.18 and the pH of DHS was 5.81±0.14.  

 

 

                                                           
†
 Trade name 
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4.3.2. Reaction of Mg pigment 

Same amount (0.015g) of Mg pigment was added into 15 ml DHS and into 15 ml 1% 

NaCl solution to compare the dissolution rate of Mg pigment in these two electrolytes. The 

dissolution process of Mg pigment was recorded. Solution pH was measured after 15 mins of 

adding Mg pigment. The same experiement was repeated three times. 

Immersion of Mg pellet electrode was performed to determine corrosion forms of Mg in 1% 

NaCl solution and in DHS.  A Mg pellet electrode was immersed vertically in 50ml electrolyte 

and removed from the electrolyte periodically in order to collect the image of Mg pellet surface.  

Mg pellet surface was rinsed with deionized water and dried with air before taking an image. 

Solution pH was measured during the immersion test. Three replicates were performed in each 

electrolyte. 

4.3.3. Constant immersion and electrochemical measurement 

The setup of the constant immersion test was consisted of a PVC tube adhered to an 

MgRP coated AA2024-T3 panel. The tube was filled with electrolyte for the duration of the 

experiment. The exposed area of the MgRP was 12 cm
2
. The electrolyte was replaced once per 

week. Open circuit potential (OCP) and electrochemical impedance spectroscopy (EIS) were 

conducted periodically during the constant immersion using a Gamry potentiostat
†
. The 

electrochemical measurements were performed using a three-electrode setup. The MgRP coated 

sample was the working electrode. A saturated calomel electrode (SCE) was used as reference 

electrode and a Pt mesh was used as counter electrode.  A 10 mV amplitude perturbation 

potential with respect to the open circuit potential was used for the EIS measurement. Frequency 

range of 10
5
 to 10

-2
 Hz was applied during measurement with an acquisition rate of 10 points per 

decade. Three replicates were performed in 1% NaCl solution and in DHS. 
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4.3.4. H2 Volume collection  

A full immersion hydrogen testing assembly
19-21 

was used to measure the volume of H2 gas 

generated from a MgRP coated AA2024-T3 panel. The experimental setup consisted of a glass 

funnel placed inside a beaker. An inverted volumetric burette was attached to the end of  the 

glass funnel to collect H2 bubbles. A MgRP coated Al panel was placed at the bottom of the 

beaker, inside the glass funnel. The exposed area of the MgRP was 9cm
2
. The edges and the back 

of the sample were sealed with epoxy and taped to prevent the penetration of electrolyte. A 

schematic of the setup is shown in Figure 4.1. The electrolyte was saturated with H2 gas prior to 

exposing the sample by purging with high purity H2. Three replicates were performed in 1% 

NaCl solution and in DHS.   

 

 

 

 

 

 

 

 

 

Figure 4.1. Experimental setup for H2 volume collection  
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4.3.5. Scanning electron microscope 

For scanning electron microscope (SEM) investigations, coating cross-sections were 

prepared by ion mill using a JEOL IB09010CP cross section polisher (from JEOL Ltd
†
). Then 

samples were mounted on aluminum mounts and coated with gold using a Hummer II sputter 

coater
†
. Images of the cross-section were taken using a JEOL JSM-6490LV scanning electron 

microscope (from JEOL Ltd) in back scattering mode with 15KeV acceleration voltage. Energy-

dispersive X-ray spectroscopy (EDX) information was obtained via a Thermo NORAN EDS 

detector
†
. 

4.4. Results and discussion 

4.4.1. Effect of Cl
-
, NH4

+
, SO4

2-
 on the formation of Mg corrosion products 

0.015g Mg pigment was added into 15 ml DHS and into 15 ml 1% NaCl solution. The 

dissolution process of Mg pigment was recorded for 5 mins as a supplemental material (with 4 

times the speed). Figure 4.2 shows that after 5 mins, more Mg piment remains in 1% NaCl 

solution than in DHS, indicating that Mg pigment dissolved slower in 1% NaCl solution than in 

DHS. The pH of 1% NaCl solution increased to 10.93±0.15 and the pH of DHS increased to 

9.73±0.06 after 15 mins of adding Mg pigment. 
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Figure 4.2. Remaining Mg pigment after 5 mins adding into 1% NaCl solution and DHS 

Figure 4.3. Images of the corroded Mg pellet surfaces during immersion in (a) 1% NaCl solution 

(b) DHS 
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To determine corrosion forms of Mg in 1% NaCl solution and in DHS, immersion of Mg 

pellet electrode was performed. Representative images of the corroded surfaces during the 

immersion test are showed in Figure 4.3. In 1% NaCl soultion, pits were observed on Mg pellet 

surface after 5 mins of immersion. With increased immersion time, oxide layer was developed on 

Mg pellet surface. In DHS, uniform corrosion with formation of a thin surface layer was 

observed. Changes of electrolyte pH during the immersion test are shown in Figure 4.4. 

 

Figure 4.4. Changes of electrolyte pH during Mg pellet electrode immersion test 

 

To interpret the different behaviors between Mg pigment in 1% NaCl solution and in 

DHS, the effects of different ions on the formation and dissolution of Mg corrosion products 

should be considered. Initially, the pH value of DHS (5.81±0.14) is slightly lower than that of 1% 

NaCl solution (6.06±0.18). It is known that Mg is more reactive in lower pH electrolyte. With 

corrosion reactions going on, the cathodic reduction of H2O produces OH
-
. It is known that 
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Mg(OH)2 tends to precipitate and form a protective layer at high pH (~10.5)
17

. In 1% NaCl 

solution, accumulation of OH
-
 leaded to the increase of pH (Figure 4.4) and thus the precipitation 

of Mg corrosion products. Even though Cl
-
 can penetrate through the protective layer and cause 

pitting corrosion
22,23

, the corrosion rate of Mg decreased to some extent due to the formation of 

the partial protective layer.  

 

Figure 4.5. Distribution of Mg
2+

species in (a) 1% NaCl solution and (b) DHS 
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While in DHS, due to the buffering effect of NH4
+
 (Equation 4.1)

24,25
, OH

-
 was consumed. 

Consequently, the increase of pH and the precipitation of insoluble Mg corrosion product were 

delayed in DHS (Figure 4.3 &4.4). 

𝑁𝐻4 
+ + 𝑂𝐻− → 𝑁𝐻3 + 𝐻2𝑂                                                (4.1) 

In addition, the approximate equilibrium calculation using Hydra Medusa
© 

software
(1)

 

shows that the onset pH for the precipitation of Mg(OH)2 increases from around 9.3 in 1% NaCl 

solution (Figure 4.5a) to around 9.75 in DHS (Figure 4.5b), due to the formation of MgNH3
2+

 

and MgSO4 soluble complexes. As a result of the slower precipitation of Mg corrosion product, 

the corrosion rate of Mg was higher in DHS than that in 1% NaCl solution.  

4.4.2. Connection modes of Mg pigment 

Built on previous work, it is proposed in this section that Mg pigment exists in MgRP 

with one or more of the three connection modes depending on the pigment volume concentration 

and the coarseness of the coating
26–28

, as shown in Figure 4.6: (1) Insulated Mg pigment: Mg 

pigment is completely embedded in polymer matrix, not connected to voids or cracks that allow 

access to electrolyte; (2) Isolated Mg pigment: Mg pigment is connected to voids or cracks that 

allow access to electrolyte, but not connected to Al substrate; and (3) Well-connected Mg 

pigment: Mg pigment is connected to Al substrate as well as voids or cracks that allow access to 

electrolyte. The modes of connection are somewhat mutable. For example, new defects occur in 

the polymer matrix may transform the insulated Mg pigment into isolated or well-connected 

pigment; and well-connected Mg pigment may transform into isolated Mg pigment due to 

dissolution of Mg or formation of corrosion product.  

                                                           
(1) I. Puigdomenech, “HYDRA (Hydrochemical Equilibrium- Constant Database) and MEDUSA (Make Equilibrium Diagrams 

Using Sophisticated Algorithms) Programs,” Royal Institute of Technology, Sweden. www.kth.se/en/che/medusa 
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When surface pretreatment is applied to Al substrate, connection between Mg pigment 

and Al substrate is affected by different surface pretreatments
29

. If the resistance of the 

pretreatment layer is high, the observation of well-connected Mg pigment will be delayed until 

conductive path developed through the pretreatment layer. 

 

Figure 4.6. Schematic representation of connection modes of Mg pigment in MgRP 

 

When MgRP is exposed to corrosive environment, reactions occur on both isolated and 

well-connected Mg pigments. No reaction occurs on insulated Mg pigment, unless it transform 

into isolated or well-connected pigment. While reactions happen, the well-connected Mg 

pigment can provide cathodic protection to Al substracte since the well-connected Mg pigment 

and Al substract form a galvanic couple. But isolated Mg pigment undertake self-corrosion 

without providing cathodic protection to Al substracte as no electronic connection between 

isolated Mg pigment and Al substrate. This suggests that eliminating the amount of isolated Mg 

pigment and balancing the ratio of insulated and well-connected Mg pigment are critial to 

theformulation of MgRPs with long term cathodic protection. 
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4.4.3. Cathodic reaction and microstructure of MgRP in DHS and 1% NaCl solution 

4.4.3.1. SEM and EDX analysis 

Scanning electron microscopy (SEM) image of Mg-rich primer prior to immersion was 

shown in Figure 4.7a. Energy-dispersive X-ray spectroscopy (EDX) analysis on Mg pigment 

(area 1) shows very low oxygen content (Table 4.1), suggesting that Mg pigment was largely 

unoxidized prior to immersion.  

After constant immersion, MgRPs were cross-sectioned for SEM and EDX analysis. Two 

distinct areas (outer dark layer and inner bright area) were observed on most Mg pigment after 

immersion in 1% NaCl solution (Figure 4.7b). EDX results show that the outer dark area (area 2) 

has very high oxygen content, suggesting the formation of an oxide layer; and the inner bright 

area (area 3) shows similar elemental contents to the unexposed sample, suggesting unreacted 

Mg. These results indicate that after immersion in 1% NaCl solution, an oxide layer formed on 

the surface of most Mg pigment. In contrast, after immersion in DHS, MgRP shows a porous 

structure (Figure 4.7c). Few Mg particles are surrounded by a darker layer and EDX analysis 

show that remaining Mg pigment has similar elemental contents to the unexposed sample (area 

4). This suggests that few Mg particles are covered by oxide layer after immersion in DHS. 
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Figure 4.7. SEM images for MgRP (a) before immersion, (b) after immersion in 1% NaCl, (c) 

after immersion in DHS 

 

Table 4.1. Elemental composition by EDX of Mg pigments before and after immersion 

Area Exposure condition 
Elemental composition (Atom %) 

C O Mg 

1 Unexposed 32.25 0.21 67.54 

2 After immersion in NaCl 7.94 68.72 22.48 

3 After immersion in NaCl 26.11 2.15 71.74 

4 After immersion in DHS 31.93 0.42 67.47 

 

It has been discussed in previous section that the buffering effect of NH
4+

 and the 

formation of MgNH3
2+

 and MgSO4 soluble complexes result in delayed precipitation of Mg 

corrosion product in DHS. In addition, the effect of cathodic reaction sites in MgRP might also 

4 
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contribute to the different microstructures observed on MgRPs after immersion in DHS and 1% 

NaCl solution. 

4.4.3.2. Effect of cathodic reaction sites on the microstructure of MgRP 

Depending on whether Mg pigment is well-connected or isolated, cathodic reaction might 

occur in the MgRP system at different locations. When Mg pigment is isolated from AA2024-T3 

substrate, both anodic and cathodic reactions occur on Mg pigment. Therefore, in both DHS and 

1% NaCl solution, corrosion product (if present) will precipitate on the surface of isolated Mg 

pigment.   

In the well-connected mode, Mg pigment and the bare zone of AA2024-T3 substrate 

form a galvanic couple. The cathodic reaction occurs mainly on the AA2024-T3 surface, with 

small portion taking place on Mg pigment. Therefore, the sites where corrosion products form 

depend on the relative mobility of Mg
2+

 and OH
-
 ions, as well as local pH value. In 1% NaCl 

solution, pitting corrosion occurred on Mg pigment in the primer. The pits provided sheltered 

areas that deterred easy mass transport between the pit interior and the exterior bulk solution. It 

was easier for OH
-
 to diffuse from AA2024-T3 surface to the pit mouth. Also, a high-pH 

microenvironment developed inside the pit due to the cathodic reaction that occurred on Mg 

pigment. Consequently, in 1% NaCl solution, corrosion products of Mg precipitated on Mg 

pigment, inside the pit or at the pit mouth when Mg
2+

 diffused to the exterior.  

In DHS, uniform corrosion occurred on Mg pigment. There was no restriction for Mg
2+

 

diffusing to the AA2024-T3 surface. In addition, higher pH value developed on AA2024-T3 

surface than on Mg pigment surface due to extensive cathodic reaction on AA2024-T3 surface. 

Therefore, in DHS, corrosion products formed close AA2024-T3 surface 
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According to the discussion above, in 1% NaCl solution, most corrosion product 

precipitated on Mg surface no matter Mg pigment was isolated or well-connected. In DHS, few 

corrosion products precipitated on Mg pigment surface and lead to the porous structure of MgRP 

after immersion in DHS. In addition, the porous structure developed in DHS allowed more 

electrolyte penetrated into MgRP. Penetration of bulk electrolyte into MgRP lowers the pH value 

in the primer and increases ionic conductivity. As a result, Mg pigment dissolution was further 

accelerated in DHS. 

4.4.4. H2 volume measurement 

4.4.4.1. H2 evolution from MgRPs 

The volume of H2 generated from MgRPs immersed in DHS and in 1% NaCl solution 

was collected for 240 hours (Figure 4.8). In DHS, the volume of H2 increased rapidly during first 

24 hours of immersion, and then increased in a very slow rate. In 1% NaCl solution, the volume 

of H2 increased slower than in DHS during early stage of the test, but kept increasing steadily till 

the end of the test.  
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Figure 4.8. Volume of hydrogen collected as a function of time in DHS and in 1% NaCl solution 

 

According to the corrosion reaction of Mg  (Equation 4.2),  

𝑀𝑔 + 2𝐻2𝑂 → 𝑀𝑔(𝑂𝐻)2 + 𝐻2 ↑                                                (4.2) 

during the degradation process of MgRP, the moles of hydrogen generated are equal to the moles 

of Mg pigment oxidized. Therefore, the amount and rate of H2 evolved from MgRP can be 

interpreted by the corrosion behavior of Mg pigment in MgRP. 

H2 evolution from MgRP shown in Figure 4.8 depends on both the H2 generation rate and 

the diffusion rate of H2 out of coatings. The corrosion rate of Mg in 1% NaCl solution was lower 

than that in DHS. That is to say, H2 generation rate was lower in 1% NaCl solution than in DHS. 

In addition, the porous structure of MgRP after immersion in DHS allowed faster diffusion of H2 

out of MgRP. Consequently, higher hydrogen evolution rate was observed in DHS until the 
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readily exposed Mg was mostly consumed. Then due to the exhaustion of readily exposed Mg 

pigment in DHS, the hydrogen evolution rate was lower in DHS than in 1% NaCl solution. 

4.4.4.2. Estimation of the quantity of remaining Mg pigment in MgRP 

The moles of hydrogen generated from MgRP ( 𝑛𝐻2
) can be calculated using the ideal gas 

law. Since the moles of hydrogen generated are equal to the moles of Mg pigment oxidized, the 

moles of Mg consumed ( 𝑛𝑀𝑔) can be obtained. By comparing the moles of Mg consumed and 

the total mole of Mg in an MgRP, the remaining capacity of MgRP can be easily estimated at 

any point of the H2 volume collection as illustrated below. 

The moles of Mg consumed ( 𝑛𝑀𝑔) can be calculated using Equation 4.3: 

 𝑛𝑀𝑔 = 𝑛𝐻2
=

𝑝𝑉𝐻2

𝑅𝑇
                                                          (4.3) 

where 𝑝 is the atmosphere pressure ,  𝑉𝐻2
 is the volume of H2 collected, R is the ideal gas 

constant (0.0826 L·atm·mol
-1

·K
-1

), and T is the temperature.  

Total moles of Mg in an MgRP (𝑁𝑀𝑔) can be calculated using Equation 4.4: 

𝑁𝑀𝑔 =
𝑀𝑎𝑠𝑠𝑀𝑔

𝑀𝑀𝑔
=

𝑃𝑉𝐶×𝑇×𝐴×𝐷𝑀𝑔

𝑀𝑀𝑔
                                                     (4.4) 

Where 𝑀𝑎𝑠𝑠𝑀𝑔 is the total mass of Mg pigments in a MgRP, 𝑀𝑀𝑔 is the molar mass of Mg 

(24g/mol), PVC is the pigment volume concentrate of the MgRP, T is the thickness of the MgRP 

film, A is the exposed area of the MgRP, and 𝐷𝑀𝑔 is the density of Mg pigments (1.738g/cm
3
).  

As an example, for the MgRPs used in this research (40% PVC, 9cm
2
 exposed area and 

70µm thickness), the total moles of Mg is 1.82×10
-3

 mole. After H2 volume collection, in DHS, 

where 22.5 ml of H2 was collected, 𝑛𝑀𝑔−𝐷𝐻𝑆 =9.14×10
-4 

mole; and in 1%NaCl solution, where 

21.2 ml of H2 was collected, 𝑛𝑀𝑔−𝑁𝑎𝐶𝑙 =8.61×10
-4 

mole. So in both solutions, the amount of Mg 
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reacted is much less than the total amount of Mg in the MgRP, which suggests that there was Mg 

pigment preserved in polymer matrix, as also observed by Scully, et al
10

.  

4.4.5. Electrochemical measurements on MgRPs 

The open circuit potential (OCP) and electrochemical impedance spectroscopy (EIS) 

measurements were taken periodically during the constant immersion. The OCP results were 

shown in Figure 4.9. It is observed that the OCP of MgRP rose above the OCP of bare AA2024-

T3 after 72 hours of immersion in DHS and after 168 hours of immersion in 1% NaCl solution, 

while both the SEM images and the estimation of remaining Mg pigment based on H2 volume 

collection show that there is Mg pigment remaining in MgRP even after 240 hours of constant 

immersion. This confirms that OCP measurement only senses well-connected Mg pigment. 

Therefore, the OCP of MgRP increases above the OCP of AA2024-T3 substrate when well-

connected Mg pigment is depleted, even though isolated and insulated Mg pigment remains in 

MgRP. In DHS, as fast uniform corrosion occurred on Mg pigment and corrosion product did not 

precipitate on the surface of well-connected Mg pigment, anodic reaction of Mg pigment lead to 

rapid loss of electrical connection between Mg pigment and AA2024-T3 substrate. Consequently, 

OCP of MgRP rose above the OCP of bare AA2024-T3 rapidly. In 1% NaCl solution, corrosion 

product precipitated on the surface of well-connected Mg pigment, decreasing the electrical 

connectivity between Mg pigment and AA2024-T3 substrate. However, the electrical 

connectivity persisted until the oxide layer is too thick to be conductive or the depletion of well-

connected Mg pigment. Therefore, the OCP of MgRPs in 1% NaCl solution increased slower 

than that in DHS.  
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Figure 4.9. OCP of MgRP and bare Al in different solutions 

 

The impedance measured at low frequency reflects the resistance information about the 

coating system, including the barrier properties of the coating film as well as the resistances 

occurring at the substrate/coating interface
30, 31

.  Three replicates were performed in each 

electrolyte. The trends of the change of low frequency impedance were very similar in each 

electrolyte. Figure 4.10 shows the representative results of the change of the 0.01Hz impedance. 

The difference in the initial 0.01 Hz impedance could be attributed to the solution resistance: 1% 

NaCl solution has lower solution resistance resulting in lower 0.01Hz impedance. During first 

few hours of immersion, the 0.01Hz impedance decreased in both solutions. This stage can be 

described as the “activation” period, during which the electrolyte diffused through the primer and 

the electrochemical connection between Mg pigment and Al substrate was developed. After this 

period, the 0.01Hz impedance increased in both solutions, which may be due to the formation of 
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corrosion products/oxide layer on Mg or Al substrate surface, as well as the consumption of Mg 

pigment, which increased the corrosion resistance of the primer.  However, in DHS, the 0.01Hz 

impedance decreased after 72 hours of immersion. While in 1% NaCl solution, the 0.01Hz 

impedance kept increasing until 100 hours of immersion and then remained almost constant until 

the end of the experiment. The decrease of 0.01Hz impedance in DHS after 72 hours of 

immersion might be caused by the development of coating porosity due to the dissolution of 

well-connected and isolated Mg pigment. The unchanged 0.01Hz impedance in 1% NaCl 

solution suggests that the formation and dissolution of Mg corrosion product reached a balance 

in 1% NaCl solution.  

 

Figure 4.10. 0.01Hz impedance of MgRP during immersion in DHS and 1% NaCl solution 

4.5. Conclusions 

1. Corrosion of Mg in DHS and 1% NaCl solution was compared. The different corrosion 

behavior in DHS when compared to 1% NaCl solution is attributed to the buffering effect of 
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NH4
+
 and the formation of soluble complexes, which retarded the precipitation of Mg corrosion 

products.  

2. Readily exposed Mg pigment consumed faster in DHS than in 1% NaCl solution. 

MgRPs showed different microstructures after constant immersion in DHS and in 1% NaCl 

solution. Mg pigment connection modes and the effects of the connection modes on the 

corrosion protection by MgRPs were discussed. This effect along with the effect of different ions 

on the formation of Mg oxidation products and the effect of cathodic reaction sites in MgRP 

explained the different behaviors of MgRP in DHS and in 1% NaCl solution. 

3. A method for the estimation of remaining Mg pigment content in MgRP was 

developed based on H2 volume collection. The estimation data and the SEM analysis of MgRP 

confirmed that there was still Mg pigment preserved in MgRP for continued protection of Al 

even though the OCP of MgRP rose above the OCP of bare AA2024-T3 substrate. 
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CHAPTER 5. INHIBITORS FOR PROLONGING CORROSION PROTECTION OF 

MAGNESIUM RICH PRIMER ON AL ALLOY 2024-T3
(1)

 

5.1. Abstract 

This research investigated the possibility of adding inhibitors into magnesium rich primer 

(MgRP) to prolong the corrosion protection time of MgRP on Al alloy 2024-T3. Three inhibitors: 

sodium benzoate (SB), sodium dodecylbenzenesulfonate (SDBS), and 8-hydroxyquinoline (HQ), 

were tested and added into MgRPs separately. Potentiodynamic scans on pellet electrodes 

confirmed that the inhibitors reduced Mg corrosion rate. The coating systems with and without 

inhibitors were compared through electrochemical tests, hydrogen volume measurement, 

accelerated weathering tests and adhesion tests. It was observed that the addition of SB, SDBS 

and HQ into MgRPs could prolong cathodic protection time and improved barrier properties of 

MgRPs, without compromising adhesion strength. 

5.2. Introduction 

The Mg-rich primer (MgRP) system first developed by Nanna, Battocchi and Bierwagen 

at North Dakota State University is an effective Cr-free corrosion protective coating system that 

duplicates / exceeds the protection afforded by Cr
6+

 pigments
1-8

.  The protection mechanism of 

MgRP is primarily cathodic protection of Al substrate through sacrificial anodic reaction of Mg 

pigment
9-12

. However, rapid consumption rate of Mg pigment in wet environment results in 

limited cathodic protection time of MgRPs, especially when a topcoat is not present
13

. One 

approach to prolong the cathodic protection time of MgRPs is adding corrosion inhibitive 

                                                           
(1)
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components into MgRPs to moderate the consumption rate of Mg pigment
14–17

. For example, Yu 

Zuo, et al
15

. studied 8-hydroxyquinoline (HQ) added MgRP on AZ91D Mg alloy substrate and 

observed that HQ prolonged the cathodic protection time of the primer by forming an insoluble 

complex with Mg. However, these research focus on examining the inhibitor-added MgRPs on 

Mg alloy substrate. Research on the addition of organic inhibitors to prolong the corrosion 

protection of MgRPs on Al alloy substrate has not been reported. 

Prior studies have shown that sodiumdodecylbenzenesulfonate (SDBS) and sodium 

benzoate (SB) are promising environmental friendly corrosion inhibitors for Mg, Al or their 

alloys by absorbing on metal surface and decelerating the metal dissolution rate 
18–21

. Their 

effects as additives in MgRPs used on Al alloy have not been examined. In this research, SB, 

SDBS and HQ were added into MgRPs. The potential of these inhibitors to prolong the corrosion 

protection time of MgRPs on Al alloy was investigated. The inhibitor-added MgRPs were tested 

through hydrogen volume measurement, accelerated weathering tests, electrochemical tests and 

adhesion test. 

5.3. Experimental procedures 

5.3.1. Materials  

The AA2024-T3 panels used in this study were purchased from Q-Lab
†
. The epoxy resin 

system used was a two component system (Epon 828 and Epikure 3164) purchased from Hexion 

Inc†. BYK 346, from BYK-Chemi†, was used as dispersant, tert-butyl acetate (from TCI 

American†) and p-xylene (from Sunnyside Corporation†) were the solvents used. The Mg 

pigments were supplied by READE Advanced Materials†. Particle size distribution of Mg 

pigment was measured using Accusizer 780 single particle optical particle sizing system (Figure 

                                                           
†
 Trade name 
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5.1). Sodium benzoate (SB) and 8-hydroxyquinoline (HQ) were purchased from Alfa Aesar†, and 

sodium dodecylbenzenesulfonate (SDBS) was purchased from Sigma Aldrich†. The topcoat was 

Aerodur®5000 military aircraft topcoat supplied by Akzo Nobel†. 

 

Figure 5.1. Particle size distribution of Mg pigment 

5.3.2. Mg pellet electrodes preparation and testing 

5.3.2.1. Mg pellet electodes preparation 

Mg pellet electrodes were made by compressing Mg powder at 4000 psi using a 

compressor supplied by International Crystal Laboratories
†
. The pellet was then connected to an 

Al wire and glued onto a glass substrate as electrode. The edges of the pellet as well as the 

contact area between the pellet and Al wire were sealed with epoxy. The exposed pellet area for 

PDS measurement was 1cm
2
. Three inhibitor-added Mg pellet electrodes: Mg+HQ pellet 

electrode (Mg-HQ), Mg+SB pellet electrode (Mg-SB), and Mg+SDBS pellet electrode (Mg-

SDBS) were prepared in the same way using Mg + 5wt.% inhibitor powder mixture. A schematic 

diagram of making an inhibitor-added Mg pellet electrode is shown in Figure 5.2. 
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Figure 5.2. Schematic diagram of making an inhibitor-added Mg pellet electrode 

5.3.2.1. Potentiodynamic scan (PDS) on Mg pellet electrodes 

PDS measurement was conducted through a three-electrode setup. A Mg pellet electrode 

was used as the working electrode. A saturated calomel electrode (SCE) was used as the 

reference electrode, and a Pt mesh was used as the counter electrode. The PDS measurement 

started after 30 mins of immersion. The scan was set at 0.3mV/s and ranged from -1.25 V vs 

SCE to -0.5V vs SCE, corresponding to the mix potential range of MgRP on AA2024-T3. The 

same test was conducted on Mg-inhibitor electrodes for comparison. 

5.3.3. Coating preparation and testings 

5.3.3.1. Coatings preparation 

The AA2024-T3 panels were blasted with 80µm Al2O3 grit using Econoline Mini Bench
†
 to 

remove the oxide layer, grease, and oils. The panels were then rinsed with hexane until no 

residues were observed. Mg-rich primer (MgRP) was prepared by dispersing Mg pigment into 

the epoxy phase. The pigment volume concentration (PVC) was 40%. Three inhibitor-added 

primer systems were prepared: MgRP with HQ (MgRP+HQ), MgRP with SB (MgRP+SB), and 

MgRP with SDBS (MgRP+SDBS). Inhibitors were first mixed separately with Mg pigment, and 
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then dispersed uniformly into the epoxy phase. The inhibitor concentration in each inhibitor-

added primer was 5wt.%  based on the weight of Mg pigment. All primers were applied to 

AA2024-T3 panels by air spray. Primer coated panels were cured at room temperature for 7 days 

before being tested or topcoated. The topcoated systems are denoted as MgRP-TC, MgRP+HQ-

TC, MgRP+SB-TC, and MgRP+SDBS-TC. The thickness of the dry primer was 55±10 µm and 

the thickness of the topcoat was 50±10 µm, as measured with a digital thickness gauge 

(Elcometer 345
†
).  

5.3.3.2. Adhesion test 

In order to ensure that the addition of inhibitors does not compromise the adhesion 

strength of the primer, pull-off adhesion testing was conducted on MgRP coated samples and 

compared to the samples with inhibitors. Tests were performed according to the ASTM standard 

D4541-09. Three sets of measurements were made. The dolly used for the test has a diameter of 

14 mm and the pull-off rate was 0.7 MPa/s.  

5.3.3.3. Hydrogen volume measurement 

A full immersion hydrogen testing assembly was used to measure the volume of H2 gas 

generated from MgRP coated aluminum panel
22-24

. The experimental setup (Figure 5. 3) 

consisted of a glass funnel placed inside a beaker. An inverted volumetric burette was attached to 

the end of glass funnel to collect H2 bubbles. A primer coated Al panel was placed at the botton 

of the beaker, inside the glass funnel. The exposed area of the coating was 9cm
2
. The edges and 

the back of the sample were sealed with epoxy and taped to prevent the penetration of electrolyte. 

The electrolyte was saturated with H2 gas prior to exposing the sample by purging the electrolyte 

with high purity H2 gas. The test electrolyte was Dilute Harrison’s Solution (DHS), which 

consists of 0.05wt.% NaCl and 0.35wt.% (NH4)2SO4. The pH of the DHS was 5.9. 
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Figure 5.3. Hydrogen collection setup 

 

5.3.3.4. Accelerated weathering test 

To compare the performance of MgRP and the inhibitor-added MgRPs under aggressive 

environment, both primer coated AA2024-T3 samples and primer+topcoated samples were 

exposed to Prohesion
®
 (ASTM G85-11) weathering. The Prohesion

®
 exposure is cyclic, 

alternating between one hour of salt fog (DHS) at 25°C and one hour of bake-off at 35°C. The 

back and the edges of the panels were covered with tape. An X shape scribe was made on 

topcoated samples until the AA2024-T3 substrate was reached. The primer coated samples were 

removed from the tester periodically for visual analysis and EIS test. The topcoated samples 

were removed from the tester periodically for visual inspection. All panels were removed at the 

end of fog cycle. At least 3 panels were tested for each sample. 
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5.3.3.5. Electrochemical impedance spectroscopy (EIS) 

EIS tests were conducted on primer coated samples before and during Prohesion
®
 

exposure. Tests were carried out through a three-electrode setup. A primer coated sample was 

clamped to a glass cell with a 7.06 cm
2
 exposure area and used as the working electrode. A 

saturated calomel electrode (SCE) was used as the reference electrode, and a Pt mesh was used 

as the counter electrode. EIS data collection started after 30 mins adding the electrolyte (DHS) to 

the glass cell. OCP was measured prior to EIS tests. The frequency range of EIS tests is from 10
5
 

Hz to 0.01Hz with an acquisition rate of 10 points per decade. The amplitude of alternating 

current (AC) voltage perturbation was ±10 mV with respect to the OCP. All the electrochemical 

tests were conducted using a Gamry potentiostat
†
.  

5.4. Results and discussion 

5.4.1. Potentiodynamic scans on Mg pellect electrodes  

To examine the inhibition effect of sodium benzoate (SB), sodium dodecyl-

benzenesulfonate (SDBS), and 8-hydroxyquinoline (HQ) on Mg, potentiodynamic scans (PDS) 

were conducted on pellet electrodes in DHS (Figure 5.4). The currents obtained from inhibitor-

added Mg pellet electrodes were lower than that from Mg pellet electrode, indicating decreased 

Mg corrosion rate with the presence of inhibitors. In addition, current oscillations are observed 

from Mg-inhibitor pellet electrodes, which may be due to metastable pitting on Mg surface. 

Moreover, among the three inhibitors, HQ shows highest inhibition efficiency. For Mg-

SB and Mg-SDBS pellet electrodes, initially, the currents were only slightly lower than that from 

Mg pellet electrode. With increased polarization potential, a dramatically decrease of current was 

observed from both Mg-SB and Mg-SDBS electrodes. This might be due to increased absorption 

efficiency of inhibitive anions on Mg surface with potential
25

. 
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Figure 5.4. Polarization behavior of Mg pellet electrodes with and without inhibitors exposed in 

DHS 

 

5.4.2. Adhesion test 

One of the most important properties in corrosion protective coatings is the coating 

adhesion to the substrate. Thus, pull-off adhesion test was conducted in this research to evaluate 

if adding inhibitor affected the adhesion strength between MgRP and AA2024-T3 substrate 

(Figure 5.5). The results show no significant difference in the adhesion strength between MgRPs 

with and without inhibitors, which suggest the inhibitors do not compromise the adhesion 

strength of MgRPs. 
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Figure 5.5. Adhesion strength of MgRP with and without inhibitors 

 

5.4.3. Open circuit potential (OCP) 

OCP of MgRPs with and without inhibitors were collected after exposure to DHS for 30 

mins (Table 5.1). The results show that adding HQ into MgRPs slightly increased the OCP of 

MgRPs, while adding SB and SDBS into MgRPs decreased the OCP of MgRPs. The change of 

OCP can be explained by considering the ionic conductivity and inhibition efficiency of the 

inhibitors. It’s reported that HQ is a mixed-type inhibitor and can instantaneously form stable 

complexes with Mg
18,26

. The complexes layer increased the resistivity between Mg pigment and 

Al alloy substrate, and therefore increased the OCP as the galvanic couple potential is affected 

by the resistivity of the system. In contrast, adding SB and SDBS into primers decreased the 

resistivity through the primers as the two inhibitors are ionic compounds. Even though SB and 

SDBS are reported as anodic and mixed-type inhibitors for Mg alloy respectively
20

, according to 

PDS results, the inhibition efficiency of SB and SDBS on Mg is low around OCP. Therefore, the 
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increase of OCP due to absorption is not enough to offset the decreased resistivity through the 

primers, so the OCP of MgRP+SB and MgRP+SDBS decreased. 

Table 5.1. OCP of MgRPs with and without inhibitors after 30 mins immersion in DHS 

 MgRP MgRP+HQ MgRP+SB MgRP+SDBS 

OCP (V vs. SCE) -1.065±0.029 -1.035±0.031 -1.253±0.012 -1.226±0.015 

 

5.4.4. Hydrogen volume measurement 

             

Figure 5.6. H2 volume vs. time from MgRPs with and without inhibitors after immersed in DHS 

H2 generated from MgRP with and without inhibitors was collected for 24 hours while 

immersing in DHS (Figure 5.6). Since the moles of H2 generated from MgRP is equal to the 

moles of Mg consumed, H2 volume measures the amount of Mg pigment consumed in primer. 

The total moles of Mg pigment in the primer and the amount of Mg reacted in MgRPs with and 

without inhibitors are estimated and listed in Table 5.2. The results show that the addition of 

inhibitors into MgRPs reduced the consumption of Mg pigment. That is, more Mg pigment was 
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preserved in inhibitor-added MgRPs, extending the corrosion protection of Al substrate beyond 

MgRP without inhibitors.  

Table 5.2. Total moles of Mg pigment in the primer and the moles of Mg pigment consumed in 

MgRPs with and without inhibitors 

Total moles of Mg in MgRPs 

(10
-3

 mole) 

Moles of Mg consumed (10
-3

mole) 

MgRP MgRP+HQ MgRP+SB MgRP+SDBS 

1.433 0.731 0.658 0.573 0.589 

 

In addition, it is observed that, initially, more H2 was generated from MgRP+SB and 

MgRP+SDBS than from MgRP. After 1 hour of immersion, the amount of H2 generated from 

MgRP+SDBS and MgRP+SB became less than that from MgRP. For MgRP+HQ, the amount of 

H2 generated was less than that from MgRP during the immersion. This difference in the H2 

generation behaviors can also be explained by considering the ionic conductivity and inhibition 

efficiency of the inhibitors.  

For MgRP+HQ, due to the high corrosion inhibition efficiency and the low ionic 

conductivity of HQ, the decreased Mg corrosion rate outweighed the effect of increased ionic 

conductivity. Therefore, the amount of H2 generated from MgRP+HQ was less than that from 

MgRP during the immersion. 

For MgRP+SB and MgRP+SDBS, initially, around the OCP of the primers, the inhibition 

efficiency of SB and SDBS is low. Thus, the decreased Mg corrosion rate is not enough to offset 

the effect of increased ionic conductivity. Consequently, more hydrogen was generated from 

MgRP+SB and MgRP+SDBS. After 1 hour of immersion, due to the consumption of Mg 

pigment, potential of the primers increased, which resulted in the increased inhibition efficiency 
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of SB and SDBS. Therefore, the Mg corrosion rate in MgRP+SB and MgRP+SDBS dramatically 

decreased, resulting in less H2 generated from MgRP+SB and MgRP+SDBS than from MgRP.  

5.4.5. Visual Inspection (primer only) 

H2 volume collection was conducted for a short period of time, so it only evaluated the 

consumption behavior of readily exposed Mg pigment. To compare the long term performance of 

MgRP with and without inhibitors, primer coated samples were exposed to Prohesion
®
 chamber 

for visual and EIS measurements. 

The images of primer coated samples before and after accelerated weathering test are 

shown in Figure 5.7. After 2000 hours of exposure, white corrosion products were observed on 

all exposed samples, but with different extend. MgRP coated sample has completely deteriorated. 

MgRP had peeled off from the Al substrate, and severe corrosion of Al was observed. For 

inhibitor-added MgRPs, primers still adhered well to Al substrate. However, white corrosion 

products were observed on a large area of MgRP+HQ surface. For MgRP+SB and MgRP+SDBS 

coated samples, only scattered corrosion products were observed on the primer surface. It is hard 

to tell from the visual inspection that the corrosion products are due to the corrosion of Mg 

pigment, Al alloy substrate or both. Further research will be conducted to identify the corrosion 

products. The circular areas observed on exposed samples might be due to intermediate EIS 

measurements. 
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Figure 5.7. Images of MgRPs with and without inhibitors (a) before exposure, (b) after 2000hrs 

of exposure in Prohesion® chamber 

5.4.6. Electrochemical impedance spectroscopy (EIS) 

Low frequency (0.01Hz) EIS data were collected on primer coated samples before and 

during the Prohesion
®

 test to evaluate primer barrier properties 
13,27–29

(Figure 5.8). Before 

exposure, the impedance of MgRP+SB and MgRP+SDBS is lower than that of MgRP. This 

result is expected since SB and SDBS are ionic compounds, which increase the conductivity of 

the primer. During exposure, the changes of the impedance are characterized by three distinct 

periods. First, the primers experienced an increase in impedance during the first 240 hours of 

exposure. This increased impedance can be attributed to the formation of oxide layers on Mg or 
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Al alloy surface as well as the deposition of Mg corrosion products within primer pores. During 

this period, the impedance of inhibitor-added MgRPs became greater than that of MgRP, which 

seems to indicate that the inhibitors helped to form denser oxide layers and corrosion products. 

During the second period, the impedance values slightly decreased for all samples. This 

decreased impedance may be due to the dissolution of Mg corrosion products and / or depletion 

of Mg pigment, which created voids in primers. This period lasted longer for inhibitor-added 

MgRPs (240-1000hours) than for MgRP (240-750 hours). The third period is characterized by 

sharp decrease of the impedance, which indicates severe degradation of the primers and the onset 

of Al corrosion.  

In addition, it is observed that during exposure, the impedance of MgRP+HQ was lower 

than that of MgRP+SB and MgRP+SDBS, which suggests that HQ is not as effective as SB and 

SDBS in the aspect of improving primer barrier properties. This might explain why MgRP+HQ 

didn’t perform as well as MgRP+SB and MgRP+SDBS during Prohesion
®

 exposure, even 

though HQ showed best corrosion inhibition efficiency during PDS test. 
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Figure 5.8. Impedance value at 0.01Hz vs. exposure time from MgRPs with and without 

inhibitors 

 

5.4.7. Visual Inspection (with topcoat) 

Coating systems that use MgRP usually include a topcoat for camouflage and barrier 

effect. Therefore, topcoated samples were scribed and exposed to Prohesion
® 

test to evaluate the 

response of the coating systems to a defect (Figure 5.9). For MgRP-TC coating systems, severe 

deterioration of coatings was observed after 3000 hours of exposure. The image of AA2024-T3 

substrate after removal of the coatings shows that a large area of the surface was corroded. In 

contrast, for MgRP+SB-TC coating system, the coating was intact after 3000 hours of exposure. 

After removal of the coatings, corrosion product was observed only inside the scribe. For 

MgRP+SDBS-TC and MgRP+HQ-TC coating systems, besides the scribe area, slight corrosion 

was also observed on the edge of the panel. Visual inspection of both primer coated samples and 

topcoated samples demonstrates that adding inhibitor improved the corrosion protection 
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performance of MgRP. Among inhibitor-added MgRPs, the MgRP+SB coating system 

performed best, followed by MgRP+SDBS, and then MgRP+HQ coating system. 

 

Figure 5.9. Images of topcoated MgRPs with and without inhibitor (a) before exposure, (b) after 

exposure for 3000hrs, (c) after exposure for 3000hrs, coating removed 
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5.5. Conclusions 

Inhibition effect of three inhibitors: SB, SDBS, and HQ on Mg were verified through PDS. 

These inhibitors were then added into MgRPs separately for the purpose of prolonging the 

corrosion protection time of MgRPs. The coating systems with and without inhibitors were 

compared through hydrogen volume measurement, accelerated weathering tests, electrochemical 

tests, and adhesion tests. H2 volume measurement shows that adding SB, SDBS and HQ into 

MgRPs reduced the consumption of Mg pigments. Accelerated weathering tests, EIS tests, and 

adhesion tests show that the addition of SB, SDBS and HQ into MgRPs could prolong cathodic 

protection time and improved barrier properties of MgRP, without compromising adhesion 

strength. However, the presented results do not prove that the inhibitors solely work on Mg 

pigment. They might as well have inhibition effects on the Al substrate. Future work will 

consider methods such as SEM, EDX, spectroscopy analysis and EIS modeling to identify 

corrosion products and investigate inhibition mechanism. 
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CHAPTER 6. (MAGNESIUM RICH PRIMER-POWDER TOPCOAT) COATING 

SYSTEM FOR THE CORROSION PROTECTION OF AL ALLOYS
(1)

 

6.1. Abstract 

(Mg rich primer-powder topcoat) coating system was first developed and characterized in 

this research for the corrosion protection of Al alloys. Feasibility of using Mg rich primer (MgRP) 

as an under layer for powder topcoat was proved through evaluating thermal stability of MgRP, 

adhesion strength of the (MgRP-powder topcoat) coating system, and cross-section images of the 

coating system. In addition, corrosion protection effects of (MgRP-powder topcoat) coating 

system were evaluated by exposing samples to accelerated weathering test. Electrochemical 

impedance spectroscopy (EIS) and visual inspection were conducted during exposure. The 

results show that (MgRP-powder topcoat) coating system provided much longer corrosion 

protection time to Al substrate than the powder coat by itself. Moreover, gloss measurements 

indicated that for the coating systems tested in this research, using MgRP as under layer does not 

affect the final coating appearance. 

6.2. Introduction 

Aluminum alloys are widely used in engineering structures and components due to their 

light weight and excellent mechanical properties
1, 2

. However, the alloying elements which 

contribute to the good mechanical properties also make the alloy prone to localized corrosion
3, 4

. 

One of the most common and economic approaches to protect Al alloys from corrosion is to 

                                                           
(1)
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Dante Battocchi, and Gordon P. Bierwagen contributed to the conception of the work. Casey Orgon, Dante 
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apply coatings as protective layers. For example, powder coatings and magnesium-rich primers 

(MgRP) are both widely used for the corrosion protection of Al alloys
5-8

. These two coating 

systems both have advantages and limitations: powder coatings designed for corrosion protection 

usually provide very good barrier properties and long lifetime
9
. However, powder coatings by 

themselves lack corrosion inhibition effect and do not perform well once a defect has developed 

in the coatings
10, 11

. MgRPs can provide effective cathodic protection to Al alloys
12, 13

. However, 

since MgRPs are formulated at high pigment volume concentration (PVC) to ensure cathodic 

protection, they show poor barrier properties and require a topcoat to realize good 

performance
14,15

. 

Therefore, this research proposed a (MgRP-powder topcoat) coating system on the 

premise that the combination of the cathodic protection effect from MgRP and the barrier 

protection from powder topcoat will achieve superior corrosion protection effect. Furthermore, 

MgRP is formulated at high PVC, so it might provide desired conductivity for electrostatic spray 

application, which is the most common application method for powder coating. 

To evaluate the corrosion protection effect of (MgRP-powder topcoat) coating system, 

samples were exposed to accelerated weathering test, and characterized by electrochemical 

impedance spectroscopy (EIS) and visual inspection. Thermal stability of MgRP, adhesion 

strength of the (MgRP-powder topcoat) coating system, and gloss change of powder topcoat 

were also studied in this research. 
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6.3. Experimental procedures 

6.3.1. Samples preparation 

The AA2024-T3 panels used in this study were purchased from Q-Lab
†
. The glass panels 

were purchased from VWR International†. The epoxy resin system used was a two component 

system (Epon 828 and Epikure 3164) purchased from Hexion Inc†. BYK 346, from BYK-chemi†, 

was used as dispersant, tert-butyl acetate (from TCI American†) and p-xylene (from Sunnyside 

Corporation†) were the solvents used. The Mg pigment was supplied by READE Advanced 

Materials†. The powder coat was a polyester based powder coating with b-hydroxyalkylamide (b-

HA) as the crosslinker provided by Valspar Corporation†.  

The AA2024-T3 panels were sand blasted with Al2O3 grit to remove the oxide layer, 

grease and oils. The panels were then cleaned with Prekote†, washed with DI water and dried 

with paper towel. Mg rich primer was air sprayed onto AA2024-T3 panels and cured at room 

temperature for seven days before applying powder topcoat. The thickness of MgRP was 

40±10µm as measured by a digital thickness gauge elcometer 345†. Powder coat was applied on 

top of MgRP by electrostatic spray and dip methods. For both application methods, the MgRP 

coated panels were first preheated at 350°F for 20 mins, and then removed from the oven for 

application. For electrostatic method, a Nordson Versa-Spray II electrostatic spray system was 

used. Panels were sprayed while suspended by metal hangers in a steel faraday cage grounded to 

the electrostatic spray unit. Air pressures and electrical settings for the spray unit were 12 psi for 

the fluidizing air, 15 psi for the powder supply air, 10 psi for the atomization air, and an 80 kV 

applied voltage potential. After electrostatic spray, the panels were cured at 350°F for 10mins. 

For dip method, powder topcoats were applied by fully immersing the preheated panels into the 

                                                           
†
 Trade name 



 

89 

 

fluidized powder for approximately two seconds to build proper film thickness. The coated 

panels were then removed from the fluidized bed hopper and cured in the oven at 350°F for 

10minutes. After curing, panels were removed from the oven and immediately quenched in a 

water bath. The coating systems tested in this research and their corresponding thickness are 

summarized in Table1. Free films were prepared by air spraying MgRP on Al panels covered 

with Mylar®, which has very low surface tension, easing peeling off of the primer. 

Table 6.1. Coating systems tested in this research and their thickness 

Abbreviation Coating systems Thickness (µm) 

Al-E Powder coat on bare Al substrate by electrostatic spray 110±10 

Al-D Powder coat on bare Al substrate by fluidized bed 170±10 

MgRP-E Powder coat on MgRP coated Al substrate by electrostatic 

spray 

160±10 (total) 

MgRP-D Powder coat on MgRP coated Al substrate by fluidized bed 170±10 (total) 

 

6.3.2. Scanning electron microscope  

For scanning electron microscope (SEM) investigations, sample cross sections were 

mounted in MetLab† Jet-Set two part epoxy. After curing, each sample was polished using 800, 

1000, and 1200 grit sandpaper. Fine polishing was carried out using 3 µm, and 1 µm diamond 

paste followed by 0.05 µm Al2O3 on text-met 2500 pads until a mirror finish was achieved. Then 

samples were coated with gold using a Hummer II sputter coater†. Images of the cross-section 

were taken using a JEOL JSM-6490LV scanning electron microscope (from JEOL Ltd†) in back 

scattering mode with 15KeV acceleration voltage.  

6.3.3. Thermal and adhesion measurements 

Thermogravimetric analysis (TGA) was conducted using a TA Instruments† Q500 

Thermogravimetric Analyzer on three samples: 40% Mg rich primer, the same epoxy primer 
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without Mg pigment, and Mg pigment. All samples were heated in air from 25°C to 300°C at a 

rate of 10°C/min. Differential scanning calorimetry (DSC) analysis was conducted using a TA 

Instruments Q1000 series DSC. The testing method used was a heat-cool-heat cycle. The 

samples were first equilibrated at -75°C and then subjected to a heat cycle at the rate of 

10°C/min to 200°C, followed by cooling to -75°C and held isothermally for 5 minutes, and a 

final heating cycle at a rate of 10°C/min to 250°C. Pull-off adhesion test was conducted on 

(MgRP-powder topcoat) coating system using Positest
®
 pull-off adhesion tester† according to 

ASTM D4541-09. Loctite 907 Hysol was used for mounting dollies. Five sets of measurements 

were made on each sample. The dolly used for the test has a diameter of 20 mm and the pull off 

rate is 1.00 MPa/s. 

6.3.4. Accelerated weathering test 

Following ASTM standard G85-11 (Prohesion® test), powder coated panels (both 

scribed and unscribed) were placed into a Q-fog cyclic corrosion tester†. The back and the edges 

of panels were covered with tape. The solution for Prohesion
®
 procedure is Dilute Harrison’s 

Solution (DHS), which consists of 0.05% NaCl and 0.35% (NH4)2SO4. Each cycle includes one 

hour salt fog cycle at 25
o
C and one hour dry air purge cycle at 35

o
C. The panels were removed 

from the tester periodically for visual analysis, gloss measurement and electrochemical 

impedance spectroscopy test. All panels were removed at the end of fog cycle. At least 3 panels 

were tested for each sample.  

6.3.5. Visual inspection and gloss measurement 

The images of the panels were taken by Nikon D3000 digital camera. The light source 

was above the unexposed panels and to the side of the exposed panels. The position of the light 

source was changed for exposed panels because the side position of the light cast more visible 
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shadows that make the coating delamination easier to see. Gloss (60
o
) was measured using 

Rhopoint IQ Glossmeter & Goniophotometer†. Nine sets of measurements were made on each 

sample 

6.3.6. EIS measurement 

EIS measurements were performed using a Gamry Reference 600 potentiostat† (open lead 

impedance exceed 10 TΩ at 0.01Hz) with three-electrode setup: a test panel was used as working 

electrode, a saturated calomel electrode (SCE) was used as reference electrode, and a Pt mesh 

was used as counter electrode. The exposed area of the working electrode was 7.06 cm
2
. The 

testing electrolyte was DHS. Impedance spectra were collected at the open circuit potential, 

through a frequency range from 100 kHz to 0.01 Hz with 10mV alternating current (AC) voltage 

applied.  

6.4. Results and discussion 

6.4.1. Thermal stability of MgRPs 

Since powder topcoat application includes preheat and curing samples at 350ºF (177ºC), 

thermogravimetric analysis (TGA) was conducted to observe if MgRP can endure the high 

temperature. The results (Figure 6.1) show that MgRP lost only about 1% weight at 350ºF. To 

determine the cause of the weight loss from MgRP, TGA was conducted on Mg pigment and 

epoxy primer without Mg pigment. The results show that Mg pigment didn’t undergo any weight 

loss at 350ºF, but epoxy primer lost about 4% weight at the temperature. It is known that when a 

coating is cured below glass transition temperature (Tg), residual solvent remains in the coating 

for years after the coating has formed
16

. Tg of the MgRP was 36.24ºC as measured by DSC 

(Figure 6.2), which is higher than the curing temperature of MgRP (room temperature). 

Therefore, it is very likely that the weight loss is from unevaporated solvents. Generally, 10% of 
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weight loss is considered as the threshold of thermal degradation
17

. Therefore, MgRPs can be 

considered thermal stable during the application of powder topcoat. 

 

 

 

 

 

 

 

 

 

Figure 6.1. Thermogravimetric analysis of MgRP, Mg pigment and epoxy primer 

 

 

 

 

 

 

 

 

 

 

Figure 6.2. DSC analysis of MgRP 
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6.4.2. Coating application 

The application quality of a powder coat will be affected by surface conditions of the 

substrate. Therefore, SEM Images of coating cross-sections were taken to assess the application 

quality of powder topcoat on top of MgRP. As shown in Figure 6.3, powder topcoats on MgRP 

cover the surface of MgRP very well. No difference was observed on powder topcoats between 

coating systems with and without MgRP, which suggests that the application quality of powder 

topcoat on MgRP is as good as powder topcoat on Al alloy. 

 

Figure 6.3. SEM images of four samples: Al-E, Al-D, MgRP-E and MgRP-D 
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6.4.3. Adhesion tests 

One of the most important properties in corrosion protective coatings is the coating 

adhesion to the substrate. Thus, pull-off adhesion test was conducted in this research to evaluate 

the adhesion strength of the (MgRP-powder topcoat) coating (Figure 6.4). The results show that 

the adhesion strength is similar between coating systems with and without MgRP. However, 

when conducting the adhesion tests, coating detached between MgRP/Al interface for the coating 

systems with MgRP, which suggests that the adhesion strength between MgRP and powder 

topcoat is greater than the measurement results. This indicates that powder topcoat adheres 

stronger to MgRP than to Al substrate.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4. Adhesion strength of four samples: Al-E, Al-D, MgRP-E and MgRP-D  
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6.4.4. EIS measurement 

EIS has been used widely in studies of corrosion prevention by organic coatings. The 

coating barrier properties can be determined by the change of the coating resistance. Generally, 

for organic coating systems, the low frequency impedance is an indication of coating barrier 

properties. EIS results on unscribed samples (Figure 6.5) show that, before exposure, all the 

samples have very high impedance at 0.01Hz, exceeding 10
10

 Ohm. The 0.01Hz impedance 

remains the same even after 3000 hours of exposure. This indicates that all four coating systems 

provide excellent barrier protection to the substrate under prohesion test. In addition, the phase 

angle shifts for all four coating systems are constant around -90 degree over entire exposure (not 

shown). This suggests purely capacitive behavior of the coating systems, which again indicates 

that all the coating systems provide very effective barrier protection even after 3000 hours of 

exposure. 

 

 

 

 

 

 

 

 

 

 

Figure 6.5. Z0.01Hz of four samples: Al-E, Al-D, MgRP-E and MgRP-D  
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6.4.5. Visual analysis 

Visual inspection of the scribed samples after Prohesion
® 

exposure was conducted to 

evaluate the response of the four coating systems to a defect (Figure. 6.6-6.9). For Al-E coating 

system (Figure 6.6), delamination of the powder topcoat was observed around the scribe area 

after 600 hours of exposure. After 1500 hours of exposure, the delamination area has spread to 

most of the surface. The image of Al alloy substrate after removal of the powder topcoat shows 

that most of the Al alloy surface was corroded. For Al-Dip system (Figure 6.7), delamination of 

the powder topcoat was observed after 1100 hours of exposure, and the delamination area spread 

to most of the surface after 2000 hours of exposure. The image of Al alloy substrate after 

removal of the powder topcoat also shows that most of the Al alloy surface was corroded. In 

contrast, for coating systems with MgRP (Figure 6.8&6.9), slight delamination of powder 

topcoat was observed around the scribed area after 2000 hours of exposure. Even after 3500 

hours of exposure, the delamination area was still restricted to the scribed area. The images of Al 

alloy substrate after removal of the powder topcoat show that corrosion of Al alloy only occurred 

around the scribed area for both MgRP-E and MgRP-Dip coating systems. The difference 

between samples with and without MgRP along with the EIS measurements on unscribed 

samples confirms that powder coat by itself provides corrosion protection through its effective 

barrier property. However, once a defect developed in the coating, undercoat corrosion started 

and spread rapidly, because powder coat does not provide any corrosion inhibition effect. By 

adding MgRP as under layer, when a defect occured, undercoat corrosion can be prevented by 

MgRP through cathodic protection. Consequently, (MgRP-powder topcoat) coating system 

provided not only excellent barrier properties but also superior cathodic protection effect. The 
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corrosion protection time of the (MgRP-powder topcoat) coating system was much longer than 

the powder coat by itself. 

Figure 6.6. Images of Al-E coating system before and after prohesion exposure 

Figure 6.7. Images of Al-D coating system before and after prohesion exposure 

Figure 6.8. Images of MgRP-E coating system before and after prohesion exposure 
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Figure 6.9. Images of MgRP-D coating system before and after prohesion exposure 

 

6.4.6. Gloss measurement 

The appearance of a painted surface has always been an important factor, because it is 

often the first impression of a product seen by the end-user, especially in the automotive and 

consumer appliances industries
18

. For a multilayer coating system, surface properties of the 

under layers might influence the appearance of the final paint appearance
19

. Therefore, gloss 

changes of the powder topcoat were measured to evaluate the influence of MgRP on the final 

paint appearance. As shown in Figure 6.10, the coating systems with and without MgRPs show 

similar gloss values before exposure. After 750 hours of exposure, a slight increase of the gloss 

values was observed for all four coating systems.  The increase of gloss value might due to the 

swelling of the coatings during exposure, which reduces the roughness of the coatings caused by 

shrinkage during curing
20

. After 3000 hours of exposure, the gloss values started decreasing for 

all four coating systems due to surface erosion by weathering. The similar gloss values and the 

same trend of gloss changes for all four coating systems suggest that at least for the coating 

systems tested in this research, using MgRPs as an under layer does not affect the final coating 

appearance.  

 



 

99 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.10. Gloss measurements of four coating systems before and after prohesion exposure 

 

6.5. Conclusions 

1. Powder topcoat can be applied on top of MgRP through both fluidized bed and 

electrostatic spray methods. SEM images of cross-section of coating systems suggests that using 

MgRP as an under layer for powder topcoat doesn’t undermine the application quality of powder 

topcoat. 

2. TGA results shows that MgRP is thermally stable during the application of powder 

topcoat; and adhesion tests indicate that powder topcoat adheres stronger to MgRP than to Al 

substrate. 

3. Accelerating weathering test shows that (MgRP-powder topcoat) coating system 

provides much longer corrosion protection time to Al substrate than the powder coat by itself, 
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since (MgRP-powder topcoat) coating system provided both excellent barrier properties through 

powder topcoat, and superior cathodic protection through MgRP. 

4. Gloss measurements indicates that for the coating systems tested in this research, using 

MgRP as under layer does not affect the final coating appearance. 
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CHAPTER 7. CONCLUSIONS AND FUTURE WORK 

7.1. Conclusions  

With the research goals to develop deeper understanding of the corrosion protection 

mechanism of Mg-rich primer (MgRPs), improve corrosion protection performance of MgRPs, 

and extend the application of MgRPs, research of this thesis made significant developments in 

the following four areas. 

7.1.1. Early blistering problems  

Early blistering was observed on top-coated MgRPs over Al substrates under constant 

immersion or constant salt spray tests. This problem has hindered the acceptance of MgRP. 

Hydrogen entrapment by topcoats was definitively identified as the cause of early blistering in 

this research. This understanding of the cause of early blistering will allow coating 

manufacturers to make improvements to the coating formulation and to produce a more realistic 

accelerated weathering test for the qualification of the metal rich coating systems. Meanwhile, 

hydrogen volume collection method was applied to MgRP for the first time, and a simultaneous 

real-time open circuit potential and hydrogen volume collection method was demonstrated as a 

new approach for studying the corrosion protection mechanism of MgRPs. Moreover, the gas 

generated from MgRPs was unequivocally identified as hydrogen by cyclic voltammetry. 

7.1.2. Corrosion protection mechanisms of MgRP in different solutions 

This research compared degradation behaviors of MgRP during constant immersion in 

DHS and 1% NaCl solution through hydrogen volume collection, electrochemical measurements 

and scanning electron microscopy analysis. The different behaviors observed during 

electrochemical measurements and hydrogen volume collection can be explained by the 

microstructural porosity difference after immersion in DHS and 1% NaCl solution. The effects of 
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connection modes between Mg pigment and Al substrate, different ions on the formation and 

stability of Mg oxidation products, and cathodic reaction sites on the microstructure of MgRP 

were discussed.  In addition, an in situ method for the estimation of remaining Mg pigment in 

MgRP was developed based on H2 volume collection. The estimation data and the SEM analysis 

of MgRP confirmed that there was still Mg pigment preserved in MgRP for future protection of 

Al even though the OCP of MgRP had risen above the OCP of bare AA2024-T3 substrate. 

7.1.3. Inhibitor included MgRPs for prolonged corrosion protection time on AA2024-T3 

Three inhibitors, sodium benzoate (SB), sodium dodecylbenzenesulfonate (SDBS), and 

8-hydroxyquinoline (HQ), were added to MgRP individually. The effects of each inhibitor were 

investigated through potentiodynamic scans, accelerated weathering tests, electrochemical 

impedance spectroscopy, visual inspection, adhesion tests, and hydrogen volume measurement. 

The results show that addition of SB, SDBS and HQ into an MgRP prolonged the corrosion 

protection time of MgRP by decelerating the oxidation rate of Mg pigment, improving coating 

barrier properties and inhibiting the corrosion of AA2024-T3. Among the inhibitor-added 

MgRPs, MgRP+SB coating system performed best, followed by MgRP+SDBS, and then 

MgRP+HQ coating system. 

7.1.4. (MgRP-Powder topcoat) coating system 

The (MgRP-powder topcoat) coating system was developed and characterized in this 

research. Powder topcoats were successfully applied on top of MgRP through both fluidized bed 

and electrostatic spray. Feasibility of using Mg rich primer (MgRP) as an under layer for powder 

topcoat was proved through verifying the thermal stability of MgRP during powder coat 

application, adhesion strength of the (MgRP-powder topcoat) coating system, and cross-section 

images of the coating system. Accelerated weathering tests show that (MgRP-powder topcoat) 
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coating system provided much longer corrosion protection time to Al substrate than the powder 

coat by itself through the combination of the cathodic protection from MgRP and the barrier 

protection from powder topcoat. Moreover, gloss measurements indicated that for the coating 

systems tested in this research, using MgRP as under layer does not reduce topcoat gloss. 

7.2. Future work 

Simultaneous open circuit potential and hydrogen volume collection method was shown 

to be an effective approach for studying the protection mechanism of MgRPs. In the future, 

combination of hydrogen volume collection method with other electrochemical techniques, such 

as electrochemical impedance spectroscopy, could be developed. Through this approach, 

information about consumption of Mg, coating barrier properties and the cathodic protection 

effect could be obtained simultaneously. 

Initial studies of inhibitors added MgRPs shown that SB, SDBS and HQ can prolong 

corrosion protection time of MgRPs on AA2024-T3. The concentration of each inhibitor could 

be adjusted to optimize the primer formulations. Also, more than one inhibitor could be added 

into an MgRP, the synergistic effect between different inhibitors could be studied. In addition, 

more characterization techniques, such as SEM, SVET, SECM, and XPS, could be used to study 

the working mechanism and structure-properties relationship of each inhibitor. Deeper 

understanding of the inhibitor-added MgRP will provide guidelines to select other effective 

inhibitors and formulate MgRPs with improved properties. 

The effect of powder coat curing temperature on Al alloys should be examined due to the 

temperature sensitivity of their mechanical properties
1-4

. The application of (MgRP-powder 

topcoat) system then could be extended to other Al alloys. Also, successful development of this 

(MgRP-powder topcoat) system gives us guideline to develop other metal rich powder topcoat 
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systems, such as zinc rich primer/powder topcoat system for the corrosion protection of steel. In 

addition, developing Mg rich powder primer and (Mg rich powder primer-powder topcoat) 

system may be highly beneficial from environmental perspective. Continued progress in the field 

will yield MgRPs that possess better performance and wider applications. 
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APPENDIX. ESTIMATION OF THE TOTAL AREA AND VOLUME OF BLISTERS 

(CHAPTER 3) 

The total area and volume of the blisters were estimated by assuming the blisters are 

hemispherical. Figure 3.6(a) was magnified to a 6 in × 6 in (15.24 cm × 15.24 cm) image to 

clearly show the blisters. Each blister was marked by a circle just large enough to surround the 

blister (Figure A.1). The radius of each circle was measured as Ci, so the radius of each 

corresponding blister is 𝑟𝑖 = 𝐶𝑖
3

6
=

𝐶𝑖

2
 cm. Therefore, the total area and the volume of the blisters 

can be estimated through the following equations: 

                                                           Total area: 𝐴 = ∑ 𝜋𝑟𝑖
2𝑛

1                                                   (A.1) 

                                                           Total volume:𝑉 = ∑
4

3

𝑛
1 𝜋𝑟𝑖

3                                            (A.2) 

 
Figure A.1. Image of blisters marked by circles 

 


