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ABSTRACT

A lot of complex data in many scientific domains such as social networks, computational

biology and internet of things (IoT) is represented using graphs. With the global expansion of

internet, social networks had an explosive growth with billions of users in FaceBook. Similarly

research in Bio-informatics generated massive amounts of genomic data (protein protein interaction

networks) from several high throughput techniques. Due to the large amount of data involved,

researchers have turned to data mining techniques to discover meaningful and relevant information

from large graphs.

One of the most intriguing questions in graphs representing complex data is to find commu-

nities or clusters. The members in a clusters have high density of edges to other members within

the cluster while very low edges to members outside of the cluster. Real world graphs often have

additional attribute data characterizing either the nodes or edges of a graph, such as age or interests

of a person in a social network. Recent research has combined the problem of community detection

with subspace similarity over attribute data. For example, in the context of social networks, we

might be interested in finding groups of friends who are of similar age and share common interests.

The use of attribute data in finding clusters is shown to be effective in many application areas

such as targeted advertising in social network or detecting protein complexes in protein protein

interaction networks which might be indicative of diseases such as cancer.

In this dissertation, we propose multiple algorithms for mining communities with similarity

in attributes from node-attributed graphs. Experiments on real world datasets show that the

proposed approach is effective in mining meaningful clusters.
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1. INTRODUCTION

Biological, social and technological networks have been modeled as graphs, and graph anal-

ysis has become crucial to understand these complex systems. In each of these areas, a vertex

represents a gene, person or a node and their interaction or relationship is represented by an edge.

Often these vertices or edges have properties associated with them which can be modeled as at-

tributes. These properties for example, can represent the personal profile attributes such as age or

interests of a person in a social network or gene expression data which encodes information that

can determine the dysregulation of a gene in a disease [21].

One of the most intriguing questions in graphs representing complex data is to find commu-

nities or clusters [26]. Communities are groups of vertices of a graph that have a high concentration

of edges within the group and very low concentration of edges between these groups. With the

availability of attribute data it is highly desirable to find communities which also exhibit similarity

over its attribute data. A community can be viewed as an independent region of a graph, where

all the vertices or edges exhibit similar properties or behavior. Communities that have a dense

network structure and maintain attribute similarity are called cohesive communities.

Cohesive community detection has received some attention recently [77, 36, 30], however,

this concept is still fairly new and requires further study. Most of the recent research have some

sort of limitations. Some approaches use a stricter representation for communities which might

miss some interesting communities. While some other approaches are not very flexible in handling

attributes. This research attempts to address the question of detecting cohesive communities while

maintaining a subspace similarity over real (floats) attributes.

Detecting communities is very essential as communities have many practical applications

[26]. A community in a protein protein interaction network can represent biological complexes

which can be used to diagnose diseases [70]. A community of friends in a social network with

similar interests can be targeted for advertisements or recommendations [79]. With such an ever

increasing list of applications it is very critical to find novel ways to detect cohesive communities

with attribute data over nodes or edges.

1



In this paper we discuss new approaches to find cohesive communities in rich graphs. We first

define what cohesive communities mean and then show techniques to mine cohesive communities

from a graph. We also compare our technique against the state of art algorithms and present our

results.

1.1. Motivation examples

In this section we shall discuss some motivational examples for the application of commu-

nities in various fields of science and establish their importance. Furthermore we also see how

integrating the definition of communities with similarity of attributes is proving to be further

beneficial.

1.1.1. Biology

In bioinformatics, the interactions between proteins is generally represented as an interac-

tion graph known as protein protein interaction (PPI) network, where nodes represent proteins and

edges represent pairwise interactions between them. Application of network clustering methods had

significant impact which have led to extraction of functional modules such as protein complexes [60]

or regulatory pathways [64]. These complexes are a cornerstone of many biological processes and

together they form various types of molecular machinery that perform a vast array of biological

functions, such as finding targets for antimicrobial drugs [60]. These complexes or clusters are

proving very useful in identifying potential biomarkers in a variety of diseases such as Tuberculo-

sis, Pediatric Pneumonia and Pulmonary Sarcoidosis [6, 78, 53]. Recent research in bioinformatics

shows that integrating gene expression profiles with the PPI network structure improves diagnosis

and prognosis of cancer [15, 16]

1.1.2. Social networks

The development and analysis of social networks and the application of graph theory in

sociology has been studied since the early 1900’s [27]. Social network analysis produces an alternate

view, where the individuals are less important than their relationships with other actors within the

network. This approach has turned out to be useful for explaining many real-world phenomena [75].

As social media is gaining popularity [2], billions of online profiles (attributes) exist on popular

websites like Facebook, Twitter, etc. Combining community detection with attribute data has

given rise to multitude of applications in the recent times. Behavior and sentiment analysis during

elections [68, 69], location-based interaction analysis [80, 14] and marketing and recommender
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systems development like used in Facebook [13] are some of the applications that stem from social

network analysis.

1.1.3. Enron email data set

Enron email data set is a large corpus of emails generated by employees of the Enron

Corporation which was later used for investigation after the company’s collapse. The original

dataset contains 619,446 email messages [46]. A subset of the original data has been normalized

and annotated with category labels by UC Berkeley [25]. This subset of data contains 1700 email

messages and each email is categorized with three labels from a set of 53 labels. An email network

was constructed from this email data set where nodes represent employees and edges represent an

email communication between the employees. The category labels on the email were associated to

the edge attributes. Finding dense communities who frequently exchange emails with “financial

bankruptcy” or “fraud” topics can be extremely useful to investigators who can localize their search

to people who participate in certain key topics [62].

1.1.4. Developer networks in open source software

In software engineering developers collaborate to work together and in doing so they form

inherent developer networks [39]. Code review is a process in which the author of a specific code

asks others relevant expert developers to review the code before submitting to the code repository.

The code review process in open source software is difficult because of the distributed and voluntary

participation of developers. Finding a cluster of relevant expert developers who can review code

related to a specific area is one of the big challenges in this space. In a developer network, each node

represents a developer and an edge is drawn between two developers when they co-comment on a

code review. The class or modules that a developer has reviewed and commented are modeled as

the node attributes for that developer, indicating their expertise. The problem of finding a relevant

set of expert developers can be reduced to the problem of finding communities in the developer

network who have similar attributes.

Community detection is very essential as is made evident by the preceding examples. Com-

munities which have similarities in either node or edge attributes show more promise in their utility.

Note that the similarity here is only in the subspace of attributes, i.e., only a relevant subset of

attributes need to be similar in the set of attributes. We propose some novel approaches to address

this problem of detecting cohesive communities with subspace similarity of attributes.
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1.2. Goal of this thesis

Now that we have looked at some motivating examples and benefits provided by communi-

ties we would like to formally present the goal of this thesis.

Our goal is to devise efficient algorithms to mine cohesive communities from networks. We define

cohesive communities which are similar in both network structure and attributes and confirm from

our experiments that cohesive communities are more robust and promising.

We present multiple algorithms to mine cohesive communities and demonstrate our algo-

rithm’s efficiency against the state of the art algorithms. We also present the results from our

experiments which showcase the effectiveness of cohesive communities.

1.3. Organization of the thesis

The remainder of this thesis is organized as follows. In chapter 2, we discus some background

literature and related work in the area of community detection.

In chapter 3, we present an enumeration tree based pattern generation method to mine

dense and cohesive communities. We first present all the preliminary definitions and concepts

required to formulate the problem and discuss the algorithm. We also present a summarization

technique to find representative communities. This research presented in section 3.2 is based on

research published in the Network Modeling Analysis in Health Informatics and Bioinformatics

journal in 2015 [34].

In addition, we also show a parallel approach to mining dense and cohesive clusters using

multiple threads and discuss the algorithm. This research presented in section 3.3 was presented in

Proceedings of the 7th ACM International Conference on Bioinformatics, Computational Biology,

and Health Informatics in 2016 [32]. Finally we compare our approach to the state of the art

algorithms and show our results for both single and multi-threaded algorithms in section 3.5.

Furthermore we started to find efficient ways to mine cohesive communities without density

constraint. Chapter 4 presents a pattern generation method to find cohesive communities without

density constraint. This research is based on the research paper published in Bioinformatics and

Biomedicine (BIBM) IEEE International Conference in 2015 [35]. Once again, we implemented a

parallel approach to mine cohesive only communities utilizing multiple threads. This research was
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published in 9th International Conference on Bioinformatics and Computational Biology (BICOB

2017) [33]. We compare and show the results for both sigle and multi-threaded algorithms in 4.3.

In chapter 5, we present a sampling technique which significantly improves the performance

of community detection. Unlike the enumeration techniques presented in chapter 3 and 4, this

technique can output a reduced set of cohesive and dense modules without enumerating the entire

output space. This research paper is in the process of getting published. Finally chapter 6 concludes

this thesis and discusses the possible extensions for this research in future.
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2. RELATED WORK

Detecting communities is of great importance in sociology, biology and computer science disciplines

where systems are often represented as graphs. This problem is very hard and not yet satisfactorily solved,

despite the huge effort of a large interdisciplinary community of scientists working on it over the past many

years. The problem has had a long tradition and it has appeared in various forms in several disciplines. This

section presents some background concepts and discusses recent work in this area.

2.1. Communities

Real world graphs often have a broad degree distribution, i.e., there exists many vertices with low

degree while very few vertices have a high degree. This power law distribution [23] of vertex degree intuitively

illustrates the high level of order and organization in a real world graph. One distinctive difference in real

world graph is that they exhibit local and global inhomogeneities; high concentrations of edges within special

groups of vertices, and low concentrations between these groups. This feature of real networks is called a

community. Figure 2.1 shows a sample of the web graph consisting of the pages of a web site and their

directed hyperlinks. Communities are indicated by similarly colored vertices.

Figure 2.1. Visualizing communities in a sample web site graph

One of the major issue with community detection is that there is no universally accepted quantitative

definition of a community. Often times the definition arises from the problem at hand or the application

domain. Intuitively one can say that a community should have many edges among itself while having very few

edges between the community members and rest of the graph. Another required property for a community
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is connectedness, that is every member within a community should be reachable by any other community

member.

A full membership community or a clique has edges between every pair of the vertex in the commu-

nity. Cliques are very strict because every vertex is forced to have an edge to every other vertex. Finding

cliques in a graph is a NP hard problem [8]. Quasi cliques are a relaxed version of cliques where each vertex

needs to have a minimum number of edges to be a part of the community. Mining communities in a graph

defined by quasi cliques was discussed in [81]. Yet another way to measure the quality of a community is

to calculate the density, which is the total number of edges in a community over the total possible edges in

that community. Mining communities defined by density was discussed in [71].

Unlike the clique definition both quasi clique and density definition are not anti-monotone [55]. This

implies that mining communities using either quasi clique or density definition are harder problems when

compared to mining cliques, and therefore are also a NP-complete problem [28].

2.2. Community detection literature

2.2.1. Graph partitioning techniques

Community detection has been widely researched in graph theory. Traditional community detection

methods partition the graph into a predefined number of clusters such that the number of edges between

these groups are minimal [45]. The number of clusters is an important input parameter, as it restricts all the

vertices from ending up in the same cluster. The cluster size input parameter make sure that the algorithm

does not output many small and uninteresting clusters. It is very difficult to anticipate the number and size

of the clusters in a big graph, which is one of the main reasons that graph partition algorithms are not very

well suited to cluster detection in large graphs.

2.2.2. Hierarchical clustering

Hierarchical clustering algorithms [38] can reveal the multilevel structure of a graph. Many social

networks display several levels of grouping of the vertices, with small clusters included within large clusters,

which are in turn included in larger clusters, and so on. Hierarchical clustering techniques start with defining

a similarity measure, such as euclidean distance and compute a similarity matrix between all vertices of the

graph. The algorithm then finds clusters of vertices with high similarity. Hierarchical clustering algorithms

do not require the preliminary knowledge of the cluster size and count which makes them better than the

traditional partitioning techniques.

2.2.3. Spectral clustering

Among the many community detection algorithms spectral clustering methods have dominated the

literature. Spectral clustering consists of transforming the vertices of a graph into a set of points in space,

whose coordinates are elements of eigenvectors. These set of points are then clustered via traditional clus-

7



tering algorithms. Typically these traditional clustering algorithms works on the data directly, however,

spectral clustering works with the eigenvectors of the similarity matrix, which gives a more global encoding

of the similarities between points. One of the early contributions of spectral algorithm utilized eigenvectors of

the adjacency matrix [20]. A later and a more popular version of spectral algorithm utilized the eigenvector

of the second smallest eigenvalue of the Laplacian matrix [24].

2.2.4. Markov clustering

The basic idea behind Markov clustering (MCL) is to simulate a flow within a graph, to promote flow

where the current is strong, and to demote flow where the current is weak [72]. If clusters exist in a graph,

then according to the paradigm current across the clusters will wither away, thus revealing cluster structure

in the graph. The algorithm builds a column stochastic (square) matrix, which can be interpreted as the

matrix of the transition probabilities of a random walk (or a Markov chain) defined on the graph. The MCL

algorithm is an iterative process of applying two operators - expansion and inflation - on an initial stochastic

matrix, in alternation, until convergence. The graph described by the final stable matrix is disconnected,

and its connected components are the communities of the original graph. The MCL is one of the most used

clustering algorithms in bioinformatics.

2.2.5. Modularity

In some approaches communities are viewed as an essential part of the entire graph, i.e., communities

cannot be isolated without destroying the graph. In such cases a null model is first created. A null model is a

graph that matches the original graph in some aspects but otherwise has totally random distribution of edges.

The idea is that a null model being totally random doesn’t have preferential edges to form a community.

The null model gives a metric for each subgraph to measure a community structure. A subgraph is deemed

as a community, if the number of internal edges exceeds the expected number of internal edges the same

subgraph would have in a null model. Newman and Girvan [58] presented one such null model which is later

used in partitioning the graph until communities are detected. A quality function modularity evaluates the

goodness of the partitions of the subgraph.

2.2.6. Enumeration tree based community detection

Many graph mining algorithms create an enumeration tree to mine communities or clusters in a

graph [81, 54, 71]. Figure 2.2 shows a sample graph and its enumeration tree. The enumeration tree starts

with a null set at the root. The first level search nodes in the enumeration tree contain each individual

vertex of the graph. Each of these first level search nodes are expanded to form children nodes by adding

one vertex from the graph, which is not already present in that search node. An enumeration tree typically

follows a strict ordering of vertices which makes sure that the same subgraph is not repeated twice in the

tree. In Figure 2.2 we see that a child node always grows with a vertex that has a lower order than all
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the other vertices already present in the search node. Each search node in the tree satisfies the community

definition. The clique definition for a community is an anti-monotone property [55], i.e., as we go down the

enumeration tree, if a search node doesn’t satisfy the clique definition then no child node generating from

that search node will ever satisfy the clique definition. Thus we can stop generating child nodes from that

search node.

1 3

2 4 {1,3} {2,3}{1,2}

{1} {2} {3} {4}

{1,4} {2,4}{3,4}

{1,2,3} {1,2,4} {1,3,4} {2,3,4}

{1,2,3,4}

{}

(a)

(b)

Figure 2.2. Enumeration tree example. (a) A sample graph. (b) Enumeration tree for the sample
graph; node order 1 < 2 < 3 < 4 is followed while generating child nodes.

2.2.6.1. Enumerating quasi cliques

Quick is an efficient algorithm to find maximal quasi-cliques from an undirected graph discussed in

[54]. This algorithm builds an enumeration tree where each node in the tree has a candidate set of vertices

which can be used to extend the current search node. Quick follows a strict ordering among its vertices

to reduce the number of duplicate search node in its sample space. Quick applies several effective pruning

techniques based on the degree of the vertices to prune unqualified vertices as early as possible, such as

pruning on the vertex degree and graph diameter.

2.2.6.2. Enumerating dense clusters

The algorithm discussed by Uno et al. [71], traverses the enumeration tree in a depth first manner.

This algorithm uses the reverse search technique [3] to generate child search nodes in the enumeration tree.

Reverse search does not need to memorize the previously visited search nodes to avoid duplicates. The

algorithm adapts the reverse search paradigm and only enumerates valid quasi clique child search nodes at

each iteration.
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2.3. Cohesive community detection

2.3.1. Attributes in graphs

Often additional data sources are available which can annotate the nodes or the edges of the graph

with attribute data. In a PPI network an attribute value can represent gene expression data, which encodes

the differential expression value of each gene when exposed to stimuli. In a social network, an attribute might

correspond to the personal profile of a member such as age, interests, locale, etc. The concept of homophily

suggests that cultural, behavorial, genetic or material information that flows through a network tends to

get localized to people or entities with similar attributes [56]. So in addition to observing interactions in a

network, it is also important to consider the attributes of entities [36, 44].

2.3.2. Node attributes

Node attributes represent properties of vertices in a graph. As noted above the profile data in a

social network such as age and interests are examples of node attributes. Usually they are modeled as a

vector of attributes corresponding to each vertex in the graph. Figure 2.3 shows a sample social network

where each node is a person and the attributes shown are properties of the person such as age, city and

interests. The figure shows two cohesive communities which are not only dense but also have similarity in

their attributes. Notice that each vertex is similar on a subset of attributes with the attributes of other

vertices in its community, for e.g., vertices (0,1,2,3) are similar in age and city.

0 1

2

3

4

5

6

{20, London, Movies}

{25, London, Sports}

{22, London, Sports}

{20, London, Music}

{23, Paris, Trek}

{39, Paris, Trek}

{40, Paris, Trek}

Figure 2.3. Graph with node attributes and two cohesive communities.
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0 1

2

4

5

6

{Music, Painiting} 

{Music, Politics} 

{Music, Politics} 

{Music, Politics} 

{Dance, Karate} 

{Music, Soccer} 

{Music, Soccer} 

{Karate, Soccer} 

{Karate, Soccer} 

{Karate, Soccer} 

3

Figure 2.4. Graph with edge attributes and two cohesive communities.

2.3.3. Edge attributes

Edges can have properties too and they are modeled as edge attributes. For example, in a social

network the length of the relationship measured in time between two friends is an attribute of their rela-

tionship. In a chemical network the strength of the bond between two molecules can be modeled as an edge

attribute. Edge attributes are typically modeled as a vector of attributes corresponding to each edge in

the graph. Figure 2.4 shows another sample social network with edge attributes. The attribute on a edge

shows the type of online activity between two people. Vertices (3,4,5,6) forms a community where all edges

have {soccer} as a common attribute. Edge-based content is much more challenging, because the different

interests of the same individual may be reflected in different edges.

In an cohesive community detection approach, the communities are not only matched for graph

topology but also for attribute similarity. Many cohesive approaches combining graph topology data with

attribute data have been proposed. Some rely on full space clustering of attributes [67] while others consider

sub space clustering [36, 30, 18]. Full space clustering often leads to poor results in high dimensional dataset

because there is a high probability of some irrelevant attribute to obfuscate the cluster.

2.4. Enumeration algorithms for cohesive community detection

This section will briefly introduce some of the state of the art algorithms for mining cohesive com-

munities. All of these algorithms requires three parameters; a density threshold γ which controls the density

of output modules, an attribute profile threshold t and number of cohesive attributes threshold smin which

together controls the cohesiveness of each module in the community
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2.4.1. GAMer

The GAMer algorithm [36] proposed an enumeration approach which uses quasi-clique definition for

community or cluster density. GAMer integrates the community detection with vertex attribute sub space

clustering technique which identifies locally relevant (similar) subsets of attributes for each community. The

quasi clique definition and sub space clustering together form a cluster definition for GAMer. Quasi-clique

definition is not anti monotone, i.e., the quasi clique density of the subgraph cannot be used to prune the

search space in the enumeration tree. However attribute subspace clustering is an anti-monotone property;

if at any search node the number of similar attributes falls below a threshold, then the entire subtree rooted

at the current search node can be pruned.

2.4.2. DME

The quasi-clique density is a little restrictive as each vertex is still required to have a minimum

degree. Georgii et al. proposed the Dense Module Enumeration (DME) for weighted networks [30]. This

algorithm uses a relaxed definition of density which generates more clusters than GAMer. Similar to GAMer,

DME also builds an enumeration tree and outputs dense and cohesive clusters. The density definition used

in DME is not anti-monotone. However DME employs the reverse search technique [3] which traverses the

tree in a way such that the density property going down the enumeration tree is always decreasing.

2.4.3. DECOB

Like the above algorithms, the DECOB algorithm exhaustively finds maximal dense connected

biclusters [18]. DECOB starts with the cohesive or similar edges and adds a new neighbor vertex to each

edge. If the new pattern is dense and cohesive DECOB keeps it in a list otherwise discards it. Building this

way, the algorithm finds out all the dense and cohesive patterns that have 3 vertices (since it started from

an edge containing two vertices). The algorithm iteratively works on this list to find maximal dense and

cohesive patterns at each pattern size level. Unlike the GAMer and DME this algorithm walks the patterns

in Breadth First Search (BFS) manner while the two preceding algorithms walk the enumeration tree in

Depth First Search (DFS) manner.
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3. MINING DENSE COHESIVE SUBNETWORKS

In this chapter we look at the problem of mining dense and cohesive community or cluster. We

first establish the definition of our dense and cohesive cluster and later show our algorithm followed by the

results. Figure 3.1 shows a graph with node attributes. The figure shows two communities which are both

dense and similar in their attributes.

1 2

3 4 5

6

4

7

.4, 0.3

0

0.1, 0.7, 1.1

Figure 3.1. Example node attribute graph. The graph shows two communities, vertex 4 belongs
to both communities.

3.1. Problem description

In this section, we introduce some preliminary definitions that are used throughout the

paper. We then describe the problem of mining maximal dense cohesive subgraphs.

Definition 1. A graph G = (V,E, f) is an undirected graph, where V = {v1, ..., vn} is the set of

vertices, E ⊆ V × V is the set of edges, and f : V → Rd is a function that maps a vertex to a

d-dimensional real vector.

The number of vertices and number of edges in G are denoted as |V | and |E|, respectively.

We use the d-dimensional vector to represent the attributes associated with a vertex. The attributes

of all vertices can be represented by an attribute matrix X ∈ Rn×d, where xij is the attribute value

of the ith vertex in jth attribute. The ith row of the matrix X is the attribute vector of the ith

vertex.
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From figure 3.1; we have V = {1, 2, 3, 4, 5, 6, 7}, E = {(1, 2), (1, 3), (1, 4), (2, 4), · · · , (6, 7)},

and f(v1) = (0.5, 1.0, 0.9)

For any subset U ⊆ V , we denote G[U ] = (U,E[U ]) as the subgraph of G induced by U ,

i.e. E[U ] is the set of edges of G whose endpoints are both in U .

We define the density property (denoted as ρ) of an induced subgraph G[U ] as the ratio of

the number of edges in the induced subgraph (E[U ]) by the total possible edges in G[U ]. In Figure

3.1, for U = {1, 2, 3, 4}, ρ(U) = 5/6 = 0.83.

ρ(G[U ]) = ρ(U) =
2|E[U ]|

|U |(|U | − 1)

Definition 2. Given a tolerance threshold t and a set of vertices U ; where each vertex has d

dimensional vector representing attributes. The kth attribute is considered a cohesive attribute

for vertices in U if the kth attribute values for all vertices in U differ by at most t.

∀ui, uj ∈ U : |f(ui)[k]− f(uj)[k]| ≤ t

For a threshold t, let A(U, t) denotes the set of cohesive attributes, for simplicity we refer

to A(U, t) as A(U) :

A(U) = {k1, k2, · · · , kl}, 1 ≤ ki ≤ d

In Figure 3.1, for U = {4, 5, 6} and t = 0.3, A(U) = {2, 3} since the three vertices have

‘similar’ values in the 2nd and 3rd attributes, i.e. the maximum difference between the attribute

values for the three vertices in U for each of the 2nd and 3rd attribute is less than or equal to t.

Definition 3. Given a tolerance threshold t, a dimensionality threshold smin, an induced subgraph

G[U ] is said to be a cohesive subgraph if the cardinality of the set of cohesive attributes is at least

smin, i.e. |A(U)| ≥ smin

The dimensionality threshold smin is the minimum number of ‘similar’ attributes a set of

vertices must have in order to form a cohesive subgraph. In Figure 3.1, for t = 0.3 and smin = 2,

the subgraph induced by U = {4, 5, 6} is a cohesive subgraph.
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Definition 4. Given a density threshold θ, an attribute tolerance threshold t and a dimensionality

threshold smin: G[U ] is a dense cohesive subgraph if it satisfies the following conditions.

1. Density of the subgraph G[U ] is atleast equal to the density threshold, ρ(U) ≥ θ.

2. The number of relevant attributes should be at-least equal to dimensionality threshold, i.e.

|A(U)| ≥ smin from definition 3

We can see from figure 3.1 that the subgraph induced by U = {1, 2, 4} vertices is both

dense and cohesive. ρ(U) = 3
3 = 1 and vertices in U have similar values in 1st and 2nd attributes

for t = 0.5.

According to Definition 4, a dense cohesive subgraph is any subgraph that can satisfy the

density condition and has cohesive set of attributes. However, a single vertex is dense by definition

and has absolute similarity among its own attributes. Also, a cluster of two vertices with a single

edge has a density of 1. It only needs to satisfy the second condition of definition 4 in order

to be considered a cohesive subgraph. It is obvious that we need a way to keep these kinds of

unmeaningful subgraphs out of our result set. A common solution is to mine for the maximal

subgraphs. A subgraph is considered maximal if it has no direct superset which is cohesive and

satisfies the density threshold condition. In this way we will not output every possible sub graph

like {1, 2, 4} and {1, 3, 4} which are subsumed in the maximal cluster {1, 2, 3, 4} from figure 3.1

Definition 5. A cohesive dense subgraph induced by U is maximal if no superset U ′ ⊇ U is dense

and cohesive.

Problem Definition: Given an attributed graph G = (V,E, f), three thresholds θ, t, smin,

the problem of mining the set of maximal dense cohesive subgraphs is to find the set:

P = {U1, U2, U3, · · · , U|P|}

such that every Ui ∈ P is a maximal dense cohesive subgraph. Each Ui is a tuple {Gi, Ai} containing

a subgraph and its relevant attributes.
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3.2. Algorithm

3.2.1. RedCone approach

In this section we introduce our algorithm for mining REpresentative Dense COhesive

subNEtworks (RedCone). As the name suggests, the algorithm discovers maximal dense cohesive

clusters in a graph. It later tries to find representative clusters for all such cohesive dense clusters.

{ }

{1} {2} {3} {4} {5} {6} {7}

{ 1,2} {1,3} {1,4}{2,4}{3,4}

{1,2,3} {1,2,4} {1,3,4}{2,3,4} {1,4,5}

{1,2,3,4}

{4,5} {4,6}{5,6} {5,7}{6,7}

{2,4,5}{3,4,5} {1,4,6}{2,4,6}{3,4,6} {4,5,6}

1 2

3 4 5

6

4

7

0.6,0.9,0.7

0.6,0.9,0.7

0.7,1.0,1.0

0.2,0.7,0.1

1.0,0.6,0.4

0.1,0.7,1.1

Figure 3.2. Example graph (a) and its enumeration tree (b). θ = 0.7. Crosses show which
branches are pruned. The discovered maximal clusters are in green.

We adapt the cluster enumeration approach as described in DME [30]. The cluster enumer-

ation approach starts with an empty set and then iteratively grows into larger sets by adding one

vertex at a time. The algorithm builds an enumeration tree (Figure 3.2) where each search node

represents a dense cohesive cluster. Even though the density constraint is not anti-monotone, the

reverse search technique [3] traverses the tree in a way such that the density property going down

the enumeration tree is always decreasing while the node size is increasing. This is achieved by

following a strict definition of parent-child relationship in the enumeration tree [30]. Essentially at

every given search node all possible child search nodes are generated and only valid child search

nodes are explored. The valid child search nodes maintain the density monotonicity property and
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Algorithm 1 Maximal Dense Cohesive Cluster Discovery
Input:
G = (V,E, f): an attributed graph
min size: the minimum size of cluster to include in results
θ: density threshold
t: tolerance threshold between two attribute values in a single subspace
smin: minimum number of similar attributes per cluster

Output:
P: maximal cohesive clusters

1: Remove all non cohesive edges from input graph
2: P = {}
3: MineDenseclusters({})
4: function MineDenseclusters(U)
5: locally maximal← true
6: for v ∈ V \U do
7: Let U ′ = U ∪ v
8: if ρ(U ′) ≥ θ and |A(U ′)| ≥ smin then
9: locally maximal← false
10: if isChild(U ′, U) then
11: MineDenseclusters(U ′)
12: end if
13: end if
14: end for
15: if locally maximal and |U | ≥ min size then
16: P = P ∪ U
17: end if
18: end function
19: return P

also follow a strict ordering which ensures that each search node will be visited only once. A func-

tion ord defines a strict total ordering on the nodes, i.e. for each node pair u, v with u ̸= v either

ord(u) > ord(v) or ord(u) < ord(v) holds. With this, the parent-child relationship for modules is

defined as follows. Given U and v ∈ V \ U . U∗ := U ∪ v is a child of U if and only if

∀u ∈ U : (degU∗(v) < degU∗(u)) ∨ (degU∗(v) = degU∗(u) ∧ ord(v) < ord(u))

Here (degU∗(v) stands for the degree of vertex v in the subgraph induced by U∗. We obtain the

parent of a module by removing the smallest ordered vertex with the least degree.

Algorithm 6 shows the pseudo code for our cluster discovery process. The recursive function

builds an enumeration tree like the example in figure 3.2. Note that we only consider search node

expansion if the conditions given in definition 4 are met (line 16). If a cluster doesn’t have a cohesive

and dense superset then that cluster by definition 5 is maximally dense and cohesive. The result of

this algorithm is the set of maximal dense cohesive clusters P. From figure 3.1 one can observe that
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there are two maximal dense cohesive clusters {1, 2, 3, 4} and {4, 5, 6} which are similar in atleast

2 attributes. Figure 3.2 demonstrates how our algorithm arrives at these two clusters.

We employ different pruning strategies to avoid visiting branches that will not result in

cohesive clusters. The algorithm starts by removing edges from the input graph which are not

cohesive according to definition 3. Due to the anti-monotonicity of the cohesive constraint, pruning

an edge will not result in missing any clusters because the pair of vertices (end points) cannot be

together in any cohesive cluster. In figure 3.2 (a) the edge between vertices 5 and 7 is not cohesive

in two attributes for t = 0.6, therefore we can remove that edge from the graph without missing

any clusters.

The second pruning is based on reverse search enumeration. Since the reverse search prin-

ciple guarantees that the search nodes are grown in a decreasing order of density, we can safely

assume that if any search node does not meet the density threshold, θ, then we can prune that

search node. This helps by eliminating the entire subtree from the search space.

Before a new child search node can be created, the algorithm checks to see if the potential

child search node is cohesive. If it is cohesive then the algorithm creates the child node and

recursively extends it. However if no cohesive dense child node exists for the current search node

then the current search node is maximally cohesive and it can be added to P (line 24). Both of

these two pruning strategies are enforced in line 16 of algorithm 6.

3.2.2. Multithreaded RedCone

Recall that RedCone requires density and profile thresholds to reduce the search space of

the input graph. For relaxed constraints, the search space is huge which in turn takes a very long

time to enumerate all qualifying clusters. For reference, RedCone , DME, Gamer and DECOB

algorithms took multiple days to completely enumerate all clusters in the BioGRID dataset, which

has 6249 vertices and 224, 587 edges. The result set (output space) contained several million clusters

which qualified a very relaxed input constraints on density and cohesive profile. As this example

shows the above algorithms including RedCone don’t scale very well for even a modestly sized input

graph or as constraints are further relaxed.

In this section we propose a multithreaded implementation for RedCone , called MT Redcone

to address the issues of scale.
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Figure 3.3. The input graph and its corresponding enumeration tree. There are four threads which
build the enumeration tree independently. There are 4 threads and each thread builds subtree for
2 first level children.

RedCone mines maximal dense cohesive subgraphs by following a reverse search enumeration

technique [3]. The reverse search technique guarantees that the enumeration of child search node is

only dependent on its parent search node and is independent of any shared structure. This property

can be exploited to parallelize the enumeration tree traversal.

Figure 3.3 shows an example of the enumeration tree that created by MT Redcone for the

input graph shown in figure 3.1. Utilizing the reverse search principle, the subtrees rooted under

each first level node in the enumeration tree can be enumerated independently. This suggests that

we can spawn multiple threads at the root, and each thread creates the sub tree under each of the

first level nodes. Algorithm 3.2.2 shows the psuedo code for MT Redcone . Apart from the usual

inputs such as graph G, density threshold θ, tolerance threshold t and dimensionality threshold

smin, MT Redcone also requires a number of threads input numthreads. The algorithm begins by

spawning the requested number of threads (line 3). Each thread then iterates over the first level

nodes, selects a vertex and traverses its enumeration subtree (line 9). The output of this algorithm

P is a list of maximal cohesive dense clusters.

3.3. Representative Set

The number of maximal dense cohesive clusters can be astronomically large, depending on

the density and cohesive constraints. Moreover, these clusters have overlap in both the vertices

and their relevant attributes. For analysis, often a summarized set of all the reported clusters is

desired. This set should be representative of the reported clusters such that all the clusters not
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Algorithm 2 Multi-threaded Maximal Dense Cohesive Cluster Discovery
Input:
G = (V,E, f): an attributed graph
min size: the minimum size of cluster to include in results
θ: density threshold
t: tolerance threshold between two attribute values in a single subspace
smin: minimum number of similar attributes per cluster
numthreads: Number of threads to spawn for parallel execution

Output:
P: maximal cohesive clusters

1: Remove all non cohesive edges from input graph
2: P = {}
3: threads[] = spawn threads(numthreads)
4: start all threads(threads[], ThreadStart)
5: join all threads(threads[])
6: function ThreadStart
7: for v ∈ V do
8: execute thread(t,Mineclusters(v))
9: end for
10: end function
11: Mineclusters({})
12: function Mineclusters(U)
13: locally maximal← true
14: for v ∈ V \U do
15: Let U ′ = U ∪ v
16: if ρ(U ′) ≥ θ and |A(U ′)| ≥ smin then
17: locally maximal← false
18: if isChild(U ′, U) then
19: Mineclusters(U ′)
20: end if
21: end if
22: end for
23: if locally maximal and |U | ≥ min size then
24: P = P ∪ U
25: end if
26: end function
27: return P

in the representative set should have at least one ‘similar’ cluster in the representative set. We

propose an approach for selecting a representative set of clusters for the maximal cohesive clusters.

3.3.1. Finding Similarity Scores

In the first step, we introduce a similarity measure to quantify the similarity between two

maximal dense cohesive clusters and calculate the similarity scores between all pairs of the reported

clusters.

Given two cluster U , U ′, let SUU ′ denotes the Jaccard similarity coefficient between the sets

of vertices of the two clusters.

Sv
UU ′ =

|U ∩ U ′|
|U ∪ U ′|

(3.1)
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The relevant attribute similarity between the two clusters is captured by the Jaccard simi-

larity coefficient between the sets of relevant attributes.

Sa
UU ′ =

|A(U) ∩A(U ′)|
|A(U) ∪A(U ′)|

(3.2)

We define the cluster similarity as linear combination of the vertices and relevant attribute

similarities as shown below, where α is a user-defined parameter (0 ≤ α ≤ 1) to control the

contribution of the vertices similarity to the pair wise cluster similarity.

SUU ′ = α ∗ Sv
UU ′ + (1− α) ∗ Sa

UU ′ (3.3)
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algorithm results in finding clusters and medoids (highlighted in blue), edges show distances between
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The cluster similarity between the first two clusters shown in Figure 3.4(a) is calculated as

follows (for alpha=0.5):

SP1P2 = 0.5 ∗ 2

6
+ 0.5 ∗ 1

3
= 0.33
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The two clusters share two vertices out of the six vertices and one relevant attribute out of the

three relevant attributes.

3.3.2. Similarity Graph

The cluster similarity graph represents the result clusters as nodes and its similarity as

distance on the edges to other nodes. More formally, we construct the cluster similarity graph

GP = (VP , EP ), where VP = {U1, U2, · · · , Uk} represent the set of maximal dense cohesive clusters

and there is an edge between two vertices in this graph where the distance of edge (ui, uj) is SUiUj .

Figure 3.4(a) shows 5 clusters and Figure 3.4(b) shows the cluster similarity of these 5

clusters. Each node in cluster similarity graph is a subgraph as shown in 3.4(a) and edge weights

represent the similarities between clusters. The similarities range from 0 to 1, with 0 similarity score

indicating no overlap in both the vertices and the relevant attributes and 1 indicating complete

overlap.

3.3.3. Representative clusters - Set cover approach

The problem of selecting representative clusters from a large set of result clusters has been

previously studied in [9]. In that paper finding the representative clusters problem was mapped to

the problem of finding the dominating set of minimum size from the similarity graph. Given the

undirected similarity graph GP = (VP , EP ), the problem of selecting the smallest dominating set

is to select the smallest set of nodes (clusters) S ⊆ Vp such that every node not in S is connected

to at least one node in S.

3.3.4. Representative clusters - K-Medoids approach

The problem of selecting representative clusters can be mapped to the problem of finding

k medoids from multiple observations using the k-medoids algorithm. k-medoids is a classical

partitioning technique that clusters the data set of n nodes into k clusters. Each of these clusters

have a center or medoid. A medoid can be defined as the node of a cluster whose average distance

to all the nodes in the cluster is minimal, i.e., it is the most centrally located node in the cluster.

The objective of this algorithm is to partition all the n nodes into k clusters such that average

distance of all the nodes in each cluster from its corresponding medoid is minimized. As a by

product the algorithm finds k medoids (nodes) which are most centrally located within their own

clusters in the graph. Given an undirected similarity graph GP = (VP , EP ), the problem of finding

representative result nodes is to find the k medoids of that graph.
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Figure 3.5 shows the modified K-medoids algorithm in action with a few output maximal

cohesive dense clusters {p1, p2, ..., p5}. Figure 3.5 (a) shows the network structure of these maximal

cohesive dense clusters and also lists the cohesive attributes of each cluster below. These cohesive

clusters are projected as points in space and K random points are selected as medoids. This process

is shown in figure 3.5 (b).

After the random selection of points, the modified K-Medoids algorithm detects partitions

around these random medoids as shown in figure 3.5 (c). After detecting the partitions, new

medoids are again determined for each partition as shown in figure 3.5 (d). This process repeats

itself by finding new partition again around the new medoids. Finally this process stops when

a steady state is reached, i.e, new medoids are exactly same as the previous medoids. The final

medoids at the steady state are the representative maximal cohesive dense clusters.
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Figure 3.5. Representative clusters. (a) Set of maximal cohesive dense clusters, (b) Projecting
maximal cohesive dense clusters to points in space. (c) Finding partitions around the random
medoids. (d) Detecting steady state medoids m1 = P3 and m2 = P2 and its partitions c1 and c2
respectively. The representative maximal cohesive dense clusters are the set of steady state medoids
m1,m2

This modified K-Medoids algorithm, distributes a given set of points {p1, p2, ..., pn} into K

partitions or sets {c1, c2, ..., ck} to maximize the similarity between points p and their respective
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partition c which can be represented as

k∑
i=1

∑
y∈ci

Symi

where mi represent the medoids and S represents the similarity between two maximal cohesive

dense cluster.

Now we shall define some metrics to understand the quality of these output medoids (rep-

resentative clusters) as produced by the K-Medoids algorithm.

Definition 6. Given a set of points {p1, p2, ..., pn}, k partitions {c1, c2, ..., ck} and their respective

medoids {m1,m2, ...,mk}, the average intra partition similarity is defined as average sum of the

similarities of each point p ∈ cx to their corresponding medoid mx.

AvgPartitionSim = (
k∑

i=1

∑
y∈ci

Symi)/|{p1, p2, ..., pn}|

The AvgPartitionSim similarity captures the quality of all partitions. A high value indi-

cates that each medoid is centrally located in its partition, and, has high similarity with all other

points in the partition. A low value indicates that the medoid is not equally similar to all other

points in its partition, suggesting poor partitioning.

Definition 7. Given a set of points {p1, p2, ..., pn}, k partitions {c1, c2, ..., ck} and their respective

medoids {m1,m2, ...,mk}, the average inter medoid similarity is defined as average of sum of the

pair wise similarities between the set of medoids.

AvgMedoidSim = (

k∑
i=1

k∑
j=i+1

Smimj )/(M ∗ (M − 1)/2)

where M = |{m1,m2, ...,mk}|

As opposed to the AvgPartitionSim, AvgMedoidSim indicates the dissimilarity between

the detected medoids. If the medoids are sufficiently similar to all points in their partition than

they should be dissimilar to other medoids. In high quality partitions, we expect a high value for

AvgPartitionSim and a low value for AvgMedoidSim indicating dissimilarity with other medoids.
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In this perspective these two similarities complement each other. We report our findings on repre-

sentative sets using these metrics.

Finally, the runtime of K-Medoids is O(K ∗n∗ iter)+O(K2 ∗ iter) where iter represents the

number of iterations to reach to steady state and K represents the desired number of representative

clusters. Since both K and iter are compile time constants, K-Medoids is better when compared

to set cover algorithm mentioned in section 3.3.3 which took O(n2).

3.4. Experiments

We compare our algorithm against GAMer [36] and DECOB [18] using two real-world net-

works and their associated attribute data: High Confidence Yeast (YeastHC) [37] and the BioGRID

[11]. All experiments were run independently on an Arch Linux operating system with an Intel

Core i5-2500K (3.3GHz) processor and 8 Gigabytes of main memory.

3.4.1. Cohesive clusters in YeastHC

For this dataset, we represent the yeast interaction network as a graph and gene profile

data as attributes. The interaction network contains 4,008 vertices and 9,857 edges in its graph.

We include gene profile information which denotes the differential expression value of each gene

when exposed to 173 different experiments [29]. We used real (floating point) attribute values and

varied the attribute tolerance threshold t in increments of 0.1.

Table 3.1 compares the topological properties reported by RedCone and GAMer for this

dataset. In the table, |N | denotes the number of resulting clusters and N represents the average

size. RedCone reports notably higher number of these clusters because it has a relaxed density

constraint and also because GAMer reports summarized modules. The average cluster size reported

by RedCone is also high for higher tolerance thresholds which can be again attributed to its relaxed

density constraint. Since DECOB reports the same results as RedCone we only compare against

DECOB for the running time.

We also performed biological enrichment analysis using the Database for Annotation,

Visualization, and Integrated Discovery — DAVID [41, 42] on the YeastHC dataset. In order

to verify the significance of our results, we attempted to find enrichment of Gene Ontology process

terms (GOTERMS) as well as KEGG pathway enrichment in our resulting clusters.

Figure 3.6 plots the resulting clusters listed by RedCone with the percentage of modules

enriched in GOTERMs and KEGG pathways. As we can see for densities 0.7 to 0.9 almost all
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Table 3.1. Topological properties of cohesive dense clusters for Yeast dataset.

Parameters RedCone GAMer

θ/γ t smin |N | N |N | N

0.6 0.2 20 379 4.01 184 4.00
0.6 0.2 30 10 4.00 0 0
0.6 0.3 20 48398 4.22 14112 4.17
0.6 0.3 30 5529 4.13 2279 4.06
0.6 0.4 20 452333 5.55 100391 5.12
0.6 0.4 30 114874 4.69 37427 4.55

0.7 0.2 20 192 4.00 93 4.00
0.7 0.2 30 1 4.00 0 0
0.7 0.3 20 14711 4.42 7100 4.28
0.7 0.3 30 2354 4.2 1134 4.11
0.7 0.4 20 170971 5.52 54272 5.12
0.7 0.4 30 40692 4.98 19934 4.65

0.8 0.2 20 192 4.00 93 4.00
0.8 0.2 30 1 4.00 0 0
0.8 0.3 20 12466 4.26 6112 4.17
0.8 0.3 30 2236 4.14 1058 4.05
0.8 0.4 20 56575 5.52 38883 5.11
0.8 0.4 30 24389 4.74 15699 4.56

0.9 0.2 20 101 4.00 93 4.00
0.9 0.2 30 1 4.00 0 0
0.9 0.3 20 5940 4.29 6005 4.13
0.9 0.3 30 1102 4.16 1062 4.05
0.9 0.4 20 21764 5.43 30693 4.78
0.9 0.4 30 10524 4.73 14044 4.37

resulting clusters are enriched in GOTERMs. As density goes down RedCone outputs very large

number of clusters because of relaxed density constraint, hence not all clusters are enriched.

Figure 3.7 shows two maximal clusters from the RedCone’s output on the YeastHC dataset

and two matrices illustrating the attribute data for the vertices in the two clusters. The matrix

shows the vertices on the rows and attributes on the columns. The first 20 columns in the matrix

are the attributes where these vertices are similar and therefore show very little deviation in its

gray shade. The last 20 columns are a sample of 20 attributes from the remaining 153 attributes,

where these vertices are not similar. This similarity is evident by the homogenity of gray shade in

the first 20 columns versus variation of gray shade in the last 20 columns. This image is helpful

in understanding that the output clusters are not only dense in the graph structure but they also

have similar values in a number of attributes.
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Figure 3.6. Functional interpretation of patterns: GOTERMs and KEGG pathways enrichment
for the YeastHC dataset for t = 0.3, smin = 30.

3.4.2. Cohesive clusters in BioGRID

The second experimental dataset used was the BioGRID along with its gene profile data.

The interaction network contains 6249 vertices and 224587 edges in its graph and attributes col-

lected from 173 different experiments. Like the YeastHC data we used real attribute values and

varied the tolerance threshold t in increments of 0.1. Table 3.2 shows a summary of the reported

results. We could not gather results for higher tolerances as GAMer did not finish in a reasonable

period of time, this restricted us to show results for t = 0.2 to t = 0.3. We think that since GAMer

summarizes over all clusters (not restricted to maximal) it would take GAMer a lot of time to

produce results for higher tolerances especially when there are millions of these clusters.

3.4.3. Running Time

The reverse search algorithm for mining all maximal dense cohesive subgraphs with nominal

attributes is a polynomial time delay algorithm [30, 71]. In the proposed algorithm, the additional

checking of the cohesive constraints over real attributes for each cluster takes O(dn), where d

is the number of attributes and n is the maximum number of nodes in a cluster. Therefore,

the proposed algorithm is a polynomial-delay algorithm which means that the computation time

between reporting two clusters is polynomial in the input size. The running time of the algorithm

thus depends on the number of reported maximal dense cohesive clusters which is controlled by the

density and cohesive thresholds.

We compare the running time of RedCone with DECOB and GAMer for varying parameters

on the YeastHC and BioGRID datasets. We used the implementation provided by the authors for

the DECOB and GAMer algorithms. Figure 3.8 and 3.9 show that RedCone outperforms both
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Figure 3.8. Runtime comparison of GAMer, DECOB and RedCone on the YeastHC dataset (a)
parameters : t = 0.4 and smin = 20 (b) parameters : θ = 0.6 and t = 0.4

DECOB and GAMer in every case. For parameters smin = 20, tolerance t = 0.4 and density

θ = 0.6, RedCone is more than twenty times faster than GAMer on the YeastHC dataset. Also for
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Table 3.2. Topological properties of cohesive dense clusters for Biogrid dataset.

Parameters RedCone GAMer

θ/γ t smin |N | N |N | N

0.6 0.2 60 1769 4.60 312 4.03
0.6 0.2 75 572 4.59 134 4.07
0.6 0.3 60 49465 4.81 7036 4.02
0.6 0.3 75 8022 4.80 897 4.04

0.7 0.2 60 187 4.86 14 4.21
0.7 0.2 75 63 4.97 8 4.38
0.7 0.3 60 8250 4.59 1431 4.06
0.7 0.3 75 1005 4.82 83 4.16

0.8 0.2 60 108 4.20 11 4.00
0.8 0.2 75 31 4.39 5 4.00
0.8 0.3 60 5340 4.08 1352 4.00
0.8 0.3 75 525 4.11 170 4.00

0.9 0.2 60 10 4.30 11 4.00
0.9 0.2 75 4 4.75 5 4.00
0.9 0.3 60 1654 4.06 1345 4.01
0.9 0.3 75 77 4.12 70 4.00
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Figure 3.9. Runtime comparison of DECOB and RedCone on the BioGRID dataset (a) parameters
: t = 0.4 and smin = 60 (b) parameters : θ = 0.7 and t = 0.4

parameters smin = 70, tolerance t = 0.4 and density θ = 0.7, RedCone is almost ten times faster

than DECOB on the BioGRID dataset.

3.4.4. Multithreaded Runtime

We chose slightly different input datasets to show the effectiveness of the multithreaded

algorithm on the runtime.
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1. Yeast: We use the Yeast protein-protein interaction network with 6, 249 vertices and 224, 587

edges from the Biological General Repository for Interaction Datasets (BioGRID) [61]. Gene

profile attribute information correspond to the differential expression value of each gene when

exposed to 173 different experiments [29]. Each gene has 173 real attributes. For reference,

YeastHC has 4,008 vertices and 9,857 edges in its graph.

2. Human: We use the Human protein-protein interaction network with 20, 313 vertices and

230, 845 interactions from the BioGRID [61]. For attribute data, we use the dysregulation

profile of genes in 13 different cancers (attributes) where ‘1’ indicates that the gene is dys-

regulated [43].

We compare the runtime of MT Redcone with varying number of threads. Figures 3.10

and 3.11 plots the runtime for varying values of density (θ) and dimension (Smin), respectively, for

the Yeast dataset. Figures 3.12 and 3.13 plots the runtime for varying values of density (θ) and

dimension (Smin), respectively, for the Human dataset. We ran multiple experiments with varying

number of threads, beginning from a single thread (RedCone) to parallelizing with upto 32 threads.

MT Redcone is multiple times faster than the single thread execution of RedCone . The speedup

is bounded by the number of cores in the CPU which is 8 in our machine. Moreover, as we increase

the number of threads beyond 8, no gain in speedup is obtained and we start seeing the impact of

the computational overhead (this behavior can be seen in figure 3.10).

3.4.5. Representative set

As noted previously finding a reduced representative set is important when there are millions

of output maximal cohesive dense clusters. A reduced representative set (of maximal cohesive dense

clusters) is more manageable and is better suited for analysis as they closely represent the entire

population of output clusters. We will look at the results from this reduction process on YeastHC

dataset.

We ran the modified K-Medoids algorithm on the output space of MT Redcone for varying

parameters of both MT Redcone and K-Medoids . Table 3.3 presents some of the results of K-

Medoids algorithm. θ, γ, t, smin represent the parameters for the MT Redcone and |N | denotes

the number of output maximal cohesive dense clusters. K and α are the parameters for K-Medoids

where K represents the number of desired clusters in representative set and α is a user defined
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Figure 3.10. Runtime comparison of multiple threads on the Yeast dataset with varying density,
parameters : (a) t = 0.4 and smin = 60 (b) t = 0.3 and smin = 65
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Figure 3.11. Runtime comparison of multiple threads on the Yeast dataset with varying dimen-
sion, parameters : (a) t = 0.4 and θ = 0.9 (b) t = 0.4 and θ = 0.7

parameter to control the similarity between clusters. K% is the percent of |N | clusters desired in a

representative set. We ran multiple experiments varying both sets of parameters and calculated the

average intra partition similarity and average inter medoid similarity as defined previously. Figure

3.14 and 3.15 plot the average intra partition similarity and average inter medoid similarity for

varying values of α and K.

In figure 3.14, as α is increasing, the similarity calculation between cohesive dense clusters

is biased more on the network structure than the attributes of clusters. Notice as α is increasing

the AvgPartitionSim is increasing and AvgMedoidSim is decreasing. As both metrics comple-

ment each other, they indicate in reinforcement, that the output space (maximal cohesive dense
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Figure 3.13. Runtime comparison of multiple threads on the Human dataset with varying dimen-
sion, parameters : θ = 0.6

clusters) forms better partitions when the similarity metric is biased towards the network structure

of maximal cohesive dense clusters. In other words, the maximal cohesive dense clusters resulting

from this YeastHC dataset has more similarity in its network structure over their attributes. This

trait is demonstrated by the above figure as increasing α values increases similarity among these

clusters and hence form better partitions.

In figure 3.15, we observe the trend in AvgPartitionSim and AvgMedoidSim values,

while increasing the desired number of representative clusters. As K increases, we increase the

number of partitions in the output space. We see a steady increase in AvgPartitionSim while

AvgMedoidSim is pretty much flat. This is expected because with increasing number of partitions
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Table 3.3. Similarities of medoids in Representative Set.

K-Medoids K-Medoids Similarities
θ/γ t smin |N | K% α AvgPartitionSim AvgMedoidSim

0.5 0.2 15 996 10% 0.5 0.53 0.053
0.7 0.2 15 2417 10% 0.5 0.48 0.085
0.8 0.2 10 6100 10% 0.5 0.50 0.038
0.9 0.3 15 9989 10% 0.5 0.55 0.059

0.5 0.2 15 996 70% 0.5 0.88 0.052
0.7 0.2 15 2417 70% 0.5 0.86 0.077
0.8 0.2 10 6100 70% 0.5 0.86 0.038
0.9 0.3 15 9989 70% 0.5 0.87 0.059

0.5 0.2 15 996 10% 0.9 0.58 0.024
0.7 0.2 15 2417 10% 0.9 0.53 0.007
0.8 0.2 10 6100 10% 0.9 0.57 0.022
0.9 0.3 15 9989 10% 0.9 0.61 0.031
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Figure 3.14. Average intra partition similarity AvgPartitionSim and average inter medoid sim-
ilarity AvgMedoidSim with varying alpha values.

the members in each partition decrease, and, the similarity of each member in the partition to

their respective medoid increases. This increase in similarity is captured by the increasing trend

of AvgPartitionSim. At 100% value of K, each cluster is its own partition and medoid and has

a perfect simliarity score of 1. On the other hand, AvgMedoidSim remains invariable because the

average distance between medoids does not change with increasing number of medoids.
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Figure 3.15. Average intra partition similarity AvgPartitionSim and average inter medoid sim-
ilarity AvgMedoidSim with varying K values.
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4. MINING COHESIVE SUBNETWORKS

In this chapter we look at the problem of mining cohesive networks. Highly cohesive clusters

may not always be densely connected and hence we need a new definition and approach for finding

such patterns. Figure 4.1 shows two identical graphs with node attributes which highlight two

cohesive subnetworks. Figure 4.1 (a) shows a graph which has a highly dense cohesive subnetwork

highlighted in black. The density of this dense cohesive network is 0.8. Figure 4.1 (b) shows another

highly cohesive subnetwork but it is not dense, in fact its density is 0.4.

(a) (b)

1.0, 0.1, 2.4
0.1, 0.2, 2.1

0.9, 0.0, 2.2

1.1, -0.1, 1.1
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-1.0, 0.3, 2.2

0, 0.2, 2.3

Figure 4.1. Example of cohesive network. Graph containing two communities, (a) An example of
dense cohesive subgraph and (b) an example of a cohesive subgraph

The previous definition of dense cohesive networks cannot be extended to the problem of

finding cohesive networks, because no density threshold exists in this problem. Moreover even if a

very low density threshold is given as an input, there can always be cohesive network which has

lower density then the input threshold value and hence might remain undiscovered.
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4.1. Problem description

Given an attributed graph G = (V,E, f), two thresholds t and smin, the problem of mining

the set of maximal cohesive subgraphs is to find the set:

M = {M1,M2,M3, · · · ,M|M|}

such that every Mi ∈ M is a maximal cohesive subgraph. Each Mi is a tuple {Gi, Ai} containing

a subgraph and its relevant attributes. A cohesive subgraph Mi is called a maximal cohesive

subgraph, if ̸ ∃M ′
i such that M ′

i ⊇ Mi and M ′
i is cohesive.

4.2. Algorithm

A näıve way of solving this problem is by enumerating all possible patterns and then re-

porting only the unique cohesive patterns or clusters. Each pattern found is added to a list. Before

a new pattern is added to the list, we check if a super pattern exists in the list which subsumes the

current pattern. This ensures that a pattern has not been visited before and keeps the discovery

limited to unique patterns. The next section describes this algorithm in detail. We also propose

an algorithm MinCone to address the computational issues in the näıve approach.

4.2.1. Brute force approach

The basic idea behind this brute force approach is to build an enumeration tree and only

add a maximal cohesive pattern to an output list if the list doesn’t contain a super pattern that

subsumes the current pattern. Algorithm 3 shows the pseudo code for brute force approach. Line

17 shows the condition to check the list before adding a new pattern. Another useful optimization

is to check whether a child pattern exists in the list before actually creating the child pattern. If

its already in the list then the entire subtree rooted at the current node can be pruned because

this child pattern has been visited once before and will yield the exact same subtree as before.

This optimization to the brute force approach can be seen in line 8. The enumeration tree can also

be pruned on the cohesive constraint as shown in line 9 as the number of similar attributes is an

anti-monotone property.

The biggest problem with brute force approach is that we have to constantly check the list

to output unique patterns. For very large graphs the checking for duplicates in the list becomes

more costly than the actual recursive enumeration and cohesive constraint check. This severely
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restricts the scalability of this algorithm for large graphs. To address the limitations of the brute

force approach we propose an efficient algorithm for finding cohesive clusters in the next section.

Moreover this new approach can be parallelized for even better runtime efficiency.

Algorithm 3 Brute force : Maximal Cohesive Cluster Discovery
Input:
G = (V,E, f): an attributed graph
min size: the minimum size of cluster to include in results
t: tolerance threshold between two attribute values in a single subspace
smin: minimum number of similar attributes per cluster

Output:
M: maximal cohesive clusters
Q : List for storing visited nodes
1: Remove all non cohesive edges from input graph
2: M = {}
3: BruteForceMineclusters({})
4: function BruteForceMineclusters(U)
5: locally maximal← true
6: for v ∈ V \U do
7: Let U ′ = U ∪ v
8: if NotV isited(U ′, Q) then
9: if |A(U ′)| ≥ smin then
10: locally maximal← false
11: AddToVisitedQueue(U ′, Q)
12: BruteForceMineclusters(U ′)
13: end if
14: end if
15: end for
16: if locally maximal and |U | ≥ min size then
17: if @Mi ∈M such that U ⊆Mi then
18: M =M∪ U
19: end if
20: end if
21: end function
22: returnM

4.2.2. MinCone approach

We propose an efficient approach to mine cohesive clusters named MinCone (MINing

COhesive NEtworks). This algorithm builds an enumeration tree and utilizes the reverse search

principle technique to grow patterns such that algorithm does not visit the same pattern twice.

This means that a there exists a unique path from the root to a pattern in the enumeration tree.

This eliminates the need to check whether a pattern or even a super pattern has been visited before.

At any given search node only valid child search nodes are explored. The valid child search nodes

maintain the cohesive property.
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4.2.2.1. Minimum spanning tree

The MinCone algorithm utilizes the mininum spanning tree for enumerating patterns. A

spanning tree of a graph is a tree which connects all the vertices together. A single graph can have

multiple spanning trees. If all the edges of the graph have unique weights then the sum of the

edges in the spanning tree can represent a weight for the spanning tree. A minimum spanning tree

(MST) is then a spanning tree with the least weight among all possible spanning trees.

Let G = (V,E,w) be a weighted undirected graph, where w : E → R is a weight function

defined on its edges. Every edge in G has a unique weight or in other words function w defines a

strict total ordering on the edge weights, i.e., for any two edges ei, ej ∈ E[G] with ei ̸= ej either

w(ei) > w(ej) or w(ei) < w(ej) holds. The weight of a spanning tree g = (V,Eg) is defined to be

w(g) =
∑

e∈Eg
w(e). As stated earlier a minimum spanning tree (MST) is a spanning tree whose

weight is less than or equal to the weight of every other spanning tree. So we can say that there exists

a unique spanning tree of G represented by MST (G) such that w(MST (G)) ≤ ∀i w(Si(G)) where

S represents the set of spanning trees for G. Figure 4.2 (c) shows a graph and its corresponding

MST in Figure 4.2 (d).

4.2.2.2. Parent child relationship

Now we describe the parent child relationship as utilized by MinCone . Figure 4.2 (a) shows

a sample enumeration tree where A, B, U , U∗ are all cohesive clusters. U is the parent cluster of U∗

such that U∗ := U ∪ v. In figure 4.2 (b) and (c) we see the cohesive clusters U = {1, 2, 3, 4, 5, 6, 8}

and U∗ = {1, 2, 3, 4, 5, 6, 7, 8} respectively represented as graphs. To establish the parent child

relationship we need to find the MST of U∗ which is shown in 4.2 (d). The vertex 7 is highlighted

in figure 4.2 (d) because its the only vertex which is connected to a single edge with the smallest

edge weight. Note the condition of connected to a single edge in turn restricts the degree of the

vertex to 1. The set of vertices having a degree of 1 in the MST is {4, 5, 7, 8}. Out of these vertices,

vertex v = {7} has the smallest weight of w = 3. A child cluster is said to be a valid child of its

parent if the vertex v which is used to grow the child cluster from the parent is the same vertex

which has a degree of 1 and the smallest edge weight in minimum spanning tree of the child cluster.

Lets assume a graph G = (V,E, f, w) be a weighted undirected graph with node attributes,

where w gives weight for each edge and f gives the attribute for each vertex. For a given set of
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Figure 4.2. MinCone approach.(a) Sample enumeration tree where A, B, U , U∗ are all cohesive
clusters, cluster U is the parent of the cluster U∗ (b) cohesive cluster represented by U (c) child
cohesive cluster represented by U∗ (d) MST of U∗.

vertices U , we define MST (U) as the minimum spanning tree of the graph induced by G[U ]. Given

U and v ∈ V \ U . U∗ := U ∪ v is a child of U if and only if

∀ei ∈ E[MST (U∗)] : degMST (U∗)(v) = 1 ∧ w(indEdge(U∗, v)) < w(ei)

where indEdge(U∗, v) is the edge connecting the vertex v in MST (U∗). Since the degree of v in

MST (U∗) = 1, indEdge(U∗, v) uniquely represents one edge. Also degMST (U∗)(v) represents the

degree of vertex v in the graph represented by MST (U∗).

4.2.2.3. Algorithm

Algorithm 4 shows the pseudo code for the MinCone . The recursive function builds an

enumeration tree like the example in Figure 3.2. The result of this algorithm is the set of maximal

cohesive clusters M.

We employ a couple pruning strategies to reduce the size of the enumeration tree. At

first all non cohesive edges are removed from the input graph as shown in line 1. The end points
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Algorithm 4 MinCone : Maximal Cohesive Cluster Discovery
Input:
G = (V,E, f): an attributed graph
min size: the minimum size of cluster to include in results
t: tolerance threshold between two attribute values in a single subspace
smin: minimum number of similar attributes per cluster
Output:
M: maximal cohesive clusters

1: Remove all non cohesive edges from input graph
2: M = {}
3: Mineclusters({})
4: function Mineclusters(U)
5: locally maximal← true
6: for v ∈ V \U do
7: Let U ′ = U ∪ v
8: if |A(U ′)| ≥ smin then
9: locally maximal← false
10: if isChild(U ′, U) then
11: Mineclusters(U ′)
12: end if
13: end if
14: end for
15: if locally maximal and |U | ≥ min size then
16: M =M∪ U
17: end if
18: end function
19: returnM

(vertices) of these edges will never be a part of any cohesive cluster together hence they can be

safely removed without losing any clusters. The second pruning is based on the cohesion of the

edges while growing a parent node. Before a child node can be created the algorithm checks to

see if the potential child node is cohesive. If it is cohesive then the algorithm recursively creates

the child node. If no cohesive child node exists for the current search node then the current search

node is maximally cohesive and it can be added to M (line 16).

4.2.3. Multithreaded MinCone approach

In this section we extend MinCone algorithm by proposing a parallel implementation called

MT MinCone. Recall that MinCone uses a special reverse search enumeration technique [3] that

guarantees a unique child parent relationship, i.e., a child search node will always have a unique

parent node in this tree. Following this corollary of this unique child parent relationship, the

enumeration tree built by MinCone ensures that every node has a unique path from the root of the

enumeration tree. This property eliminates the need to check whether a subgraph has been visited
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before because it will only ever be visited once. We exploit this unique child parent relationship to

develop a parallel implementation of mincone.
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Figure 4.3. The input graph and a portion of the corresponding enumeration tree built by
MT Mincone . There are four threads which build parts of the enumeration tree independently.
Each thread builds two subtrees from the first level children. Crosses show which branches are
pruned. The discovered maximal cluster is highlighted by a green box.

Figure 4.3 (a) shows an input graph (as seen earlier in Figure 4.1), and Figure 4.3 (b)

shows the enumeration tree as created by MinCone . Utilizing this reverse search principle, the

subtrees rooted under each first level node in the enumeration tree (figure 4.3) can be enumerated

independently. This suggests that we can spawn multiple threads at the root, and each thread

creates the subtree under each of the first level nodes. Each thread is going to enumerate its

subtree concurrently and because of unique child parent relationship this algorithm will never miss

any search nodes.
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Algorithm 6 shows the pseudo code for MT Mincone. The inputs include graph, G, tolerance

threshold, t, dimensionality threshold, smin, and a number of threads, numthreads. The algorithm

begins by spawning the requested number of threads (line 3). Each thread then iterates over the

first level nodes, selects a vertex and traverses its enumeration sub tree (line 9). The output of this

algorithm M is a list of maximal cohesive subgraphs. Line 16 checks the cohesive constraint and

only grows child nodes if the current node is cohesive. In line 18 we compute the MST of U ′ and

determine whether U ′ is a valid child of U , according to child parent definition established above.

Algorithm 5 Pseudo-code for a parallel (Multithreaded) algorithm for Maximal Cohesive subgraph
Detection
Input:
G = (V,E, f): An attributed graph
min size: Minimum size of cohesive subgraphs
t: Tolerance threshold in a single subspace
smin: Minimum number of similar attributes
numthreads: Number of threads

Output:
P: maximal cohesive clusters

1: Remove all non cohesive edges from input graph
2: P = {}
3: threads[] = spawn threads(numthreads)
4: start all threads(threads[], ThreadStart)
5: join all threads(threads[])
6: function ThreadStart
7: while there are more unexplored vertices do
8: Ensuring mutual exclusion, choose a vertex, v
9: execute thread(Mineclusters({v}))
10: end while
11: end function
12: function Mineclusters(U)
13: locally maximal← true
14: for v ∈ V \U do
15: Let U ′ = U ∪ v
16: if (|A(U ′, D, t)| = T ) ∧ |D| ≥ smin then
17: locally maximal← false
18: if isChild(U ′, U) then
19: Mineclusters(U ′)
20: end if
21: end if
22: end for
23: if locally maximal and |U | ≥ min size then
24: P = P ∪ U
25: end if
26: end function
27: return P
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4.3. Experiments

We compare MinCone against the brute force approach. We used a real-world network

and its associated attribute data: High Confidence Yeast (YeastHC). All experiments were run

independently on an Arch Linux operating system with an Intel Core i5-2500K (3.3GHz) processor

and 8 Gigabytes of main memory.

4.3.1. Cohesive clusters in the YeastHC

Table 4.1 shows the topological properties reported by MinCone for the YeastHC dataset.

In the table, |N | denotes the number of resulting clusters and N represents the average size. Both

MinCone and brute force approach outputs the exact same clusters hence results from brute force

are not explicitly shown in the table.

Table 4.1. Topological properties of cohesive clusters for the YeastHC dataset.

Parameters MinCone

t smin |N | N

0.300 40 1645 4.14
0.300 50 255 4.19
0.300 60 441 4.32
0.300 70 9 4.78

0.325 40 3919 4.19
0.325 50 627 4.13
0.325 60 98 4.33
0.325 70 18 4.44

0.350 40 15730 4.24
0.350 50 2382 4.14
0.350 60 485 4.10
0.350 70 64 4.27

0.375 40 38976 4.27
0.375 50 54514 4.21
0.375 60 1102 4.10
0.375 70 168 4.23

0.400 40 122783 4.4
0.400 50 19326 4.31
0.400 60 3485 4.2
0.400 70 825 4.09

Figure 4.4 shows a maximal cluster from the MinCone’s output on the YeastHC dataset

and a matrix illustrating the attribute data for the vertices in this cluster. The matrix shows the
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Figure 4.4. Representation of a cohesive pattern from the YeastHC dataset (a) Network structure
of the pattern (b) Attributes of the nodes in the pattern; Parameters: t = 0.4 and smin = 40 (Only
80 attributes are shown). Notice the pattern is not particularly dense

vertices on the rows and attributes on the columns. The first 40 columns in the matrix are the

attributes where these vertices are similar and therefore show very little deviation in its gray shade.

The last 40 columns are a sample of 40 attributes from the remaining 133 attributes, where these

vertices are not similar.

4.3.2. Running Time

1000

10000

100000

1e+06

1e+07

1e+08

40 50 60 70

R
u
n
ti
m

e
 (

m
s
)

Number of minimum attributes

Brute Force
MinCone

1000

10000

100000

1e+06

1e+07

1e+08

0.4 0.375 0.35 0.325 0.3

R
u
n
ti
m

e
 (

m
s
)

Attribute similarity threshold

Brute Force
MinCone

(a) (b)
Figure 4.5. Runtime comparison of brute force approach and MineCone on the YeastHC dataset
(a) parameters : t = 0.4 (b) parameters : smin = 40

Similar to RedCone, MinCone performs the cohesive constraint check over real attribute

for each cluster which takes O(dn), where d is the number of attributes and n is the maximum

44



number of nodes in a cluster. MinCone also finds a minimum spanning tree for each cluster in

an attempt to create a child node. We employ Kruskal’s spanning tree algorithm to find MST for

each cluster. Kruskal’s algorithm takes an additional O(n2logn). MinCone is a polynomial-delay

algorithm which means that the computation time between reporting two clusters is polynomial in

the input size. The running time of the algorithm thus depends on the number of reported maximal

cohesive clusters which is controlled by the thresholds.

We compare the running time of MinCone with brute force approach for varying parameters

on the YeastHC dataset. Figure 4.5 show that MinCone outperforms brute force in every case.

For example, in Figure 4.5 (a) for, t = 0:4 and smin = 40, Mincone is almost 400 times faster than

the baseline approach.

4.3.3. Multithreaded Runtime
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Figure 4.6. Speedup in runtime for multiple threads (a) on the Yeast dataset with varying
dimension while tolerance is fixed at t = 0.35 (b) on the Yeast dataset with varying tolerance while
dimension is fixed at smin = 30 (c) on Human dataset with varying dimension

In this section, we compare the runtime of MT Mincone with varying number of threads.

Figures 4.6 plots the speedup in runtime for varying parameters in Yeast and Human datasets

respectively. We ran multiple experiments with varying number of threads, beginning from a

single thread to 32 threads. MT Mincone is multiple times faster than the single thread execution

of MinCone . For instance, a single thread takes roughly 20 minutes for finding patterns with
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parameters t = 0.375 and smin = 20, however the parallel execution of the same experiment with

8 threads takes less than 4 minutes.

We noticed a maximum speedup of 7 as shown in 4.6 (a) for smin = 40 and 8 threads. The

speedup is bounded by the number of cores in the CPU which is 8 in our machine. The maximum

speedup is achieved with 8 threads, as we increase the number of threads beyond 8, no gain in

speedup is obtained and we start seeing the impact of the computational overhead.
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5. SAMPLING DENSE AND COHESIVE NETWORKS

Several recent studies [50, 19] have generated tremendous amounts of genomic data. Human

PPI data in BioGRID database increased quite considerably over the last few years now totaling

to 368,417 raw interactions as of March 2017 update [12].

The module detection algorithms discussed previously will not be able to scale to such

large graphs [36, 30, 34]. Although the multithreaded clustering algorithm [32] tried to speedup

execution by utilizing multiple threads, it may not be enough and we need a new way to detect

modules with an ever increasing database. The biggest issue with all the above algorithms is

that they all enumerate the entire output space which is often exponential to the input graph

size. Enumerating an exponential output space over an input graph of roughly 350K interactions

(current human PPI network) is prohibitively expensive. This restriction creates an opportunity to

find a new technique of detecting modules without needing to enumerate the entire output space.

5.1. Sampling

In this section, we propose a sampling technique which can output a reduced set of cohesive

and dense modules without enumerating the entire output space. To further understand this

approach we need to define the partial order graph of a graph. The partial order graph POG of a

graph G is a graph where each node represents a subgraph in G and an edge is drawn between two

subgraphs (nodes of POG) when they differ by only one vertex in G. We will define this further in

the problem definition section.

Basically, this algorithm performs a random walk on the partial order graph, and returns

modules from the partial order graph when the walk converges to a stationary distribution. The

stationary distribution of the random walk is established to match the preferred qualities of the

output modules such as density and profile constraints. The qualities desired of the output modules

can be converted into a score and plugged into the algorithm. In the stationary distribution the

output modules with higher score have a higher probability of random walk visit. Finally we rank

the output modules by their visit count and return the top k modules where k is a user supplied

parameter.
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Figure 5.1. (a) Module enumeration process enumerates all modules from the input graph.
Modules are shows as circles and representative modules are shown by filled circles. Summarization
process then tries to reduce this exponential output set to a representative set. (b) Sampling
technique outputs a reduced set directly from the input graph database without enumeration.

The biggest benefit of this technique is the scalability of the algorithm. As the algorithm

builds the partial order graph POG locally (while its sampling), it doesn’t need to enumerate the

entire output space ahead of time. Another benefit is that it eliminates the need for summarization

as it only outputs the most visited (high quality) modules. This way the expensive operation of

finding representative modules from an astronomically large output space is also removed.

5.2. Related work

Sampling from a graph has been widely studied and has diverse applications, for example,

survey hidden population in sociology [66], visualize social graph [49, 63] and scale down internet

autonomous systems graph [47]. A complete survey of graph sampling is discussed here [40].
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There are multiple sampling techniques, some of them are described below. A graph G

represented as G = {V,E} where V is the set of vertices and E is the set of edges. A sample graph

is represented by Gs = {Vs, Es} where Vs ⊂ V and Es ⊂ E.

5.2.1. Vertex based sampling

The idea here is to select a subset of vertices Vs from V , where Vs can be selected either

randomly or according to a target distribution. The edges between the vertices of Vs are only kept

in the edges Es, Es = (u, v) ∈ E|u ∈ Vs, v ∈ Vs. Vertex sampling has been applied to estimate the

network size and network density of very large graphs in [48].

5.2.2. Edge based sampling

Similar to vertex based sampling, a subset of edges Es, Es ⊂ E is selected. The vertices

found in the endpoints of the edge set Es are kept in Vs, i.e., Vs = (u, v|(u, v) ∈ Es. Benczur et.

al. uses edge sampling to find the minimum cut and flow problems in large graphs [5].

5.2.3. Traversal based sampling

In this technique the sampling starts with a set of initial vertices (or edges) and expands

the sample based on current observations. Snowball Sampling [31] is a traversal based sampling,

where the sample starts with an initial set of nodes in the graph and new nodes are obtained from

the neighbors of the initial nodes. This is a non-probabilistic algorithm because all neighbors of

the selected vertex are added to the sample.

Forest Fire [52] is a probabilistic version of snowball sampling, instead of selecting all

neighbors of the current node, x outgoing edges are selected based on a geometric distribution.

The other endpoints of these x outgoing edges are stored and then these x outgoing edges are

burned or destroyed. The process recursively repeats at the stored endpoints. Continuing this way

the process ends when there are no further outgoing edges. All the edges that are burned form

a sample. Another paper [51] proposes a sampling method and compares with the original graph

back in time when the original graph was the size of the sample. This paper uses forest-fire methods

and show good accuracy for sample sizes down to about 15% of the original graph.

Metropolis-Hastings random walk [57] is a traversal based approach where new nodes are

chosen randomly from the set of neighbors of the current node. Unlike travsersal based approach,

random walk only depends on their previous state as a node can be revisited in random walk

technique. Metropolis-Hastings can be applied to obtain a desired distribution of vertices in the
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sample. Hasan et.al [1] proposed an output space sampling technique based on Metropolis-Hastings

algorithm to mine dense subgraphs only.

To the best of our knowledge sampling dense and cohesive subgraphs from a large graph is

very novel and has not been addressed before.

5.3. Problem Description

Definition 8. Partial Order Graph (POG) : Given a graph G, parameters θ, t and smin and S

which contains the set of all the cohesive dense modules in G satisfying these parameters. The

partial order graph M is a graph where each vertex of the M is a cohesive dense module in G for

the supplied parameters. M = (V ′, E′) where every v ∈ V ′, v ∈ S holds. Edges of this graph denote

the sub graph relationship between the cohesive dense modules, i.e., for any edge e ∈ E′ which

connects two vertices u and v either of u ⊂ v or v ⊂ u holds, where both u, v ∈ S.

Figure 5.2 (a) shows a sample input graph G and Figure 5.2 (b) shows the POG, M . We

assume that every possible module of G is cohesive and dense for the given parameters. We can

see the M starts from an empty set and recursively adds new vertices till it enumerates all possible

modules. Vertices in M represent cohesive and dense modules and edges represent an extension of

a module to another module by adding a new vertex from G. For e.g., in figure 5.2 (b) the node

{B} grows to node {A,B} by adding vertex A from G to node B. This is similar to an enumeration

tree and various algorithms [36, 34] have suggested different traversal techniques to mine modules

from this enumeration tree.

Definition 9. Module score : Given a graph G, parameters θ, t and smin and S which contains

the set of all the cohesive dense modules in G satisfying the parameters. We define three more

parameters α, β and γ which are used to calculate a score for each module U ∈ S. The score of

each module is calculated as

∆U = (|U |α) ∗ (ρ(U)β) ∗ (|A(U)|γ)

The three terms are size of module |U |, density of module ρ(U) and number of cohesive

attributes |A(U)|. The score quantifies the interestingness of a module. The idea behind the

sampling algorithm is that we will mine the modules with better scores over others. Also the
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Figure 5.2. A input graph G and the corresponding POG represented by M , assuming every
module of G is cohesive and dense.

score parameters (α, β, γ) provide a way to bias the sampling algorithm to find bigger modules or

modules which are more dense or modules with high cohesiveness [36].

The score is a very important feature and greatly impacts the inner workings of the sampling

algorithm. The score of a module is plugged into the sampling algorithm to perform random walk

in POG. As the score reflects the desirability of a module and the random walk is biased to visit

higher score modules, the sampling algorithm ends up visiting the higher score modules more than

others. When the random walk converges we take the top k most visited modules.

Problem Definition: Given an attributed graph G, three thresholds θ, t, smin and a de-

sired number of output modules k (k < |N |), S contains the set of all the cohesive dense modules

in G, the problem is to sample a set of cohesive and dense modules

S = {U1, U2, U3, · · · , U|k|}
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such that every Ui ∈ S is a dense cohesive module with respect to input parameters and Ui should

have a high score ∆Ui , indicating that we will sample the modules with higher score over others.

5.4. Sampling algorithm

As discussed before the true problem of an enumeration algorithm is to enumerate an

exponential number of modules which is very time consuming. Secondly, to assist analysis we

need to reduce this exponential output space to a manageable set of modules. The sampling

algorithm can help alleviate these issues by directly sampling the representative modules (reduced

set of modules) without enumerating the output space entirely. We use the Metropolis-Hastings

algorithm [65] to sample modules from the output space, such that the samples form a representative

set of the most cohesive and dense modules from the output space. The sampling algorithm not

only avoided the exponential enumeration of output space but also removed the need to summarize

the exponential output space.

The main idea behind this algorithm is that it can draw samples from a population (output

space) provided we have a function f(x) that is proportional to the target distribution D. The

target distribution D, describes the distribution of modules in the population. In the case of a

uniform sampling where every module is equally likely to be in the representative set (sample)

the probability of any module is 1/|N | where |N | is the number of modules in the exponential

output space. However, we are interested in mining cohesive and dense modules and we would like

to bias the sampling probability to modules which are more dense and cohesive than others. In

other words we have a distinct target distribution for all modules in the output space which favors

some modules more than others. We model the probabilities such that the probability of a module

which doesn’t meet the parameter constraints is 0. The reduced constraint to have a function f(x)

which is proportional to the target distribution D makes Metropolis-Hastings a very useful method,

as calculating the normalizing factor |N | for the target distribution is very difficult (recall |N | is

exponential).

This algorithm iteratively generates samples and as more samples are produced the distri-

bution of samples approximates the target distribution. The algorithm asymptotically converges to

a steady state distribution which matches the target distribution. At each iteration the algorithm

generates a new sample which is only dependent on the current sample. This new sample is either

accepted or rejected based upon the scores of the current and the new sample.
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5.4.1. Metropolis-Hastings algorithm

Metropolis-Hastings is a Markov chain monte carlo method. A Markov chain is a mathe-

matical model which captures a stochastic process’s transitions from one state to another. For a

given set of states T = {t1, t2, ..., tn} and a process which can transition from one state to another

with some probability, a Markov Chain can be represented by a Transition probability Matrix, where

Pi|j represents the conditional probability of transitioning to state i from j (1 ≤ i ≤ n, 1 ≤ j ≤ n).

For all i, j ∈ T , we have 0 ≤ P (i|j) ≤ 1, and
∑

iP (i|j) = 1, i.e., the sum of probabilities in any

given row adds up to 1. This indicates that sum of the probabilities of transitioning from a state

j to all other state is 1.

For a given transition probability matrix P , the matrix P k gives the transition probabilities

from one state to another after k hops or transitions. As limk→∞ P k = W , i.e., the transition

probability matrix P approaches a stationary (steady) state represented by W . At stationary

state, we have a stationary distribution w (a row vector over states T ) for the Markov chain such

that w = wP relation holds, where w is the left eigen vector of the matrix P corresponding to the

eigenvalue 1.

A sufficient but not necessary condition for the existence of the stationary distribution is

the condition of detailed balance which is shown below.

w(i)P (j|i) = w(j)P (i|j),∀i, j ∈ T (5.1)

This condition establishes the existence of the stationary distribution by requiring that each

transition i to j is reversible, i.e., the probability of being in state i and transitioning to state j

must be equal to the probability of being in state j and transitioning to state i. We can start the

derivation of the algorithm from two states at initial state.

P (i)P (j|i) = P (j)P (i|j), ∀i, j ∈ T

=
P (j|i)
P (i|j)

=
P (j)

P (i)

(5.2)

The transition probability P (j|i) can be expressed in two steps
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• Proposal probability : The proposal probability g(j|i) is a conditional probability of selecting

the next state j given the current state of i.

• Acceptance probability : The acceptance probability α(j|i) is a conditional probability of

accepting the proposed state j

P (j|i) = g(j|i)α(j|i) (5.3)

Using in equation 5.2, we have

α(j|i)
α(i|j)

=
P (j)g(i|j)
P (i)g(j|i)

(5.4)

Metropolis choice for acceptance is

α(j|i) = Min

{
1,

P (j)g(i|j)
P (i)g(j|i)

}
(5.5)

P (j) and P (i) is the target distribution for states i and j, such that P (i) = ai/|N |, where ai

is some positive number. Recall |N | is exponential in the output space and is difficult to calculate.

However, according to Metropolis-Hastings algorithm we can substitute another function score(i)

which is proportional to P (i). The function score relates to the interestingness of the module.

Substituting score(i) in equation 5.5

α(j|i) = Min

{
1,

score(j)g(i|j)
score(i)g(j|i)

}
(5.6)

After calculating acceptance probability a new random value between 0 to 1 is generated

called the rejection probability. The new module is accepted only if the acceptance probability

is greater than the rejection probability. This technique encourages the algorithm to select the

samples with higher score and to remain there while occasionally picking the low score modules.

Another condition for the stationary distribution is the requirement of a unique stationary

distribution which is guaranteed by the ergodicity of the Markov chain. Ergodicity implies that

the Markov chain is finite, irreducible and aperiodic. The proof of this claim is provided here [1].
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5.4.2. Random walk

Sampling in the output space involves a random walk process which selects modules from

the POG. In this context, we can project the modules of the partial order graph M = (V ′, E′)

as states (T = V ′) and the sampling algorithm as a random walk process which jumps from one

module to next using the edges E′ of the POG. The transition probability matrix P shows the

probability of the random walk process to transition from one module to another. At stationary

state, P converges to W which implies that every output module has a definite target probability

distribution regardless of the initial starting state. This convergence is reached irrespective of the

starting state as long as the the conditions of detailed balance and ergodicity are met.

We don’t have to construct the complete POG for the random walk, instead the algorithm

picks a random module i and locally calculates the neighbors adjacent to this module represented

by neighi. As the random walk process traverses along the edges of the POG it can only transition

to one of the neighbors of i. After identifying all neighbors, the algorithm calculates the proposal

and acceptance probabilities from the current module i to each neighbor j where j ∈ neighi. As

described before in equation 5.5 we use score function to calculate the acceptance probability which

is proportional to the target distribution.

5.4.3. Uniform sampling

In the case of uniform sampling all modules are equally likely, therefore the target distri-

bution is 1/|N | for any module in the output space. |N | represents the total number of modules

in the output space. Since every module is equally likely in uniform sampling the score function is

set to 1.

A random walk in the POG when picking modules uniformly would gravitate towards the

degrees of the modules. In other words the modules with high degree in the POG would be sampled

more than low degree modules, in fact the steady state distribution is directly proportional to degree

of the module [17]. To counter this effect we design the proposal distribution g(i|j) = 1/di where

di represents the degree of module i in the POG. Substituting the values of g(i|j) in equation 5.5

we can obtain the acceptance probability for uniform sampling

α(j|i) = Min

{
1,

dj
di

}
(5.7)
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5.4.4. Targeted sampling - sampling dense and cohesive modules

To sample cohesive and dense modules we need to introduce a bias in the acceptance

probability which will encourage the random walk to move towards more cohesive and dense modules

and remain there. We use module score defined in definition 9 to introduce this bias. Recall that by

properly selecting the parameters we can adjust the score to favor bigger, denser and more cohesive

modules.

We use the same proposal probability as uniform distribution to offset for the bias on

the degree of modules. Substituting score = ∆ in in equation 5.5 we can obtain the acceptance

probability for targeted sampling

α(j|i) = Min

{
1,

dj ∗∆i

di ∗∆j

}
(5.8)

Algorithm 6 shows the random walk process in detail. The algorithm starts with an empty

map S which will contain all the visited modules and their visit count. Next the algorithm finds

a random module u in the POG to begin processing as shown in line number 3. The randomly

selected module u, adheres to the input constraints of density and cohesiveness. The algorithm

does not create the POG ahead of time, instead it finds a random module by randomly selecting a

vertex from G (input graph) and extending it by one of its neighbors in G till it creates a random

initial module.

Once a random module is found, the algorithm starts the random walk process. It iter-

ates over all qualified neighbors neighu (all neighbors in this set satisfy the density and cohesive

constraints) of the random module u and calculates the acceptance probability accept prob of each

neighbor. It then jumps to one of the neighbors if the acceptance probability is greater than a

rejection probability. If the algorithm transitions to a new module v then it adds the current

module u to the map S and increments it visit count by 1. If the algorithm does not jump to

any of the neighbors then it finds another random module as shown in line 18. Continuing this

way the algorithm transitions from one module to another till the maximum number of iterations

has reached. This usually implies that the random walk process has converged to a steady state

distribution and the map S contains the modules in relation to the target distribution. Finally the

algorithm returns the N most visited modules from S as requested.
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Note that the random module search also has a maximum iterations check beyond which

the algorithm gives up and exits, this avoids the runoff problem and guarantees the exit of the

algorithm if a random module cannot be located.

Algorithm 6 Pseudo-code for a sampling dense and cohesive modules
Input:
G = (V,E, f): An attributed graph
θ: Density threshold
t: Tolerance threshold in a single subspace
smin: Minimum number of similar attributes
N : Number of output samples desired

Output:
M < module, int >: Map of dense cohesive cluster samples and its visit count

1: S = {, }
2: max iter = maximum number of iterations
3: u = find random module()
4: for i ∈ 1 to max iter do
5: transition = false
6: Let neighu be set of neighbors for u
7: for v ∈ neighu do
8: accept prob = score(v) ∗ g(v|u)/score(u) ∗ g(u|v)
9: reject prob = uniform(0, 1)
10: if accept prob ≥ reject prob then
11: AddOrIncrementV isitCount(S, u)
12: u = v
13: transition = true
14: break
15: end if
16: end for
17: if transition = false then
18: u = find random module()
19: end if
20: end for
21: return top N most visited samples from S

5.5. Experiments

In this section we discuss the experiments and results from the execution of our proposed

algorithm. To evaluate the sampling algorithm and the modules generated from the sampling

algorithm we first start with a small dataset such that its output space can be easily enumerated. We

run the sampling algorithm and take sufficiently large number of samples which gives us a sampling

distribution. We then compare the sampling distribution with the desired target distribution. Later,

we run the proposed algorithm on large real world datasets where it is difficult to enumerate the

output space.
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We run the sampling algorithm in both uniform sampling mode and also targeted sampling

mode. In uniform sampling mode we expect all modules to be sampled with equal probability while

in targeted sampling the probabilities are biased for more cohesive and dense modules. Finally, we

also analyze the generated modules and show that they are biologically relevant. We have used two

real world protein-protein interaction networks and associated attribute data.

1. Yeast: We use the Yeast protein-protein interaction network High Confidence Yeast (YeastHC)

[4]. This network has 4008 vertices (genes) and 9857 edges (interactions). Gene profile at-

tribute information correspond to the differential expression value of each gene when exposed

to 173 different experiments [29]. Each gene has 173 real attributes.

2. Human: The HPRD network is a database of curated proteomic information pertaining to

human proteins. The interaction network contains 21, 429 vertices (genes) and 288, 229 edges

(interactions). Attribute data for the HPRD network is a binary dataset. We compiled a

dataset of 13 experiments (attributes) from the Gene Expression Omnibus (GEO) database

[22].

This algorithm is implemented in C++ and experiments were run on a system with an Intel

Xeon (3.3GHz) processor, 8 cores, 16GB RAM and Ubuntu operating system.

5.5.1. Uniform sampling

In uniform sampling, the random walk algorithm samples modules from the POG uniformly.

We run this experiment on a smaller curated graph. There are |N | = 107 number of cohesive and

dense modules in this output space. We ran the sampling algorithm for |N |∗100 (10700) iterations.

Figure 5.3 shows the result of this experiment. Figure 5.3 (a) shows the visit count of each of the

modules. Figure 5.3 (b) plots the histogram of the visit counts where the x axis represents the visit

count bins and the y axis shows the number of modules whose visit count falls in that bin. This

histogram looks like a normal distribution. The summary statistics of the visit count distribution is

shown in Table 5.1 which shows the minimum, maximum, mean and the standard deviation (SD)

of the visit counts.

We compared the sampling algorithm against a random sampler. To achieve this we con-

verted the uniform sampling problem to sampling numbers from a set of integers. We created a set

of 107 numbers and generated 10700 random samples with replacement. The summary statistics
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Figure 5.3. Uniform sampling where |N | = 107, sampling algorithm ran for 10700 iterations (a)
Visit counts of each sample (b) Histogram of visit counts

Table 5.1. Summary statistics of the visit counts of the samples in uniform sampling which
includes minimum, maximum, mean and standard deviation of the visit counts.

Algorithm Min Max Mean SD

Uniform sampling 42 146 85 18.6
Random sampling 75 134 100 9.4

from the random sampler is shown in Table 5.1. The summary statistics of the visit count in

random sampler looks very similar to sampling algorithm. Both exhibit a normal distribution with

the highest visit counts at the mean.

5.5.2. Targeted sampling

For targeted sampling we bias the acceptance probability towards selection of dense and

cohesive modules over others. We expect that more dense and cohesive modules will have a higher

visit count over other modules. We ran this algorithm on Yeast and Human datasets for varying

parameters θ, t and Smin.

We first ran our enumeration algorithm on Yeast dataset with strict parameters because

we can enumerate all patterns (modules) easily. For each of the experiment we ran our sampling

algorithm such that the number of iterations is several times more than the total number of patterns.
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Figure 5.4. Targeted sampling where |N | = 3819, sampling algorithm ran for 75000 iterations (a)
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Table 5.2. Results of sampling algorithm on Yeast dataset.

θ t smin |N | γ r

0.8 0.2 15 7238 10 0.39
0.8 0.2 20 3819 20 0.39
0.8 0.2 25 1680 30 0.32
0.9 0.2 15 6716 10 0.45
0.9 0.2 20 3819 10 0.39
0.9 0.2 25 3729 30 0.35

By sampling a high number of patterns we ensure that the algorithm gets a fair chance of visiting

most patterns and also arrive at a steady state distribution. Table 5.2 shows the results of our

experiments on Yeast dataset with multiple parameters where |N | represents the total number of

output modules and γ represents a multiplier factor such that the total number of iterations can be

calculated by the product of |N | and γ. For e.g., the experiment with parameters θ = 0.9, t = 0.2,

Smin = 15 (fourth row in Table 5.2), the total number of output modules |N | is 6716 and γ is 10

and the total number of iterations = 67160 (|N | * γ). r represents the correlation between the visit

count of samples and their ∆ scores.
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In 67160 iterations, the sampling algorithm visited 5365 out of 6716 modules. 59 out of

6716 modules have high module score such that their scores are in the top 33% of the module score

distribution. The sampling algorithm visited 100% of the top scored modules (all 59), while it only

visited 60% of the remaining modules. This indicates that the sampling algorithm favors visiting

modules with higher score.

The average visit count of all 5365 modules was 7 and the average module score was 53.3.

In contrast, the most visited module by the algorithm had a score of 118.8 and was visited 166

times, also the module with the highest score of 212.5 was visited 55 times. The sampling algorithm

spent about 32% of the time sampling the top 10% of the most visited modules with an average

module score of 87.3. These statistics show that the sampling algorithm favors sampling modules

with higher score.

There are 3819 cohesive and dense modules satisfying these parameters θ = 0.8, t = 0.2,

Smin = 20 in the Yeast dataset (second row in Table 5.2). We ran the sampling algorithm for 75,000

iterations. Figure 5.4 (a) shows the distribution of the visit count of the samples. As expected

there are some modules which are sampled more aggressively than others. We also show that the

modules which were sampled more tend to have higher ∆ scores, which in turn suggest that cohesive

and dense modules were sampled more than others. Figure 5.4 (b) shows a plot between module

score and sampling frequency. We can see that module score and sampling frequency are positively

correlated which suggests that modules with higher score are sampled more. The column labeled

r in Table 5.2 shows the positive correlation for each of the experiments with different parameters.

Next, we ran our sampling algorithm on a large Human dataset. The enumeration algo-

rithms would not be able to complete with such large datasets in a reasonable amount of time. We

ran MultiRedcone [32] and our sampling algorithm for for varying amounts of time and compared

the output in Table 5.3. We ran both the algorithms for 30, 60 and 90 minutes each and then com-

pared the output modules generated so far. The |Patterns| column shows the number of patterns

enumerated by the MultiRedcone algorithm while the |Samples| column shows the number of pat-

terns generated by the sampling algorithm in the same amount of time. For e.g., the experiments

with parameters θ = 0.5, Smin = 2 and runtime = 30 (first row in table 5.3), the MultiRedcone

algorithm generated over 101, 933 patterns while for the same parameters the sampling algorithm
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generated 3, 968 patterns. The enumeration algorithm visits every pattern once while the sampling

algorithm can visit the same pattern multiple times.

The sampling algorithm beats the enumeration algorithm in the quality of the output mod-

ules. For e.g., the maximum score in the patterns enumerated by MultiRedcone algorithm for

experiment θ = 0.5, Smin = 2 and runtime = 30 is 22.5 while the maximum score in the samples

generated by the sampling algorithm is 40, which shows that the sampling algorithm has found a

bigger, denser and more cohesvive module over the MultiRedcone algorithm. Recall that the score

of a pattern is a function of density, size and cohesiveness of a pattern.

Table 5.3. Results of sampling algorithm on Human dataset.

θ smin runtime |Patterns| |Samples| NSpatterns NSsamples

0.5 2 30 101,933 3,968 0.130 0.248
0.5 2 60 113,981 6,279 0.179 0.332
0.5 2 90 221,176 13,375 0.218 0.33
0.5 3 30 137,553 13,253 0.352 0.408
0.5 3 60 503,032 26,496 0.360 0.391
0.5 3 90 1,014,937 35,735 0.326 0.390
0.5 4 30 812,084 24,375 0.403 0.434
0.5 4 60 1,621,483 28,013 0.461 0.472
0.5 4 90 2,084,805 27,883 0.428 0.457

Table 5.4. Traversal of enumeration and sampling algorithm.

θ smin runtime MV FSenum MV FSsamp

0.5 2 30 82.94 21.64
0.5 2 60 84.59 16.46
0.5 2 90 91.69 19.37
0.5 3 30 98.51 23.65
0.5 3 60 96.11 22.62
0.5 3 90 94.42 25.30
0.5 4 30 93.07 32.03
0.5 4 60 93.74 32.08
0.5 4 90 90.84 30.94
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Table 5.3 also shows the normalized average score of patterns (NSpatterns) enumerated

by MultiRedcone algorithm and sampling algorithm (NSsamples) respectively. The normalized

average score normalizes the score of patterns to a range between 0 to 1. We can see that for every

experiment the sampling algorithm has higher normalized score, for e.g., for the experiment θ = 0.5,

Smin = 2 and runtime = 60 (second row in Table 5.3) the enumeration algorithm produced 113, 981

patterns with an average score of 0.179 while the sampling algorithm generated 6, 279 patterns with

an average score of 0.332.

We further analyzed the traversal pattern of the enumeration and the sampling algorithm.

Table 5.4 shows the percentage of time spent by each algorithm in exploring patterns. We calculated

the time spent by each algorithm in the top 3 most visited first level sub trees. MV FSenum col

shows the percent of time spent by enumeration algorithm in the most visited first level subtrees

and MV FSsamp shows the percent of time spent by sampling algorithm in most visited first level

subtrees. As the sampling algorithm does not generate patterns in any specific order we sorted

the patterns by vertexIds to calculate this metric. The enumeration algorithm spends more than

80% of the time exploring patterns under 3 out of 20, 000 sub trees in every experiment. This is

expected because the enumeration tree is essentially a depth first search technique and will get

stuck enumerating patterns under a large sub tree. In contrast, the most time spent by sampling

algorithm in the top 3 most visited sub trees is only 30%. The sampling algorithm randomly jumps

from one node to another in the POG. This technique helps the sampling algorithm explore more

patterns while the enumeration technique would be restricted to a few sub trees.

In summary, we can claim that the sampling algorithm helps in finding fewer and better

modules over the enumeration algorithms, and achieves its initial proposal of generating a reduced

set of high quality dense and cohesive modules without enumerating the entire output space.

5.5.2.1. Biological Analysis

To assess the biological significance of the reported cohesive subnetworks, we performed

enrichment analysis of these gene sets. If a biological annotation is overrepresented in the genes

in a cohesive subnetwork, the subnetwork is marked as enriched. We used the DAVID functional

annotation tool for performing the enrichment analysis [41, 42] and assessed the enrichment for

the KEGG pathways and the Gene Ontology biological process. Table 5.5 shows the result of

enrichment analysis of GO terms, KEGG pathways and gene-disease association (DGN) for various
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Table 5.5. Biological enrichment analysis on modules generated by sampling algorithm in human
dataset.

θ smin runtime |samples| GO% KEGG% DGN%

0.5 4 30 6,250 100 100 100
0.5 4 60 12,749 100 99.1 99.2
0.5 4 90 17,669 100 98.6 99.1
0.5 3 30 3,053 100 100 100
0.5 3 60 5,718 100 99.7 100
0.5 3 90 8,028 100 99.9 100
0.5 2 30 869 100 100 100
0.5 2 60 1,995 99.9 92.5 100
0.5 2 90 3,022 99.4 100 100

sampling experiments. We can see that all of the modules generated by the sampling algorithm are

biologically very significant. For e.g., for the experiment where θ = 0.5, Smin = 4 and runtime = 30

(first row in Table 5.5) the GO, KEGG and DGN enrichment is at 100% for sampling.
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6. CONCLUSION AND FUTURE WORK

6.1. Conclusion

In this dissertation we proposed new algorithms for mining cohesive sub networks from

graphs with node attributes. We will summarize our findings and provide a future outlook in this

chapter.

Real world graphs always contain wealth of related information about nodes and edges.

In social networks we have basic user information such as age, city and interests which can be

modeled as node attributes. Communities which show similarity in node attributes in addition to

their network structure are called cohesive communities and have higher fidelity in their application.

This dissertation addresses the problem of efficiently mining cohesive communities from graphs.

6.1.1. Mining dense and cohesive sub networks

We started with the problem of mining dense and cohesive sub graphs (modules) from

graphs. We proposed a RedCone [34] algorithm which builds an enumeration tree and lists all

qualifying sub graphs. The enumeration tree can contain exponential number of nodes. Red-

Cone utilizes a reverse search enumeration technique to efficiently reduce the search space in this

enumeration tree.

We ran the RedCone algorithm on real world protein protein interaction networks and

compared our results against the state of the art algorithms GAMer and DECOB. We noted

that RedCone is multiple times faster than both GAMer and DECOB for various experiments.

We extended RedCone algorithm by implementing a parallel approach [32] to RedCone utilizing

multiple threads. We compared our results against the single threaded execution and noticed

multiple times of improvement in runtime. The speedup was bound by the total number of cores

in the cpu. We also analyzed the biological significance of the reported modules. We tested our

results against a known biological database DAVID and found that our result modules were always

enriched in GO Terms (100% ) and showed a high percent in KEGG pathways (80%).

For very relaxed constraints RedCone will generate millions of output modules. These

modules also have a high overlap among themselves. Subsequent analysis often requires a small

set of output modules which are fairly separated from each other, yet representative of the entire
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output modules. To this problem, we implemented a K-Medoids based summarization technique

which generates a small set of representative modules.

6.1.2. Mining cohesive sub networks

Cohesive modules need not be dense, in fact density constraint can sometimes force an

algorithm to miss modules which are cohesive in high number of attributes as shown in example

figure 4.1. With this limitation in mind, we proposed a MinCone [35] algorithm to detect cohesive

only modules without density constraint. MinCone is also an enumeration based approach which

utilizes reverse search technique to effectively reduce the search space. We compared our MinCone

algorithm against a baseline approach to mine cohesive modules. Mincone algorithm is several time

faster than the baseline approach.

We implemented a parallel approach algorithm [33] for MinCone utilizing multiple threads.

We achieved a maximum speedup of 7 by running 8 threads for parallel MinCone . The speedup

was bound by the number of cores in the cpu which was 8 in our case.

6.1.3. Sampling dense and cohesive sub networks

Many real world graphs are huge with millions and billions of nodes in the graph. Most of

the enumeration algorithms discussed here would not be able to handle graphs of this scale. The

biggest problem of the enumeration techniques is that they enumerate an output space which is

exponential to the number of nodes in the graph. With hundreds of millions of nodes in a graph

the task of enumerating the entire output space is enormous and very time consuming. In post

processing we would often require a small set of representative modules for analyses. The second

task of reducing this output space of modules into a small representative set is even more time

consuming.

To combat this dual problem we proposed a sampling algorithm which promises to return

fewer and higher quality modules without enumerating the entire output space. The sampling

algorithm is random walk technique on the partial order graph of the input graph. The POG is a

graph where each node is a subgraph of the input graph as shown in figure 5.2. The random walk

transitions from one node to another in this POG and tries to bias jumps to a higher quality node.

The quality score quantifies the density, size and cohesiveness of a module. A high score module

is denser, bigger and is cohesive in more number of attributes than others. The algorithm outputs

the top k most visited modules, all of which have a high module score.
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We ran the sampling algorithm on protein protein interaction networks and showed that

the sampling algorithm visits the higher quality nodes in POG far more than others. Recall the

nodes in POG are actual subgraphs of the input graph. We ran the sampling algorithms against

RedCone for 30, 60 and 90 minutes and compared the results produced by both the algorithms

respectively. We noticed that sampling algorithm generated a fraction of modules generated by

RedCone and yet the average quality of the sampled modules was 50% more than that of RedCone.

6.2. Future work

This chapter explores some of the areas in which this current research can be extended or

applied in the future.

6.2.1. Cohesive communities with noisy node attributes

The node attributes in the clustering models we had discussed so far were absolute or

noiseless. In reality however this is often not the case, for example, people usually have incomplete

profile information in social networks or the gene differential expression values in protein protein

interaction networks the can contain noise. One possible extension of the current research is to

detect cohesive communities in a graph even if the node attributes are incomplete or contains noise.

The new definition of a cohesive community would contain a probabilistic model which can score

the cohesiveness of a community.

Fortunately, in the domain of computer vision, the problem of subspace clustering with

noisy data has already been researched recently [74, 73]. In this extension we would like to marry

the techniques of subspace clustering with noise to graph mining.

6.2.2. Cohesive communities with edge attributes

Mining dense and cohesive networks with attributes on the edges is another important

area for further research and study. This is a logical extension to both RedCone and MinCone

which currently use node attributes. Also edges provide a much richer characterization of commu-

nity behavior, because the content models the characteristics of pairwise interactions rather than

individual entities [62].

Figure 6.1 shows a sample social network with the edge attributes. This graph shows two

cohesive communities between vertices (3,4,5,6) and (0,2,3). The vertex 3 is a member of two

communities. This reflects the fact that a given individual may have different facets to their life,

which are revealed only in their interactions with other individuals. The individual represented by
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Figure 6.1. Graph with edge attributes and two communities.

vertex 3 in this social graph displays attributes of {soccer}, {music} and {politics} however they

are only exhibited in their interactions with other individuals.

6.2.3. Cohesive communities with ranked edge interaction data

The edge attributes discussed in the above section contribute equally in forming a cohesive

community, i.e., there is no relative priority or rank among the edge attributes while forming

communities. In social networks, there are often various types of interactions among users and these

interaction types emphasize the interest of the user in a topic. For example, two users engaging in

conversations related to music (posting replies to each other) are more likely to be members of a

community on music than someone who has occasionally broadcasted posts on music (for example,

during a music festival or concert). This kind of relative importance between user interactions

is not captured in the edge attributes. In addition a user can have interaction with other users
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Figure 6.2. Graph with ranked edge attributes. The dashed ellipse shows a community formed
by including the topics from a broadcast message.

related to other topics, i.e., a user can belong to multiple communities and these communities can

be related to multiple topics.

Figure 6.2 shows a sample social network graph where users belong to multiple communities

based on topics decoded from their interaction data. The graph shows solid and dashed edges. The

dashed edges represent a broadcast post from user 3 on the topic of music which was sent to all

of the friends of user 3 (perhaps because of a music concert that user 3 attended). The solid lines

indicate direct conversation between users. The dashed edges can be characterized as weak edges

while the solid edges are strong edges revealing the true interest of the user. The community formed

between users (0,2,3) is solely on the premise that each of these users have inherent interest in the

topics identified in their interaction. Since the community formed by (0,2,3) is cohesive in {music}

attribute, its expected that each of the users to have interest in music. However as noted above,
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broadcast posts are one of the occasional messages which may or may not be accurately identify

the users interests. If we ignore the broadcast message (as identified by the dashed edges) then

the cohesive community formed by users (0,2,3) would not exist. Instead of completely ignoring a

broadcast message, we can also model the relative importance of user’s interest as reflected in their

interaction. We will explore ways to integrate edge attributes with importance or priority.

6.2.4. Sampling cohesive communities with multi relational edge attribute data

In real world graphs there are more than one kind of relationship among the nodes in

a network. For example, in DBLP dataset (http://dblp.uni-trier.de/xml/) the nodes represent

authors. The edges can represent co-authorship when two authors have collaborated for a paper

or the edges can represent citation when two authors have cited each other. So between two

nodes there are two edges one representing co-authorship while the other representing citation.

Furthermore, the edges can have attributes such as year of the paper or total number of citations.

The graphs which have the same vertices but different topology are called multi relational or multi

layer graphs. An example of this graph is shown in Figure 6.3

1

6

5

2
3

4

1

6

5

2
3

4

(a) (b)

Figure 6.3. A graph containing multi relational edges, (a) An example of co-authorship network
where two authors co-authored a paper and (b) an example of citation network where authors cited
each other. In this example the community formed by {1, 2, 5, 6} is dense in both co-authorship and
citation network with a minimum density of 0.6, assuming they are cohesive in their edge attributes

Mining communities in multi relational edge attributed networks has been studied previ-

ously in [10, 59, 7, 76]. [10] discusses hidden features in a one dimensional edge network. In [76] the

multi-relational input network is converted into a one dimensional network by unionizing the edges
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across multiple networks into one network and labeling the edges with attributes. The authors

in [59, 7] discuss an enumeration tree strategy and try to mine cohesive dense communities on a

subspace of multi relational edges.

The mining algorithms in a multi relational graph needs to be highly scalable because a

multi relational real world graph can grow very quickly by either adding new vertices or new edges

in the input graph. To address the issues of scale, we recommend a sampling technique which

samples the desired sub graphs instead of enumerating all, and then finding a few representative

sub graphs. Similar to the sampling approach for node attributed graphs in chapter 5, the sampling

technique uses a random walk algorithm.

In Figure 6.4 (a) we have a sample DBLP graph with three authors and two types of

edges representing the co-authorship and citation networks. Figure 6.4 (b) shows the POG for

co-authorship network and Figure 6.4 (c) shows the POG for citation network. We can also have

another POG for both co-authorship and citation network together which is not shown here for sim-

plicity. The random walk discussed previously was transitioning from one search node in the POG

to another. As the different layers in a multi relational graph have different edge sets (topology)

the POG for each layer would be different. For example, in Figure 6.4 (a) the subgraph {A,C}

only exists in co-authorship layer which means that the POG for citation layer will not contain the

node {A,C} and will be missed out if the random walk is restricted to POG of citation layer.

Unlike the random walk algorithm discussed previously, the random walk for multi relational

graph needs to jump from one POG to another in addition to traversing within a POG. The random

walk algorithm has three different transitions.

• Transitions to another search node in the same POG by adding a new vertex to the search

node. Jumping from {A,B} to {A,B,C} in the figure 6.4 (b)

• Transitions to another search node in a different POG by selecting a new edge layer or a

combination of edge layers. Jumping from {A,B} in Figure 6.4 (b) to {A,B} in the Figure

6.4 (c)

• Transitions to another search node in a different POG by adding both a new vertex and

selecting a new edge layer or a combination of edge layers. Jumping from {A} in Figure 6.4

(c) to {A,C} in the Figure 6.4 (b)
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Figure 6.4. DBLP graph. (a) An example DBLP graph with multiple relational edges, solid edges
are co-authorship and dashed edges are citation edges. (b) Partial order graph for input graph in (a)
with co-authorship topology. (c) Partial order graph for input graph in (a) with citation topology.
Notice that subgraph {A,C} does not exist in POG for citation topology.

Recall that a POG is created locally around a given search node, so we don’t need to build

different POG’s ahead of time. At each search node, the random walk algorithm computes all

possible neighbors both within and outside of POG. After enumerating the neighbors we calculate

the transition probabilities to each of these neighbors. The random walk transitions randomly to

one of its neighbors and repeats the process. If at any point there are no good neighbors, the

random walk will transition to random search node and recomputes its neighbors. Finally when

the walk converges to a stationary state we take the top k search nodes with the highest visit count.

6.2.5. Parallel approach to sampling

Chapter 5 explored the idea of sampling dense and cohesive subgraphs instead of traditional

mining. One future extension to this work is creating a parallel implementation of sampling utilizing
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multiple threads. The basic idea is to spawn n threads and to have them start at n random nodes in

the POG. These threads will start their random walk as usual, exploring neighbors and randomly

jumping to any other node in POG when required. At the end of the total number of desired

iterations (or total runtime) each of the thread will output its k most visited patterns. A final set

of output patterns can be generated by creating a union set of the individual patterns generated

by each thread.

Recall the every node in POG is a dense and cohesive subgraph ofG. For relaxed parameters

or constraints the POG can be dense as more subgraphs of G will qualify. When the POG is dense

having multiple threads performing random walk in the different areas of POG will greatly improve

performance. The final output will be the best of the patterns as reported by each thread.

A B C D

AB AC AD BC BD CD

ABC ABD ACD BCD

ABCDTh1

Th2

Figure 6.5. Multi threaded approach to sampling in POG with two threads (Th1 and Th2)
performing parallel random walk. Each thread is restricted to its respective area highlighted by
color.

There is a possibility that these n threads will start visiting the same patterns. In order to

prevent the n threads from visiting the same patterns, we can force the random pattern generation

to be localized to a specific area in the POG. In a random walk the algorithm frequently jumps
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to a random node in the POG if none of the neighbors of the current node in POG satisfies the

constraints. By restricting the random jump to a certain area in the POG we can force the threads

to remain local to their respective areas in the POG. This will not necessarily guarantee that

the threads will be visiting mutually exclusive areas but to a large extent the threads will remain

localized to their areas. Figure 6.5 shows a POG with two threads performing a random walk in

parallel. Each thread has its own localized area which can overlap with another thread.

In an another approach towards a parallel implementation, we spawn n threads and each

of threads will start the random walk over the entire POG starting from n random yet distinct

nodes. Each of the threads however will have a different score function for a module. The employed

scoring function has significant impact on the output patterns. For example, one score function

can be tuned to find larger sub graphs and another can be tuned to find denser sub graphs and so

on. By having different score function for each thread we will force each thread to output different

modules. At the end of the desired number of iterations the algorithm will union the top k most

visited modules by each thread. In this way we can get the best of patterns as output by each

thread which are all optimized to find different types of modules.
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