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ABSTRACT 

Agent based modeling uses interacting agents and a governing rule to understand a 

complex phenomenon. It is an important mode of inquiry in the field of life sciences. For this paper 

a Haploid Evolutionary Constructor (HEC) tool was used for modeling and simulation of two 

sample models. The model samples were analyzed under the same and varying level of specific 

and non-specific substrates. In the first part of each experiment, the survival rate of the models 

was examined based on the model’s inputs and outputs. However, since close association of 

microbes enhances the probability of Horizontal Gene Transfer (HGT) between organisms, HGT 

behavior was introduced within the populations in the second sets of experiments. This enabled 

them to adapt to dwindling resources in their environment and creation of new populations that 

are better suited for the ecosystem. Based on the obtained results, the behavior of the dominant 

population(s) is assessed. 
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1. INTRODUCTION 

In the past few decades, researches in the field of life sciences have increased in number 

due to the availability of rich data regarding many elements of the field. The availability of 

enormous data is primarily due to the advancement of data generation as well as the tremendous 

progress in the field of computing including hardware and software (An G., 2016). Nowadays, the 

availability of rich data has led computation to become one of the key components of many 

research areas. Hence, computing has become a vital element among an array of fields that depend 

on and use data for different purposes including biomedicine and healthcare. Generally, this 

computation is done using the help of models and other variables that characterize the system being 

studied and results in an accelerated discovery of new information and aids researchers to make 

better predictions in response to changing conditions. Basically, the principal purposes of a model 

are to enhance and deepen one’s understanding of the systems being modeled and to help in 

decision making by providing a great deal of information about the modeled system. Formerly, the 

description of a system using mathematical concepts, also known as mathematical modeling, has 

been commonly applied to areas within social and life sciences to represent different systems. 

However, despite the popularity of mathematical modeling, agent-based modeling (ABM) has 

gained far more popularity in modeling systems especially in the field of life sciences.  

Agent-Based Modeling is a powerful simulation modeling technique mostly used to model 

dynamic systems of interacting agents. This modeling paradigm has been widely used in modeling 

several applications such as flow, organizational, market, and diffusion simulations (Castiglione, 

2006). The main characteristics of ABMs are that they are easy to construct, their ability to capture 

spatial heterogeneity, and provide an authentic representation of local characteristics that generate 

global dynamics.  
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A vital characteristic of ABM’s is the possibility of asynchronous interactions between 

different agents as well as among agents and their environment. Agents in ABM follow a 

sequential schedule of interactions instead of performing actions simultaneously. This discrete-

event setup allows the cohabitation of agents with different environmental experiences 

(Castiglione, 2006).  

ABMs have become an increasingly important mode of inquiry for the life sciences. They 

are particularly valuable for complex systems that are not understood well enough to build an 

equation-based model (EBM). An EBM contains a set of equations as a model and the execution 

involves evaluation of these equations. However, ABM’s model consists of a set of agents that 

encapsulate the behavior of the various individuals that make up the system and the execution is 

basically emulating these behaviors (Van Dyke Parunak, 1998). The behaviors and interaction of 

agents can also be formalized by equations, but more generally they are mostly specified through 

logical rules. This makes the modeling approach much more flexible. Furthermore, it is easily 

possible to consider individual variations in the behavioral rules (i.e.  heterogeneity) and random 

influences or variations (i.e. stochasticity).  

Although ABM construction is more attainable than other approaches involving 

mathematical equations, it has its own challenges. Like EBM, ABM allows the comparison of 

model output with observed system behavior. On top of this, ABM allows validation of individual 

level of comparing encoded behavior of agents with the actual behavior of the real agents. 

However, this requires additional data on the agents and more efforts in empirical research on the 

system being modeled. Additionally, dynamic systems that are modeled using ABM techniques 

are composed of adaptive agents which can also result in a synergistic effect. The adaptability and 

synergism are features that are challenging to encode when constructing an ABM. Furthermore, 
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for broad and complex models, the presence of a large number of rules can affect the state and 

behavior of agents, which are evaluated at each step. This extensive evaluation of probabilistic 

rules can lead to significant computation cost and reach computation limits quickly (An G., 2016). 

Regardless of the above fact, what makes ABM a very appealing methodology for the simulation 

of biological systems is, the use of rich data to study a model through analyzing the heterogeneity 

of interacting agents between them and interaction between agents and their environment. 

This paper discusses agent-based modeling experiments to identify and analyze the 

existence of dominant agents as well as influential ones, also termed as keystone species, with the 

help of a simulation tool known as the Haploid Evolutionary Constructor (HEC). The models 

presented in the experiments are sample populations which behave like E. Coli in the way they 

reproduce, the size of population (colony), their mortality rates and their utilization of substrates. 

The analysis and discussion on this research also focuses how populations and their community 

are affected because of their substrate intake and utilization, the symbiosis that exists between 

them as well as presence or absence of several ecological factors like horizontal gene transfer and 

gene loss.   
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2. AGENT BASED MODEL 

A model is a more simpler way of representing a system which is designed mainly to 

convey a better understanding of the system and its operation. Of the several ways of representing 

a system, the most popular methods include mathematical, statistical, and computational methods. 

While mathematical and statistical methods use mathematical formulas and statistical processes, 

respectively, to study the behavior of a system, a computational method involves developing 

computer programs to build models. 

The rule based approach of ABMs, together with the computational modeling techniques, 

enables an easier way of studying different agents and simulation of complex applications in the 

field of biology. At the heart of the ABM structure lies individual agents with a set of 

characteristics and a set of rules to guide their interaction with one another as well as with their 

environments. The existence of different agents with different sets of characteristics and the 

dynamics of a system makes the modeling problem challenging, but an exciting topic to research. 

Dynamic systems are systems that are composed of adaptive agents that can respond to stimulus 

from other agents or the environment.   

When designing an ABM, the rules that govern the interaction of the agents are encoded 

in software as simple logical rules. Associated with these rules are random number generation 

mechanisms that create randomness in the system to mimic the real-world model. Starting with 

the rules, agents reconstruct populations are generated and the simulation of the real-world 

interaction is constructed. This helps to understand and study both the interactions and 

relationships that exists between agents. When designing an agent based model for biological 

studies the following key characteristics should be examined: 
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1. Customizable structure: an agent is defined by a set of rules and in ABM a new agent can 

be introduced to the model or even an existing one can be modified without altering the 

whole model.  

2. Emergent properties: Interaction between agents often leads to a synergism, a higher-level 

relationship between group of agents, with much more sophisticated behavior and effect 

which is greater than the individual agents.  (Politopoulos, 2007). 

3. Abstraction: The concept of abstraction can be implemented when constructing an ABM 

by omitting unnecessary details. Furthermore, an ABM can be designed even without 

complete knowledge of the system resulting in a simple but verifiable model (An, 2013). 

4. Volatility: Biological systems exhibit random fluctuations in their behavior. Hence agent 

based models can be designed to include this stochastic behavior through the random 

number generating function. Behavior of agents are determined starting from the 

population level with the following different kinds of trajectories to determine the agent 

behaviors based on the probability of the behavior of the individual agents. These 

behaviors are later translated as that of the agent’s rules (An, 2013).  

The simplicity in the implementation and construction of ABM makes it widely used and 

more favored modeling method compared to other modeling systems that often involve differential 

equations. Nowadays, researchers build a more suitable, convenient, and easy to understand model 

for their research problem and can further analyze and investigate their hypotheses using 

experiments involving ABM. Before the agent-based model can be developed, one must choose 

the appropriate software or modeling toolkit to be used, which mainly depends on the type of 

problem at hand.  
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3. RELATED WORK 

Microbial communities often consist of different types of microorganisms that interact with 

one another. There are different kinds of interactions between microorganisms, which help form 

an ecological network with various kinds of relationships between them. Basically, these 

relationships are categorized into three namely Predation, Competition, and Symbiosis. Symbiosis, 

which is the interaction between two organisms living in close physical association can further be 

classified to Mutualism, Commensalism and Parasitism.  

• Predation: an exploitation in where an organism, the predator, kills and consumes another 

pray organism. 

• Competition: a relationship where organisms affect one another negatively to fight for the 

supply of resources used by both. 

• Mutualism: a relationship both the interacting microorganisms benefit from the existence 

of one another. 

• Commensalism: also known as one sided relationship where a microorganism can benefit 

from the existence of the other without neither harming or helping it. 

• Parasitism: when an individual organism attempts to profit at the expense of the other with 

or without killing the host organism. 

With recent findings showing the presence of certain assembly rules and the fact that 

interaction differs among species that either form or avoid partnership with other species, the study 

of these intricate relationship styles is vital in producing a better model for a microbial ecosystem 

(Shashkova, 2016).  

Nowadays, Agent Based Modeling has become an important tool for researches involving 

interacting agents. ABM can help in testing, evaluating and visualizing processes through studying 
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the interaction between the autonomous agents. Through studying the patterns and relationships 

between these agents and their environment, it can also predict the outcome of an overall change 

in the population or the effect of disturbances in the environment (Garcia, 2005).  

Although a better understanding of basic cellular processes was manifested by the recent 

advancement in the field of genomics and related researches, the question of how the individual 

cellular activity contributes to the overall population dynamics was vital in the field of both 

ecological and clinical studies. The agent based modeling approach is a crucial method to 

understand the effect of an individual cell among both other autonomous agents and its 

environment.    

Through pre-defined rules and attributes that relate to individual components in a microbial 

ecosystem, an ABM can examine and predict a developing trend within the population by focusing 

on the laws that govern the interaction of the individuals only. This methodology allows the local 

differences among different populations within the environment to be considered in the model 

(Murphy, 2008). Sugarscape model and Schelling model of ethnic residential dynamics are one of 

the classical and major driving forces to popularizing the use of ABM in different fields. They 

show how simple and interpretable rules for agents could simulate behavior that was interesting in 

areas like demography, anthropology, sociology, and economics. They carry out functions such as 

consumption, reproduction, tribal growth, survival, and migration patterns that are commonly seen 

in microbial communities as well.   
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3.1. Sugarscape 

Sugarscape is an agent based model which was created to simulate the distribution of 

wealth in a society. This model was developed by Epstein and Axtell in 1996 (Epstein & Axtell, 

1996). The first model represents an artificial society in a two dimensional 50 x 50 grid. Grid cells 

contain a sugar level which is the amount of sugar a cell has and the sugar capacity which is the 

maximum value of sugar a cell can hold. At any point, a sugar level and a sugar capacity are given, 

sugarless points with low capacity are called deserts and some sugarless points have high capacity. 

The fundamental elements of this model are: agent, rules, landscape and sugar (resource). Agents 

start working in random on their primary situation, assets, and all their internal area. Whereas some 

subgroups of the internal states remain unchanged within the agent’s life, the existence of other 

subgroups depend on time. Additionally, some states are spatial and different for some and 

common for others. The spatial time independent states are the primary assets, maximum life time, 

vision and metabolism rate. The overall independent states include: time needed for increasing 

vision, poverty limit (reaches to zero), spatial time dependent states such as agent situation in 

landscape, real asset in sugar units. The agent executes rules simultaneously in searching for sugar. 

The movements of the population is an emergent result of simple spatial activities by agents. 

As in most ABMs, the four important characteristics in this model are: 

1. Perception: the ability of an agent to sense agents and resources in its environment. Hence 

in this model agents can perceive the amount of sugar the current cell has. 

2. Performance: the capacity of an agent to perform different tasks to maintain its survival. 

This set of tasks can range from moving to interacting and communicating with other 

agents in its environment. Agents in this model move and consume sugar for their survival. 
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3. Memory: ability of an agent to record its pervious action and states to attain an optimal 

outcome in the upcoming generations. 

4. Policy: this are set of guidelines that enable the agent to come up with the best possible 

strategy given a certain criterion in its current state. The memory of its previous states is 

helpful in such cases where a new strategy is required. In the sugarscape model, the agent 

may look for cells with the highest sugar levels. 

The rules of the sugarscape ABM are executed on a 50x50 grid, which consists of 2500 

cells as individual agents. There may be other agents than sugar cells. The distribution of sugar is 

shown in Figure 1 in which the amount of sugar cells can be predefined according to the growth 

rate and it can rise and be searched by another agent for existence of sugar or production. As shown 

in Figure 1, the amount of sugar is high in the first quadrant (northeast) and third quadrant 

(southwest) parts of the grid. The first quadrant shows random initial distribution of agents in the 

available grid. However, in the third quadrant the flow of agents towards the areas with highest 

amount of sugar level is noticed. In Part 4 (southeastern quadrant), the agents concentrate their 

activities on the sugar peaks that lead to the formation of two colonies. In cases where resources 

can fall short often, agents with high metabolism or low vision can easily perish (Abdou, Hamill, 

& Gilbert, 2012). 
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Figure 1. An artificial society on sugarscape: societal evolution from a random initial distribution 

of agents (Rahman, 2007).  

3.2. Schelling Model of Ethnic Residential Dynamics 

This is one of the oldest classic examples implemented using an agent based model to 

analyze the residential segregation. Racial segregation has always been a problem in the United 

States despite the many efforts extended to desegregate schools, churches, and neighborhoods. In 

1971, Thomas Schelling, an American economist created an ABM to help explain why segregation 

was difficult to combat  (Hatna, 2012). 

In the Schelling model, a city is represented by a square grid of cells in which each cell 

represents a residence. A cell can be any of the three colors white, black or grey according to the 

color of the agent living there. A white cell refers to a white agent living there, a black cell for a 

black agent and grey if it is empty. Simulation starts by randomly placing agents on the grid and 

it is assumed that the agents have a threshold of tolerance of the other neighboring ethnic groups. 

The threshold defines whether the agent is happy with its neighbors, that is if cells to the north, 

south, east, west, north east, north west, south east, south west of the agent have a proportion more 
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than the given threshold or whether it decides to move when the proportion falls below the given 

threshold. For example, a 50% threshold of tolerance would mean that the agent is happy to stay 

in its location if at least four of its eight neighbors are of the same color as itself. On the other 

hand, the agent is not content and will try to move to another neighborhood if this proportion falls 

below 50%. 

 

Figure 2. Initial configuration of one of Schelling's experiments. Model showing satisfied 

resident (a) and unsatisfied resident (b) (Hatna, 2012). 

The result given below indicates a simulation with 2000 agents with the upper-left panel 

showing the starting random allocation of black and white agents on the grid. The other three 

panels are the results of the simulation with different thresholds of tolerance. In the simulation 

with a 37.5% threshold of tolerance, at least three of an agent’s eight neighbors must be of the 

same color for the agent to stay put and not move to another place (Abdou, Hamill, & Gilbert, 

2012). With a 50% threshold of tolerance at least four neighbors, and with 75% at least six out of 

eight neighbors should be there for an agent to be happy with its location. 
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Figure 3. Result of simulation of Schelling’s Model (Abdou, Hamill, & Gilbert, 2012). 

The Schelling’s model demonstrated that agents would disaggregate themselves from other 

agents when the other agents surrounding them are of different race. The model that illustrates the 

emergent behaviors that are mainly caused due to continuous aggregation and disaggregation of 

agents. 

ABMs are good for exploring how micro-scale processes give rise to macro-scale 

phenomena because most of these phenomena are not easy to be represented mathematically or 

statistically. The primary reason is because agents can influence one another (mutualism), which 

can rather simply be modeled using agent-based modeling. For example, building a model to study 

how agents influence each other’s purchasing choices. Another advantage of ABM is it enables 

one to experiment with the models and analyze different scenarios. Using a computer model, one 

can set many experiments using a range of parameters. For example, it is better to use a model of 
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an airplane to test flying under various conditions than to use a real one, in which the cost of 

experimentation is high. As a result of this great advantage of experimentation and analysis, ABM 

has been used in many areas of research including social study, economics, and biology.  

Nowadays, it is not difficult to find tools that facilitate developing an ABM. Besides 

Swarm, an open source agent-based simulation package, Repast, Netlogo, and Mason are among 

commonly used tools for agent-based model implementation. 

3.3. Haploid Evolutionary Constructor 

A Prokaryote is a microscopic unicellular organism that consists two domains named 

Bacteria and Archaea. Naturally, Prokaryotes exist as part of microbial communities, which has a 

complicated structure whose metabolic pool often form a complete cycle. These communities are 

represented by a complicated trophic chain with a degree of closeness between them. They have 

an extensive symbiotic relationship in the ecosystem, which results in the creation of trophic cycle 

also known as trophic ring. Trophic rings are created when metabolic products of one species or 

strain are used or can in certain conditions be used for food by others. In Prokaryotic communities, 

the close bacterial association enhances the probability of horizontal gene transfer between 

different bacteria, which enables them to obtain new functions. Horizontal gene transfer is a 

mutational process in which organisms share genetic materials among one another. It is one of the 

processes that enables organisms to acquire new capabilities within a generation and enables them 

to adapt to their ecosystem (Aoki, 1999). A bigger percentage of prokaryotes is unculturable due 

to lack of critical information on the organisms’ biology. For instance, failing to replicate essential 

aspects of their environment can be a reason for an organism to become non-culturable (Stewart, 

2012). Conversely, it is the culturable prokaryotes, that represent the minor fraction of the overall 

diversity of organisms, that show high metabolic and reproduction activities. The evolution of such 
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highly-integrated prokaryotic communities has its qualitative specific factors and cannot be 

reduced to the evolution of the distinct population composing them. Therefore, even though the 

reproduction rate of prokaryotes is remarkably high, an experimental study of their evolution is 

difficult as it requires the study of the whole prokaryotic community. 

Modeling of evolution is one of the primary challenges of 21st century biology, 

mathematics, and computer science (Lashin, 2014). Biological systems are much more complex, 

interlinked and often many or most of the quantitative values needed for an experiment are missing 

(Wooley, 2005). One of the main methods to study evolutionary process is through mathematical 

modeling. This type of modeling is convenient to describe different trophic interactions, spatial 

distribution of organisms, genetic structure of population and other environmental factors. 

Traditional approaches to evolution and population process modeling include methods of 

population dynamics and methods of population genetics. The population genetics methods are 

generally based on methods of the probability theory and mathematical statistics. Although, 

traditional approaches allow the study of the evolution of population genetic structure they fail to 

convey the means for modeling of the population dynamics process in detail (Lashin, 2014). 

The Haploid Evolutionary Constructor (HEC) is software package, which was developed 

using the java programming language. It simulates the operation of a population network of 

haploid organism, like microbes, which are trophically linked with substrate-product relationships 

under the environmental effect. With varying degree of description detail, HEC provides a means 

of simultaneously describing the prokaryotic community at different levels of its biological 

organization: genetic, metabolic, population, and ecological flexibility. Population variation in 

both size and diversity may arise due to selection and mutation during the model simulation 

process. The important element of this methodology in general, and HEC in particular, is its 
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provision of modeling evolutionary and population processes that require a significant 

rearrangement of structure of a model during the simulation process.  

 

Figure 4. Main HEC interface. Snapshot taken from Haploid Evolutionary Constructor Software 

developed by Sergey A. Lashin (Lashin, 2014). 
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HEC allows two ways of creating a model: 

1. Writing a script using the HEC format. 

2. Creating a script using the new model wizard. 

 The HEC script is a look alike of C or Matlab style script with each script containing two 

essential parts. The first part, which is the model declaration section, starts with a declare statement 

and ends with an end declare statement. This section contains the declaration of environmental 

volume and flow, the number and concentration of specific and non-specific substrates, the 

reproduction and mortality rate among other parameters as well. A substrate is an input to a 

biochemical reaction. Enzymes act on substrates and yield products, which themselves often 

become substrates for further reactions. Substrates in an ecosystem are considered non-specific if 

many or all members of a community have the enzyme(s) necessary to metabolize it. As a result, 

organisms may compete for the non-specific substrate if it is in limited supply. Converesely, a 

substrate may be considered specific if only one or a few members of the community have the 

enzyme(s) necessary to metabolize it. In this case, competetition for the substrate only occurs 

between those who share the corresponding enzyme(s), and as such, is specific to a subset of the 

community.  

 The second part of HEC script, which is the model calculation section, starts immediately 

after the end of the declaration statement and initializes the number of generations and types of 

operations, such as mutation and HGT, performed in the population. A thorough explanation of 

different sections of the script is given in the Methodology and Experiments section of this paper.  

 A model script can also be created using HEC model wizard which is a step by step guide 

to creating a script by setting the required parameters.  
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Figure 5. Initializing global variables. Snapshot taken from Haploid Evolutionary Constructor 

Software developed by Sergey A. Lashin (Lashin, 2014). 

 The following snapshots (Figure 5 to Figure 9) describe the step by step model creation 

using the HEC software wizard. Figure 5 initializes global variables such as environmental setting, 

number and concentration of specific and non-specific substrates. The step shown in Figure 6 

enables addition of population(s) to a model. After adding the desired population(s), what follows 

is the initialization of population specific variables like size of population, trophic strategy, death 

coefficient, consumption rate of Non-specific Substrates (NS) and Specific Substrates (SS) and 

other varibales. The snapshot for this initialization is given in Figure 7. 
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Figure 6. Adding new population. Snapshot taken from Haploid Evolutionary Constructor 

Software developed by Sergey A. Lashin (Lashin, 2014). 

 

 

Figure 7. Initializing population specific variables. Snapshot taken from Haploid Evolutionary 

Constructor Software developed by Sergey A. Lashin (Lashin, 2014). 
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Figure 8. Initializing additional parameters. This setting includes the setting for HGT and Gene 

loss. Snapshot taken from Haploid Evolutionary Constructor Software developed by Sergey A. 

Lashin (Lashin, 2014). 

 

  

Figure 9. Initial model script and population trophic rings at the end of generation. Snapshot 

taken from Haploid Evolutionary Constructor Software developed by Sergey A. Lashin (Lashin, 

2014). 

In summary, HEC software tool allows the comprehensive study of the microbial 

community model analyzing the dynamics of changes in allelic frequency, population size, 
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concentration of metabolites, community trophic structure and its evolution, including stochastic 

genetic factors. 
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4. METHODOLOGY AND EXPERIMENTS 

In this paper, four experiments were conducted based on two models. For each model, two 

scripts, one without the possibility of the mutational process through HGT and gene loss and the 

other with the possibility of HGT and gene loss, were prepared. Due to computational limitation, 

each simulation runs only for 1000 generations. In each script, the list of specific and non-specific 

substrates is enumerated beginning from one in increments of one until one reaches the total 

number of specific and non-specific substrates, respectively. For instance, non-specific substrates 

in a population are enumerated as N1, N2, N3, etc. and specific substrates are enumerated as S1, 

S2, S3, etc. In each model, there are different simulations with their respective codes, which are 

provided in Appendix A. The first part of each model’s experiment entails examining behaviors 

of studies of populations with different combinations of specific and non-specific substrates. 

However, in the second part of the experiments the possibility of mutation through horizontal gene 

transfer and gene loss is applied stochastically throughout the entire simulation at a rate of 0.01 

(1% of the whole generation) and the behavior of the populations is analyzed accordingly. 

As discussed in the previous section, the HEC model script consists of two different 

sections: 

1) Model declaration section: this part requires provision of global variables that are common 

to the populations in play. This script starts with a declare and ends with an end declare 

statement. Between the declare and end declare statements, model declaration statements 

to initialize the variables such as: environmental volume, mutation probability, number of 

specific and non-specific substrates, as well as population declaration statements to 

initialize the population specific variables such as: population size, mortality rate, flow 

rate, adding new gene of specific and non-specific substrates are listed. 
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2) Calculation section: starts immediately after end declare statement and contains different 

model calculation statements. For example, the possibility of horizontal gene transfer 

(HGT), gene loss and number of generations a model runs are among several statements in 

this section of the script. 

The experimental models, Model 1 and Model 2 are listed in tabular format, alongside the 

input substrates they take and the output substrates they produce. The given list of input and output 

(both SS and NS) are chosen in such a way to see if the different populations exhibit some level 

of cooperation or competition based on their type and concentration of inputs taken or outputs 

produced. The dependence of different populations among one another and the competition that 

may exist to get the needed substrates in their ecosystem is supposed to play a vital role in the 

overall state of the community. In circumstances where symbiotic relationships exist, the presence 

of keystone species can maintain the balance and survival of the populations; hence it is very 

beneficial to the microbial community.  

Once the number and concentration of substrates and all the populations specific 

parameters are declared, the from the beginning to the end of the generations, the populations use 

only these substrates. Introduction of new substrates from outside initially created community is 

not implemented in the HEC software tool. 
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The first model in this paper consists of three different populations with different specific 

and non-specific substrates composition.  

Table 1. Model 1 population composition 

 Population 1 Population 2 Population 3 

Input ABCD ACDF ADFG 

Output FGHI GHIJ HIJK 

 

Table 1 shows the composition of the first model’s list of specific and non-specific 

substrates together with the number of populations in the ecosystem. In this model, all populations 

have the same amount of substrate concentration with all other characteristics such as their 

reproduction rate, mortality rate, flow rate, and environmental volume being the same. 

List of non-specific substrates: AD 

List of specific substrates: BCFGHIJK 

As mentioned in the first paragraph of the methodology section, the representation for the 

non-specific substrates in the HEC script will be: 

GENE_N=1, GENE_N=2 

For the specific substrates, their representation in the HEC script will be: 

GENE_S=1, GENE_S=2, GENE_S=3, GENE_S=4, GENE_S=5, GENE_S=6, GENE_S=7, 

GENE_S=8 
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GENE_P represents the substrates produced in the environment  

The second model in this paper also consists three different populations with different 

specific and non-specific substrates.   

Table 2. Model 2 population composition 

 Population 1 Population 2 Population 3 

Input ABCD AbcDFG AbcDHI 

Output FGHI fgH iJK 

 

Table 2 shows the composition of the second model’s list of specific and non-specific 

substrates together with the number of population in the ecosystem. In this second experimental 

model, like the first all the populations have the same amount of substrate concentration with all 

other characteristics such as their reproduction rate, mortality rate, flow rate, and volume being the 

same. However, the allele values for the substrates represented with upper case is 3.5, and those 

represented with smaller case is 1.5. Substrates b, c, f and g of Population 2 as well as b, c, i of 

Population 3 have allele values of 1.5 each. The amount of input of two of the four Non-specific 

Substrates (NS) i.e. b and c is lower in both Population 2 and Population 3 compared to Population 

1. This experiment emphasizes on the study of behavior of different populations that contain 

different amount of NS. 

List of non-specific substrates: ABCD 

List of specific substrates: FGHIJK  
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As mentioned earlier, the first part of each model excludes the possibility of HGT and gene 

loss and experiments the populations’ stimulus towards the availability of substrates in their 

environment. The second part of each model introduces the possibility of HGT and gene loss 

property in the declaration section of the script with the rest of the parameters (global and 

population specific) being the same as in the first part. The close association of microbes enhances 

the probability of horizontal gene transfer which enables organisms to develop different new 

features over the course of their generation (Gogarten, 2005). HGT is a vital mutational process 

that is implemented in HEC software. Hence, in the second part each of the given two models the 

populations will have the ability to use this vital process to develop novel features to adapt the 

availability of the resources in the environment.  
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4.1. Experiment 1.1 

 

Figure 10. Scheme of Model 1 substrates at the end of the given evolution. 

 Figure 10 shows the interaction between different populations and their substrate intake as 

well. The blue circles of a scheme represent the non-specific substrates available in the 

environment N1, N2, which are representations for the non-specific substrates explained in Model 

1 (A and D). The yellow circles are representation of specific substrates present in the environment 

S1, S2, …, S8. These were also mentioned as the 8 specific substrates of Model 1 available in the 

environment (BCFGHIJK). The red circles represent the number of population pop1, pop2 and 

pop3. The arrows represent the intakes of specific and/or non-specific substrate by a population. 
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Figure 11. Trophic rings of Model 1 at the end of the given evolution. 

Symbiotic relationships, which are special types of interaction between species, are 

widespread in ecosystems and especially specific to prokaryotic communities. These communities 

are characterized by a complicated trophic chain with extent of closeness. Specific traits of 

prokaryotes, such as diet, small cell size and dispersal limitation, lead to organism’s inability to 

escape from the surrounding environment quickly and to the biogenic desert problem in which 

organisms that inhabit the center of a high-density population starve due to lack of nutrients. Large 

majority of prokaryotes in nature exist as a part of communities with a complicated structure whose 

common metabolite pool often forms a complete cycle. The presence of such cycles optimizes 

community members’ metabolism (Lashin, 2014). This can be clearly explained through Figure 

11, which shows the trophic rings of Model 1 in which the metabolic products of one population 

can be utilized by another population. As shown in Table 1, specific substrate F, which is a 

metabolic product of Population 1 is used as an input by Population 3. This process is represented 
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in Figure 11 through the edge going from Population 1 to Population 3 with a label S3 which is a 

variable representing specific substrate F.  

 

Figure 12. Population size dynamics of Model 1. The population size at the beginning and the 

end of the evolution shown with both Population 1 and Population 2 become extinct and 

ultimately die after the 1000th generation. 

 
Figure 13. Substrate (NS and SS) concentration dynamics of Model 1. 

For this model, all the generations start with the list of specific and non-specific 

concentrations given in the first column of Table 3. However, with increasing generations all the 
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substrates, except for NS 1 (Non-specific Substrate A), kept on being depleted resulting in the 

death of all the three populations. Figure 13 shows the dynamics of both NS and SS throughout 

the entire evolution. Overall, NS 1 has a higher concentration level compared to the rest of NS and 

SS. However, regardless of its abundance, all the three populations cannot sustain the entire 

evolution and eventually die as shown in Figure 12. The resulting concentration of both the NS 

and SS is given in the second column of Table 3. 

Table 3. Prior and Posterior concentration of NS and SS of Experiment 1.1.  

Starting concentration of NS and SS Final concentration of NS and SS 

substrates_ns = 1e-5, 1e-5 

 

substrates_ss = 1e-5, 1e-5, 1e-5, 1e-5, 1e-5, 

1e-5, 1e-5, 1e-5 

 

substrates_ns = 4.840374e-4, 6.252886e-11 

 

substrates_ss = 2.8760216e-10, 1.6455386e-

10, 1.138414e-8, 7.430727e-8, 3.7280655e-7, 

3.7280655e-7, 3.591879e-7, 2.9192617e-7 

 

Table 3 shows a snippet of input and output script showing the concentration of input and 

output substrates of Experiment 1.1. The table shows the concentration of NS and SS at the start 

of the generation (values on the left-hand side) and at the end of the generation (values on the 

right-hand side). As shown in the table, the amount of input taken from the three populations has 

decreased as generations goes on, hence all the populations are on the verge of extinction at around 

1000th generation.  
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4.2. Experiment 1.2 

 Unlike the schema and trophic rings of Model 1 shown in Figure 10 and Figure 11, 

respectively, the schema and trophic rings of this experiment shown in Figure 14 and Figure 15, 

respectively, is more intricate. The number and concentration of inputs is still the same in both the 

experiments; however, the inclusion of Horizontal Gene Transfer (HGT) in this experiment results 

in creating an enhanced population that takes the minimum concentration of NS and/or SS. 

 

Figure 14. Scheme of Model 1 substrates at the end of the given evolution (HGT included). 

 The complex directed network in Figure 14 shows the input and output substrates of the 

original populations introduced at the start (pop1, pop2 and pop3) and the newly generated 

populations (pop4 through pop39). The indegrees of a population represent the number of input 

substrates taken by the population and the outdegrees represent the number of output substrates 

produced by the population. 
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Figure 15. Trophic rings of Model 1 at the end of the given evolution (HGT included). 

 The intricate web shown in Figure 15 represents the output substrates of a given population 

taken as input by another population. The large number of edges are indications of the high 

dependency that exists between different number of populations. In the trophic rings network, the 

indegree of a population represents the number of NS taken by the population as an input, and the 

outdegree of a population represent its output that are taken as input by another population. 
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Figure 16. Population size dynamics of Model 1 (HGT included).  

 

Figure 17. Substrate (NS and SS) concentration dynamics of Model 1 (HGT included).  
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As shown in Figure 16, when the HGT is enabled in the script of Model 1, although we 

started with only 3 populations we end up with an overall 39 populations. All the population 

specific variables like mortality rate, flow rate, synthesis and utilization of specific and non-

specific substrates remain the same at the end of the simulation as in the initial simulation. 

Regardless of the immutability of these values, new populations emerged with increase in the 

number of generations. The emergence of new populations was due to organisms’ ability to utilize 

the most abundant substrates found in their environment and/or their ability to utilize their own 

output as an input in the next generation. Less competition of certain substrates also benefits 

survival of certain organisms that use these substrates. Figure 17 shows the overall number and 

concentration of NS and SS after HGT was introduced to the script. The following two paragraphs 

explain trophic chains and status of particularly Population 4 and Population 9. 

Population 4: 

Population 4 takes three inputs in which two are the most abundantly used non-specific 

substrates, A and D, and a third specific substrate, G. This population in turn produces three 

substrates in which two of them, J and K, are among the least produced and least needed substrates. 

Hence, as soon as this population got created around 50th generation, it continues its modest 

survival tendency until the end of the 1000th generation. 

Population 9: 

This population takes as an input NS substrates A and D and SS B, C, F and G. regardless 

of many substrate requirements for this population, the inputs A, D, C and G are found in 

abundance in the environment; hence, after population 9 came to existence around the 200th 

generation (shown in Figure 16), after only few generations its size increased to around seven 



 

34 

 

 

million and continues to dominate the entire population until the end of the 1000th generation where 

the population size drops by around a million.  
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4.3. Experiment 2.1 

 

Figure 18. Scheme of Model 2 substrates at the end of the given evolution. Yellow circles 

represent non-specific substrates, blue circles represent specific substrates and red circles 

represent. Arrows represent the input and output of specific substrates and/or non-specific 

substrate by each population. 

 

Figure 19. Trophic rings of Model 2 at the end of the given evolution. Arrows going from one 

population to other represent the specific substrates that are output of a one population utilized as 

an input by other population. Arrow going from blue dots to a population represent that the non-

specific substrates is used by that population.  
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Figure 20. Population size dynamics of model 2. 

 As shown in Figure 20, the three populations managed to survive the entire generation. 

Apart from population 1, which depends only on the NS present in the environment, the other two 

populations need additional specific substrates as inputs. In this experiment, at the end of the 

simulation, population 1 managed to survive throughout the entire generation solely because its 

inputs came from the environment and doesn’t depend on substrates produced from the other two 

populations. According to Figure 21, the concentration of NS 1, one of the basic substrates needed 

for population 1 to survive, is very large throughout the entire generation which gives the 

population better chance of survival. Not only population 1 but also Population 2 and population 

3 survived the entire generation as well. The reasons for the survival of population 2 and population 

3 are because: 

1. Both population 2 and 3 utilize the abundant substrates found in the environment as their 

input. Utilizing abundant resources from the environment gives them a good chance of 

survival. 

2. Both population 2 and 3 use their outputs from previous generation as an input for the 

current generation. This avoids the competition of vital resources and improves their 

chance of survival. 
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3.  Population 2 and 3 greatly benefit from the substrates that are produced from population 

1. Products of population 1, substrates F and G are used as inputs by population 2 while 

substrates H and I are used as inputs by population 3. 

 

 

Figure 21. Substrate (NS and SS) concentration dynamics of Model 2. 

It is true that the three mentioned factors equip population 2 and population 3 with the 

necessary inputs and give them a better chance of survival in the ecosystem. However, the third 

factor is more vital because population 1 behaves as a keystone species in the ecosystem. The 

products of this population are important inputs to the other two populations (i.e. population 2 and 

population 3). Moreover, as shown in figure 22, removal of population 1 from the original model 

disrupts the ecosystem by creating shortage of supply of non-specific inputs H and I. As a result, 

the size of population 3 declines which can ultimately result in the collapse of the population. As 

shown in figure 22 population 2 (which represents population 3 before removal of population 1) 

only decreases in size until 100,000 generation. Running the simulation beyond that can give a 

clear picture of what happens to both populations. Hence, another experiment using small-scale 

representation of both populations showed that population 3 ultimately collapses when population 
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1 is removed from the environment. Hence, it can be concluded that population 1 is playing the 

role of keystone species as it balances the survival of other populations in the ecosystem. 

 

 

Figure 22. Population size dynamics after removal of population 1 from the original Model 2. 
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4.4. Experiment 2.2 

 

Figure 23. Scheme of Model 2 substrate at the end of the given evolution (HGT included). 

 

Figure 24. Trophic rings of Model 2 at the end of the given evolution (HGT included).  



 

40 

 

 

 

Figure 25. Population size dynamics of Model 2 (HGT included). 

 

 

Figure 26. Substrate (NS and SS) concentration dynamics of Model 2 (HGT included).  
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After introduction of HGT and gene loss to model 2, unlike the population size dynamics 

of Model 1 with HGT, a similar survival trend between the initial three populations and the 

emerging ones can be observed in Figure 18. The difference in the concentration levels of the 

inputs has created a similarity of size between the different populations by eliminating competitive 

populations and supporting mutualism in the community. Hence regardless of the difference of 

concentration of NS in this model, populations have a better survival rate and relatively similar 

population sizes. Introduction of HGT helped populations to specialize on their input by focusing 

on the abundant substrates found in the environment and through mutualism among one another. 

As shown in Figure 25, after introduction of HGT to Model 2, a total of 28 populations were 

created in addition to the initial three populations. Organisms that have common substrates as well 

as using and producing same substrates are categorized under same population. 

In HEC, the model environment is a bounded flow system of fixed volume containing all 

populations and substrates. Hence, besides the declared number of substrates and their 

concentration, additional substrates cannot be introduced from outside the environment. 

nonspecific substrates are reproduced by the in-flow; whereas specific substrates are running into 

the environment through consumption and production. HEC simulation tool does not implement 

the prioritization technique of substrates for organisms to consume them. Hence, organisms may 

consume and utilize substrates in non-prioritized fashion and then secrete products into the 

environment, which inversely can be used by other organisms as substrates. However, unused 

substrates can arise in the ecosystem, which remains buried or removed by the flow. Furthermore, 

accumulations of non-specific substrate are often formed when the inflow of non-specific 

substrates are used in miniscule amount compared to the other substrates.   
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5. CONCLUSION 

 A keystone species has a huge impact in maintaining the structure and balance of an 

ecological community (Scott, 1993). The HEC software was helpful to create different models 

with varying parameters and analyze their effect in the environment. From the two simple models 

explained in this paper, it can be argued that among the presented substrates there were some 

influential populations that hugely influenced their environment and survival of the other 

populations.  

 As explained in Experiment 1.1, when different populations use a substrate at an equal 

amount with no population producing that substrate, then the populations may die as the 

generations go on. Populations have the worst chance of survival when there is competition for 

vital substrates between the populations and when there is strong inter-dependence within the 

population. In the absence of keystone species, the existence of both competition and inter-

dependence, with no one in the ecosystem to balance it, can lead to the demise of the community. 

Moreover, the usage of a population’s products as an input by any population can prolong the 

existence of some populations. With the horizontal gene transfer (HGT) property introduced within 

the populations, some tend to evolve and produce new populations that rely mainly on the abundant 

substrates in the environment or do not heavily depend on the ultimately diminishing substrates. 

Through HGT, organisms can enhance their survival rate in a competitive and resource-scarce 

ecosystem. It was also noted that populations that take their own output as input in the next 

generation have a better chance of survival. 

 From the above experiments it was shown that dominant populations mostly depend on the 

substrates that are abundant in the community. Furthermore, they avoid depending on substrates 

produced from other population’s, thereby having less inter-dependence with other populations. 
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These factors can increase the chance of survival of the population in an ecosystem. However, 

absorption of essential substrates by these dominant species can lead to the depletion of resources 

and ultimately lead to the collapse of the ecosystem. The presence of keystone species, as seen in 

Model 2, balances the substrate utilization that and enhances the chance of survival of all the 

populations in the ecosystem. As shown in figure 22, the removal of keystone species (population 

1) results in the demise of the inferior population.  

 Agent-based modeling simulations have led to a novel approach of modeling systems 

composed of autonomous, interacting agents (Charles, 2009). They have been used in an array of 

fields like health, social sciences and economics in decision making and understanding complex 

phenomenon. The Haploid Evolutionary Constructor tool captures and explains ideas related to 

microbial ecosystem. However, the fact that it does not allow the production of non-specific 

substrates is a big shortcoming. Moreover, HEC doesn’t allow the introduction of new substrates 

outside the previously declared setting.  

 The models described above are simple representations of real-life examples that exhibit 

certain symbiotic relationships. In the presence of actual microbial samples, it would be interesting 

to continue studying and analyzing samples to understand the behavior of microbial populations 

competing for shared substrates and identifying keystone populations that support the survival of 

the ecosystem. Furthermore, the above models run until 1000 generation only because of the limit 

of the computing capacity. Understanding the behavior of these models beyond 1000 generations 

would be very helpful to have a better picture of the populations but that requires high-performance 

computing (HPC).  
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APPENDIX A. HEC SCRIPT FOR MODEL 1 (HGT NOT INCLUDED) 

DECLARE 
volume = 0.01 
nonspec = 2 
spec = 8 
flow = 0.01 
substrates_ns = 1e-5, 1e-5 
substrates_ss = 1e-5, 1e-5, 1e-5, 1e-5, 1e-5, 1e-5, 1e-5, 1e-5 
comsub = 5e-4 
 
POP=1 
 SIZE=1e+5  
 INCREASER= rubel 
 K_DEATH=1E-8 
 K_FLOW=0.02 
 CPROD=1E+4 
 CCONS_NSP=1E+7 
 CCONS_SP=1e+7 
 // genome 
 GENE_N=1;allele_values: 3.5; allele_concentrations: 1.0 
 GENE_N=2;allele_values: 3.5; allele_concentrations: 1.0 
 GENE_S=1;allele_values: 3.5; allele_concentrations: 1.0 
 GENE_S=2;allele_values: 3.5; allele_concentrations: 1.0 
 GENE_P=3;allele_values: 3.5; allele_concentrations: 1.0 
 GENE_P=4;allele_values: 3.5; allele_concentrations: 1.0 
 GENE_P=5;allele_values: 3.5; allele_concentrations: 1.0 
 GENE_P=6;allele_values: 3.5; allele_concentrations: 1.0 
END POP(1) 
 
POP=2 
 SIZE=1e+5  
 INCREASER= rubel 
 K_DEATH=1E-8 
 K_FLOW=0.02 
 CPROD=1E+4 
 CCONS_NSP=1E+7 
 CCONS_SP=1e+7 
 // genome 
 GENE_N=1;allele_values: 3.5; allele_concentrations: 1.0 
 GENE_N=2;allele_values: 3.5; allele_concentrations: 1.0 
 GENE_S=2;allele_values: 3.5; allele_concentrations: 1.0 
 GENE_S=3;allele_values: 3.5; allele_concentrations: 1.0 
 GENE_P=4;allele_values: 3.5; allele_concentrations: 1.0 
 GENE_P=5;allele_values: 3.5; allele_concentrations: 1.0 
 GENE_P=6;allele_values: 3.5; allele_concentrations: 1.0 
 GENE_P=7;allele_values: 3.5; allele_concentrations: 1.0 
END POP(2) 
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POP=3 
 SIZE=1e+5  
 INCREASER= rubel 
 K_DEATH=1E-8 
 K_FLOW=0.02 
 CPROD=1E+4 
 CCONS_NSP=1E+7 
 CCONS_SP=1e+7 
 // genome 
 GENE_N=1;allele_values: 3.5; allele_concentrations: 1.0 
 GENE_N=2;allele_values: 3.5; allele_concentrations: 1.0 
 GENE_S=3;allele_values: 3.5; allele_concentrations: 1.0 
 GENE_S=4;allele_values: 3.5; allele_concentrations: 1.0 
 GENE_P=5;allele_values: 3.5; allele_concentrations: 1.0 
 GENE_P=6;allele_values: 3.5; allele_concentrations: 1.0 
 GENE_P=7;allele_values: 3.5; allele_concentrations: 1.0 
 GENE_P=8;allele_values: 3.5; allele_concentrations: 1.0 
END POP(3) 
 
END DECLARE 
 
STOCHASTIC=1000 
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APPENDIX B. HEC SCRIPT FOR MODEL 2 (HGT NOT INCLUDED) 

 
DECLARE 
volume = 0.01 
nonspec = 4 
spec = 6 
flow = 0.02 
substrates_ns = 1e-5, 1e-5, 1e-5, 1e-5 
substrates_ss = 1e-5, 1e-5, 1e-5,1e-5, 1e-5,1e-5 
comsub = 5e-4 
 
POP=1 
 SIZE=1e+5  
 INCREASER= rubel 
 K_DEATH=1E-8 
 K_FLOW=0.02 
 CPROD=1E+4 
 CCONS_NSP=1E+7 
 CCONS_SP=1e+7 
 // genome 
 GENE_N=1;allele_values: 3.5; allele_concentrations: 1.0 
 GENE_N=2;allele_values: 3.5; allele_concentrations: 1.0 
 GENE_N=3;allele_values: 3.5; allele_concentrations: 1.0 
 GENE_N=4;allele_values: 3.5; allele_concentrations: 1.0 
 GENE_P=1;allele_values: 3.5; allele_concentrations: 1.0 
 GENE_P=2;allele_values: 3.5; allele_concentrations: 1.0 
 GENE_P=3;allele_values: 3.5; allele_concentrations: 1.0 
 GENE_P=4;allele_values: 3.5; allele_concentrations: 1.0 
END POP(1) 
 
POP=2 
 SIZE=1e+5  
 INCREASER= inhibitory 
 K_DEATH=1E-8 
 K_FLOW=0.02 
 CPROD=1E+4 
 CCONS_NSP=1E+7 
 CCONS_SP=1e+7 
 // genome 
 GENE_N=1;allele_values: 3.5; allele_concentrations: 1.0 
 GENE_N=2;allele_values: 1.5; allele_concentrations: 1.0 
 GENE_N=3;allele_values: 1.5; allele_concentrations: 1.0 
 GENE_N=4;allele_values: 3.5; allele_concentrations: 1.0 
 GENE_S=1;allele_values: 3.5; allele_concentrations: 1.0 
 GENE_S=2;allele_values: 3.5; allele_concentrations: 1.0 
 GENE_P=1;allele_values: 1.5; allele_concentrations: 1.0 
 GENE_P=2;allele_values: 1.5; allele_concentrations: 1.0 
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 GENE_P=3;allele_values: 3.5; allele_concentrations: 1.0 
 //GENE_P=4;allele_values: 3.5; allele_concentrations: 1.0 
END POP(2) 
 
POP=3 
 SIZE=1e+5  
 INCREASER= inhibitory 
 K_DEATH=1E-8 
 K_FLOW=0.02 
 CPROD=1E+4 
 CCONS_NSP=1E+7 
 CCONS_SP=1e+7 
 // genome 
 GENE_N=1;allele_values: 3.5; allele_concentrations: 1.0 
 GENE_N=2;allele_values: 1.5; allele_concentrations: 1.0 
 GENE_N=3;allele_values: 1.5; allele_concentrations: 1.0 
 GENE_N=4;allele_values: 3.5; allele_concentrations: 1.0 
 GENE_S=3;allele_values: 3.5; allele_concentrations: 1.0 
 GENE_S=4;allele_values: 3.5; allele_concentrations: 1.0 
 GENE_P=4;allele_values: 1.5; allele_concentrations: 1.0 
 GENE_P=5;allele_values: 3.5; allele_concentrations: 1.0 
 GENE_P=6;allele_values: 3.5; allele_concentrations: 1.0 
END POP(3) 
 
END DECLARE 
 
STOCHASTIC=1000 

 


