
COMPARISON BETWEEN SYMFONY, ASP.NET MVC, AND NODE.JS EXPRESS FOR

WEB DEVELOPMENT

A Paper

Submitted to the Graduate Faculty

of the

North Dakota State University

of Agriculture and Applied Science

By

Xiaoli Mao

In Partial Fulfillment of the Requirements

for the Degree of

MASTER OF SCIENCE

Major Department:

Computer Science

April 2018

Fargo, North Dakota

North Dakota State University

Graduate School

Title

COMPARISON BETWEEN SYMFONY, ASP.NET MVC, AND

NODE.JS EXPRESS FOR WEB DEVELOPMENT

 By

Xiaoli Mao

 The Supervisory Committee certifies that this disquisition complies with North Dakota

State University’s regulations and meets the accepted standards for the degree of

 MASTER OF SCIENCE

 SUPERVISORY COMMITTEE:

Dr. Simone Ludwig

 Chair

Dr. Jun Kong

Dr. Zhili Gao

 Approved:

 April 17, 2018 Dr. Kendall Nygard

 Date Department Chair

iii

ABSTRACT

Web development technologies have been developing tremendously in recent years.

While new technologies such as Node.js come with various frameworks, traditional technologies

such as ASP.NET and PHP are also being used with new frameworks to meet the increasing

requirements. In this paper, three server-side frameworks, namely ASP.NET MVC 5, Symfony

for PHP, and Node.js Express, are compared in terms of development, performance, and other

aspects. For the development comparison, a hospital information management system was

developed and it was found that Symfony is the most friendly to new developers. For the

performance comparison, benchmark testing was used with two scenarios and it was discovered

that ASP.NET MVC 5 has the best performance in a Windows environment. Finally, the security,

support, and industry uses were compared, and it was revealed that while Node.js Express has

the most support, the ASP.NET MVC 5 framework is the most widely used for enterprise-level

websites.

iv

ACKNOWLEDGEMENTS

I would like to thank my Advisor Dr. Simone Ludwig for her constant encouragements

and patience on me. I would also like to thank my former Advisor Dr. Wei Jin for her

inspiration. Most importantly, I would like to thank my family, thank you for your endless love

and support.

v

DEDICATION

To Karena.

vi

TABLE OF CONTENTS

ABSTRACT ... iii

ACKNOWLEDGEMENTS ... iv

DEDICATION .. v

LIST OF TABLES ... ix

LIST OF FIGURES .. x

LIST OF ABBREVIATIONS ... xii

1. INTRODUCTION .. 1

1.1. Introduction .. 1

1.2. Motivation and Contribution .. 2

1.3. Organization of Paper... 2

2. RELATED KNOWLEDGE .. 3

2.1. Introduction .. 3

2.1.1. ASP.NET MVC .. 3

2.1.2. Symfony .. 3

2.1.3. Node.js Express... 3

2.2. Related Work.. 4

3. HOSPITAL WEBSITE ... 7

3.1. Detailed Design .. 7

3.2. Database ... 8

vii

3.3. Implementation... 9

3.3.1. Login Page .. 9

3.3.2. Front Desk Page .. 10

3.3.3. Edit an Appointment Page .. 11

3.3.4. Doctor’s Page .. 12

3.3.5. Doctor’s Edit Page .. 13

4. COMPARISON .. 15

4.1. Development Comparison .. 15

4.1.1. Working Environment .. 15

4.1.1.1. ASP.NET MVC ... 15

4.1.1.2. Symfony... 15

4.1.1.3. Node.js Express ... 16

4.1.2. Developing Language ... 16

4.1.2.1. ASP.NET MVC ... 16

4.1.2.2. Symfony... 17

4.1.2.3. Node.js Express ... 19

4.1.3. Connection to Database .. 20

4.1.3.1. ASP.NET MVC ... 20

4.1.3.2. Symfony... 21

4.1.3.3. Node.js Express ... 22

viii

4.1.4. Summary ... 22

4.2. Performance Comparison ... 22

4.2.1. Introduction ... 22

4.2.2. Hardware ... 23

4.2.3. Testing Process ... 23

4.2.3.1. Sending a String to Front-end .. 24

4.2.3.2. Calculating the Fibonacci Values .. 26

4.2.3.3. Selecting Items in Database ... 30

4.2.3.4. Testing in Linux... 32

4.3. Other Comparisons ... 34

4.3.1. Security ... 34

4.3.1.1. ASP.NET MVC ... 34

4.3.1.2. Symfony... 35

4.3.1.3. Node.js Express ... 37

4.3.2. Support .. 38

4.3.3. Industry Uses .. 39

5. CONCLUSIONS AND FUTURE WORK ... 40

6. REFERENCES ... 41

ix

LIST OF TABLES

Table Page

1. Results of Sending a String in Mean Request per Second .. 24

2. Results of Sending a String in Mean Time (ms) per Request ... 24

3. Results of Calculating F(10) in Mean Requests per Second... 26

4. Results of Calculating F(10) in Mean Time (ms) per Request ... 26

5. Results of F(30), F(50), and F(100) for ASP.Net MVC ... 28

6. Results of F(30), F(50), and F(100) for Node.js Express ... 28

7. Results of Selecting Items in Database in Mean Request per Second 30

8. Results of Selecting Items in Database in Mean Time (ms) per Request 30

9. Symfony Performance in Linux System ... 32

10. Node.js Express Performance in Linux .. 33

11. Survey on Usage of the Three Technologies .. 39

x

LIST OF FIGURES

Figure Page

1. Percentage of Server-Side Language Usage [1] ... 1

2. Comparison of Four Most Popular Frameworks [7] ... 6

3. Functionality of Front Desk Staff Users ... 7

4. Functionality of Doctor Users ... 8

5. Database: Table of Staff Information ... 9

6. Database: Table of Appointments Information ... 9

7. Login Page .. 10

8. Front Desk Page .. 11

9. Edit an Appointment ... 12

10. Doctor’s Page .. 13

11. Doctor’s Edit Page .. 14

12. HTTP Helper Example ... 16

13. Scaffolding Example ... 17

14. Twig Example ... 18

15. Form Example in Server-side ... 19

16. Form Example in Front-side ... 19

17. ORM Structure [8] .. 20

18. Model Example in ASP.NET MVC.. 21

19. Data Annotation .. 21

20. Bar Chart of Sending a String in Mean Request per Second .. 25

21. Bar Chart of Sending a String in Mean Time (ms) per Request ... 25

xi

22. Bar Charts of Calculating F(10) in Mean Requests per Second ... 27

23. Bar Charts of Calculating F(10) in Mean Time (ms) per Request .. 27

24. Bar Charts of Fibonacci Values in Mean Request per Second for ASP.NET MVC 5 29

25. Bar Charts of Fibonacci Values in Mean Request per Second for Node.js Express 29

26. Bar Chart of Selecting Items in Database in Mean Request per Second 31

27. Bar Chart of Selecting Items in Database in Mean Time (ms) per Request 31

28. Comparison of Sending a String to Front-end for Symfony between Windows and Linux ... 33

29. Comparison of Sending a String to Front-end for Node.js between Windows and Linux 34

30. Authorize Attribute in ASP.NET MVC .. 35

31. AllowAnonymous Attribute in ASP.NET MVC .. 35

32. Security.yml in Symfony .. 36

33. Authentication and Authorization in Symfony [9] ... 37

34. Ten Most Popular Languages in the Number of Pull Requests [13] 38

xii

LIST OF ABBREVIATIONS

API ... Application Programming Interface

ASP .. Application Service Provider

DQL ... Database Query Language

EF ... Entity Framework

HTTP.. Hyper Text Transfer Protocol

HQL ... Hibernate Query Language

IIS ... Internet Information Services

I/O .. Input/Output

IDE ... Integrated Development Environment

JSP.. Java Server Pages

LAMP .. Linux, Apache, MySQL, PHP

LINQ .. Language Integrated Query

MVC .. Model-View-Controller

ORM .. Object-Relational Mapping

PHP .. Personal Home Page

URL.. Uniform Resource Locator

1

1. INTRODUCTION

1.1. Introduction

Web applications play a very important role in people’s life and has been the most

important media to spread information. With the popularity of data mining and cloud computing,

the new trends of web development in recent years are large scale, high concurrency and vast

amount of data processing. Some new technologies on web development have become more

popular, especially on the server side, such Python Django and Node.js. In the meanwhile,

traditional technologies, such as ASP.NET and PHP, are still playing a huge role in web

development. Figure 1 shows that the two most used web application server-side languages are

still PHP and ASP.NET.

Figure 1. Percentage of Server-Side Language Usage [1]

2

1.2. Motivation and Contribution

For both ASP.NET and PHP, many new and powerful frameworks are being used in web

development. The use of frameworks can significantly reduce repeated code in a project and also

make the process easier and short-lasted. The three most popular ASP.NET frameworks are Web

Forms, MVC, and Web Pages. Some other popular PHP frameworks include Zend, CakePHP,

Symfony, and Laravel.

In this project, three popular frameworks, namely ASP.NET MVC 5, Symfony for PHP,

and Node.js Express, are selected for comparison in terms of their development, performance,

and other aspects. For the development comparison, a website of hospital information

management system was developed with these three frameworks to compare the three server side

technologies. For the performance comparison, benchmark testing was used to compare the

performance of these three frameworks. In other comparisons, several aspects including security,

support, and usage in industry were compared between these three frameworks. The conclusions

made from the comparison of these three server-side technologies will help web developers to

select more appropriate frameworks for different projects.

1.3. Organization of Paper

The rest of this paper is organized as follows: Chapter 2 discusses related knowledge,

Chapter 3 describes the hospital information management system, Chapter 4 details the

comparisons and analyzes the results, and Chapter 5 draws conclusions of the paper and briefs

future work.

3

2. RELATED KNOWLEDGE

2.1. Introduction

2.1.1. ASP.NET MVC

ASP.NET MVC 5 was released in 2013. The MVC (Model-View-Controller) pattern,

originally named Thing-Model-View-Editor, was first introduced in the 1970s for graphical user

interface, and has been widely adopted for web development. The brief explanation of MVC is

introduced as follows [2]:

 Model: Application data and behavior

 View: the HTML markup that display to the user

 Controller: manages the relationship between the View and the Model.

2.1.2. Symfony

Symfony is a high-performance PHP framework for web development and an open

source project. The first generation of Symfony was released in 2005. This project used the latest

version 3.3. Symfony uses the MVC pattern to build website as well. It can also use third party

libraries to enhance its performance, which include Doctrine for database management and Twig

for front-end development.

2.1.3. Node.js Express

JavaScript, a popular language in recent years, has been widely used in web development,

mostly in the front-end. Node.js Express was released as a server-side language around 2009

with the purpose of providing an event-driven, non-blocking I/O model and also a lightweight

and efficient framework. Node.js is primarily written in C, C++, and JavaScript.

4

2.2. Related Work

There have been numerous studies related to the evaluation and analyses of web

development and web server technologies. While some of them compared the web development

frameworks in several aspects, other studies focused on comparing the web server performance.

Titchkosky et al. [3] evaluated the impact of three different dynamic content technologies

(Perl, PHP, and Java) on web server performance. The authors tested the achievable

performance of static content workload, dynamic content generation workload without database,

and dynamic content generation workload with database, respectively. The results showed that

the overheads of dynamic content generation reduced the peak request rate supported by a web

server up to a factor of eight. In addition, the authors found that the Java server technologies

typically outperformed both Perl and PHP in dynamic content generation.

Swales et al. [4] compared three dynamic web programming technologies (JSP, ASP, and

ASP.NET) in terms of their performance in multimedia distribution. The authors used three

dynamic web technologies to build a testing application to distribute multiple images from an

Oracle 9i database. The results overturned previous research that stated that JSP did not

outperform ASP. In addition, the results showed that JSP and ASP both significantly

outperform ASP.NET which was newly deployed at that time.

Different types of frameworks come out in recent years, especially for open source

projects such as PHP frameworks and Python frameworks. Prokofyeva and Boltunova [5]

analyzed various PHP frameworks including CakePHP2, CodeIgniter, Symfony2, Yii, and

PhalconPHP, and compared them using several criteria. Besides the general comparison of

those frameworks, the authors also provided a simple performance test between these

frameworks. The results showed that PhalconPHP and Symfony2 had very similar routing

5

capabilities, but Symfony2 provided more choices of configuration file formats. In addition, the

Phalcon template was friendlier to programmers who were new to template engines, and the

performance of Phalcon significantly exceeded Symfony2.

New web technologies such as Python and Node.js have become more popular. Lei and

Ma [6] compared and evaluated the performance of web development technologies in PHP,

Python, and Node.js. The authors used benchmark tests and scenario tests, and the results

showed that Node.js was able to handle many more requests in a certain time than PHP and

Python. This paper clearly concluded that Node.js was an ideal fit for I/O intensive websites due

to its lightweight property and efficient. While PHP could be used in small and middle scale

web applications, Python-web was very suitable for large web architectures and was also very

developer-friendly.

Crawford and Hussain [7] compared four leading server-side scripting technologies,

namely PHP, Django, Ruby on Rails, and Node.js, in five aspects. The five comparison

attributes were ease of getting started, availability of help and support, popularity, availability of

development tools and packages, and performance. The results showed that PHP was the

simplest technology to get started and in setting up a local server environment. Node.js was

proved to be more difficult to beginners since it had some difficult syntax. For help and support,

it was also easy to get help on PHP from integrated guides and documentation. For the

popularity, PHP was absolutely the most popular server-side technology because it had been

over ten years. However, the growth trend of Node.js was better than the other technologies. For

development tools and package management systems, the research showed that Node.js

provided almost three times the amount of packages compared to the other technologies. The

results showed that the latest version of PHP had the most support and might take some work to

6

utilize Microsoft SQL Server. To compare the performance of each web script technologies, the

authors tested Vapor (Swift), Ruby on Rails (Ruby), Laravel (PHP), Lumen (PHP), Express

(JavaScript), Django (Python), Flask (Python), Spring (Java), Nancy (C#), and Go. It turned out

that Go and Express had the most efficient performance. The results of the comparison of four

most popular frameworks is shown in Figure 2.

Figure 2. Comparison of Four Most Popular Frameworks [7]

7

3. HOSPITAL WEBSITE

The website used in this project is designed to be used by a hospital to manage patient

appointments.

3.1. Detailed Design

In this project, there are two types of anticipated users, which are front desk staff and

doctors. The main purpose of the front desk staff is to manage appointments, including search,

check in, edit, and cancel. The pipelines of the front desk include checking in an appointment

from the upcoming appointments list or search result, and canceling and editing an appointment

using the edit button in the upcoming appointments list or from the search result. The detailed

design of the front desk is shown in Figure 3.

Figure 3. Functionality of Front Desk Staff Users

8

The detailed design of doctors’ functionality is shown in Figure 4. The pipelines of a

doctor include searching for the patient list, writing comments for appointments and viewing

patient history using the edit button in the upcoming appointments list, and searching for

schedule by date.

Figure 4. Functionality of Doctor Users

3.2. Database

The purpose of the database is to store appointment information as well as staff and

doctor accounts. In this project, two unrelated tables are used to store this information. In the

staff and doctor accounts table, four properties are used: ID (Primary key), User Name, Password,

and Department, as displayed in Figure 5.

9

Figure 5. Database: Table of Staff Information

In the appointment table, eleven properties are used: ID (Primary key), First Name, Last

Name, Date of Birth, Gender, Appointment Date, Appointment Time, Problem, Status, and

Comments, as presented in Figure 6.

Figure 6. Database: Table of Appointments Information

3.3. Implementation

The project was implemented in ASP.NET MVC 5, Symfony 3.3 and Node.js Express

separately. This section explains the main pages.

3.3.1. Login Page

In the Login Page, as exhibited in Figure 7, a correct combination of username and

password will direct to either the front desk staff page or the doctor page. If the combination is

incorrect, an alert message will show up.

10

Figure 7. Login Page

3.3.2. Front Desk Page

The Front Desk Page is used by the front desk staff to set up, search, check-in, and edit

appointments. The toolbar includes three buttons: set up, search and logout. The upcoming

appointments table shows the remaining appointments in the current day. Each appointment in

the upcoming appointments table can be modified by clicking the edit button, as presented in

Figure 8.

11

Figure 8. Front Desk Page

3.3.3. Edit an Appointment Page

In the Edit an Appointment Page, appointments can be edited. Updated appointments will

be stored in the database after submission, and the page will go back to the front desk page.

When clicking the cancel button, this appointment will be canceled and removed from the

database. The close button will ignore any change of the appointment and go back to the front

desk page, as shown in Figure 9.

12

Figure 9. Edit an Appointment

3.3.4. Doctor’s Page

The Doctor’s Page will allow a doctor to view the patient list and medical history, check

schedule, and write comments. The toolbar includes three buttons. The table below the toolbar

shows a list of patient appointments in the current day. The edit button after each appointment

will direct to the Doctor’s Edit Page, as illustrated in Figure 10.

13

Figure 10. Doctor’s Page

3.3.5. Doctor’s Edit Page

After clicking the edit button of today’s appointments on the Doctor’s Page, the Doctor’s

Edit Page will display. In this page, the doctor can view the history of this patient and write

comments of this appointment, as displayed in Figure 11.

14

Figure 11. Doctor’s Edit Page

15

4. COMPARISON

Choosing the most suitable technology to build the website is always a challenging task

for developers in a company. Many aspects should be considered before selecting the technology

and framework, such as cost, development cycle, employee skill level, performance, etc. In this

paper, ASP.NET MVC 5, Symfony, and Node.js Express will be compared in three aspects,

namely development comparison, performance comparison, and other comparisons.

4.1. Development Comparison

4.1.1. Working Environment

4.1.1.1. ASP.NET MVC

For ASP.NET MVC, the best working environment is in Windows and Visual Studio, of

which the latest version is 2017. Once Visual Studio 2013 or newer has been installed, it is ready

to start the development work. The web server used in ASP.NET MVC, IIS (Internet Information

Services), has already been included in Visual Studio. Therefore, setting up the working

environment for ASP.NET MVC is very simple.

4.1.1.2. Symfony

For Symfony, although it can be used in Windows, Linux, and Mac OS, the primary

working environment for Symfony is LAMP (Linux, Apache, MySQL, and PHP). Therefore, to

set up the working environment of Symfony, Apache, MySQL, and PHP should be installed

before installing Symfony. As a result, the developer needs to know some basic knowledge about

Linux.

16

4.1.1.3. Node.js Express

Node.js is also popular in Windows, Linux, and Mac OS. Since one feature of Node.js is

lightweight due to npm, a package manager, installing Node.js is quite simple for both Windows

and Linux, similarly to the installation of other regular software.

4.1.2. Developing Language

4.1.2.1. ASP.NET MVC

ASP.NET MVC provides a lot of features to make developers’ work easier. Some of

those features are explained with more details below.

For the front-end development, ASP.NET MVC uses HTTP Helper to assist the

developers to build the front-end coding. For example, forms are a very typical function in a web

application to collect or display information in the database, and therefore building forms is also

a very common task in web development. The HTTP Helper makes the code like the natural

language and thus more readable. Figure 12 demonstrates the code of building a form.

Figure 12. HTTP Helper Example

A form in a web page that relates to a table in the database to show and collect

information is a frequently used scenario in web development. With the help of scaffolding, a

Controller can be easily built with actions such as Index, Edit, Details, and Delete, as well as

their view pages for a given database table. The selection of scaffolding controllers is shown in

Figure 13.

17

Figure 13. Scaffolding Example

4.1.2.2. Symfony

Twig is used in Symfony front-end development to help developers make the code more

conviniently and readable. Figure 14 illustrates that the table will show the information obtained

from the controller, in a list.

18

Figure 14. Twig Example

Figure 15 and Figure 16 demonstrate another example of form. In this project, the most

frequent actions are search, modify, and create new appointments via forms, and all data in the

forms will communicate with the appointments table in the database. Therefore, a form format

can be built based on a given table in the database in Symfony.

19

Figure 15. Form Example in Server-side

Figure 16. Form Example in Front-side

4.1.2.3. Node.js Express

Node.js uses Express as the front-end language. It uses <% %> to include non-html

language and could be more difficult to use for beginners.

20

4.1.3. Connection to Database

4.1.3.1. ASP.NET MVC

ASP.NET MVC uses a framework to manage the database. The default database

framework used in ASP.NET MVC 5 is Entity Framework (EF). EF is an object-relational

mapping (ORM) framework that manages the operations between the program and the database.

The architecture of ORM is shown in Figure 17.

Figure 17. ORM Structure [8]

EF in ASP.NET MVC 5 supports database-first, model-first and code-first styles of

development. The default database used in ASP.NET is SQL Server, but it also supports other

popular databases. In this project, MySQL is used for all three technologies. After installing

support references obtained from MySQL, connecting ASP.MET MVC and MySQL is

visualized by following the instructions. When the connection is completed, the database-based

model code will be generated automatically with a diagram. The information of a connected

database is shown in Figure 18.

21

Figure 18. Model Example in ASP.NET MVC

ASP.NET MVC uses Language Integrated Query (LINQ) to query the database. In each

table-based files, Data Annotation and Validation can be used to create useable properties, such

as DisplayName in the HTML file or to create a new variable, an example of which is shown in

Figure 19.

Figure 19. Data Annotation

4.1.3.2. Symfony

It is very simple to connect to a database in Symfony. The database variables need to be

set up first in the parameters.yml file, including database host, port, username, password, etc.,

and then the database is connected.

22

Symfony also uses a database framework, Doctrine, to manage the communication with

the database. Doctrine is another ORM architecture framework. The query language used in

Doctrine is Doctrine Query Language (DQL), which is very similar to Hibernate Query

Language (HQL), an object-oriented SQL language which operates on specific objects and their

properties instead of tables and columns as in the original SQL language.

4.1.3.3. Node.js Express

Connecting to a database in Node.js is similar to Symfony - setting the properties of a

database in a file, such as IP, Username, Password, etc. Node.js does not use a database

framework, and therefore the query language in Node.js is the original SQL language which

operates directly on tables and columns.

4.1.4. Summary

For a developer, PHP is the easiest programming language to learn while ASP.NET

MVC provides features that are most convenient to use. Node.js, as the newest technology

among the three, has considerably more advantages over the other two counterparts, such as its

fast speed, lightweight with npm, strong computing capabilities, etc.

4.2. Performance Comparison

4.2.1. Introduction

Benchmark test was used to evaluate the performance of ASP.NET, Symfony, and

Node.js Express. Considering the different requirements of websites, three scenarios were

designed to compare the performance between the three frameworks, which were:

1) Send a string to front-end: this scenario is a basic module in a web server to evaluate

the I/O operation of the web application.

23

2) Calculate the Fibonacci value: this scenario was used to compare the calculation

performance of these three frameworks. The formula of nth Fibonacci F(n) is F(n) =

F(n-1) + F(n-2).

3) Select items in a database: this scenario was used to compare the operation

performance of the three frameworks with a database by retrieving items from a table.

 AppachBench (Ab), a tool in Apache, was used to perform the benchmark test.

AppachBench is able to make requests in local web server, where the response time is the

processing time, which does not include the data transmission time through the Internet.

4.2.2. Hardware

The specifications of the hardware environment used in the test were:

 Operating system: Windows 10 Pro

 Processor: Intel Core i5-3210M 2.5 GHz

 RAM: 8GB

 System type: 64-bit operating system

To ensure the consistency of testing results, the computer was restarted before each

framework testing and only the Integrated Development Environment (IDE) and Chrome was

run.

4.2.3. Testing Process

In the Benchmark testing, the number of total requests was set at 200, and the number of

users was set at 10, 20, 40, 60, 80, and 100, respectively, for each test. The values of mean

requests per second and mean time per request in milliseconds (ms) were then compared.

24

4.2.3.1. Sending a String to Front-end

Table 1 and Table 2 reveals that the performance of ASP.NET was almost 100 times

better than Node.js and was over 1,000 times better than Symfony. When the number of total

requests was set at 200, the performance of ASP.NET MVC was quite stable, at around 3,200

requests per second. For Node.js Express, the highest number of requests per second was about

505 when the number of users was 40. The performance of Symfony was not as well as the other

two frameworks. The bar charts in Figure 20 and Figure 21 show the comparison of sending a

string to the front-end between three frameworks. It is noted that the charts are not able to show

all results as visible bars due to their low values.

Table 1. Results of Sending a String in Mean Request per Second

Number of Users ASP.NET MVC 5 Node.js Express Symfony

10 3199.85 399.98 2.40

20 3199.90 387.86 2.38

40 3200.36 504.92 2.48

60 3199.85 474.05 2.49

80 3199.85 457.12 2.50

100 3199.80 457.12 2.45

Table 2. Results of Sending a String in Mean Time (ms) per Request

Number of Users ASP.NET MVC 5 Node.js Express Symfony

10 3.125 25.001 4159.117

20 6.250 51.565 8409.882

40 12.499 79.221 16130.588

60 18.751 126.569 24130.950

80 25.001 175.008 31946.168

100 31.252 218.760 40840.740

25

Figure 20. Bar Chart of Sending a String in Mean Request per Second

Figure 21. Bar Chart of Sending a String in Mean Time (ms) per Request

26

4.2.3.2. Calculating the Fibonacci Values

This model is to calculate the value of F(10). The results in mean request per second and

mean time per request are displayed in Table 3 and Table 4, and the bar charts of the comparison

between three frameworks in calculating F(10) are shown in Figure 22 and Figure 23. It can be

seen that ASP.NET MVC still has the best performance in calculating F(10) while Symfony still

has the worst performance. In addition, although the performance comparison of calculating F(10)

between the three frameworks did not vary much compared to the performance comparison of

sending a string, the performance of ASP.NET MVC was less stable in calculating F(10).

Table 3. Results of Calculating F(10) in Mean Requests per Second

Number of Users ASP.NET MVC 5 Node.js Express Symfony

10 2133.20 429.29 2.43

20 3199.90 511.98 2.44

40 3199.95 581.79 2.44

60 3199.90 575.98 2.41

80 4266.58 609.50 2.39

100 3199.50 609.50 2.39

Table 4. Results of Calculating F(10) in Mean Time (ms) per Request

Number of Users ASP.NET MVC 5 Node.js Express Symfony

10 4.688 20.313 4100.730

20 6.250 39.064 8205.867

40 12.500 68.753 16416.012

60 19.751 104.170 24921.731

80 18.750 131.256 33408.957

100 31.250 164.069 41786.412

27

Figure 22. Bar Charts of Calculating F(10) in Mean Requests per Second

Figure 23. Bar Charts of Calculating F(10) in Mean Time (ms) per Request

28

In order to test the relationship between the complexity of calculation and the

performance of ASP.NET MVC and Node.js, F(30), F(50), and F(100) were also calculated, and

the results are shown in Table 5 and Table 6. It can be observed that with the increase of

calculation complexity, the performance did not vary much for both ASP.NET MVC and Node.js

Express. Figure 24 and Figure 25 visualize such results in mean request per second for ASP.NET

MVC 5 and Node.js Express, respectively, when calculating F(10), F(30), F(50), and F(100).

Table 5. Results of F(30), F(50), and F(100) for ASP.Net MVC

User

F(30) F(50) F(100)

Mean

req/sec

Mean

ms/req

Mean

req/sec

Mean

ms/req

Mean

req/sec

Mean

ms/req

10 2559.90 3.906 3199.95 3.125 3381.59 2.952

20 4266.67 4.688 3199.90 6.250 3331.28 6.004

40 3199.80 15.501 2739.61 14.601 3276.70 12.207

60 4299.58 14.063 3199.85 18.751 3387.65 17.711

80 3199.85 25.001 3199.90 25.001 3223.73 24.816

100 2559.97 39.063 3199.49 31.255 3199.90 31.251

Table 6. Results of F(30), F(50), and F(100) for Node.js Express

User

F(30) F(50) F(100)

Mean

req/sec

Mean

ms/req

Mean

req/sec

Mean

ms/req

Mean

req/sec

Mean

ms/req

10 573.42 17.439 441.36 22.657 474.05 21.095

20 752.91 26.564 511.98 39.064 492.28 40.627

40 673.65 59.378 511.98 78.129 511.98 78.127

60 673.65 89.066 556.50 107.818 533.32 112.504

80 730.24 109.554 581.79 137.506 581.79 137.506

100 752.91 132.817 639.97 156.258 581.82 171.875

29

Figure 24. Bar Charts of Fibonacci Values in Mean Request per Second for ASP.NET

MVC 5

Figure 25. Bar Charts of Fibonacci Values in Mean Request per Second for Node.js

Express

30

4.2.3.3. Selecting Items in Database

Operations with the database is one of the most important tasks in dynamic web

applications. In this scenario, selecting 15 rows of data in a 50-row by 5-column table were

tested with the three frameworks. The results in Table 7 and Table 8 show that ASP.NET MVC 5

had the best performance on operations with the database. In addition, its performance of

selection operations in the database was better than both sending a string to the front-end and

calculating a Fibonacci value. The performance of Node.js Express in selection operations in the

database did not vary much comparing to the other two scenarios. The performance of Symfony

was still the poorest among the three frameworks. Figure 26 and Figure 27 visualize the

comparison between the three frameworks. It was also found that the performance of Symfony in

selection operations in the database was worse compared to the other two scenarios, dropping

from around 2.5 to 0.66 requests per second.

Table 7. Results of Selecting Items in Database in Mean Request per Second

Number of Users ASP.NET MVC 5 Node.js Express Symfony

10 6400.20 492.29 0.66

20 4266.48 581.79 0.64

40 4266.39 581.79 0.66

60 4266.30 583.01 0.66

80 6399.80 639.96 0.66

100 4266.58 639.96 0.66

Table 8. Results of Selecting Items in Database in Mean Time (ms) per Request

Number of Users ASP.NET MVC 5 Node.js Express Symfony

10 15.620 20.313 15230.632

20 4.688 34.377 31029.856

40 9.376 68.753 60976.155

60 14.064 102.915 91134.397

80 12.500 125.008 120865.168

100 23.438 156.260 151278.730

31

Figure 26. Bar Chart of Selecting Items in Database in Mean Request per Second

Figure 27. Bar Chart of Selecting Items in Database in Mean Time (ms) per Request

32

4.2.3.4. Testing in Linux

Since Node.js and Symfony are usually used in a Linux environment, the benchmark tests

were also performed in Linux for these two frameworks to test if their performance was the same

as in a Windows environment.

To build a Linux system, Ubuntu 16 was installed on a virtual machine, VMware

Workstation 14 Player. Generally speaking, the Linux system running in a virtual machine will

be assigned with less hardware resources than the Windows system in the physical machine.

When comparing the mean request per second between Linux in Table 9 and Windows in

Table 1 and Table 3, it can be concluded that the performance of Symfony in Linux is around

four times better than that in Windows in first two scenarios: from between 2.38 and 2.50 to

between 8.22 and 9.99 for sending a string to the front-end and from between 2.39 to 2.44 to

between 9.12 and 10.65 for calculating F(10). In the selecting items in database scenario, its

performance improved dramatically from 0.66 to around 9.50, almost 15 times better. Figure 28

shows the bar chart comparison of sending a string to the front-end for Symfony between

Windows and Linux.

Table 9. Symfony Performance in Linux System

User

Sending a String

to Front-end

Calculating F(10) Selecting Items

in Database

Mean

request/sec

Mean

ms/request

Mean

request/sec

Mean

ms/request

Mean

request/sec

Mean

ms/request

10 9.86 1013.614 9.38 1065.838 8.88 1126.641

20 9.21 2172.775 9.87 2025.807 9.03 2213.729

40 9.49 4212.807 9.12 4386.007 9.70 4124.195

60 9.99 6006.207 10.48 5724.946 9.52 6302.802

80 9.99 8009.036 10.30 7754.323 9.50 8417.177

100 8.22 12159.690 10.65 9385.867 9.95 10046.745

33

Figure 28. Comparison of Sending a String to Front-end for Symfony between Windows

and Linux

Node.js Express was tested for the three scenarios in Linux and it was found that

although its performance also improved, the improvement was not as much as that of Symfony.

Table 10 shows the performance results of Node.js Express in Linux, and Figure 29 visualizes

the comparison of sending a string to the front-end using Node.js Express between Windows and

Linux.

Table 10. Node.js Express Performance in Linux

User

Sending a String

to Front-end

Calculating F(10) Selecting Items

in Database

Mean

request/sec

Mean

ms/request

Mean

request/sec

Mean

ms/request

Mean

request/sec

Mean

ms/request

10 470.42 21.257 756.78 13.214 515.79 19.388

20 545.65 36.654 978.79 20.433 608.42 32.872

40 601.38 66.514 1073.12 37.275 598.40 66.845

60 594.48 100.928 1060.18 56.595 614.03 97.714

80 641.41 124.724 1153.41 69.360 648.88 123.289

100 659.41 151.651 1088.36 91.881 642.54 155.634

34

Figure 29. Comparison of Sending a String to Front-end for Node.js between Windows and

Linux

4.3. Other Comparisons

4.3.1. Security

4.3.1.1. ASP.NET MVC

Security has always been one of the most important parts for a web portal. ASP.NET

MVC framework provides some features to improve the security of websites, such as using the

Authorize action filter on a controller to identify if the user is authorized or not [2].

The first security policy in ASP.NET MVC is using the Authorize attribute to require a

login. This step can be implemented in Controller actions, as shown in an example in Figure 30.

35

Figure 30. Authorize Attribute in ASP.NET MVC

In addition, if Authorization is set to global, some URLs can still be accessible to non-

registered users by using the AllowAnonymous attribute, as shown in an example in Figure 31.

Figure 31. AllowAnonymous Attribute in ASP.NET MVC

4.3.1.2. Symfony

The security in Symfony is mainly managed in the security.yml file. The original

security.yml file is demonstrated in Figure 32.

36

Figure 32. Security.yml in Symfony

The main job of the security.yml file is to set user Authentication and Authorization.

Symfony first uses Firewalls to verify the user (Authentication), and then uses Access Control to

check the user’s permission to access specific URLs (Authorization), which is illustrated in

Figure 33 [9].

37

Figure 33. Authentication and Authorization in Symfony [9]

The firewalls in the security.yml file are used to configure how the website users will be

authenticated. Typical authentication methods include using a login form, HTTP basic

authentication, or an API token [10]. Access_control is then used in routes to ensure only users

who have logged in can access the URL.

In addition, Symfony provides a Security component to improve the security of websites.

The Security component allows features including authentication using HTTP basic, digest

authentication, etc. It also allows developers to implement their own authentication strategies.

4.3.1.3. Node.js Express

There are some security packages in Node.js besides the regular security methods such as

cookies. Helmet, one of these security packages, is able to protect the website from some well-

known web vulnerabilities by setting HTTP headers appropriately [11]. Two common uses of

38

Helmet are to validate user input, one of the most important things to secure the web application,

and to secure regular expressions [12].

4.3.2. Support

All three technologies have large communities of developers to get support from. In most

situations, solutions can be found from these communities when encountering problems.

The open source Node.js is used by many third-party vendors and is the most popular

language according to GitHub [13], as shown in Figure 34, while developers in ASP.NET MVC

are usually dedicated developers, the community support of Node.js is stronger than ASP.NET

MVC. Since Symfony is not the most popular PHP framework among many others, its support

from the communities is not as strong as the other two technologies.

Figure 34. Ten Most Popular Languages in the Number of Pull Requests [13]

39

4.3.3. Industry Uses

Indeed.com, a job hunting website, was used in this paper to identify the uses of these

three frameworks in the industry. This survey focused on companies in the Minneapolis area in

Minnesota and the Sioux Falls area in South Dakota, as shown in Table 11.

When exploring job descriptions in Indeed.com, the technology used in the companies

can be identified by searching for key words including ASP.NET, MVC, PHP, and Node.js. PHP

and Node.js were used as key words instead of Symfony and Express which are studied in this

paper due to the fact that most job descriptions did not specify the framework to be used in

projects.

In the Minneapolis area, 34 companies were identified to be using these three

technologies for web development (ASP.NET MVC, PHP, Node.js), among which 24 were using

ASP.NET, six were using PHP, three were using Node.js, and one was using both PHP and

Node.js. In the Sioux Falls area, eleven companies were found related to web development with

the three technologies, among which eight were using ASP.NET MVC, two were using PHP, and

one was using both PHP and Node.js.

Table 11. Survey on Usage of the Three Technologies

Technology
Number of Companies Using the Technology

Minneapolis Area Sioux Falls Area

ASP.NET MVC 24 8

PHP 7 3

Node.js 4 1

Total 34 11

40

5. CONCLUSIONS AND FUTURE WORK

In this paper, three web server-side programming technologies were compared in terms

of their development, performance, and other aspects.

In the development comparison, a hospital information management system was

developed with the three different technologies, and were then compared in four aspects: setting

up the environment, sever-side programming, front-end programming, and their connection to

database.

When comparing the performance of these three technologies, benchmark testing was

used, and the results showed ASP.NET MVC had the best performance among the three

frameworks in Windows environment. In addition, it was discovered that Symfony and Node.js

Express performed better in Linux environment than in Windows environment.

The three frameworks were further compared in terms of their security, support, and

usage in industry. While these three frameworks have different methods to keep the web

application secure, ASP.NET MVC and Symfony have similar security policies. With the

support from Microsoft, ASP.NET MVC is more suitable for enterprise-level websites, whereas

Symfony is more suitable for websites of small business, startups and independent software

vendors. On the other side, Node.js fits better for websites that are computation-intensive or

require high speed and performance.

Future work will be focused on other web development related technologies, such as

Apache, IIS and Docker.

41

6. REFERENCES

[1] W3Techs. Usage of Server-Side Programming Languages for Websites. URL:

https://w3techs.com/technologies/overview/programming_language/all, accessed March

6, 2018.

[2] Galloway, J., Wilson, B., Allen, K.S., and Matson, D. (2014). Professional ASP.NET

MVC 5. Wrox, Hoboken, NJ, ISBN: 9781118794753.

[3] Titchkosky, L., Arlitt, M., and Williamson, C. (2003). A performance Comparison of

Dynamic Web Technologies. ACM SIGMETRICS Performance Evaluation Review, 31(3),

2-11.

[4] Swales, D., Sewry, D., and Terzoli A. (2003). A Performance Comparison of Web

Development Technologies to Distribute Multimedia across an Intranet. Proceedings of

2003 Southern Africa Telecommunication Networks and Applications Conference,

Fancourt, George, September 7-10, 2003.

[5] Prokofyeva, N. Entity Framework (EF). Entity Framework (EF). Entity Framework (EF).

(2017). Analysis and Practical Application of PHP Frameworks in Development of Web

Information Systems. Procedia Computer Science, 104, 51-56.

[6] Lei, K., Ma, Y., and Tan, Z. (2014). Performance Comparison and Evaluation of Web

Development Technologies in PHP, Python, and Node.js. Proceedings of 2014 IEEE 17th

International Conference on Computational Science and Engineering, Chengdu, China,

December 19-21, 2014, 661-668.

[7] Crawford, T. and Hussain, T. (2017). A Comparison of Server Side Scripting

Technologies. Proceedings of the 15th International Conference on Software Engineering

Research and Practice, Las Vegas, NV, July 17-20, 2017, 69-76.

42

[8] Hideghety, B. (2016). Get Know Your ORM - Avoid Bad Habits. URL:

https://www.linkedin.com/pulse/get-know-your-orm-avoid-bad-habits-balazs-hideghety/,

accessed March 6, 2018.

[9] NewLifeClan. (2014). Chapter 13: Security. URL:

http://www.newlifeclan.com/symfony/archives/215, accessed March 6, 2018.

[10] Symfony. Security. URL: https://symfony.com/doc/current/security.html, accessed March

6, 2018.

[11] Express. Production Best Practices: Security. URL:

https://expressjs.com/en/advanced/best-practice-security.html, accessed March 6, 2018.

[12] Nemeth, G. (2017). Node.js Security Overview. URL: https://nemethgergely.com/nodejs-

security-overview/, accessed March 6, 2018.

[13] GitHub. (2017). The State of the Octoverse 2017. URL: https://octoverse.github.com/,

accessed March 6, 2018.

