
LIGHT WEIGHT HEALTH APPLICATION FOR LOW END CELL PHONES

A Thesis
Submitted to the Graduate Faculty

of the
North Dakota State University

of Agriculture and Applied Science

By

Peyman Emamian

In Partial Fulfillment of the Requirements
for the Degree of

MASTER OF SCIENCE

Major Department:
Computer Science

November 2016

Fargo, North Dakota

NORTH DAKOTA STATE UNIVERSITY

Graduate School

Title

LIGHT WEIGHT HEALTH APPLICATION FOR LOW END CELL PHONES

By

Peyman Emamian

The supervisory committee certifies that this thesis complies with North Dakota State University’s

regulations and meets the accepted standards for the degree of

MASTER OF SCIENCE

SUPERVISORY COMMITTEE:

Prof. Juan Li
Chair

Prof. Jun Kong

Prof. Sudarshan K. Srinivasan

Approved:

7 December 2016
Date

Prof. Brian Slator
Department Chair

ABSTRACT

Health applications are usually complicated and low end devices do not benefit from them.

The focus of this thesis is on expandable health services platform for low end cell phones. Large

number of mobile phones in the world are incapable using web or modern operating systems and

pre-installed SMS application is the preferred communication medium. Moreover, SMS does not

require a stable connection so text-based health information can still be available even during

natural disasters. Although our platform is accessible through communication forms other than

SMS.

We propose a scalable platform for light weight health applications, providing novel and

proactive client communication. Using cloud we assure the scalability, elasticity and reliability of

the server side. Our multi-layered architecture provides separation of concerns and decoupling of

communication and business logic. Furthermore, plug-ins can expand and customize functionalities.

iii

ACKNOWLEDGEMENTS

I would first like to express my sincere appreciation to my thesis advisor, Professor Juan

Li, of the Computer Science Department at North Dakota State University, for her great advice in

every step of the way and for her patience and continuous encouragements. I could not have been

at this point today without her honest and generous support.

I am grateful to my supervisory committee members, Dr. Jun Kong and Dr. Sudarshan

Srinivasan, for their guidance and feedback.

In addition, I thank the faculty, staff and students of the Computer Science Department at

North Dakota State University for providing such an excellent and friendly environment to learn

and progress.

Finally, I express my gratitude to my parents and to my wife, Aida, for providing me with

unfailing support throughout my years of study. This accomplishment would not have been possible

without them.

iv

TABLE OF CONTENTS

ABSTRACT . iii

ACKNOWLEDGEMENTS . iv

LIST OF FIGURES . vii

1. INTRODUCTION . 1

1.1. Motivation . 3

1.2. Thesis Contributions . 5

1.3. Thesis Organization . 6

2. BACKGROUND AND RELATED WORK . 7

2.1. Background . 7

2.1.1. Mobile Health . 7

2.1.2. Text Messaging for Mobile Health Applications 9

2.1.3. Cloud Computing . 11

2.1.4. Infrastructure as a Service (IaaS) . 12

2.1.5. Platform as a Service (PaaS) . 12

2.1.6. Software as a Service (SaaS) . 13

2.1.7. Amazon Web Services . 13

2.2. Related Work . 14

3. PROPOSED APPROACH . 17

3.1. Features of the Proposed Approach . 19

3.1.1. Multi-layered Architecture . 19

3.1.2. Plug-in-able Feature Development . 19

3.1.3. In the Cloud . 19

3.1.4. Scalability . 19

3.1.5. Expanding to Other Forms of Communication 20

v

3.2. High Level System Overview . 20

3.3. Resource Allocation for the Web Application . 21

3.4. Applications . 22

3.4.1. Interaction with Softwares . 22

3.4.2. Input Data Gathering . 23

3.4.3. Proactive Outbound Communication and Outreach 23

3.4.4. Statistical Analysis and Reporting . 24

3.4.5. Machine to Machine Communication (Internet of Things) 25

4. SYSTEM DESIGN . 26

4.1. System Architecture . 26

4.1.1. Communications Layer . 27

4.1.2. Dispatch Layer . 28

4.1.3. Plug-ins Layer . 28

4.2. Flow of Information . 29

4.2.1. System Implementation . 31

5. EVALUATION . 34

5.1. Scalability . 34

5.2. Performance and Responsiveness . 35

5.3. Load Testing . 35

5.4. Elasticity . 38

6. CONCLUSIONS AND FUTURE WORK . 40

REFERENCES . 42

vi

LIST OF FIGURES

Figure Page

2.1. Wireless Body Area Network (BAN). Adapted from [16]. 8

2.2. Cloud Computing Service Levels. Adapted from [9] . 12

2.3. Users and Providers of Cloud Computing. Adapted from [5] 13

3.1. High Level System Overview . 21

3.2. Drug Information Plug-in . 21

4.1. System Architecture . 26

4.2. Sequence Diagram . 30

4.3. Example Flow of Information . 32

5.1. Load Test - Histogram of Response Latency . 36

5.2. Load Test - Predefine Number of Requests for Load Testing 37

5.3. Load Test Traffic - Number of Successful and Failed Transactions 38

vii

1. INTRODUCTION

Mobile phones are ubiquitous. In the last few decades, cell phones have changed human’s

daily life in many ways. Mobile phones have made personal and group communications much

easier. They have given the users the freedom to move around while staying connected all the time.

This unique capability empowered a lot of important applications. Not only cell phones have kept

individuals connected to each other, but also they have played a significant role in conducting and

managing business and facing emergency situations such as natural disasters.

Since the emergence of the first commercial cell phone in the market in 1983, mobile phone

adoption rate has been growing with an increasingly fast pace. According to The International

Telecommunication Union (ITU) estimation in February of 2013, there are 6.8 billion mobile sub-

scriptions worldwide. This means the penetration rate in the global population is about 96 percent

[12]. (Note that, these numbers do not show the count of subscribed users because one person may

have multiple subscriptions.) These statistics clearly show the huge adoption rate of mobile phones

in public and the significant role they can play in today’s society.

In the past decades, as the popularity of mobile phones was growing, mobile phones have

become more sophisticated. While the very first generation of mobile phones were only capable

of telephony, newer generations began to support more services such as text messaging, email,

Internet access, short range wireless communications (e.g. Infrared, Bluetooth), photography, and

gaming. The newest generation of advanced mobile phones which are called smartphones, run on

a mobile operating system (e.g. Android or iOS) and have a lot of computing power to support

a variety of complicated applications such as voice recognition, image processing, and navigation

among others.

Although smartphones have attracted a lot of interest among public and have a fast growing

adoption rate, they are not affordable by a large portion of the society. Moreover, most of the

applications on a smartphone require the user to have Internet connection which needs an extra

monthly payment for a data plan to the service provider. In contrast, a basic mobile phone which

is only capable of voice calling and text messaging is generally very cheap. For example, in the

1

United States, a basic mobile phone device comes almost free of charge when you subscribe for a

basic phone plan.

Since basic cell phones with basic functionalities are the most affordable and the most

penetrated communication medium among the public, they have been the most important commu-

nication technology for a lot of modern applications. There has been a lot of interest in the research

and industry communities to develop light-weight applications for basic mobile phones with limited

processing power and with no Internet access. Health care applications enabled by cell phones

are one of the most important applications that have been studied and developed during the last

decade. The term mobile-health (or m-health) has been introduced to indicate the emergence of a

new field in e-health (electronic health) [15].

M-health which is defined as the use of mobile technologies to support public health, has

been the topic of a great number of studies in the last few years [15, 15, 23, 16]. Moreover,

text messaging (also called short messaging service: SMS) has attracted a lot of attention as the

main enabler for a vast majority of mobile health care application [24, 1, 20, 19, 25]. We will

describe several examples of existing m-health applications that use SMS as the primary means

of communication in chapter 2. For instance, these applications use SMS to remind patients of

their appointments or their medicine intake time, to communicate with users to give them useful

information about a medicine and its side effects, to inform the individuals about a disease epidemic

in the area, to remind them to eat healthy or exercise, and to communicate many other useful

health-related messages.

The reason for the importance of text messaging in mobile health care applications is

manifold. Text messaging has been shown to be a very popular means of communication among

people (especially among teenagers); SMS is very convenient and it fits into the daily routines of

the individuals (both patients and clinical practitioners). Short messages are easier to digest and to

remember particularly for elderly. Since users receive SMS in their personal devices and can receive

and send them privately, they feel comfortable to use SMS-based health applications. Finally, as

mentioned earlier, it is cheap to send and receive an SMS on a basic phone and there is no need to

have Internet access for text messaging.

2

1.1. Motivation

Everyone agrees that health is an important issue and taking care of our bodies should be

a priority in our lives. In the recent centuries, humans have accomplished to know their bodies

better and to take better care of their bodies, cure or prevent diseases, and counter epidemics and

eventually humans live longer and healthier lives. In the age of computers, Internet and satellites,

it is easier to access the health related data, but sometimes the user is confronted with too much

data. You should have enough search skills to find the name of the symptoms you have, or pay a

professional to do that for you.

Even with simple data, the user is facing the ultimate challenge of finding meaningful

information within the huge bulk of data. For example, what those increasing or decreasing curves

mean in real life and should he/she be worried about them. Lastly, the decision making on what

would be the next steps is a challenge. Here are a few examples of the health related information

that people would like to have: How should we act to prevent a sickness, improve hygiene, stay

healthy or treat the disease? How to find the right medicine? Or should we just relax and rest and

trust our immune system.

Having too little data is always a problem, but this problem can be solved by paying more

attention, recording activities and having more discipline in taking care of ourselves. However, a

more important problem to solve is how the data can be converted to information and knowledge

and become useful. Everybody can look at a rising curve showing the blood pressure, but it takes

a doctor and years of experience to understand it correctly and make the right decision. There is

always a gap, between the data and knowledge.

Given this mind-set, this project is trying to provide the first steps to bridging this gap, and

to lay the foundation for better software that helps improving health care. It requires gathering,

processing, clustering and dicing data and acting upon the results using human knowledge on health

care and computer science. The most important factor for software that tries to solve this problem

is scalability and expandability. The core processing should happen in the cloud to be as powerful

as possible and easily update-able. On the other hand, client should be as simple as it can be, to

support the widest range of devices and to preserve power and energy.

3

The challenge here is that health applications are usually complicated and this fact hinders

the users with low end devices from benefiting from these applications. It is complicated to develop

a health application that works on all mobile platforms. For instance not all devices have enough

amount of memory or processing power to support browsers or user programs. There is a need for

a light weight application to track, organize and analyze health related data.

The focus of this work is on low end devices that are incapable of interacting with rich

application interfaces for example not all devices can communicate with web applications or ap-

plications that need installation on the device. Although speed and processing power of modern

mobile devices improve in a fast pace, a large number of people still use low end devices with lim-

ited processing power that are incapable of complicated functionalities like web browsing. These

devices are especially common among older people who do not keep up with technology updates as

fast as younger individuals. In addition, in most of the developing countries still the vast majority

of people use basic mobile phones rather than smartphones. Even if users have enough processing

power on high end devices, sometimes it is preferred to preserve power to prolong usage cycle of

the device without recharging. In addition the owner may prefer not to use expensive Internet

connection if he/she can enable a mobile application with a cheaper communication method like

SMS.

An SMS-based health application makes it possible for a wider range of lower end devices

to have access to health related information, gather data and analyze it without the need to install

an application or browse web. In order to have a light weight health application, a simple and

clear communication and data structure is required. Compared to web application with rich user

interface, text-based applications use less network bandwidth. By reducing the complexity of the

application, we reduce the cost of the software and ultimately decrease the health care cost.

An SMS-based application can perform as a drug and health-related information repository.

Users can send keywords related to medical information to get a concise description about the topic.

For example, information about a drug and its side effects or first aid information about a medical

situation (e.g. broken leg). In rural areas where it is hard to reach out to health care providers,

access to useful health information can be life saving. Internet connection is usually unstable or

unavailable in rural areas. Therefore, an SMS-based health application becomes very useful in

such locations. In case of unstable signal reception, an SMS can be cached on the device and

4

sent whenever the cell coverage is available. For example a hiker in a rural area who tries to find

information about snake bite treatment can use such an SMS-based application more conveniently.

With an SMS-based health application, we can benefit from proactive communications.

Because of the simplicity of the client and the removal of the installation phase, new opportunities

show themselves to communicate with client in reverse direction of usual data transfer. While

usually there is a request from client and an answer from application, the health application can

communicate with potential clients in a proactive way. For example in special situations like a

natural disaster or disease epidemic outbreaks, an SMS-based application can send out appropriate

health-related messages to the public. For instance, location of shelters and medical stations in

case of natural disasters (such as storms, earthquakes) or preventive actions in case of epidemic

disease outbreaks. Also, this kind of applications can be used for periodic and automated notices

to users. A few examples are medicine intake reminders, healthy diet and lifestyle motivational

messages, recurrent health check-up reminders (such as dental and eye care visit reminders).

1.2. Thesis Contributions

In this thesis, we propose a light-weight, scalable and expandable SMS-based health appli-

cation framework. Below we briefly introduce the main contributions of our work:

• Our proposed multi-layer architecture facilitates the separation of concerns in levels, therefore

system is scalable in each layer.

• Our proposed system is plug-in-able and it assures that any additional feature can be added

to the system as a plug-in, with minimum impact on the running system and this can happen

without the need to stop or update the system.

• We use cloud computing to enhance the availability, scalability and ease of use of the software

that serves the clients.

• The combination of the three key benefits of this design, layered architecture, plug-in-able

approach for feature development and running the application in the cloud, makes the ap-

plication easy to scale without any theoretical limit. Moreover, the proposed approach offers

high availability and failure-tolerance.

5

• Our proposed framework is easily expandable. Any other type of communication other than

SMS gateway can easily be integrated to communicate with the system (e.g. twitter).

1.3. Thesis Organization

The rest of this thesis is organized as follows: In Chapter 2, we present the background

information and review the relate work. In chapter 3, our proposed approach, its benefits and

applications are described. Chapter 4 characterizes our proposed multi-layer architecture and the

implementation challenges. In chapter 5, we analyze the performance of the proposed system.

Chapter 6 concludes the thesis and points out the potential future research directions.

6

2. BACKGROUND AND RELATED WORK

In this chapter, we present our background study and literature review on the topic of

light-weight mobile health softwares and use of text messaging in these applications.

2.1. Background

2.1.1. Mobile Health

The rapid growth of mobile communications on one hand and pervasive and wearable com-

puting on the other hand have greatly influenced medical care systems in the recent years. Mobile

health (or m-Health) is defined as the use of mobile computing, wireless communication technolo-

gies and medical sensors for health care [15]. The concept of m-Health which was first introduced

under a different name, “Unwired e-med”, in 2000 [15] is an evolved subset of traditional desktop

“telemedicine” which offers the use of wireless and portable technologies.

Since the first introduction of m-Health, wireless technology and pervasive computing have

seen significant advances which result in better opportunities in health-care delivery applications.

For example data rates of wireless connections is increasing in every new generation of wireless

standards and the medical sensors (in both implantable and wearable forms) are smaller, consume

lower power, and offer better performance. These advances empower new health related applications

that have not been possible in the past and accordingly will have a great impact on reshaping the

traditional medical care services in the near future.

For example with today’s wireless technology, the medical record of a patient can be accessed

by health care professionals from virtually anywhere with a wireless connection to the medical

database. Also, handheld wireless devices can be used for home health care purposes for instance

through blood sugar monitoring for patients with diabetes. Emergency calls or text messages that

warn a community about a disease epidemic or alert thousands or millions of people about an

impending storm or tsunami are some other important m-health applications.

Another important m-Health application that has been stimulated by the great advances in

wireless and medical sensor technologies is the wireless body area network (BAN). A BAN consists

of a network of sensor nodes that measure, process, and communicate different vital signs from the

7

body (such as heart rate, blood pressure, body temperature, etc.) and ambient parameters (such

as location, temperature, humidity, etc.) from the surrounding [23].

When a person uses a BAN, he/she is being continuously monitored by the sensor network

on his/her body. The BAN collects and processes physiological data from different parts of the

body and transmits this data to the user’s mobile phone in his/her pocket. The mobile phone then

can periodically communicate this information to a medical center server or a health professional

mobile device. Figure 2.1 illustrates a typical body area network system. In this BAN the sensors’

data are first aggregated in a wireless personal server which is connected to the user’s mobile phone

via a wireless link such as Bluetooth.

Figure 2.1. Wireless Body Area Network (BAN). Adapted from [16].

In case of a critical condition a BAN can be life-saving because the health practitioner

will be alerted of the patient’s situation in a timely manner. Such integrated medical sensor

networks enable the physicians to diagnose and treat complicated medical conditions remotely

and accordingly reduce the cost of health care. In addition, with these technologies the health

professionals can treat a larger number of patients in the same amount of time. Therefore, with

8

emerging technologies like body area networks and wearable computing, m-health reshapes the

traditional ways of practicing health care.

M-Health is a promising approach that facilitates the fight against chronic diseases and

also communicable diseases [18]. The confrontation with these two categories of health problems is

particularly important in developing countries and also rural communities in developed countries.

Generally, the communities who are less educated about healthy lifestyle or the communities who

do not have an easy access to health professionals face steady growth in chronic and communicable

diseases.

Some of the well-known preventable causes of chronic diseases world-wide are poor diet,

low physical activity, and smoking. These unhealthy behavior may result in obesity, heart and

lung diseases, diabetes, cancer etc. The chronic diseases commonly need early and extensive health

interventions and m-Health has proved to be an effective approach regarding interventions. As

an example an m-health intervention may include disseminating incentive and informative text

messages about health facts to help individuals or communities to have healthier lifestyles and to

educate them about self-care [18].

2.1.2. Text Messaging for Mobile Health Applications

The ubiquity of mobile phones empowers m-Health to offer a number of unique opportunities

in large geographical areas. Text messaging is one of the most important social networking tools

in m-Health [18]. In the previous section, we mentioned a few examples of m-Health applications

that are enabled by SMS such as health care intervention with text messaging and dissemination

of SMS to the public in the emergency situations like natural disasters.

Cell phones are vastly applied as common clients for many distributed, database-centric

health care applications especially in rural areas where there is lack of physicians [19]. Because of

the extensive availability of cellular services, mobile phones have become a key element in making

health care applications possible in rural areas where the health workers use cell phones to bridge

between patients and doctors. Unlike the large cities, in the rural areas the data rates are extremely

limited and data connections are expensive, therefore a distributed client/server system is too

complicated and heavy to be used in these environments [19]. Accordingly, most of the times only

light-weight health applications that use basic communication like SMS are feasible in rural health

applications.

9

Text messaging is a perfect fit for many of m-health applications because of the following

reasons: 1) Mobile phones are ubiquitous. They have been adopted by the vast majority of the

people. 2) Text messaging is affordable. Every basic cell phone supports SMS and the subscriber

does not require connectivity to the Internet in order to send and receive SMS. 3) Text messaging

is convenient. It fits into the daily routines of patients and clinical practitioners. 4) Text messaging

is very popular, especially among teenagers. 5) Short messages are easier to digest and remember

particularly for elderly.

At the community level, people can use social networking via text messaging to exchange

information about the local health system and their experiences about how to access their needed

health resources. Social networking via SMS enables the members of a community to effectively

connect to each other and help them to identify the existing resources and discuss about the quality

and costs of different local health providers. These discussions may encourage the local providers

to improve their services and to decrease their prices. With social networking, community members

can support each other on preventive behavior such as quitting cigarettes or working out. In the

same way, patients can support each other in managing chronic diseases such as diabetes or asthma

[18].

Text messaging is also an effective and affordable medium for patient-provider interactions.

Good communication between patient and practitioner is a key factor in a successful treatment.

Text messaging enables patients to ask questions, get timely responses, send important personal

health data, and receive guidance and health facts (e.g. information about drugs and their side

effects, information on their next appointment, etc.) without the need to travel to medical clinics

and this saves a lot of time and cost for both patient and health practitioner [18].

Text messaging can be used in health application in different ways. The following categories

are considered for text messaging techniques for health care [13]:

1) Sending information to the users (e. g. educating people with a health fact, notification

of polluted weather or epidemics, and reminding people to work out or encouraging them to have

healthy and nutritious food). The techniques in this first class are commonly used in technology-

based behavioral intervention projects that have attracted a lot of interest in recent years [24, 7,

21, 17, 11, 26]. We will look at several examples of these projects in Section 2.2.

10

2) Gathering information from users (e. g. collecting data from people about their flu

symptoms in a short survey). This class of techniques can reveal the health patterns for individuals

and also for large populations.

3) User questions and expert response (where the response can come from a database or

from a real person). Unlike the last two classes, in which the information flows in one direction,

this category introduces a two-way interactive SMS technique.

Our proposed platform in this thesis can support all of the above three categories of SMS-

based communications.

2.1.3. Cloud Computing

In our computerized world, nowadays, computing has become similar to one of the tradi-

tional utilities such as electricity, gas, and water. With this vision, users must be able to access

computing services based on their requirements and without knowing or worrying about where the

services are hosted or how they are delivered. Cloud computing is a scalable distributed computing

paradigm that makes this vision possible [8].

The concept of cloud computing involves a large number of computers that are connected

through a network (such as Internet) and run applications that are offloaded to them by external

customers. The pool of the computing power is abstracted, virtualized, dynamically-managed and

scalable. Cloud computing also delivers on-demand storage, platforms, and services to the users

[14].

Since hardware and software maintenance is outsourced to the cloud provider, delivering

software as a service in the cloud can reduce IT operational costs. Furthermore, cloud computing

allows the software developers/providers to decide on the extent of their resource needs on a short-

term basis. A software company can start small and expand its computing resources only when

there is a demand to do so. As a result, there will be no waste in investment due to overestimating

the required computing infrastructure. On the other hand, using cloud computing, a software

provider can decrease the amount of allocated hardware resources if the resources are no longer

used and accordingly some of the costs can be cut [5].

Cloud computing refers to both applications that are delivered to users as a service and the

hardware and system software in the data center (cloud) where these applications run [5]. Cloud

11

computing services can be viewed in three different levels. Figure 2.2 illustrates cloud computing

service levels. Next we briefly describe each of these three service levels.

Figure 2.2. Cloud Computing Service Levels. Adapted from [9]

2.1.4. Infrastructure as a Service (IaaS)

IaaS is the most basic (lowest level) cloud service where provider lends physical or virtual

computers and other resources such as storage, firewalls, IP addresses and virtual local area net-

works (VLAN). The on-demand services can scale up and down based on customer’s requirements.

An IaaS provider delivers the resources from its pool of computers in its data center and bill the

services based on the amount of allocated/consumed resources. The cloud users in IaaS service level

must install and maintain the operating system and software patches on their own as these are not

provided by the IaaS provider. Furthermore, the user is responsible for all upgrades, security fixes,

and licensing issues [9].

2.1.5. Platform as a Service (PaaS)

PaaS is the middle level cloud service, in which cloud providers offer a computing platform

to users. The platform typically consists of operating system and execution environment. In this

level, providers take the responsibility of maintaining the infrastructure and deliver a ready-to-

12

build/host platform to the application developers. Therefore the developer does not need to worry

about the middle-ware, patches, etc. like in IaaS [9]. Moreover, with a pay-as-you-go pricing model,

the developers cut the cost of the underlying hardware needed for their applications. Some of the

PaaS providers also offer automatic scaling of resources based on the application demand; thus, the

developer does not need to adjust the resource allocation manually.

2.1.6. Software as a Service (SaaS)

SaaS is the highest level cloud service. Software applications that run on the cloud platforms

and are accessible only through the cloud are referred to as Software as a Service (SaaS). Cloud

providers install and maintain the software applications in the cloud and SaaS users access and use

the software through a cloud client. Since the users do not need to install and run the software on

their own computers, the software maintenance and support is simpler and transparent to the user.

Figure 2.3 illustrates the relations between the providers and users in the cloud. As it is

shown in the picture, the cloud user (PaaS user) can be SaaS provider.

Figure 2.3. Users and Providers of Cloud Computing. Adapted from [5]

2.1.7. Amazon Web Services

Amazon Web Services (AWS) is a collection of tools and services provided online by Ama-

zon.com Inc. to help build scalable online applications. All of the services are accessible through

Internet. Amazon provides these services as IaaS and PaaS. Application designers and develop-

ers can use building blocks provided to them to make applications based on their own need and

requirement.

AWS removes the upfront cost of application development and makes it possible for the

companies to pay as they use the service. This eliminates the capital investment for server farming

13

in medium to large applications and provides the opportunity of scaling up without any hassle or

problem for small companies as they grow.

2.2. Related Work

ALIVE (A Lifestyle Intervention via Email) project [6, 22] has shown that simple email

reminders can have a significant impact on improving diet and physical activity of individuals.

The reported results show a significant increase in physical activity (e.g. walking per week) and

consumption of fruit/vegetables.

Delaware Physicians Care, Inc. (DPCI), a Medicaid program, has used text messaging to

remind patients with diabetes about their scheduled blood test appointments [1]. After six months

the percentage of patients receiving the necessary test was increased by 18 percent. In another

project, DPCI uses text messaging to remind pregnant moms of their prenatal and postnatal

appointments as well as to provide them with educational information.

Another example of health-related text messaging tool is presented in [3] that has been

designed to help educating the youth in the San Francisco area about sexual health. Users can

send a simple text message to get information about what to do after unprotected sex or they can

get guidelines and information about sexually transmitted infections, including HIV.

UbiFit Garden [10] is another example. It is technology-based health-related behavioral

change system which uses on-body sensors and a mobile application user interface to encourage

regular physical activity. This system is more sophisticated than a simple text messaging-based

system like the above examples and therefore needs more complicated hardware and software com-

ponents.

An m-health system has been proposed in [20] to help health workers in rural areas of India

to do their jobs more efficiently and to have more effective interactions with doctors. The health

workers collect the symptoms of the patients; then they use their cell phones to send the symptoms

to a remote server where they are stored; The doctors can asynchronously access the server, review

each patient’s record, ask more questions about the patient, and finally do the diagnosis and initiate

the treatment. The server then sends the prescription back to the health worker via SMS.

In the case of this application, the solution consists of tasks that are done by both computer

and human. The computer system has a client-server architecture. The XML requests are generated

by the Android client and sent to the server via network. On the other side, when the data is received

14

via HTTP request, the server creates a reply in XML format and sends it back to the client via

HTTP response.

As authors stated in their research, their system consist of Mobile client, Server and

Database. This separation creates asynchronous layers of access to application that makes it pos-

sible for field agent to work with Mobile client at the same time doctors use Server and Database

layer to analyze and diagnose, furthermore showing the importance of separation of concerns and

layered architecture.

Reference [19] proposes ELMR (Efficient Light-weight Mobile Records) system that offers a

light weight database access protocol for accessing and updating records from remote cell phones.

The motivation of the design is the implementation of a medical record system that can work on

a mobile device where the only data connectivity is via SMS. This is the case in rural areas where

the Internet connection on cell phones is scarce and very expensive.

The introduced light weight database access protocol for health care applications is opti-

mized and simplified to be applied under extreme bandwidth constrained SMS service (an SMS

packet is confined in 140 bytes only.) The authors have mentioned the application of their pro-

posed system in health care delivery in AIDS care centers in Ghana and South Africa where health

workers need to frequently access health databases using low end devices [19]

Reference [24] surveys on several text messaging based intervention systems aimed at HIV

prevention, and encouraging healthier sex behavior. In addition, the article introduces several

examples of applications for health interventions for diabetes patients, pregnant women, etc.

Reference [4] explains a sensor-based heart monitoring system in which in the case of irreg-

ularity in user’s heart rate (for example when the heart rate goes above a certain threshold), an

SMS is sent to the user and/or the user’s doctor or relatives. Similarly, [25] proposes a method and

architecture for a remote health monitoring system that monitors several vital signs of the patient

(such as oxygen percentage in blood, heart rate, and temperature) and if any of these parameters

are not in the predefined range, an SMS will be sent to the user’s doctor/emergency number. The

SMS will contain both the values of vital signs and the location of the patient that is extracted

from his/her cell phone’s GPS (Geographical Positioning System).

15

Text messaging has shown to be a successful health intervention enabler for smoking ces-

sation programs [7, 21], depression treatment [17], obesity prevention, alcohol recovery [11], and

asthma treatment and education [26] among others.

Clearly, it is advantageous to have a multi-layer architecture since there is a need to asyn-

chronously process, store and retrieve data. Looking at the research presented in [20], [4], and the

proposed architecture in [25], It is clear that this layered separation benefits the system in the form

of increased stability and ease of further development.

16

3. PROPOSED APPROACH

This section describes the problem at hand and the possible solutions to encounter the

problem. We explain what is the purpose of our introduced application and why we have chosen

our approach over other possibilities to solve the problem. In addition, we illustrate the features

and functionalities of the proposed solution.

This project is trying to lay the foundation for better and easier service development in

the area of healthcare. Most important factor that we try to solve is to be scalable and easily

expandable. Using cloud computing, the major processing work must be done in the cloud to be as

powerful as possible and so that the service can be easily updated and scaled to our needs. On the

client side, in order to support the largest range of potential users, it should be able to communicate

with a wide range of communication strategies, most importantly the forms of communication that

are available to everybody. Moreover, setting up and using the client must be easy and attractive

to the customers and they should be able to use it intuitively. Short Message Service (SMS) or

texting provides the best solution for a simple and intuitive client (Although the system should be

capable of communication in other forms such as web, web service call, etc.)

As one of the functionalities of the desired framework, we need to have a light weight

application to track, organize and analyze health related data. The focus of this work is on low

end devices that are incapable of interacting with rich application interfaces. For example, not all

devices can communicate with web applications or applications that need installation on the device.

Also, not all devices have enough amount of memory or processing power to support browsers or

user programs. On the other hand, the client that is producing the data could be an entity other

than human, for example a sensor or a web service that is inputting data to our system.

Our approach is to benefit from cloud computing to implement complex health applications

in the cloud. Thus, the client application becomes simple and light weight and it consumes less

power. With this approach, we can benefit from complicated health applications on low end devices.

Therefore SMS or any other form of simple communication can be exploited to interact with the

system. Note that more complicated devices can use Internet and rich application interface to

communicate with the software in the cloud as well.

17

The benefit of having the software on the cloud is that we can easily update the software

without involving the client in the update process. The program is scalable because no matter how

many users use it, we can easily increase the throughput by adding instances to respond to the

inputs and we can provide a seamless experience for all of the users. The plug-in-able approach

in the cloud makes it easy to add new features or functionalities to the program without having

to change the core functionalities. This also makes the introduction and propagation of errors

harder and less frequent throughout the system and therefore the system core functionalities are

not misused. Furthermore, since the data is stored and replicated in the cloud, in case of a failure

in the client, all of the user’s data remains usable and is not affected by the client failures.

Another benefit of using a thin client and having the software in the cloud is that we

remove the installation process. All of the applications are running on the cloud, and the client

only needs to use SMS service to make use of the applications. Since all of the cell phone devices

support SMS service, users can instantly benefit from applications without installation (e.g. getting

medicine information through SMS). Therefore, a large number of applications will be available on

the fingertips of the client without any installation hassle or payment for installation. Also, we

can benefit from proactive communication with the users. Because of the simplicity of the client

and removing the installation phase, new opportunities become available for communicating to the

client in the reverse direction of usual data transfer (i.e. request from client and response from

application.) Instead, the health applications can proactively communicate to the clients or the

potential clients, for example periodic health related updates or emergency notifications of epidemic

diseases can be distributed to the users.

Our scalability approach consists of a combination of reactive and proactive response to the

increase in the number of requests. Reactive response in the communication layer is to instantiate

more instances of responders. The proactive part involves having a few instances warmed up and

ready to answer the extra input immediately. Since starting up a new instance (in any layer of the

application) is going to cost more time, this approach ensures a consistent response time for excess

traffic, while our load balancer instantiates new working machines to respond to future incoming

traffic.

18

3.1. Features of the Proposed Approach

3.1.1. Multi-layered Architecture

Layered architecture that results in separation of concerns and better scalability of the

whole system makes it possible to break the system into modules that communicate with each

other while having minimum coherence with each other. Communication between components is

by sending and receiving messages; therefore, scaling up or down one component is hidden from

the other components and does not affect any other module in the system.

3.1.2. Plug-in-able Feature Development

It is obvious that more and more features will be added to the system as it matures and

we cannot get the system right from the beginning with all the features. Making the system plug-

in-able assures that any additional feature can be added as a plug-in with minimum impact on the

running system and this can happen without the need to update the system. It is clear that the

core functionalities of the system will most likely remain almost the same during its lifetime (e.g.

saving input data to file or communicating with SMS gateways) or at least these functionalities

get updated less frequently. On the other hand, the features of the application will change more

frequently over time as we, the system designers, figure out new requirements or optimize the

current features. For instance, the reporting interface of the application may be updated regularly.

3.1.3. In the Cloud

Although the concepts of client-server application, its usage in business software develop-

ment, and the server scalability have been around for a while, but with the recent advancements

in cloud computing over the last few years, the availability and ease of use have been improved

drastically for application development in the cloud. As a result, with a little effort, any computer

scientist and software engineer can design, implement and deploy scalable applications without the

need for extensive funding or capital investment at the beginning.

3.1.4. Scalability

The combination of three key benefits of this design, layered architecture, plug-in-able ap-

proach to feature development, and running the application in the cloud, facilitates efficient scaling

of the application with no theoretical bound. The components of the system can be instantiated

as much as needed to work in parallel and to handle any increase in input traffic. Load balancing

19

between layers of the system architecture, can make sure that we are using resources efficiently and

we free unused resources and acquire more resources when needed.

3.1.5. Expanding to Other Forms of Communication

The original idea of this thesis is to empower the health-care applications by exploiting SMS

communication. But given that we have a communication layer that converts the input messages to

a data structure that is understandable by the system, we can essentially extend the input to any

means of communication. Therefore, any other type of communication other than SMS gateway

can work within the proposed system as the messages are translated to our internal data structure

by the communication layer. For example, Twitter has a lot of similarities with SMS and it is

accessible through APIs for programmers over the Internet, or for this matter any web-service that

can send messages to the system can replace SMS communication. As long as there is an adapter

unit inside the communication layer that can convert the input to an understandable form by the

system, any device with any communication format can communicate with the system.

3.2. High Level System Overview

In our proposed approach, the application runs in the cloud and the devices communicate

by sending messages through SMS gateways. The application running in the cloud processes the

input and if necessary will send a response to the device. The application in the cloud consists

of core functionalities, communication and plug-ins that communicate with the core. Plug-ins are

also in the cloud so they can be easily scaled up/down based on the throughput. Figure 3.1 shows

the high level system overview.

We have designed a generic expandable architecture for SMS-based light weight applications.

One example application that we have developed based on our generic plug-in-able framework is

drug information system. The client sends an SMS containing the name of the medicine in a specific

format. The SMS goes through the gateway and reaches the core of the software. Supposing the

drug information plug-in is registered to the core of the software, based on the format of the SMS,

the core decides to pass the input to the drug information plug-in. The plug-in then searches in its

database for the drug name and responds with a brief description of the drug. The core passes the

response to the gateway to be sent back to the user. Figure 3.2 shows a snapshot of the functionality

of drug information plug-in that we have implemented and deployed.

20

Figure 3.1. High Level System Overview

Figure 3.2. Drug Information Plug-in

3.3. Resource Allocation for the Web Application

There are multiple approaches to handle the input messages to the system. One approach is

to handle and input message with one process (thread) from the beginning to the end of its lifetime.

This is easier to implement and might process input requests faster when the number of request per

unit of time is small, but does not guarantee scalability and effective use of memory. The number

of processes equals the number of input requests and each additional machine needs to have all of

the functionalities to be able to respond to any request. Therefore, using this approach, we have

to load all of the features in all of the machines and keep them available in the memory (or virtual

memory), so that the system can process any request that might need those features. As we add

functionalities to the system, the features of the system need more memory than a normal server

can handle. Adding memory and using better machines cannot solve the problem indefinitely as

we will reach a point where we cannot load the server application in any machine and we cannot

21

add any machine. Therefore, this approach is not scalable as each machine should have all of the

features of the system, and the machine resources are always limited.

Another approach which is more favorable is to break the process of responding to the

requests into multiple layers. Each layer works in connection with the other layers but internal

processing is abstract and independent from the other layers. Communication between the layers

(and most of the time between the components of a layer) is performed by sending messages. These

messages may contain any functionality like triggering a computational action or a request for a

database transaction.

One obvious advantage of this approach is that changes can be made in one layer without

affecting the other layers. We can replace the whole business logic of a layer, without even slightly

changing the other layers. This also limits the area under effect of a bug and helps to find and fix

the bugs faster.

Another advantage is that each layer or each component of a layer is specialized in doing a

particular task; therefore, it can run separately on a separate machine and the number of machines

can be increased as we get more requests for that functionality. As far as the other layers or

components are concerned, they ask for the functionality through a message and their request is

passed to one of the machines responsible for that task. Moreover, since we assign a machine (or

computational unit) to a special work, responses to the frequent computing requests can be cached,

so both time and computational power will be saved in responding to repetitive requests.

Each layer is independent, so it can grow or shrink in size as needed to meet the required

quality of service criteria such as response time. The other layers always get the same quality of

service form this layer regardless of the system load and throughput.

3.4. Applications

3.4.1. Interaction with Softwares

The main functionality of our software is the two-way interaction with the system. The user

sends an input to the system, either asking a question or requesting invocation of a functionality,

and the system sends the response back to the user. For example, the user can send a text message

containing “drug Acetaminophen” and the system replies back with a brief piece of information

about the drug and its side effects.

22

Interaction with the system can involve more sophisticated functionalities than just looking

up data. For instance, the response may require geographical information extraction. A user may

send “Hospitals 58102” and the system will return with the names and addresses of hospitals in

the area of that zipcode.

Sometimes instead of responding to the user with a message, the system triggers an action.

For example, in a scenario where the signals received from a user’s heart rate monitor indicate

a dangerous situation, the application sends a notification to the emergency and medical services

along with the user’s location (e.g. based on his profile or using his phone GPS). Another example

of interacting with the system is extracting useful information about the previously stored data in

the system. For instance, the user asks for the amount of calories burnt during the past month.

3.4.2. Input Data Gathering

One of the possible applications of the system is storing data that is extracted from either

the users’ input or the messages that are sent from a device (e.g. a sensor). For example, a person

inputs his/her weight (e.g. weight=200) and the data will be added to the history for that user-

parameter combination. In order to use this application, the properties must be defined in the

system so that any input can be translated to a property or a special command must be sent from

the users to enable the property (e.g. add property weight 200).

Other examples of getting input is user reporting an unhealthy condition (like trash accu-

mulation) in their neighborhood or setting a medication intake reminder. For instance, ”reminder

acetaminophen 3 times a day, 1 tablet each time“ creates the appropriate reminder for the user. In

these cases, the system returns an acknowledgment message to the user if the input is correct and

accepted.

3.4.3. Proactive Outbound Communication and Outreach

Outgoing messages from the system are not always triggered by an input from the user.

Some of the published messages are because of users’ subscription to the message lists. For example,

topical informational lists (e.g. categories like pediatric health, healthy life style, home environment

improvement, elderly care, etc.) or emergency notifications. The subscribed users will receive a

message when new information is published in the area of their interest or when there is a medical

emergency like a disease outbreak.

23

An example of proactive outreach is sending motivational messages or healthy tips to the

subscribed users (e.g. encouraging them to eat healthy or washing hands more frequently during

the flu season). Medical organizations can become sponsors of these proactive health improvement

activities. For example after an important surgery or giving birth, it is important that the patient

receives follow-up cares such as recurrent visits to the doctor’s office or repeat some lab tests.

Manually keeping track of these follow-ups and reaching out to the patients is both time consuming

and a waist of money and personnel’s time. A predefined template (e.g. template for postnatal

care) can send appropriate messages to the patients and encourage them to make doctor visit

appointments or tests in a timely manner and also to keep track of their compliance.

3.4.4. Statistical Analysis and Reporting

As more users use the system, collection of data stored in the system can provide meaningful

information about all health related services that are provided by the plug-ins of the system. Almost

all of the information can be summarized or analyzed by their properties. For example, data in a

geographical region, can show trends of sickness for the people in the region. Assuming we have

a substantial number of users contributing to the system by inputting their daily drug usage, if

we see a rise in the number of drugs related to cold and flu, we can determine that there is a flu

epidemic happening in the region. If this information could be gathered in time and used properly,

can limit the spread of diseases.

3.4.4.1. Demand Prediction

Analyzing data stored in the system could be useful for companies that supply health

product and services. Trends of health related data can empower professionals to predict market

needs or make guided guesses based on the data. These predictions can be used to forecast the

demand for the other products and services as well. Going back to the example mentioned earlier,

if our statistical analysis show increasing number of cold and flu patients in an area, this could

trigger drugstores in the area to preorder more cold and flu drugs and related products. This will

save companies investments by automatically organizing their logistics and being prepared for the

rise in demand for their products and also helps customers to get a better service. In long-term

this information can help to decrease the cost of medications as well.

24

3.4.4.2. Targeted Vital Information Propagation

Gathered information and its trend can be considered a service to some companies. For

example municipal services can benefit from the reports of trash accumulation reported by the users.

On the other hand, companies can send targeted information or messages to the users based on

their history in the system (not just advertisements, but also important information). To elaborate

this feature, we can consider a case where a drug company has a case of “drug recall” and wants

to inform all of its previous customers to recall a specific drug. We can use our users’ history to

notify the patients who have a history record of using the specified drug. Of course in this manner

the users are anonymous to the company, and their privacy is preserved while getting the service.

3.4.5. Machine to Machine Communication (Internet of Things)

Devices that are able to send and receive SMS can communicate with our application and

add data to the system. Of course this communication can be in forms other than SMS, but since

communication via SMS is simpler than Internet communication, more devices can exploit SMS.

For example, a heart rate monitor that publishes data through a GSM modem to the server can

only send the raw data instead of making any complicated computation on it. This facilitates lower

cost and lower power consumption, thus the manufacturing of the device will have a cheaper and

simpler process. In addition, since all of the computations and features are performed in the cloud,

the company that uses the devices and the service can operate more easily and more efficiently.

On the other hand, devices capable of receiving and understanding messages, can receive

commands or updates through our software. For instance, a heart rate monitor may need to receive

updates on the boundary values (maximum and minimum heart rate), so that it can correctly

send the out-of-range notifications. This way we can provide an intelligent virtual communication

between the devices. The brain of this communication is the software running in the cloud. For

example, a heart rate monitor that sends the data to the server, can trigger an alarm for an out-

of-range heart rate. This alarm is going to be escalated to the emergency services so that they can

help the patient by dispatching the closest ambulance to the patient’s location. In addition, the

system can send a command to the patient’s oxygen mask to increase the flow of oxygen, unlock

the doors of his/her house for the emergency first responders’ entrance and can also change the

room temperature to provide more comfort for the patient.

25

4. SYSTEM DESIGN

In this chapter, we describe the system architecture and also the flow of information into

the system and through all of the layers of the system and output of the application.

4.1. System Architecture

This section provides detailed information about our proposed system architecture, the

logical layers of the system and how they communicate with each other. Furthermore, the compo-

nents and parts of each layer and their role in the system are described. Figure 4.1 illustrates the

multi-layer architecture of the system.

Figure 4.1. System Architecture

26

4.1.1. Communications Layer

Communications layer is the highest layer in our layered architecture. This layer is re-

sponsible for all inbound/outbound external communications. This can include an SMS gateway,

web service, or any other kind of external communications. For example Twilio.com provides SMS

communication to any cell phone number and is accessible as a web service. Also, Tweeter has

programming interface to send and receive tweets that could be used as another form of commu-

nication to the system. In the most basic form, an SMS gateway provides SMS communication to

the cell phones.

Regardless of the source, any input to the system must be converted to a unified format

which is understandable by all of the other components/layers of the system. Any input is trans-

formed to the data structure that is usable by the system and in the context of this thesis we call

this data structure the “inputMessage”. The inputMessage contains the body of the message and

all of the meta information relevant to it. This includes the source information, communication

information, and the time stamps. In the same respect, adapters convert responses from the lower

level to the format understandable by the external communication device.

Every external communication media has its own adapter unit in the communication layer to

do the conversion. This approach unifies the interactions with the lower levels and provides a layer

of abstraction. Therefore, the lower layers will not be affected by the changes in the communication

layer. Communication layer is also responsible for handling the sessions and cookies if available.

Some external communication media have virtual sessions that provide more information about the

communication.

One of the important components of the communication layer is persistence unit. It records

any communication to/from the system and stores converted inputMessage from the adapter along

with the original communication data. The communication history that is recorded by the per-

sistence unit is used for consistency, fault tolerance, accounting, security and statistical analysis.

This enable us to recreate any scenario that resulted in an error which is very useful in finding the

cause of the errors and how to fix them.

27

4.1.2. Dispatch Layer

In a nutshell, dispatch layer is responsible for deciding what to do with the inputMessage

and it transfers the inputMessage to the appropriate plug-in. Also, it manages how plug-ins respond

to the inputMessage (e.g. timeout for generating a response.) The dispatch handler is the main

component of the dispatch Layer. It provides the main functionality of the layer which is deciding

what to do with the input message and what plug-in(s) should handle it.

The dispatch layer has a registry of plug-ins that contains the matching criteria for each

plug-in. The source of the message and its content are the general criteria to decide which plug-in

must handle the message.

The dispatch handler consists of multiple dispatcher units. Each unit has a queue of input

messages to process and pass to the plug-in layer. “Dispatch load balancer” manages all the

dispatchers and distributes the input messages to them and if necessary, it creates new instances

of dispatchers to handle more messages or it discards the idle instances.

The dispatch load balancer scales up or down the number of dispatchers in use based on

the system load so the dispatch handler can respond to the input messages in the queue as fast

as possible and can prevent possible queue overflows or delays in responses. The dispatch Handler

can potentially become the bottleneck of the system and needs to be highly scalable and also must

be as fast as possible to pass the input messages to the plug-in layer in reasonable time.

4.1.3. Plug-ins Layer

A plug-in represents a specific functionality in the system (for example drug information

plug-in that provides information about a drug) and it is encapsulated in the plug-ins layer. The

plug-ins layer makes sure that each plug-in responds to the input within the time limit specified for

that plug-in. In addition, this layer is responsible for assuring that the plug-ins’ errors are handled

properly and in case of a physical or logical failure, the plug-in action is passed to another instance

of that particular plug-in.

Main processing of plug-ins is done inside a worker machine. A worker machine could be a

virtual or physical machine that runs multiple instances of one or more plug-ins. A plug-in manager

inside a worker machine manages the number of instances and communicates with the load balancer

to instantiate the plug-ins that are needed in the system or too kill the idle plug-in instances.

28

The plug-ins load balancer makes sure that there is enough instances of each plug-in avail-

able to respond to the requests from the other layers. It also routes the plug-in actions to the

appropriate worker machine. The plug-ins layer might contain other components to provide addi-

tional functionalities.

The job scheduler provides chronological functionalities to the system. Recurrent or sched-

uled jobs are handled by this unit. For example drug intake reminders are scheduled through this

unit by a plug-in request. The timeout handler unit is responsible for handling any timeout event

generated by the plug-ins and it triggers the necessary actions when timeouts occur. It works

closely with the load balancer such that it helps to identify the plug-ins that are faulty or not

responsive. In that case, the load balancer resends the plug-in actions to another plug-in.

If a component in the other layers needs to communicate with the plug-ins layer, it must use

the load balancer, so that the consistency of the communication between the layers is maintained

and the load balancer can provide the best performance for the system.

4.2. Flow of Information

In this section, we demonstrate how the components of the system interact with each other

and we describe the steps of the information flow between the different components. Figure 4.2

illustrates the flow of information in the system.

1. The communication layer receives a message either from a web service or from a device (e.g.

SMS gateway) and passes it to its appropriate adapter (e.g. SMS adapter).

2. The a dapter converts the raw input to inputMessage, a unified understandable message by

the system.(e.g. it creates SMSInputMessage which extends inputMessage.)

3. The persistence unit stores the inputMessage in the database and passes it to the dispatch

layer.

4. The plug-in handler adds the inputMessage to a queue in one of the dispatcher units and based

on the plug-in registry criteria, the dispatcher unit decides what plug-in(s) must handle this

inputMessage. In most cases, it is decided based on its origin, communication device, input

content, and time stamp among other characteristics.

29

Figure 4.2. Sequence Diagram

5. The dispatcher unit creates a dispatch action and passes it to the plug-in load balancer in

the plug-in layer.

6. The plug-in load balancer passes the dispatch action to one of the plug-in instances inside a

worker machine (or instantiates one if none exists).

7. The plug-in processes a dispatch action. The processing may include looking up data, storing

data, checking for a threshold, deciding on the next action, triggering an event, etc.

8. The plug-in must close the action (before timeout) and return the action to the dispatch

layer.

30

9. The response handler in the dispatch layer receives a closed (or timed out) dispatch action

and checks if the actions is correctly completed. If necessary, the response handler passes the

appropriate message to the communication layer to be sent out to the device.

10. The adapter creates the appropriate message for the gateway or web service to be sent.

In order to further clarify the flow of information and interactions with users, it would be

easier to have and example. Figure 4.3 illustrates an example input to the system. Every element of

the figure are inside our application except user and SMS gateway. User initially interacts with the

application using a SMS gateway for example Twilio (twilio.com). SMS gateway is a third party

application or service and provides services like phone numbers and telecommunication services

in order to communicate with users. It is essentially a gateway between user and our application

and should provide reliable communication. Internally, we process the incoming SMS and respond

to user if necessary. Initially raw SMS is converted to data structure understandable by system

and safely stored in Database for future references. Also its ID is added to the appropriate queue

for further processing. We may have multiple queues to further categorize processing of plugins.

Plugins load balancer works in parallel to the persistance and processing unit and constantly

monitors the queue. It fetches an item from the queue and passes it to the appropriate plugin.

Every queue item contains sufficient information for plugin to do its job, for example it contains ID

of the incoming SMS that is stored in the Database. Plugin load balancer also manages scalability

of plugins and initiates or destroys plugin instances if necessary. After processing the data inside

plugin, if necessary a response message is generated for the client and passed to SMS gateway

adapter. Furthermore, adapter generate necessary communication to SMS gateway in order to

communicate with user.

4.2.1. System Implementation

To give the best presentation of the conceptualized architecture, a prototype is implemented

as the proof of concept. The implemented prototype contains the base framework for storing

messages and interacting with inputs and also includes one module that provides information about

the drug names. The features of the system can easily be expanded by adding new modules that

interact differently with the user using the same framework.

31

Figure 4.3. Example Flow of Information

In this thesis, the Amazon Web Services platform is chosen as the cloud platform to provide

utilities like queuing and scaling options. As for the implementation framework, we used Java Spring

to implement the components of the system because of ease of use, clear documentation and rich

libraries integrated with the framework. In addition, using Spring makes dependency injection

easier by opting in for Inversion of Control (IoC) pattern and auto-wiring reusable sub-components

into each of the components.

Each component of the system that interacts with the Internet or the other components of

the system through HTTP communication is using the MVC (Model-View-Controller) architectural

pattern [2]. The controller accepts input and converts it to commands for model or view. The

model manages data related actions like saving or retrieving data and also includes logic of the

application. The view is the output of the transaction that in our prototype is mostly simple text

communications, but it could contain any page components like tables, charts, etc.

In the context of Amazon Web Services, we are dividing the application into two sub-

systems, the first is a web layer that interacts with inputs of the system and receives messages

from outside whether it is a service or users interacting with the system. The second sub-system is

the worker layer that processes the inputs and takes appropriate measures and actions like sending

32

a response or updating data in the system. The connection between these two sub-systems is

Amazon’s Simple Queue Service (SQS) that ensures reliable communication between these two

components.

33

5. EVALUATION

Although most of the processing on the text messages are fairly simple and fast, scalability

is the most important factor in the success of an application in this domain. We need to respond to

every request within reasonable margin of time. Also we need to preserve processing power while

system is used minimally, hence reducing the operation cost.

Text message applications usually have to deal with sudden surges in traffic over a short

period of time. Although they might follow a pattern on a daily or weekly basis, but unlike other

web applications they have sudden spikes in traffic due to an outside factor. An example would

be a voting application for a popular TV show or in case of our application, surges in earth quake

related requests a few minutes after an earth quake happens.

In the following sections, we describe each of the factors important to our functioning

application. Also, we conducted a load test on the application. For the load test, we emphasize on

the criteria described above, such as sudden surges in the input during a relatively short period of

time.

5.1. Scalability

To make sure our application is scalable we have to observe its behavior under increasing

traffic in single node and clustered environment. The application must be able to handle the growth

of traffic by adding more resources and processes to manage and respond to the requests. Given the

platform that we are using for handling the incoming traffic, we handle each request in a separate

thread, hence increasing traffic triggers more threads in the application to respond to the requests.

We are using multiple layers of components in our architecture. This gives us the flexibility

to scale any of those components individually. The gateway layer has its own load balancer and

it can scale up/out as much as needed. This accommodates for the incoming SMS traffic without

worrying about the processing time of plugins or any other concerns on the other layers. On the

other hand, the plugins layer uses a load balancer as well as queues. It can scale based on the

number of items that are waiting in the queue to be processed and of course this is independent of

the gateway layer. For example, only two instances respond to the gateway layer requests because

its process is easy and it is reliant on the network speed. On the other hand, we need more

34

processing power on the plugins layer. Naturally, we may have ten instances to process the items

in the queue and to answer to the users. Using different layers of scalability we prevent the errors

from one layer to be extended to another layer. For example, if a plugin uses a third party service

to do certain processing, in case of failure or slowness on that service, we only need to add more

instances to the plugins layer without affecting the gateway layer. Usually the size of the queue

will trigger these actions. As a result, our users will not notice the delay in the response time and

we provide a consistent user experience.

5.2. Performance and Responsiveness

It is important that our application responds to the requests under a certain time threshold

regardless of the traffic throughput or the number of running instances, thus guaranteeing a uniform

and consistent user experience for the customers of the application. For this project, ideally the

majority of the response times should be under 200 milliseconds to provide a smooth and fast user

experience. Although given the nature of the communication for text messaging, response time up

to a few seconds is acceptable.

Figure 5.1 shows the results of our load test in a histogram of latency of the responses.

The figure shows the number of requests that have a specific latency (in milliseconds). Ideally we

want lower latency for each request and having the majority of the requests (higher number on

Y axis) to have a small latency (closer to the left on X axis). Although there are a few requests

with higher latency, but the majority of the requests fall under 120 milliseconds. The result of our

measured test shows that 98.10% of the tested requests (total of 2372 requests) had a latency less

than or equal to 120 milliseconds. Furthermore, 99.74% of the requests were responded under 200

milliseconds.

The data that is used for the histogram shown in Figure 5.1 includes all of the request and

response times used for load testing of the application that will be described in the next section.

It should be mentioned that the application was under stress of high traffic during a short period

of time, yet it was able to maintain the ideal response time.

5.3. Load Testing

For our proof of concept project, we decided to simulate an environment that usually hap-

pens with text based messaging systems. An outside factor such as an advertising campaign triggers

a sudden growth of inputs in the system. It is usually in a short time period but the throughput

35

Figure 5.1. Load Test - Histogram of Response Latency

spike is in orders of magnitude and could potentially put the system in the denial of service (DoS)

state. It is important that we can scale up/out the application in short period of time without

sacrificing user responsiveness, which in this case, is response time to the incoming request.

In order to evaluate the scalability related performance of the implemented prototype we

are using load testing techniques to generate loads similar to the real environment to observe the

behavior of the system under different situations. We are using JMeter to generate random targeted

traffic comparable to actual traffic for similar applications. The input data is generated randomly

from a set of actual requests that are answerable by the application. We used our drug lookup

plugin to answer questions about drug names. Although requests were sent to the system randomly,

but all of the questions are valid and have a valid answer in our drug information database.

We need to be able to intentionally create request spikes for the application at certain

periods of time. We also should be able to repeat the exact test based on the number of requests at

each point of time in test. JMeter and related plugins provide the environment to create an exact

number of Requests Per Second (RPS) for our tests. We can create a model of desired load at each

time period of the test. As a result, we are able to ensure the consistency and repeatability in our

36

test, and exactly measure the behavior of the system at an exact load. Moreover, we can repeat

the test in the same exact condition after each improvement. An improvement could be to the

application and related systems like networking and routing, or can be a change in scaling policy

or an update to the plugins.

Figure 5.2 shows the desired number of requests at each point of time (Requests Per Second

or RPS) used for load testing. This model is generated using the JMeter plugin to shape and

generate random requests. It uses a data set of actual drug names to test the system in random

order.

Figure 5.2. Load Test - Predefine Number of Requests for Load Testing

As shown in the Figure 5.2 we increase the input rapidly and then keep the input load on

the stress level for some time. Both of these phenomena have an impact on how the application

handles the load. First, the application should be able to cope with the increasing traffic and the

increasing rate of the traffic increase. Second, the application should also be able to maintain the

stress level for longer period of time as a sign of handling and reusing resources used in the previous

requests/responses. Finally, the system should recover when the load is decreased.

As mentioned above, Figure 5.2 shows the intended input traffic; in contrast, in Figure 5.3

we show the input traffic that was actually used in the testing based on the real-time measurements.

The figure shows both successful and failed transactions per second. As shown in Figure 5.3 none

37

of the requests have failed and the application was able to successfully handle all of the requests.

As the results the corresponding line to the failures is constantly zero.

Figure 5.2 and 5.3 are direct outputs of the JMeter application used for load testing and

measuring the latency of the responses. The raw data results of those tests are presented in the

form of a histogram in Figure 5.1 to evaluate the responsiveness of the application during the test.

Figure 5.3. Load Test Traffic - Number of Successful and Failed Transactions

5.4. Elasticity

Elasticity is the behavior of the system when the traffic is more than the amount that could

be handled by one instance. In this case, the application should scale out and initiate new instances

to properly handle the traffic. On the other hand, when the traffic is less than the processing power

of the system, it should scale in to preserve resources and cut the cost. Therefore, only sufficient

processing power is used at any input level while the efficiency and responsiveness of the application

is guaranteed to be at the desired threshold as shown in Figure 5.1.

We are using Amazon’s internal signals such as CPU usage and response delays to decide

if we must scale out and create more instances or we should scale in and shutdown the unused

instances. It is important that during low traffic, specifically after a peak traffic, we shutdown the

unused or lightly-used instances to save resources, otherwise our elasticity strategy is not practical

38

for real environments. The scaling policy in this situation is based on the amount of time an

instance is idle, or alternatively the amount of traffic (or lack there of) that the instance receives

in a certain period of time. For example, if an instance has received less than 10 requests per

minute in the last 5 minutes, it is an ideal candidate for shutdown. After an instance-shutdown

there is a grace period that scale in policy is put to hold (e.g. 5 minutes.) The grace period is

necessary because this way we prevent shutting down too many instances all together. This would

be a regular problem for equally load balanced instances, since all of the instances get roughly the

same amount of requests at any time.

During our test shown in Figure 5.3, the scaling policy that we put in place, increased the

number of instances and added two more servers to handle the peak load of the inputs. It also

terminated the instances and reduced to only one server when the load returned to minimum. Our

scaling policy is based on parameters of the system running the instance. We used CPU utilization

and response delay of instances provided by AWS instances to actively determine whether new

instances are needed or we should terminate idle instances. An alternative approach would be to

measure the input traffic of the instances. Since SMS messages are relatively the same size, an

increase in the input traffic would correlate to the number of inputs, hence the requirement for

instances.

Although the number of servers used in our proof of concept application is relatively low,

but it is comparable to real world SMS applications. Moreover, the combination of the scaling

policy and the load balancers in each layer of the application, theoretically would have the same

consistent behavior if the number of the nodes were higher. The reasoning behind the anticipated

consistency is that we use Amazon Web Services components such as load balancers and SQS

(Simple Queue Service) for our platform which guarantee the same behavior.

39

6. CONCLUSIONS AND FUTURE WORK

This thesis presents a proof of concept for capabilities of a lightweight mobile health appli-

cation with the focus on light communication and scalable server side processing. The proposed

approach is in particular advantageous for low-end devices with basic capabilities such as text mes-

saging. However, the proposed framework is generic and expandable to support other technologies.

Exploiting the communication layer in our proposed multi-layered architecture, which converts in-

put messages to a data structure understandable by the system, we can extend the input to any

means of communication that can be translated to our internal data structure. Therefore, any other

kind of communication other than SMS gateway can communicate with the system. For example

Twitter has a lot of similarities with SMS and it is accessible through APIs for programmers over

the Internet.

We presented a wide variety of examples for health-related applications that can be im-

plemented leveraging the proposed framework. It would be ideal to provide means for customers

to adopt the proposed framework and easily create their own specific user interaction using this

platform. For example, our presented platform enables a laboratory to setup a system to send out

lab results to the patients using web user interface without the need for any technical knowledge

of the system and it allows the lab to only focus on the user experience and interaction. Alterna-

tively plug-ins for the platform provide needed services for customers. Using cloud computing, our

proposed framework offers great scalability and flexibility in that the system can efficiently grow

in terms of the number of users and features of the system. In addition, cloud computing enhances

availability and fault tolerance which are vital for a robust mobile health application. Moreover,

the proposed multi-layered architecture makes the design modular and less error-prone and the

separation of concerns results in enhanced system scalability.

The proposed light-weight mobile-health framework in this thesis defines an affordable,

practical and scalable platform for a wide range of future health-care applications. Although the

usage of smart-phones is growing fast among the global population and more complex technolo-

gies based on data communication platforms such as push notifications and modern social media

communication applications are gradually replacing basic text messaging, there is still a signifi-

40

cant portion of the world’s population who are in need of simple and efficient health applications

compatible with basic cellphones. Therefore our proposed SMS-based application offers a viable

solution for cheap and efficient communication with people in need of health-care who do not access

to the Internet or high computation power on their mobile phones.

Although the focus of this thesis is to create an application framework that mostly provides

individual assistance in the areas related to health-care, as an outcome, we gather considerable

amounts of health related data and the behavior of our users. The users in this context include

both individuals using the features of the application, and devices that provide input data to the

system. As a result, we have a great opportunity to have a holistic view on all of the gathered

data, and infer useful information by analyzing the data to find meaningful patterns exploiting data

science and machine learning techniques. For example an increase in the search about flu related

topics to our system from a specific geographical area, implies a flu epidemic emerging in that

region. This information can result in better preparation for the situation by taking quick action in

informing the community and the health providers that could be involved such as hospitals, drug-

store chains, and better preparation for emergency services. Data analytics on the huge amounts of

collected data in the studied mobile-health applications in this thesis is a promising future research

direction.

The mobile-health is still in its infancy and we anticipate that in the years to come the mobile

phones will have an important role in improving the global health. As mobile and smart hand-held

devices are becoming commodity, they will be used heavily in health-related daily life applications

including diagnostic, prevention, and intervention. This thesis lays the foundation for practical and

lightweight mobile-health applications targeted for simplicity and scalability, especially for parts of

the world that older and simpler mobile phones are still in use. It can be efficiently expanded as

newer health applications emerge.

41

REFERENCES

[1] Text messaging-a new way for delaware physicians care to help its members. http://www.

businesswire.com, June 2008.

[2] Model-view-controller (mvc) software design pattern definition. https://en.wikipedia.org/

wiki/Model-view-controller, April 2016.

[3] Erin Allday. Health department answers questions via text messages. http://www.sfgate.

com/health, April 2006.

[4] Marco Altini, Julien Penders, and Herman Roebbers. An android-based body area network

gateway for mobile health applications. In Wireless Health 2010, WH ’10, pages 188–189, New

York, NY, USA, 2010. ACM.

[5] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy Katz, Andy

Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica, and Matei Zaharia. A view

of cloud computing. Commun. ACM, 53(4):50–58, Apr. 2010.

[6] Gladys Block, Barbara Sternfeld, Clifford H Block, Torin J Block, Jean Norris, Donald Hop-

kins, Charles P Quesenberry Jr, Gail Husson, and Heather Anne Clancy. Development of

alive!(a lifestyle intervention via email), and its effect on health-related quality of life, pre-

senteeism, and other behavioral outcomes: randomized controlled trial. Journal of medical

Internet research, 10(4), 2008.

[7] Dale Bramley, Tania Riddell, Robyn Whittaker, Tim Corbett, R-B Lin, Mary Wills, Mark

Jones, and Anthony Rodgers. Smoking cessation using mobile phone text messaging is as

effective in maori as non-maori. The New Zealand Medical Journal, 118(1216), 2005.

[8] Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal, James Broberg, and Ivona Brandic.

Cloud computing and emerging it platforms: Vision, hype, and reality for delivering computing

as the 5th utility. Future Gener. Comput. Syst., 25(6):599–616, June 2009.

[9] Wesley Chun. What is cloud computing? https://developers.google.com, June 2012.

42

http://www.businesswire.com
http://www.businesswire.com
https://en.wikipedia.org/wiki/Model-view-controller
https://en.wikipedia.org/wiki/Model-view-controller
http://www.sfgate.com/health
http://www.sfgate.com/health
https://developers.google.com

[10] Sunny Consolvo, David W. McDonald, Tammy Toscos, Mike Y. Chen, Jon Froehlich, Beverly

Harrison, Predrag Klasnja, Anthony LaMarca, Louis LeGrand, Ryan Libby, Ian Smith, and

James A. Landay. Activity sensing in the wild: A field trial of ubifit garden. In Proceedings of

the SIGCHI Conference on Human Factors in Computing Systems, CHI ’08, pages 1797–1806,

New York, NY, USA, 2008. ACM.

[11] Judith B Cornelius and Janet S St Lawrence. Receptivity of african american adolescents to

an hiv-prevention curriculum enhanced by text messaging. Journal for Specialists in Pediatric

Nursing, 14(2):123–131, 2009.

[12] ITU World Telecommunication/ICT Indicators database. Mobile-cellular subscriptions. http:

//www.itu.int/en/ITU-D/Statistics/, July 2013.

[13] BJ Fogg and Enrique Allen. 10 uses of texting to improve health. In Proceedings of the

4th International Conference on Persuasive Technology, Persuasive ’09, pages 38:1–38:6, New

York, NY, USA, 2009. ACM.

[14] I. Foster, Yong Zhao, I. Raicu, and Shiyong Lu. Cloud computing and grid computing 360-

degree compared. In Grid Computing Environments Workshop, 2008. GCE ’08, pages 1–10,

2008.

[15] R.S.H. Istepanian, E. Jovanov, and Y.T. Zhang. Guest editorial introduction to the special

section on m-health: Beyond seamless mobility and global wireless health-care connectivity.

Information Technology in Biomedicine, IEEE Transactions on, 8(4):405–414, 2004.

[16] E. Jovanov, A. O’Donnell Lords, D. Raskovic, P.G. Cox, R. Adhami, and F. Andrasik. Stress

monitoring using a distributed wireless intelligent sensor system. Engineering in Medicine and

Biology Magazine, IEEE, 22(3):49–55, 2003.

[17] David Joyce and Stephan Weibelzahl. Text-messaging as a means to lowering barriers to

help seeking in students with depression. In Proceedings of IADIS International Conference

e-Society, Dublin, Ireland, pages 211–214. Citeseer, 2006.

[18] James G Kahn, Joshua S Yang, and James S Kahn. Mobile health needs and opportunities in

developing countries. Health Affairs, 29(2):252–258, 2010.

43

http://www.itu.int/en/ITU-D/Statistics/
http://www.itu.int/en/ITU-D/Statistics/

[19] Arvind Kumar, Amey Purandare, Jay Chen, Arthur Meacham, and Lakshminarayanan Subra-

manian. Elmr: Lightweight mobile health records. In Proceedings of the 2009 ACM SIGMOD

International Conference on Management of Data, SIGMOD ’09, pages 1035–1038, New York,

NY, USA, 2009. ACM.

[20] Chinmoy Mukherjee, Komal Gupta, Rajarathnam Nallusamy, and Sumit Kalra. A system

to provide primary healthcare services to rural india more efficiently and transparently. In

Proceedings of the 1st International Conference on Wireless Technologies for Humanitarian

Relief, ACWR ’11, pages 379–384, New York, NY, USA, 2011. ACM.

[21] Jami L Obermayer, William T Riley, Ofer Asif, and Jersino Jean-Mary. College smoking-

cessation using cell phone text messaging. Journal of American College Health, 53(2):71–78,

2004.

[22] Barbara Sternfeld, Clifford Block, Charles P Quesenberry Jr, Torin J Block, Gail Husson,

Jean C Norris, Melissa Nelson, and Gladys Block. Improving diet and physical activity with

alive: a worksite randomized trial. American journal of preventive medicine, 36(6):475–483,

2009.

[23] Narjes Torabi and Victor C. M. Leung. Robust access for wireless body area networks in

public m-health. In Proceedings of the 7th International Conference on Body Area Networks,

BodyNets ’12, pages 170–176, ICST, Brussels, Belgium, Belgium, 2012. ICST (Institute for

Computer Sciences, Social-Informatics and Telecommunications Engineering).

[24] Woodrow W. Winchester, III. Cover story: Catalyzing a perfect storm: Mobile phone-based

hiv-prevention behavioral interventions. interactions, 16(6):6–12, Nov. 2009.

[25] Mudasser F. Wyne, Vamsi K. Vitla, Praneethkar R. Raougari, and Abdul G. Syed. Remote

patient monitoring using gsm and gps technologies. J. Comput. Sci. Coll., 24(4):189–195, Apr.

2009.

[26] Tae-Jung Yun, Hee Young Jeong, Tanisha D Hill, Burt Lesnick, Randall Brown, Gregory D

Abowd, and Rosa I Arriaga. Using sms to provide continuous assessment and improve health

44

outcomes for children with asthma. In Proceedings of the 2nd ACM SIGHIT International

Health Informatics Symposium, pages 621–630. ACM, 2012.

45

	ABSTRACT
	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	Introduction
	Motivation
	Thesis Contributions
	Thesis Organization

	Background and Related Work
	Background
	Mobile Health
	Text Messaging for Mobile Health Applications
	Cloud Computing
	Infrastructure as a Service (IaaS)
	Platform as a Service (PaaS)
	Software as a Service (SaaS)
	Amazon Web Services

	Related Work

	Proposed Approach
	Features of the Proposed Approach
	Multi-layered Architecture
	Plug-in-able Feature Development
	In the Cloud
	Scalability
	Expanding to Other Forms of Communication

	High Level System Overview
	Resource Allocation for the Web Application
	Applications
	Interaction with Softwares
	Input Data Gathering
	Proactive Outbound Communication and Outreach
	Statistical Analysis and Reporting
	Machine to Machine Communication (Internet of Things)

	System Design
	System Architecture
	Communications Layer
	Dispatch Layer
	Plug-ins Layer

	Flow of Information
	System Implementation

	Evaluation
	Scalability
	Performance and Responsiveness
	Load Testing
	Elasticity

	Conclusions and Future Work
	REFERENCES

