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ABSTRACT 

 

This thesis presents Algorithmic State Machine (ASM) designs that follow the One Cycle 

Demand Driven Convention (OCDDC) of three cryptographic protocols: Secure Distributed 

Multiplication (SDM), Pi Secure Distributed Multiplication (PiSDM, or secure distributed 

multiplication of a sequence), and Secure Comparison (SC), all of which achieve maximum 

throughput of 1/32, 1/(32(l  - 1)), and 1/(32(l  - 1)), respectively, for l-bit numbers.  In addition, 

these protocols where implemented in VHDL and tested using ModelSim-Altera, verifying their 

correct functionality.  Noting that the difference between a scheme and a protocol is that 

protocols involve message exchanging between two or more parties, to the author's knowledge, 

these hardware designs are the first ever implementations of any kind of cryptographic protocol, 

and because of that reason, a general method is proposed to implement protocols in hardware.  

The SC protocol implementation is also shown to have a 300,000+ speed up over its Python 

implementation counterpart. 
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1.  INTRODUCTION 

The need for cryptography in different industries like banking, finances, and commerce, 

intellectual property protection, and telecommunications, to name a few, is clear nowadays.  In 

some not so distant decades, however, that was not so clear.  Even though it might have seen 

understandable back then because digital technology had not boomed to the point it has in 

present years, we now know that we live in a digital age even though, in the past, it was believed 

that personal computers (PCs) and home computers were not expected to beat an average of 1 

per household, which we understand it is far from the truth in the present.  In fact, according to 

TekCarta, an online research service described by Reuters as "An innovative, New Business 

Model for Technology Industry Research" in [14], shows that by 2012, the average of PCs per 

household in the United States had already reach 3 [15].  This statistic does not even include 

mobile devices, so we can tell just how much depend on computers, and their security, every 

single day.  This is where cryptography comes into play. 

Cryptography, as a whole, has more goals than just security.  Some of those are data 

integrity, authentication, and privacy, among others.  For example, in the case of privacy in 

protocols, cryptography's goal is to keep every party's secret information hidden from any other 

party.  So to be more specific, when a protocol is needed to compute a function or mathematical 

construct using the secret values that each party holds, this protocol is considered a distributed 

computation, and it is by using the rules of cryptography that we can achieve privacy for each 

party, so that their sensitive information is not revealed to any unwanted party. 

Moreover, secure distributed computation, in the world of cryptography, is an area which 

has been highly researched in the past few decades.  Starting from Yao's protocol [Yao ‘82] to 

even elliptic curves, researchers have focused on finding efficient implementations of 
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cryptographic primitives, constructs and schemes in order to further our capabilities with secure 

computations to breach the gap between theoretical and practical cryptography.  One of the 

endeavors to accomplish such a goal, even though it adds difficulty to the implementation, is the 

usage of hardware over software due to their differences in speed. 

As the field of cryptography progressed, researchers and engineers moved to 

implementing protocols in software because of the different results protocols were able to 

accomplish.  So in later years now, with all the advances in transistor sizing, FPGA technology, 

and secure computation theory, it is natural to continue the implementation of cryptographic 

construct in the hardware realm.  In fact, several primitives and schemes have been implemented, 

like SHAs (hashing algorithms), RSA (encryption scheme and cryptosystem), and others; 

however, no protocol has ever been implemented in hardware. 

On the hardware side, our focus lies on the state machine design, more specifically, 

finite-state machine design.  There are several of these, for example, Mealy machines which 

were introduces in 1955 by George Mealy [16], Moore machines introduced by Edward Moore 

in 1956 [17], and Algorithmic State Machines (ASMs) seen as early as the 70s [18] and 80s [19, 

20, 21], with ASMs being the more advanced of the three mentioned.  In the case of Mealy and 

Moore machines, state diagrams are used to determine state transitioning, state outputs, and so 

on, deriving the state and output logic from the diagram itself, requiring no extra logic or 

components.  On the other hand, an ASM can be used to achieve more complex results by using 

a data path for processing more complicated data inputs to determine the output, and a control 

unit to manage the data path and state transitioning. 
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1.1.  Definitions 

The following definitions are used throughout the whole thesis and are intended for those 

who do not have a basis in cryptography, digital systems, and algorithmic state machine design.  

This section may be skipped if the reader is comfortable with the aforementioned areas. 

• Cryptographic Construct: simply, a general term for any construct which performs 

some task with the usage of cryptography to achieve one or more of the goals of cryptography.  

For example, encryption achieves privacy and data protection, message authentication codes 

(MACs) are used for data integrity checks (indicating whether the data received was altered or 

not), digital signatures helps achieve non-repudiation (i.e. someone who signed a message and 

send it, cannot later deny it came from him/her). 

• Cryptographic Primitive: a cryptographic primitive is considered a basic building 

block for cryptographic schemes and protocols.  For example: encryption/decryption schemes, 

message authentication codes, cryptographic hash functions, secret sharing, additive shares, and 

others. 

• Cryptographic Scheme: a set of algorithms and/or primitives ran by two parties 

that achieve a certain goal without the exchange of multiple messages.  For example, in an 

encryption scheme, there is an encryption algorithm or equation to compute a ciphertext, and a 

different algorithm used to perform decryption.  In this case, one party does the encryption and 

sends the ciphertext to another party who then performs the decryption algorithm. So there is 

only one message, the ciphertext, being sent. 

• Cryptographic Protocol: similar to a crypto scheme, a protocol is a set of 

algorithms, with the prevalent difference being that multiple messages are exchanged between 

two or more parties.  In addition, a cryptographic protocol aims to achieve or obtain a more 
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complicated result.  For example, the protocols implemented in this thesis achieve secure 

distributed multiplication and secure integer comparison, two task that require additive shares to 

achieve privacy.  This means that a scheme could not easily accomplish this because these 

protocols need two parties to preserve the secret numbers as secret. 

• Protocol Transcript: this refers to the messages being exchanged in a protocol.  

This includes the messages' actual values, but mainly, the randomness distribution of each 

message.  For example, some message might be a bit equal to 1 which was chosen uniformly at 

random over {0, 1}; whereas other messages may have uniform distributions over a different set 

like Zq or Zq*. 

• Universal Composability (UC) Model: a model describing requirements for a 

protocol to be secure when executed in composition (in series or in parallel) with any other 

protocol.  This obviously implies that a protocol which is secure under the UC model is also 

secure when executed in isolation. 

• Adversary: a party in a protocol which is attempting to learn another party's 

secret, or compromise the protocol's goal, from the protocol's transcript. 

• Semi-honest Adversary: also called "honest but curious." An adversary that does 

not want to get caught cheating so it follows the protocol strictly, but tries to learn secret 

information from the protocol's transcript. 

• Very High-Speed Integrated Circuit (VHSIC): a U.S. Department of Defense 

program in the 1980s dedicated to microelectronics research and development.  One of such 

developments is the hardware description language known as VHDL. 

• VHSIC Hardware Description Language (VHDL): a hardware description 

language. 
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• Entity (in VHDL): an entity, in VHDL, is used to represent the interface of a 

circuit, indicating its inputs and outputs. 

• Architecture (in VHDL): in VHDL, the architecture of an entity refers to the 

internal works, or functionality, of the entity.  It describes the gates, components, or operations 

performed by a digital circuit with the interface provided by the entity. 

• Algorithmic State Machine (ASM) design: a digital hardware design process that 

is described by two parts: the ASM (or control unit) and the data path to compute the outputs 

from the inputs. 

• Data Path (of a state machine): a digital circuit that receives the input data to 

compute the output data.  The data flow in the data path is controlled by the ASM. 

• ASM: a state machine used to assert the signals that control the data flow in the 

data path at the appropriate time to achieve the desired behavior. 

• One Cycle Demand Driven Convention (OCDDC): handshaking mechanism used 

in ASM design for module’s I/O.  OCDDC requires a request line and a data line.  This adds a 

new output Xrqst and a new input Xdat for every set of inputs X needed at the same clock cycle.  

Xrqst is used by the ASM to request the set of inputs it requires, and Xdat is used to indicate the 

validity of the input or inputs to the ASM.  It also creates a new input Yrqst and a new output 

Ydat for every set of outputs Y.  In the case of Y, Yrqst is to tell the ASM that the output Y is 

ready to be received, and Ydat is used by the ASM to indicate whether Y is valid or not.  Simply 

put, whether it is an input or an output, the request line is asserted when data is ready to be read 

in, and the data line is assert when data is valid. 

• Throughput Capability (TPC): the number of clock cycles where an input is 

loaded over the total number of clock cycles needed to calculate the output, and it only considers 
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the steady-state of an ASM.  When calculating TPC of an ASM, it is assumed that data is ready 

to be received as soon as it is ready and that it is always ready when requested.  This assumption, 

though, can be ignored when the designer explicitly knows that it won’t hold (See SDM B’s 

ASM for details and example in Sections 2.1.2 and 2.1.3).  Note: in the case that the ASM has no 

data input, then the TPC refers to the number of clock cycles needed to calculate the output. 

• TPC Diagram: a diagram that shows the steady-state input data loading and state 

transitioning of an ASM. 

• Maximum TPC: the maximum achievable TPC, which can be obtained by 

inspection of the original algorithm. 

1.2.  Background and Motivation 

Secure distributed multiplication (SDM) was first proposed by Beaver in 1992 in the 

context of multi-party protocols [13], where n parties compute a function F of all parties' secret 

inputs.  In order to come up with the result, F is expressed as a circuit CF, so that party i, with its 

secret xi, can compute secret addition and multiplications on secretly shared values.  This is done 

until all n parties have provided their inputs.  After Beaver, there have been more developments 

in SDM, for example, Gennaro, Rabin, and Rabin [23] showed a highly simplified protocol for 

secure multiplication of shared secrets, with O(n
2
k log n+nk

2
) complexity, that was shown to 

improve the efficiency of other secure multi-party computation protocols when using their SDM 

instead of previously developed multiplication protocols.  Another example is the work of 

Ronald Cramer, Ivan Damgård, and Robbert de Haan [24], where they based their work on 

Shamir's secret sharing scheme in [26].  Later on, in 2007 and 2009, Peter Lory reduced the 

complexity of the previously mentioned Gennaro, Rabin, and Rabin protocol to O(n
2
k+nk

2
) and 

O(n
2
k), respectively [25, 27].  Moreover, SDM has several potential uses.  For example, David, 
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Dowsley, Katti, and Nascimento have shown one of them in [1].  They have used SDM to 

compute secure distributed π-products (PiSDM), or secure distributed product of a sequence, in 

order to ultimately perform secure integer comparison in the Universal Composability (UC) 

security threat model under semi-honest adversary’s attacks.  The UC model gives the strongest 

security since it assumes that the protocol can be combined or composed with any other protocol 

in both serial and parallel manners.  Secure integer comparison, can then be used to accomplish 

secure silent auctions as in [28], which was a real-life application of cryptography supported by 

the Danish Strategic Research Council and the European Commission.  Also, it could potentially 

be used in a secure protocol that solves the problem of whether an integer lies within a certain 

range. Other applications include privacy preservation in machine learning and location-based 

services.  Besides having all of the aforementioned applications as motivation for implementing 

these protocols, it should also be taken into account that another strong motivation for 

implementing SDM is the following: since it can be shown that addition and multiplication span 

Zq, a fast implementation of multiplication, the more complicated of the two, will greatly 

improve performance of other protocols that have already been developed or proposed by 

industry and academia. 

Looking a bit more into ASM design, as Smith and Di have explained in section 4.2 of 

[22], ASMs are used to implement complex sequential circuits, which would be too large for 

Mealy or Moore machines due to their exponential increase in size relative to the state transition 

bits.  In the case of algorithmic state machine design, more elaborated state transition conditions 

can be used because of its combined ASM and Data Path approach, allowing for conditional 

transitions like input data comparison without exponentially increasing the number of states.  

The general ASM model is also described in [29], so let us study the diagram in Figure 1: 
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Figure 1: ASM General Model.  Taken from [29] 

The ASM is the controller of the circuit, which gives "Commands" to the data processor 

or data path.  For the ASM to generate these commands, it bases its decisions on external inputs 

and feedback data from the data processor, and this data processor computes the output data 

based on the input data and the commands it receives from the controller. 

Furthermore, for the sake of understanding ASM design and the way OCDDC is used, 

consider the ASM design example given in section 4.2 of [22] as well.  The design presented 

calculated the Greatest Common Divisor (GCD) of two 8-bit numbers, A and B.  Figure 2 shows 

the complete design, which includes the Interface, ASM, and Data Path. 

Starting with Figure 2a, it can be observed that the interface is simply a top-level view of 

the design which simply specifies I/Os, the component's name, and the shape that should be used 

to represent this circuit when it is to be used by another component.  Also, from the interface, it 

can be deduced that this design follows the OCDDC because of the rqst and dat suffixes used on 

X and Y.  This is also a good example to show that, as explained in Definitions section before, 

only one rqst and one dat are required for each set of inputs that are needed by the data path at a 

given state of the ASM.  So applying that concept to this GCD example, it is clear that both 

inputs A and B are needed before the circuit can begin computing the result, so Xrqst and Xdat 

are used for both input vectors.  On the case of, Y, the circuit's only output, the rqst and dat lines 
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used are simply Yrqst and Ydat.  Although the interface implies the use of the OCDDC, we can 

rest assured that it is actually being implemented when we examine the ASM. 

To understand the ASM in Figure 2b., a basic understanding of Mealy and Moore 

machines is expected but not necessary, although, this basic knowledge will make the reader 

understand the ASM chart basics seamlessly.  First, the rhombus or diamond, which represents a 

conditional (much like the diamond used in the flowchart of a program or algorithm), showing 

that the first step in the ASM is to ensure that a reset occurs (an active-high reset in this case) to 

be able to determine the initial state and behavior of the finite state machine.  Simply put, 

resetting the ASM forces it to start at the initial state, S0 in this case.  This leads us to the next 

shape used: the rectangle or box, which represents a states.  The state name is normally written 

on top of the rectangle's top-right corner, and the state assignment is written on the top-left 

corner as shown.  For example, the initial state was named S0 and has been assigned the value 0. 

The ASM is the controller of the circuit, which gives "Commands" to the data processor 

or data path.  For the ASM to generate these commands, it bases its decisions on external inputs 

and feedback data from the data processor, and this data processor computes the output data 

based on the input data and the commands it receives from the controller. 

Furthermore, for the sake of understanding ASM design and the way OCDDC is used, 

consider the ASM design example given in section 4.2 of [22] as well.  The design presented 

calculated the Greatest Common Divisor (GCD) of two 8-bit numbers, A and B.  Figure 2 shows 

the complete design, which includes the Interface, ASM, and Data Path. 

Starting with Figure 2a, it can be observed that the interface is simply a top-level view of 

the design which simply specifies I/Os, the component's name, and the shape that should be used 

to represent this circuit when it is to be used by another component.  Also, from the interface, it 
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can be deduced that this design follows the OCDDC because of the rqst and dat suffixes used on 

X and Y.  This is also a good example to show that, as explained in Definitions section before, 

only one rqst and one dat are required for each set of inputs that are needed by the data path at a 

given state of the ASM.  So applying that concept to this GCD example, it is clear that both 

inputs A and B are needed before the circuit can begin computing the result, so Xrqst and Xdat 

are used for both input vectors.  On the case of, Y, the circuit's only output, the rqst and dat lines 

used are simply Yrqst and Ydat.  Although the interface implies the use of the OCDDC, we can 

rest assured that it is actually being implemented when we examine the ASM. 

To understand the ASM in Figure 2b., a basic understanding of Mealy and Moore 

machines is expected but not necessary, although, this basic knowledge will make the reader 

understand the ASM chart basics seamlessly.  First, the rhombus or diamond, which represents a 

conditional (much like the diamond used in the flowchart of a program or algorithm), showing 

that the first step in the ASM is to ensure that a reset occurs (an active-high reset in this case) to 

be able to determine the initial state and behavior of the finite state machine.  Simply put, 

resetting the ASM forces it to start at the initial state, S0 in this case.  This leads us to the next 

shape used: the rectangle or box, which represents a states.  The state name is normally written 

on top of the rectangle's top-right corner, and the state assignment is written on the top-left 

corner as shown.  For example, the initial state was named S0 and has been assigned the value 0. 
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Figure 2:  GCD ASM Design.  Taken from [22] 

Also, please note that assigning 0 to S0, 1 to S1, and so on, might be a naïve approach, and 

could very possibly not lead to the most-optimized solution.  State assignment is a topic of its 

own and is not within the scope of this thesis.  For detailed information on the subject, see [29, 

30].  Moreover, outputs can be represented as Moore outputs, meaning that these outputs are 

only state-dependent and are written inside state boxes, and Mealy outputs, which are state- and 



 
 

12 
 

input-dependent and are written inside ovals after a conditional diamond has occurred.  

However, be careful not to confuse the ASM's output (used by the data path as "commands") 

with the data path's output, which will be described in the next paragraph.  As an example, 

consider the Moore output Xrqst, which is asserted when S0 is the current state, regardless of the 

current inputs, and the case of the Mealy output Ydat, which is written inside an oval after AeqB 

and Yrqst have both been asserted.  This means that when the current state is S1, and both AeqB 

and Yrqst are equal to 1, then Ydat is asserted to 1.  Lastly, consider how state transitioning is far 

more complicated than a Mealy or Moore machine, where the OCDDC is followed by requesting 

input data (Xrqst is asserted) and waiting until that data is valid (Xdat is asserted) to transition to 

the other state.  In S1, A and B are compared, which is a more complex state transition condition, 

and only when they are equal is Yrqst checked to comply with the handshake, leading to Ydat 

being set to 1 when the output has been requested and the next state being S0. 

The last part to explain is the data path, or data processor, shown in Figure 2c., paying 

particular attention to its inputs and outputs.  For example, LDA, LDB, and S are data path inputs 

but ASM outputs, making them the "Commands" shown in Figure 1.  We can also see that AeqB 

and AgB are data path outputs but also ASM inputs, which makes them the "Status information," 

or feedback, received by ASM from the data processor.  In addition, as it can be observed, the 

data path is composed of combinational logic for computations and data processing, and 

sequential logic like registers and counters (only registers in the example) to store data and keep 

track of clock cycles when needed.  In the example, two registers are used to store both A and B 

and to replace either of them when computations are made. 
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1.3.  Related Work in Hardware Implementations 

 Hardware implementations and hardware acceleration started to appear in research as 

early as 1993 where M. Shand and J. Vuillemin et. al. [2] provide a programmable active 

memory implementation of RSA cryptography.  However, interest in hardware implementations 

of cryptographic constructs did not pick up until the early 2000s, where we have seen hardware 

implementations of the MD4-family hashing algorithms in [3] by S. Dominikus, an 

implementation of the RC4 stream cipher in [4] by Kitsos, Kostopoulos, Sklavos, and 

Koufopavlou.  Furthermore, the advanced encryption standard (AES) has had a lot of researchers 

work in hardware implementations like in [5, 6, 7], and hardware accelerated software 

implementations using GPUs by Manavski in [8].  Another type of hash algorithm that has been 

looked at is the SHA-family, which has also had hardware implementations, for example, 

Sklavos and Koufopavlou designed hardware for SHA-2 using 256, 384 and 512 bits.  In 

addition, there is interesting new research being published in the Cryptographic Hardware and 

Embedded Systems workshops and conferences like [30, 31], where AES, hash function, and 

even elliptic curve cryptography, a relatively newer area in cryptography, are studied.  Elliptic 

curve cryptography has been gaining attention in embedded applications because of its efficiency 

of implementation, and it has been shown to be implemented in hardware by Wenger and Hutter 

in [9].  Lastly, a hardware implementation that is more closely related to secure computations is 

the one in [10] that shows a circuit design method for tampering detection in order to protect the 

computation of any arithmetic circuit over a finite field.   

 The secure comparison protocol has also been implemented by its authors in software 

using Python, a widely used scripting language. 
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1.4.  Contributions 

Using the Algorithmic State Machine (ASM) approach, and following the One Cycle 

Demand Driven Convention (OCDDC), three cryptographic protocols developed in [1] are 

designed in hardware and implemented in VHDL, showing the three integral parts of any ASM 

design: the interface, the ASM chart, and the data path, and a VHDL algorithmic implementation 

using a layer-based method, where Secure Distributed Multiplication (SDM) is used as a 

component in the Pi Secure Distributed Multiplication (PiSDM) protocol, and PiSDM is used as 

a component in Secure Comparison (SC).  Also, a general method is proposed for implementing 

cryptographic protocols in hardware using the ASM approach.  To the author's knowledge, these 

hardware designs and HDL implementations are the first ever of their kind because even though 

some schemes and constructs have been designed and implemented as it has been thoroughly 

explained in the previous section, these are the first protocols to go through this process, giving 

an advance in the field of practical cryptography.  This is also done to continue breaching the gap 

between cryptography and the hardware world, which more than often seem to be mutually 

exclusive.  In addition, the SC protocol in hardware computes the result over 300,000 times 

faster than its software counterpart.  

1.5.  Thesis Outline 

 The remainder of the thesis contains two more sections, where it is assumed that the 

reader has basic abstract algebra and VHDL knowledge.  In section 2, subsections are presented 

for each of the three protocols, where, in each subsection, the protocol is described in more 

details, just as it is presented in [1], following with the ASM design, complexity and throughput, 

other important details like modifications to the protocol to better accommodate the hardware, 

VHDL implementation, and, finally, a sample run of the protocol.  As for section 3, a general 
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method is proposed for implementing cryptographic protocols in hardware, and lastly in section 

4, the results and conclusions. 
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2.  DESIGNS AND IMPLEMENTATIONS 

The main contributions are presented in this section, following a simple structure very 

similar to the way the protocols were designed.  First, the original protocols are presented, 

starting from the most fundamental one, SDM, followed by PiSDM, and finishing with SC.  In 

each individual protocol, the subsections are: Original Protocol, describing the protocol as 

presented in [1], ASM design, explaining and showing the interface, ASM chart, and data path, 

Protocol Complexity and ASM Throughput, where the efficiency of the design is discussed, 

Protocol Modifications for Hardware, a small section describing a few changes made to the 

original protocol to make it easier to implement, VHDL Implementation Details, describing 

entities and architectures, and lastly, Sample Run, which demonstrate the correct functionality of 

the protocol using ModelSim-Altera, a very popular tool for modeling of hardware in described 

using VHDL. 

The design, much like the VHDL implementation, takes a layer-based or component-

based methodology.  At the very bottom, SDM can be found, and because of the nature of an 

ASM, parties can be isolated from each other, allowing the digital hardware engineer to think of 

each party as a single chip or module.  In addition, because the ASM design method allows for 

the use of the one cycle demand driven convention, clock dependencies can be eliminated.  In 

other words, because the OCDDC is basically a handshaking mechanism for inter-module 

communication, each party can have their own clock.  A naïve method to synchronize the parties 

would be to use one clock for all parties, which might be okay with the assumption of the 

existence of a TI, but this still exposes the whole protocol, since it can still create issues like 

racing conditions and it would make the hardware vulnerable to an attack where an adversary 

could tamper with the clock and compromise the whole protocol. Note that an adversary would 
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now need to alter somehow at least two clocks, since at least two parties are needed in a protocol, 

to achieve the same kind of attack.  So using ASMs that fallow OCDDC, is a much nicer and 

elegant solution to designing and; therefore, implementing cryptographic protocols in hardware.  

Furthermore, using OCDDC plays nicely with the layered design used as well because any other 

hardware that needs to communicate with a component can simply follow the handshaking rules, 

so it is important to not only think about two parties communicating, but also other hardware, 

which is part of a more complicated party design, communicating with the component describing 

an already designed party, like PiSDM uses SDM. 

The next protocol, PiSDM, simply uses SDM as a component and communicates with it 

following the guidelines of OCDDC as if it was any other module.  This is where the layered 

design begins, because by abstracting out the details of SDM, PiSDM remaining hardware 

design becomes a lot simple.  The idea behind using this kind of approach is to make the design 

easier when the protocol’s objective is more complicated.  So this simply means that each party 

in PiSDM uses the corresponding party of SDM as a component (more details are given in 

section 2.2.).  In the same manner, the PiSDM parties' chips are used as components in the SC 

parties’ design and implementation.  In other words, by using this kind of layered design, the 

inner works of a component are details that do not concern the architecture using said 

component, giving abstraction to the layers as hardware is built on top of them; therefore, 

making it simpler to design otherwise complex parties. 

2.1.  Secure Distributed Multiplication (SDM) 

 Secure Distributed Multiplication, a protocol where two servers, using additive shares, 

can compute the product of two numbers, without knowing what the original numbers are, is 

crucial for the other two protocols presented because they make use of it, making the need for 
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maximum throughput even higher.  First, consider the following discussion on the original SDM 

protocol. 

2.1.1.  Original Protocol 

The secure distributed multiplication protocol described by Dowsley, Katti and 

Nascimento works in the following way: there are two numbers, U and V, which are to be 

multiplied, and two parties, A and B, that will run the protocol, so the parties are normally 

thought of as servers.  Each party holds an additive share of U and V, so let uA and vA be A's 

shares of U and V respectively, and let uB and vB be the shares of U and V that B holds.  All 

operations are in Zq, where q is a prime number.  Another party is needed, which is the trusted 

initializer, or TI, that provides pre-distributed randomness to A and B.  TI generates uniformly 

distributed random numbers r, a1, a2, b1, b2 ∈ Zq and sends r, a1, and b1 to A, and a2, b2, and I = 

(a1b2 + a2b1 - r) to B.  At the end of the protocol, A outputs (r + t) for a randomly selected t in Zq 

not known to B, and B outputs ((uA + uB) (vA + vB) - r - t).  The outputs of A and B are shares of 

the product UV (i.e. the sum of the shares of A and B’s outputs equal UV). The exact protocol 

performed by A and B is: 

 Step 1: A sends (uA − a1) and (vA − b1) to B. 

 Step 2: B sends (uB − a2) and (vB − b2) to A. 

 Step 3: A chooses a random t ∈ Zq, and computes                        

 X1 = (vB − b2) a1, X2 = (uB − a2) b1 and sends X = (uAvA + X1 + X2 − t) to B. 

 Step 4: B computes Y1 = (uA−a1) vB and Y2 = (vA−b1) uB, and computes Y = (Y1 + Y2 + 

X + uBvB + I). 

 Step 5: A outputs (t + r) and B outputs Y. 
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Output Correctness: the following should allow the readers to convince themselves that 

the output is in fact correct.  To do this, the values of Y1, Y2, X, and I are replaced by their 

expressions in the equation for Y, and simplification shows the correctness of the result: 

Y = (Y1 + Y2 + X + uBvB + I)  

Y = ( (uA − a1) vB + (vA − b1) uB + uAvA + (vB − b2) a1 + (uB − a2) b1 − t + uBvB  

+ a1b2 + a2b1 − r ) 

Y = (uAvB + vAuB + uAvA + uBvB − t − r) 

Y = ((uA + uB) (vA + vB) − r − t) = UV − r − t 

This correctness proof shows that party A will have the random number needed to come 

up with the actual result, and B has a randomized version of U times V, if you will.  Moreover, 

the intuition behind the security proof is simple.  In order for A, or B, to learn the other’s secret 

shares of U or V, they must learn the pre-distributed values provided by TI.  Since this is not 

possible by assumption, then privacy must be preserved.  A full proof of security can be found in 

[1]. 

2.1.2.  ASM Design 

Following the ASM design approach, the first item we need to address is the parties’ 

interfaces.  Figure 3 shows each party’s interface, which will be explained right after: 
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Figure 3:  SDM Interfaces 

 Starting with TI’s interface, since it is the simpler one of the three, it can be seen that it 

follows the naming convention of OCDDC, with Arqst and Adat corresponding to A’s pre-

distributed randomness, r, a1, and b1, and Brqst and Bdat corresponding to B’s pre-distributed 

randomness, I, a2, and b2.  Next, intuition is formed by the usage of same names to denote those 

ports, and also by noting that for any given step in the protocol, the rqst and dat ports are named 

in such a way as to indicate with whom the party is stablishing communication.  So observing A 

and B’s interfaces, at top left corners, we can see what port corresponds to each of their 

analogous port in TI, e.g. r in TI should be connected to r in A, and so on, and A’s output TIrqst 

corresponds to TI’s input Arqst.  Likewise occurs with B.  Furthermore, the rest of the inputs and 
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outputs in both A and B are used for the exchange of messages between the two and for 

outputting the protocol’s result, with the top right used for step 1 in the protocol, bottom right for 

step 2, middle right for step 3, and the bottom for step 5, the party’s output. 

The next step is to draw the ASM charts and the data paths, and because the design 

process tightly relates the ASM and data path, consider first TI’s design, starting with its ASM 

chart in Figure 4 and the data path in Figure 5: 

 

Figure 4:  SDM TI’s ASM 
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Figure 5:  SDM TI’s Data Path 

The ASM for TI is simple enough.  After the reset, it generates the five random values r, 

a1, b1, a2, b2, and after these become available, they are loaded into registers.  Then, TI computes 

I and sends the corresponding pre-computed randomness to the appropriate party. 

On the data path side, we can see several components being used, pseudo-random bit 

sequence generators, for example.  These, with the help of a counter, produce the five random 

values which are then used to calculate their modulus, and then stored in the registers.  These 

registers, though, are a bit different.  A register RegS, as it has been named, is a combination of a 

regular register with a multiplexer, to allow for immediate follow through of the input value.  

RegS, and all other components are described in Appendix A. This permits the increment of the 
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throughput by cutting a clock cycle from the total cycles needed.  Also, note that the counter 

receives its load signal directly from reset.  This can be done because the ASM ensures that 32 

increments are taken, bring the initial value back to 0 when TI is required again. 

Continuing with the discussion, because A and B have more complicated designs than TI, 

their ASMs and the data paths will be studied separately.  So consider A’s ASM in Figure 6 first: 
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Figure 6:  SDM A’s ASM 
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Although it may seem complicated or convoluted at first, if follows the simple step-by-

step the protocol follows when using a 32-bit prime number q.  A must first obtain the values it 

needs for the protocol, that is the pre-distributed randomness from TI and the shares from the 

users.  So that is the purpose of S0’s initial part, requesting TI’s data and the users’ shares that 

correspond to A, and A will continue to request the data it needs before moving on.  If it is the 

case that A receives the required inputs, then it proceeds to load that data to its registers and keep 

track of the number of clock cycles that have occurred since it also needs to generate randomness 

for step 3.  After A stores the values, it checks if B has requested the values it needs to send to B 

for step 1, going to another state, S2, if B did not signal a request and staying in that state until B 

does so.  On the other hand, if at any of the rising edges of the clock B requests the data from 

step 1, then A continues and asserts Bidat (valid bit for B’s input as seen by A) to let the other 

party know that the values being sent are valid.  As A asserts Bidat, it also requests B’s output 

from step 2 by a signaling high on Borqst.  This let’s B know that it is ready to receive step 2’s 

data.  In a similar manner to before, A now has to check whether B has send those values by 

asserting Bodat.  In the case the data is not ready, A goes to state S3, where it continues to request 

and check for valid data, and as soon as valid data is available, A loads it into a register, and 

moves on to state S1, where it will continue to generate the remaining random bits it needs.  In 

this state, a counter is continually incremented until 31, meaning that 32 clock cycles have 

occurred, so A is ready to compute the values from step 3.  So after t is ready, A checks if B has 

requested X’s value, returning to state S1 if not, and loading X, t, and its output to registers, while 

also signaling to B that X is ready to be read.  Next, still within S1, A verifies whether its output 

has been requested.  If it has, then it signals the validity of the data by asserting Adat and it 

increments the counter once more so that it is set back to 0.  If it was the other way, when A’s 
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output has not yet been requested, then the ASM goes to another state named S4, where it 

continues to wait for a request for its output.  When its output is requested, it transitions to S0 to 

complete the execution of the protocol. 

So that is the gist of A’s ASM chart.  Please notice how even though it seems convoluted 

at first, it follows a logical train of thought, as previously explained, for state transitioning and 

output asserting.  Now it is time to look at the final part of A’s ASM design, which is the data 

path shown in Figure 7, and just as with the ASM, the data path also tries to follow intuition and 

logical reasoning.  For example, on the left side, all inputs can be observed, each going in to a 

RegS.  This, again, is done to save one clock cycle so that maximum throughput may be 

achieved.  Also, signals that are outputted by the ASM are present here like Sld, TIld, and so on.   

Now that the ASM has been studied, looking at the data path should be more intuitive.  In 

the first step, transitioning from S0 to S1, all the relevant values are loaded into the input register 

on the left and the output register for B on the right.  From what it was seen in Figure 6, it is 

known that the top six input registers can be loaded with uA, a1, vA, b1, V2 and U2, and the top 

two output registers with U1 and V1, in the first clock cycle after the reset, provided that B is 

functioning normally. To be more precise, note that because all values are ready in the same 

clock cycle, the outputs, U1 and V1, can also be calculated right away using the "A-B mod q" 

components, and sent out by signaling high on Bidat at the same time, as long as B requests data 

using Birqst of course, due to RegS's special loading capability.  In the same manner, on step 2, 

the inputs U2 and V2 can be loaded right away because they are loaded into RegS components.  

During step 3, A needs to generate t to compute X, so it uses an up-counter to count 32 clock 

cycles, and after the randomness is the calculations X1 = (vB − b2) a1, X2 = (uB − a2) b1 and X = 

(uAvA + X1 + X2 − t) can be made.  Since A requires more clock cycles to generate t, the other 
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party can either keep their own counter of how many clock cycles have passed or can simply 

request X repeatedly until it becomes valid.  The latter turns out to be the best option not only 

because it eliminates the need for more circuitry to have a counter and the logic to figure out 

when B should request the data, but the former option would require both A and B to have the 

same clock speed, which may not be true in many cases.  Moreover, since input values are 

maintained by the registers, loading X right away is not needed until it is requested with Xrqst, so 

the request signal for X is simply used as the load value for X's RegS.  However, because B 

knows of A’s extra time spent generating randomness, B is requesting for X constantly and just 

waiting for valid data (more on this shortly), so in practice, Xdat is signaled as high at the same 

clock cycle as when t is ready and X is calculated.  Also, during the same clock cycle t is ready, 

A can be calculated and loaded, but for the same reason as X, it does not need to be loaded until 

the output is requested. 
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Figure 7:  SDM A’s Data Path 
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Now that TI and A’s designs have been fully explained, all that is left from the SDM 

protocol’s design that needs to be discussed is B’s ASM design, starting with its ASM chart in 

Figure 8 and then finishing with its data path in Figure 9.  Following the same logic as with A’s 

ASM, this ASM chart starts with a necessary reset so that the initial state is known, and then 

continues to follow the clear steps presented in the protocol itself.  First, B must have its share of 

U and its share of V, along with the pre-distributed randomness a2, b2, and I, from TI, but also 

notice that Aorqst is also a Moore output in state S0.  This is a simplification done because it does 

not matter if A’s output from step 1 is ready at the same time as the shares and pre-distributed 

randomness due to the fact that its value will not be loaded unless uB, vB, a2, b2, and I are valid 

as well, and clearly, if Sdat and TIdat are not high, then there is no transition to another state.  Of 

course, when this data is valid, the B’s output from step two can be computed and store right 

away by signaling Aild.  In the case that U1 and V1 are not indicated to be valid by Aodat, then 

the ASM moves to state S1.  In S1, the ASM continues to make requests for U1 and V1 until the 

values become valid.  When Aodat is high, then Aold is asserted and B checks whether U2 and 

V2 have been requested with Airqst.  If Airqst is not high, then the next state is S2, where B waits 

until these values are requested by A.  When U2 and V2 are requested, then step 2 from the 

protocol can be completed by signaling to A that the values are valid using Aidat, and also, to 

request X with Xrqst.  If X is not available yet, then the ASM transitions to S3, where it continues 

to request X until the data is valid.  Next, when Xdat becomes 1, then X can be loaded with Xld, 

so B’s final output can be calculated now that X is valid and it can be loaded using Bld.  Lastly, B 

checks for a request on its final output using Brqst.  If Brqst is not asserted, then the ASM goes 

to state S4 to continually checks for a request.  In either case, when the request is received, B 
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asserts Bdat to indicate its output is valid, and it returns to S0, completing a full execution of the 

protocol. 

Next, consider B’s data path.  As with A’s data path, registers used for inputs are located 

on the left, and registers used for outputs are located on the right.  In addition, all these registers 

are RegS components to eliminate extra clock cycles.  Regarding its functionality, it can be 

observed that registers are organized in such a way that calculations from the steps in the 

protocol can be followed from top to bottom.  On the top, the registers for uB, a2, vB, and b2 are 

found, and they continue to the "A-B mod q" components that calculate U2 and V2, which are the 

first computations that B needs to perform.  The next four registers, corresponding to X, I, U1, 

and V1, are used to store other input values needed to calculate Y1 = (uA−a1) vB = U1 vB and Y2 

= (vA−b1) uB = V1 uB, and B’s output Y = (Y1 + Y2 + X + uBvB + I).  This calculations, 

however, need not be done until X is valid.  So when X in indicated as valid by Xdat, X is loaded 

and available immediately, and B’s output is calculated using the several "A+B mod q" and "A 

×B mod q" components. 

As mentioned previously, it is crucial for optimality that this protocol is design to achieve 

maximum throughput because the other two protocols use this one repeatedly, which is why 

emphasis has been made in making it clear that ASMs will request and send multiple pieces of 

data at the same time, and data paths will use RegS in sequential circuits to eliminate extra clock 

cycles because this type of register ties the input directly to the output when a new value is being 

loaded into a regular register contained within itself.  This way, on the first clock cycle when its 

load signal is 1, the output is taken directly from the input, and for the following clocks, it is 

taken from its regular register component. 
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Figure 8:  SDM B’s ASM 
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Figure 9:  SDM B’s Data Path 

Note: all components are reviewed in more detail in Appendix A. 
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2.1.3.  Protocol Complexity and ASM Throughput 

In this section, the interest lies in finding the complexity in relation to a security 

parameter.  This parameter is the size of the prime number q, which is what provides the 

computational security for the protocol.  So as mentioned in the previous section, q is 32 bits, but 

for a more general solution, let |q| denote the bit length of q. 

As it can be seen, neither the original protocol nor the slightly modified version which 

was implemented have a complexity dependent on |q|, giving a complexity of O(1) for number 

of multiplications and additions, and with O(|q|) for generating randomness.  Moreover, the 

maximum TPC of the protocol should be 1/|q| = 1/32 because input data is loaded in 1 clock 

cycle and it takes |q| = 32 cycles to complete the computation of the multiplication.  It is worth 

noting that ASMs should be design to reach the max TPC possible, which in the case of these 

designs, it is true. 

Due to generating randomness on step 3 of the SDM protocol, the throughput of both A, 

and B is 1/|q| = 1/32 because 1 multiplication can be done in the 32 clock cycles it takes to 

generate a random number.  TI’s throughput because it generates one output set of values every 

32 clock cycles.  Note that when the protocol runs the first time, it takes 64 clock cycles to 

calculate the multiplication; however, this is just a transient because TI continues to generate 

random numbers, so that when new randomness is requested again, it is available right away.  

The TPC diagrams for TI, A, and B are in Figure 10: 
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Figure 10:  SDM TPC Diagrams 

2.1.4.  Protocol Modification for Hardware 

As mentioned before, a slight change was made to the original protocol in order to add 

simplicity to the VHDL design.  This change is simply to replace subtractions with additions of 

additive inverses.  In Zq, additive inverses can be easily calculated by subtracting said number 

from q.  For example, in step 1, A must calculate (uA - a1), so this operation is replaced by (uA + 

(q − a1)).  This is done for each subtraction in steps 1, 2, and 3.  Furthermore, the reasoning 

behind this change is to avoid the usage of signed data types in the VHDL code, because using 

that data type would require extending numbers to one extra bit in order to prevent data losses.  

Note that the result of any of those subtractions could, in fact, be negative, which does not result 

in any errors after computing the modulo q when using signed numbers, but it does, however, 

create an obvious error when only using unsigned numbers. 

2.1.5.  VHDL Implementation Details 

To implement each party’s hardware, two different approaches are taken for the ASM 

and the data path.  All parties use a component-based implementation to describe the data path, 

whereas for the ASM, TI uses a dataflow implementation, and A and B use an algorithmic 
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implementation.  The reason for this is because TI requires much less complicated hardware so 

state and output equations can be easily derived from its ASM, but A and B have more 

complicated algorithms to run, making it simpler, from an implementation perspective, to use a 

“process” to describe each of those ASMs.  In all cases, the ASM’s current state is stored in D 

Flip-Flop implemented using an algorithmic approach, with a synchronous, active high, reset.  

Furthermore, to implement A and B’s ASMs a new type is declared to represent the states.  These 

states are used in a process that resets all outputs to 0 first to avoid latching, and then in a case 

statement the process contains, each case represents a state where only the appropriate signals 

are set to 1.  Using a process is very helpful for one important reason, which is that states only 

assert the signals they are supposed to, just like they do in the ASM chart itself. 

The SDM design, which includes TI, A, and B, was implemented using a very popular 

tool named Quartus II, which is used for FPGA and system on chip (SoC) design, so it works 

nicely with VHDL.  From Quartus, it is simple to make use of VHDL packages like 

IEEE.STD_LOGIC_1164 to allow usage of std_logic_vector, IEEE.STD_LOGIC_UNSIGNED 

to allow the usage of addition, subtraction, and multiplication of standard logic vectors, and 

IEEE.NUMERIC_STD in order to be able to use the unsigned data type, as well as addition, 

subtraction, and multiplication of the unsigned type.  Finally, after having designed the entities 

and architectures for TI, A, and B, another design, called SDM_chip, is used to connect all three 

parties.  This SDM_chip uses the parties' designs as components to perform a simple port 

mapping to interconnect them, yielding the report in Table 1 after analysis and synthesis in done 

on SDM_chip.  The most important detail to observe from the report provided by Quartus is that 

the large majority of logic elements used are part of combinational logic, which is to be expected 
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since all addition, subtraction, multiplication, and modulus functions are calculated for 32-bit 

words, creating the need for the large amount of logic elements. 

The SDM_chip, the top-level architecture of the SDM Quartus project, which contains all 

three parties hooked up together, is then assessed using a testbench, also written in VHDL, which 

provides the clock, reset, and the inputs like uA, uB, vA, and vB to the parties.  Essentially, this 

testbench runs the protocol under the security model’s assumption and verifies its proper 

functionality by calculating the expected and obtained results, and comparing these results to 

show they are equal. 

Table 1:  SDM Analysis and Synthesis Report from Quartus II 

Total logic elements 31,315 

Total combinational functions 31,187 

Dedicated logic registers 1,140 

Total registers 1140 

Total pins 202 

Total virtual pins 0 

Total memory bits 0 

Embedded Multiplier 9-bit elements 64 

Total PLLs 0 

Note: all VHDL code is available in Appendix B. 

2.1.6.  Sample Run 

ModelSim-Altera was the CAD tool used for simulating the hardware implementation.  

The verification is done by writing a VHDL testbench that is complemented with a macro file to 

configure the simulation itself.  Put simply, the testbench dictates the behavior of each signal like 

the clock, reset, and inputs, and the macro file tell ModelSim-Altera what to display and what 

format to use for the displayed variables. 

The simulation runs for three sets of inputs, and with q = 4294967291, also, all 

operations in modulo q.  First, however, the parties must wait until pseudo-randomness is 
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generated to output meaningful data.  The testbench was written to reset the hardware and then 

make each set of inputs available as soon as they are requested, which is right after the reset. 

After the first set of randomness is provided, the protocol starts running normally.  

Moreover, note that the set of inputs in the testbench were changed at the same time the new set 

of randomness is available to allow for a clean transition that can be seen in the ModelSim-

Altera simulation output. 

In each iteration, the values shown are reset, clk, uA, uB, vA, vB, Arqst, Ao, Adat, Brqst, 

Bo, Bdat, mult1, mult2, and correct.  Note that uA, vA, uB, and vB are A and B's additive shares 

of U and V.  Also, Arqst and Brqst are the request signals corresponding to Ao and Bo, which are 

the parties' outputs, respectively.  In addition, mult1 is equal to (uA + uB) (vA + vB), and mult2 is 

equal to (Ao + Bo).  So by the output correctness property, mult1 should equal mult2 when Adat 

and Bdat are both 1, since these are the data signals for Ao and Bo.  When the expected result, 

mult1, and the obtained result, mult2, are equal, correct is high, and otherwise is low. 

The first set of inputs are uA = 1906243613, uB = 1761250485, vA = 1450887487, and 

vB = 991888945, so the two numbers are U = 3667494098 and V = 2442776432.  The result 

gives that mult1 = mult2 = 333301357.  The second set of inputs are uA = 1073741827, uB = 1, 

vA = 1, and vB = 1, so the two numbers are U = 1073741828 and V = 2.  The result gives that 

mult1 = mult2 = 2147483656.  The third set of inputs are uA = 3, uB = 2, vA = 5, and vB = 8, so 

the two numbers are U = 5 and V = 13.  The result gives that mult1 = mult2 = 65, showing the 

protocol works. 

To illustrate these results, Figure 11 shows the simulation results directly obtained from 

ModelSim-Altera, where red lines and the value “U” represents an uninitialized value, 0s and 1s 
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show the value of a vector (a variable with more than one bit), and high and low represent 1 and 

0, respectively, for single bit variables like reset and clk. 

 

Figure 11:  SDM Sample Run 

2.2.  Secure Distributed Multiplication of a Sequence (PiSDM) 

Secure Distributed Multiplication of a Sequence is a protocol where two servers, using 

additive shares, can compute the “pi product” of several numbers, without knowing what the 

original numbers are.  This protocol, although not explicitly introduced in [1] as it is presented in 

this thesis, still is important because it is used in the Secure Comparison protocol described.  In 
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step 3 of SC, PiSDM is used even though it is not presented separately, but as a part of Secure 

Comparison.  The next section explains the protocol in detail. 

2.2.1.  Original Protocol 

The protocol PiSDM works similarly to SDM with one big difference: the parties A and B 

don’t receive two shares of two separate numbers, but multiple shares corresponding to the bits 

in a bit string c, where cA refers to A’s array of shares, and cB refers to B’s array shares.  So each 

share is an additive share of a bit in c. These arrays are indexed from 1 to l = |q| because of the 

protocol’s end use in SC, where the shares of index 1, for example, are written as c1A and c1B. 

Using these shares, TI, A, and B run the protocol in the following manner.  Let l be the 

number of bits in c, i the current index in the arrays cA and cB, Ai and Bi the SDM outputs for i  = 

2…l, and with the assumption that one set of precomputed random values from TI is available 

like it is done in the SDM protocol, then: 

 Step 1: A and B run SDM with c1A, c1B, c2A and c2B as inputs with the precomputed values 

from TI, and TI generates new randomness for the next step.  Set i = 2 so that A2 and B2 

denote the SDM result in this iteration. 

 Step 2: increase i by 1. A and B run SDM with ciA, ciB, Ai-1 and Bi-1 as inputs with the 

precomputed values from TI, and TI generates new randomness for the next step.  The 

outputs are Ai and Bi. 

 Step 3: repeat Step 2 until i = l.   

 Step 4: A outputs Aout = Al and B outputs Bout = Bl. 

Output Correctness: assume the Aout = Al and Bout = Bl are not correct.  Then there must 

exist some i for which Ai and Bi are also not correct, but this cannot be the case because the 

inputs initial input c1A, c1B, c2A and c2B give a correct output due to SDM’s correctness.  So by the 
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same assumption, no i exist such that Ai and Bi are not correct, and therefore, Aout and Bout must 

be correct. 

Moreover, the intuition behind the security proof is simple.  By the 

Composability Theorem, it is secure to combine protocols in series, provided that the combined 

protocols are secure on their own.  So by this theorem, our (l – 1) iterations of SDM are secure, 

making PiSDM secure. 

2.2.2.  ASM Design 

Continuing with the PiSDM discussion, it will be shown that even though this protocol 

computes a more difficult result than SDM, with the use of the SDM parties’ components, the 

resulting ASM design is much less complicated, and therefore also showing the biggest 

advantage of hierarchical design approaches.  So much like how it was done with SDM, consider 

the parties’ interfaces in Figure 12: 
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Figure 12:  PiSDM Interfaces 

 The same concept and intuition that applied to SDM, applies here with PiSDM.  Request 

and data signals are named in such a way as to indicate which parties are communicating for the 

particular value they enclose.  For example, TI has Arqst, an input, and Adat, an output, 

enclosing r, a1, and b1, indicating that these values from TI will be sent A.  The case of X is a bit 
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different. X, which is a single piece of data sent from A to B, simply has the same port names in 

both A and B to illustrate the fact that these ports are to be connected, where Xrqst in A is an 

input, but it is an output in B, and X and Xdat are outputs for A, but inputs for B. 

With the interfaces explained, now consider the requirements for TI.  The fact is that TI 

just needs to be able to generate the randomness needed by A and B, and continue to do so until 

they are done running the SDM protocol (l – 1) times.  If SDM’s TI is looked at carefully, it can 

be deduced that it meets the requirements this TI needs.  This is true because SDM’s TI will 

generate randomness whether it is requested or not, and once it has come up with r, a1, b1, I, a2, 

and b2, it will check if A or B have requested their values.  The first time around, A and B will 

wait for TI to compute their values.  After that, while they are running SDM, TI continues to 

generate more randomness, and by the time the parties require a new set of random values from 

TI, it has already computed them.  So please refer to the section 2.1.2 for details about PiSDM 

TI’s design. 

As explained in the previous paragraph, the PiSDM protocol gets its TI design for free 

from SDM, and although it does not quite get A and B for free, the additions are not too 

complicated.  Not only that, but A’s design and B’s design turn out to be identical because they 

are just repeatedly querying SDM A and SDM B, respectively.  So taking A as an example, 

consider its ASM first.  Note that after the reset, it asserts Crqst, uAs which is a select signal, and 

Cpld, a parallel load signal in state S0.  The next step is to check whether C is valid by checking 

if Cdat is high.  If it is not, then the ASM loops back to S0, but if it is, then it can load C and the 

count using countld (keeping track of how many times it has run the SDM protocol is obviously 

necessary since it has to stop eventually, so that is why there is a count variable).  A also checks 

if ASrqst is high, meaning that SDM A has requested shares.  If SDM A hasn’t, then the next state 
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is S2, where it waits for a request.  When a request is made, though, A signals ASdat to let the 

SDM component know that the given shares are valid and uses uAld, another load signal, to use 

the correct index of C for step 1 on PiSDM.  When this is done, it sets the next state to S1. 

Step 2 in the protocol is slight different that step 1, creating the need for S1 and S3, which 

roughly perform the same checks and asserts similar variables as S0 and S2, respectively, with 

one important addition being that both S1 and S3 now keep track of the count to make sure to 

transition to the right state when the count has been reached.  To be more specific, S1 is designed 

to check first if the count has been reached, and if it has not, it asserts ASdat indicating that SDM 

A’s input shares are valid and proceeds to request its output.  If the output is not ready yet, then 

the ASM returns to S1, but when it is, the ASM performs another check to see if the count is 30 

because in that case, it would mean that the current output is the last one, so A can assert inc and 

check if the PiSDM output has been requested with Arqst, asserting Adat and returning to S0 if it 

has, and returning to S1. If it is not the last iteration, the count is increased, and the values for the 

next round are loaded, and ASrqst is immediately checked to see if ASM A has requested new 

shares.  If it has requested shares, then it simply returns to S1, but otherwise, it transitions to S3.  

In state S3, as with S1, the count is checked first to see if it has reached the final iteration.  If it 

hasn’t then it checks if SDM A is done generating the current iteration’s output, increasing the 

count and loading the next values if it has, or returning to S3 if it hasn’t.  If it is the case that the 

ASM is currently in S3 and the last iteration has been reached, A checks if the Arqst is high, 

asserting Adat if the output has been requested, or returning to S1 if it has not been requested. 
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Figure 13:  PiSDM A’s ASM 
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The reason why count is checked twice is to reduce one clock cycle when the last 

iteration is reached because if it was not done this way, then one cycle would be wasted 

unnecessarily transitioning from S1 to S3, and then checking if the final output has been 

requested.  This way, as soon as the output is available, it Arqst is used to transition to S0 or S1. 

To complete A’s design, the last step is to look at its data path in Figure 14: 
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Figure 14:  PiSDM A’s Data Path 

 So as previously stated, PiSDM A (and B) is not much more complicated than SDM A.  It 

requires a counter to keep track of how many iterations of SDM it has gone through, a mux used 

to distinguish between the first iteration (step 1), and all the following iterations (step 2), so with 

the help of the ASM, uAs connects C1 to the RegS that provides uA to SDM A when the state is 

S0, and selects the value coming as feedback from SDM A’s output for the rest of the iterations.  
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The last hardware component used is ShiftRegP, a special shift register which also has a parallel 

load option.  This is used to load C2 through Cl at the same time into the data path, and then feed 

the values one by one to SDM A. 

There is one more difference here related to how the counter is used here, though.  

Because the PiSDM protocol needs (l − 1) iterations of SDM, then for the required l bit words, (l 

– 1) iterations are needed.  So simply initializing the count to 0s and counting to (l – 1) works 

nicely. 
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Figure 15:  PiSDM B’s ASM 
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Figure 16: PiSDM B’s Data Path 

 Figure 15 and Figure 16 show B’s design.  Since it was mentioned that this party’s design 

is identical to A’s, then no further explanation will be made at this point about B’s ASM and data 

path. 

2.2.3.  Protocol Complexity and ASM Throughput 

PiSDM has a complexity easy to calculate simply because it queries SDM repeatedly, 

giving it a complexity of O(l − 1) = O(l) in big-O notation for multiplications and additions, and 

O(l × |q|) for generating randomness. 

ASM throughputs are easy to calculate as well.  TI has the same throughput as SDM TI 

since they are the same design, and A and B query their corresponding SDM party l − 1 times, to 

obtain one output so each of their throughputs is: 
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𝑇𝐶𝑃 =
1

(32)(𝑙 − 1)
 

This can be observed from their TCP diagrams in Figure 17.  In addition, TCPmax is also 

the same as A and B’s TCP by inspection of the protocol.  So all parties achieve max throughput. 

S0 S1

32 (l — 1)

b. A TPC diagram 

S0 S1

32 (l — 1)

c. B TPC diagram 

S1

32

a. TI TPC diagram 

 

Figure 17:  PiSDM TPC Diagrams 

2.2.4.  VHDL Implementation Details 

 In this implementation, TI remains the same, and A and B use the SDM parties’ 

implementation in a component-based data path implementation, with an algorithmic (process) 

approach to the ASM, much like it was done in SDM.  The packages used are the same with the 

addition of a custom package named MY_PACKAGE, which defines a useful data type, an array 

basically, to describe the multitude of shares A and B receive from the user.  It makes it easier for 

whomever is writing the VHDL code since VHDL is a hard-typed language, meaning that inputs 

and outputs must have the same data types as required by their declaration as a signal or an input 

or output pin in the component’s entity.  This is the case because arrays are a bit more 

complicated to declare, so defining a new data type removes a lot of the kinks that come from 

that. 
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To combine all the parties and test the protocol as a whole, the component PiSDM_chip is used, 

where TI, PiSDM A, and PiSDM B are connected to run in the same why as in SDM_chip, using 

the parties’ implementations as components and connecting them together.  The component 

PiSDM_chip is later used in the testbench tb_pisdm, which provides the clock, reset, input 

signals to the PiSDM protocol running in VHDL.  When providing the input, this testbench 

follows the OCDDC, validating the inputs with each party’s data signal and requesting their 

output right away, and continuing to request the outputs until both parties A and B have signaled 

that their corresponding results are valid. 

Quartus II’s analysis and synthesis gives the report given in Table 2.  This is the result of 

synthesizing PiSDM_chip, so the whole protocol.  The most important detail to notice about this 

report is that comparing the total number of logic elements between PiSDM_chip and SDM_chip, 

the former is not much larger than the latter.  This confirms the intuition of the PiSDM design, 

which, analogously, is not much bigger than the secure distributed multiplication design.  

Furthermore, another number to take a note of is the total number of pins (both input and output 

pins), which might be alarming, but not necessarily since PiSDM is to be used by SC, which can 

define its own input method to reduce the number of pins. 

Table 2:  PiSDM Analysis and Synthesis Report from Quartus II 

Total logic elements 32,830 

Total combinational functions 32,766 

Dedicated logic registers 3,270 

Total registers 3270 

Total pins 2,122 

Total virtual pins 0 

Total memory bits 0 

Embedded Multiplier 9-bit elements 64 

Total PLLs 0 
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2.2.5.  Sample Run 

 PiSDM is actually somewhat generic in the sense that the number of multiplications can 

be set using a VHDL generic map, so this example uses 32-bit shares.  This protocol, however, 

does not have the restriction of using shares that add up to bits (either 0 or 1), so because this 

restriction will lead to the result almost always being 0 and being 1 only for the case when all 

bits are 1, non-zero numbers larger than one are used.  These numbers are all 2 except for the 

first one which is 1, and the reason why these were chosen for the sample run is because the 

result is easy to recognize (2
31

 = 100000000000000000000000000000002). 

The testbench mentioned before is used by the ModelSim-Altera and the written macro 

file to simulate the protocol.  In this simulation, the values shown are reset, clk, Arqst, Ao, Adat, 

Brqst, Bo, Bdat, expected, and calculated.  The signals Arqst and Brqst are the request signals for 

PiSDM A and B’s outputs, and Adat and Bdat are the corresponding valid data signals.  Ao and 

Bo show the iteration’s output, so that the last value is the final result.  The other two signals 

show the expected and calculated results.  A partial view of the simulation is in Figure 18: 

 

Figure 18:  PiSDM Sample Run 

As it can be seen, Adat and Bdat indicate the validity of the output, which can be 

confirmed by comparing the expected and calculated variables, which are the same from the 

moment both data signals are shown as high. 
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2.3.  Secure Comparison (SC) 

 The secure comparison is a protocol executed between two parties, which use additive 

shares of two numbers' bits and abstract mathematics to be able to compare two integers modulo 

q, and tell whether one is larger than the other without ever knowing the two numbers 

themselves.  This protocol is the final design presented in this thesis, and is built upon the 

previous designs already discussed. 

2.3.1.  Original Protocol 

The protocol SC utilizes PiSDM, along with some other computations that use abstract 

mathematics, in order to determine whether a number Y = (yl... y1) is greater than another number 

X = (xl... x1).  This is a two party protocol between A and B, where each them has additive shares 

of the X and Y’s bits.  These shares are represented by A’s XA = (xlA... x1A), YA = (ylA... y1A), and 

B’s XB = (xlB... x1B), YB = (ylB... y1B).  In this way, xi = xiA + xiB and yi = yiA + yiB, where these 

additive shares belong to Zq, and xi, yi belong to the binary numbers.  Also, let square brackets [ ] 

enclosing a variable denote the shares of said variable.  For example, [xi] represents the shares of 

xi, both xiA and xiB, that is.  Note that q > 2
l+2

 is a requirement stated by the authors. 

The protocol, as presented by the authors, goes as stated bellow, with A having XA and 

YA, and B having XB and YB, and outputting Y > X or Y ≤ X: 

 Step 1: for i = 1… l, A and B compute shares [di] where di = xi – yi.  Note di ∈ {0, 1, -1}. 

 Step 2: for i = 1… l, A and B compute shares [ci] where ci = di + 1 + ∑ 𝑑𝑗2
𝑙−𝑗+2𝑙

𝑗=𝑖+1 . 

 Step 3: A and B query SDM l – 1 times in order to compute the shares of Out = 

∏ 𝑐𝑖𝐴 + 𝑐𝑖𝐵
𝑙
𝑖=1 .  The first iteration computes c1c2, and then recursively multiply that by ci.  

Let OutA and OutB be the shares which correspond to Out. 
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 Step 4: B sends OutB to A, so that A can compute Out = OutA + OutB.  If Out = 0, then A 

outputs Y > X, otherwise, A outputs Y ≤ X. 

Before reading about the security of the protocol, some helpful intuition is discussed 

regarding the protocol correctness.  The first point to notice is the meaning of the di variables in 

step 1, which can be simply consider the “difference bits”.  This is used to know which bits are 

different between X and Y. On the next step, the “comparison bits” are computed.  These 

comparison bits, starting from bit 1, compute a summation that will only be 0 when all the 

remaining bits to the left are 0 (the bits which are more significant).  The reason to do this is 

because a bit i is relevant to the output only when the remaining significant bits are the same in X 

and Y.  Take bit l, for example, there are no bits that are no more significant that this one, so ci = 

di + 1.  In this case, ci = 0 only when di is -1, implying yi > xi.  This leads to step 3.  Taking 

advantage of SDM, A and B can multiply all of these shares securely, and so only when one 

comparison bit is 0 is when Y is greater than X, otherwise, the result will always be non-zero as 

long as q > 2
l+2

.  This is a requirement because of the 2
l – j +2

 in Step 2, which can overflow the 

modulus q, possibly causing a false positive.  Later, it will be shown that the q > 2
l+2

 restriction 

can be tighten up in order to gain another bit of resolution for X and Y.  For a full correctness 

proof, see [1]. 

Now that some intuition has been given to the reasoning behind the protocol’s operations, 

consider the security of SC, which can be taken into three parts.  The first one is the first two 

steps of the protocol, which are simply internal computations of random numbers, leaving no 

issue there.  The second part is step 3, where SDM is recursively called, so as it was pointed out 

in the PiSDM section, there is no security risk in serially querying a protocol which is secure on 

its own.  This leaves the last part to be step 4, where B sends its output to A.  In this case, there 
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could be a concern; however, due to the security of SDM, A cannot learn anything else from B’s 

shares of a previous iteration. 

2.3.2.  ASM Design 

 Same as before, consider first the interfaces for this protocol in Figure 19: 
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Figure 19:  SC Interfaces 

The important aspect to notice here is that A and B both now receive two arrays of shares 

each, and that B’s final output, signified by OB in the interface, and its corresponding request 

and data signals OBrqst and OBdat, are communicated to A, who is in charge of determining the 

protocol’s final result.  Other than that, the interfaces for PiSDM and SC are essentially the 

same. 
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Unlike PiSDM, though, secure comparison does have different designs for A and B 

because they perform different kinds of computations in the protocol, although they are 

somewhat similar, and TI remaining the same as SDM and PiSDM.  First, consider A’s ASM in 

Figure 20. 

After the state machine goes through reset, A first checks if the shares XA and YA are 

available and valid, then it checks if PiSDM A has requested a set of shares to perform the secure 

distributed multiplication of all shares in that set.  If the input shares XA and YA have not been 

indicated to be valid, or if shares have not been requested by PiSDM A, then the next state is 

simply S0.  Otherwise, ACdat is set to high, indicating the PiSDM component that shares 

provided to it are valid, and the next state is S1.  Note that the computations of steps 1 and 2 are 

combinational, so values for step 3 can be ready as soon as the input shares are read in.  After 

PiSDM A has received the necessary shares, then SC A requests the sequential product output 

repeatedly in S1 using AArqst, and checking the validity of the output with AAdat.  In this case, it 

is known that A will remain in S1 for the several clock cycles it will take for the PiSDM protocol 

to complete, which corresponds to step 3, but after AAdat is a 1, then the step is complete, so SC 

A can request B’s output for step 4.  To do that, A asserts OBrqst to request OutB, and verifies 

whether OBdat is asserted. 

At this point, two more states remain to discuss.  The first one, S2, is used as a safeguard 

for when OutB is not valid right away in S1.  State S2 simply requests OutB until OBdat is a 1, 

indicating the value is valid.  Regardless of whether the state transition occurred directly from S1, 

or just from S2, Bld is asserted so that A loads OutB as an input.  After this value is loaded, then 

A can finalize its computations and final output from step 4.  So Arqst is checked to see if the 

final output has been requested.  This leads to the last state to discuss, S3.  This state is similar to 
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S2 in the sense that it is used as a safeguard for when values are not requested as soon as they are 

available, or when requested values are not yet valid.  In this state, Arqst is constantly checked, 

remaining in S3 until the output is requested by the user, and again, regardless of where the state 

transition came from, as soon as Arqst is 1, then Adat is asserted to indicate the final output is 

valid, and the state goes back to S0. 

Since A and B’s ASMs are similar, now consider B’s ASM in Figure 21.  It can be seen 

that after the reset, B requests its shares XB and YB, and checks if PiSDM B has requested input 

shares for calculate the Pi product.  If both of those are true, BCdat is asserted and the ASM 

transitions to S1, but otherwise, the ASM stays in S0.  While at S1, the ASM requests PiSDM B’s 

output constantly with BBrqst until the output is signified to be valid with a 1 in BBdat.  Since B 

does not perform any more computations, it loads its output OutB into a register using Bld, and 

waits until the output is requested by SC A.  To do that, Brqst is checked, transitioning to S2 

when the value was not requested by A.  When the output is requested, though, whether the ASM 

is currently in S1 or S2, Bdat is asserted to let SC A know that OutB is correct, and state goes back 

to S0. 
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Figure 20:  SC A’s ASM 
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Figure 21:  SC B’s ASM 

Following to A and B’s data paths, there are only a few differences.  The first one is that 

on step 2, the parties must compute ci = di + 1 + ∑ 𝑑𝑗2
𝑙−𝑗+2𝑙

𝑗=𝑖+1 , where the shares for the 

summation and di can be easily computed, so the only remaining computation is to add the 1.  To 
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do this, an arbitrary party alone can add a 1 to their computed [di].  Party B is selected arbitrarily 

to carry out this extra addition.  This leads to A’s data path in Figure 22 and B’s data path in 

Figure 23. 
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Figure 22:  SC A’s Data Path 
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Figure 23:  SC B’s Data Path 

From these two figures, the important components to observer are the “Shares” 

components.  Subshares receives two arrays of shares, and subtracts the bottom array from the 

top one, AddShares adds the shares instead of subtracting, AddShares1 adds the shares with the 

extra plus 1 from step 2, and SigmaShares calculates the sigma summation also from step 2.  The 

output from step 2 comes from the AddShares component in A, and the AddShares1 component 

in B.  This result is fed directly to the corresponding PiSDM component to carry out step 3.  The 

remaining components are to calculate and hold the final result in step 4, which by the way, is 

represented by a single bit.  When Y > X, the output is a 1, or a 0 for Y ≤ X.  Notice the use of 

RegS for maximized throughput. 

2.3.3.  Protocol Complexity and ASM Throughput 

 SC is an example where the complexity and the throughput vary with respect to each 

other just because of the massive amounts of additions and multiplications done on top of the 

usage of PiSDM.  The complexity, in terms of addition and subtractions is O(l + l
2
) because l 

come from PiSDM and l
2
 comes from the summation in step 2, which can be reduced if the 
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summation is performed differently.  To be precise, if the summation is calculated from i = l 

down to i = 1, then the previous summation value can be reused, reducing the l
2
 to simply l, 

giving a final complexity of O(l).  The same applies to multiplications, which are reduced as well 

if the previous approach is taken to calculate ∑ 𝑑𝑗2
𝑙−𝑗+2𝑙

𝑗=𝑖+1 , giving O(l) as well.  Lastly, in 

terms of generating randomness, complexity is O(l × |q|) because PiSDM is queried l − 1 times. 

As for ASM throughputs, all parties remain with the same TCP and TCP diagrams 

because the only sequential component is any SC party is the corresponding PiSDM component, 

so TI has the same throughput as PiSDM TI, and A and B have the following TCP value: 

𝑇𝐶𝑃 =
1

(32)(𝑙 − 1)
 

This can be observed from their TCP diagrams in Figure 24: 

S0 S1

32 (l — 1)

b. A TPC diagram 

S0 S1

32 (l — 1)

c. B TPC diagram 

S1

32

a. TI TPC diagram 

 

Figure 24:  SC TPC Diagrams 

2.3.4.  Optimizing l and Selecting q for the Biggest Integer Range 

 The restriction q > 2
l+2

 comes from the need to use an extra 22 in step 2’s summation.  

When considering the possible values for the expression for c1 = d1 + 1 + ∑ 𝑑𝑗2
𝑙−𝑗+2𝑙

𝑗=2 , which 

has the most terms in the sigma sum, we have that its maximum absolute value is 
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| ∑ 𝑑𝑗2
𝑙−𝑗+2|𝑙

𝑗=2 = |𝑑22
𝑙 + 𝑑32

𝑙−1 +⋯+ 𝑑𝑙2
2| ≤ 2𝑙+1 − 4, making safe to assume a q > 2

l+2
.  

However, note that a false positive can only occur when ci is some multiple of q, and given the 

fact that | ∑ 𝑑𝑗2
𝑙−𝑗+2|𝑙

𝑗=2  is always even, then the only case that any ci could be a multiple of q is 

when di + 1 is 1, giving the range 5 − 2𝑙+1 ≤ ci ≤ 2𝑙+1 − 3, which contains 2𝑙+2 − 7 distinct 

values.  Note that the actual upper bound is ci ≤ 2𝑙+1 − 2, but this occurs when di = 1, which will 

result in an even-valued ci, and that will never result in 0 when the modulo-q operation is carried 

out because q is an odd prime.  The number of values in the range is the actual minimum 

boundary (non-inclusive) for q, so that overflow in the modulo-q operation is never possible.  So 

now that it is known that the exact inequality is q > 2
l+2

 – 7, q (and l) can be selected, and as it 

has been used before, let q = 4294967291.  This selection is actually quite good because q = 

4294967291 = 2
l+2

 – 5 for l = 30, giving a nearly perfect q value for a length of 30 (recall l is X 

and Y’s length, or their number of bits).  Having |q| = 32 is good choice by itself already because 

is a power of two, which would make it easier to adapt the design for use in many processors.  

Furthermore, another reason why using a 32-bit prime q is a good choice is because it is the 

maximum number of bits allowed that will still permit the usage of standard VHDL packages 

and operations, mainly because the modulus operation can only be performed to numbers of up 

to 64-bits, and since multiplication is required, 32-bit buses are the maximum allowed for regular 

variables like shares and so on.  Finally, in order to have the maximum domain for which X and 

Y belong to, the obvious selection is the closest prime to 2
32

-1, which is the largest value 

contained in 32 bits.  Finding such prime number is easy with the powerful mathematical engine 

WolframAlpha [33], yielding the result q = 4294967291. 
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2.3.5.  VHDL Implementation Details 

 The last item to discuss before seeing SC in the works is the protocol’s implementation in 

VHDL.  So first off, since TI remains the same, no discussion is needed, but just keep in mind 

that the implementation is done using a dataflow approach for its ASM, and component-based 

for the data path.  On the other hand, A and B’s implementation do have to be looked at because 

even though they take the same approach as in the other protocols, the designs are different, so a 

few packets that were not required in PiSDM, for example, are required here again.  Mainly 

IEEE.STD_LOGIC_UNSIGNED for of addition, subtraction, and multiplication of standard 

logic vectors, and IEEE.NUMERIC_STD to use the unsigned numbers, as well as addition, 

subtraction, and multiplication of the unsigned type.  This packet is needed again because of the 

SubShares, AddShares, AddShares1, and SigmaShares components, which require these basic 

modular operations. Another noteworthy remark is the usage of generics and generates 

statements in order to simplify the otherwise tedious implementation of the SigmaShares 

component used in step 2 of the protocol.  These kind of statements, represented by the “generic” 

and “generate” keywords, are used to programmatically describe the components in the hardware 

rather than explicitly declaring every single one of them.  Another case where generics and 

generates are useful is for the implementation of the shift register with parallel load used by 

PiSDM (Seen Appendix A for component design and Appendix B for component VHDL 

implementation).  Furthermore, each party has their own entity and architecture, providing again 

the abstraction and isolation required from a security application. 

To test the protocol as a whole, however, the parties’ implementations are used as 

components in a single chip in the sc_chip.vhd file.  In this chip, TI, A, and B are wired up and 

connected in the proper manner.  The sc_chip is then used as a component in the testbench, 
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tb_sc.vhd.  This test bench supplies inputs, clock, reset, and complies with the OCDDC.  In order 

to provide the inputs, two more packages are used in the testbench, which are tb_Xshares and 

tb_Yshares.  Since these packets include the additive shares for X and Y, respectively, a tool was 

developed in C to generate these shares from the input numbers.  So these packets are 

automatically written by a C program which takes in the desired values for X and Y, and writes 

.vhd files containing said VHDL packages.  The details and code for this C program can be 

found in Appendix C. 

The compilation report given for analysis and synthesis for the sc_chip high-level 

architecture is shown in Table 3: 

Table 3:  SC Analysis and Synthesis Report from Quartus II 

Total logic elements 168,168 

Total combinational functions 168,168 

Dedicated logic registers 3,180 

Total registers 3180 

Total pins 3,849 

Total virtual pins 0 

Total memory bits 0 

Embedded Multiplier 9-bit elements 408 

Total PLLs 0 

  

From this report, it is important to note the large amount of logic elements.  The reason 

why PiSDM, when compared to SDM, does not use that many logic elements is because the 

remaining logic used by PiSDM besides SDM itself are mostly registers and a mux.  In the case 

of SC, though, a lot more combinational logic is added by the usage of the share computation 

components SubShares, AddShares, AddShares1, and SigmaShares, with SigmaShares 

representing the largest amount of circuitry added mainly because of the multiplications.  After 

the sigma summations hardware, SubShares is the one that requires the second largest amount of 
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logic elements because subtraction is performed as described in the SDM section because, 

mathematically, the operations a – b and  a + (q – b) are equivalent in mod q.  Note that this is 

done to remove the necessity of implementing negative numbers using 2’s complement or any 

other method.  

The testbench, along with a macro file to run in ModelSim-Altera are used to carry out 

the simulation shown in the next section. 

2.3.6.  Sample Run 

 Since the simulation runs on ModelSim-Altera, macro files, as they are called, are useful 

to specify the parameters to be used by the waveform.  In this protocol simulation, as in with 

previous protocols, “waves” are added by using the name of the input/output port, or signal, to be 

displayed.  Other specifications may be added, like simulation run time or wave formatting 

(binary, hex, unsigned, decimal, and others).  For this SC sample run, the input values selected 

are X = 0000000000000000000000000111112, and Y = 0000000000000000000000001111112.  

Clearly, the protocols result should be that Y > X, or A outputting Ao = 1.  This is reflected by the 

variable expected, which shows the expected result of the protocol, and the final output Ao, 

which shows the protocol’s calculated result.  In the protocol run, several other variables are 

shown besides de inputs X and Y, and the expected and calculated outputs.  These other relevant 

variables shown are clk and reset, OutA, OutB, and OutS, as in OutS = OutA + OutB from the 

protocol’s 4
th

 step, and Arqst and Adat to show the protocol’s OCDDC compliance.  The result is 

shown in Figure 25: 
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Figure 25:  SC Sample Run 
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3.  PROPOSED GENERAL METHOD TO DESIGN AND IMPLEMENT 

CRYPTOGRAPHIC HARDWARE 

From Section 2, a pattern can be derived to generalize the process of designing and 

implementing a cryptographic protocol in hardware and tie everything together into one method 

(Note that the same ideas can be applied to designing and implementing schemes).  

 First, identify modules which require privacy from each other.  In the case of the 

previously described protocol, the different modules are the parties TI, A, and B. 

 Second, by studying the protocol, determine what values are internal, what the inputs are 

and what the outputs of each party are.  This is necessary to construct the interface and 

know the variables that might be involved in the data path and ASM.  Note that more 

variables may be necessary, but this narrows it down. 

 Third, using the I/Os found in the previous step, draw the parties’ interfaces following the 

OCDDC.  Note that although it is not necessary, it is encouraged that inputs that can be 

read in at the same time are group together under the same request and data signals, and 

the same is recommended for the outputs, because it will reduce the next state logic.  

Since several inputs might be required for one computation, not grouping them will 

create more states which will be required for when inputs are not available.  The same 

occurs with the outputs, requiring more states if those outputs are not grouped under the 

same request and data signals. 

 Lastly, after the different modules have been identified and the interfaces have been 

clearly defined, use the ASM design approach to engineer a data path and an ASM for 

each of the modules while complying with OCDDC.   
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The end design can be implemented in VHDL easily by using a component-based 

approach to describe the data path, and al algorithmic approach (process-based) to describe the 

ASM.  Please note that ASMs can also be implemented as a dataflow, resulting in a more 

economical implementation space-wise, but at the cost of bigger efforts on the engineer’s side. 
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4.  RESULTS AND CONCLUSIONS 

4.1.  Results 

 From the compilation reports in section 2, tables 1, 2, and 3, the SDM and the PiSDM 

protocols can be synthesized into fairly low-end FPGAs like a few members of the Cyclone IV 

family.  The following models can comfortably be used for synthesizing SDM and PiSDM from 

the Cyclone IV E list of devices: EP4CE40, EP4CE55, EP4CE75, and EP4CE115, and from the 

Cyclone IV GX list, these devices can also be used: EP4CGX50, EP4CGX75, EP4CGX110, and 

EP4CGX150 [12].  The Cyclone IV E and GX list of devices offer low power and high 

functionality for the most cost-effective prices with list E, and GX offering extra features.  From 

the given selection of device, the lowest amount of logic elements (LEs) is 39,600, which will 

suffice to synthesize the 31,315 LEs in SDM, and the 32,830 LEs in PiSDM.  For the SC 

protocol, a higher-capacity FPGA would be needed, like the Cyclone V GX C9 and GT D9 with 

301,000 LEs [32], which is more than sufficient for the necessary 168,168 LEs to synthesize the 

SC protocol. 

 Regarding timing results, the following is shown, in Table 4, about the SC protocol's 

Python implementations from [11]: 

Table 4:  SC Python Timing Results 

Times in seconds SC A SC B 

Run 1: 3.51677 3.51672 

Run 2: 2.00958 2.00957 

Run 3: 3.52951 3.52925 

Average: 3.01862 3.01851 

 

These timing results were obtained in an Intel i7 2.2 GHz processor running Windows 7 

with 8 GB of RAM.  Just by comparison, the SC hardware implementation runs with a 100 MHz 
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clock, and even with this slower clock, the protocol still completes in 9,865,000 ps = 9.865 µs.  

This is a speed up, on average, of roughly 306,000 times, proving one of the main 

accomplishments presented in this thesis. 

4.2.  Conclusions 

Since protocols are more complicated than schemes because they involve the exchange of 

messages between two or more parties, the design of cryptographic protocols in hardware has not 

yet been thoroughly studied, with this being the first academic research known to the author.  

Protocols, however, are more powerful than schemes and can achieve more complicated and 

significant results.  So for these reasons, it was the purpose of this thesis to further breach the gap 

between digital hardware and cryptography by tackling this very interesting problem using the 

algorithmic state machine design approach, considering each party as a separate module, creating 

the abstraction and privacy desired for the aforementioned protocols of Secure Distributed 

Multiplication (SDM), Secure Distributed Multiplication of a Sequence (PiSDM), and finally, 

Secure comparison (SC), and all while following the One Cycle Demand Driven Convention 

(OCDDC) for inter module communication purposes.  In addition to using the ASM design 

approach and following the OCDDC, the presented designs achieved maximum throughput with 

the usage of the RegS component (a register and a mux that result in the output being ready right 

away when a value is loaded), and also by taking inputs and providing the output early, which is 

done with a combination of using RegS components and properly placing Moore and Mealy 

outputs in the ASM.  The correctness of each protocol was verified using VHDL testbenches, 

ModelSim-Altera macro files, and ModelSim-Altera itself to execute the written macro files in 

order to obtain “wave views” for the protocols.  Also, a C project was used to generate input 
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shares for the SC protocol, which requires 60 32-bit shares, making it easier for a future engineer 

to run the protocol without having to manually code each share. 

From all of the designs, a general method can be deduced, and therefore, suggested for 

the implementation of cryptographic protocols (and even schemes) in hardware.  First, identify 

modules which require privacy from each other (like the parties in a protocol).  Second, by 

studying the protocol, determine what values are internal, what the inputs are and what the 

outputs of each party are.  Third, using the I/Os found in the previous step, draw the parties’ 

interfaces following the OCDDC.  Lastly use the ASM design approach to engineer a data path 

and an ASM for each of the modules while complying with OCDDC.  The end design can be 

implemented in VHDL easily by using a component-based approach to describe the data path, 

and algorithmic approach (process-based) to describe the ASM. 

4.3.  Future Work 

In the future, there are a few possible ideas brought forward by the results found in this 

thesis that are worth exploring.  First of all, as the number of LEs needed by the SC protocol is 

significant, and not accessible to the lower-end FPGAs, the design can be reduced in size if the 

ASM charts are expressed as output and next state logic equations as opposed to the ASM 

algorithms described by the charts.  Another simplification is the use of logical left shift instead 

of multiplication by powers of 2 in the SigmaShares component.  The effort is in the hope that 

the number of LEs can be brought below the 150,000 count, so that other members of the 

Cyclone V family and even some in the Cyclone IV family can synthesize components that large. 

Secondly, the next logical step is to remove the trusted initializer.  Where the ASM 

design approach with OCDDC helps compartmentalize the parties and provide extra privacy with 

clock independence between the parties.  Trusted initializers have been shown to be removed 
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using the Paillier cryptosystem, or with oblivious transfer, with Paillier being the simpler to 

implement solution in hardware, but with high key sizes, and oblivious transfer being harder to 

implement, but with a small key size.  Both of these approaches are worthy of exploring, and 

would both be significant results in the field of cryptography on their own, with the added result 

of being able to eliminate TIs in any predistributed multiplication tuples scenario. 

Lastly, the design of cryptographic protocols poses an interesting question.  How can one 

be certain that any cryptographic protocol is fully correct in its execution?  In other words, how 

is a design like this tested?  While this thesis uses case scenarios for testing, a much more 

sophisticated approach, which is outside the scope of the thesis, is to use formal verification.  In 

fact, formal verification of cryptographic protocols is scarce in the literature, making it a very 

interesting problem which could have tons of potential benefits to the world of security itself by 

eliminating bugs and potential security weaknesses. 
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APPENDIX A.  COMPONENT DESIGN 

 

This appendix focuses on the design of all the different components used throughout the 

protocols’ design.  Note that addition, subtraction, multiplication, and modulus are operations 

natively supported by VHDL, and are, therefore, not explained any further.  Other components 

like muxes, counters, and registers are considered to be well-known, so they are assumed to be 

understood by the reader. 
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Figure A - 1:  RegS Component 

 

Figure A - 2:  Modular Addition Component 
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Figure A - 3:  Modular Subtraction Component 

 

Figure A - 4:  Modular Multiplication Component 

 

Figure A - 5:  Shift Register with Parallel Load Component 
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Figure A - 9:  SigmaShares Component 
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APPENDIX B.  VHDL CODE 

Appendix B contains all the VHDL code used in this thesis, including components’ code, 

ASM designs, chips, and testbenches. 

 Components.vhd: 

library ieee; 

use ieee.std_logic_1164.all; 

 

entity and_5 is 

 port( A: in std_logic_vector(4 downto 0); 

  F: out std_logic); 

end; 

 

architecture beh of and_5 is 

begin 

 F <= A(4) and A(3) and A(2) and A(1) and A(0); 

end; 

 

library ieee; 

use ieee.std_logic_1164.all; 

 

entity mux5 is 

 port( A, B: in std_logic_vector(4 downto 0); 

  S: in std_logic; 

  F: out std_logic_vector(4 downto 0)); 

end; 

 

architecture beh of mux5 is 

begin 

 sel: process(A, B, S) 

 begin 

  if S = '1' then 

   F <= A; 

  else 

   F <= B; 

  end if; 

 end process; 

end; 

 

 

library ieee; 

use ieee.std_logic_1164.all; 

 

entity mux32 is 

 port( A, B: in std_logic_vector(31 downto 0); 

  S: in std_logic; 

  F: out std_logic_vector(31 downto 0)); 

end; 
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architecture beh of mux32 is 

begin 

 sel: process(A, B, S) 

 begin 

  if S = '1' then 

   F <= A; 

  else 

   F <= B; 

  end if; 

 end process; 

end; 

 

 

library ieee; 

use ieee.std_logic_1164.all; 

 

entity reg5 is 

 port( X: in std_logic_vector(4 downto 0); 

  clk, LD: in std_logic; 

  F: out std_logic_vector(4 downto 0)); 

end; 

 

architecture beh of reg5 is 

begin 

 reg: process(X, clk, LD) 

 begin 

  if clk'event and clk = '1' then 

   if LD = '1' then 

    F <= X; 

   end if; 

  end if; 

 end process; 

end; 

 

 

library ieee; 

use ieee.std_logic_1164.all; 

 

entity reg32 is 

 port( X: in std_logic_vector(31 downto 0); 

  clk, LD: in std_logic; 

  F: out std_logic_vector(31 downto 0)); 

end; 

 

architecture beh of reg32 is 

begin 

 reg: process(X, clk, LD) 

 begin 

  if clk'event and clk = '1' then 

   if LD = '1' then 

    F <= X; 

   end if; 

  end if; 

 end process; 

end; 
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library ieee; 

use ieee.std_logic_1164.all; 

use ieee.std_logic_unsigned.all; 

 

entity count32 is 

 port( X: in std_logic_vector(4 downto 0); 

  inc, clk, load: in std_logic; 

  count: out std_logic_vector(4 downto 0)); 

end; 

 

architecture beh of count32 is 

 

 component reg5 

  port( X: in std_logic_vector(4 downto 0); 

   clk, LD: in std_logic; 

   F: out std_logic_vector(4 downto 0)); 

 end component; 

  

 component mux5 

  port( A, B: in std_logic_vector(4 downto 0); 

   S: in std_logic; 

   F: out std_logic_vector(4 downto 0)); 

 end component; 

  

 signal X_temp, F_inc, F_temp: std_logic_vector(4 downto 0); 

 

begin 

 

 mux: mux5 port map(X, F_inc, load, X_temp); 

 reg: reg5 port map(X_temp, clk, '1', F_temp); 

  

 count <= F_temp; 

  

 F_inc <= F_temp + inc; 

  

end; 

 

-- RegSelect 

library ieee; 

use ieee.std_logic_1164.all; 

 

entity RegS is 

 port( D: in std_logic_vector(31 downto 0); 

  clk, load: in std_logic; 

  Q: out std_logic_vector(31 downto 0)); 

end; 

 

architecture arch of RegS is 

 component reg32 

  port( X: in std_logic_vector(31 downto 0); 

   clk, LD: in std_logic; 

   F: out std_logic_vector(31 downto 0)); 

 end component; 

  

 component mux32 

  port( A, B: in std_logic_vector(31 downto 0); 
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   S: in std_logic; 

   F: out std_logic_vector(31 downto 0)); 

 end component; 

  

 signal Q_0: std_logic_vector(31 downto 0); 

 

begin 

 r: reg32 port map(D, clk, load, Q_0); 

 m: mux32 port map(D, Q_0, load, Q); 

end; 

 

 

-- Shift register with parallel load 

library ieee; 

use ieee.std_logic_1164.all; 

use work.MY_PACKAGE.all; 

 

entity shift_reg_parallel is 

 generic (N: integer := 31); 

 port( C: in DATA_ARRAY(1 to N); 

  clk, LD, pLD: in std_logic; 

  Q: out std_logic_vector(31 downto 0)); 

end; 

 

architecture arch of shift_reg_parallel is 

 

 component RegS 

  port( D: in std_logic_vector(31 downto 0); 

  clk, load: in std_logic; 

  Q: out std_logic_vector(31 downto 0)); 

 end component; 

  

 component reg32 

  port( X: in std_logic_vector(31 downto 0); 

   clk, LD: in std_logic; 

   F: out std_logic_vector(31 downto 0)); 

 end component; 

  

 component mux32 

  port( A, B: in std_logic_vector(31 downto 0); 

   S: in std_logic; 

   F: out std_logic_vector(31 downto 0)); 

 end component; 

 

 signal reg_in: DATA_ARRAY(1 to N-1); 

 signal reg_out: DATA_ARRAY(2 to N); 

  

begin 

 Gen_regs: 

 for I in 1 to N generate 

  first: 

  if I = 1 generate 

   reg_first: RegS port map(reg_in(I), clk, LD, Q); 

  end generate; -- first; 

   

  middle: 
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  if I > 1 and I < N generate 

   reg_middle: reg32 port map(reg_in(I), clk, LD, reg_out(I)); 

  end generate; --  middle; 

   

  last: 

  if I = N generate 

   reg_last: reg32 port map(C(N), clk, LD, reg_out(I)); 

  end generate; -- last; 

 end generate; -- Gen_regs 

  

 Gen_muxs: 

 for I in 1 to N-1 generate 

  muxes: mux32 port map(C(I), reg_out(I+1), pLD, reg_in(I)); 

 end generate; -- Gen_muxs; 

end; 

 

 

-- SubShares 

library ieee; 

use ieee.std_logic_1164.all; 

use ieee.std_logic_unsigned.all; 

use ieee.numeric_std.all; 

use work.MY_PACKAGE.all; 

 

entity SubShares is 

 generic (N: integer := 30); 

 port( A, B: in DATA_ARRAY(1 to N); 

  C: out DATA_ARRAY(1 to N)); 

end; 

 

architecture arch of SubShares is 

 signal q: unsigned(31 downto 0); 

begin 

 q <= "11111111111111111111111111111011"; 

 Sub: process(A, B, q) 

 begin 

  for I in 1 to N loop 

   C(I) <= std_logic_vector((('0'&unsigned(A(I))) + ('0'&(q - 

unsigned(B(I))))) mod q); 

  end loop; 

 end process; 

end; 

 

-- AddShares 

library ieee; 

use ieee.std_logic_1164.all; 

use ieee.std_logic_unsigned.all; 

use ieee.numeric_std.all; 

use work.MY_PACKAGE.all; 

 

entity AddShares is 

 generic (N: integer := 30); 

 port( A, B: in DATA_ARRAY(1 to N); 

  C: out DATA_ARRAY(1 to N)); 

end; 

 



 
 

83 
 

architecture arch of AddShares is 

 signal q: unsigned(31 downto 0); 

begin 

 q <= "11111111111111111111111111111011"; 

 Add: process(A, B, q) 

 begin 

  for I in 1 to N loop 

   C(I) <= std_logic_vector(( ( '0'&unsigned(A(I)) ) + ( 

'0'&unsigned(B(I))) ) mod q); 

  end loop; 

 end process; 

end; 

 

 

-- AddShares1 

library ieee; 

use ieee.std_logic_1164.all; 

use ieee.std_logic_unsigned.all; 

use ieee.numeric_std.all; 

use work.MY_PACKAGE.all; 

 

entity AddShares1 is 

 generic (N: integer := 30); 

 port( A, B: in DATA_ARRAY(1 to N); 

  C: out DATA_ARRAY(1 to N)); 

end; 

 

architecture arch of AddShares1 is 

 signal q: unsigned(31 downto 0); 

begin 

 q <= "11111111111111111111111111111011"; 

 Add: process(A, B, q) 

  constant one: unsigned(N downto 0) := (0 => '1', others => '0'); 

 begin 

  for I in 1 to N loop 

   C(I) <= std_logic_vector( ( one + ('0'&unsigned(A(I))) + 

('0'&unsigned(B(I))) ) mod q ); 

  end loop; 

 end process; 

end; 

 

 

-- Addq 

library ieee; 

use ieee.std_logic_1164.all; 

use ieee.std_logic_unsigned.all; 

use ieee.numeric_std.all; 

 

entity Addq is 

 port( A, B: in std_logic_vector(31 downto 0); 

  C: out std_logic_vector(31 downto 0)); 

end; 

 

architecture arch of Addq is 

 signal q: unsigned(31 downto 0); 

begin 
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 q <= "11111111111111111111111111111011"; 

 C <= std_logic_vector( ( ('0'&unsigned(A)) + ('0'&unsigned(B)) ) mod q 

); 

end; 

 

 

-- Multq 

library ieee; 

use ieee.std_logic_1164.all; 

use ieee.std_logic_unsigned.all; 

use ieee.numeric_std.all; 

 

entity Multq is 

 port( A, B: in std_logic_vector(31 downto 0); 

   C: out std_logic_vector(31 downto 0)); 

end; 

 

architecture arch of Multq is 

 signal q: unsigned(31 downto 0); 

begin 

 q <= "11111111111111111111111111111011"; 

 C <= std_logic_vector( ( unsigned(A) * unsigned(B) ) mod q ); 

end; 

 

 

-- SigmaShares 

library ieee; 

use ieee.std_logic_1164.all; 

use ieee.std_logic_unsigned.all; 

use ieee.numeric_std.all; 

use work.MY_PACKAGE.all; 

 

entity SigmaShares is 

 generic (N: integer := 30); 

 port( D: in DATA_ARRAY(1 to N); 

   DS: out DATA_ARRAY(1 to N)); 

end; 

 

architecture arch of SigmaShares is 

 component Multq 

  port( A, B: in std_logic_vector(31 downto 0); 

    C: out std_logic_vector(31 downto 0)); 

 end component; 

  

 component Addq 

  port( A, B: in std_logic_vector(31 downto 0); 

   C: out std_logic_vector(31 downto 0)); 

 end component; 

 signal SD: DATA_ARRAY(1 to N); 

 signal M: DATA_ARRAY(1 to N); 

 signal twos: DATA_ARRAY(2 to N); 

 signal two: std_logic_vector(31 downto 0); 

begin 

 DS <= SD; 

  

 two <= (1 => '1', others => '0'); 
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 SD(N) <= (others => '0'); 

 twos(2) <= (2 => '1', others => '0'); 

 

 sigma_gen: 

 for i in N-1 downto 1 generate 

  first: 

  if i = N-1 generate 

   DS31: Multq port map(D(N), twos(2), SD(N-1)); 

  end generate; -- first 

   

  middle: 

  if i > 1 and i < N-1 generate 

   twos(N+1-i) <= (twos(N-i)(30 downto 0)) & '0'; 

   Mult: Multq port map(D(i+1), twos(N+1-i), M(i+1)); 

   Add: Addq port map(SD(i+1), M(i+1), SD(i)); 

  end generate; -- middle 

   

  last: 

  if i = 1 generate 

   Mult1: Multq port map(D(2), twos(N-1), M(2)); 

   Mult2: Multq port map(M(2), two, M(1)); 

   Add: Addq port map(SD(2), M(1), SD(1)); 

  end generate; -- last 

 end generate; -- sigma_gen 

end; 

 

 

-- Comparator 

library ieee; 

use ieee.std_logic_1164.all; 

 

entity Comparator is 

 port( A: in std_logic_vector(31 downto 0); 

  Aeq0: out std_logic); 

end; 

 

architecture behavioral of Comparator is 

begin 

 compare: process(A) 

  constant zero: std_logic_vector(A'length-1 downto 0) := (others 

=> '0'); 

 begin 

  if A = zero then 

   Aeq0 <= '1'; 

  else 

   Aeq0 <= '0'; 

  end if; 

 end process; 

end; 

 

 

 

 PRBS.vhd: 
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-- Mux 

Library IEEE; 

use IEEE.std_logic_1164.all; 

 

entity mux2 is 

 port(S: in std_logic; 

   X0, X1: in std_logic_vector(4 downto 0); 

   F: out std_logic_vector(4 downto 0)); 

end; 

 

architecture BEHAVIOR of mux2 is 

begin 

 mux_behav: process(S, X0, X1) 

 begin 

  if S = '0' then 

   F <= X0; 

  else 

   F <= X1; 

  end if; 

 end process; 

end BEHAVIOR; 

 

 

-- reg 

Library IEEE; 

use IEEE.std_logic_1164.all; 

entity reg is 

 port(load: in std_logic; 

   D: in std_logic_vector(4 downto 0); 

   clk: in STD_LOGIC; 

   Q: out std_logic_vector(4 downto 0)); 

end; 

 

architecture BEHAVIOR of reg is 

begin 

 reg_behav: process 

 begin 

  wait until clk'event and clk = '1'; 

  if load = '1' then 

   Q <= D; 

  else 

   null; 

  end if; 

 end process; 

end BEHAVIOR; 

 

 

-- prbs_counter 

Library IEEE; 

use IEEE.std_logic_1164.all; 

use IEEE.std_logic_unsigned.all; 

use ieee.numeric_std.all; 

 

entity prbs_counter is 

 port(load: in std_logic; inc: in std_logic; 

   D: in std_logic_vector(4 downto 0); 
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   clk: in STD_LOGIC; 

   Q: out natural); 

end; 

 

architecture BEHAVIOR of prbs_counter is 

 

 component reg is 

  port(load: in std_logic; 

    D: in std_logic_vector(4 downto 0); 

    clk: in STD_LOGIC; 

    Q: out std_logic_vector(4 downto 0)); 

 end component; 

  

 component mux2 is 

 port(S: in std_logic; 

   X0, X1: in std_logic_vector(4 downto 0); 

   F: out std_logic_vector(4 downto 0)); 

 end component; 

  

 component bit_addressing 

  port( std_in: in std_logic_vector(4 downto 0); 

   natural_out: out natural); 

 end component; 

  

 signal D_temp, Q_temp, Q_inc: std_logic_vector(4 downto 0); 

  

begin 

 mux: mux2 port map(load, Q_inc, D, D_temp); 

 regist: reg port map('1', D_temp, clk, Q_temp); 

 Q <= natural(conv_integer(Q_temp)); 

  

 Q_inc <= Q_temp + inc; 

  

end BEHAVIOR; 

 

 

-- serial prbs (linear feedback shift register) 

Library IEEE; 

use IEEE.std_logic_1164.all; 

use IEEE.std_logic_unsigned.all; 

use ieee.numeric_std.all; 

 

entity prbs is 

  generic( 

    BITS   : natural := 32); 

  port( 

    clk    : in  std_logic; 

    reset    : in  std_logic; 

  seed   : in  std_logic_vector(BITS-1 downto 0); 

    prbs_out  : out unsigned(BITS-1 downto 0); 

  count  : in natural); 

end; 

 

architecture behavioral of prbs is 
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  signal lfsr: std_logic_vector(BITS-1 downto 0);  -- Flip-flops with LFSR 

state, MSB = BITS 

 signal outcount: natural; 

 signal out_temp: unsigned(BITS-1 downto 0); 

  function feedback(slave : std_logic_vector) return std_logic is  -- 

Function to determine maximum length LFSR generation (XOR taps found online) 

  begin 

    case slave'length is 

      when  3     => return slave( 3) xor slave( 2); 

      when  4     => return slave( 4) xor slave( 3); 

    when  6     => return slave( 6) xor slave( 2); 

      when  8     => return slave( 8) xor slave( 6) xor slave( 5) xor 

slave(4); 

      when 16     => return slave(16) xor slave(15) xor slave(13) xor 

slave(4); 

      when 32     => return slave(31) xor slave(21) xor slave(1) xor 

slave(0); 

      when others => report "feedback function not defined for slave'length 

as " & integer'image(slave'length) 

                     severity FAILURE; 

                     return 'X'; 

    end case; 

  end function; 

   

begin 

  linear_feedback: process (clk, reset, seed) -- watch list for recomputation 

of output pattern 

  begin 

    if clk'event and clk = '1' then  -- triggers pattern step on clock rising 

edge 

  if reset = '1' then  -- Asynchronous reset 

   lfsr <= seed;  -- Reset assigns seed value to full lfsr 

signal 

      else  

   if unsigned(lfsr) /= 0 then 

    lfsr <= lfsr(lfsr'left - 1 downto lfsr'right) & 

feedback(lfsr);  -- Left shift with feedback in, can change order of function 

and lfsr concat           

     -- to perform right shift of values instead 

   end if; 

  end if; 

    end if; 

  end process; 

 

 prbs_out(count) <= lfsr(BITS-1); 

end behavioral; 

 

 

-- 32-bits prbs generator 

library ieee; 

use ieee.std_logic_1164.all; 

use ieee.numeric_std.all; 

 

entity generator is 

 port( clk, reset: in std_logic; 

   seed: in std_logic_vector(31 downto 0); 
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   prbs_out: out unsigned(31 downto 0)); 

end; 

 

architecture arch of generator is 

  

 component prbs 

  generic( 

   BITS: natural); 

  port( 

   clk    : in  std_logic; 

   reset    : in  std_logic; 

   seed   : in  std_logic_vector(BITS-1 downto 0); 

   prbs_out  : out unsigned(BITS-1 downto 0); 

   count  : in natural); 

 end component; 

  

 component counter 

  port(load: in std_logic; inc: in std_logic; 

   D: in std_logic_vector(4 downto 0); 

   clk: in STD_LOGIC; 

   Q: out natural); 

 end component; 

  

 signal out_temp: unsigned(31 downto 0); 

 signal count: natural; 

begin 

 G: prbs 

  generic map (32) 

  port map (clk, reset, seed, prbs_out, count); 

end arch; 

 

 MY_PACKAGE.vhd: 

Library ieee; 

use ieee.std_logic_1164.all; 

 

package MY_PACKAGE is 

 type DATA_ARRAY is array (natural range<>) of std_logic_vector(31 

downto 0); 

end MY_PACKAGE; 

 

 SDM_TI.vhd, PiSDM_TI.vhd, SC_TI.vhd: 

-- Trusted Initializer Algorithmic State Machine 

library ieee; 

use ieee.std_logic_1164.all; 

use ieee.std_logic_unsigned.all; 

use ieee.numeric_std.all; 

 

entity SDM_TI_ASM is 

 port( clk, reset: in std_logic; 
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   Arqst: in std_logic; 

   r, a1, b1: out std_logic_vector(31 downto 0); 

   Adat: out std_logic; 

   Brqst: in std_logic; 

   I, a2, b2: out std_logic_vector(31 downto 0); 

   Bdat: out std_logic); 

end; 

 

architecture arch of SDM_TI_ASM is 

 signal q, r_temp, a1_temp, a2_temp, b1_temp, b2_temp, I_temp, a1b2, 

a2b1: unsigned(31 downto 0); 

 signal r_1, a1_1, b1_1, a2_1, b2_1, I_1: std_logic_vector(31 downto 0); 

 signal count: natural; 

 signal count_std: std_logic_vector(4 downto 0); 

 signal D, Qs, C31, inc, Ald, Bld: std_logic; 

  

 component prbs_counter 

  port(load: in std_logic; inc: in std_logic; 

    D: in std_logic_vector(4 downto 0); 

    clk: in STD_LOGIC; 

    Q: out natural); 

 end component; 

  

 component prbs 

  generic( 

   BITS: natural); 

  port( 

   clk    : in  std_logic; 

   reset    : in  std_logic; 

   seed   : in  std_logic_vector(BITS downto 1); 

   prbs_out  : out unsigned(BITS downto 1); 

   count  : in natural); 

 end component; 

  

 component RegS 

  port( D: in std_logic_vector(31 downto 0); 

   clk, load: in std_logic; 

   Q: out std_logic_vector(31 downto 0)); 

 end component; 

begin 

 -- Data Path 

 q <= "11111111111111111111111111111011"; 

  

  -- Counter 

  TI_counter: prbs_counter port map(reset, inc, "00000", clk, 

count); 

  

  -- PRBS generators 

  r_gen: prbs generic map (32) 

      port map(clk, reset, 

"00100000101111101100101001110011", r_temp, count); 

  a1_gen: prbs generic map (32) 

       port map(clk, reset, 

"01110001100111101111100000011100", a1_temp, count); 

  b1_gen: prbs generic map (32) 
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       port map(clk, reset, 

"01010110011111000111011011101110", b1_temp, count); 

  a2_gen: prbs generic map (32) 

       port map(clk, reset, 

"01101000111110101000110010110100", a2_temp, count); 

  b2_gen: prbs generic map (32) 

       port map(clk, reset, 

"00111011000111110000011000110000", b2_temp, count); 

   

  -- Calculate r_1, a1_1, b1_1, a2_1, b2_1, I_1 

  r_1 <= std_logic_vector(r_temp mod q); 

  a1_1 <= std_logic_vector(a1_temp mod q); 

  b1_1 <= std_logic_vector(b1_temp mod q); 

  a1b2 <= (a1_temp*b2_temp) mod q; 

  a2b1 <= (a2_temp*b1_temp) mod q; 

  I_temp <= (("00"&a1b2) + ("00"&a2b1) + ("00"&(q - r_temp))) mod 

q; 

  I_1 <= std_logic_vector(I_temp); 

  a2_1 <= std_logic_vector(a2_temp mod q); 

  b2_1 <= std_logic_vector(b2_temp mod q); 

   

  -- Registers 

  r_reg: regS port map(r_1, clk, Ald, r); 

  a1_reg: regS port map(a1_1, clk, Ald, a1); 

  b1_reg: regS port map(b1_1, clk, Ald, b1); 

  I_reg: regS port map(I_1, clk, Bld, I); 

  a2_reg: regS port map(a2_1, clk, Bld, a2); 

  b2_reg: regS port map(b2_1, clk, Bld, b2); 

   

 -- ASM 

  count_std <= std_logic_vector(to_unsigned(count, 5)); 

  C31 <= count_std(0) and count_std(1) and count_std(2) and 

count_std(3) and count_std(4); 

  D <= (Qs or C31) and (Arqst nand Brqst); 

  Ald <= (not Qs) and C31; 

  Bld <= Ald; 

  inc <= ( (not Qs) and (not C31) ) or (Arqst and Brqst); 

  Adat <= (Qs or C31) and Arqst and Brqst; 

  Bdat <= (Qs or C31) and Arqst and Brqst; 

   

   

 -- DFF (State) 

  sync: process 

  begin 

   wait until clk'event and clk = '1'; 

   if reset = '1' then 

    Qs <= '0'; 

   else 

    Qs <= D; 

   end if; 

  end process; 

end; 

 

 

-- Pi product TI Algorithmic State Machine 

library ieee; 
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use ieee.std_logic_1164.all; 

 

entity PiSDM_TI_ASM is 

 port( clk, reset: in std_logic; 

   Arqst: in std_logic; 

   r, a1, b1: out std_logic_vector(31 downto 0); 

   Adat: out std_logic; 

   Brqst: in std_logic; 

   I, a2, b2: out std_logic_vector(31 downto 0); 

   Bdat: out std_logic); 

end; 

 

architecture structutal of PiSDM_TI_ASM is 

 component SDM_TI_ASM 

  port( clk, reset: in std_logic; 

    Arqst: in std_logic; 

    r, a1, b1: out std_logic_vector(31 downto 0); 

    Adat: out std_logic; 

    Brqst: in std_logic; 

    I, a2, b2: out std_logic_vector(31 downto 0); 

    Bdat: out std_logic); 

 end component; 

begin 

 TI: SDM_TI_ASM 

  port map(clk, reset, 

     Arqst, r, a1, b1, Adat, 

     Brqst, I, a2, b2, Bdat); 

end; 

 

 

-- SC TI Algorithmic State Machine 

library ieee; 

use ieee.std_logic_1164.all; 

 

entity SC_TI_ASM is 

 port( clk, reset: in std_logic; 

   Arqst: in std_logic; 

   r, a1, b1: out std_logic_vector(31 downto 0); 

   Adat: out std_logic; 

   Brqst: in std_logic; 

   I, a2, b2: out std_logic_vector(31 downto 0); 

   Bdat: out std_logic); 

end; 

 

architecture structutal of SC_TI_ASM is 

 component PiSDM_TI_ASM 

  port( clk, reset: in std_logic; 

    Arqst: in std_logic; 

    r, a1, b1: out std_logic_vector(31 downto 0); 

    Adat: out std_logic; 

    Brqst: in std_logic; 

    I, a2, b2: out std_logic_vector(31 downto 0); 

    Bdat: out std_logic); 

 end component; 

begin 

 TI: PiSDM_TI_ASM 
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  port map(clk, reset, 

     Arqst, r, a1, b1, Adat, 

     Brqst, I, a2, b2, Bdat); 

end; 

 

 SDM_A.vhd, PiSDM_A.vhd, SC_A.vhd: 

library ieee; 

use ieee.std_logic_1164.all; 

use ieee.std_logic_unsigned.all; 

use ieee.numeric_std.all; 

 

entity SDM_A is 

 port( clk, reset: in std_logic; 

   r, a1, b1, uA, vA: in std_logic_vector(31 downto 0); -- TI 

input and additive shares 

   U1, V1: out std_logic_vector(31 downto 0); -- Step 1 output 

to B 

   U2, V2: in std_logic_vector(31 downto 0); -- Step 2 input 

from B 

   t: in std_logic_vector(31 downto 0); 

   X: out std_logic_vector(31 downto 0); -- Step 3 output to B 

   Aout: out std_logic_vector(31 downto 0)); 

end; 

 

architecture behavioral of SDM_A is 

 

 signal q, tu: unsigned(31 downto 0); 

  

 component prbs32bits 

  port( clk, reset: in std_logic; 

   seed: in std_logic_vector(31 downto 0); 

   prbs_out: out unsigned(31 downto 0)); 

 end component; 

    

begin 

 q <= "11111111111111111111111111111011"; 

 

 U1 <= std_logic_vector((('0'&unsigned(uA)) + ('0'&(q - unsigned(a1)))) 

mod q); 

 V1 <= std_logic_vector((('0'&unsigned(vA)) + ('0'&(q - unsigned(b1)))) 

mod q); 

  

 tu <= unsigned(t); 

 X <= std_logic_vector(((("00"&(unsigned(uA*vA) mod q)) + 

("00"&(unsigned(V2*a1) mod q)) + ("00"&(unsigned(U2*b1) mod q)) + ("00"&(q - 

tu)))) mod q); 

  

 Aout <= std_logic_vector(unsigned(('0'&r) + std_logic_vector('0'&tu)) 

mod q); 

end behavioral; 
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library ieee; 

use ieee.std_logic_1164.all; 

use ieee.numeric_std.all; 

 

entity SDM_A_ASM is 

 port( clk, reset: in std_logic; 

   TIrqst: out std_logic; -- TI request: randomness 

   r, a1, b1: in std_logic_vector(31 downto 0); -- randomness 

   TIdat: in std_logic; -- TI data valid 

   Srqst: out std_logic; -- Shares request 

   uA, vA: in std_logic_vector(31 downto 0); -- Shares 

   Sdat: in std_logic; -- Shares valid 

   Birqst: in std_logic; -- Step1 data request from B 

   U1, V1: out std_logic_vector(31 downto 0); -- Step1 output 

to B 

   Bidat: out std_logic; -- Step1 data valid to B 

   Borqst: out std_logic; -- Step2 data request to B 

   U2, V2: in std_logic_vector(31 downto 0); -- Step2 input 

from B 

   Bodat: in std_logic; -- Step2 data valid from B 

   Xrqst: in std_logic; -- Step3 data request from B 

   X: out std_logic_vector(31 downto 0); -- Step3 output to B 

   Xdat: out std_logic; -- Step3 data valid to B 

   Arqst: in std_logic; -- Step4 request for output 

   Aout: out std_logic_vector(31 downto 0); -- Party A output 

   Adat: out std_logic); -- Step4 output valid 

end; 

 

architecture arch of SDM_A_ASM is 

 component RegS 

  port( D: in std_logic_vector(31 downto 0); 

    clk, load: in std_logic; 

    Q: out std_logic_vector(31 downto 0)); 

 end component; 

  

 component prbs_counter 

  port(load: in std_logic; inc: in std_logic; 

    D: in std_logic_vector(4 downto 0); 

    clk: in STD_LOGIC; 

    Q: out natural); 

 end component; 

  

 component prbs 

  generic( 

   BITS   : natural := 32); 

  port( 

   clk    : in  std_logic; 

   reset    : in  std_logic; 

   seed   : in  std_logic_vector(BITS-1 downto 0); 

   prbs_out  : out unsigned(BITS-1 downto 0); 

   count  : in natural); 

 end component; 

  

 component SDM_A 

  port( clk, reset: in std_logic; 
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    r, a1, b1, uA, vA: in std_logic_vector(31 downto 0); 

-- TI input and additive shares 

    U1, V1: out std_logic_vector(31 downto 0); -- Step 1 

output to B 

    U2, V2: in std_logic_vector(31 downto 0); -- Step 2 

input from B 

    t: in std_logic_vector(31 downto 0); 

    X: out std_logic_vector(31 downto 0); -- Step 3 

output to B 

    Aout: out std_logic_vector(31 downto 0)); 

 end component; 

  

 signal q, t_temp: unsigned(31 downto 0); 

 signal ri, a1i, b1i, uAi, vAi, U2i, V2i, tq, ti, X_temp, U1_temp, 

V1_temp, A_temp: std_logic_vector(31 downto 0); 

 signal count: std_logic_vector(4 downto 0); 

 signal countn: natural; 

  

 signal Sld, TIld, Bold, tld, Xld, Bild, Ald, inc, C31: std_logic; 

  

 type state_type is (S0, S1, S2, S3, S4); 

 signal CS, NS: state_type; 

  

begin 

 

 -- data path 

  -- Prime q 

  q <= "11111111111111111111111111111011"; 

   

  -- Counter 

  t_counter: prbs_counter port map(reset, inc, "00000", clk, 

countn); 

   

  -- Pseudorandom Generator 

  t_gen: prbs generic map(32) 

       port map(clk, reset, 

"11011011001101001001100110001101", t_temp, countn); 

  tq <= std_logic_vector(t_temp mod q); 

  t_reg: RegS port map(tq, clk, tld, ti); 

   

  -- Input  

  uA_reg: RegS port map(uA, clk, Sld, uAi); 

  a1_reg: RegS port map(a1, clk, TIld, a1i); 

  vA_reg: RegS port map(vA, clk, Sld, vAi); 

  b1_reg: RegS port map(b1, clk, TIld, b1i); 

  U2_reg: RegS port map(U2, clk, Bold, U2i); 

  V2_reg: RegS port map(V2, clk, Bold, V2i); 

  r_reg: RegS port map(r, clk, TIld, ri); 

   

  -- Math 

  A: SDM_A port map(clk, reset, ri, a1i, b1i, uAi, vAi, U1_temp, 

V1_temp, U2i, V2i, ti, X_temp, A_temp); 

   

  -- Output 

  U1_reg: RegS port map(U1_temp, clk, Bild, U1); 

  V1_reg: RegS port map(V1_temp, clk, Bild, V1); 
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  X_reg: RegS port map(X_temp, clk, Xld, X); 

  Aout_reg: RegS port map(A_temp, clk, Ald, Aout); 

  

 -- ASM 

  -- count = 31 

  count <= std_logic_vector(to_unsigned(countn, 5)); 

  C31 <= count(0) and count(1) and count(2) and count(3) and 

count(4); 

   

  -- Actual ASM 

  ASM: process(CS, Sdat, TIdat, Birqst, Bodat, C31, Xrqst, Arqst) 

  begin 

   Srqst <= '0'; 

   TIrqst <= '0'; 

   Sld <= '0'; 

   TIld <= '0'; 

   Bild <= '0'; 

   inc <= '0'; 

   Bidat <= '0'; 

   Borqst <= '0'; 

   Bold <= '0'; 

   Xld <= '0'; 

   tld <= '0'; 

   Xdat <= '0'; 

   Ald <= '0'; 

   Adat <= '0'; 

    

   case CS is 

    when S0 => 

     Srqst <= '1'; 

     TIrqst <= '1'; 

     if Sdat = '0' or TIdat = '0' then 

      NS <= S0; 

     else 

      Sld <= '1'; 

      TIld <= '1'; 

      Bild <= '1'; 

      inc <= '1'; 

      if Birqst = '0' then 

       NS <= S2; 

      else 

       Bidat <= '1'; 

       Borqst <= '1'; 

       if Bodat = '0' then 

        NS <= S3; 

       else 

        Bold <= '1'; 

        NS <= S1; 

       end if; 

      end if; 

     end if; 

    when S1 => 

     if C31 = '0' then 

      inc <= '1'; 

      NS <= S1; 

     else 
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      if Xrqst = '0' then 

       NS <= S1; 

      else 

       Xld <= '1'; 

       tld <= '1'; 

       Xdat <= '1'; 

       Ald <= '1'; 

       if Arqst = '0' then 

        NS <= S4; 

       else 

        Adat <='1'; 

        NS <= S0; 

       end if; 

      end if; 

     end if; 

    when S2 => 

     if Birqst = '0' then 

      NS <= S2; 

     else 

      Bidat <= '1'; 

      Borqst <= '1'; 

      if Bodat = '0' then 

       NS <= S3; 

      else 

       Bold <= '1'; 

       NS <= S1; 

      end if; 

     end if; 

    when S3 => 

     Borqst <= '1'; 

     if Bodat = '0' then 

      NS <= S3; 

     else 

      Bold <= '1'; 

      NS <= S1; 

     end if; 

    when S4 => 

     if Arqst = '0' then 

      NS <= S4; 

     else 

      Adat <='1'; 

      NS <= S0; 

     end if; 

   end case; 

  end process; 

  

 -- DFF 

 sync: process 

 begin 

  wait until clk'event and clk = '1'; 

  if reset = '1' then 

   CS <= S0; 

  else 

   CS <= NS; 

  end if; 

 end process; 
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end; 

 

 

-- Pi Product SDM Party A ASM 

library ieee; 

use ieee.std_logic_1164.all; 

use ieee.numeric_std.all; 

use work.MY_PACKAGE.all; 

 

entity PiSDM_A_ASM is 

 generic(N: natural := 32); 

 port( clk, reset: in std_logic; 

   TIrqst: out std_logic; -- TI request: randomness 

   r, a1, b1: in std_logic_vector(31 downto 0); -- randomness 

   TIdat: in std_logic; -- TI data valid 

   Crqst: out std_logic; -- Shares request 

   C: in DATA_ARRAY(1 to N); -- Shares 

   Cdat: in std_logic; -- Shares valid 

   Birqst: in std_logic; -- Step1 data request from B 

   U1, V1: out std_logic_vector(31 downto 0); -- Step1 output 

to B 

   Bidat: out std_logic; -- Step1 data valid to B 

   Borqst: out std_logic; -- Step2 data request to B 

   U2, V2: in std_logic_vector(31 downto 0); -- Step2 input 

from B 

   Bodat: in std_logic; -- Step2 data valid from B 

   Xrqst: in std_logic; -- Step3 data request from B 

   X: out std_logic_vector(31 downto 0); -- Step3 output to B 

   Xdat: out std_logic; -- Step3 data valid to B 

   Arqst: in std_logic; -- Step4 request for output 

   Aout: out std_logic_vector(31 downto 0); -- Party A output 

   Adat: out std_logic); -- Step4 output valid 

end; 

 

architecture arch of PiSDM_A_ASM is 

 

 component SDM_A_ASM 

  port( clk, reset: in std_logic; 

    TIrqst: out std_logic; -- TI request: randomness 

    r, a1, b1: in std_logic_vector(31 downto 0); -- 

randomness 

    TIdat: in std_logic; -- TI data valid 

    Srqst: out std_logic; -- Shares request 

    uA, vA: in std_logic_vector(31 downto 0); -- Shares 

    Sdat: in std_logic; -- Shares valid 

    Birqst: in std_logic; -- Step1 data request from B 

    U1, V1: out std_logic_vector(31 downto 0); -- Step1 

output to B 

    Bidat: out std_logic; -- Step1 data valid to B 

    Borqst: out std_logic; -- Step2 data request to B 

    U2, V2: in std_logic_vector(31 downto 0); -- Step2 

input from B 

    Bodat: in std_logic; -- Step2 data valid from B 

    Xrqst: in std_logic; -- Step3 data request from B 

    X: out std_logic_vector(31 downto 0); -- Step3 output 

to B 
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    Xdat: out std_logic; -- Step3 data valid to B 

    Arqst: in std_logic; -- Step4 request for output 

    Aout: out std_logic_vector(31 downto 0); -- Party A 

output 

    Adat: out std_logic); -- Step4 output valid 

 end component; 

  

 component RegS 

  port( D: in std_logic_vector(31 downto 0); 

    clk, load: in std_logic; 

    Q: out std_logic_vector(31 downto 0)); 

 end component; 

  

 component mux32 

  port( A, B: in std_logic_vector(31 downto 0); 

    S: in std_logic; 

    F: out std_logic_vector(31 downto 0)); 

 end component; 

  

 component shift_reg_parallel 

  generic (N: integer := 31); 

  port( C: in DATA_ARRAY(1 to N); 

    clk, LD, pLD: in std_logic; 

    Q: out std_logic_vector(31 downto 0)); 

 end component; 

  

 component count32 

  port( X: in std_logic_vector(4 downto 0); 

    inc, clk, load: in std_logic; 

    count: out std_logic_vector(4 downto 0)); 

 end component; 

  

 component mux5 

  port( A, B: in std_logic_vector(4 downto 0); 

    S: in std_logic; 

    F: out std_logic_vector(4 downto 0)); 

 end component; 

  

 component and_5 

  port( A: in std_logic_vector(4 downto 0); 

    F: out std_logic); 

 end component; 

  

 signal uAi, uAo, Aotemp, Cnext: std_logic_vector(31 downto 0); 

 signal count, CN1, CN2: std_logic_vector(4 downto 0); 

 signal ASrqst, ASdat, AArqst, AAdat, Ald, uAld, uAs, Cld, Cpld, inc, 

countld, Cm1, Cm2: std_logic; 

  

 type state_type is (S0, S1, S2, S3); 

 signal CS, NS: state_type; 

  

begin 

 -- Data Path 

 A_Reg: RegS 

  port map(Aotemp, clk, Ald, Aout); 
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 A: SDM_A_ASM 

  port map(clk, reset, 

     TIrqst, r, a1, b1, TIdat, 

     ASrqst, uAo, Cnext, ASdat, 

     Birqst, U1, V1, Bidat, 

     Borqst, U2, V2, Bodat, 

     Xrqst, X, Xdat, 

     AArqst, Aotemp, AAdat); 

      

 uA_Reg: RegS 

  port map(uAi, clk, uAld, uAo); 

   

 uA_Mux: mux32 

  port map(C(1), Aotemp, uAs, uAi); 

   

 ShiftReg_ParallelLoad: shift_reg_parallel 

  generic map(N-1) 

  port map(C(2 to N), clk, Cld, Cpld, Cnext); 

  

 counter: count32 

  port map("00000", inc, clk, countld, count); 

  

 -- ASM 

 -- count bitwise xnor for N-1 and N-2 

 CN1 <= std_logic_vector(to_unsigned(N-1, 5)) xnor count; 

 CN2 <= std_logic_vector(to_unsigned(N-2, 5)) xnor count; 

  

 -- Flag for count equal N-1 or N-2 being true 

 countN1: and_5 port map(CN1, Cm1); 

 countN2: and_5 port map(CN2, Cm2); 

  

 ASM: process(CS, Cdat, ASrqst, Cm1, Cm2, AAdat, Arqst) 

 begin 

  Crqst <= '0'; 

  uAs <= '0'; 

  Cpld <= '0'; 

  ASdat <= '0'; 

  inc <= '0'; 

  Cld <= '0'; 

  uAld <= '0'; 

  AArqst <= '0'; 

  ASdat <= '0'; 

  Adat <= '0'; 

  countld <= '0'; 

  Ald <= '0'; 

   

  case CS is 

   when S0 => 

    Crqst <= '1'; 

    uAs <= '1'; 

    Cpld <= '1'; 

    if Cdat = '0' then 

     NS <= S0; 

    else 

     Cld <= '1'; 

     countld <= '1'; 
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     if ASrqst = '0' then 

      NS <= S2; 

     else 

      ASdat <= '1'; 

      uAld <= '1'; 

      NS <= S1; 

     end if; 

    end if; 

   when S1 => 

    if Cm1 = '0' then 

     AArqst <= '1'; 

     ASdat <= '1'; 

     if AAdat = '0' then 

      NS <= S1; 

     else 

      if Cm2 = '0' then 

       inc <= '1'; 

       Cld <= '1'; 

       uAld <= '1'; 

       if ASrqst = '0' then 

        NS <= S3; 

       else 

        ASdat <= '1'; 

        NS <= S1; 

       end if; 

      else 

       inc <= '1'; 

       if Arqst = '0' then 

        NS <= S1; 

       else 

        Ald <= '1'; 

        Adat <= '1'; 

        NS <= S0; 

       end if; 

      end if; 

     end if; 

    else 

     if Arqst = '0' then 

      NS <= S1; 

     else 

      Ald <= '1'; 

      Adat <= '1'; 

      NS <= S0; 

     end if; 

    end if; 

   when S2 => 

    if ASrqst = '0' then 

     NS <= S2; 

    else 

     uAld <= '1'; 

     ASdat <= '1'; 

     NS <= S1; 

    end if; 

   when S3 => 

    if Cm1 = '0' then 

     if ASrqst = '0' then 
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      NS <= S3; 

     else 

      ASdat <= '1'; 

      NS <= S1; 

     end if; 

    else 

     if Arqst = '0' then 

      NS <= S1; 

     else 

      Ald <= '1'; 

      Adat <= '1'; 

      NS <= S0; 

     end if; 

    end if; 

  end case; 

 end process; 

  

 -- DFF 

 sync: process 

 begin 

  wait until clk'event and clk = '1'; 

  if reset = '1' then 

   CS <= S0; 

  else 

   CS <= NS; 

  end if; 

 end process; 

end; 

 

 

-- SC SDM Party A ASM 

library ieee; 

use ieee.std_logic_1164.all; 

use ieee.std_logic_unsigned.all; 

use ieee.numeric_std.all; 

use work.MY_PACKAGE.all; 

 

entity SC_A_ASM is 

 generic(N: natural := 30); 

 port( clk, reset: in std_logic; 

   TIrqst: out std_logic; -- TI request: randomness 

   r, a1, b1: in std_logic_vector(31 downto 0); -- randomness 

   TIdat: in std_logic; -- TI data valid 

   Srqst: out std_logic; -- Shares request 

   XA, YA: in DATA_ARRAY(1 to N); -- Shares 

   Sdat: in std_logic; -- Shares valid 

   Birqst: in std_logic; -- Step1 data request from B 

   U1, V1: out std_logic_vector(31 downto 0); -- Step1 output 

to B 

   Bidat: out std_logic; -- Step1 data valid to B 

   Borqst: out std_logic; -- Step2 data request to B 

   U2, V2: in std_logic_vector(31 downto 0); -- Step2 input 

from B 

   Bodat: in std_logic; -- Step2 data valid from B 

   Xrqst: in std_logic; -- Step3 data request from B 

   X: out std_logic_vector(31 downto 0); -- Step3 output to B 
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   Xdat: out std_logic; -- Step3 data valid to B 

   OBrqst: out std_logic; -- Step4 OutB data request from B 

   OB: in std_logic_vector(31 downto 0); 

   OBdat: in std_logic; -- Step4 OutB data request from B 

   Arqst: in std_logic; -- Step4 request for output 

   Aout: out std_logic; -- Party A output 

   Adat: out std_logic); -- Step4 output valid 

end; 

 

architecture arch of SC_A_ASM is 

 component PiSDM_A_ASM 

  generic(N: natural := 32); 

  port( clk, reset: in std_logic; 

    TIrqst: out std_logic; -- TI request: randomness 

    r, a1, b1: in std_logic_vector(31 downto 0); -- 

randomness 

    TIdat: in std_logic; -- TI data valid 

    Crqst: out std_logic; -- Shares request 

    C: in DATA_ARRAY(1 to N); -- Shares 

    Cdat: in std_logic; -- Shares valid 

    Birqst: in std_logic; -- Step1 data request from B 

    U1, V1: out std_logic_vector(31 downto 0); -- Step1 

output to B 

    Bidat: out std_logic; -- Step1 data valid to B 

    Borqst: out std_logic; -- Step2 data request to B 

    U2, V2: in std_logic_vector(31 downto 0); -- Step2 

input from B 

    Bodat: in std_logic; -- Step2 data valid from B 

    Xrqst: in std_logic; -- Step3 data request from B 

    X: out std_logic_vector(31 downto 0); -- Step3 output 

to B 

    Xdat: out std_logic; -- Step3 data valid to B 

    Arqst: in std_logic; -- Step4 request for output 

    Aout: out std_logic_vector(31 downto 0); -- Party A 

output 

    Adat: out std_logic); -- Step4 output valid 

 end component; 

  

 component SubShares 

  generic (N: integer := 30); 

  port( A, B: in DATA_ARRAY(1 to N); 

    C: out DATA_ARRAY(1 to N)); 

 end component; 

  

 component SigmaShares 

  generic (N: integer := 30); 

  port( D: in DATA_ARRAY(1 to N); 

    DS: out DATA_ARRAY(1 to N)); 

 end component; 

  

 component AddShares 

  generic (N: integer := 30); 

  port( A, B: in DATA_ARRAY(1 to N); 

    C: out DATA_ARRAY(1 to N)); 

 end component; 
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 component RegS 

  port( D: in std_logic_vector(31 downto 0); 

    clk, load: in std_logic; 

    Q: out std_logic_vector(31 downto 0)); 

 end component; 

  

 component Comparator 

  port( A: in std_logic_vector(31 downto 0); 

    Aeq0: out std_logic); 

 end component; 

  

 signal D, DS, C: DATA_ARRAY(1 to N); 

 signal OutA, OutB, OutS: std_logic_vector(31 downto 0); 

 signal ACrqst, ACdat, AArqst, AAdat, Bld: std_logic; 

 signal q: unsigned(31 downto 0); 

  

 type state_type is (S0, S1, S2, S3); 

 signal CS, NS: state_type; 

begin 

 -- Data Path 

 Subtract: SubShares port map(XA, YA, D); 

 Sums: SigmaShares port map(D, DS); 

 Add: AddShares port map(DS, D, C); 

 PiA: PiSDM_A_ASM 

  generic map(30) 

  port map(clk, reset, 

     TIrqst, r, a1, b1, TIdat, 

     ACrqst, C, ACdat, 

     Birqst, U1, V1, Bidat, 

     Borqst, U2, V2, Bodat, 

     Xrqst, X, Xdat, 

     AArqst, OutA, AAdat); 

 Breg: RegS port map(OB, clk, Bld, OutB); 

 q <= "11111111111111111111111111111011"; 

 OutS <= std_logic_vector(( ('0'&unsigned(OutA)) + ('0'&unsigned(OutB)) 

) mod q); 

 Compare: Comparator port map(OutS, Aout); 

  

 -- ASM 

 ASM: process(CS, Sdat, ACrqst, AAdat, OBdat, Arqst) 

 begin 

  Srqst <= '0'; 

  ACdat <= '0'; 

  AArqst <= '0'; 

  Bld <= '0'; 

  OBrqst <= '0'; 

  Adat <= '0'; 

   

  case CS is 

   when S0 => 

    Srqst <= '1'; 

    if Sdat = '0' or ACrqst = '0' then 

     NS <= S0; 

    else 

     ACdat <= '1'; 

     NS <= S1; 
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    end if; 

   when S1 => 

    AArqst <= '1'; 

    if AAdat = '0' then 

     NS <= S1; 

    else 

     OBrqst <= '1'; 

     if OBdat = '0' then 

      NS <= S2; 

     else 

      Bld <= '1'; 

      if Arqst = '0' then 

       NS <= S3; 

      else 

       Adat <= '1'; 

       NS <= S0; 

      end if; 

     end if; 

    end if; 

   when S2 => 

    if OBdat = '0' then 

     NS <= S2; 

    else 

     Bld <= '1'; 

     if Arqst = '0' then 

      NS <= S3; 

     else 

      Adat <= '1'; 

      NS <= S0; 

     end if; 

    end if; 

   when S3 => 

    if Arqst = '0' then 

     NS <= S3; 

    else 

     Adat <= '1'; 

     NS <= S0; 

    end if; 

  end case; 

 end process; 

  

 -- DFF 

 sync: process 

 begin 

  wait until clk'event and clk = '1'; 

  if reset = '1' then 

   CS <= S0; 

  else 

   CS <= NS; 

  end if; 

 end process; 

end; 

 

 SDM_B.vhd, PiSDM_B.vhd, SC_B.vhd: 
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library ieee; 

use ieee.std_logic_1164.all; 

use ieee.std_logic_unsigned.all; 

use ieee.numeric_std.all; 

 

 

entity SDM_B is 

 port (a2, b2, I, uB, vB: in std_logic_vector(31 downto 0); -- TI input 

and additive shares 

   U1, V1: in std_logic_vector(31 downto 0); -- Step 1 input 

from A 

   U2, V2: out std_logic_vector(31 downto 0); -- Step 2 output 

to A 

   X: in std_logic_vector(31 downto 0); -- Step 3 input from A 

   Bout: out std_logic_vector(31 downto 0)); 

end; 

 

architecture behavioral of SDM_B is 

 

 signal q: unsigned(31 downto 0); 

 signal Y1, Y2: std_logic_vector(31 downto 0); 

  

begin 

 

 q <= "11111111111111111111111111111011"; 

 

 U2 <= std_logic_vector((('0'&unsigned(uB)) + ('0'&(q - unsigned(a2)))) 

mod q); 

 V2 <= std_logic_vector((('0'&unsigned(vB)) + ('0'&(q - unsigned(b2)))) 

mod q); 

 

 Bout <= std_logic_vector((("000"&(unsigned((U1*vB)) mod q)) + 

("000"&(unsigned(V1*uB) mod q)) + ("000"&unsigned(X)) + 

("000"&(unsigned((uB*vB)) mod q)) + ("000"&unsigned(I))) mod q); 

  

end behavioral; 

 

 

library ieee; 

use ieee.std_logic_1164.all; 

 

entity SDM_B_ASM is 

 port( clk, reset: in std_logic; 

   TIrqst: out std_logic; -- TI request: randomness 

   I, a2, b2: in std_logic_vector(31 downto 0); -- randomness 

   TIdat: in std_logic; -- TI data valid 

   Srqst: out std_logic; -- Shares request 

   uB, vB: in std_logic_vector(31 downto 0); -- Shares 

   Sdat: in std_logic; -- Shares valid 

   Aorqst: out std_logic; -- Step1 data request to A 

   U1, V1: in std_logic_vector(31 downto 0); -- Step1 input 

from A 

   Aodat: in std_logic; -- Step1 data valid from A 

   Airqst: in std_logic; -- Step2 data request from A 

   U2, V2: out std_logic_vector(31 downto 0); -- Step2 output 

to A 
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   Aidat: out std_logic; -- Step2 data valid to A 

   Xrqst: out std_logic; -- Step3 data request to A 

   X: in std_logic_vector(31 downto 0); -- Step3 input from A 

   Xdat: in std_logic; -- Step3 data valid from A 

   Brqst: in std_logic; -- Step4 request for output 

   Bout: out std_logic_vector(31 downto 0); -- Party B output 

   Bdat: out std_logic); -- Step4 output valid 

end; 

 

architecture arch of SDM_B_ASM is 

  

 component RegS 

  port( D: in std_logic_vector(31 downto 0); 

    clk, load: in std_logic; 

    Q: out std_logic_vector(31 downto 0)); 

 end component; 

  

 component SDM_B 

  port (a2, b2, I, uB, vB: in std_logic_vector(31 downto 0); -- TI 

input and additive shares 

   U1, V1: in std_logic_vector(31 downto 0); -- Step 1 input 

from A 

   U2, V2: out std_logic_vector(31 downto 0); -- Step 2 output 

to A 

   X: in std_logic_vector(31 downto 0); -- Step 3 input from A 

   Bout: out std_logic_vector(31 downto 0)); 

 end component; 

  

 signal a2i, b2i, Ii, uBi, vBi, U1i, V1i, Xi, Y, U2_temp, V2_temp: 

std_logic_vector(31 downto 0); 

 signal Sld, TIld, Aold, Xld, Aild, Bld: std_logic; 

  

 type state_type is (S0, S1, S2, S3, S4); 

 signal CS, NS: state_type; 

  

begin 

 -- data path 

  -- Input 

  uB_reg: RegS port map(uB, clk, Sld, uBi);   

  a2_reg: RegS port map(a2, clk, TIld, a2i); 

  vB_reg: RegS port map(vB, clk, Sld, vBi); 

  b2_reg: RegS port map(b2, clk, TIld, b2i); 

  U1_reg: RegS port map(U1, clk, Aold, U1i); 

  V1_reg: RegS port map(V1, clk, Aold, V1i); 

  X_reg: RegS port map(X, clk, Xld, Xi); 

  I_reg: RegS port map(I, clk, TIld, Ii); 

   

  -- Math 

  B: SDM_B port map(a2i, b2i, Ii, uBi, vBi, U1i, V1i, U2_temp, 

V2_temp, Xi, Y); 

   

  -- Output 

  U2_reg: RegS port map(U2_temp, clk, Aild, U2); 

  V2_reg: RegS port map(V2_temp, clk, Aild, V2); 

  Bout_reg: RegS port map(Y, clk, Bld, Bout); 
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 -- ASM 

 ASM: process(CS, Sdat, TIdat, Aodat, Airqst, Xdat, Brqst) 

 begin 

  Srqst <= '0'; 

  TIrqst <= '0'; 

  Aorqst <= '0'; 

  Sld <= '0'; 

  TIld <= '0'; 

  Aild <= '0'; 

  Aold <= '0'; 

  Aidat <= '0'; 

  Xrqst <= '0'; 

  Xld <= '0'; 

  Bld <= '0'; 

  Bdat <= '0'; 

   

  case CS is 

   when S0 => 

    Srqst <= '1'; 

    TIrqst <= '1'; 

    Aorqst <= '1'; 

    if Sdat = '0' or TIdat = '0' then 

     NS <= S0; 

    else 

     Sld <= '1'; 

     TIld <= '1'; 

     Aild <= '1'; 

     if Aodat = '0' then 

      NS <= S1; 

     else 

      Aold <= '1'; 

      if Airqst = '0' then 

       NS <= S2; 

      else 

       Aidat <= '1'; 

       Xrqst <= '1'; 

       if Xdat = '0' then 

        NS <= S3; 

       else 

        Xld <= '1'; 

        Bld <= '1'; 

        if Brqst = '0' then 

         NS <= S4; 

        else 

         Bdat <='1'; 

         NS <= S0; 

        end if; 

       end if; 

      end if; 

     end if; 

    end if; 

   when S1 => 

    if Aodat = '0' then 

     NS <= S1; 

    else 

     Aold <= '1'; 
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     if Airqst = '0' then 

      NS <= S2; 

     else 

      Aidat <= '1'; 

      Xrqst <= '1'; 

      if Xdat = '0' then 

       NS <= S3; 

      else 

       Xld <= '1'; 

       Bld <= '1'; 

       if Brqst = '0' then 

        NS <= S4; 

       else 

        Bdat <='1'; 

        NS <= S0; 

       end if; 

      end if; 

     end if; 

    end if; 

   when S2 => 

    if Airqst = '0' then 

     NS <= S2; 

    else 

     Aidat <= '1'; 

     Xrqst <= '1'; 

     if Xdat = '0' then 

      NS <= S3; 

     else 

      Xld <= '1'; 

      Bld <= '1'; 

      if Brqst = '0' then 

       NS <= S4; 

      else 

       Bdat <='1'; 

       NS <= S0; 

      end if; 

     end if; 

    end if; 

   when S3 => 

    Xrqst <= '1'; 

    if Xdat = '0' then 

     NS <= S3; 

    else 

     Xld <= '1'; 

     Bld <= '1'; 

     if Brqst = '0' then 

      NS <= S4; 

     else 

      Bdat <='1'; 

      NS <= S0; 

     end if; 

    end if; 

   when S4 => 

    if Brqst = '0' then 

     NS <= S4; 

    else 
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     Bdat <='1'; 

     NS <= S0; 

    end if; 

  end case; 

 end process; 

  

  

 -- DFF 

 sync: process 

 begin 

  wait until clk'event and clk = '1'; 

  if reset = '1' then 

   CS <= S0; 

  else 

   CS <= NS; 

  end if; 

 end process; 

end; 

 

 

-- Pi Product SDM Party B ASM 

library ieee; 

use ieee.std_logic_1164.all; 

use ieee.std_logic_unsigned.all; 

use ieee.numeric_std.all; 

use work.MY_PACKAGE.all; 

 

entity PiSDM_B_ASM is 

 generic(N: natural := 32);  

 port( clk, reset: in std_logic; 

   TIrqst: out std_logic; -- TI request: randomness 

   I, a2, b2: in std_logic_vector(31 downto 0); -- randomness 

   TIdat: in std_logic; -- TI data valid 

   Crqst: out std_logic; -- Shares request 

   C: in DATA_ARRAY(1 to N); -- Shares 

   Cdat: in std_logic; -- Shares valid 

   Aorqst: out std_logic; -- Step1 data request to A 

   U1, V1: in std_logic_vector(31 downto 0); -- Step1 input 

from A 

   Aodat: in std_logic; -- Step1 data valid from A 

   Airqst: in std_logic; -- Step2 data request from A 

   U2, V2: out std_logic_vector(31 downto 0); -- Step2 output 

to A 

   Aidat: out std_logic; -- Step2 data valid to A 

   Xrqst: out std_logic; -- Step3 data request to A 

   X: in std_logic_vector(31 downto 0); -- Step3 input from A 

   Xdat: in std_logic; -- Step3 data valid from A 

   Brqst: in std_logic; -- Step4 request for output 

   Bout: out std_logic_vector(31 downto 0); -- Party B output 

   Bdat: out std_logic); -- Step4 output valid 

end; 

 

architecture arch of PiSDM_B_ASM is 

 

 component SDM_B_ASM 

  port( clk, reset: in std_logic; 
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   TIrqst: out std_logic; -- TI request: randomness 

   I, a2, b2: in std_logic_vector(31 downto 0); -- randomness 

   TIdat: in std_logic; -- TI data valid 

   Srqst: out std_logic; -- Shares request 

   uB, vB: in std_logic_vector(31 downto 0); -- Shares 

   Sdat: in std_logic; -- Shares valid 

   Aorqst: out std_logic; -- Step1 data request to A 

   U1, V1: in std_logic_vector(31 downto 0); -- Step1 input 

from A 

   Aodat: in std_logic; -- Step1 data valid from A 

   Airqst: in std_logic; -- Step2 data request from A 

   U2, V2: out std_logic_vector(31 downto 0); -- Step2 output 

to A 

   Aidat: out std_logic; -- Step2 data valid to A 

   Xrqst: out std_logic; -- Step3 data request to A 

   X: in std_logic_vector(31 downto 0); -- Step3 input from A 

   Xdat: in std_logic; -- Step3 data valid from A 

   Brqst: in std_logic; -- Step4 request for output 

   Bout: out std_logic_vector(31 downto 0); -- Party B output 

   Bdat: out std_logic); -- Step4 output valid 

 end component; 

  

 component RegS 

  port( D: in std_logic_vector(31 downto 0); 

    clk, load: in std_logic; 

    Q: out std_logic_vector(31 downto 0)); 

 end component; 

  

 component mux32 

  port( A, B: in std_logic_vector(31 downto 0); 

    S: in std_logic; 

    F: out std_logic_vector(31 downto 0)); 

 end component; 

  

 component shift_reg_parallel 

  generic (N: integer := 31); 

  port( C: in DATA_ARRAY(1 to N); 

    clk, LD, pLD: in std_logic; 

    Q: out std_logic_vector(31 downto 0)); 

 end component; 

  

 component count32 

  port( X: in std_logic_vector(4 downto 0); 

    inc, clk, load: in std_logic; 

    count: out std_logic_vector(4 downto 0)); 

 end component; 

  

 component mux5 

  port( A, B: in std_logic_vector(4 downto 0); 

    S: in std_logic; 

    F: out std_logic_vector(4 downto 0)); 

 end component; 

  

 component and_5 

  port( A: in std_logic_vector(4 downto 0); 

    F: out std_logic); 
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 end component; 

  

 signal uBi, uBo, Botemp, Cnext: std_logic_vector(31 downto 0); 

 signal count, CN1, CN2: std_logic_vector(4 downto 0); 

 signal BSrqst, BSdat, BBrqst, BBdat, Bld, uBld, uBs, Cld, Cpld, inc, 

countld, Cm1, Cm2: std_logic; 

  

 type state_type is (S0, S1, S2, S3); 

 signal CS, NS: state_type; 

  

begin 

 -- Data Path 

 B_Reg: RegS 

  port map(Botemp, clk, Bld, Bout); 

  

 B: SDM_B_ASM 

  port map(clk, reset, 

     TIrqst, I, a2, b2, TIdat, 

     BSrqst, uBo, Cnext, BSdat, 

     Aorqst, U1, V1, Aodat, 

     Airqst, U2, V2, Aidat, 

     Xrqst, X, Xdat, 

     BBrqst, Botemp, BBdat); 

      

 uB_Reg: RegS 

  port map(uBi, clk, uBld, uBo); 

   

 uB_Mux: mux32 

  port map(C(1), Botemp, uBs, uBi); 

   

 ShiftReg_ParallelLoad: shift_reg_parallel 

  generic map(N-1) 

  port map(C(2 to N), clk, Cld, Cpld, Cnext); 

  

 counter: count32 

  port map("00000", inc, clk, countld, count); 

  

 -- ASM 

 -- count bitwise xnor for N-1 and N-2 

 CN1 <= std_logic_vector(to_unsigned(N-1, 5)) xnor count; 

 CN2 <= std_logic_vector(to_unsigned(N-2, 5)) xnor count; 

  

 -- Flag for count equal N-1 or N-2 being true 

 countN1: and_5 port map(CN1, Cm1); 

 countN2: and_5 port map(CN2, Cm2); 

  

 ASM: process(CS, Cdat, BSrqst, Cm1, Cm2, BBdat, Brqst) 

 begin 

  Crqst <= '0'; 

  uBs <= '0'; 

  Cpld <= '0'; 

  BSdat <= '0'; 

  inc <= '0'; 

  Cld <= '0'; 

  uBld <= '0'; 

  BBrqst <= '0'; 
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  BSdat <= '0'; 

  Bdat <= '0'; 

  countld <= '0'; 

  Bld <= '0'; 

   

  case CS is 

   when S0 => 

    Crqst <= '1'; 

    uBs <= '1'; 

    Cpld <= '1'; 

    if Cdat = '0' then 

     NS <= S0; 

    else 

     Cld <= '1'; 

     countld <= '1'; 

     if BSrqst = '0' then 

      NS <= S2; 

     else 

      BSdat <= '1'; 

      uBld <= '1'; 

      NS <= S1; 

     end if; 

    end if; 

   when S1 => 

    if Cm1 = '0' then 

     BBrqst <= '1'; 

     bSdat <= '1'; 

     if BBdat = '0' then 

      NS <= S1; 

     else 

      inc <= '1'; 

      if Cm2 = '0' then 

       Cld <= '1'; 

       uBld <= '1'; 

       if BSrqst = '0' then 

        NS <= S3; 

       else 

        BSdat <= '1'; 

        NS <= S1; 

       end if; 

      else 

       if Brqst = '0' then 

        NS <= S1; 

       else 

        Bld <= '1'; 

        Bdat <= '1'; 

        NS <= S0; 

       end if; 

      end if; 

     end if; 

    else 

     if Brqst = '0' then 

      NS <= S1; 

     else 

      Bld <= '1'; 

      Bdat <= '1'; 
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      NS <= S0; 

     end if; 

    end if; 

   when S2 => 

    if BSrqst = '0' then 

     NS <= S2; 

    else 

     uBld <= '1'; 

     BSdat <= '1'; 

     NS <= S1; 

    end if; 

   when S3 => 

    if Cm1 = '0' then 

     if BSrqst = '0' then 

      NS <= S3; 

     else 

      BSdat <= '1'; 

      NS <= S1; 

     end if; 

    else 

     if Brqst = '0' then 

      NS <= S1; 

     else 

      Bld <= '1'; 

      Bdat <= '1'; 

      NS <= S0; 

     end if; 

    end if; 

  end case; 

 end process; 

  

 -- DFF 

 sync: process 

 begin 

  wait until clk'event and clk = '1'; 

  if reset = '1' then 

   CS <= S0; 

  else 

   CS <= NS; 

  end if; 

 end process; 

end; 

 

 

-- SC SDM Party B ASM 

library ieee; 

use ieee.std_logic_1164.all; 

use work.MY_PACKAGE.all; 

 

entity SC_B_ASM is 

 generic(N: natural := 30); 

 port( clk, reset: in std_logic; 

   TIrqst: out std_logic; -- TI request: randomness 

   I, a2, b2: in std_logic_vector(31 downto 0); -- randomness 

   TIdat: in std_logic; -- TI data valid 

   Srqst: out std_logic; -- Shares request 
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   XB, YB: in DATA_ARRAY(1 to N); -- Shares 

   Sdat: in std_logic; -- Shares valid 

   Aorqst: out std_logic; -- Step1 data request to A 

   U1, V1: in std_logic_vector(31 downto 0); -- Step1 input 

from A 

   Aodat: in std_logic; -- Step1 data valid from A 

   Airqst: in std_logic; -- Step2 data request from A 

   U2, V2: out std_logic_vector(31 downto 0); -- Step2 output 

to A 

   Aidat: out std_logic; -- Step2 data valid to A 

   Xrqst: out std_logic; -- Step3 data request to A 

   X: in std_logic_vector(31 downto 0); -- Step3 input from A 

   Xdat: in std_logic; -- Step3 data valid from A 

   Brqst: in std_logic; -- Step4 request for output 

   Bout: out std_logic_vector(31 downto 0); -- Party B output 

   Bdat: out std_logic); -- Step4 output valid 

end; 

 

architecture arch of SC_B_ASM is 

 component PiSDM_B_ASM 

  generic(N: natural := 32);  

  port( clk, reset: in std_logic; 

    TIrqst: out std_logic; -- TI request: randomness 

    I, a2, b2: in std_logic_vector(31 downto 0); -- 

randomness 

    TIdat: in std_logic; -- TI data valid 

    Crqst: out std_logic; -- Shares request 

    C: in DATA_ARRAY(1 to N); -- Shares 

    Cdat: in std_logic; -- Shares valid 

    Aorqst: out std_logic; -- Step1 data request to A 

    U1, V1: in std_logic_vector(31 downto 0); -- Step1 

input from A 

    Aodat: in std_logic; -- Step1 data valid from A 

    Airqst: in std_logic; -- Step2 data request from A 

    U2, V2: out std_logic_vector(31 downto 0); -- Step2 

output to A 

    Aidat: out std_logic; -- Step2 data valid to A 

    Xrqst: out std_logic; -- Step3 data request to A 

    X: in std_logic_vector(31 downto 0); -- Step3 input 

from A 

    Xdat: in std_logic; -- Step3 data valid from A 

    Brqst: in std_logic; -- Step4 request for output 

    Bout: out std_logic_vector(31 downto 0); -- Party B 

output 

    Bdat: out std_logic); -- Step4 output valid 

 end component; 

  

 component SubShares 

  generic (N: integer := 30); 

  port( A, B: in DATA_ARRAY(1 to N); 

    C: out DATA_ARRAY(1 to N)); 

 end component; 

  

 component SigmaShares 

  generic (N: integer := 30); 

  port( D: in DATA_ARRAY(1 to N); 
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    DS: out DATA_ARRAY(1 to N)); 

 end component; 

  

 component AddShares1 

  generic (N: integer := 30); 

  port( A, B: in DATA_ARRAY(1 to N); 

    C: out DATA_ARRAY(1 to N)); 

 end component; 

  

 component RegS 

  port( D: in std_logic_vector(31 downto 0); 

    clk, load: in std_logic; 

    Q: out std_logic_vector(31 downto 0)); 

 end component; 

  

 component Comparator 

  port( A: in std_logic_vector(31 downto 0); 

    Aeq0: out std_logic); 

 end component; 

  

 signal D, DS, C: DATA_ARRAY(1 to N); 

 signal Bo: std_logic_vector(31 downto 0); 

 signal BCrqst, BCdat, BBrqst, BBdat: std_logic; 

  

 type state_type is (S0, S1, S2); 

 signal CS, NS: state_type; 

begin 

 -- Data Path 

 Subtract: SubShares port map(XB, YB, D); 

 Sums: SigmaShares port map(D, DS); 

 Add: AddShares1 port map(DS, D, C); 

 PiB: PiSDM_B_ASM 

  generic map(30) 

  port map(clk, reset, 

     TIrqst, I, a2, b2, TIdat, 

     BCrqst, C, BCdat, 

     Aorqst, U1, V1, Aodat, 

     Airqst, U2, V2, Aidat, 

     Xrqst, X, Xdat, 

     BBrqst, Bo, BBdat); 

      

 Bout <= Bo; 

 --OutReg: RegS port map(Bo, clk, Bld, Bout); 

 

 -- ASM 

 ASM: process(CS, Sdat, BCrqst, BBdat, Brqst) 

 begin 

  Srqst <= '0'; 

  BCdat <= '0'; 

  BBrqst <= '0'; 

  Bdat <= '0'; 

   

  case CS is 

   when S0 => 

    Srqst <= '1'; 

    if Sdat = '0' or BCrqst = '0' then 
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     NS <= S0; 

    else 

     BCdat <= '1'; 

     NS <= S1; 

    end if; 

   when S1 => 

    BBrqst <= '1'; 

    if BBdat = '0' then 

     NS <= S1; 

    else 

     if Brqst = '0' then 

      NS <= S2; 

     else 

      Bdat <= '1'; 

      NS <= S0; 

     end if; 

    end if; 

   when S2 => 

    if Brqst = '0' then 

     NS <= S2; 

    else 

     Bdat <= '1'; 

     NS <= S0; 

    end if; 

  end case; 

 end process; 

  

 -- DFF 

 sync: process 

 begin 

  wait until clk'event and clk = '1'; 

  if reset = '1' then 

   CS <= S0; 

  else 

   CS <= NS; 

  end if; 

 end process; 

end; 

 

 SDM_chip.vhd: 

library ieee; 

use ieee.std_logic_1164.all; 

use ieee.std_logic_unsigned.all; 

 

entity SDM_chip is 

 port( clk, reset: in std_logic; 

   uA, vA, uB, vB: in std_logic_vector(31 downto 0); 

   Ao, Bo: out std_logic_vector(31 downto 0)); 

end; 

 

architecture structural of SDM_chip is 

 component SDM_TI 
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  port( clk, reset: in std_logic; 

    r, a1, a2, b1, b2, I: out std_logic_vector(31 downto 

0)); 

 end component; 

 

 component SDM_regA 

  port( clk, reset: in std_logic; 

    r, a1, b1, uA, vA: in std_logic_vector(31 downto 0); 

-- TI input and additive shares 

    U1, V1: out std_logic_vector(31 downto 0); -- Step 1 

output to B 

    U2, V2: in std_logic_vector(31 downto 0); -- Step 2 

input from B 

    X: out std_logic_vector(31 downto 0); -- Step 3 

output to B 

    Aout: out std_logic_vector(31 downto 0)); 

 end component; 

  

 component SDM_regB 

  port( clk, reset: in std_logic; 

    a2, b2, I, uB, vB: in std_logic_vector(31 downto 0); 

-- TI input and additive shares 

    U1, V1: in std_logic_vector(31 downto 0); -- Step 1 

input from A 

    U2, V2: out std_logic_vector(31 downto 0); -- Step 2 

output to A 

    X: in std_logic_vector(31 downto 0); -- Step 3 input 

from A 

    Bout: out std_logic_vector(31 downto 0)); 

 end component; 

 

 signal r, a1, a2, b1, b2, I, U1, V1, U2, V2, X: std_logic_vector(31 

downto 0); 

begin 

 TI: SDM_TI 

  port map(clk, reset, r, a1, a2, b1, b2, I); 

   

 A: SDM_regA 

  port map(clk, reset, r, a1, b1, uA, vA, U1, V1, U2, V2, X, Ao); 

   

 B: SDM_regB 

  port map(clk, reset, a2, b2, I, uB, vB, U1, V1, U2, V2, X, Bo); 

 

end structural; 

 

 

library ieee; 

use ieee.std_logic_1164.all; 

 

entity SDM_ASM_chip is 

 port( clk, reset: in std_logic; 

   A_Srqst: out std_logic; 

   uA, vA: in std_logic_vector(31 downto 0); 

   A_Sdat: in std_logic; 

   B_Srqst: out std_logic; 

   uB, vB: in std_logic_vector(31 downto 0); 
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   B_Sdat: in std_logic; 

   Arqst: in std_logic; 

   Ao: out std_logic_vector(31 downto 0); 

   Adat: out std_logic; 

   Brqst: in std_logic; 

   Bo: out std_logic_vector(31 downto 0); 

   Bdat: out std_logic); 

end; 

 

architecture structural of SDM_ASM_chip is 

 component SDM_TI_ASM 

  port( clk, reset: in std_logic; 

    Arqst: in std_logic; 

    r, a1, b1: out std_logic_vector(31 downto 0); 

    Adat: out std_logic; 

    Brqst: in std_logic; 

    I, a2, b2: out std_logic_vector(31 downto 0); 

    Bdat: out std_logic); 

 end component; 

 

 component SDM_A_ASM 

  port( clk, reset: in std_logic; 

    TIrqst: out std_logic; -- TI request: randomness 

    r, a1, b1: in std_logic_vector(31 downto 0); -- 

randomness 

    TIdat: in std_logic; -- TI data valid 

    Srqst: out std_logic; -- Shares request 

    uA, vA: in std_logic_vector(31 downto 0); -- Shares 

    Sdat: in std_logic; -- Shares valid 

    Birqst: in std_logic; -- Step1 data request from B 

    U1, V1: out std_logic_vector(31 downto 0); -- Step1 

output to B 

    Bidat: out std_logic; -- Step1 data valid to B 

    Borqst: out std_logic; -- Step2 data request to B 

    U2, V2: in std_logic_vector(31 downto 0); -- Step2 

input from B 

    Bodat: in std_logic; -- Step2 data valid from B 

    Xrqst: in std_logic; -- Step3 data request from B 

    X: out std_logic_vector(31 downto 0); -- Step3 output 

to B 

    Xdat: out std_logic; -- Step3 data valid to B 

    Arqst: in std_logic; -- Step4 request for output 

    Aout: out std_logic_vector(31 downto 0); -- Party A 

output 

    Adat: out std_logic); -- Step4 output valid 

 end component; 

  

 component SDM_B_ASM 

  port( clk, reset: in std_logic; 

    TIrqst: out std_logic; -- TI request: randomness 

    I, a2, b2: in std_logic_vector(31 downto 0); -- 

randomness 

    TIdat: in std_logic; -- TI data valid 

    Srqst: out std_logic; -- Shares request 

    uB, vB: in std_logic_vector(31 downto 0); -- Shares 

    Sdat: in std_logic; -- Shares valid 
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    Aorqst: out std_logic; -- Step1 data request to A 

    U1, V1: in std_logic_vector(31 downto 0); -- Step1 

input from A 

    Aodat: in std_logic; -- Step1 data valid from A 

    Airqst: in std_logic; -- Step2 data request from A 

    U2, V2: out std_logic_vector(31 downto 0); -- Step2 

output to A 

    Aidat: out std_logic; -- Step2 data valid to A 

    Xrqst: out std_logic; -- Step3 data request to A 

    X: in std_logic_vector(31 downto 0); -- Step3 input 

from A 

    Xdat: in std_logic; -- Step3 data valid from A 

    Brqst: in std_logic; -- Step4 request for output 

    Bout: out std_logic_vector(31 downto 0); -- Party B 

output 

    Bdat: out std_logic); -- Step4 output valid 

 end component; 

 

 signal TI_Arqst, TI_Adat, TI_Brqst, TI_Bdat: std_logic; -- TI OCDDC 

 signal Step1rqst, Step1dat, Step2rqst, Step2dat, Xrqst, Xdat: 

std_logic; -- A&B OCDDC 

  

 signal r, a1, a2, b1, b2, I, U1, V1, U2, V2, X: std_logic_vector(31 

downto 0); 

begin 

 TI: SDM_TI_ASM 

  port map(clk, reset, 

     TI_Arqst, r, a1, b1, TI_Adat, 

     TI_Brqst, I, a2, b2, TI_Bdat); 

   

 A: SDM_A_ASM 

  port map(clk, reset, 

     TI_Arqst, r, a1, b1, TI_Adat, 

     A_Srqst, uA, vA, A_Sdat, 

     Step1rqst, U1, V1, Step1dat, 

     Step2rqst, U2, V2, Step2dat, 

     Xrqst, X, Xdat, 

     Arqst, Ao, Adat); 

   

 B: SDM_B_ASM 

  port map(clk, reset, 

     TI_Brqst, I, a2, b2, TI_Bdat, 

     B_Srqst, uB, vB, B_Sdat, 

     Step1rqst, U1, V1, Step1dat, 

     Step2rqst, U2, V2, Step2dat, 

     Xrqst, X, Xdat, 

     Brqst, Bo, Bdat); 

 

end structural; 

 

 TB_SDM.vhd: 

library ieee; 



 
 

121 
 

use ieee.std_logic_1164.all; 

use ieee.std_logic_unsigned.all; 

use ieee.numeric_std.all; 

 

entity tb_SDM is 

 port(correct: out std_logic); 

end; 

 

architecture tb of tb_SDM is 

 component SDM_chip 

  port( clk, reset: std_logic; 

    uA, vA, uB, vB: in std_logic_vector(31 downto 0); 

    Ao, Bo: out std_logic_vector(31 downto 0)); 

 end component; 

  

 component SDM_ASM_chip is 

  port( clk, reset: in std_logic; 

    A_Srqst: out std_logic; 

    uA, vA: in std_logic_vector(31 downto 0); 

    A_Sdat: in std_logic; 

    B_Srqst: out std_logic; 

    uB, vB: in std_logic_vector(31 downto 0); 

    B_Sdat: in std_logic; 

    Arqst: in std_logic; 

    Ao: out std_logic_vector(31 downto 0); 

    Adat: out std_logic; 

    Brqst: in std_logic; 

    Bo: out std_logic_vector(31 downto 0); 

    Bdat: out std_logic); 

 end component; 

  

 signal q, mult1, mult2: unsigned(31 downto 0); 

 signal mult2s: unsigned(32 downto 0); 

 signal uA, vA, uB, vB, Ao, Bo: std_logic_vector(31 downto 0); 

 signal clk, reset, A_Srqst, A_Sdat, B_Srqst, B_Sdat, Arqst, Adat, 

Brqst, Bdat: std_logic; 

begin 

 

 q <= "11111111111111111111111111111011"; -- 4294967291 

 mult1 <= unsigned((uA + uB) * (vA + vB)) mod q; 

 mult2s <= unsigned(('0' & Bo) + ('0' & Ao)); 

 mult2 <= mult2s mod q; 

 

 uut: SDM_ASM_chip 

  port map(clk, reset, 

     A_Srqst, uA, vA, A_Sdat, 

     B_Srqst, uB, vB, B_Sdat, 

     Arqst, Ao, Adat, 

     Brqst, Bo, Bdat); 

   

 correctness: process(mult1, mult2) 

 begin 

  if (mult1 = mult2) then  

   correct <= '1'; 

  else 

   correct <= '0'; 
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  end if; 

 end process; 

  

 test: process 

 begin 

  A_Sdat <= '0'; 

  B_Sdat <= '0'; 

  wait until A_Srqst = '1' and B_Srqst = '1'; 

  uA <= "01110001100111101111100000011101"; 

  uB <= "01101000111110101000110010110101"; 

  vA <= "01010110011111000111011011101111"; 

  vB <= "00111011000111110000011000110001"; 

  A_Sdat <= '1'; 

  B_Sdat <= '1'; 

  Arqst <= '1'; 

  Brqst <= '1'; 

  wait until Adat = '1' and Bdat = '1'; 

   

  A_Sdat <= '0'; 

  B_Sdat <= '0'; 

  wait until A_Srqst = '1' and B_Srqst = '1'; 

  uA <= "01000000000000000000000000000011"; 

  uB <= "00000000000000000000000000000001"; 

  vA <= "00000000000000000000000000000001"; 

  vB <= "00000000000000000000000000000001"; 

  A_Sdat <= '1'; 

  B_Sdat <= '1'; 

  Arqst <= '1'; 

  Brqst <= '1'; 

  wait until Adat = '1' and Bdat = '1'; 

   

  A_Sdat <= '0'; 

  B_Sdat <= '0'; 

  wait until A_Srqst = '1' and B_Srqst = '1'; 

  uA <= "00000000000000000000000000000011"; 

  uB <= "00000000000000000000000000000010"; 

  vA <= "00000000000000000000000000000101"; 

  vB <= "00000000000000000000000000001000"; 

  A_Sdat <= '1'; 

  B_Sdat <= '1'; 

  Arqst <= '1'; 

  Brqst <= '1'; 

  wait; 

 end process; 

 

 clock: process 

 begin 

  clk <= '0'; 

  wait for 5 ns; 

   

  clk <= '1'; 

  wait for 5 ns; 

 end process; 

  

 rst: process 

 begin 
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  reset <= '1'; 

  wait for 10 ns; 

  reset <= '0'; 

  wait; 

 end process; 

end tb; 

 

 PiSDM_chip.vhd: 

library ieee; 

use ieee.std_logic_1164.all; 

use ieee.std_logic_unsigned.all; 

 

entity SDM_chip is 

 port( clk, reset: in std_logic; 

   uA, vA, uB, vB: in std_logic_vector(31 downto 0); 

   Ao, Bo: out std_logic_vector(31 downto 0)); 

end; 

 

architecture structural of SDM_chip is 

 component SDM_TI 

  port( clk, reset: in std_logic; 

    r, a1, a2, b1, b2, I: out std_logic_vector(31 downto 

0)); 

 end component; 

 

 component SDM_regA 

  port( clk, reset: in std_logic; 

    r, a1, b1, uA, vA: in std_logic_vector(31 downto 0); 

-- TI input and additive shares 

    U1, V1: out std_logic_vector(31 downto 0); -- Step 1 

output to B 

    U2, V2: in std_logic_vector(31 downto 0); -- Step 2 

input from B 

    X: out std_logic_vector(31 downto 0); -- Step 3 

output to B 

    Aout: out std_logic_vector(31 downto 0)); 

 end component; 

  

 component SDM_regB 

  port( clk, reset: in std_logic; 

    a2, b2, I, uB, vB: in std_logic_vector(31 downto 0); 

-- TI input and additive shares 

    U1, V1: in std_logic_vector(31 downto 0); -- Step 1 

input from A 

    U2, V2: out std_logic_vector(31 downto 0); -- Step 2 

output to A 
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    X: in std_logic_vector(31 downto 0); -- Step 3 input 

from A 

    Bout: out std_logic_vector(31 downto 0)); 

 end component; 

 

 signal r, a1, a2, b1, b2, I, U1, V1, U2, V2, X: std_logic_vector(31 

downto 0); 

begin 

 TI: SDM_TI 

  port map(clk, reset, r, a1, a2, b1, b2, I); 

   

 A: SDM_regA 

  port map(clk, reset, r, a1, b1, uA, vA, U1, V1, U2, V2, X, Ao); 

   

 B: SDM_regB 

  port map(clk, reset, a2, b2, I, uB, vB, U1, V1, U2, V2, X, Bo); 

 

end structural; 

 

 

library ieee; 

use ieee.std_logic_1164.all; 

use work.MY_PACKAGE.all; 

 

entity PiSDM_ASM_chip is 

 port( clk, reset: in std_logic; 

   A_Crqst: out std_logic; 

   AC: in DATA_ARRAY(1 to 32); -- Shares 

   A_Cdat: in std_logic; 

   B_Crqst: out std_logic; 

   BC: in DATA_ARRAY(1 to 32); -- Shares 

   B_Cdat: in std_logic; 

   Arqst: in std_logic; 

   Ao: out std_logic_vector(31 downto 0); 

   Adat: out std_logic; 

   Brqst: in std_logic; 

   Bo: out std_logic_vector(31 downto 0); 

   Bdat: out std_logic); 

end; 

 

architecture structural of PiSDM_ASM_chip is 

 component PiSDM_TI_ASM 

  port( clk, reset: in std_logic; 

    Arqst: in std_logic; 

    r, a1, b1: out std_logic_vector(31 downto 0); 

    Adat: out std_logic; 

    Brqst: in std_logic; 

    I, a2, b2: out std_logic_vector(31 downto 0); 

    Bdat: out std_logic); 
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 end component; 

 

 component PiSDM_A_ASM 

  port( clk, reset: in std_logic; 

    TIrqst: out std_logic; -- TI request: randomness 

    r, a1, b1: in std_logic_vector(31 downto 0); -- 

randomness 

    TIdat: in std_logic; -- TI data valid 

    Crqst: out std_logic; -- Shares request 

    C: in DATA_ARRAY(1 to 32); -- Shares 

    Cdat: in std_logic; -- Shares valid 

    Birqst: in std_logic; -- Step1 data request from B 

    U1, V1: out std_logic_vector(31 downto 0); -- Step1 

output to B 

    Bidat: out std_logic; -- Step1 data valid to B 

    Borqst: out std_logic; -- Step2 data request to B 

    U2, V2: in std_logic_vector(31 downto 0); -- Step2 

input from B 

    Bodat: in std_logic; -- Step2 data valid from B 

    Xrqst: in std_logic; -- Step3 data request from B 

    X: out std_logic_vector(31 downto 0); -- Step3 output 

to B 

    Xdat: out std_logic; -- Step3 data valid to B 

    Arqst: in std_logic; -- Step4 request for output 

    Aout: out std_logic_vector(31 downto 0); -- Party A 

output 

    Adat: out std_logic); -- Step4 output valid 

 end component; 

  

 component PiSDM_B_ASM 

  port( clk, reset: in std_logic; 

    TIrqst: out std_logic; -- TI request: randomness 

    I, a2, b2: in std_logic_vector(31 downto 0); -- 

randomness 

    TIdat: in std_logic; -- TI data valid 

    Crqst: out std_logic; -- Shares request 

    C: in DATA_ARRAY(1 to 32); -- Shares 

    Cdat: in std_logic; -- Shares valid 

    Aorqst: out std_logic; -- Step1 data request to A 

    U1, V1: in std_logic_vector(31 downto 0); -- Step1 

input from A 

    Aodat: in std_logic; -- Step1 data valid from A 

    Airqst: in std_logic; -- Step2 data request from A 

    U2, V2: out std_logic_vector(31 downto 0); -- Step2 

output to A 

    Aidat: out std_logic; -- Step2 data valid to A 

    Xrqst: out std_logic; -- Step3 data request to A 

    X: in std_logic_vector(31 downto 0); -- Step3 input 

from A 
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    Xdat: in std_logic; -- Step3 data valid from A 

    Brqst: in std_logic; -- Step4 request for output 

    Bout: out std_logic_vector(31 downto 0); -- Party B 

output 

    Bdat: out std_logic); -- Step4 output valid 

 end component; 

 

 signal TI_Arqst, TI_Adat, TI_Brqst, TI_Bdat: std_logic; -- TI OCDDC 

 signal Step1rqst, Step1dat, Step2rqst, Step2dat, Xrqst, Xdat: 

std_logic; -- A&B OCDDC 

  

 signal r, a1, a2, b1, b2, I, U1, V1, U2, V2, X: std_logic_vector(31 

downto 0); 

begin 

 TI: PiSDM_TI_ASM 

   port map(clk, reset, 

     TI_Arqst, r, a1, b1, TI_Adat, 

     TI_Brqst, I, a2, b2, TI_Bdat); 

   

 A: PiSDM_A_ASM 

  port map(clk, reset, 

     TI_Arqst, r, a1, b1, TI_Adat, 

     A_Crqst, AC, A_Cdat, 

     Step1rqst, U1, V1, Step1dat, 

     Step2rqst, U2, V2, Step2dat, 

     Xrqst, X, Xdat, 

     Arqst, Ao, Adat); 

   

 B: PiSDM_B_ASM 

  port map(clk, reset, 

     TI_Brqst, I, a2, b2, TI_Bdat, 

     B_Crqst, BC, B_Cdat, 

     Step1rqst, U1, V1, Step1dat, 

     Step2rqst, U2, V2, Step2dat, 

     Xrqst, X, Xdat, 

     Brqst, Bo, Bdat); 

 

end structural; 

 

 TB_PiSDM.vhd: 

library ieee; 

use ieee.std_logic_1164.all; 

use ieee.std_logic_unsigned.all; 

use ieee.numeric_std.all; 

use work.MY_PACKAGE.all; 

 

entity tb_PiSDM is 
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end; 

 

architecture tb of tb_PiSDM is  

 component PiSDM_ASM_chip is 

  port( clk, reset: in std_logic; 

    A_Crqst: out std_logic; 

    AC: in DATA_ARRAY(1 to 32); 

    A_Cdat: in std_logic; 

    B_Crqst: out std_logic; 

    BC: in DATA_ARRAY(1 to 32); 

    B_Cdat: in std_logic; 

    Arqst: in std_logic; 

    Ao: out std_logic_vector(31 downto 0); 

    Adat: out std_logic; 

    Brqst: in std_logic; 

    Bo: out std_logic_vector(31 downto 0); 

    Bdat: out std_logic); 

 end component; 

  

 signal AC, BC: DATA_ARRAY(1 to 32); 

 signal q, expected, calculated: unsigned(31 downto 0); 

 signal mult2s: unsigned(32 downto 0); 

 signal uA, vA, uB, vB, Ao, Bo: std_logic_vector(31 downto 0); 

 signal clk, reset, A_Crqst, A_Cdat, B_Crqst, B_Cdat, Arqst, Adat, 

Brqst, Bdat, correct: std_logic; 

begin 

 

 q <= "11111111111111111111111111111011"; -- 4294967291 

  

 -- compute expected result 

 expected_result: process(AC, BC) 

  variable iteration_result: DATA_ARRAY(0 to 32); 

 begin 

  iteration_result(0) := (0 => '1', others => '0'); 

   

  -- compute result 

  for_loop: for I in 1 to 32 loop 

   iteration_result(I) := 

std_logic_vector((unsigned(iteration_result(I-1)) * ((unsigned(('0' & AC(I)) 

+ ('0' & BC(I)))) mod q)) mod q); 

  end loop; 

   

  expected <= unsigned(iteration_result(32)); 

 end process; 

  

 -- compute calculated result 

 mult2s <= unsigned(('0' & Bo) + ('0' & Ao)); 

 calculated <= mult2s mod q; 

  

 -- correctness signal 

 correctness: process(expected, calculated) 

 begin 

  if (expected = calculated) then  

   correct <= '1'; 

  else 

   correct <= '0'; 
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  end if; 

 end process; 

 

 uut: PiSDM_ASM_chip 

  port map(clk, reset, 

     A_Crqst, AC, A_Cdat, 

     B_Crqst, BC, B_Cdat, 

     Arqst, Ao, Adat, 

     Brqst, Bo, Bdat); 

  

 test: process 

 begin 

  A_Cdat <= '0'; 

  B_Cdat <= '0'; 

  wait until A_Crqst = '1' and B_Crqst = '1'; 

  AC <= ( "00000000000000000000000000000001", 

"00000000000000000000000000000001", "00000000000000000000000000000001", 

"00000000000000000000000000000001", 

     "00000000000000000000000000000001", 

"00000000000000000000000000000001", "00000000000000000000000000000001", 

"00000000000000000000000000000001", 

     "00000000000000000000000000000001", 

"00000000000000000000000000000001", "00000000000000000000000000000001", 

"00000000000000000000000000000001", 

     "00000000000000000000000000000001", 

"00000000000000000000000000000001", "00000000000000000000000000000001", 

"00000000000000000000000000000001", 

     "00000000000000000000000000000001", 

"00000000000000000000000000000001", "00000000000000000000000000000001", 

"00000000000000000000000000000001", 

     "00000000000000000000000000000001", 

"00000000000000000000000000000001", "00000000000000000000000000000001", 

"00000000000000000000000000000001", 

     "00000000000000000000000000000001", 

"00000000000000000000000000000001", "00000000000000000000000000000001", 

"00000000000000000000000000000001", 

     "00000000000000000000000000000001", 

"00000000000000000000000000000001", "00000000000000000000000000000001", 

"00000000000000000000000000000001"); 

      

  BC <= ( "00000000000000000000000000000000", 

"00000000000000000000000000000001", "00000000000000000000000000000001", 

"00000000000000000000000000000001", 

     "00000000000000000000000000000001", 

"00000000000000000000000000000001", "00000000000000000000000000000001", 

"00000000000000000000000000000001", 

     "00000000000000000000000000000001", 

"00000000000000000000000000000001", "00000000000000000000000000000001", 

"00000000000000000000000000000001", 

     "00000000000000000000000000000001", 

"00000000000000000000000000000001", "00000000000000000000000000000001", 

"00000000000000000000000000000001", 

     "00000000000000000000000000000001", 

"00000000000000000000000000000001", "00000000000000000000000000000001", 

"00000000000000000000000000000001", 
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     "00000000000000000000000000000001", 

"00000000000000000000000000000001", "00000000000000000000000000000001", 

"00000000000000000000000000000001", 

     "00000000000000000000000000000001", 

"00000000000000000000000000000001", "00000000000000000000000000000001", 

"00000000000000000000000000000001", 

     "00000000000000000000000000000001", 

"00000000000000000000000000000001", "00000000000000000000000000000001", 

"00000000000000000000000000000001"); 

      

  A_Cdat <= '1'; 

  B_Cdat <= '1'; 

  Arqst <= '1'; 

  Brqst <= '1'; 

  wait until Adat = '1' and Bdat = '1'; 

  wait for 10 ns; 

  A_Cdat <= '0'; 

  B_Cdat <= '0'; 

  Arqst <= '0'; 

  Brqst <= '0'; 

  wait; 

 end process; 

 

 clock: process 

 begin 

  clk <= '0'; 

  wait for 5 ns; 

   

  clk <= '1'; 

  wait for 5 ns; 

 end process; 

  

 rst: process 

 begin 

  reset <= '1'; 

  wait for 10 ns; 

  reset <= '0'; 

  wait; 

 end process; 

end tb; 

 

 SC_chip.vhd: 

-- Secure Comparison ASM Chip 

library ieee; 

use ieee.std_logic_1164.all; 

use work.MY_PACKAGE.all; 

 

entity SC_ASM_chip is 

 port( clk, reset: in std_logic; 

   A_Srqst: out std_logic; 

   XA, YA: in DATA_ARRAY(1 to 30); -- Shares 
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   A_Sdat: in std_logic; 

   B_Srqst: out std_logic; 

   XB, YB: in DATA_ARRAY(1 to 30); -- Shares 

   B_Sdat: in std_logic; 

   Arqst: in std_logic; 

   Ao: out std_logic; 

   Adat: out std_logic); 

end; 

 

architecture structural of SC_ASM_chip is 

 component SC_TI_ASM 

  port( clk, reset: in std_logic; 

    Arqst: in std_logic; 

    r, a1, b1: out std_logic_vector(31 downto 0); 

    Adat: out std_logic; 

    Brqst: in std_logic; 

    I, a2, b2: out std_logic_vector(31 downto 0); 

    Bdat: out std_logic); 

 end component; 

 

 component SC_A_ASM 

  generic(N: natural := 30); 

  port( clk, reset: in std_logic; 

    TIrqst: out std_logic; -- TI request: randomness 

    r, a1, b1: in std_logic_vector(31 downto 0); -- 

randomness 

    TIdat: in std_logic; -- TI data valid 

    Srqst: out std_logic; -- Shares request 

    XA, YA: in DATA_ARRAY(1 to N); -- Shares 

    Sdat: in std_logic; -- Shares valid 

    Birqst: in std_logic; -- Step1 data request from B 

    U1, V1: out std_logic_vector(31 downto 0); -- Step1 

output to B 

    Bidat: out std_logic; -- Step1 data valid to B 

    Borqst: out std_logic; -- Step2 data request to B 

    U2, V2: in std_logic_vector(31 downto 0); -- Step2 

input from B 

    Bodat: in std_logic; -- Step2 data valid from B 

    Xrqst: in std_logic; -- Step3 data request from B 

    X: out std_logic_vector(31 downto 0); -- Step3 output 

to B 

    Xdat: out std_logic; -- Step3 data valid to B 

    OBrqst: out std_logic; -- Step4 OutB data request 

from B 

    OB: in std_logic_vector(31 downto 0); 

    OBdat: in std_logic; -- Step4 OutB data request from 

B 

    Arqst: in std_logic; -- Step4 request for output 

    Aout: out std_logic; -- Party A output 
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    Adat: out std_logic); -- Step4 output valid 

 end component; 

  

 component SC_B_ASM 

  generic(N: natural := 30); 

  port( clk, reset: in std_logic; 

    TIrqst: out std_logic; -- TI request: randomness 

    I, a2, b2: in std_logic_vector(31 downto 0); -- 

randomness 

    TIdat: in std_logic; -- TI data valid 

    Srqst: out std_logic; -- Shares request 

    XB, YB: in DATA_ARRAY(1 to N); -- Shares 

    Sdat: in std_logic; -- Shares valid 

    Aorqst: out std_logic; -- Step1 data request to A 

    U1, V1: in std_logic_vector(31 downto 0); -- Step1 

input from A 

    Aodat: in std_logic; -- Step1 data valid from A 

    Airqst: in std_logic; -- Step2 data request from A 

    U2, V2: out std_logic_vector(31 downto 0); -- Step2 

output to A 

    Aidat: out std_logic; -- Step2 data valid to A 

    Xrqst: out std_logic; -- Step3 data request to A 

    X: in std_logic_vector(31 downto 0); -- Step3 input 

from A 

    Xdat: in std_logic; -- Step3 data valid from A 

    Brqst: in std_logic; -- Step4 request for output 

    Bout: out std_logic_vector(31 downto 0); -- Party B 

output 

    Bdat: out std_logic); -- Step4 output valid 

 end component; 

 

 signal TI_Arqst, TI_Adat, TI_Brqst, TI_Bdat: std_logic; -- TI OCDDC 

 signal Step1rqst, Step1dat, Step2rqst, Step2dat, Xrqst, Xdat, OBrqst, 

OBdat: std_logic; -- A&B OCDDC 

  

 signal r, a1, a2, b1, b2, I, U1, V1, U2, V2, X, OB: std_logic_vector(31 

downto 0); 

begin 

 TI: SC_TI_ASM 

   port map(clk, reset, 

     TI_Arqst, r, a1, b1, TI_Adat, 

     TI_Brqst, I, a2, b2, TI_Bdat); 

   

 A: SC_A_ASM 

  port map(clk, reset, 

     TI_Arqst, r, a1, b1, TI_Adat, 

     A_Srqst, XA, YA, A_Sdat, 

     Step1rqst, U1, V1, Step1dat, 

     Step2rqst, U2, V2, Step2dat, 
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     Xrqst, X, Xdat, 

     OBrqst, OB, OBdat, 

     Arqst, Ao, Adat); 

   

 B: SC_B_ASM 

  port map(clk, reset, 

     TI_Brqst, I, a2, b2, TI_Bdat, 

     B_Srqst, XB, YB, B_Sdat, 

     Step1rqst, U1, V1, Step1dat, 

     Step2rqst, U2, V2, Step2dat, 

     Xrqst, X, Xdat, 

     OBrqst, OB, OBdat); 

 

end structural; 

 

 TB_SC.vhd: 

library ieee; 

use ieee.std_logic_1164.all; 

use ieee.std_logic_unsigned.all; 

use ieee.numeric_std.all; 

use work.MY_PACKAGE.all; 

use work.tb_Xshares.all; 

use work.tb_Yshares.all; 

 

entity tb_SC is 

end; 

 

architecture tb of tb_SC is  

 component SC_ASM_chip is 

  port( clk, reset: in std_logic; 

   A_Srqst: out std_logic; 

   XA, YA: in DATA_ARRAY(1 to 30); -- Shares 

   A_Sdat: in std_logic; 

   B_Srqst: out std_logic; 

   XB, YB: in DATA_ARRAY(1 to 30); -- Shares 

   B_Sdat: in std_logic; 

   Arqst: in std_logic; 

   Ao: out std_logic; 

   Adat: out std_logic); 

 end component; 

  

 signal XA, YA, XB, YB: DATA_ARRAY(1 to 30); 

 signal q: unsigned(31 downto 0); 

 signal uA, vA, uB, vB, Bo: std_logic_vector(31 downto 0); 

 signal X, Y: std_logic_vector(29 downto 0); 

 signal clk, reset, Ao, A_Srqst, A_Sdat, B_Srqst, B_Sdat, Arqst, Adat, 

Brqst, Bdat, expected: std_logic; 

begin 

 

 q <= "11111111111111111111111111111011"; -- 4294967291 
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 expected_result: process(XA, YA, XB, YB) 

  variable count: natural; 

  variable YgX: std_logic; 

  variable Xi, Yi: std_logic_vector(31 downto 0); 

 begin 

  count := 1; 

  YgX := '0'; 

   

  while (count < 30) and (YgX = '0') loop 

   Yi := 

std_logic_vector(unsigned(('0'&std_logic_vector(YA(count))) + 

('0'&std_logic_vector(YB(count)))) mod q); 

   Xi := 

std_logic_vector(unsigned(('0'&std_logic_vector(XA(count))) + 

('0'&std_logic_vector(XB(count)))) mod q); 

   if Yi > Xi then 

    YgX := '1'; 

   end if; 

   count := count + 1; 

  end loop; 

   

  expected <= YgX; 

 end process; 

 

 uut: SC_ASM_chip 

  port map(clk, reset, 

     A_Srqst, XA, YA, A_Sdat, 

     B_Srqst, XB, YB, B_Sdat, 

     Arqst, Ao, Adat); 

  

 test: process 

 begin 

  A_Sdat <= '0'; 

  B_Sdat <= '0'; 

  wait until A_Srqst = '1' and B_Srqst = '1'; 

  XA <= XSA; 

  YA <= YSA; 

  XB <= XSB; 

  YB <= YSB; 

  X <= XS; 

  Y <= YS; 

  A_Sdat <= '1'; 

  B_Sdat <= '1'; 

  Arqst <= '1'; 

  Brqst <= '1'; 

  wait until Adat = '1' and Bdat = '1'; 

  wait for 10 ns; 

  A_Sdat <= '0'; 

  B_Sdat <= '0'; 

  Arqst <= '0'; 

  Brqst <= '0'; 

  wait; 

 end process; 

 

 clock: process 
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 begin 

  clk <= '0'; 

  wait for 5 ns; 

   

  clk <= '1'; 

  wait for 5 ns; 

 end process; 

  

 rst: process 

 begin 

  reset <= '1'; 

  wait for 10 ns; 

  reset <= '0'; 

  wait; 

 end process; 

end tb; 

 

 TB_XSHARES.vhd: 

library ieee; 

use ieee.std_logic_1164.all; 

use work.MY_PACKAGE.all; 

 

package tb_Xshares is 

 constant XS: std_logic_vector(29 downto 0) := 

"000000000000000000000000011111"; 

 

 constant XSA: DATA_ARRAY(1 to 30) := (

 "01011110101001111111010001000101", "01101111100011010011000011100101", 

 "11100111100011101110101110111010", "01100111000101111000101110000000", 

 "11001000010100011100111110001100", "00101100111000001100010110001010", 

 "11010110110010000100001001011100", "11111001001011001110100100100111", 

 "00100101110111110110011000101101", "01001101100101101100000000000010", 

 "11110001010001110011101111100011", "10101101101101011011001000111011", 

 "01101101101110001001101001110000", "11110101001001111101011011110100", 

 "10010110001011101101100000010001", "11110111010010101110111010011001", 

 "00001101000011100100000011001100", "00111101010000001110001101111111", 

 "11100010101010010100111011000111", "00001011011011111000101011010111", 

 "00101000111111001000100111000100", "01111000010000001111010011101100", 

 "01001111010000100011110000101110", "01101010001111001110100001101101", 

 "11101110000110000000110011011110", "11101100001100000110100110001011", 

 "10010111110001110100011001011011", "10001010101001001010101100001000", 

"00000110100101010110010010001100", 

"01111110001110001011110000011011"); 

 

 constant XSB: DATA_ARRAY(1 to 30) := (

 "10100001010110000000101110110110", "10010000011100101100111100010110", 

 "00011000011100010001010001000001", "10011000111010000111010001111011", 

 "00110111101011100011000001101111", "11010011000111110011101001110001", 

 "00101001001101111011110110011111", "00000110110100110001011011010100", 

 "11011010001000001001100111001110", "10110010011010010011111111111001", 

 "00001110101110001100010000011000", "01010010010010100100110111000000", 

 "10010010010001110110010110001011", "00001010110110000010100100000111", 
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 "01101001110100010010011111101010", "00001000101101010001000101100010", 

 "11110010111100011011111100101111", "11000010101111110001110001111100", 

 "00011101010101101011000100110100", "11110100100100000111010100100100", 

 "11010111000000110111011000110111", "10000111101111110000101100001111", 

 "10110000101111011100001111001101", "10010101110000110001011110001110", 

 "00010001111001111111001100011101", "00010011110011111001011001110001", 

 "01101000001110001011100110100001", "01110101010110110101010011110100", 

"11111001011010101001101101110000", 

"10000001110001110100001111100001"); 

end tb_Xshares; 

 

 TB_YSHARES.vhd: 

library ieee; 

use ieee.std_logic_1164.all; 

use work.MY_PACKAGE.all; 

 

package tb_Yshares is 

 constant YS: std_logic_vector(29 downto 0) := 

"000000000000000000000000111111"; 

 

 constant YSA: DATA_ARRAY(1 to 30) := (

 "01011110101001111111010001000101", "01101111100011010011000011100101", 

 "11100111100011101110101110111010", "01100111000101111000101110000000", 

 "11001000010100011100111110001100", "00101100111000001100010110001010", 

 "11010110110010000100001001011100", "11111001001011001110100100100111", 

 "00100101110111110110011000101101", "01001101100101101100000000000010", 

 "11110001010001110011101111100011", "10101101101101011011001000111011", 

 "01101101101110001001101001110000", "11110101001001111101011011110100", 

 "10010110001011101101100000010001", "11110111010010101110111010011001", 

 "00001101000011100100000011001100", "00111101010000001110001101111111", 

 "11100010101010010100111011000111", "00001011011011111000101011010111", 

 "00101000111111001000100111000100", "01111000010000001111010011101100", 

 "01001111010000100011110000101110", "01101010001111001110100001101101", 

 "11101110000110000000110011011110", "11101100001100000110100110001011", 

 "10010111110001110100011001011011", "10001010101001001010101100001000", 

"00000110100101010110010010001100", 

"01111110001110001011110000011011"); 

 

 constant YSB: DATA_ARRAY(1 to 30) := (

 "10100001010110000000101110110110", "10010000011100101100111100010110", 

 "00011000011100010001010001000001", "10011000111010000111010001111011", 

 "00110111101011100011000001101111", "11010011000111110011101001110001", 

 "00101001001101111011110110011111", "00000110110100110001011011010100", 

 "11011010001000001001100111001110", "10110010011010010011111111111001", 

 "00001110101110001100010000011000", "01010010010010100100110111000000", 

 "10010010010001110110010110001011", "00001010110110000010100100000111", 

 "01101001110100010010011111101010", "00001000101101010001000101100010", 

 "11110010111100011011111100101111", "11000010101111110001110001111100", 

 "00011101010101101011000100110100", "11110100100100000111010100100100", 

 "11010111000000110111011000110111", "10000111101111110000101100001111", 

 "10110000101111011100001111001101", "10010101110000110001011110001110", 

 "00010001111001111111001100011110", "00010011110011111001011001110001", 
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 "01101000001110001011100110100001", "01110101010110110101010011110100", 

 "11111001011010101001101101110000", 

"10000001110001110100001111100001"); 

end tb_Yshares; 
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APPENDIX C.  OTHER CODE 

ModelSim-Altera Macro Files: 

 tb_sdm.do: 

add wave reset 

add wave clk 

add wave uA 

add wave uB 

add wave vA 

add wave vB 

add wave uut/TI/D 

add wave uut/TI/count 

add wave uut/B/CS 

add wave uut/A/CS 

add wave uut/A/countn 

add wave Arqst 

add wave Ao 

add wave Adat 

add wave Brqst 

add wave Bo 

add wave Bdat 

add wave mult1 

add wave mult2 

add wave correct 

 

#property wave -radix unsigned /tb_sdm/uA 

#property wave -radix unsigned /tb_sdm/uB 

#property wave -radix unsigned /tb_sdm/vA 

#property wave -radix unsigned /tb_sdm/vB 

#property wave -radix unsigned /tb_sdm/Ao 

#property wave -radix unsigned /tb_sdm/Bo 

#property wave -radix unsigned /tb_sdm/mult1 

#property wave -radix unsigned /tb_sdm/mult2 

 

run 1280 ns 

 

 tb_pisdm.do: 

add wave reset 

add wave clk 

add wave Arqst 

add wave Ao 

add wave Adat 

add wave Brqst 

add wave Bo 

add wave Bdat 

add wave expected 

add wave calculated 
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run 13100 ns 

 

 tb_sc.do: 

add wave reset 

add wave clk 

add wave X 

add wave Y 

add wave uut/A/OutA 

add wave uut/A/OutB 

add wave uut/A/OutS 

add wave Arqst 

add wave Ao 

add wave Adat 

add wave expected 

 

run 13100 ns. 

Supporting C Files for Generating Shares: 

 GenerateShares.h: 

// #defines for Debugging 

#define VERBOSE_GEN  ( 0 ) 

 

// #defines 

#define BIT_MASK  ( 0x00000001 ) 

#define WORD_SIZE   ( 32 ) 

#define q    ( 4294967291U ) 

#define FILE_MAX_LENGTH ( 20 ) 

 

 

// Enum type for WriteVhdlFile return code 

typedef enum returnCode 

{ 

 INCORRECT_SHARES = -1, 

 ERROR_OPENING_FILE = 0, 

 SUCCESS 

}returnCode; 

 

// Generate Shares prototype 

extern void GenerateShares(uint32_t *pX, uint32_t *pA, uint32_t *pB); 

 

// Write Shares to File Prototype 

extern returnCode WriteVhdlFile(FILE * pFile, const char *fileName, const 

char *sharesName, uint32_t *pX, uint32_t *pA, uint32_t *pB); 
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 GenerateShares.c: 

// System #includes 

#include <stdio.h> 

#include <stdlib.h> 

#include <stdint.h> 

#include <time.h> 

 

// Custom #includes 

#include "GenerateShares.h" 

 

// ASCII numeric offset #define 

#define ASCII_NUMERIC_OFFSET ( 0x30 ) 

 

// private prototype 

static void Uint32toBinaryString(uint32_t *pX, char *binaryString); 

static void WriteVhdlPackageHeader(FILE * pFile, const char* packageName); 

static void WriteVhdlPackageShares(FILE *pFile, const char *name, uint32_t 

*pX, uint32_t *pA, uint32_t *pB); 

static void WriteVhdlPackageFooter(FILE * pFile, const char* packageName); 

 

// Generate Shares Definition 

void GenerateShares(uint32_t *pX, uint32_t *pA, uint32_t *pB) 

{ 

 // Counter variable and array to hold each bit of X 

 int i; 

 uint32_t X[WORD_SIZE]; 

  

 // Seed Pseudo-random Number Generator 

 srand(time(NULL)); 

  

 // Populate array with bits (1 to 32) 

 for(i = 0; i < WORD_SIZE; i++) 

 {  

  // Set bit 

  X[i] = ( (*pX) >> (31-i) ) & BIT_MASK; 

   

 #if ( VERBOSE_GEN == 1 ) 

  printf("Bit %02u: %u\n", i+1, X[i]); 

 #endif // VERBOSE_GEN 

 } 

  

#if ( VERBOSE_GEN == 1 ) 

 printf("RAND_MAX = %#x\n", RAND_MAX); 

#endif // VERBOSE_GEN 

 

 for(i = 0; i < WORD_SIZE; i++) 

 {  

  // Generate random shares 

  pA[i] = ((rand() % 4) + (rand() << 2) + (rand() << 17)) % q; 

  pB[i] = X[i] + (q - pA[i]) % q; 

   

 #if ( VERBOSE_GEN == 1 ) 
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  printf("Calculated bit %02u: 0x%08x + 0x%08x mod q = %u\n", i+1, 

pA[i], pB[i], (pA[i] + pB[i]) % q); 

 #endif // VERBOSE_GEN 

 } 

} 

 

 

// Create VHDL file containing a package with the shares 

// Write Shares to File and returns -1 if shares are incorrect, 0 if file 

fails to open, 1 if success. 

returnCode WriteVhdlFile(FILE * pFile, const char *packageName, const char 

*sharesName, uint32_t *pX, uint32_t *pA, uint32_t *pB) 

{ 

 // Counter variable and array to hold each bit of X 

 int i, areSharesCorrect = 1; 

 uint32_t X[WORD_SIZE]; 

 char *fileName; 

  

 // Populate array with bits (VHDL: 1 to 32) 

 for(i = 0; i < WORD_SIZE; i++) 

 {  

  // Set bit 

  X[i] = ( (*pX) >> (31-i) ) & BIT_MASK; 

   

  if( X[i] != ((pA[i] + pB[i]) % q) ) 

  { 

   areSharesCorrect = 0; 

  #if ( VERBOSE_GEN == 1 ) 

   printf("incorrect share %02u", i); 

   return INCORRECT_SHARES; 

  #endif // VERBOSE_GEN 

  } 

 } 

  

 if(areSharesCorrect) 

 { 

  fileName = calloc((size_t)(FILE_MAX_LENGTH + 1), sizeof(char)); 

  snprintf(fileName, FILE_MAX_LENGTH, "%s.vhd", packageName); 

   

  pFile = fopen(fileName,"w"); 

  if (pFile == NULL) 

  { 

   return ERROR_OPENING_FILE; 

  } 

  else 

  { 

   WriteVhdlPackageHeader(pFile, packageName); 

   WriteVhdlPackageShares(pFile, sharesName, pX, pA, pB); 

   WriteVhdlPackageFooter(pFile, packageName); 

    

   fflush(pFile); 

   fclose (pFile); 

  } 

 } 

  

 return SUCCESS; 
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} 

 

 

// Declare and define package 

static void WriteVhdlPackageHeader(FILE *pFile, const char* packageName) 

{ 

 // Check just in case 

 if (pFile == NULL) 

 { 

  printf("invalid file\n"); 

 } 

 else 

 { 

  fprintf(pFile, "library ieee;\n"); 

  fprintf(pFile, "use ieee.std_logic_1164.all;\n"); 

  fprintf(pFile, "use work.MY_PACKAGE.all;\n\n"); 

  fprintf(pFile, "package %s is\n", packageName); 

 } 

} 

 

 

// end package definition 

static void WriteVhdlPackageFooter(FILE *pFile, const char* packageName) 

{ 

 // Check just in case 

 if (pFile == NULL) 

 { 

  printf("invalid file\n"); 

 } 

 else 

 { 

  fprintf(pFile, "end %s;\n", packageName); 

 } 

} 

 

 

// Subroutine to write a value and its bit-shares to the VHDL package 

static void WriteVhdlPackageShares(FILE *pFile, const char *name, uint32_t 

*pX, uint32_t *pA, uint32_t *pB) 

{ 

 if (pFile == NULL) 

 { 

  printf("invalid file\n"); 

 } 

 else 

 { 

  // counter variable 

  int i; 

   

  // character array to be used for writing to the stream 

  char *binaryString; 

  

  // Allocate memory for binaryString with null terminator 

  binaryString = calloc( (size_t)(WORD_SIZE + 1), sizeof(char) ); 

   

  // Get X easy-to-print string from subroutine and print to stream 
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  Uint32toBinaryString(pX, binaryString); 

  fprintf(pFile, "\tconstant %s: std_logic_vector(31 downto 0) := 

\"%s\";\n\n", name, binaryString); 

   

  // Get XA(1) easy-to-print strings from subroutine and print to 

stream 

  Uint32toBinaryString(&pA[0], binaryString); 

  fprintf(pFile, "\tconstant %sA: DATA_ARRAY(1 to 32) := (\t\"%s\", 

", name, binaryString); 

   

  // Get XA(2 to 31) easy-to-print strings from subroutine and 

print to stream 

  for(i = 1; i < WORD_SIZE-1; i++) 

  { 

   Uint32toBinaryString(&pA[i], binaryString); 

   fprintf(pFile, "\"%s\",", binaryString); 

    

   if((i % 2) == 1) 

   { 

    fprintf(pFile, "\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t"); 

   } 

   else 

   { 

    fprintf(pFile, " "); 

   } 

  } 

   

  // Get XA(32) easy-to-print strings from subroutine and print to 

stream 

  Uint32toBinaryString(&pA[31], binaryString); 

  fprintf(pFile, "\"%s\");\n\n", binaryString); 

   

  // Get XB(1) easy-to-print strings from subroutine and print to 

stream 

  Uint32toBinaryString(&pB[0], binaryString); 

  fprintf(pFile, "\tconstant %sB: DATA_ARRAY(1 to 32) := (\t\"%s\", 

", name, binaryString); 

   

  // Get XB(2 to 31) easy-to-print strings from subroutine and 

print to stream 

  for(i = 1; i < WORD_SIZE-1; i++) 

  { 

   Uint32toBinaryString(&pB[i], binaryString); 

   fprintf(pFile, "\"%s\",", binaryString); 

    

   if((i % 2) == 1) 

   { 

    fprintf(pFile, "\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t"); 

   } 

   else 

   { 

    fprintf(pFile, " "); 

   } 

  } 
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  // Get XB(32) easy-to-print strings from subroutine and print to 

stream 

  Uint32toBinaryString(&pB[31], binaryString); 

  fprintf(pFile, "\"%s\");\n", binaryString); 

   

   

 // Free memory 

 free(binaryString); 

 } 

} 

 

 

// Subroutine to convert an unsigned 32-bit number to a char array for easy 

printing 

static void Uint32toBinaryString(uint32_t *pX, char *binaryString) 

{ 

 int i; 

  

 for(i = 0; i < WORD_SIZE; i++) 

 { 

  binaryString[i] = ASCII_NUMERIC_OFFSET + ( ((*pX) >> (31-i)) & 

BIT_MASK ); 

 } 

} 

 

 main.c: 

/* 

 * Author: Gerardo Zamora Garcia 

 * Copyright: AwwYiss! 

 */ 

 

// Necessary system #includes 

#include <stdio.h> 

#include <stdlib.h> 

#include <stdint.h> 

 

// Necessary user #includes 

#include "GenerateShares.h" 

 

// Debug #define 

#define DEBUG_MAIN ( 1 ) 

 

 

// Program's main function 

int main(int argc, char *argv[])  

{ 

 // needed variables 

 uint32_t X, Y, XA[WORD_SIZE], XB[WORD_SIZE], YA[WORD_SIZE], 

YB[WORD_SIZE]; 

 returnCode codeX, codeY; 

  

 FILE *pFileX, *pFileY; 
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 // Begin ROI 

 // read in X and Y 

 printf("Input X to Generate Shares: "); 

 scanf("%u", &X); 

 printf("Input Y to Generate Shares: "); 

 scanf("%u", &Y); 

 printf("\n"); 

  

 // Generate Shares for X and Y 

 GenerateShares(&X, XA, XB); 

 GenerateShares(&Y, YA, YB); 

  

 // Write VHDL packages for X and Y 

 codeX = WriteVhdlFile(pFileX,"tb_Xshares", "XS", &X, XA, XB); 

 codeY = WriteVhdlFile(pFileY,"tb_Yshares", "YS", &Y, YA, YB); 

  

#if ( DEBUG_MAIN == 1 ) 

 switch(codeX) 

 { 

  case INCORRECT_SHARES: 

   printf("X: shares are not correct. Check GenerateShares 

algorithm!\n"); 

   break; 

  case ERROR_OPENING_FILE: 

   printf("X: error opening the file!\n"); 

   break; 

  case SUCCESS: 

   printf("Borat X: Great Success *thumbs up*\n"); 

   break; 

 } 

  

 switch(codeY) 

 { 

  case INCORRECT_SHARES: 

   printf("Y: shares are not correct. Check GenerateShares 

algorithm!\n"); 

   break; 

  case ERROR_OPENING_FILE: 

   printf("Y: error opening the file!\n"); 

   break; 

  case SUCCESS: 

   printf("Borat Y: Great Success *thumbs up*\n"); 

   break; 

 } 

#endif // DEBUG_MAIN 

  

 // End ROI \o/ 

 return 0; 

} 


