

HARDWARE DESIGN FOR CRYPTOGRAPHIC PROTOCOLS: AN

ALGORITHMIC STATE MACHINE DESIGN APPROACH

A Thesis

Submitted to the Graduate Faculty

of the

North Dakota State University

of Agriculture and Applied Science

By

Gerardo Alejandro Zamora Garcia

In Partial Fulfillment of the Requirements

for the Degree of

MASTER OF SCIENCE

Major Department:

Electrical and Computer Engineering

April 2016

Fargo, North Dakota

North Dakota State University

Graduate School

Title

HARDWARE DESIGN FOR CRYPTOGRAPHIC PROTOCOLS: AN

ALGORITHMIC STATE MACHINE DESIGN APPROACH

 By

Gerardo Alejandro Zamora Garcia

 The Supervisory Committee certifies that this disquisition complies with North Dakota State

University’s regulations and meets the accepted standards for the degree of

 MASTER OF SCIENCE

 SUPERVISORY COMMITTEE:

 Dr. Sudarshan Srinivasan

 Chair

Dr. Rajendra Katti

Dr. Scott Smith

 Approved:

 13 April 2016 Dr. Scott Smith

 Date Department Chair

iii

ABSTRACT

This thesis presents Algorithmic State Machine (ASM) designs that follow the One Cycle

Demand Driven Convention (OCDDC) of three cryptographic protocols: Secure Distributed

Multiplication (SDM), Pi Secure Distributed Multiplication (PiSDM, or secure distributed

multiplication of a sequence), and Secure Comparison (SC), all of which achieve maximum

throughput of 1/32, 1/(32(l - 1)), and 1/(32(l - 1)), respectively, for l-bit numbers. In addition,

these protocols where implemented in VHDL and tested using ModelSim-Altera, verifying their

correct functionality. Noting that the difference between a scheme and a protocol is that

protocols involve message exchanging between two or more parties, to the author's knowledge,

these hardware designs are the first ever implementations of any kind of cryptographic protocol,

and because of that reason, a general method is proposed to implement protocols in hardware.

The SC protocol implementation is also shown to have a 300,000+ speed up over its Python

implementation counterpart.

iv

ACKNOWLEDGEMENTS

I would like to thank Dr. Raj Katti for being the professor that motivated my interest in

the two very different areas of cryptography and digital hardware design. I would also like to

thank my advisor, Dr. Srinivasan, and my advanced digital design professor and NDSU ECE

chair, Dr. Smith, for their willingness to help me with my thesis. Finally, I would like to thank

my family and friends for their enormous love and support that have inspired me throughout the

years.

v

DEDICATION

To Rogelia, as I know you are watching me from Heaven, I dedicate the result of my biggest

endeavor yet to you.

vi

TABLE OF CONTENTS

ABSTRACT ... iii

ACKNOWLEDGEMENTS ... iv

DEDICATION .. v

LIST OF TABLES ... viii

LIST OF FIGURES ... ix

LIST OF APPENDIX FIGURES... xi

1. INTRODUCTION ... 1

1.1. Definitions ... 3

1.2. Background and Motivation .. 6

1.3. Related Work in Hardware Implementations .. 13

1.4. Contributions ... 14

1.5. Thesis Outline ... 14

2. DESIGNS AND IMPLEMENTATIONS .. 16

2.1. Secure Distributed Multiplication (SDM) ... 17

2.1.1. Original Protocol .. 18

2.1.2. ASM Design ... 19

2.1.3. Protocol Complexity and ASM Throughput .. 32

2.1.4. Protocol Modification for Hardware .. 33

2.1.5. VHDL Implementation Details .. 33

2.1.6. Sample Run... 35

2.2. Secure Distributed Multiplication of a Sequence (PiSDM) .. 37

2.2.1. Original Protocol .. 38

2.2.2. ASM Design ... 39

vii

2.2.3. Protocol Complexity and ASM Throughput .. 47

2.2.4. VHDL Implementation Details .. 48

2.2.5. Sample Run... 50

2.3. Secure Comparison (SC) ... 51

2.3.1. Original Protocol .. 51

2.3.2. ASM Design ... 53

2.3.3. Protocol Complexity and ASM Throughput .. 59

2.3.4. Optimizing l and Selecting q for the Biggest Integer Range 60

2.3.5. VHDL Implementation Details .. 62

2.3.6. Sample Run... 64

3. PROPOSED GENERAL METHOD TO DESIGN AND IMPLEMENT

CRYPTOGRAPHIC HARDWARE ... 66

4. RESULTS AND CONCLUSIONS.. 68

4.1. Results ... 68

4.2. Conclusions ... 69

4.3. Future Work .. 70

5. WORKS CITED .. 72

APPENDIX A. COMPONENT DESIGN ... 74

APPENDIX B. VHDL CODE ... 78

APPENDIX C. OTHER CODE ... 137

viii

LIST OF TABLES

Table Page

1: SDM Analysis and Synthesis Report from Quartus II .. 35

2: PiSDM Analysis and Synthesis Report from Quartus II .. 49

3: SC Analysis and Synthesis Report from Quartus II.. 63

4: SC Python Timing Results .. 68

ix

LIST OF FIGURES

Figure Page

1: ASM General Model. Taken from [29] ... 8

2: GCD ASM Design. Taken from [22] ... 11

3: SDM Interfaces ... 20

4: SDM TI’s ASM ... 21

5: SDM TI’s Data Path .. 22

6: SDM A’s ASM .. 23

7: SDM A’s Data Path ... 27

8: SDM B’s ASM .. 30

9: SDM B’s Data Path ... 31

10: SDM TPC Diagrams ... 33

11: SDM Sample Run ... 37

12: PiSDM Interfaces .. 40

13: PiSDM A’s ASM... 43

14: PiSDM A’s Data Path.. 44

15: PiSDM B’s ASM... 46

16: PiSDM B’s Data Path.. 47

17: PiSDM TPC Diagrams .. 48

18: PiSDM Sample Run .. 50

19: SC Interfaces ... 53

20: SC A’s ASM .. 56

21: SC B’s ASM .. 57

22: SC A’s Data Path ... 58

23: SC B’s Data Path ... 59

x

24: SC TPC Diagrams ... 60

25: SC Sample Run ... 65

xi

LIST OF APPENDIX FIGURES

Figure Page

A - 1: RegS Component ... 74

A - 2: Modular Addition Component... 74

A - 3: Modular Subtraction Component .. 75

A - 4: Modular Multiplication Component .. 75

A - 5: Shift Register with Parallel Load Component ... 75

A - 6: AddShares Component .. 76

A - 7: AddShares1 Component .. 76

A - 8: SubShares Component ... 77

A - 9: SigmaShares Component ... 77

1

1. INTRODUCTION

The need for cryptography in different industries like banking, finances, and commerce,

intellectual property protection, and telecommunications, to name a few, is clear nowadays. In

some not so distant decades, however, that was not so clear. Even though it might have seen

understandable back then because digital technology had not boomed to the point it has in

present years, we now know that we live in a digital age even though, in the past, it was believed

that personal computers (PCs) and home computers were not expected to beat an average of 1

per household, which we understand it is far from the truth in the present. In fact, according to

TekCarta, an online research service described by Reuters as "An innovative, New Business

Model for Technology Industry Research" in [14], shows that by 2012, the average of PCs per

household in the United States had already reach 3 [15]. This statistic does not even include

mobile devices, so we can tell just how much depend on computers, and their security, every

single day. This is where cryptography comes into play.

Cryptography, as a whole, has more goals than just security. Some of those are data

integrity, authentication, and privacy, among others. For example, in the case of privacy in

protocols, cryptography's goal is to keep every party's secret information hidden from any other

party. So to be more specific, when a protocol is needed to compute a function or mathematical

construct using the secret values that each party holds, this protocol is considered a distributed

computation, and it is by using the rules of cryptography that we can achieve privacy for each

party, so that their sensitive information is not revealed to any unwanted party.

Moreover, secure distributed computation, in the world of cryptography, is an area which

has been highly researched in the past few decades. Starting from Yao's protocol [Yao ‘82] to

even elliptic curves, researchers have focused on finding efficient implementations of

2

cryptographic primitives, constructs and schemes in order to further our capabilities with secure

computations to breach the gap between theoretical and practical cryptography. One of the

endeavors to accomplish such a goal, even though it adds difficulty to the implementation, is the

usage of hardware over software due to their differences in speed.

As the field of cryptography progressed, researchers and engineers moved to

implementing protocols in software because of the different results protocols were able to

accomplish. So in later years now, with all the advances in transistor sizing, FPGA technology,

and secure computation theory, it is natural to continue the implementation of cryptographic

construct in the hardware realm. In fact, several primitives and schemes have been implemented,

like SHAs (hashing algorithms), RSA (encryption scheme and cryptosystem), and others;

however, no protocol has ever been implemented in hardware.

On the hardware side, our focus lies on the state machine design, more specifically,

finite-state machine design. There are several of these, for example, Mealy machines which

were introduces in 1955 by George Mealy [16], Moore machines introduced by Edward Moore

in 1956 [17], and Algorithmic State Machines (ASMs) seen as early as the 70s [18] and 80s [19,

20, 21], with ASMs being the more advanced of the three mentioned. In the case of Mealy and

Moore machines, state diagrams are used to determine state transitioning, state outputs, and so

on, deriving the state and output logic from the diagram itself, requiring no extra logic or

components. On the other hand, an ASM can be used to achieve more complex results by using

a data path for processing more complicated data inputs to determine the output, and a control

unit to manage the data path and state transitioning.

3

1.1. Definitions

The following definitions are used throughout the whole thesis and are intended for those

who do not have a basis in cryptography, digital systems, and algorithmic state machine design.

This section may be skipped if the reader is comfortable with the aforementioned areas.

• Cryptographic Construct: simply, a general term for any construct which performs

some task with the usage of cryptography to achieve one or more of the goals of cryptography.

For example, encryption achieves privacy and data protection, message authentication codes

(MACs) are used for data integrity checks (indicating whether the data received was altered or

not), digital signatures helps achieve non-repudiation (i.e. someone who signed a message and

send it, cannot later deny it came from him/her).

• Cryptographic Primitive: a cryptographic primitive is considered a basic building

block for cryptographic schemes and protocols. For example: encryption/decryption schemes,

message authentication codes, cryptographic hash functions, secret sharing, additive shares, and

others.

• Cryptographic Scheme: a set of algorithms and/or primitives ran by two parties

that achieve a certain goal without the exchange of multiple messages. For example, in an

encryption scheme, there is an encryption algorithm or equation to compute a ciphertext, and a

different algorithm used to perform decryption. In this case, one party does the encryption and

sends the ciphertext to another party who then performs the decryption algorithm. So there is

only one message, the ciphertext, being sent.

• Cryptographic Protocol: similar to a crypto scheme, a protocol is a set of

algorithms, with the prevalent difference being that multiple messages are exchanged between

two or more parties. In addition, a cryptographic protocol aims to achieve or obtain a more

4

complicated result. For example, the protocols implemented in this thesis achieve secure

distributed multiplication and secure integer comparison, two task that require additive shares to

achieve privacy. This means that a scheme could not easily accomplish this because these

protocols need two parties to preserve the secret numbers as secret.

• Protocol Transcript: this refers to the messages being exchanged in a protocol.

This includes the messages' actual values, but mainly, the randomness distribution of each

message. For example, some message might be a bit equal to 1 which was chosen uniformly at

random over {0, 1}; whereas other messages may have uniform distributions over a different set

like Zq or Zq*.

• Universal Composability (UC) Model: a model describing requirements for a

protocol to be secure when executed in composition (in series or in parallel) with any other

protocol. This obviously implies that a protocol which is secure under the UC model is also

secure when executed in isolation.

• Adversary: a party in a protocol which is attempting to learn another party's

secret, or compromise the protocol's goal, from the protocol's transcript.

• Semi-honest Adversary: also called "honest but curious." An adversary that does

not want to get caught cheating so it follows the protocol strictly, but tries to learn secret

information from the protocol's transcript.

• Very High-Speed Integrated Circuit (VHSIC): a U.S. Department of Defense

program in the 1980s dedicated to microelectronics research and development. One of such

developments is the hardware description language known as VHDL.

• VHSIC Hardware Description Language (VHDL): a hardware description

language.

5

• Entity (in VHDL): an entity, in VHDL, is used to represent the interface of a

circuit, indicating its inputs and outputs.

• Architecture (in VHDL): in VHDL, the architecture of an entity refers to the

internal works, or functionality, of the entity. It describes the gates, components, or operations

performed by a digital circuit with the interface provided by the entity.

• Algorithmic State Machine (ASM) design: a digital hardware design process that

is described by two parts: the ASM (or control unit) and the data path to compute the outputs

from the inputs.

• Data Path (of a state machine): a digital circuit that receives the input data to

compute the output data. The data flow in the data path is controlled by the ASM.

• ASM: a state machine used to assert the signals that control the data flow in the

data path at the appropriate time to achieve the desired behavior.

• One Cycle Demand Driven Convention (OCDDC): handshaking mechanism used

in ASM design for module’s I/O. OCDDC requires a request line and a data line. This adds a

new output Xrqst and a new input Xdat for every set of inputs X needed at the same clock cycle.

Xrqst is used by the ASM to request the set of inputs it requires, and Xdat is used to indicate the

validity of the input or inputs to the ASM. It also creates a new input Yrqst and a new output

Ydat for every set of outputs Y. In the case of Y, Yrqst is to tell the ASM that the output Y is

ready to be received, and Ydat is used by the ASM to indicate whether Y is valid or not. Simply

put, whether it is an input or an output, the request line is asserted when data is ready to be read

in, and the data line is assert when data is valid.

• Throughput Capability (TPC): the number of clock cycles where an input is

loaded over the total number of clock cycles needed to calculate the output, and it only considers

6

the steady-state of an ASM. When calculating TPC of an ASM, it is assumed that data is ready

to be received as soon as it is ready and that it is always ready when requested. This assumption,

though, can be ignored when the designer explicitly knows that it won’t hold (See SDM B’s

ASM for details and example in Sections 2.1.2 and 2.1.3). Note: in the case that the ASM has no

data input, then the TPC refers to the number of clock cycles needed to calculate the output.

• TPC Diagram: a diagram that shows the steady-state input data loading and state

transitioning of an ASM.

• Maximum TPC: the maximum achievable TPC, which can be obtained by

inspection of the original algorithm.

1.2. Background and Motivation

Secure distributed multiplication (SDM) was first proposed by Beaver in 1992 in the

context of multi-party protocols [13], where n parties compute a function F of all parties' secret

inputs. In order to come up with the result, F is expressed as a circuit CF, so that party i, with its

secret xi, can compute secret addition and multiplications on secretly shared values. This is done

until all n parties have provided their inputs. After Beaver, there have been more developments

in SDM, for example, Gennaro, Rabin, and Rabin [23] showed a highly simplified protocol for

secure multiplication of shared secrets, with O(n
2
k log n+nk

2
) complexity, that was shown to

improve the efficiency of other secure multi-party computation protocols when using their SDM

instead of previously developed multiplication protocols. Another example is the work of

Ronald Cramer, Ivan Damgård, and Robbert de Haan [24], where they based their work on

Shamir's secret sharing scheme in [26]. Later on, in 2007 and 2009, Peter Lory reduced the

complexity of the previously mentioned Gennaro, Rabin, and Rabin protocol to O(n
2
k+nk

2
) and

O(n
2
k), respectively [25, 27]. Moreover, SDM has several potential uses. For example, David,

7

Dowsley, Katti, and Nascimento have shown one of them in [1]. They have used SDM to

compute secure distributed π-products (PiSDM), or secure distributed product of a sequence, in

order to ultimately perform secure integer comparison in the Universal Composability (UC)

security threat model under semi-honest adversary’s attacks. The UC model gives the strongest

security since it assumes that the protocol can be combined or composed with any other protocol

in both serial and parallel manners. Secure integer comparison, can then be used to accomplish

secure silent auctions as in [28], which was a real-life application of cryptography supported by

the Danish Strategic Research Council and the European Commission. Also, it could potentially

be used in a secure protocol that solves the problem of whether an integer lies within a certain

range. Other applications include privacy preservation in machine learning and location-based

services. Besides having all of the aforementioned applications as motivation for implementing

these protocols, it should also be taken into account that another strong motivation for

implementing SDM is the following: since it can be shown that addition and multiplication span

Zq, a fast implementation of multiplication, the more complicated of the two, will greatly

improve performance of other protocols that have already been developed or proposed by

industry and academia.

Looking a bit more into ASM design, as Smith and Di have explained in section 4.2 of

[22], ASMs are used to implement complex sequential circuits, which would be too large for

Mealy or Moore machines due to their exponential increase in size relative to the state transition

bits. In the case of algorithmic state machine design, more elaborated state transition conditions

can be used because of its combined ASM and Data Path approach, allowing for conditional

transitions like input data comparison without exponentially increasing the number of states.

The general ASM model is also described in [29], so let us study the diagram in Figure 1:

8

Figure 1: ASM General Model. Taken from [29]

The ASM is the controller of the circuit, which gives "Commands" to the data processor

or data path. For the ASM to generate these commands, it bases its decisions on external inputs

and feedback data from the data processor, and this data processor computes the output data

based on the input data and the commands it receives from the controller.

Furthermore, for the sake of understanding ASM design and the way OCDDC is used,

consider the ASM design example given in section 4.2 of [22] as well. The design presented

calculated the Greatest Common Divisor (GCD) of two 8-bit numbers, A and B. Figure 2 shows

the complete design, which includes the Interface, ASM, and Data Path.

Starting with Figure 2a, it can be observed that the interface is simply a top-level view of

the design which simply specifies I/Os, the component's name, and the shape that should be used

to represent this circuit when it is to be used by another component. Also, from the interface, it

can be deduced that this design follows the OCDDC because of the rqst and dat suffixes used on

X and Y. This is also a good example to show that, as explained in Definitions section before,

only one rqst and one dat are required for each set of inputs that are needed by the data path at a

given state of the ASM. So applying that concept to this GCD example, it is clear that both

inputs A and B are needed before the circuit can begin computing the result, so Xrqst and Xdat

are used for both input vectors. On the case of, Y, the circuit's only output, the rqst and dat lines

9

used are simply Yrqst and Ydat. Although the interface implies the use of the OCDDC, we can

rest assured that it is actually being implemented when we examine the ASM.

To understand the ASM in Figure 2b., a basic understanding of Mealy and Moore

machines is expected but not necessary, although, this basic knowledge will make the reader

understand the ASM chart basics seamlessly. First, the rhombus or diamond, which represents a

conditional (much like the diamond used in the flowchart of a program or algorithm), showing

that the first step in the ASM is to ensure that a reset occurs (an active-high reset in this case) to

be able to determine the initial state and behavior of the finite state machine. Simply put,

resetting the ASM forces it to start at the initial state, S0 in this case. This leads us to the next

shape used: the rectangle or box, which represents a states. The state name is normally written

on top of the rectangle's top-right corner, and the state assignment is written on the top-left

corner as shown. For example, the initial state was named S0 and has been assigned the value 0.

The ASM is the controller of the circuit, which gives "Commands" to the data processor

or data path. For the ASM to generate these commands, it bases its decisions on external inputs

and feedback data from the data processor, and this data processor computes the output data

based on the input data and the commands it receives from the controller.

Furthermore, for the sake of understanding ASM design and the way OCDDC is used,

consider the ASM design example given in section 4.2 of [22] as well. The design presented

calculated the Greatest Common Divisor (GCD) of two 8-bit numbers, A and B. Figure 2 shows

the complete design, which includes the Interface, ASM, and Data Path.

Starting with Figure 2a, it can be observed that the interface is simply a top-level view of

the design which simply specifies I/Os, the component's name, and the shape that should be used

to represent this circuit when it is to be used by another component. Also, from the interface, it

10

can be deduced that this design follows the OCDDC because of the rqst and dat suffixes used on

X and Y. This is also a good example to show that, as explained in Definitions section before,

only one rqst and one dat are required for each set of inputs that are needed by the data path at a

given state of the ASM. So applying that concept to this GCD example, it is clear that both

inputs A and B are needed before the circuit can begin computing the result, so Xrqst and Xdat

are used for both input vectors. On the case of, Y, the circuit's only output, the rqst and dat lines

used are simply Yrqst and Ydat. Although the interface implies the use of the OCDDC, we can

rest assured that it is actually being implemented when we examine the ASM.

To understand the ASM in Figure 2b., a basic understanding of Mealy and Moore

machines is expected but not necessary, although, this basic knowledge will make the reader

understand the ASM chart basics seamlessly. First, the rhombus or diamond, which represents a

conditional (much like the diamond used in the flowchart of a program or algorithm), showing

that the first step in the ASM is to ensure that a reset occurs (an active-high reset in this case) to

be able to determine the initial state and behavior of the finite state machine. Simply put,

resetting the ASM forces it to start at the initial state, S0 in this case. This leads us to the next

shape used: the rectangle or box, which represents a states. The state name is normally written

on top of the rectangle's top-right corner, and the state assignment is written on the top-left

corner as shown. For example, the initial state was named S0 and has been assigned the value 0.

11

Figure 2: GCD ASM Design. Taken from [22]

Also, please note that assigning 0 to S0, 1 to S1, and so on, might be a naïve approach, and

could very possibly not lead to the most-optimized solution. State assignment is a topic of its

own and is not within the scope of this thesis. For detailed information on the subject, see [29,

30]. Moreover, outputs can be represented as Moore outputs, meaning that these outputs are

only state-dependent and are written inside state boxes, and Mealy outputs, which are state- and

12

input-dependent and are written inside ovals after a conditional diamond has occurred.

However, be careful not to confuse the ASM's output (used by the data path as "commands")

with the data path's output, which will be described in the next paragraph. As an example,

consider the Moore output Xrqst, which is asserted when S0 is the current state, regardless of the

current inputs, and the case of the Mealy output Ydat, which is written inside an oval after AeqB

and Yrqst have both been asserted. This means that when the current state is S1, and both AeqB

and Yrqst are equal to 1, then Ydat is asserted to 1. Lastly, consider how state transitioning is far

more complicated than a Mealy or Moore machine, where the OCDDC is followed by requesting

input data (Xrqst is asserted) and waiting until that data is valid (Xdat is asserted) to transition to

the other state. In S1, A and B are compared, which is a more complex state transition condition,

and only when they are equal is Yrqst checked to comply with the handshake, leading to Ydat

being set to 1 when the output has been requested and the next state being S0.

The last part to explain is the data path, or data processor, shown in Figure 2c., paying

particular attention to its inputs and outputs. For example, LDA, LDB, and S are data path inputs

but ASM outputs, making them the "Commands" shown in Figure 1. We can also see that AeqB

and AgB are data path outputs but also ASM inputs, which makes them the "Status information,"

or feedback, received by ASM from the data processor. In addition, as it can be observed, the

data path is composed of combinational logic for computations and data processing, and

sequential logic like registers and counters (only registers in the example) to store data and keep

track of clock cycles when needed. In the example, two registers are used to store both A and B

and to replace either of them when computations are made.

13

1.3. Related Work in Hardware Implementations

 Hardware implementations and hardware acceleration started to appear in research as

early as 1993 where M. Shand and J. Vuillemin et. al. [2] provide a programmable active

memory implementation of RSA cryptography. However, interest in hardware implementations

of cryptographic constructs did not pick up until the early 2000s, where we have seen hardware

implementations of the MD4-family hashing algorithms in [3] by S. Dominikus, an

implementation of the RC4 stream cipher in [4] by Kitsos, Kostopoulos, Sklavos, and

Koufopavlou. Furthermore, the advanced encryption standard (AES) has had a lot of researchers

work in hardware implementations like in [5, 6, 7], and hardware accelerated software

implementations using GPUs by Manavski in [8]. Another type of hash algorithm that has been

looked at is the SHA-family, which has also had hardware implementations, for example,

Sklavos and Koufopavlou designed hardware for SHA-2 using 256, 384 and 512 bits. In

addition, there is interesting new research being published in the Cryptographic Hardware and

Embedded Systems workshops and conferences like [30, 31], where AES, hash function, and

even elliptic curve cryptography, a relatively newer area in cryptography, are studied. Elliptic

curve cryptography has been gaining attention in embedded applications because of its efficiency

of implementation, and it has been shown to be implemented in hardware by Wenger and Hutter

in [9]. Lastly, a hardware implementation that is more closely related to secure computations is

the one in [10] that shows a circuit design method for tampering detection in order to protect the

computation of any arithmetic circuit over a finite field.

 The secure comparison protocol has also been implemented by its authors in software

using Python, a widely used scripting language.

14

1.4. Contributions

Using the Algorithmic State Machine (ASM) approach, and following the One Cycle

Demand Driven Convention (OCDDC), three cryptographic protocols developed in [1] are

designed in hardware and implemented in VHDL, showing the three integral parts of any ASM

design: the interface, the ASM chart, and the data path, and a VHDL algorithmic implementation

using a layer-based method, where Secure Distributed Multiplication (SDM) is used as a

component in the Pi Secure Distributed Multiplication (PiSDM) protocol, and PiSDM is used as

a component in Secure Comparison (SC). Also, a general method is proposed for implementing

cryptographic protocols in hardware using the ASM approach. To the author's knowledge, these

hardware designs and HDL implementations are the first ever of their kind because even though

some schemes and constructs have been designed and implemented as it has been thoroughly

explained in the previous section, these are the first protocols to go through this process, giving

an advance in the field of practical cryptography. This is also done to continue breaching the gap

between cryptography and the hardware world, which more than often seem to be mutually

exclusive. In addition, the SC protocol in hardware computes the result over 300,000 times

faster than its software counterpart.

1.5. Thesis Outline

 The remainder of the thesis contains two more sections, where it is assumed that the

reader has basic abstract algebra and VHDL knowledge. In section 2, subsections are presented

for each of the three protocols, where, in each subsection, the protocol is described in more

details, just as it is presented in [1], following with the ASM design, complexity and throughput,

other important details like modifications to the protocol to better accommodate the hardware,

VHDL implementation, and, finally, a sample run of the protocol. As for section 3, a general

15

method is proposed for implementing cryptographic protocols in hardware, and lastly in section

4, the results and conclusions.

16

2. DESIGNS AND IMPLEMENTATIONS

The main contributions are presented in this section, following a simple structure very

similar to the way the protocols were designed. First, the original protocols are presented,

starting from the most fundamental one, SDM, followed by PiSDM, and finishing with SC. In

each individual protocol, the subsections are: Original Protocol, describing the protocol as

presented in [1], ASM design, explaining and showing the interface, ASM chart, and data path,

Protocol Complexity and ASM Throughput, where the efficiency of the design is discussed,

Protocol Modifications for Hardware, a small section describing a few changes made to the

original protocol to make it easier to implement, VHDL Implementation Details, describing

entities and architectures, and lastly, Sample Run, which demonstrate the correct functionality of

the protocol using ModelSim-Altera, a very popular tool for modeling of hardware in described

using VHDL.

The design, much like the VHDL implementation, takes a layer-based or component-

based methodology. At the very bottom, SDM can be found, and because of the nature of an

ASM, parties can be isolated from each other, allowing the digital hardware engineer to think of

each party as a single chip or module. In addition, because the ASM design method allows for

the use of the one cycle demand driven convention, clock dependencies can be eliminated. In

other words, because the OCDDC is basically a handshaking mechanism for inter-module

communication, each party can have their own clock. A naïve method to synchronize the parties

would be to use one clock for all parties, which might be okay with the assumption of the

existence of a TI, but this still exposes the whole protocol, since it can still create issues like

racing conditions and it would make the hardware vulnerable to an attack where an adversary

could tamper with the clock and compromise the whole protocol. Note that an adversary would

17

now need to alter somehow at least two clocks, since at least two parties are needed in a protocol,

to achieve the same kind of attack. So using ASMs that fallow OCDDC, is a much nicer and

elegant solution to designing and; therefore, implementing cryptographic protocols in hardware.

Furthermore, using OCDDC plays nicely with the layered design used as well because any other

hardware that needs to communicate with a component can simply follow the handshaking rules,

so it is important to not only think about two parties communicating, but also other hardware,

which is part of a more complicated party design, communicating with the component describing

an already designed party, like PiSDM uses SDM.

The next protocol, PiSDM, simply uses SDM as a component and communicates with it

following the guidelines of OCDDC as if it was any other module. This is where the layered

design begins, because by abstracting out the details of SDM, PiSDM remaining hardware

design becomes a lot simple. The idea behind using this kind of approach is to make the design

easier when the protocol’s objective is more complicated. So this simply means that each party

in PiSDM uses the corresponding party of SDM as a component (more details are given in

section 2.2.). In the same manner, the PiSDM parties' chips are used as components in the SC

parties’ design and implementation. In other words, by using this kind of layered design, the

inner works of a component are details that do not concern the architecture using said

component, giving abstraction to the layers as hardware is built on top of them; therefore,

making it simpler to design otherwise complex parties.

2.1. Secure Distributed Multiplication (SDM)

 Secure Distributed Multiplication, a protocol where two servers, using additive shares,

can compute the product of two numbers, without knowing what the original numbers are, is

crucial for the other two protocols presented because they make use of it, making the need for

18

maximum throughput even higher. First, consider the following discussion on the original SDM

protocol.

2.1.1. Original Protocol

The secure distributed multiplication protocol described by Dowsley, Katti and

Nascimento works in the following way: there are two numbers, U and V, which are to be

multiplied, and two parties, A and B, that will run the protocol, so the parties are normally

thought of as servers. Each party holds an additive share of U and V, so let uA and vA be A's

shares of U and V respectively, and let uB and vB be the shares of U and V that B holds. All

operations are in Zq, where q is a prime number. Another party is needed, which is the trusted

initializer, or TI, that provides pre-distributed randomness to A and B. TI generates uniformly

distributed random numbers r, a1, a2, b1, b2 ∈ Zq and sends r, a1, and b1 to A, and a2, b2, and I =

(a1b2 + a2b1 - r) to B. At the end of the protocol, A outputs (r + t) for a randomly selected t in Zq

not known to B, and B outputs ((uA + uB) (vA + vB) - r - t). The outputs of A and B are shares of

the product UV (i.e. the sum of the shares of A and B’s outputs equal UV). The exact protocol

performed by A and B is:

 Step 1: A sends (uA − a1) and (vA − b1) to B.

 Step 2: B sends (uB − a2) and (vB − b2) to A.

 Step 3: A chooses a random t ∈ Zq, and computes

 X1 = (vB − b2) a1, X2 = (uB − a2) b1 and sends X = (uAvA + X1 + X2 − t) to B.

 Step 4: B computes Y1 = (uA−a1) vB and Y2 = (vA−b1) uB, and computes Y = (Y1 + Y2 +

X + uBvB + I).

 Step 5: A outputs (t + r) and B outputs Y.

19

Output Correctness: the following should allow the readers to convince themselves that

the output is in fact correct. To do this, the values of Y1, Y2, X, and I are replaced by their

expressions in the equation for Y, and simplification shows the correctness of the result:

Y = (Y1 + Y2 + X + uBvB + I)

Y = ((uA − a1) vB + (vA − b1) uB + uAvA + (vB − b2) a1 + (uB − a2) b1 − t + uBvB

+ a1b2 + a2b1 − r)

Y = (uAvB + vAuB + uAvA + uBvB − t − r)

Y = ((uA + uB) (vA + vB) − r − t) = UV − r − t

This correctness proof shows that party A will have the random number needed to come

up with the actual result, and B has a randomized version of U times V, if you will. Moreover,

the intuition behind the security proof is simple. In order for A, or B, to learn the other’s secret

shares of U or V, they must learn the pre-distributed values provided by TI. Since this is not

possible by assumption, then privacy must be preserved. A full proof of security can be found in

[1].

2.1.2. ASM Design

Following the ASM design approach, the first item we need to address is the parties’

interfaces. Figure 3 shows each party’s interface, which will be explained right after:

20

SDM TI
Arqst

r

a1

b1

Adat

Brqst

I

a2

b2

Bdat

SDM A

TIrqst
r

a1

b1

TIdat

Srqst

uA
vA
Sdat

AoutArqst Adat

Birqst
U1

V1
Bidat

Xrqst

X
Xdat

Borqst
U2

V2
Bodat

SDM B

TIrqst
I

a2

b2

TIdat

Srqst

uB
vB
Sdat

BoutBrqst Bdat

Aorqst
U1

V1
Aodat

Xrqst

X
Xdat

Airqst
U2

V2
Aidat

a. TI interface

b. A interface c. B interface

Figure 3: SDM Interfaces

 Starting with TI’s interface, since it is the simpler one of the three, it can be seen that it

follows the naming convention of OCDDC, with Arqst and Adat corresponding to A’s pre-

distributed randomness, r, a1, and b1, and Brqst and Bdat corresponding to B’s pre-distributed

randomness, I, a2, and b2. Next, intuition is formed by the usage of same names to denote those

ports, and also by noting that for any given step in the protocol, the rqst and dat ports are named

in such a way as to indicate with whom the party is stablishing communication. So observing A

and B’s interfaces, at top left corners, we can see what port corresponds to each of their

analogous port in TI, e.g. r in TI should be connected to r in A, and so on, and A’s output TIrqst

corresponds to TI’s input Arqst. Likewise occurs with B. Furthermore, the rest of the inputs and

21

outputs in both A and B are used for the exchange of messages between the two and for

outputting the protocol’s result, with the top right used for step 1 in the protocol, bottom right for

step 2, middle right for step 3, and the bottom for step 5, the party’s output.

The next step is to draw the ASM charts and the data paths, and because the design

process tightly relates the ASM and data path, consider first TI’s design, starting with its ASM

chart in Figure 4 and the data path in Figure 5:

Figure 4: SDM TI’s ASM

22

mod q

mod q

RegS

D Q

LD

RegS

D Q

LD

mod q

mod q

RegS

D Q

LD

RegS

D Q

LD

Counter

QD

inc

LD

A x B mod q

A

B

A x B mod q

A

B

A + B mod q

A

B

a1

b2

a2

b1

I

a1 seed

b2 seed

a2 seed

b1 seed

clk reset

count00000

inc

Ald

Ald

Bld

Bld

mod q

RegS

D Q

LD

r
r seed

Ald

A - B mod q

A

B

A - B mod q

A

B

PRBS
seed

R

reset

count

PRBS
seed

R

reset

count

PRBS
seed

R

reset

count

PRBS
seed

R

reset

count

PRBS
seed

R

reset

countcount

count

count

count

count

Figure 5: SDM TI’s Data Path

The ASM for TI is simple enough. After the reset, it generates the five random values r,

a1, b1, a2, b2, and after these become available, they are loaded into registers. Then, TI computes

I and sends the corresponding pre-computed randomness to the appropriate party.

On the data path side, we can see several components being used, pseudo-random bit

sequence generators, for example. These, with the help of a counter, produce the five random

values which are then used to calculate their modulus, and then stored in the registers. These

registers, though, are a bit different. A register RegS, as it has been named, is a combination of a

regular register with a multiplexer, to allow for immediate follow through of the input value.

RegS, and all other components are described in Appendix A. This permits the increment of the

23

throughput by cutting a clock cycle from the total cycles needed. Also, note that the counter

receives its load signal directly from reset. This can be done because the ASM ensures that 32

increments are taken, bring the initial value back to 0 when TI is required again.

Continuing with the discussion, because A and B have more complicated designs than TI,

their ASMs and the data paths will be studied separately. So consider A’s ASM in Figure 6 first:

Start

reset

No

Srqst, TIrqst

Yes

S0

Sdat

Yes

Tidat

No

Sld, Tild,
Bild, inc

Yes

BirqstNo

S0

No

S2

BirqstNo

Bidat,
Borqst

Yes
Yes

BodatBorqst No

S3

No Birqst

Bold

Count = 31Yes
Yes

inc No

S1

Xrqst

Yes

No

Xld, tld,
Xdat. Ald

Arqst

Adat,
inc

S4

Arqst No

No

Yes

Yes

Figure 6: SDM A’s ASM

24

Although it may seem complicated or convoluted at first, if follows the simple step-by-

step the protocol follows when using a 32-bit prime number q. A must first obtain the values it

needs for the protocol, that is the pre-distributed randomness from TI and the shares from the

users. So that is the purpose of S0’s initial part, requesting TI’s data and the users’ shares that

correspond to A, and A will continue to request the data it needs before moving on. If it is the

case that A receives the required inputs, then it proceeds to load that data to its registers and keep

track of the number of clock cycles that have occurred since it also needs to generate randomness

for step 3. After A stores the values, it checks if B has requested the values it needs to send to B

for step 1, going to another state, S2, if B did not signal a request and staying in that state until B

does so. On the other hand, if at any of the rising edges of the clock B requests the data from

step 1, then A continues and asserts Bidat (valid bit for B’s input as seen by A) to let the other

party know that the values being sent are valid. As A asserts Bidat, it also requests B’s output

from step 2 by a signaling high on Borqst. This let’s B know that it is ready to receive step 2’s

data. In a similar manner to before, A now has to check whether B has send those values by

asserting Bodat. In the case the data is not ready, A goes to state S3, where it continues to request

and check for valid data, and as soon as valid data is available, A loads it into a register, and

moves on to state S1, where it will continue to generate the remaining random bits it needs. In

this state, a counter is continually incremented until 31, meaning that 32 clock cycles have

occurred, so A is ready to compute the values from step 3. So after t is ready, A checks if B has

requested X’s value, returning to state S1 if not, and loading X, t, and its output to registers, while

also signaling to B that X is ready to be read. Next, still within S1, A verifies whether its output

has been requested. If it has, then it signals the validity of the data by asserting Adat and it

increments the counter once more so that it is set back to 0. If it was the other way, when A’s

25

output has not yet been requested, then the ASM goes to another state named S4, where it

continues to wait for a request for its output. When its output is requested, it transitions to S0 to

complete the execution of the protocol.

So that is the gist of A’s ASM chart. Please notice how even though it seems convoluted

at first, it follows a logical train of thought, as previously explained, for state transitioning and

output asserting. Now it is time to look at the final part of A’s ASM design, which is the data

path shown in Figure 7, and just as with the ASM, the data path also tries to follow intuition and

logical reasoning. For example, on the left side, all inputs can be observed, each going in to a

RegS. This, again, is done to save one clock cycle so that maximum throughput may be

achieved. Also, signals that are outputted by the ASM are present here like Sld, TIld, and so on.

Now that the ASM has been studied, looking at the data path should be more intuitive. In

the first step, transitioning from S0 to S1, all the relevant values are loaded into the input register

on the left and the output register for B on the right. From what it was seen in Figure 6, it is

known that the top six input registers can be loaded with uA, a1, vA, b1, V2 and U2, and the top

two output registers with U1 and V1, in the first clock cycle after the reset, provided that B is

functioning normally. To be more precise, note that because all values are ready in the same

clock cycle, the outputs, U1 and V1, can also be calculated right away using the "A-B mod q"

components, and sent out by signaling high on Bidat at the same time, as long as B requests data

using Birqst of course, due to RegS's special loading capability. In the same manner, on step 2,

the inputs U2 and V2 can be loaded right away because they are loaded into RegS components.

During step 3, A needs to generate t to compute X, so it uses an up-counter to count 32 clock

cycles, and after the randomness is the calculations X1 = (vB − b2) a1, X2 = (uB − a2) b1 and X =

(uAvA + X1 + X2 − t) can be made. Since A requires more clock cycles to generate t, the other

26

party can either keep their own counter of how many clock cycles have passed or can simply

request X repeatedly until it becomes valid. The latter turns out to be the best option not only

because it eliminates the need for more circuitry to have a counter and the logic to figure out

when B should request the data, but the former option would require both A and B to have the

same clock speed, which may not be true in many cases. Moreover, since input values are

maintained by the registers, loading X right away is not needed until it is requested with Xrqst, so

the request signal for X is simply used as the load value for X's RegS. However, because B

knows of A’s extra time spent generating randomness, B is requesting for X constantly and just

waiting for valid data (more on this shortly), so in practice, Xdat is signaled as high at the same

clock cycle as when t is ready and X is calculated. Also, during the same clock cycle t is ready,

A can be calculated and loaded, but for the same reason as X, it does not need to be loaded until

the output is requested.

27

RegS

D Q

LD

RegS

D Q

LD

RegS

D Q

LD

RegS

D Q

LD

uA

a1

vA

b1

A - B mod q

A

B

A - B mod q

A

B

uAi

vAi

U1

V1

RegS

D Q

LD

RegS

D Q

LD

V2

U2

A x B mod q

A

B

A x B mod q

A

B

A x B mod q

A

B

A + B mod q

A

B

X

a1i

b1i

A + B mod q

A

B

A - B mod q

A

B

Counter

QD

inc

LD

00000

inc

PRBS
seed

R

reset

count

count

count

t seed
mod q

RegS

D Q

LD
RegS

D Q

LD

ti

r

A + B mod q

A

B

RegS

D Q

LD

RegS

D Q

LD

RegS

D Q

LD

RegS

D Q

LD

ri

A

Note: clk and reset wires not show in this drawing

Sld

Sld

Tild

Tild

Tild

Birqst

Birqst

Xrqst

Bodat

Bodat

reset

reset

tld

Ald

Figure 7: SDM A’s Data Path

28

Now that TI and A’s designs have been fully explained, all that is left from the SDM

protocol’s design that needs to be discussed is B’s ASM design, starting with its ASM chart in

Figure 8 and then finishing with its data path in Figure 9. Following the same logic as with A’s

ASM, this ASM chart starts with a necessary reset so that the initial state is known, and then

continues to follow the clear steps presented in the protocol itself. First, B must have its share of

U and its share of V, along with the pre-distributed randomness a2, b2, and I, from TI, but also

notice that Aorqst is also a Moore output in state S0. This is a simplification done because it does

not matter if A’s output from step 1 is ready at the same time as the shares and pre-distributed

randomness due to the fact that its value will not be loaded unless uB, vB, a2, b2, and I are valid

as well, and clearly, if Sdat and TIdat are not high, then there is no transition to another state. Of

course, when this data is valid, the B’s output from step two can be computed and store right

away by signaling Aild. In the case that U1 and V1 are not indicated to be valid by Aodat, then

the ASM moves to state S1. In S1, the ASM continues to make requests for U1 and V1 until the

values become valid. When Aodat is high, then Aold is asserted and B checks whether U2 and

V2 have been requested with Airqst. If Airqst is not high, then the next state is S2, where B waits

until these values are requested by A. When U2 and V2 are requested, then step 2 from the

protocol can be completed by signaling to A that the values are valid using Aidat, and also, to

request X with Xrqst. If X is not available yet, then the ASM transitions to S3, where it continues

to request X until the data is valid. Next, when Xdat becomes 1, then X can be loaded with Xld,

so B’s final output can be calculated now that X is valid and it can be loaded using Bld. Lastly, B

checks for a request on its final output using Brqst. If Brqst is not asserted, then the ASM goes

to state S4 to continually checks for a request. In either case, when the request is received, B

29

asserts Bdat to indicate its output is valid, and it returns to S0, completing a full execution of the

protocol.

Next, consider B’s data path. As with A’s data path, registers used for inputs are located

on the left, and registers used for outputs are located on the right. In addition, all these registers

are RegS components to eliminate extra clock cycles. Regarding its functionality, it can be

observed that registers are organized in such a way that calculations from the steps in the

protocol can be followed from top to bottom. On the top, the registers for uB, a2, vB, and b2 are

found, and they continue to the "A-B mod q" components that calculate U2 and V2, which are the

first computations that B needs to perform. The next four registers, corresponding to X, I, U1,

and V1, are used to store other input values needed to calculate Y1 = (uA−a1) vB = U1 vB and Y2

= (vA−b1) uB = V1 uB, and B’s output Y = (Y1 + Y2 + X + uBvB + I). This calculations,

however, need not be done until X is valid. So when X in indicated as valid by Xdat, X is loaded

and available immediately, and B’s output is calculated using the several "A+B mod q" and "A

×B mod q" components.

As mentioned previously, it is crucial for optimality that this protocol is design to achieve

maximum throughput because the other two protocols use this one repeatedly, which is why

emphasis has been made in making it clear that ASMs will request and send multiple pieces of

data at the same time, and data paths will use RegS in sequential circuits to eliminate extra clock

cycles because this type of register ties the input directly to the output when a new value is being

loaded into a regular register contained within itself. This way, on the first clock cycle when its

load signal is 1, the output is taken directly from the input, and for the following clocks, it is

taken from its regular register component.

30

Start

reset

No

Srqst, Tirqst, Aorqst

YesS0

Sdat

TIdat

Yes

Sld,
Tild,
Aild

Yes

Aodat

No

No

Aorqst

S1

No

Aold

Aodat
Yes

YesNo

Airqst

S2

No

Aidat,
Xrqst

Airqst
Yes

YesNo

XdatXrqst

S3

No

Xld, Bld

Xdat
Yes

YesNo

Brqst

No

S4

Bdat

Brqst

Yes

Yes

No

Figure 8: SDM B’s ASM

31

RegS

D Q

LD

RegS

D Q

LD

RegS

D Q

LD

RegS

D Q

LD

uB

a2

vB

b2

A - B mod q

A

B

A - B mod q

A

B

uBi

vBi

RegS

D Q

LD

U2

RegS

D Q

LD

V2

RegS

D Q

LD

RegS

D Q

LD

RegS

D Q

LD

RegS

D Q

LD

X

I

V1

U1

A x B mod q

A

B

A + B mod q

A

B

A x B mod q

A

B

A x B mod q

A

B

A + B mod q

A

B

A + B mod q

A

B

A + B mod q

A

B

Register

D Q

LD

Bout

Note: clk and reset wires not show in this drawing

Sld

Sld

Tild

Tild

Tild

Aold

Aold

Xdat

Aild

Aild

Bld

Figure 9: SDM B’s Data Path

Note: all components are reviewed in more detail in Appendix A.

32

2.1.3. Protocol Complexity and ASM Throughput

In this section, the interest lies in finding the complexity in relation to a security

parameter. This parameter is the size of the prime number q, which is what provides the

computational security for the protocol. So as mentioned in the previous section, q is 32 bits, but

for a more general solution, let |q| denote the bit length of q.

As it can be seen, neither the original protocol nor the slightly modified version which

was implemented have a complexity dependent on |q|, giving a complexity of O(1) for number

of multiplications and additions, and with O(|q|) for generating randomness. Moreover, the

maximum TPC of the protocol should be 1/|q| = 1/32 because input data is loaded in 1 clock

cycle and it takes |q| = 32 cycles to complete the computation of the multiplication. It is worth

noting that ASMs should be design to reach the max TPC possible, which in the case of these

designs, it is true.

Due to generating randomness on step 3 of the SDM protocol, the throughput of both A,

and B is 1/|q| = 1/32 because 1 multiplication can be done in the 32 clock cycles it takes to

generate a random number. TI’s throughput because it generates one output set of values every

32 clock cycles. Note that when the protocol runs the first time, it takes 64 clock cycles to

calculate the multiplication; however, this is just a transient because TI continues to generate

random numbers, so that when new randomness is requested again, it is available right away.

The TPC diagrams for TI, A, and B are in Figure 10:

33

S0 S1

30

b. A TPC diagram

S0 S3

30

c. B TPC diagram

S1

32

a. TI TPC diagram

Figure 10: SDM TPC Diagrams

2.1.4. Protocol Modification for Hardware

As mentioned before, a slight change was made to the original protocol in order to add

simplicity to the VHDL design. This change is simply to replace subtractions with additions of

additive inverses. In Zq, additive inverses can be easily calculated by subtracting said number

from q. For example, in step 1, A must calculate (uA - a1), so this operation is replaced by (uA +

(q − a1)). This is done for each subtraction in steps 1, 2, and 3. Furthermore, the reasoning

behind this change is to avoid the usage of signed data types in the VHDL code, because using

that data type would require extending numbers to one extra bit in order to prevent data losses.

Note that the result of any of those subtractions could, in fact, be negative, which does not result

in any errors after computing the modulo q when using signed numbers, but it does, however,

create an obvious error when only using unsigned numbers.

2.1.5. VHDL Implementation Details

To implement each party’s hardware, two different approaches are taken for the ASM

and the data path. All parties use a component-based implementation to describe the data path,

whereas for the ASM, TI uses a dataflow implementation, and A and B use an algorithmic

34

implementation. The reason for this is because TI requires much less complicated hardware so

state and output equations can be easily derived from its ASM, but A and B have more

complicated algorithms to run, making it simpler, from an implementation perspective, to use a

“process” to describe each of those ASMs. In all cases, the ASM’s current state is stored in D

Flip-Flop implemented using an algorithmic approach, with a synchronous, active high, reset.

Furthermore, to implement A and B’s ASMs a new type is declared to represent the states. These

states are used in a process that resets all outputs to 0 first to avoid latching, and then in a case

statement the process contains, each case represents a state where only the appropriate signals

are set to 1. Using a process is very helpful for one important reason, which is that states only

assert the signals they are supposed to, just like they do in the ASM chart itself.

The SDM design, which includes TI, A, and B, was implemented using a very popular

tool named Quartus II, which is used for FPGA and system on chip (SoC) design, so it works

nicely with VHDL. From Quartus, it is simple to make use of VHDL packages like

IEEE.STD_LOGIC_1164 to allow usage of std_logic_vector, IEEE.STD_LOGIC_UNSIGNED

to allow the usage of addition, subtraction, and multiplication of standard logic vectors, and

IEEE.NUMERIC_STD in order to be able to use the unsigned data type, as well as addition,

subtraction, and multiplication of the unsigned type. Finally, after having designed the entities

and architectures for TI, A, and B, another design, called SDM_chip, is used to connect all three

parties. This SDM_chip uses the parties' designs as components to perform a simple port

mapping to interconnect them, yielding the report in Table 1 after analysis and synthesis in done

on SDM_chip. The most important detail to observe from the report provided by Quartus is that

the large majority of logic elements used are part of combinational logic, which is to be expected

35

since all addition, subtraction, multiplication, and modulus functions are calculated for 32-bit

words, creating the need for the large amount of logic elements.

The SDM_chip, the top-level architecture of the SDM Quartus project, which contains all

three parties hooked up together, is then assessed using a testbench, also written in VHDL, which

provides the clock, reset, and the inputs like uA, uB, vA, and vB to the parties. Essentially, this

testbench runs the protocol under the security model’s assumption and verifies its proper

functionality by calculating the expected and obtained results, and comparing these results to

show they are equal.

Table 1: SDM Analysis and Synthesis Report from Quartus II

Total logic elements 31,315

Total combinational functions 31,187

Dedicated logic registers 1,140

Total registers 1140

Total pins 202

Total virtual pins 0

Total memory bits 0

Embedded Multiplier 9-bit elements 64

Total PLLs 0

Note: all VHDL code is available in Appendix B.

2.1.6. Sample Run

ModelSim-Altera was the CAD tool used for simulating the hardware implementation.

The verification is done by writing a VHDL testbench that is complemented with a macro file to

configure the simulation itself. Put simply, the testbench dictates the behavior of each signal like

the clock, reset, and inputs, and the macro file tell ModelSim-Altera what to display and what

format to use for the displayed variables.

The simulation runs for three sets of inputs, and with q = 4294967291, also, all

operations in modulo q. First, however, the parties must wait until pseudo-randomness is

36

generated to output meaningful data. The testbench was written to reset the hardware and then

make each set of inputs available as soon as they are requested, which is right after the reset.

After the first set of randomness is provided, the protocol starts running normally.

Moreover, note that the set of inputs in the testbench were changed at the same time the new set

of randomness is available to allow for a clean transition that can be seen in the ModelSim-

Altera simulation output.

In each iteration, the values shown are reset, clk, uA, uB, vA, vB, Arqst, Ao, Adat, Brqst,

Bo, Bdat, mult1, mult2, and correct. Note that uA, vA, uB, and vB are A and B's additive shares

of U and V. Also, Arqst and Brqst are the request signals corresponding to Ao and Bo, which are

the parties' outputs, respectively. In addition, mult1 is equal to (uA + uB) (vA + vB), and mult2 is

equal to (Ao + Bo). So by the output correctness property, mult1 should equal mult2 when Adat

and Bdat are both 1, since these are the data signals for Ao and Bo. When the expected result,

mult1, and the obtained result, mult2, are equal, correct is high, and otherwise is low.

The first set of inputs are uA = 1906243613, uB = 1761250485, vA = 1450887487, and

vB = 991888945, so the two numbers are U = 3667494098 and V = 2442776432. The result

gives that mult1 = mult2 = 333301357. The second set of inputs are uA = 1073741827, uB = 1,

vA = 1, and vB = 1, so the two numbers are U = 1073741828 and V = 2. The result gives that

mult1 = mult2 = 2147483656. The third set of inputs are uA = 3, uB = 2, vA = 5, and vB = 8, so

the two numbers are U = 5 and V = 13. The result gives that mult1 = mult2 = 65, showing the

protocol works.

To illustrate these results, Figure 11 shows the simulation results directly obtained from

ModelSim-Altera, where red lines and the value “U” represents an uninitialized value, 0s and 1s

37

show the value of a vector (a variable with more than one bit), and high and low represent 1 and

0, respectively, for single bit variables like reset and clk.

Figure 11: SDM Sample Run

2.2. Secure Distributed Multiplication of a Sequence (PiSDM)

Secure Distributed Multiplication of a Sequence is a protocol where two servers, using

additive shares, can compute the “pi product” of several numbers, without knowing what the

original numbers are. This protocol, although not explicitly introduced in [1] as it is presented in

this thesis, still is important because it is used in the Secure Comparison protocol described. In

38

step 3 of SC, PiSDM is used even though it is not presented separately, but as a part of Secure

Comparison. The next section explains the protocol in detail.

2.2.1. Original Protocol

The protocol PiSDM works similarly to SDM with one big difference: the parties A and B

don’t receive two shares of two separate numbers, but multiple shares corresponding to the bits

in a bit string c, where cA refers to A’s array of shares, and cB refers to B’s array shares. So each

share is an additive share of a bit in c. These arrays are indexed from 1 to l = |q| because of the

protocol’s end use in SC, where the shares of index 1, for example, are written as c1A and c1B.

Using these shares, TI, A, and B run the protocol in the following manner. Let l be the

number of bits in c, i the current index in the arrays cA and cB, Ai and Bi the SDM outputs for i =

2…l, and with the assumption that one set of precomputed random values from TI is available

like it is done in the SDM protocol, then:

 Step 1: A and B run SDM with c1A, c1B, c2A and c2B as inputs with the precomputed values

from TI, and TI generates new randomness for the next step. Set i = 2 so that A2 and B2

denote the SDM result in this iteration.

 Step 2: increase i by 1. A and B run SDM with ciA, ciB, Ai-1 and Bi-1 as inputs with the

precomputed values from TI, and TI generates new randomness for the next step. The

outputs are Ai and Bi.

 Step 3: repeat Step 2 until i = l.

 Step 4: A outputs Aout = Al and B outputs Bout = Bl.

Output Correctness: assume the Aout = Al and Bout = Bl are not correct. Then there must

exist some i for which Ai and Bi are also not correct, but this cannot be the case because the

inputs initial input c1A, c1B, c2A and c2B give a correct output due to SDM’s correctness. So by the

39

same assumption, no i exist such that Ai and Bi are not correct, and therefore, Aout and Bout must

be correct.

Moreover, the intuition behind the security proof is simple. By the

Composability Theorem, it is secure to combine protocols in series, provided that the combined

protocols are secure on their own. So by this theorem, our (l – 1) iterations of SDM are secure,

making PiSDM secure.

2.2.2. ASM Design

Continuing with the PiSDM discussion, it will be shown that even though this protocol

computes a more difficult result than SDM, with the use of the SDM parties’ components, the

resulting ASM design is much less complicated, and therefore also showing the biggest

advantage of hierarchical design approaches. So much like how it was done with SDM, consider

the parties’ interfaces in Figure 12:

40

PiSDM A

TIrqst
r

a1

b1

TIdat

Crqst

C

Cdat

AoutArqst Adat

Birqst
U1

V1
Bidat

Xrqst

X
Xdat

Borqst
U2

V2
Bodat

PiSDM TI
Arqst

r

a1

b1

Adat

Brqst

I

a2

b2

Bdat

PiSDM B

TIrqst
I

a2

b2

TIdat

Crqst

C

Cdat

BoutBrqst Bdat

Aorqst
U1

V1
Aodat

Xrqst

X
Xdat

Airqst
U2

V2
Aidat

a. TI interface

b. A interface c. B interface

Figure 12: PiSDM Interfaces

 The same concept and intuition that applied to SDM, applies here with PiSDM. Request

and data signals are named in such a way as to indicate which parties are communicating for the

particular value they enclose. For example, TI has Arqst, an input, and Adat, an output,

enclosing r, a1, and b1, indicating that these values from TI will be sent A. The case of X is a bit

41

different. X, which is a single piece of data sent from A to B, simply has the same port names in

both A and B to illustrate the fact that these ports are to be connected, where Xrqst in A is an

input, but it is an output in B, and X and Xdat are outputs for A, but inputs for B.

With the interfaces explained, now consider the requirements for TI. The fact is that TI

just needs to be able to generate the randomness needed by A and B, and continue to do so until

they are done running the SDM protocol (l – 1) times. If SDM’s TI is looked at carefully, it can

be deduced that it meets the requirements this TI needs. This is true because SDM’s TI will

generate randomness whether it is requested or not, and once it has come up with r, a1, b1, I, a2,

and b2, it will check if A or B have requested their values. The first time around, A and B will

wait for TI to compute their values. After that, while they are running SDM, TI continues to

generate more randomness, and by the time the parties require a new set of random values from

TI, it has already computed them. So please refer to the section 2.1.2 for details about PiSDM

TI’s design.

As explained in the previous paragraph, the PiSDM protocol gets its TI design for free

from SDM, and although it does not quite get A and B for free, the additions are not too

complicated. Not only that, but A’s design and B’s design turn out to be identical because they

are just repeatedly querying SDM A and SDM B, respectively. So taking A as an example,

consider its ASM first. Note that after the reset, it asserts Crqst, uAs which is a select signal, and

Cpld, a parallel load signal in state S0. The next step is to check whether C is valid by checking

if Cdat is high. If it is not, then the ASM loops back to S0, but if it is, then it can load C and the

count using countld (keeping track of how many times it has run the SDM protocol is obviously

necessary since it has to stop eventually, so that is why there is a count variable). A also checks

if ASrqst is high, meaning that SDM A has requested shares. If SDM A hasn’t, then the next state

42

is S2, where it waits for a request. When a request is made, though, A signals ASdat to let the

SDM component know that the given shares are valid and uses uAld, another load signal, to use

the correct index of C for step 1 on PiSDM. When this is done, it sets the next state to S1.

Step 2 in the protocol is slight different that step 1, creating the need for S1 and S3, which

roughly perform the same checks and asserts similar variables as S0 and S2, respectively, with

one important addition being that both S1 and S3 now keep track of the count to make sure to

transition to the right state when the count has been reached. To be more specific, S1 is designed

to check first if the count has been reached, and if it has not, it asserts ASdat indicating that SDM

A’s input shares are valid and proceeds to request its output. If the output is not ready yet, then

the ASM returns to S1, but when it is, the ASM performs another check to see if the count is 30

because in that case, it would mean that the current output is the last one, so A can assert inc and

check if the PiSDM output has been requested with Arqst, asserting Adat and returning to S0 if it

has, and returning to S1. If it is not the last iteration, the count is increased, and the values for the

next round are loaded, and ASrqst is immediately checked to see if ASM A has requested new

shares. If it has requested shares, then it simply returns to S1, but otherwise, it transitions to S3.

In state S3, as with S1, the count is checked first to see if it has reached the final iteration. If it

hasn’t then it checks if SDM A is done generating the current iteration’s output, increasing the

count and loading the next values if it has, or returning to S3 if it hasn’t. If it is the case that the

ASM is currently in S3 and the last iteration has been reached, A checks if the Arqst is high,

asserting Adat if the output has been requested, or returning to S1 if it has not been requested.

43

Start

reset

No

Crqst, uAs, Cpld

Yes

S0

Cdat

Yes

ASrqst

No

Yes

S0

S2

Cld
countld

ASdat
uAld

S1

No ASrqst

No

ASdat
uAld

Yes

count = lArqst

No

Yes

Adat
Ald

Yes

ASdat
AArqst

No

AAdat

inc
Cld

uAld

count = l

AAdat

No no

Yes

No

ASrqst

No

inc
Cld

uAld

Yes

Yes

S3

count = l - 1

No

Yes

inc Yes

Figure 13: PiSDM A’s ASM

44

The reason why count is checked twice is to reduce one clock cycle when the last

iteration is reached because if it was not done this way, then one cycle would be wasted

unnecessarily transitioning from S1 to S3, and then checking if the final output has been

requested. This way, as soon as the output is available, it Arqst is used to transition to S0 or S1.

To complete A’s design, the last step is to look at its data path in Figure 14:

SDM A

TIrqst
r

a1

b1

TIdat

Srqst

uA
vA
Sdat

AoutArqst Adat

Birqst
U1

V1
Bidat

Xrqst

X
Xdat

Borqst
U2

V2
Bodat

RegS
D Q

LD

ShiftRegP
QD

LD

pLD

C2...C32

Cld

Cpld

0

1C1

uAld

ASdat

ASrqst

TIdat

Birqst

Borqst

b1

a1

r

TIrqst
U1

V1

Bidat

X

Xrqst

Xdat

U2
V2

Bodat

AArqst AAdat

uAs

Aout

Counter

QD

inc

LD

00000

inc

count

countld

RegS
D Q

LDAld

Figure 14: PiSDM A’s Data Path

 So as previously stated, PiSDM A (and B) is not much more complicated than SDM A. It

requires a counter to keep track of how many iterations of SDM it has gone through, a mux used

to distinguish between the first iteration (step 1), and all the following iterations (step 2), so with

the help of the ASM, uAs connects C1 to the RegS that provides uA to SDM A when the state is

S0, and selects the value coming as feedback from SDM A’s output for the rest of the iterations.

45

The last hardware component used is ShiftRegP, a special shift register which also has a parallel

load option. This is used to load C2 through Cl at the same time into the data path, and then feed

the values one by one to SDM A.

There is one more difference here related to how the counter is used here, though.

Because the PiSDM protocol needs (l − 1) iterations of SDM, then for the required l bit words, (l

– 1) iterations are needed. So simply initializing the count to 0s and counting to (l – 1) works

nicely.

46

Start

reset

No

Crqst, uBs, Cpld

Yes

S0

Cdat

Yes

BSrqst

No

Yes

S0

S2

Cld
countld

BSdat
uBld

S1

No BSrqst

No

BSdat
uBld

Yes

count = lBrqst

No

Yes

Bdat
Bld

Yes

BSdat
BBrqst

No

BBdat

inc
Cld

uBld

count = l

BBdat

No no

Yes

No

BSrqst

No

inc
Cld

uBld

Yes

Yes

S3

count = l - 1

No

Yes

inc Yes

Figure 15: PiSDM B’s ASM

47

RegS
D Q

LD

ShiftRegP
QD

LD

pLD

C2...C32

Cld

Cpld

0

1C1

uBld

BSdat

BSrqst

TIdat

Aorqst

Airqst

b2

a2

I

TIrqst
U1

V1

Aodat

X

Xrqst

Xdat

U2
V2

Aidat

BBrqst BBdat

SDM B

TIrqst
I

a2

b2

TIdat

Srqst

uB
vB
Sdat

BoutBrqst Bdat

Aorqst
U1

V1
Aodat

Xrqst

X
Xdat

Airqst
U2

V2
Aidat

SDM B

TIrqst
I

a2

b2

TIdat

Srqst

uB
vB
Sdat

BoutBrqst Bdat

Aorqst
U1

V1
Aodat

Xrqst

X
Xdat

Airqst
U2

V2
Aidat

uBs

Counter

QD

inc

LD

00000

inc

count

countld

Bout
RegS

D Q

LDBld

Figure 16: PiSDM B’s Data Path

 Figure 15 and Figure 16 show B’s design. Since it was mentioned that this party’s design

is identical to A’s, then no further explanation will be made at this point about B’s ASM and data

path.

2.2.3. Protocol Complexity and ASM Throughput

PiSDM has a complexity easy to calculate simply because it queries SDM repeatedly,

giving it a complexity of O(l − 1) = O(l) in big-O notation for multiplications and additions, and

O(l × |q|) for generating randomness.

ASM throughputs are easy to calculate as well. TI has the same throughput as SDM TI

since they are the same design, and A and B query their corresponding SDM party l − 1 times, to

obtain one output so each of their throughputs is:

48

𝑇𝐶𝑃 =
1

(32)(𝑙 − 1)

This can be observed from their TCP diagrams in Figure 17. In addition, TCPmax is also

the same as A and B’s TCP by inspection of the protocol. So all parties achieve max throughput.

S0 S1

32 (l — 1)

b. A TPC diagram

S0 S1

32 (l — 1)

c. B TPC diagram

S1

32

a. TI TPC diagram

Figure 17: PiSDM TPC Diagrams

2.2.4. VHDL Implementation Details

 In this implementation, TI remains the same, and A and B use the SDM parties’

implementation in a component-based data path implementation, with an algorithmic (process)

approach to the ASM, much like it was done in SDM. The packages used are the same with the

addition of a custom package named MY_PACKAGE, which defines a useful data type, an array

basically, to describe the multitude of shares A and B receive from the user. It makes it easier for

whomever is writing the VHDL code since VHDL is a hard-typed language, meaning that inputs

and outputs must have the same data types as required by their declaration as a signal or an input

or output pin in the component’s entity. This is the case because arrays are a bit more

complicated to declare, so defining a new data type removes a lot of the kinks that come from

that.

49

To combine all the parties and test the protocol as a whole, the component PiSDM_chip is used,

where TI, PiSDM A, and PiSDM B are connected to run in the same why as in SDM_chip, using

the parties’ implementations as components and connecting them together. The component

PiSDM_chip is later used in the testbench tb_pisdm, which provides the clock, reset, input

signals to the PiSDM protocol running in VHDL. When providing the input, this testbench

follows the OCDDC, validating the inputs with each party’s data signal and requesting their

output right away, and continuing to request the outputs until both parties A and B have signaled

that their corresponding results are valid.

Quartus II’s analysis and synthesis gives the report given in Table 2. This is the result of

synthesizing PiSDM_chip, so the whole protocol. The most important detail to notice about this

report is that comparing the total number of logic elements between PiSDM_chip and SDM_chip,

the former is not much larger than the latter. This confirms the intuition of the PiSDM design,

which, analogously, is not much bigger than the secure distributed multiplication design.

Furthermore, another number to take a note of is the total number of pins (both input and output

pins), which might be alarming, but not necessarily since PiSDM is to be used by SC, which can

define its own input method to reduce the number of pins.

Table 2: PiSDM Analysis and Synthesis Report from Quartus II

Total logic elements 32,830

Total combinational functions 32,766

Dedicated logic registers 3,270

Total registers 3270

Total pins 2,122

Total virtual pins 0

Total memory bits 0

Embedded Multiplier 9-bit elements 64

Total PLLs 0

50

2.2.5. Sample Run

 PiSDM is actually somewhat generic in the sense that the number of multiplications can

be set using a VHDL generic map, so this example uses 32-bit shares. This protocol, however,

does not have the restriction of using shares that add up to bits (either 0 or 1), so because this

restriction will lead to the result almost always being 0 and being 1 only for the case when all

bits are 1, non-zero numbers larger than one are used. These numbers are all 2 except for the

first one which is 1, and the reason why these were chosen for the sample run is because the

result is easy to recognize (2
31

 = 100000000000000000000000000000002).

The testbench mentioned before is used by the ModelSim-Altera and the written macro

file to simulate the protocol. In this simulation, the values shown are reset, clk, Arqst, Ao, Adat,

Brqst, Bo, Bdat, expected, and calculated. The signals Arqst and Brqst are the request signals for

PiSDM A and B’s outputs, and Adat and Bdat are the corresponding valid data signals. Ao and

Bo show the iteration’s output, so that the last value is the final result. The other two signals

show the expected and calculated results. A partial view of the simulation is in Figure 18:

Figure 18: PiSDM Sample Run

As it can be seen, Adat and Bdat indicate the validity of the output, which can be

confirmed by comparing the expected and calculated variables, which are the same from the

moment both data signals are shown as high.

51

2.3. Secure Comparison (SC)

 The secure comparison is a protocol executed between two parties, which use additive

shares of two numbers' bits and abstract mathematics to be able to compare two integers modulo

q, and tell whether one is larger than the other without ever knowing the two numbers

themselves. This protocol is the final design presented in this thesis, and is built upon the

previous designs already discussed.

2.3.1. Original Protocol

The protocol SC utilizes PiSDM, along with some other computations that use abstract

mathematics, in order to determine whether a number Y = (yl... y1) is greater than another number

X = (xl... x1). This is a two party protocol between A and B, where each them has additive shares

of the X and Y’s bits. These shares are represented by A’s XA = (xlA... x1A), YA = (ylA... y1A), and

B’s XB = (xlB... x1B), YB = (ylB... y1B). In this way, xi = xiA + xiB and yi = yiA + yiB, where these

additive shares belong to Zq, and xi, yi belong to the binary numbers. Also, let square brackets []

enclosing a variable denote the shares of said variable. For example, [xi] represents the shares of

xi, both xiA and xiB, that is. Note that q > 2
l+2

 is a requirement stated by the authors.

The protocol, as presented by the authors, goes as stated bellow, with A having XA and

YA, and B having XB and YB, and outputting Y > X or Y ≤ X:

 Step 1: for i = 1… l, A and B compute shares [di] where di = xi – yi. Note di ∈ {0, 1, -1}.

 Step 2: for i = 1… l, A and B compute shares [ci] where ci = di + 1 + ∑ 𝑑𝑗2
𝑙−𝑗+2𝑙

𝑗=𝑖+1 .

 Step 3: A and B query SDM l – 1 times in order to compute the shares of Out =

∏ 𝑐𝑖𝐴 + 𝑐𝑖𝐵
𝑙
𝑖=1 . The first iteration computes c1c2, and then recursively multiply that by ci.

Let OutA and OutB be the shares which correspond to Out.

52

 Step 4: B sends OutB to A, so that A can compute Out = OutA + OutB. If Out = 0, then A

outputs Y > X, otherwise, A outputs Y ≤ X.

Before reading about the security of the protocol, some helpful intuition is discussed

regarding the protocol correctness. The first point to notice is the meaning of the di variables in

step 1, which can be simply consider the “difference bits”. This is used to know which bits are

different between X and Y. On the next step, the “comparison bits” are computed. These

comparison bits, starting from bit 1, compute a summation that will only be 0 when all the

remaining bits to the left are 0 (the bits which are more significant). The reason to do this is

because a bit i is relevant to the output only when the remaining significant bits are the same in X

and Y. Take bit l, for example, there are no bits that are no more significant that this one, so ci =

di + 1. In this case, ci = 0 only when di is -1, implying yi > xi. This leads to step 3. Taking

advantage of SDM, A and B can multiply all of these shares securely, and so only when one

comparison bit is 0 is when Y is greater than X, otherwise, the result will always be non-zero as

long as q > 2
l+2

. This is a requirement because of the 2
l – j +2

 in Step 2, which can overflow the

modulus q, possibly causing a false positive. Later, it will be shown that the q > 2
l+2

 restriction

can be tighten up in order to gain another bit of resolution for X and Y. For a full correctness

proof, see [1].

Now that some intuition has been given to the reasoning behind the protocol’s operations,

consider the security of SC, which can be taken into three parts. The first one is the first two

steps of the protocol, which are simply internal computations of random numbers, leaving no

issue there. The second part is step 3, where SDM is recursively called, so as it was pointed out

in the PiSDM section, there is no security risk in serially querying a protocol which is secure on

its own. This leaves the last part to be step 4, where B sends its output to A. In this case, there

53

could be a concern; however, due to the security of SDM, A cannot learn anything else from B’s

shares of a previous iteration.

2.3.2. ASM Design

 Same as before, consider first the interfaces for this protocol in Figure 19:

SC TI
Arqst

r

a1

b1

Adat

Brqst

I

a2

b2

Bdat

SC A

TIrqst
r

a1

b1

TIdat

Srqst

XA
YA
Sdat

AoutArqst Adat

Birqst
U1

V1
Bidat

Xrqst

X
Xdat

Borqst
U2

V2
Bodat

OBrqst

OB
OBdat

a. TI interface

b. A interface c. B interface

SC B

TIrqst
I

a2

b2

TIdat

Srqst

XB
YB
Sdat

BoutBrqst Bdat

Aorqst
U1

V1
Aodat

Xrqst

X
Xdat

Airqst
U2

V2
Aidat

Figure 19: SC Interfaces

The important aspect to notice here is that A and B both now receive two arrays of shares

each, and that B’s final output, signified by OB in the interface, and its corresponding request

and data signals OBrqst and OBdat, are communicated to A, who is in charge of determining the

protocol’s final result. Other than that, the interfaces for PiSDM and SC are essentially the

same.

54

Unlike PiSDM, though, secure comparison does have different designs for A and B

because they perform different kinds of computations in the protocol, although they are

somewhat similar, and TI remaining the same as SDM and PiSDM. First, consider A’s ASM in

Figure 20.

After the state machine goes through reset, A first checks if the shares XA and YA are

available and valid, then it checks if PiSDM A has requested a set of shares to perform the secure

distributed multiplication of all shares in that set. If the input shares XA and YA have not been

indicated to be valid, or if shares have not been requested by PiSDM A, then the next state is

simply S0. Otherwise, ACdat is set to high, indicating the PiSDM component that shares

provided to it are valid, and the next state is S1. Note that the computations of steps 1 and 2 are

combinational, so values for step 3 can be ready as soon as the input shares are read in. After

PiSDM A has received the necessary shares, then SC A requests the sequential product output

repeatedly in S1 using AArqst, and checking the validity of the output with AAdat. In this case, it

is known that A will remain in S1 for the several clock cycles it will take for the PiSDM protocol

to complete, which corresponds to step 3, but after AAdat is a 1, then the step is complete, so SC

A can request B’s output for step 4. To do that, A asserts OBrqst to request OutB, and verifies

whether OBdat is asserted.

At this point, two more states remain to discuss. The first one, S2, is used as a safeguard

for when OutB is not valid right away in S1. State S2 simply requests OutB until OBdat is a 1,

indicating the value is valid. Regardless of whether the state transition occurred directly from S1,

or just from S2, Bld is asserted so that A loads OutB as an input. After this value is loaded, then

A can finalize its computations and final output from step 4. So Arqst is checked to see if the

final output has been requested. This leads to the last state to discuss, S3. This state is similar to

55

S2 in the sense that it is used as a safeguard for when values are not requested as soon as they are

available, or when requested values are not yet valid. In this state, Arqst is constantly checked,

remaining in S3 until the output is requested by the user, and again, regardless of where the state

transition came from, as soon as Arqst is 1, then Adat is asserted to indicate the final output is

valid, and the state goes back to S0.

Since A and B’s ASMs are similar, now consider B’s ASM in Figure 21. It can be seen

that after the reset, B requests its shares XB and YB, and checks if PiSDM B has requested input

shares for calculate the Pi product. If both of those are true, BCdat is asserted and the ASM

transitions to S1, but otherwise, the ASM stays in S0. While at S1, the ASM requests PiSDM B’s

output constantly with BBrqst until the output is signified to be valid with a 1 in BBdat. Since B

does not perform any more computations, it loads its output OutB into a register using Bld, and

waits until the output is requested by SC A. To do that, Brqst is checked, transitioning to S2

when the value was not requested by A. When the output is requested, though, whether the ASM

is currently in S1 or S2, Bdat is asserted to let SC A know that OutB is correct, and state goes back

to S0.

56

Start

reset

No

Srqst

YesS0

Sdat

ACrqst

Yes

ACdat

Yes

No

No

AArqst

S1

OBrqst

AAdatNo

OBdat OBrqst

S2

No

Bld

OBdat

Yes

No

Arqst

S3
No

Arqst No

Yes

Bld

Yes

Adat

Yes

Yes

Figure 20: SC A’s ASM

57

Start

reset

No

Srqst

YesS0

Sdat

BCrqst

Yes

BCdat

Yes

No

No

BBrqst

S1

BBdatNo

Brqst

S2
No

Brqst No

Yes

Bdat

Yes

Yes

Figure 21: SC B’s ASM

Following to A and B’s data paths, there are only a few differences. The first one is that

on step 2, the parties must compute ci = di + 1 + ∑ 𝑑𝑗2
𝑙−𝑗+2𝑙

𝑗=𝑖+1 , where the shares for the

summation and di can be easily computed, so the only remaining computation is to add the 1. To

58

do this, an arbitrary party alone can add a 1 to their computed [di]. Party B is selected arbitrarily

to carry out this extra addition. This leads to A’s data path in Figure 22 and B’s data path in

Figure 23.

SubShares

A

B

SigmaSharesD

ACdat

ACrqst

TIdat

Birqst

Borqst

b1

a1

r

TIrqst
U1

V1

Bidat

X

Xrqst

Aout

U2
V2

Bodat

AArqst AAdat

XA

YA

RegS
D Q

LD

PiSDM A

TIrqst
r

a1

b1

TIdat

Crqst

C

Cdat

AoutArqst Adat

Birqst
U1

V1
Bidat

Xrqst

X
Xdat

Borqst
U2

V2
Bodat

AddShares

A

B

A + B mod q

A

B

Comparator

A

A = 0

OB

Bld

Xdat

Figure 22: SC A’s Data Path

59

SubShares

A

B

SigmaSharesD

AddShares1

A

B BCdat

BCrqst

TIdat

Aorqst

Airqst

b2

a2

I

TIrqst
U1

V1

Aodat

X

Xrqst

Xdat

U2
V2

Aidat

BBrqst BBdat

Bout

PiSDM B

TIrqst
I

a2

b2

TIdat

Crqst

C

Cdat

BoutBrqst Bdat

Aorqst
U1

V1
Aodat

Xrqst

X
Xdat

Airqst
U2

V2
Aidat

XB

YB

Figure 23: SC B’s Data Path

From these two figures, the important components to observer are the “Shares”

components. Subshares receives two arrays of shares, and subtracts the bottom array from the

top one, AddShares adds the shares instead of subtracting, AddShares1 adds the shares with the

extra plus 1 from step 2, and SigmaShares calculates the sigma summation also from step 2. The

output from step 2 comes from the AddShares component in A, and the AddShares1 component

in B. This result is fed directly to the corresponding PiSDM component to carry out step 3. The

remaining components are to calculate and hold the final result in step 4, which by the way, is

represented by a single bit. When Y > X, the output is a 1, or a 0 for Y ≤ X. Notice the use of

RegS for maximized throughput.

2.3.3. Protocol Complexity and ASM Throughput

 SC is an example where the complexity and the throughput vary with respect to each

other just because of the massive amounts of additions and multiplications done on top of the

usage of PiSDM. The complexity, in terms of addition and subtractions is O(l + l
2
) because l

come from PiSDM and l
2
 comes from the summation in step 2, which can be reduced if the

60

summation is performed differently. To be precise, if the summation is calculated from i = l

down to i = 1, then the previous summation value can be reused, reducing the l
2
 to simply l,

giving a final complexity of O(l). The same applies to multiplications, which are reduced as well

if the previous approach is taken to calculate ∑ 𝑑𝑗2
𝑙−𝑗+2𝑙

𝑗=𝑖+1 , giving O(l) as well. Lastly, in

terms of generating randomness, complexity is O(l × |q|) because PiSDM is queried l − 1 times.

As for ASM throughputs, all parties remain with the same TCP and TCP diagrams

because the only sequential component is any SC party is the corresponding PiSDM component,

so TI has the same throughput as PiSDM TI, and A and B have the following TCP value:

𝑇𝐶𝑃 =
1

(32)(𝑙 − 1)

This can be observed from their TCP diagrams in Figure 24:

S0 S1

32 (l — 1)

b. A TPC diagram

S0 S1

32 (l — 1)

c. B TPC diagram

S1

32

a. TI TPC diagram

Figure 24: SC TPC Diagrams

2.3.4. Optimizing l and Selecting q for the Biggest Integer Range

 The restriction q > 2
l+2

 comes from the need to use an extra 22 in step 2’s summation.

When considering the possible values for the expression for c1 = d1 + 1 + ∑ 𝑑𝑗2
𝑙−𝑗+2𝑙

𝑗=2 , which

has the most terms in the sigma sum, we have that its maximum absolute value is

61

| ∑ 𝑑𝑗2
𝑙−𝑗+2|𝑙

𝑗=2 = |𝑑22
𝑙 + 𝑑32

𝑙−1 +⋯+ 𝑑𝑙2
2| ≤ 2𝑙+1 − 4, making safe to assume a q > 2

l+2
.

However, note that a false positive can only occur when ci is some multiple of q, and given the

fact that | ∑ 𝑑𝑗2
𝑙−𝑗+2|𝑙

𝑗=2 is always even, then the only case that any ci could be a multiple of q is

when di + 1 is 1, giving the range 5 − 2𝑙+1 ≤ ci ≤ 2𝑙+1 − 3, which contains 2𝑙+2 − 7 distinct

values. Note that the actual upper bound is ci ≤ 2𝑙+1 − 2, but this occurs when di = 1, which will

result in an even-valued ci, and that will never result in 0 when the modulo-q operation is carried

out because q is an odd prime. The number of values in the range is the actual minimum

boundary (non-inclusive) for q, so that overflow in the modulo-q operation is never possible. So

now that it is known that the exact inequality is q > 2
l+2

 – 7, q (and l) can be selected, and as it

has been used before, let q = 4294967291. This selection is actually quite good because q =

4294967291 = 2
l+2

 – 5 for l = 30, giving a nearly perfect q value for a length of 30 (recall l is X

and Y’s length, or their number of bits). Having |q| = 32 is good choice by itself already because

is a power of two, which would make it easier to adapt the design for use in many processors.

Furthermore, another reason why using a 32-bit prime q is a good choice is because it is the

maximum number of bits allowed that will still permit the usage of standard VHDL packages

and operations, mainly because the modulus operation can only be performed to numbers of up

to 64-bits, and since multiplication is required, 32-bit buses are the maximum allowed for regular

variables like shares and so on. Finally, in order to have the maximum domain for which X and

Y belong to, the obvious selection is the closest prime to 2
32

-1, which is the largest value

contained in 32 bits. Finding such prime number is easy with the powerful mathematical engine

WolframAlpha [33], yielding the result q = 4294967291.

62

2.3.5. VHDL Implementation Details

 The last item to discuss before seeing SC in the works is the protocol’s implementation in

VHDL. So first off, since TI remains the same, no discussion is needed, but just keep in mind

that the implementation is done using a dataflow approach for its ASM, and component-based

for the data path. On the other hand, A and B’s implementation do have to be looked at because

even though they take the same approach as in the other protocols, the designs are different, so a

few packets that were not required in PiSDM, for example, are required here again. Mainly

IEEE.STD_LOGIC_UNSIGNED for of addition, subtraction, and multiplication of standard

logic vectors, and IEEE.NUMERIC_STD to use the unsigned numbers, as well as addition,

subtraction, and multiplication of the unsigned type. This packet is needed again because of the

SubShares, AddShares, AddShares1, and SigmaShares components, which require these basic

modular operations. Another noteworthy remark is the usage of generics and generates

statements in order to simplify the otherwise tedious implementation of the SigmaShares

component used in step 2 of the protocol. These kind of statements, represented by the “generic”

and “generate” keywords, are used to programmatically describe the components in the hardware

rather than explicitly declaring every single one of them. Another case where generics and

generates are useful is for the implementation of the shift register with parallel load used by

PiSDM (Seen Appendix A for component design and Appendix B for component VHDL

implementation). Furthermore, each party has their own entity and architecture, providing again

the abstraction and isolation required from a security application.

To test the protocol as a whole, however, the parties’ implementations are used as

components in a single chip in the sc_chip.vhd file. In this chip, TI, A, and B are wired up and

connected in the proper manner. The sc_chip is then used as a component in the testbench,

63

tb_sc.vhd. This test bench supplies inputs, clock, reset, and complies with the OCDDC. In order

to provide the inputs, two more packages are used in the testbench, which are tb_Xshares and

tb_Yshares. Since these packets include the additive shares for X and Y, respectively, a tool was

developed in C to generate these shares from the input numbers. So these packets are

automatically written by a C program which takes in the desired values for X and Y, and writes

.vhd files containing said VHDL packages. The details and code for this C program can be

found in Appendix C.

The compilation report given for analysis and synthesis for the sc_chip high-level

architecture is shown in Table 3:

Table 3: SC Analysis and Synthesis Report from Quartus II

Total logic elements 168,168

Total combinational functions 168,168

Dedicated logic registers 3,180

Total registers 3180

Total pins 3,849

Total virtual pins 0

Total memory bits 0

Embedded Multiplier 9-bit elements 408

Total PLLs 0

From this report, it is important to note the large amount of logic elements. The reason

why PiSDM, when compared to SDM, does not use that many logic elements is because the

remaining logic used by PiSDM besides SDM itself are mostly registers and a mux. In the case

of SC, though, a lot more combinational logic is added by the usage of the share computation

components SubShares, AddShares, AddShares1, and SigmaShares, with SigmaShares

representing the largest amount of circuitry added mainly because of the multiplications. After

the sigma summations hardware, SubShares is the one that requires the second largest amount of

64

logic elements because subtraction is performed as described in the SDM section because,

mathematically, the operations a – b and a + (q – b) are equivalent in mod q. Note that this is

done to remove the necessity of implementing negative numbers using 2’s complement or any

other method.

The testbench, along with a macro file to run in ModelSim-Altera are used to carry out

the simulation shown in the next section.

2.3.6. Sample Run

 Since the simulation runs on ModelSim-Altera, macro files, as they are called, are useful

to specify the parameters to be used by the waveform. In this protocol simulation, as in with

previous protocols, “waves” are added by using the name of the input/output port, or signal, to be

displayed. Other specifications may be added, like simulation run time or wave formatting

(binary, hex, unsigned, decimal, and others). For this SC sample run, the input values selected

are X = 0000000000000000000000000111112, and Y = 0000000000000000000000001111112.

Clearly, the protocols result should be that Y > X, or A outputting Ao = 1. This is reflected by the

variable expected, which shows the expected result of the protocol, and the final output Ao,

which shows the protocol’s calculated result. In the protocol run, several other variables are

shown besides de inputs X and Y, and the expected and calculated outputs. These other relevant

variables shown are clk and reset, OutA, OutB, and OutS, as in OutS = OutA + OutB from the

protocol’s 4
th

 step, and Arqst and Adat to show the protocol’s OCDDC compliance. The result is

shown in Figure 25:

65

Figure 25: SC Sample Run

66

3. PROPOSED GENERAL METHOD TO DESIGN AND IMPLEMENT

CRYPTOGRAPHIC HARDWARE

From Section 2, a pattern can be derived to generalize the process of designing and

implementing a cryptographic protocol in hardware and tie everything together into one method

(Note that the same ideas can be applied to designing and implementing schemes).

 First, identify modules which require privacy from each other. In the case of the

previously described protocol, the different modules are the parties TI, A, and B.

 Second, by studying the protocol, determine what values are internal, what the inputs are

and what the outputs of each party are. This is necessary to construct the interface and

know the variables that might be involved in the data path and ASM. Note that more

variables may be necessary, but this narrows it down.

 Third, using the I/Os found in the previous step, draw the parties’ interfaces following the

OCDDC. Note that although it is not necessary, it is encouraged that inputs that can be

read in at the same time are group together under the same request and data signals, and

the same is recommended for the outputs, because it will reduce the next state logic.

Since several inputs might be required for one computation, not grouping them will

create more states which will be required for when inputs are not available. The same

occurs with the outputs, requiring more states if those outputs are not grouped under the

same request and data signals.

 Lastly, after the different modules have been identified and the interfaces have been

clearly defined, use the ASM design approach to engineer a data path and an ASM for

each of the modules while complying with OCDDC.

67

The end design can be implemented in VHDL easily by using a component-based

approach to describe the data path, and al algorithmic approach (process-based) to describe the

ASM. Please note that ASMs can also be implemented as a dataflow, resulting in a more

economical implementation space-wise, but at the cost of bigger efforts on the engineer’s side.

68

4. RESULTS AND CONCLUSIONS

4.1. Results

 From the compilation reports in section 2, tables 1, 2, and 3, the SDM and the PiSDM

protocols can be synthesized into fairly low-end FPGAs like a few members of the Cyclone IV

family. The following models can comfortably be used for synthesizing SDM and PiSDM from

the Cyclone IV E list of devices: EP4CE40, EP4CE55, EP4CE75, and EP4CE115, and from the

Cyclone IV GX list, these devices can also be used: EP4CGX50, EP4CGX75, EP4CGX110, and

EP4CGX150 [12]. The Cyclone IV E and GX list of devices offer low power and high

functionality for the most cost-effective prices with list E, and GX offering extra features. From

the given selection of device, the lowest amount of logic elements (LEs) is 39,600, which will

suffice to synthesize the 31,315 LEs in SDM, and the 32,830 LEs in PiSDM. For the SC

protocol, a higher-capacity FPGA would be needed, like the Cyclone V GX C9 and GT D9 with

301,000 LEs [32], which is more than sufficient for the necessary 168,168 LEs to synthesize the

SC protocol.

 Regarding timing results, the following is shown, in Table 4, about the SC protocol's

Python implementations from [11]:

Table 4: SC Python Timing Results

Times in seconds SC A SC B

Run 1: 3.51677 3.51672

Run 2: 2.00958 2.00957

Run 3: 3.52951 3.52925

Average: 3.01862 3.01851

These timing results were obtained in an Intel i7 2.2 GHz processor running Windows 7

with 8 GB of RAM. Just by comparison, the SC hardware implementation runs with a 100 MHz

69

clock, and even with this slower clock, the protocol still completes in 9,865,000 ps = 9.865 µs.

This is a speed up, on average, of roughly 306,000 times, proving one of the main

accomplishments presented in this thesis.

4.2. Conclusions

Since protocols are more complicated than schemes because they involve the exchange of

messages between two or more parties, the design of cryptographic protocols in hardware has not

yet been thoroughly studied, with this being the first academic research known to the author.

Protocols, however, are more powerful than schemes and can achieve more complicated and

significant results. So for these reasons, it was the purpose of this thesis to further breach the gap

between digital hardware and cryptography by tackling this very interesting problem using the

algorithmic state machine design approach, considering each party as a separate module, creating

the abstraction and privacy desired for the aforementioned protocols of Secure Distributed

Multiplication (SDM), Secure Distributed Multiplication of a Sequence (PiSDM), and finally,

Secure comparison (SC), and all while following the One Cycle Demand Driven Convention

(OCDDC) for inter module communication purposes. In addition to using the ASM design

approach and following the OCDDC, the presented designs achieved maximum throughput with

the usage of the RegS component (a register and a mux that result in the output being ready right

away when a value is loaded), and also by taking inputs and providing the output early, which is

done with a combination of using RegS components and properly placing Moore and Mealy

outputs in the ASM. The correctness of each protocol was verified using VHDL testbenches,

ModelSim-Altera macro files, and ModelSim-Altera itself to execute the written macro files in

order to obtain “wave views” for the protocols. Also, a C project was used to generate input

70

shares for the SC protocol, which requires 60 32-bit shares, making it easier for a future engineer

to run the protocol without having to manually code each share.

From all of the designs, a general method can be deduced, and therefore, suggested for

the implementation of cryptographic protocols (and even schemes) in hardware. First, identify

modules which require privacy from each other (like the parties in a protocol). Second, by

studying the protocol, determine what values are internal, what the inputs are and what the

outputs of each party are. Third, using the I/Os found in the previous step, draw the parties’

interfaces following the OCDDC. Lastly use the ASM design approach to engineer a data path

and an ASM for each of the modules while complying with OCDDC. The end design can be

implemented in VHDL easily by using a component-based approach to describe the data path,

and algorithmic approach (process-based) to describe the ASM.

4.3. Future Work

In the future, there are a few possible ideas brought forward by the results found in this

thesis that are worth exploring. First of all, as the number of LEs needed by the SC protocol is

significant, and not accessible to the lower-end FPGAs, the design can be reduced in size if the

ASM charts are expressed as output and next state logic equations as opposed to the ASM

algorithms described by the charts. Another simplification is the use of logical left shift instead

of multiplication by powers of 2 in the SigmaShares component. The effort is in the hope that

the number of LEs can be brought below the 150,000 count, so that other members of the

Cyclone V family and even some in the Cyclone IV family can synthesize components that large.

Secondly, the next logical step is to remove the trusted initializer. Where the ASM

design approach with OCDDC helps compartmentalize the parties and provide extra privacy with

clock independence between the parties. Trusted initializers have been shown to be removed

71

using the Paillier cryptosystem, or with oblivious transfer, with Paillier being the simpler to

implement solution in hardware, but with high key sizes, and oblivious transfer being harder to

implement, but with a small key size. Both of these approaches are worthy of exploring, and

would both be significant results in the field of cryptography on their own, with the added result

of being able to eliminate TIs in any predistributed multiplication tuples scenario.

Lastly, the design of cryptographic protocols poses an interesting question. How can one

be certain that any cryptographic protocol is fully correct in its execution? In other words, how

is a design like this tested? While this thesis uses case scenarios for testing, a much more

sophisticated approach, which is outside the scope of the thesis, is to use formal verification. In

fact, formal verification of cryptographic protocols is scarce in the literature, making it a very

interesting problem which could have tons of potential benefits to the world of security itself by

eliminating bugs and potential security weaknesses.

72

5. WORKS CITED

[1] B. David, R. Dowsley, R. Katti, and A. Nascimento, “Efficient Unconditionally Secure

Comparison and Private Preserving Machine Learning Classification Protocols,” The

9
th

 Int Conference on Provable Security, Kanazawa, Japan, 2015.

[2] M. Shand, and J. Vuillemin, “Fast Implementations of RSA Cryptography,” Proc. of the

11th Symp. On Comput. Arithmetic, pp. 252-259, 1993.

[3] S. Dominikus, “A Hardware Implementation of MD4-Family Hash Algorithms,” 9th Int.

Conference on Electronics, Circuits and Systems, Vol 3, pp. 1143-1146, 2002.

[4] P. Kitsos, G. Kostopoulos, N. Sklavos, and O. Koufopavlou, “Hardware Implementation of

the RC4 Stream Cipher,” 46th Midwest Symp. On Circuits and Systems, Vol. 3, pp. 1363-

1366, 2003.

[5] A. Satoh, S. Morioka, K. Takano, and S. Munetoh, “A Compact Rijndael Hardware

Architecture with S-Box Optimization,” Lecture Notes in Comput. Science, Springer, Vol.

2248, pp. 239-254, 2001.

[6] C. Lu, and S. Tseng, “Integrated Design of AES (Advanced Encryption Standard)

Encrypter and Decrypter,” Proc. IEEE Int. Conference on Application-Specific Systems,

Architectures and Processors, pp. 277-285, 2002.

[7] S. Mangard, M. Aigner, and S. Dominikus, “A Highly Regular and Scalable AES

Hardware Architecture,” IEEE Trans. Comput., Vol. 52, no. 4, pp. 483-491, 2003.

[8] S. A. Manavski, “CUDA Compatible GPU as an Efficient Hardware Accelerator for AES

Cryptography,” IEEE Int. Conference on Signal Processing and Commun., pp. 65-68,

2007.

[9] E. Wenger, and M. Hutter, “A Hardware Processor Supporting Elliptic Curve

Cryptography for Less Than 9 kGEs,” Lecture Notes in Comput. Science, Springer, Vol.

7079, pp. 182-198, 2011.

[10] D. Genkin, Y. Ishai, M. Prabhakaran, A. Sahai, and E. Tromer, “Circuits Resilient to

Additive Attacks with Applications to Secure Computation,” Proc. of the 46th Annu. ACM

Symp. On Theory of Computing, pp. 495-504, 2014.

[11] C. A. Nascimento, K. Thompson. Personal Comunication: e-mail.

[12] Altera Corporation, “Cyclone IV FPGA Family Overview,” Table 1-1,

https://www.altera.com/en_US/pdfs/literature/hb/cyclone-iv/cyiv-51001.pdf, 2014.

[13] D. Beaver, “Efficient Multiparty Protocols Using Circuit Randomization,” Lecture Notes

in Comput. Science, Springer, Vol. 576, pp. 420-432, 1992.

[14] Andrew Sheehy, Reuters Sept 4th, 2013. http://www.reuters.com/article/generator-

research-idUSnBw046267a+100+BSW20130904. Seen on Jan 21st 2016.

[15] TekCarta. 2012. http://www.nakono.com/tekcarta/databank/full/28/. Seen on Jan 21st

2016.

[16] G. Mealy, “A Method for Synthesizing Sequential Circuits,” Bell System Technical

Journal 34: 1045–1079, Sept. 1955.

[17] E. Moore, “Gedanken-experiments on Sequential Machines”. Automata Studies, Annals of

Mathematical Studies, Princeton, N.J.: Princeton University Press, 34: 129–153, 1956.

[18] C. Clare, “Designing Logic Systems Using State Machines,” McGraw-Hill 1973, ISBN 0-

07-011120-0.

[19] D. Brown “A State-Machine Synthesizer—SMS”. In Proceedings of the 18th Design

Automation Conference, IEEE Press, Piscataway, NJ, USA, 301-305, 1981.

73

[20] D. Snyers, A. Thayse, “Algorithmic State Machine Design and Automatic Theorem

Proving: Two Dual Approaches to the Same Activity,” in Computers, IEEE Transactions

on, vol.C-35, no.10, pp.853-861, Oct. 1986.

[21] Forrest, and M. D. Edwards, “The Automatic Generation of Programmable Logic Arrays

from Algorithmic State Machine Descriptions,” Proc. of VLSI. Vol. 83, 1983.

[22] S. Smith, and J. Di, “Designing asynchronous circuits using NULL convention logic

(NCL),” Synthesis Lectures on Digital Circuits and Systems4.1: 1-96, 2009.

[23] R. Gennaro, M. O. Rabin, and T. Rabin, “Simplified VSS and fast-track multiparty

computations with applications to threshold cryptography,” Proceedings of the 17th ACM

Symposium on Principles of Distributed Computing (PODC98), pp. 101111, ACM Press,

1998.

[24] R. Cramer, I. Damgård, R. de Haan, “Atomic Secure Multi-Party Multiplication with Low

Communication,” Advances in Cryptology - EUROCRYPT 2007, Lecture Notes in

Computer Science Volume 4515, 2007, pp 329-346, 2007.

[25] P. Lory, “Reducing the complexity in the distributed multiplication protocol of two

polynomially shared values,” In Proceedings of the 21st Int Conference on Advanced

Information Networking and Applications (AINA'2007), volume 1, pages 404-408, IEEE

Computer Society, 2007.

[26] S. Adi, “How to share a secret” Commun. ACM 22, 11 (November 1979), 612-613.

DOI=http://dx.doi.org/10.1145/359168.359176.

[27] P. Lory, “Secure Distributed Multiplication of Two Polynomially Shared Values:

Enhancing the Efficiency of the Protocol,” Emerging Security Information, Systems and

Technologies, 2009. SECURWARE '09. Third International Conference on, vol., no.,

pp.286,291, 18-23 June 2009. doi: 10.1109/SECURWARE.2009.51.

[28] P. Bogetoft, D. L. Christensen, I. Damgård, M. Geisler, T. Jakobsen, M. Krøigaard, ... &

M. Schwartzbach, “Secure multiparty computation goes live,” Financial Cryptography and

Data Security (pp. 325-343). Springer Berlin Heidelberg, 2009.

[29] D. D. Givone, “Digital principles and design,” Dubuque: McGraw-Hill, 2003.

http://catalog.hathitrust.org/api/volumes/oclc/49312747.html.

[30] B. Preneel, and T. Takagi, “Cryptographic Hardware and Embedded Systems,” CHES

2011: 13th International Workshop, Nara, Japan, September 28--October 1, 2011,

Proceedings. Vol. 6917. Springer, 2011.

[31] S. Mangard, and F. Standaert, “Cryptographic hardware and embedded systems,” CHES

2010, 12th international workshop, Santa Barbara, CA, USA, 2010.

[32] Altera Corporation, “Cyclone V Device Overview,” Table 1-1,

https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/cyclone-

v/cv_51001.pdf.

[33] WolframAlpha. WolframAlpha LLC, a Wolfram Research Company, wolframalpha.com.

74

APPENDIX A. COMPONENT DESIGN

This appendix focuses on the design of all the different components used throughout the

protocols’ design. Note that addition, subtraction, multiplication, and modulus are operations

natively supported by VHDL, and are, therefore, not explained any further. Other components

like muxes, counters, and registers are considered to be well-known, so they are assumed to be

understood by the reader.

0

1

Register
D Q

LD

D

LD

Q

RegS
D Q

LD

a. Interface

b. Functionality

Figure A - 1: RegS Component

Figure A - 2: Modular Addition Component

75

Figure A - 3: Modular Subtraction Component

Figure A - 4: Modular Multiplication Component

Figure A - 5: Shift Register with Parallel Load Component

76

AddShares

A

B

a. Interface

A + B mod q

A

B

A + B mod q

A

B

A + B mod q

A

B

...

C

A(1)

B(1)

A(2)

B(2)

A(l)

B(l)

b. Functionality

C(1)

C(2)

C(l)

Figure A - 6: AddShares Component

a. Interface

...

A(1)

B(1)

A(2)

B(2)

A(l)

B(l)

b. Functionality

C(1)

C(2)

C(l)

A - B mod q

A

B

A - B mod q

A

B

A - B mod q

A

B

AddShares1

A

B

C

A + B

A

B

A + B

A

B

A + B
A

B1

1

1

Figure A - 7: AddShares1 Component

77

a. Interface
...

A(1)

B(1)

A(2)

B(2)

A(l)

B(l)

b. Functionality

SubShares

A

B

C

C(1)

C(2)

C(l)

A - B mod q

A

B

A - B mod q

A

B

A - B mod q

A

B

Figure A - 8: SubShares Component

SigmaShares D DS

a. Interface

A x B mod q

A

B

A + B mod q

A

B

A x B mod q

A

B

DS(31)

D(32)

22

D(31)

23

DS(30)

A x B mod q

A

B

D(31)

24

...

...
A + B mod q

A

B

A + B mod q

A

B

A x B mod q

A

B

A x B mod q

A

B2

DS(2)

DS(1)

D(2)

231

b. Functionality

Figure A - 9: SigmaShares Component

78

APPENDIX B. VHDL CODE

Appendix B contains all the VHDL code used in this thesis, including components’ code,

ASM designs, chips, and testbenches.

 Components.vhd:

library ieee;

use ieee.std_logic_1164.all;

entity and_5 is

 port(A: in std_logic_vector(4 downto 0);

 F: out std_logic);

end;

architecture beh of and_5 is

begin

 F <= A(4) and A(3) and A(2) and A(1) and A(0);

end;

library ieee;

use ieee.std_logic_1164.all;

entity mux5 is

 port(A, B: in std_logic_vector(4 downto 0);

 S: in std_logic;

 F: out std_logic_vector(4 downto 0));

end;

architecture beh of mux5 is

begin

 sel: process(A, B, S)

 begin

 if S = '1' then

 F <= A;

 else

 F <= B;

 end if;

 end process;

end;

library ieee;

use ieee.std_logic_1164.all;

entity mux32 is

 port(A, B: in std_logic_vector(31 downto 0);

 S: in std_logic;

 F: out std_logic_vector(31 downto 0));

end;

79

architecture beh of mux32 is

begin

 sel: process(A, B, S)

 begin

 if S = '1' then

 F <= A;

 else

 F <= B;

 end if;

 end process;

end;

library ieee;

use ieee.std_logic_1164.all;

entity reg5 is

 port(X: in std_logic_vector(4 downto 0);

 clk, LD: in std_logic;

 F: out std_logic_vector(4 downto 0));

end;

architecture beh of reg5 is

begin

 reg: process(X, clk, LD)

 begin

 if clk'event and clk = '1' then

 if LD = '1' then

 F <= X;

 end if;

 end if;

 end process;

end;

library ieee;

use ieee.std_logic_1164.all;

entity reg32 is

 port(X: in std_logic_vector(31 downto 0);

 clk, LD: in std_logic;

 F: out std_logic_vector(31 downto 0));

end;

architecture beh of reg32 is

begin

 reg: process(X, clk, LD)

 begin

 if clk'event and clk = '1' then

 if LD = '1' then

 F <= X;

 end if;

 end if;

 end process;

end;

80

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

entity count32 is

 port(X: in std_logic_vector(4 downto 0);

 inc, clk, load: in std_logic;

 count: out std_logic_vector(4 downto 0));

end;

architecture beh of count32 is

 component reg5

 port(X: in std_logic_vector(4 downto 0);

 clk, LD: in std_logic;

 F: out std_logic_vector(4 downto 0));

 end component;

 component mux5

 port(A, B: in std_logic_vector(4 downto 0);

 S: in std_logic;

 F: out std_logic_vector(4 downto 0));

 end component;

 signal X_temp, F_inc, F_temp: std_logic_vector(4 downto 0);

begin

 mux: mux5 port map(X, F_inc, load, X_temp);

 reg: reg5 port map(X_temp, clk, '1', F_temp);

 count <= F_temp;

 F_inc <= F_temp + inc;

end;

-- RegSelect

library ieee;

use ieee.std_logic_1164.all;

entity RegS is

 port(D: in std_logic_vector(31 downto 0);

 clk, load: in std_logic;

 Q: out std_logic_vector(31 downto 0));

end;

architecture arch of RegS is

 component reg32

 port(X: in std_logic_vector(31 downto 0);

 clk, LD: in std_logic;

 F: out std_logic_vector(31 downto 0));

 end component;

 component mux32

 port(A, B: in std_logic_vector(31 downto 0);

81

 S: in std_logic;

 F: out std_logic_vector(31 downto 0));

 end component;

 signal Q_0: std_logic_vector(31 downto 0);

begin

 r: reg32 port map(D, clk, load, Q_0);

 m: mux32 port map(D, Q_0, load, Q);

end;

-- Shift register with parallel load

library ieee;

use ieee.std_logic_1164.all;

use work.MY_PACKAGE.all;

entity shift_reg_parallel is

 generic (N: integer := 31);

 port(C: in DATA_ARRAY(1 to N);

 clk, LD, pLD: in std_logic;

 Q: out std_logic_vector(31 downto 0));

end;

architecture arch of shift_reg_parallel is

 component RegS

 port(D: in std_logic_vector(31 downto 0);

 clk, load: in std_logic;

 Q: out std_logic_vector(31 downto 0));

 end component;

 component reg32

 port(X: in std_logic_vector(31 downto 0);

 clk, LD: in std_logic;

 F: out std_logic_vector(31 downto 0));

 end component;

 component mux32

 port(A, B: in std_logic_vector(31 downto 0);

 S: in std_logic;

 F: out std_logic_vector(31 downto 0));

 end component;

 signal reg_in: DATA_ARRAY(1 to N-1);

 signal reg_out: DATA_ARRAY(2 to N);

begin

 Gen_regs:

 for I in 1 to N generate

 first:

 if I = 1 generate

 reg_first: RegS port map(reg_in(I), clk, LD, Q);

 end generate; -- first;

 middle:

82

 if I > 1 and I < N generate

 reg_middle: reg32 port map(reg_in(I), clk, LD, reg_out(I));

 end generate; -- middle;

 last:

 if I = N generate

 reg_last: reg32 port map(C(N), clk, LD, reg_out(I));

 end generate; -- last;

 end generate; -- Gen_regs

 Gen_muxs:

 for I in 1 to N-1 generate

 muxes: mux32 port map(C(I), reg_out(I+1), pLD, reg_in(I));

 end generate; -- Gen_muxs;

end;

-- SubShares

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

use ieee.numeric_std.all;

use work.MY_PACKAGE.all;

entity SubShares is

 generic (N: integer := 30);

 port(A, B: in DATA_ARRAY(1 to N);

 C: out DATA_ARRAY(1 to N));

end;

architecture arch of SubShares is

 signal q: unsigned(31 downto 0);

begin

 q <= "11111111111111111111111111111011";

 Sub: process(A, B, q)

 begin

 for I in 1 to N loop

 C(I) <= std_logic_vector((('0'&unsigned(A(I))) + ('0'&(q -

unsigned(B(I))))) mod q);

 end loop;

 end process;

end;

-- AddShares

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

use ieee.numeric_std.all;

use work.MY_PACKAGE.all;

entity AddShares is

 generic (N: integer := 30);

 port(A, B: in DATA_ARRAY(1 to N);

 C: out DATA_ARRAY(1 to N));

end;

83

architecture arch of AddShares is

 signal q: unsigned(31 downto 0);

begin

 q <= "11111111111111111111111111111011";

 Add: process(A, B, q)

 begin

 for I in 1 to N loop

 C(I) <= std_logic_vector((('0'&unsigned(A(I))) + (

'0'&unsigned(B(I)))) mod q);

 end loop;

 end process;

end;

-- AddShares1

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

use ieee.numeric_std.all;

use work.MY_PACKAGE.all;

entity AddShares1 is

 generic (N: integer := 30);

 port(A, B: in DATA_ARRAY(1 to N);

 C: out DATA_ARRAY(1 to N));

end;

architecture arch of AddShares1 is

 signal q: unsigned(31 downto 0);

begin

 q <= "11111111111111111111111111111011";

 Add: process(A, B, q)

 constant one: unsigned(N downto 0) := (0 => '1', others => '0');

 begin

 for I in 1 to N loop

 C(I) <= std_logic_vector((one + ('0'&unsigned(A(I))) +

('0'&unsigned(B(I)))) mod q);

 end loop;

 end process;

end;

-- Addq

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

use ieee.numeric_std.all;

entity Addq is

 port(A, B: in std_logic_vector(31 downto 0);

 C: out std_logic_vector(31 downto 0));

end;

architecture arch of Addq is

 signal q: unsigned(31 downto 0);

begin

84

 q <= "11111111111111111111111111111011";

 C <= std_logic_vector((('0'&unsigned(A)) + ('0'&unsigned(B))) mod q

);

end;

-- Multq

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

use ieee.numeric_std.all;

entity Multq is

 port(A, B: in std_logic_vector(31 downto 0);

 C: out std_logic_vector(31 downto 0));

end;

architecture arch of Multq is

 signal q: unsigned(31 downto 0);

begin

 q <= "11111111111111111111111111111011";

 C <= std_logic_vector((unsigned(A) * unsigned(B)) mod q);

end;

-- SigmaShares

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

use ieee.numeric_std.all;

use work.MY_PACKAGE.all;

entity SigmaShares is

 generic (N: integer := 30);

 port(D: in DATA_ARRAY(1 to N);

 DS: out DATA_ARRAY(1 to N));

end;

architecture arch of SigmaShares is

 component Multq

 port(A, B: in std_logic_vector(31 downto 0);

 C: out std_logic_vector(31 downto 0));

 end component;

 component Addq

 port(A, B: in std_logic_vector(31 downto 0);

 C: out std_logic_vector(31 downto 0));

 end component;

 signal SD: DATA_ARRAY(1 to N);

 signal M: DATA_ARRAY(1 to N);

 signal twos: DATA_ARRAY(2 to N);

 signal two: std_logic_vector(31 downto 0);

begin

 DS <= SD;

 two <= (1 => '1', others => '0');

85

 SD(N) <= (others => '0');

 twos(2) <= (2 => '1', others => '0');

 sigma_gen:

 for i in N-1 downto 1 generate

 first:

 if i = N-1 generate

 DS31: Multq port map(D(N), twos(2), SD(N-1));

 end generate; -- first

 middle:

 if i > 1 and i < N-1 generate

 twos(N+1-i) <= (twos(N-i)(30 downto 0)) & '0';

 Mult: Multq port map(D(i+1), twos(N+1-i), M(i+1));

 Add: Addq port map(SD(i+1), M(i+1), SD(i));

 end generate; -- middle

 last:

 if i = 1 generate

 Mult1: Multq port map(D(2), twos(N-1), M(2));

 Mult2: Multq port map(M(2), two, M(1));

 Add: Addq port map(SD(2), M(1), SD(1));

 end generate; -- last

 end generate; -- sigma_gen

end;

-- Comparator

library ieee;

use ieee.std_logic_1164.all;

entity Comparator is

 port(A: in std_logic_vector(31 downto 0);

 Aeq0: out std_logic);

end;

architecture behavioral of Comparator is

begin

 compare: process(A)

 constant zero: std_logic_vector(A'length-1 downto 0) := (others

=> '0');

 begin

 if A = zero then

 Aeq0 <= '1';

 else

 Aeq0 <= '0';

 end if;

 end process;

end;

 PRBS.vhd:

86

-- Mux

Library IEEE;

use IEEE.std_logic_1164.all;

entity mux2 is

 port(S: in std_logic;

 X0, X1: in std_logic_vector(4 downto 0);

 F: out std_logic_vector(4 downto 0));

end;

architecture BEHAVIOR of mux2 is

begin

 mux_behav: process(S, X0, X1)

 begin

 if S = '0' then

 F <= X0;

 else

 F <= X1;

 end if;

 end process;

end BEHAVIOR;

-- reg

Library IEEE;

use IEEE.std_logic_1164.all;

entity reg is

 port(load: in std_logic;

 D: in std_logic_vector(4 downto 0);

 clk: in STD_LOGIC;

 Q: out std_logic_vector(4 downto 0));

end;

architecture BEHAVIOR of reg is

begin

 reg_behav: process

 begin

 wait until clk'event and clk = '1';

 if load = '1' then

 Q <= D;

 else

 null;

 end if;

 end process;

end BEHAVIOR;

-- prbs_counter

Library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_unsigned.all;

use ieee.numeric_std.all;

entity prbs_counter is

 port(load: in std_logic; inc: in std_logic;

 D: in std_logic_vector(4 downto 0);

87

 clk: in STD_LOGIC;

 Q: out natural);

end;

architecture BEHAVIOR of prbs_counter is

 component reg is

 port(load: in std_logic;

 D: in std_logic_vector(4 downto 0);

 clk: in STD_LOGIC;

 Q: out std_logic_vector(4 downto 0));

 end component;

 component mux2 is

 port(S: in std_logic;

 X0, X1: in std_logic_vector(4 downto 0);

 F: out std_logic_vector(4 downto 0));

 end component;

 component bit_addressing

 port(std_in: in std_logic_vector(4 downto 0);

 natural_out: out natural);

 end component;

 signal D_temp, Q_temp, Q_inc: std_logic_vector(4 downto 0);

begin

 mux: mux2 port map(load, Q_inc, D, D_temp);

 regist: reg port map('1', D_temp, clk, Q_temp);

 Q <= natural(conv_integer(Q_temp));

 Q_inc <= Q_temp + inc;

end BEHAVIOR;

-- serial prbs (linear feedback shift register)

Library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_unsigned.all;

use ieee.numeric_std.all;

entity prbs is

 generic(

 BITS : natural := 32);

 port(

 clk : in std_logic;

 reset : in std_logic;

 seed : in std_logic_vector(BITS-1 downto 0);

 prbs_out : out unsigned(BITS-1 downto 0);

 count : in natural);

end;

architecture behavioral of prbs is

88

 signal lfsr: std_logic_vector(BITS-1 downto 0); -- Flip-flops with LFSR

state, MSB = BITS

 signal outcount: natural;

 signal out_temp: unsigned(BITS-1 downto 0);

 function feedback(slave : std_logic_vector) return std_logic is --

Function to determine maximum length LFSR generation (XOR taps found online)

 begin

 case slave'length is

 when 3 => return slave(3) xor slave(2);

 when 4 => return slave(4) xor slave(3);

 when 6 => return slave(6) xor slave(2);

 when 8 => return slave(8) xor slave(6) xor slave(5) xor

slave(4);

 when 16 => return slave(16) xor slave(15) xor slave(13) xor

slave(4);

 when 32 => return slave(31) xor slave(21) xor slave(1) xor

slave(0);

 when others => report "feedback function not defined for slave'length

as " & integer'image(slave'length)

 severity FAILURE;

 return 'X';

 end case;

 end function;

begin

 linear_feedback: process (clk, reset, seed) -- watch list for recomputation

of output pattern

 begin

 if clk'event and clk = '1' then -- triggers pattern step on clock rising

edge

 if reset = '1' then -- Asynchronous reset

 lfsr <= seed; -- Reset assigns seed value to full lfsr

signal

 else

 if unsigned(lfsr) /= 0 then

 lfsr <= lfsr(lfsr'left - 1 downto lfsr'right) &

feedback(lfsr); -- Left shift with feedback in, can change order of function

and lfsr concat

 -- to perform right shift of values instead

 end if;

 end if;

 end if;

 end process;

 prbs_out(count) <= lfsr(BITS-1);

end behavioral;

-- 32-bits prbs generator

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity generator is

 port(clk, reset: in std_logic;

 seed: in std_logic_vector(31 downto 0);

89

 prbs_out: out unsigned(31 downto 0));

end;

architecture arch of generator is

 component prbs

 generic(

 BITS: natural);

 port(

 clk : in std_logic;

 reset : in std_logic;

 seed : in std_logic_vector(BITS-1 downto 0);

 prbs_out : out unsigned(BITS-1 downto 0);

 count : in natural);

 end component;

 component counter

 port(load: in std_logic; inc: in std_logic;

 D: in std_logic_vector(4 downto 0);

 clk: in STD_LOGIC;

 Q: out natural);

 end component;

 signal out_temp: unsigned(31 downto 0);

 signal count: natural;

begin

 G: prbs

 generic map (32)

 port map (clk, reset, seed, prbs_out, count);

end arch;

 MY_PACKAGE.vhd:

Library ieee;

use ieee.std_logic_1164.all;

package MY_PACKAGE is

 type DATA_ARRAY is array (natural range<>) of std_logic_vector(31

downto 0);

end MY_PACKAGE;

 SDM_TI.vhd, PiSDM_TI.vhd, SC_TI.vhd:

-- Trusted Initializer Algorithmic State Machine

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

use ieee.numeric_std.all;

entity SDM_TI_ASM is

 port(clk, reset: in std_logic;

90

 Arqst: in std_logic;

 r, a1, b1: out std_logic_vector(31 downto 0);

 Adat: out std_logic;

 Brqst: in std_logic;

 I, a2, b2: out std_logic_vector(31 downto 0);

 Bdat: out std_logic);

end;

architecture arch of SDM_TI_ASM is

 signal q, r_temp, a1_temp, a2_temp, b1_temp, b2_temp, I_temp, a1b2,

a2b1: unsigned(31 downto 0);

 signal r_1, a1_1, b1_1, a2_1, b2_1, I_1: std_logic_vector(31 downto 0);

 signal count: natural;

 signal count_std: std_logic_vector(4 downto 0);

 signal D, Qs, C31, inc, Ald, Bld: std_logic;

 component prbs_counter

 port(load: in std_logic; inc: in std_logic;

 D: in std_logic_vector(4 downto 0);

 clk: in STD_LOGIC;

 Q: out natural);

 end component;

 component prbs

 generic(

 BITS: natural);

 port(

 clk : in std_logic;

 reset : in std_logic;

 seed : in std_logic_vector(BITS downto 1);

 prbs_out : out unsigned(BITS downto 1);

 count : in natural);

 end component;

 component RegS

 port(D: in std_logic_vector(31 downto 0);

 clk, load: in std_logic;

 Q: out std_logic_vector(31 downto 0));

 end component;

begin

 -- Data Path

 q <= "11111111111111111111111111111011";

 -- Counter

 TI_counter: prbs_counter port map(reset, inc, "00000", clk,

count);

 -- PRBS generators

 r_gen: prbs generic map (32)

 port map(clk, reset,

"00100000101111101100101001110011", r_temp, count);

 a1_gen: prbs generic map (32)

 port map(clk, reset,

"01110001100111101111100000011100", a1_temp, count);

 b1_gen: prbs generic map (32)

91

 port map(clk, reset,

"01010110011111000111011011101110", b1_temp, count);

 a2_gen: prbs generic map (32)

 port map(clk, reset,

"01101000111110101000110010110100", a2_temp, count);

 b2_gen: prbs generic map (32)

 port map(clk, reset,

"00111011000111110000011000110000", b2_temp, count);

 -- Calculate r_1, a1_1, b1_1, a2_1, b2_1, I_1

 r_1 <= std_logic_vector(r_temp mod q);

 a1_1 <= std_logic_vector(a1_temp mod q);

 b1_1 <= std_logic_vector(b1_temp mod q);

 a1b2 <= (a1_temp*b2_temp) mod q;

 a2b1 <= (a2_temp*b1_temp) mod q;

 I_temp <= (("00"&a1b2) + ("00"&a2b1) + ("00"&(q - r_temp))) mod

q;

 I_1 <= std_logic_vector(I_temp);

 a2_1 <= std_logic_vector(a2_temp mod q);

 b2_1 <= std_logic_vector(b2_temp mod q);

 -- Registers

 r_reg: regS port map(r_1, clk, Ald, r);

 a1_reg: regS port map(a1_1, clk, Ald, a1);

 b1_reg: regS port map(b1_1, clk, Ald, b1);

 I_reg: regS port map(I_1, clk, Bld, I);

 a2_reg: regS port map(a2_1, clk, Bld, a2);

 b2_reg: regS port map(b2_1, clk, Bld, b2);

 -- ASM

 count_std <= std_logic_vector(to_unsigned(count, 5));

 C31 <= count_std(0) and count_std(1) and count_std(2) and

count_std(3) and count_std(4);

 D <= (Qs or C31) and (Arqst nand Brqst);

 Ald <= (not Qs) and C31;

 Bld <= Ald;

 inc <= ((not Qs) and (not C31)) or (Arqst and Brqst);

 Adat <= (Qs or C31) and Arqst and Brqst;

 Bdat <= (Qs or C31) and Arqst and Brqst;

 -- DFF (State)

 sync: process

 begin

 wait until clk'event and clk = '1';

 if reset = '1' then

 Qs <= '0';

 else

 Qs <= D;

 end if;

 end process;

end;

-- Pi product TI Algorithmic State Machine

library ieee;

92

use ieee.std_logic_1164.all;

entity PiSDM_TI_ASM is

 port(clk, reset: in std_logic;

 Arqst: in std_logic;

 r, a1, b1: out std_logic_vector(31 downto 0);

 Adat: out std_logic;

 Brqst: in std_logic;

 I, a2, b2: out std_logic_vector(31 downto 0);

 Bdat: out std_logic);

end;

architecture structutal of PiSDM_TI_ASM is

 component SDM_TI_ASM

 port(clk, reset: in std_logic;

 Arqst: in std_logic;

 r, a1, b1: out std_logic_vector(31 downto 0);

 Adat: out std_logic;

 Brqst: in std_logic;

 I, a2, b2: out std_logic_vector(31 downto 0);

 Bdat: out std_logic);

 end component;

begin

 TI: SDM_TI_ASM

 port map(clk, reset,

 Arqst, r, a1, b1, Adat,

 Brqst, I, a2, b2, Bdat);

end;

-- SC TI Algorithmic State Machine

library ieee;

use ieee.std_logic_1164.all;

entity SC_TI_ASM is

 port(clk, reset: in std_logic;

 Arqst: in std_logic;

 r, a1, b1: out std_logic_vector(31 downto 0);

 Adat: out std_logic;

 Brqst: in std_logic;

 I, a2, b2: out std_logic_vector(31 downto 0);

 Bdat: out std_logic);

end;

architecture structutal of SC_TI_ASM is

 component PiSDM_TI_ASM

 port(clk, reset: in std_logic;

 Arqst: in std_logic;

 r, a1, b1: out std_logic_vector(31 downto 0);

 Adat: out std_logic;

 Brqst: in std_logic;

 I, a2, b2: out std_logic_vector(31 downto 0);

 Bdat: out std_logic);

 end component;

begin

 TI: PiSDM_TI_ASM

93

 port map(clk, reset,

 Arqst, r, a1, b1, Adat,

 Brqst, I, a2, b2, Bdat);

end;

 SDM_A.vhd, PiSDM_A.vhd, SC_A.vhd:

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

use ieee.numeric_std.all;

entity SDM_A is

 port(clk, reset: in std_logic;

 r, a1, b1, uA, vA: in std_logic_vector(31 downto 0); -- TI

input and additive shares

 U1, V1: out std_logic_vector(31 downto 0); -- Step 1 output

to B

 U2, V2: in std_logic_vector(31 downto 0); -- Step 2 input

from B

 t: in std_logic_vector(31 downto 0);

 X: out std_logic_vector(31 downto 0); -- Step 3 output to B

 Aout: out std_logic_vector(31 downto 0));

end;

architecture behavioral of SDM_A is

 signal q, tu: unsigned(31 downto 0);

 component prbs32bits

 port(clk, reset: in std_logic;

 seed: in std_logic_vector(31 downto 0);

 prbs_out: out unsigned(31 downto 0));

 end component;

begin

 q <= "11111111111111111111111111111011";

 U1 <= std_logic_vector((('0'&unsigned(uA)) + ('0'&(q - unsigned(a1))))

mod q);

 V1 <= std_logic_vector((('0'&unsigned(vA)) + ('0'&(q - unsigned(b1))))

mod q);

 tu <= unsigned(t);

 X <= std_logic_vector(((("00"&(unsigned(uA*vA) mod q)) +

("00"&(unsigned(V2*a1) mod q)) + ("00"&(unsigned(U2*b1) mod q)) + ("00"&(q -

tu)))) mod q);

 Aout <= std_logic_vector(unsigned(('0'&r) + std_logic_vector('0'&tu))

mod q);

end behavioral;

94

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity SDM_A_ASM is

 port(clk, reset: in std_logic;

 TIrqst: out std_logic; -- TI request: randomness

 r, a1, b1: in std_logic_vector(31 downto 0); -- randomness

 TIdat: in std_logic; -- TI data valid

 Srqst: out std_logic; -- Shares request

 uA, vA: in std_logic_vector(31 downto 0); -- Shares

 Sdat: in std_logic; -- Shares valid

 Birqst: in std_logic; -- Step1 data request from B

 U1, V1: out std_logic_vector(31 downto 0); -- Step1 output

to B

 Bidat: out std_logic; -- Step1 data valid to B

 Borqst: out std_logic; -- Step2 data request to B

 U2, V2: in std_logic_vector(31 downto 0); -- Step2 input

from B

 Bodat: in std_logic; -- Step2 data valid from B

 Xrqst: in std_logic; -- Step3 data request from B

 X: out std_logic_vector(31 downto 0); -- Step3 output to B

 Xdat: out std_logic; -- Step3 data valid to B

 Arqst: in std_logic; -- Step4 request for output

 Aout: out std_logic_vector(31 downto 0); -- Party A output

 Adat: out std_logic); -- Step4 output valid

end;

architecture arch of SDM_A_ASM is

 component RegS

 port(D: in std_logic_vector(31 downto 0);

 clk, load: in std_logic;

 Q: out std_logic_vector(31 downto 0));

 end component;

 component prbs_counter

 port(load: in std_logic; inc: in std_logic;

 D: in std_logic_vector(4 downto 0);

 clk: in STD_LOGIC;

 Q: out natural);

 end component;

 component prbs

 generic(

 BITS : natural := 32);

 port(

 clk : in std_logic;

 reset : in std_logic;

 seed : in std_logic_vector(BITS-1 downto 0);

 prbs_out : out unsigned(BITS-1 downto 0);

 count : in natural);

 end component;

 component SDM_A

 port(clk, reset: in std_logic;

95

 r, a1, b1, uA, vA: in std_logic_vector(31 downto 0);

-- TI input and additive shares

 U1, V1: out std_logic_vector(31 downto 0); -- Step 1

output to B

 U2, V2: in std_logic_vector(31 downto 0); -- Step 2

input from B

 t: in std_logic_vector(31 downto 0);

 X: out std_logic_vector(31 downto 0); -- Step 3

output to B

 Aout: out std_logic_vector(31 downto 0));

 end component;

 signal q, t_temp: unsigned(31 downto 0);

 signal ri, a1i, b1i, uAi, vAi, U2i, V2i, tq, ti, X_temp, U1_temp,

V1_temp, A_temp: std_logic_vector(31 downto 0);

 signal count: std_logic_vector(4 downto 0);

 signal countn: natural;

 signal Sld, TIld, Bold, tld, Xld, Bild, Ald, inc, C31: std_logic;

 type state_type is (S0, S1, S2, S3, S4);

 signal CS, NS: state_type;

begin

 -- data path

 -- Prime q

 q <= "11111111111111111111111111111011";

 -- Counter

 t_counter: prbs_counter port map(reset, inc, "00000", clk,

countn);

 -- Pseudorandom Generator

 t_gen: prbs generic map(32)

 port map(clk, reset,

"11011011001101001001100110001101", t_temp, countn);

 tq <= std_logic_vector(t_temp mod q);

 t_reg: RegS port map(tq, clk, tld, ti);

 -- Input

 uA_reg: RegS port map(uA, clk, Sld, uAi);

 a1_reg: RegS port map(a1, clk, TIld, a1i);

 vA_reg: RegS port map(vA, clk, Sld, vAi);

 b1_reg: RegS port map(b1, clk, TIld, b1i);

 U2_reg: RegS port map(U2, clk, Bold, U2i);

 V2_reg: RegS port map(V2, clk, Bold, V2i);

 r_reg: RegS port map(r, clk, TIld, ri);

 -- Math

 A: SDM_A port map(clk, reset, ri, a1i, b1i, uAi, vAi, U1_temp,

V1_temp, U2i, V2i, ti, X_temp, A_temp);

 -- Output

 U1_reg: RegS port map(U1_temp, clk, Bild, U1);

 V1_reg: RegS port map(V1_temp, clk, Bild, V1);

96

 X_reg: RegS port map(X_temp, clk, Xld, X);

 Aout_reg: RegS port map(A_temp, clk, Ald, Aout);

 -- ASM

 -- count = 31

 count <= std_logic_vector(to_unsigned(countn, 5));

 C31 <= count(0) and count(1) and count(2) and count(3) and

count(4);

 -- Actual ASM

 ASM: process(CS, Sdat, TIdat, Birqst, Bodat, C31, Xrqst, Arqst)

 begin

 Srqst <= '0';

 TIrqst <= '0';

 Sld <= '0';

 TIld <= '0';

 Bild <= '0';

 inc <= '0';

 Bidat <= '0';

 Borqst <= '0';

 Bold <= '0';

 Xld <= '0';

 tld <= '0';

 Xdat <= '0';

 Ald <= '0';

 Adat <= '0';

 case CS is

 when S0 =>

 Srqst <= '1';

 TIrqst <= '1';

 if Sdat = '0' or TIdat = '0' then

 NS <= S0;

 else

 Sld <= '1';

 TIld <= '1';

 Bild <= '1';

 inc <= '1';

 if Birqst = '0' then

 NS <= S2;

 else

 Bidat <= '1';

 Borqst <= '1';

 if Bodat = '0' then

 NS <= S3;

 else

 Bold <= '1';

 NS <= S1;

 end if;

 end if;

 end if;

 when S1 =>

 if C31 = '0' then

 inc <= '1';

 NS <= S1;

 else

97

 if Xrqst = '0' then

 NS <= S1;

 else

 Xld <= '1';

 tld <= '1';

 Xdat <= '1';

 Ald <= '1';

 if Arqst = '0' then

 NS <= S4;

 else

 Adat <='1';

 NS <= S0;

 end if;

 end if;

 end if;

 when S2 =>

 if Birqst = '0' then

 NS <= S2;

 else

 Bidat <= '1';

 Borqst <= '1';

 if Bodat = '0' then

 NS <= S3;

 else

 Bold <= '1';

 NS <= S1;

 end if;

 end if;

 when S3 =>

 Borqst <= '1';

 if Bodat = '0' then

 NS <= S3;

 else

 Bold <= '1';

 NS <= S1;

 end if;

 when S4 =>

 if Arqst = '0' then

 NS <= S4;

 else

 Adat <='1';

 NS <= S0;

 end if;

 end case;

 end process;

 -- DFF

 sync: process

 begin

 wait until clk'event and clk = '1';

 if reset = '1' then

 CS <= S0;

 else

 CS <= NS;

 end if;

 end process;

98

end;

-- Pi Product SDM Party A ASM

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

use work.MY_PACKAGE.all;

entity PiSDM_A_ASM is

 generic(N: natural := 32);

 port(clk, reset: in std_logic;

 TIrqst: out std_logic; -- TI request: randomness

 r, a1, b1: in std_logic_vector(31 downto 0); -- randomness

 TIdat: in std_logic; -- TI data valid

 Crqst: out std_logic; -- Shares request

 C: in DATA_ARRAY(1 to N); -- Shares

 Cdat: in std_logic; -- Shares valid

 Birqst: in std_logic; -- Step1 data request from B

 U1, V1: out std_logic_vector(31 downto 0); -- Step1 output

to B

 Bidat: out std_logic; -- Step1 data valid to B

 Borqst: out std_logic; -- Step2 data request to B

 U2, V2: in std_logic_vector(31 downto 0); -- Step2 input

from B

 Bodat: in std_logic; -- Step2 data valid from B

 Xrqst: in std_logic; -- Step3 data request from B

 X: out std_logic_vector(31 downto 0); -- Step3 output to B

 Xdat: out std_logic; -- Step3 data valid to B

 Arqst: in std_logic; -- Step4 request for output

 Aout: out std_logic_vector(31 downto 0); -- Party A output

 Adat: out std_logic); -- Step4 output valid

end;

architecture arch of PiSDM_A_ASM is

 component SDM_A_ASM

 port(clk, reset: in std_logic;

 TIrqst: out std_logic; -- TI request: randomness

 r, a1, b1: in std_logic_vector(31 downto 0); --

randomness

 TIdat: in std_logic; -- TI data valid

 Srqst: out std_logic; -- Shares request

 uA, vA: in std_logic_vector(31 downto 0); -- Shares

 Sdat: in std_logic; -- Shares valid

 Birqst: in std_logic; -- Step1 data request from B

 U1, V1: out std_logic_vector(31 downto 0); -- Step1

output to B

 Bidat: out std_logic; -- Step1 data valid to B

 Borqst: out std_logic; -- Step2 data request to B

 U2, V2: in std_logic_vector(31 downto 0); -- Step2

input from B

 Bodat: in std_logic; -- Step2 data valid from B

 Xrqst: in std_logic; -- Step3 data request from B

 X: out std_logic_vector(31 downto 0); -- Step3 output

to B

99

 Xdat: out std_logic; -- Step3 data valid to B

 Arqst: in std_logic; -- Step4 request for output

 Aout: out std_logic_vector(31 downto 0); -- Party A

output

 Adat: out std_logic); -- Step4 output valid

 end component;

 component RegS

 port(D: in std_logic_vector(31 downto 0);

 clk, load: in std_logic;

 Q: out std_logic_vector(31 downto 0));

 end component;

 component mux32

 port(A, B: in std_logic_vector(31 downto 0);

 S: in std_logic;

 F: out std_logic_vector(31 downto 0));

 end component;

 component shift_reg_parallel

 generic (N: integer := 31);

 port(C: in DATA_ARRAY(1 to N);

 clk, LD, pLD: in std_logic;

 Q: out std_logic_vector(31 downto 0));

 end component;

 component count32

 port(X: in std_logic_vector(4 downto 0);

 inc, clk, load: in std_logic;

 count: out std_logic_vector(4 downto 0));

 end component;

 component mux5

 port(A, B: in std_logic_vector(4 downto 0);

 S: in std_logic;

 F: out std_logic_vector(4 downto 0));

 end component;

 component and_5

 port(A: in std_logic_vector(4 downto 0);

 F: out std_logic);

 end component;

 signal uAi, uAo, Aotemp, Cnext: std_logic_vector(31 downto 0);

 signal count, CN1, CN2: std_logic_vector(4 downto 0);

 signal ASrqst, ASdat, AArqst, AAdat, Ald, uAld, uAs, Cld, Cpld, inc,

countld, Cm1, Cm2: std_logic;

 type state_type is (S0, S1, S2, S3);

 signal CS, NS: state_type;

begin

 -- Data Path

 A_Reg: RegS

 port map(Aotemp, clk, Ald, Aout);

100

 A: SDM_A_ASM

 port map(clk, reset,

 TIrqst, r, a1, b1, TIdat,

 ASrqst, uAo, Cnext, ASdat,

 Birqst, U1, V1, Bidat,

 Borqst, U2, V2, Bodat,

 Xrqst, X, Xdat,

 AArqst, Aotemp, AAdat);

 uA_Reg: RegS

 port map(uAi, clk, uAld, uAo);

 uA_Mux: mux32

 port map(C(1), Aotemp, uAs, uAi);

 ShiftReg_ParallelLoad: shift_reg_parallel

 generic map(N-1)

 port map(C(2 to N), clk, Cld, Cpld, Cnext);

 counter: count32

 port map("00000", inc, clk, countld, count);

 -- ASM

 -- count bitwise xnor for N-1 and N-2

 CN1 <= std_logic_vector(to_unsigned(N-1, 5)) xnor count;

 CN2 <= std_logic_vector(to_unsigned(N-2, 5)) xnor count;

 -- Flag for count equal N-1 or N-2 being true

 countN1: and_5 port map(CN1, Cm1);

 countN2: and_5 port map(CN2, Cm2);

 ASM: process(CS, Cdat, ASrqst, Cm1, Cm2, AAdat, Arqst)

 begin

 Crqst <= '0';

 uAs <= '0';

 Cpld <= '0';

 ASdat <= '0';

 inc <= '0';

 Cld <= '0';

 uAld <= '0';

 AArqst <= '0';

 ASdat <= '0';

 Adat <= '0';

 countld <= '0';

 Ald <= '0';

 case CS is

 when S0 =>

 Crqst <= '1';

 uAs <= '1';

 Cpld <= '1';

 if Cdat = '0' then

 NS <= S0;

 else

 Cld <= '1';

 countld <= '1';

101

 if ASrqst = '0' then

 NS <= S2;

 else

 ASdat <= '1';

 uAld <= '1';

 NS <= S1;

 end if;

 end if;

 when S1 =>

 if Cm1 = '0' then

 AArqst <= '1';

 ASdat <= '1';

 if AAdat = '0' then

 NS <= S1;

 else

 if Cm2 = '0' then

 inc <= '1';

 Cld <= '1';

 uAld <= '1';

 if ASrqst = '0' then

 NS <= S3;

 else

 ASdat <= '1';

 NS <= S1;

 end if;

 else

 inc <= '1';

 if Arqst = '0' then

 NS <= S1;

 else

 Ald <= '1';

 Adat <= '1';

 NS <= S0;

 end if;

 end if;

 end if;

 else

 if Arqst = '0' then

 NS <= S1;

 else

 Ald <= '1';

 Adat <= '1';

 NS <= S0;

 end if;

 end if;

 when S2 =>

 if ASrqst = '0' then

 NS <= S2;

 else

 uAld <= '1';

 ASdat <= '1';

 NS <= S1;

 end if;

 when S3 =>

 if Cm1 = '0' then

 if ASrqst = '0' then

102

 NS <= S3;

 else

 ASdat <= '1';

 NS <= S1;

 end if;

 else

 if Arqst = '0' then

 NS <= S1;

 else

 Ald <= '1';

 Adat <= '1';

 NS <= S0;

 end if;

 end if;

 end case;

 end process;

 -- DFF

 sync: process

 begin

 wait until clk'event and clk = '1';

 if reset = '1' then

 CS <= S0;

 else

 CS <= NS;

 end if;

 end process;

end;

-- SC SDM Party A ASM

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

use ieee.numeric_std.all;

use work.MY_PACKAGE.all;

entity SC_A_ASM is

 generic(N: natural := 30);

 port(clk, reset: in std_logic;

 TIrqst: out std_logic; -- TI request: randomness

 r, a1, b1: in std_logic_vector(31 downto 0); -- randomness

 TIdat: in std_logic; -- TI data valid

 Srqst: out std_logic; -- Shares request

 XA, YA: in DATA_ARRAY(1 to N); -- Shares

 Sdat: in std_logic; -- Shares valid

 Birqst: in std_logic; -- Step1 data request from B

 U1, V1: out std_logic_vector(31 downto 0); -- Step1 output

to B

 Bidat: out std_logic; -- Step1 data valid to B

 Borqst: out std_logic; -- Step2 data request to B

 U2, V2: in std_logic_vector(31 downto 0); -- Step2 input

from B

 Bodat: in std_logic; -- Step2 data valid from B

 Xrqst: in std_logic; -- Step3 data request from B

 X: out std_logic_vector(31 downto 0); -- Step3 output to B

103

 Xdat: out std_logic; -- Step3 data valid to B

 OBrqst: out std_logic; -- Step4 OutB data request from B

 OB: in std_logic_vector(31 downto 0);

 OBdat: in std_logic; -- Step4 OutB data request from B

 Arqst: in std_logic; -- Step4 request for output

 Aout: out std_logic; -- Party A output

 Adat: out std_logic); -- Step4 output valid

end;

architecture arch of SC_A_ASM is

 component PiSDM_A_ASM

 generic(N: natural := 32);

 port(clk, reset: in std_logic;

 TIrqst: out std_logic; -- TI request: randomness

 r, a1, b1: in std_logic_vector(31 downto 0); --

randomness

 TIdat: in std_logic; -- TI data valid

 Crqst: out std_logic; -- Shares request

 C: in DATA_ARRAY(1 to N); -- Shares

 Cdat: in std_logic; -- Shares valid

 Birqst: in std_logic; -- Step1 data request from B

 U1, V1: out std_logic_vector(31 downto 0); -- Step1

output to B

 Bidat: out std_logic; -- Step1 data valid to B

 Borqst: out std_logic; -- Step2 data request to B

 U2, V2: in std_logic_vector(31 downto 0); -- Step2

input from B

 Bodat: in std_logic; -- Step2 data valid from B

 Xrqst: in std_logic; -- Step3 data request from B

 X: out std_logic_vector(31 downto 0); -- Step3 output

to B

 Xdat: out std_logic; -- Step3 data valid to B

 Arqst: in std_logic; -- Step4 request for output

 Aout: out std_logic_vector(31 downto 0); -- Party A

output

 Adat: out std_logic); -- Step4 output valid

 end component;

 component SubShares

 generic (N: integer := 30);

 port(A, B: in DATA_ARRAY(1 to N);

 C: out DATA_ARRAY(1 to N));

 end component;

 component SigmaShares

 generic (N: integer := 30);

 port(D: in DATA_ARRAY(1 to N);

 DS: out DATA_ARRAY(1 to N));

 end component;

 component AddShares

 generic (N: integer := 30);

 port(A, B: in DATA_ARRAY(1 to N);

 C: out DATA_ARRAY(1 to N));

 end component;

104

 component RegS

 port(D: in std_logic_vector(31 downto 0);

 clk, load: in std_logic;

 Q: out std_logic_vector(31 downto 0));

 end component;

 component Comparator

 port(A: in std_logic_vector(31 downto 0);

 Aeq0: out std_logic);

 end component;

 signal D, DS, C: DATA_ARRAY(1 to N);

 signal OutA, OutB, OutS: std_logic_vector(31 downto 0);

 signal ACrqst, ACdat, AArqst, AAdat, Bld: std_logic;

 signal q: unsigned(31 downto 0);

 type state_type is (S0, S1, S2, S3);

 signal CS, NS: state_type;

begin

 -- Data Path

 Subtract: SubShares port map(XA, YA, D);

 Sums: SigmaShares port map(D, DS);

 Add: AddShares port map(DS, D, C);

 PiA: PiSDM_A_ASM

 generic map(30)

 port map(clk, reset,

 TIrqst, r, a1, b1, TIdat,

 ACrqst, C, ACdat,

 Birqst, U1, V1, Bidat,

 Borqst, U2, V2, Bodat,

 Xrqst, X, Xdat,

 AArqst, OutA, AAdat);

 Breg: RegS port map(OB, clk, Bld, OutB);

 q <= "11111111111111111111111111111011";

 OutS <= std_logic_vector((('0'&unsigned(OutA)) + ('0'&unsigned(OutB))

) mod q);

 Compare: Comparator port map(OutS, Aout);

 -- ASM

 ASM: process(CS, Sdat, ACrqst, AAdat, OBdat, Arqst)

 begin

 Srqst <= '0';

 ACdat <= '0';

 AArqst <= '0';

 Bld <= '0';

 OBrqst <= '0';

 Adat <= '0';

 case CS is

 when S0 =>

 Srqst <= '1';

 if Sdat = '0' or ACrqst = '0' then

 NS <= S0;

 else

 ACdat <= '1';

 NS <= S1;

105

 end if;

 when S1 =>

 AArqst <= '1';

 if AAdat = '0' then

 NS <= S1;

 else

 OBrqst <= '1';

 if OBdat = '0' then

 NS <= S2;

 else

 Bld <= '1';

 if Arqst = '0' then

 NS <= S3;

 else

 Adat <= '1';

 NS <= S0;

 end if;

 end if;

 end if;

 when S2 =>

 if OBdat = '0' then

 NS <= S2;

 else

 Bld <= '1';

 if Arqst = '0' then

 NS <= S3;

 else

 Adat <= '1';

 NS <= S0;

 end if;

 end if;

 when S3 =>

 if Arqst = '0' then

 NS <= S3;

 else

 Adat <= '1';

 NS <= S0;

 end if;

 end case;

 end process;

 -- DFF

 sync: process

 begin

 wait until clk'event and clk = '1';

 if reset = '1' then

 CS <= S0;

 else

 CS <= NS;

 end if;

 end process;

end;

 SDM_B.vhd, PiSDM_B.vhd, SC_B.vhd:

106

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

use ieee.numeric_std.all;

entity SDM_B is

 port (a2, b2, I, uB, vB: in std_logic_vector(31 downto 0); -- TI input

and additive shares

 U1, V1: in std_logic_vector(31 downto 0); -- Step 1 input

from A

 U2, V2: out std_logic_vector(31 downto 0); -- Step 2 output

to A

 X: in std_logic_vector(31 downto 0); -- Step 3 input from A

 Bout: out std_logic_vector(31 downto 0));

end;

architecture behavioral of SDM_B is

 signal q: unsigned(31 downto 0);

 signal Y1, Y2: std_logic_vector(31 downto 0);

begin

 q <= "11111111111111111111111111111011";

 U2 <= std_logic_vector((('0'&unsigned(uB)) + ('0'&(q - unsigned(a2))))

mod q);

 V2 <= std_logic_vector((('0'&unsigned(vB)) + ('0'&(q - unsigned(b2))))

mod q);

 Bout <= std_logic_vector((("000"&(unsigned((U1*vB)) mod q)) +

("000"&(unsigned(V1*uB) mod q)) + ("000"&unsigned(X)) +

("000"&(unsigned((uB*vB)) mod q)) + ("000"&unsigned(I))) mod q);

end behavioral;

library ieee;

use ieee.std_logic_1164.all;

entity SDM_B_ASM is

 port(clk, reset: in std_logic;

 TIrqst: out std_logic; -- TI request: randomness

 I, a2, b2: in std_logic_vector(31 downto 0); -- randomness

 TIdat: in std_logic; -- TI data valid

 Srqst: out std_logic; -- Shares request

 uB, vB: in std_logic_vector(31 downto 0); -- Shares

 Sdat: in std_logic; -- Shares valid

 Aorqst: out std_logic; -- Step1 data request to A

 U1, V1: in std_logic_vector(31 downto 0); -- Step1 input

from A

 Aodat: in std_logic; -- Step1 data valid from A

 Airqst: in std_logic; -- Step2 data request from A

 U2, V2: out std_logic_vector(31 downto 0); -- Step2 output

to A

107

 Aidat: out std_logic; -- Step2 data valid to A

 Xrqst: out std_logic; -- Step3 data request to A

 X: in std_logic_vector(31 downto 0); -- Step3 input from A

 Xdat: in std_logic; -- Step3 data valid from A

 Brqst: in std_logic; -- Step4 request for output

 Bout: out std_logic_vector(31 downto 0); -- Party B output

 Bdat: out std_logic); -- Step4 output valid

end;

architecture arch of SDM_B_ASM is

 component RegS

 port(D: in std_logic_vector(31 downto 0);

 clk, load: in std_logic;

 Q: out std_logic_vector(31 downto 0));

 end component;

 component SDM_B

 port (a2, b2, I, uB, vB: in std_logic_vector(31 downto 0); -- TI

input and additive shares

 U1, V1: in std_logic_vector(31 downto 0); -- Step 1 input

from A

 U2, V2: out std_logic_vector(31 downto 0); -- Step 2 output

to A

 X: in std_logic_vector(31 downto 0); -- Step 3 input from A

 Bout: out std_logic_vector(31 downto 0));

 end component;

 signal a2i, b2i, Ii, uBi, vBi, U1i, V1i, Xi, Y, U2_temp, V2_temp:

std_logic_vector(31 downto 0);

 signal Sld, TIld, Aold, Xld, Aild, Bld: std_logic;

 type state_type is (S0, S1, S2, S3, S4);

 signal CS, NS: state_type;

begin

 -- data path

 -- Input

 uB_reg: RegS port map(uB, clk, Sld, uBi);

 a2_reg: RegS port map(a2, clk, TIld, a2i);

 vB_reg: RegS port map(vB, clk, Sld, vBi);

 b2_reg: RegS port map(b2, clk, TIld, b2i);

 U1_reg: RegS port map(U1, clk, Aold, U1i);

 V1_reg: RegS port map(V1, clk, Aold, V1i);

 X_reg: RegS port map(X, clk, Xld, Xi);

 I_reg: RegS port map(I, clk, TIld, Ii);

 -- Math

 B: SDM_B port map(a2i, b2i, Ii, uBi, vBi, U1i, V1i, U2_temp,

V2_temp, Xi, Y);

 -- Output

 U2_reg: RegS port map(U2_temp, clk, Aild, U2);

 V2_reg: RegS port map(V2_temp, clk, Aild, V2);

 Bout_reg: RegS port map(Y, clk, Bld, Bout);

108

 -- ASM

 ASM: process(CS, Sdat, TIdat, Aodat, Airqst, Xdat, Brqst)

 begin

 Srqst <= '0';

 TIrqst <= '0';

 Aorqst <= '0';

 Sld <= '0';

 TIld <= '0';

 Aild <= '0';

 Aold <= '0';

 Aidat <= '0';

 Xrqst <= '0';

 Xld <= '0';

 Bld <= '0';

 Bdat <= '0';

 case CS is

 when S0 =>

 Srqst <= '1';

 TIrqst <= '1';

 Aorqst <= '1';

 if Sdat = '0' or TIdat = '0' then

 NS <= S0;

 else

 Sld <= '1';

 TIld <= '1';

 Aild <= '1';

 if Aodat = '0' then

 NS <= S1;

 else

 Aold <= '1';

 if Airqst = '0' then

 NS <= S2;

 else

 Aidat <= '1';

 Xrqst <= '1';

 if Xdat = '0' then

 NS <= S3;

 else

 Xld <= '1';

 Bld <= '1';

 if Brqst = '0' then

 NS <= S4;

 else

 Bdat <='1';

 NS <= S0;

 end if;

 end if;

 end if;

 end if;

 end if;

 when S1 =>

 if Aodat = '0' then

 NS <= S1;

 else

 Aold <= '1';

109

 if Airqst = '0' then

 NS <= S2;

 else

 Aidat <= '1';

 Xrqst <= '1';

 if Xdat = '0' then

 NS <= S3;

 else

 Xld <= '1';

 Bld <= '1';

 if Brqst = '0' then

 NS <= S4;

 else

 Bdat <='1';

 NS <= S0;

 end if;

 end if;

 end if;

 end if;

 when S2 =>

 if Airqst = '0' then

 NS <= S2;

 else

 Aidat <= '1';

 Xrqst <= '1';

 if Xdat = '0' then

 NS <= S3;

 else

 Xld <= '1';

 Bld <= '1';

 if Brqst = '0' then

 NS <= S4;

 else

 Bdat <='1';

 NS <= S0;

 end if;

 end if;

 end if;

 when S3 =>

 Xrqst <= '1';

 if Xdat = '0' then

 NS <= S3;

 else

 Xld <= '1';

 Bld <= '1';

 if Brqst = '0' then

 NS <= S4;

 else

 Bdat <='1';

 NS <= S0;

 end if;

 end if;

 when S4 =>

 if Brqst = '0' then

 NS <= S4;

 else

110

 Bdat <='1';

 NS <= S0;

 end if;

 end case;

 end process;

 -- DFF

 sync: process

 begin

 wait until clk'event and clk = '1';

 if reset = '1' then

 CS <= S0;

 else

 CS <= NS;

 end if;

 end process;

end;

-- Pi Product SDM Party B ASM

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

use ieee.numeric_std.all;

use work.MY_PACKAGE.all;

entity PiSDM_B_ASM is

 generic(N: natural := 32);

 port(clk, reset: in std_logic;

 TIrqst: out std_logic; -- TI request: randomness

 I, a2, b2: in std_logic_vector(31 downto 0); -- randomness

 TIdat: in std_logic; -- TI data valid

 Crqst: out std_logic; -- Shares request

 C: in DATA_ARRAY(1 to N); -- Shares

 Cdat: in std_logic; -- Shares valid

 Aorqst: out std_logic; -- Step1 data request to A

 U1, V1: in std_logic_vector(31 downto 0); -- Step1 input

from A

 Aodat: in std_logic; -- Step1 data valid from A

 Airqst: in std_logic; -- Step2 data request from A

 U2, V2: out std_logic_vector(31 downto 0); -- Step2 output

to A

 Aidat: out std_logic; -- Step2 data valid to A

 Xrqst: out std_logic; -- Step3 data request to A

 X: in std_logic_vector(31 downto 0); -- Step3 input from A

 Xdat: in std_logic; -- Step3 data valid from A

 Brqst: in std_logic; -- Step4 request for output

 Bout: out std_logic_vector(31 downto 0); -- Party B output

 Bdat: out std_logic); -- Step4 output valid

end;

architecture arch of PiSDM_B_ASM is

 component SDM_B_ASM

 port(clk, reset: in std_logic;

111

 TIrqst: out std_logic; -- TI request: randomness

 I, a2, b2: in std_logic_vector(31 downto 0); -- randomness

 TIdat: in std_logic; -- TI data valid

 Srqst: out std_logic; -- Shares request

 uB, vB: in std_logic_vector(31 downto 0); -- Shares

 Sdat: in std_logic; -- Shares valid

 Aorqst: out std_logic; -- Step1 data request to A

 U1, V1: in std_logic_vector(31 downto 0); -- Step1 input

from A

 Aodat: in std_logic; -- Step1 data valid from A

 Airqst: in std_logic; -- Step2 data request from A

 U2, V2: out std_logic_vector(31 downto 0); -- Step2 output

to A

 Aidat: out std_logic; -- Step2 data valid to A

 Xrqst: out std_logic; -- Step3 data request to A

 X: in std_logic_vector(31 downto 0); -- Step3 input from A

 Xdat: in std_logic; -- Step3 data valid from A

 Brqst: in std_logic; -- Step4 request for output

 Bout: out std_logic_vector(31 downto 0); -- Party B output

 Bdat: out std_logic); -- Step4 output valid

 end component;

 component RegS

 port(D: in std_logic_vector(31 downto 0);

 clk, load: in std_logic;

 Q: out std_logic_vector(31 downto 0));

 end component;

 component mux32

 port(A, B: in std_logic_vector(31 downto 0);

 S: in std_logic;

 F: out std_logic_vector(31 downto 0));

 end component;

 component shift_reg_parallel

 generic (N: integer := 31);

 port(C: in DATA_ARRAY(1 to N);

 clk, LD, pLD: in std_logic;

 Q: out std_logic_vector(31 downto 0));

 end component;

 component count32

 port(X: in std_logic_vector(4 downto 0);

 inc, clk, load: in std_logic;

 count: out std_logic_vector(4 downto 0));

 end component;

 component mux5

 port(A, B: in std_logic_vector(4 downto 0);

 S: in std_logic;

 F: out std_logic_vector(4 downto 0));

 end component;

 component and_5

 port(A: in std_logic_vector(4 downto 0);

 F: out std_logic);

112

 end component;

 signal uBi, uBo, Botemp, Cnext: std_logic_vector(31 downto 0);

 signal count, CN1, CN2: std_logic_vector(4 downto 0);

 signal BSrqst, BSdat, BBrqst, BBdat, Bld, uBld, uBs, Cld, Cpld, inc,

countld, Cm1, Cm2: std_logic;

 type state_type is (S0, S1, S2, S3);

 signal CS, NS: state_type;

begin

 -- Data Path

 B_Reg: RegS

 port map(Botemp, clk, Bld, Bout);

 B: SDM_B_ASM

 port map(clk, reset,

 TIrqst, I, a2, b2, TIdat,

 BSrqst, uBo, Cnext, BSdat,

 Aorqst, U1, V1, Aodat,

 Airqst, U2, V2, Aidat,

 Xrqst, X, Xdat,

 BBrqst, Botemp, BBdat);

 uB_Reg: RegS

 port map(uBi, clk, uBld, uBo);

 uB_Mux: mux32

 port map(C(1), Botemp, uBs, uBi);

 ShiftReg_ParallelLoad: shift_reg_parallel

 generic map(N-1)

 port map(C(2 to N), clk, Cld, Cpld, Cnext);

 counter: count32

 port map("00000", inc, clk, countld, count);

 -- ASM

 -- count bitwise xnor for N-1 and N-2

 CN1 <= std_logic_vector(to_unsigned(N-1, 5)) xnor count;

 CN2 <= std_logic_vector(to_unsigned(N-2, 5)) xnor count;

 -- Flag for count equal N-1 or N-2 being true

 countN1: and_5 port map(CN1, Cm1);

 countN2: and_5 port map(CN2, Cm2);

 ASM: process(CS, Cdat, BSrqst, Cm1, Cm2, BBdat, Brqst)

 begin

 Crqst <= '0';

 uBs <= '0';

 Cpld <= '0';

 BSdat <= '0';

 inc <= '0';

 Cld <= '0';

 uBld <= '0';

 BBrqst <= '0';

113

 BSdat <= '0';

 Bdat <= '0';

 countld <= '0';

 Bld <= '0';

 case CS is

 when S0 =>

 Crqst <= '1';

 uBs <= '1';

 Cpld <= '1';

 if Cdat = '0' then

 NS <= S0;

 else

 Cld <= '1';

 countld <= '1';

 if BSrqst = '0' then

 NS <= S2;

 else

 BSdat <= '1';

 uBld <= '1';

 NS <= S1;

 end if;

 end if;

 when S1 =>

 if Cm1 = '0' then

 BBrqst <= '1';

 bSdat <= '1';

 if BBdat = '0' then

 NS <= S1;

 else

 inc <= '1';

 if Cm2 = '0' then

 Cld <= '1';

 uBld <= '1';

 if BSrqst = '0' then

 NS <= S3;

 else

 BSdat <= '1';

 NS <= S1;

 end if;

 else

 if Brqst = '0' then

 NS <= S1;

 else

 Bld <= '1';

 Bdat <= '1';

 NS <= S0;

 end if;

 end if;

 end if;

 else

 if Brqst = '0' then

 NS <= S1;

 else

 Bld <= '1';

 Bdat <= '1';

114

 NS <= S0;

 end if;

 end if;

 when S2 =>

 if BSrqst = '0' then

 NS <= S2;

 else

 uBld <= '1';

 BSdat <= '1';

 NS <= S1;

 end if;

 when S3 =>

 if Cm1 = '0' then

 if BSrqst = '0' then

 NS <= S3;

 else

 BSdat <= '1';

 NS <= S1;

 end if;

 else

 if Brqst = '0' then

 NS <= S1;

 else

 Bld <= '1';

 Bdat <= '1';

 NS <= S0;

 end if;

 end if;

 end case;

 end process;

 -- DFF

 sync: process

 begin

 wait until clk'event and clk = '1';

 if reset = '1' then

 CS <= S0;

 else

 CS <= NS;

 end if;

 end process;

end;

-- SC SDM Party B ASM

library ieee;

use ieee.std_logic_1164.all;

use work.MY_PACKAGE.all;

entity SC_B_ASM is

 generic(N: natural := 30);

 port(clk, reset: in std_logic;

 TIrqst: out std_logic; -- TI request: randomness

 I, a2, b2: in std_logic_vector(31 downto 0); -- randomness

 TIdat: in std_logic; -- TI data valid

 Srqst: out std_logic; -- Shares request

115

 XB, YB: in DATA_ARRAY(1 to N); -- Shares

 Sdat: in std_logic; -- Shares valid

 Aorqst: out std_logic; -- Step1 data request to A

 U1, V1: in std_logic_vector(31 downto 0); -- Step1 input

from A

 Aodat: in std_logic; -- Step1 data valid from A

 Airqst: in std_logic; -- Step2 data request from A

 U2, V2: out std_logic_vector(31 downto 0); -- Step2 output

to A

 Aidat: out std_logic; -- Step2 data valid to A

 Xrqst: out std_logic; -- Step3 data request to A

 X: in std_logic_vector(31 downto 0); -- Step3 input from A

 Xdat: in std_logic; -- Step3 data valid from A

 Brqst: in std_logic; -- Step4 request for output

 Bout: out std_logic_vector(31 downto 0); -- Party B output

 Bdat: out std_logic); -- Step4 output valid

end;

architecture arch of SC_B_ASM is

 component PiSDM_B_ASM

 generic(N: natural := 32);

 port(clk, reset: in std_logic;

 TIrqst: out std_logic; -- TI request: randomness

 I, a2, b2: in std_logic_vector(31 downto 0); --

randomness

 TIdat: in std_logic; -- TI data valid

 Crqst: out std_logic; -- Shares request

 C: in DATA_ARRAY(1 to N); -- Shares

 Cdat: in std_logic; -- Shares valid

 Aorqst: out std_logic; -- Step1 data request to A

 U1, V1: in std_logic_vector(31 downto 0); -- Step1

input from A

 Aodat: in std_logic; -- Step1 data valid from A

 Airqst: in std_logic; -- Step2 data request from A

 U2, V2: out std_logic_vector(31 downto 0); -- Step2

output to A

 Aidat: out std_logic; -- Step2 data valid to A

 Xrqst: out std_logic; -- Step3 data request to A

 X: in std_logic_vector(31 downto 0); -- Step3 input

from A

 Xdat: in std_logic; -- Step3 data valid from A

 Brqst: in std_logic; -- Step4 request for output

 Bout: out std_logic_vector(31 downto 0); -- Party B

output

 Bdat: out std_logic); -- Step4 output valid

 end component;

 component SubShares

 generic (N: integer := 30);

 port(A, B: in DATA_ARRAY(1 to N);

 C: out DATA_ARRAY(1 to N));

 end component;

 component SigmaShares

 generic (N: integer := 30);

 port(D: in DATA_ARRAY(1 to N);

116

 DS: out DATA_ARRAY(1 to N));

 end component;

 component AddShares1

 generic (N: integer := 30);

 port(A, B: in DATA_ARRAY(1 to N);

 C: out DATA_ARRAY(1 to N));

 end component;

 component RegS

 port(D: in std_logic_vector(31 downto 0);

 clk, load: in std_logic;

 Q: out std_logic_vector(31 downto 0));

 end component;

 component Comparator

 port(A: in std_logic_vector(31 downto 0);

 Aeq0: out std_logic);

 end component;

 signal D, DS, C: DATA_ARRAY(1 to N);

 signal Bo: std_logic_vector(31 downto 0);

 signal BCrqst, BCdat, BBrqst, BBdat: std_logic;

 type state_type is (S0, S1, S2);

 signal CS, NS: state_type;

begin

 -- Data Path

 Subtract: SubShares port map(XB, YB, D);

 Sums: SigmaShares port map(D, DS);

 Add: AddShares1 port map(DS, D, C);

 PiB: PiSDM_B_ASM

 generic map(30)

 port map(clk, reset,

 TIrqst, I, a2, b2, TIdat,

 BCrqst, C, BCdat,

 Aorqst, U1, V1, Aodat,

 Airqst, U2, V2, Aidat,

 Xrqst, X, Xdat,

 BBrqst, Bo, BBdat);

 Bout <= Bo;

 --OutReg: RegS port map(Bo, clk, Bld, Bout);

 -- ASM

 ASM: process(CS, Sdat, BCrqst, BBdat, Brqst)

 begin

 Srqst <= '0';

 BCdat <= '0';

 BBrqst <= '0';

 Bdat <= '0';

 case CS is

 when S0 =>

 Srqst <= '1';

 if Sdat = '0' or BCrqst = '0' then

117

 NS <= S0;

 else

 BCdat <= '1';

 NS <= S1;

 end if;

 when S1 =>

 BBrqst <= '1';

 if BBdat = '0' then

 NS <= S1;

 else

 if Brqst = '0' then

 NS <= S2;

 else

 Bdat <= '1';

 NS <= S0;

 end if;

 end if;

 when S2 =>

 if Brqst = '0' then

 NS <= S2;

 else

 Bdat <= '1';

 NS <= S0;

 end if;

 end case;

 end process;

 -- DFF

 sync: process

 begin

 wait until clk'event and clk = '1';

 if reset = '1' then

 CS <= S0;

 else

 CS <= NS;

 end if;

 end process;

end;

 SDM_chip.vhd:

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

entity SDM_chip is

 port(clk, reset: in std_logic;

 uA, vA, uB, vB: in std_logic_vector(31 downto 0);

 Ao, Bo: out std_logic_vector(31 downto 0));

end;

architecture structural of SDM_chip is

 component SDM_TI

118

 port(clk, reset: in std_logic;

 r, a1, a2, b1, b2, I: out std_logic_vector(31 downto

0));

 end component;

 component SDM_regA

 port(clk, reset: in std_logic;

 r, a1, b1, uA, vA: in std_logic_vector(31 downto 0);

-- TI input and additive shares

 U1, V1: out std_logic_vector(31 downto 0); -- Step 1

output to B

 U2, V2: in std_logic_vector(31 downto 0); -- Step 2

input from B

 X: out std_logic_vector(31 downto 0); -- Step 3

output to B

 Aout: out std_logic_vector(31 downto 0));

 end component;

 component SDM_regB

 port(clk, reset: in std_logic;

 a2, b2, I, uB, vB: in std_logic_vector(31 downto 0);

-- TI input and additive shares

 U1, V1: in std_logic_vector(31 downto 0); -- Step 1

input from A

 U2, V2: out std_logic_vector(31 downto 0); -- Step 2

output to A

 X: in std_logic_vector(31 downto 0); -- Step 3 input

from A

 Bout: out std_logic_vector(31 downto 0));

 end component;

 signal r, a1, a2, b1, b2, I, U1, V1, U2, V2, X: std_logic_vector(31

downto 0);

begin

 TI: SDM_TI

 port map(clk, reset, r, a1, a2, b1, b2, I);

 A: SDM_regA

 port map(clk, reset, r, a1, b1, uA, vA, U1, V1, U2, V2, X, Ao);

 B: SDM_regB

 port map(clk, reset, a2, b2, I, uB, vB, U1, V1, U2, V2, X, Bo);

end structural;

library ieee;

use ieee.std_logic_1164.all;

entity SDM_ASM_chip is

 port(clk, reset: in std_logic;

 A_Srqst: out std_logic;

 uA, vA: in std_logic_vector(31 downto 0);

 A_Sdat: in std_logic;

 B_Srqst: out std_logic;

 uB, vB: in std_logic_vector(31 downto 0);

119

 B_Sdat: in std_logic;

 Arqst: in std_logic;

 Ao: out std_logic_vector(31 downto 0);

 Adat: out std_logic;

 Brqst: in std_logic;

 Bo: out std_logic_vector(31 downto 0);

 Bdat: out std_logic);

end;

architecture structural of SDM_ASM_chip is

 component SDM_TI_ASM

 port(clk, reset: in std_logic;

 Arqst: in std_logic;

 r, a1, b1: out std_logic_vector(31 downto 0);

 Adat: out std_logic;

 Brqst: in std_logic;

 I, a2, b2: out std_logic_vector(31 downto 0);

 Bdat: out std_logic);

 end component;

 component SDM_A_ASM

 port(clk, reset: in std_logic;

 TIrqst: out std_logic; -- TI request: randomness

 r, a1, b1: in std_logic_vector(31 downto 0); --

randomness

 TIdat: in std_logic; -- TI data valid

 Srqst: out std_logic; -- Shares request

 uA, vA: in std_logic_vector(31 downto 0); -- Shares

 Sdat: in std_logic; -- Shares valid

 Birqst: in std_logic; -- Step1 data request from B

 U1, V1: out std_logic_vector(31 downto 0); -- Step1

output to B

 Bidat: out std_logic; -- Step1 data valid to B

 Borqst: out std_logic; -- Step2 data request to B

 U2, V2: in std_logic_vector(31 downto 0); -- Step2

input from B

 Bodat: in std_logic; -- Step2 data valid from B

 Xrqst: in std_logic; -- Step3 data request from B

 X: out std_logic_vector(31 downto 0); -- Step3 output

to B

 Xdat: out std_logic; -- Step3 data valid to B

 Arqst: in std_logic; -- Step4 request for output

 Aout: out std_logic_vector(31 downto 0); -- Party A

output

 Adat: out std_logic); -- Step4 output valid

 end component;

 component SDM_B_ASM

 port(clk, reset: in std_logic;

 TIrqst: out std_logic; -- TI request: randomness

 I, a2, b2: in std_logic_vector(31 downto 0); --

randomness

 TIdat: in std_logic; -- TI data valid

 Srqst: out std_logic; -- Shares request

 uB, vB: in std_logic_vector(31 downto 0); -- Shares

 Sdat: in std_logic; -- Shares valid

120

 Aorqst: out std_logic; -- Step1 data request to A

 U1, V1: in std_logic_vector(31 downto 0); -- Step1

input from A

 Aodat: in std_logic; -- Step1 data valid from A

 Airqst: in std_logic; -- Step2 data request from A

 U2, V2: out std_logic_vector(31 downto 0); -- Step2

output to A

 Aidat: out std_logic; -- Step2 data valid to A

 Xrqst: out std_logic; -- Step3 data request to A

 X: in std_logic_vector(31 downto 0); -- Step3 input

from A

 Xdat: in std_logic; -- Step3 data valid from A

 Brqst: in std_logic; -- Step4 request for output

 Bout: out std_logic_vector(31 downto 0); -- Party B

output

 Bdat: out std_logic); -- Step4 output valid

 end component;

 signal TI_Arqst, TI_Adat, TI_Brqst, TI_Bdat: std_logic; -- TI OCDDC

 signal Step1rqst, Step1dat, Step2rqst, Step2dat, Xrqst, Xdat:

std_logic; -- A&B OCDDC

 signal r, a1, a2, b1, b2, I, U1, V1, U2, V2, X: std_logic_vector(31

downto 0);

begin

 TI: SDM_TI_ASM

 port map(clk, reset,

 TI_Arqst, r, a1, b1, TI_Adat,

 TI_Brqst, I, a2, b2, TI_Bdat);

 A: SDM_A_ASM

 port map(clk, reset,

 TI_Arqst, r, a1, b1, TI_Adat,

 A_Srqst, uA, vA, A_Sdat,

 Step1rqst, U1, V1, Step1dat,

 Step2rqst, U2, V2, Step2dat,

 Xrqst, X, Xdat,

 Arqst, Ao, Adat);

 B: SDM_B_ASM

 port map(clk, reset,

 TI_Brqst, I, a2, b2, TI_Bdat,

 B_Srqst, uB, vB, B_Sdat,

 Step1rqst, U1, V1, Step1dat,

 Step2rqst, U2, V2, Step2dat,

 Xrqst, X, Xdat,

 Brqst, Bo, Bdat);

end structural;

 TB_SDM.vhd:

library ieee;

121

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

use ieee.numeric_std.all;

entity tb_SDM is

 port(correct: out std_logic);

end;

architecture tb of tb_SDM is

 component SDM_chip

 port(clk, reset: std_logic;

 uA, vA, uB, vB: in std_logic_vector(31 downto 0);

 Ao, Bo: out std_logic_vector(31 downto 0));

 end component;

 component SDM_ASM_chip is

 port(clk, reset: in std_logic;

 A_Srqst: out std_logic;

 uA, vA: in std_logic_vector(31 downto 0);

 A_Sdat: in std_logic;

 B_Srqst: out std_logic;

 uB, vB: in std_logic_vector(31 downto 0);

 B_Sdat: in std_logic;

 Arqst: in std_logic;

 Ao: out std_logic_vector(31 downto 0);

 Adat: out std_logic;

 Brqst: in std_logic;

 Bo: out std_logic_vector(31 downto 0);

 Bdat: out std_logic);

 end component;

 signal q, mult1, mult2: unsigned(31 downto 0);

 signal mult2s: unsigned(32 downto 0);

 signal uA, vA, uB, vB, Ao, Bo: std_logic_vector(31 downto 0);

 signal clk, reset, A_Srqst, A_Sdat, B_Srqst, B_Sdat, Arqst, Adat,

Brqst, Bdat: std_logic;

begin

 q <= "11111111111111111111111111111011"; -- 4294967291

 mult1 <= unsigned((uA + uB) * (vA + vB)) mod q;

 mult2s <= unsigned(('0' & Bo) + ('0' & Ao));

 mult2 <= mult2s mod q;

 uut: SDM_ASM_chip

 port map(clk, reset,

 A_Srqst, uA, vA, A_Sdat,

 B_Srqst, uB, vB, B_Sdat,

 Arqst, Ao, Adat,

 Brqst, Bo, Bdat);

 correctness: process(mult1, mult2)

 begin

 if (mult1 = mult2) then

 correct <= '1';

 else

 correct <= '0';

122

 end if;

 end process;

 test: process

 begin

 A_Sdat <= '0';

 B_Sdat <= '0';

 wait until A_Srqst = '1' and B_Srqst = '1';

 uA <= "01110001100111101111100000011101";

 uB <= "01101000111110101000110010110101";

 vA <= "01010110011111000111011011101111";

 vB <= "00111011000111110000011000110001";

 A_Sdat <= '1';

 B_Sdat <= '1';

 Arqst <= '1';

 Brqst <= '1';

 wait until Adat = '1' and Bdat = '1';

 A_Sdat <= '0';

 B_Sdat <= '0';

 wait until A_Srqst = '1' and B_Srqst = '1';

 uA <= "01000000000000000000000000000011";

 uB <= "00000000000000000000000000000001";

 vA <= "00000000000000000000000000000001";

 vB <= "00000000000000000000000000000001";

 A_Sdat <= '1';

 B_Sdat <= '1';

 Arqst <= '1';

 Brqst <= '1';

 wait until Adat = '1' and Bdat = '1';

 A_Sdat <= '0';

 B_Sdat <= '0';

 wait until A_Srqst = '1' and B_Srqst = '1';

 uA <= "00000000000000000000000000000011";

 uB <= "00000000000000000000000000000010";

 vA <= "00000000000000000000000000000101";

 vB <= "00000000000000000000000000001000";

 A_Sdat <= '1';

 B_Sdat <= '1';

 Arqst <= '1';

 Brqst <= '1';

 wait;

 end process;

 clock: process

 begin

 clk <= '0';

 wait for 5 ns;

 clk <= '1';

 wait for 5 ns;

 end process;

 rst: process

 begin

123

 reset <= '1';

 wait for 10 ns;

 reset <= '0';

 wait;

 end process;

end tb;

 PiSDM_chip.vhd:

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

entity SDM_chip is

 port(clk, reset: in std_logic;

 uA, vA, uB, vB: in std_logic_vector(31 downto 0);

 Ao, Bo: out std_logic_vector(31 downto 0));

end;

architecture structural of SDM_chip is

 component SDM_TI

 port(clk, reset: in std_logic;

 r, a1, a2, b1, b2, I: out std_logic_vector(31 downto

0));

 end component;

 component SDM_regA

 port(clk, reset: in std_logic;

 r, a1, b1, uA, vA: in std_logic_vector(31 downto 0);

-- TI input and additive shares

 U1, V1: out std_logic_vector(31 downto 0); -- Step 1

output to B

 U2, V2: in std_logic_vector(31 downto 0); -- Step 2

input from B

 X: out std_logic_vector(31 downto 0); -- Step 3

output to B

 Aout: out std_logic_vector(31 downto 0));

 end component;

 component SDM_regB

 port(clk, reset: in std_logic;

 a2, b2, I, uB, vB: in std_logic_vector(31 downto 0);

-- TI input and additive shares

 U1, V1: in std_logic_vector(31 downto 0); -- Step 1

input from A

 U2, V2: out std_logic_vector(31 downto 0); -- Step 2

output to A

124

 X: in std_logic_vector(31 downto 0); -- Step 3 input

from A

 Bout: out std_logic_vector(31 downto 0));

 end component;

 signal r, a1, a2, b1, b2, I, U1, V1, U2, V2, X: std_logic_vector(31

downto 0);

begin

 TI: SDM_TI

 port map(clk, reset, r, a1, a2, b1, b2, I);

 A: SDM_regA

 port map(clk, reset, r, a1, b1, uA, vA, U1, V1, U2, V2, X, Ao);

 B: SDM_regB

 port map(clk, reset, a2, b2, I, uB, vB, U1, V1, U2, V2, X, Bo);

end structural;

library ieee;

use ieee.std_logic_1164.all;

use work.MY_PACKAGE.all;

entity PiSDM_ASM_chip is

 port(clk, reset: in std_logic;

 A_Crqst: out std_logic;

 AC: in DATA_ARRAY(1 to 32); -- Shares

 A_Cdat: in std_logic;

 B_Crqst: out std_logic;

 BC: in DATA_ARRAY(1 to 32); -- Shares

 B_Cdat: in std_logic;

 Arqst: in std_logic;

 Ao: out std_logic_vector(31 downto 0);

 Adat: out std_logic;

 Brqst: in std_logic;

 Bo: out std_logic_vector(31 downto 0);

 Bdat: out std_logic);

end;

architecture structural of PiSDM_ASM_chip is

 component PiSDM_TI_ASM

 port(clk, reset: in std_logic;

 Arqst: in std_logic;

 r, a1, b1: out std_logic_vector(31 downto 0);

 Adat: out std_logic;

 Brqst: in std_logic;

 I, a2, b2: out std_logic_vector(31 downto 0);

 Bdat: out std_logic);

125

 end component;

 component PiSDM_A_ASM

 port(clk, reset: in std_logic;

 TIrqst: out std_logic; -- TI request: randomness

 r, a1, b1: in std_logic_vector(31 downto 0); --

randomness

 TIdat: in std_logic; -- TI data valid

 Crqst: out std_logic; -- Shares request

 C: in DATA_ARRAY(1 to 32); -- Shares

 Cdat: in std_logic; -- Shares valid

 Birqst: in std_logic; -- Step1 data request from B

 U1, V1: out std_logic_vector(31 downto 0); -- Step1

output to B

 Bidat: out std_logic; -- Step1 data valid to B

 Borqst: out std_logic; -- Step2 data request to B

 U2, V2: in std_logic_vector(31 downto 0); -- Step2

input from B

 Bodat: in std_logic; -- Step2 data valid from B

 Xrqst: in std_logic; -- Step3 data request from B

 X: out std_logic_vector(31 downto 0); -- Step3 output

to B

 Xdat: out std_logic; -- Step3 data valid to B

 Arqst: in std_logic; -- Step4 request for output

 Aout: out std_logic_vector(31 downto 0); -- Party A

output

 Adat: out std_logic); -- Step4 output valid

 end component;

 component PiSDM_B_ASM

 port(clk, reset: in std_logic;

 TIrqst: out std_logic; -- TI request: randomness

 I, a2, b2: in std_logic_vector(31 downto 0); --

randomness

 TIdat: in std_logic; -- TI data valid

 Crqst: out std_logic; -- Shares request

 C: in DATA_ARRAY(1 to 32); -- Shares

 Cdat: in std_logic; -- Shares valid

 Aorqst: out std_logic; -- Step1 data request to A

 U1, V1: in std_logic_vector(31 downto 0); -- Step1

input from A

 Aodat: in std_logic; -- Step1 data valid from A

 Airqst: in std_logic; -- Step2 data request from A

 U2, V2: out std_logic_vector(31 downto 0); -- Step2

output to A

 Aidat: out std_logic; -- Step2 data valid to A

 Xrqst: out std_logic; -- Step3 data request to A

 X: in std_logic_vector(31 downto 0); -- Step3 input

from A

126

 Xdat: in std_logic; -- Step3 data valid from A

 Brqst: in std_logic; -- Step4 request for output

 Bout: out std_logic_vector(31 downto 0); -- Party B

output

 Bdat: out std_logic); -- Step4 output valid

 end component;

 signal TI_Arqst, TI_Adat, TI_Brqst, TI_Bdat: std_logic; -- TI OCDDC

 signal Step1rqst, Step1dat, Step2rqst, Step2dat, Xrqst, Xdat:

std_logic; -- A&B OCDDC

 signal r, a1, a2, b1, b2, I, U1, V1, U2, V2, X: std_logic_vector(31

downto 0);

begin

 TI: PiSDM_TI_ASM

 port map(clk, reset,

 TI_Arqst, r, a1, b1, TI_Adat,

 TI_Brqst, I, a2, b2, TI_Bdat);

 A: PiSDM_A_ASM

 port map(clk, reset,

 TI_Arqst, r, a1, b1, TI_Adat,

 A_Crqst, AC, A_Cdat,

 Step1rqst, U1, V1, Step1dat,

 Step2rqst, U2, V2, Step2dat,

 Xrqst, X, Xdat,

 Arqst, Ao, Adat);

 B: PiSDM_B_ASM

 port map(clk, reset,

 TI_Brqst, I, a2, b2, TI_Bdat,

 B_Crqst, BC, B_Cdat,

 Step1rqst, U1, V1, Step1dat,

 Step2rqst, U2, V2, Step2dat,

 Xrqst, X, Xdat,

 Brqst, Bo, Bdat);

end structural;

 TB_PiSDM.vhd:

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

use ieee.numeric_std.all;

use work.MY_PACKAGE.all;

entity tb_PiSDM is

127

end;

architecture tb of tb_PiSDM is

 component PiSDM_ASM_chip is

 port(clk, reset: in std_logic;

 A_Crqst: out std_logic;

 AC: in DATA_ARRAY(1 to 32);

 A_Cdat: in std_logic;

 B_Crqst: out std_logic;

 BC: in DATA_ARRAY(1 to 32);

 B_Cdat: in std_logic;

 Arqst: in std_logic;

 Ao: out std_logic_vector(31 downto 0);

 Adat: out std_logic;

 Brqst: in std_logic;

 Bo: out std_logic_vector(31 downto 0);

 Bdat: out std_logic);

 end component;

 signal AC, BC: DATA_ARRAY(1 to 32);

 signal q, expected, calculated: unsigned(31 downto 0);

 signal mult2s: unsigned(32 downto 0);

 signal uA, vA, uB, vB, Ao, Bo: std_logic_vector(31 downto 0);

 signal clk, reset, A_Crqst, A_Cdat, B_Crqst, B_Cdat, Arqst, Adat,

Brqst, Bdat, correct: std_logic;

begin

 q <= "11111111111111111111111111111011"; -- 4294967291

 -- compute expected result

 expected_result: process(AC, BC)

 variable iteration_result: DATA_ARRAY(0 to 32);

 begin

 iteration_result(0) := (0 => '1', others => '0');

 -- compute result

 for_loop: for I in 1 to 32 loop

 iteration_result(I) :=

std_logic_vector((unsigned(iteration_result(I-1)) * ((unsigned(('0' & AC(I))

+ ('0' & BC(I)))) mod q)) mod q);

 end loop;

 expected <= unsigned(iteration_result(32));

 end process;

 -- compute calculated result

 mult2s <= unsigned(('0' & Bo) + ('0' & Ao));

 calculated <= mult2s mod q;

 -- correctness signal

 correctness: process(expected, calculated)

 begin

 if (expected = calculated) then

 correct <= '1';

 else

 correct <= '0';

128

 end if;

 end process;

 uut: PiSDM_ASM_chip

 port map(clk, reset,

 A_Crqst, AC, A_Cdat,

 B_Crqst, BC, B_Cdat,

 Arqst, Ao, Adat,

 Brqst, Bo, Bdat);

 test: process

 begin

 A_Cdat <= '0';

 B_Cdat <= '0';

 wait until A_Crqst = '1' and B_Crqst = '1';

 AC <= ("00000000000000000000000000000001",

"00000000000000000000000000000001", "00000000000000000000000000000001",

"00000000000000000000000000000001",

 "00000000000000000000000000000001",

"00000000000000000000000000000001", "00000000000000000000000000000001",

"00000000000000000000000000000001",

 "00000000000000000000000000000001",

"00000000000000000000000000000001", "00000000000000000000000000000001",

"00000000000000000000000000000001",

 "00000000000000000000000000000001",

"00000000000000000000000000000001", "00000000000000000000000000000001",

"00000000000000000000000000000001",

 "00000000000000000000000000000001",

"00000000000000000000000000000001", "00000000000000000000000000000001",

"00000000000000000000000000000001",

 "00000000000000000000000000000001",

"00000000000000000000000000000001", "00000000000000000000000000000001",

"00000000000000000000000000000001",

 "00000000000000000000000000000001",

"00000000000000000000000000000001", "00000000000000000000000000000001",

"00000000000000000000000000000001",

 "00000000000000000000000000000001",

"00000000000000000000000000000001", "00000000000000000000000000000001",

"00000000000000000000000000000001");

 BC <= ("00000000000000000000000000000000",

"00000000000000000000000000000001", "00000000000000000000000000000001",

"00000000000000000000000000000001",

 "00000000000000000000000000000001",

"00000000000000000000000000000001", "00000000000000000000000000000001",

"00000000000000000000000000000001",

 "00000000000000000000000000000001",

"00000000000000000000000000000001", "00000000000000000000000000000001",

"00000000000000000000000000000001",

 "00000000000000000000000000000001",

"00000000000000000000000000000001", "00000000000000000000000000000001",

"00000000000000000000000000000001",

 "00000000000000000000000000000001",

"00000000000000000000000000000001", "00000000000000000000000000000001",

"00000000000000000000000000000001",

129

 "00000000000000000000000000000001",

"00000000000000000000000000000001", "00000000000000000000000000000001",

"00000000000000000000000000000001",

 "00000000000000000000000000000001",

"00000000000000000000000000000001", "00000000000000000000000000000001",

"00000000000000000000000000000001",

 "00000000000000000000000000000001",

"00000000000000000000000000000001", "00000000000000000000000000000001",

"00000000000000000000000000000001");

 A_Cdat <= '1';

 B_Cdat <= '1';

 Arqst <= '1';

 Brqst <= '1';

 wait until Adat = '1' and Bdat = '1';

 wait for 10 ns;

 A_Cdat <= '0';

 B_Cdat <= '0';

 Arqst <= '0';

 Brqst <= '0';

 wait;

 end process;

 clock: process

 begin

 clk <= '0';

 wait for 5 ns;

 clk <= '1';

 wait for 5 ns;

 end process;

 rst: process

 begin

 reset <= '1';

 wait for 10 ns;

 reset <= '0';

 wait;

 end process;

end tb;

 SC_chip.vhd:

-- Secure Comparison ASM Chip

library ieee;

use ieee.std_logic_1164.all;

use work.MY_PACKAGE.all;

entity SC_ASM_chip is

 port(clk, reset: in std_logic;

 A_Srqst: out std_logic;

 XA, YA: in DATA_ARRAY(1 to 30); -- Shares

130

 A_Sdat: in std_logic;

 B_Srqst: out std_logic;

 XB, YB: in DATA_ARRAY(1 to 30); -- Shares

 B_Sdat: in std_logic;

 Arqst: in std_logic;

 Ao: out std_logic;

 Adat: out std_logic);

end;

architecture structural of SC_ASM_chip is

 component SC_TI_ASM

 port(clk, reset: in std_logic;

 Arqst: in std_logic;

 r, a1, b1: out std_logic_vector(31 downto 0);

 Adat: out std_logic;

 Brqst: in std_logic;

 I, a2, b2: out std_logic_vector(31 downto 0);

 Bdat: out std_logic);

 end component;

 component SC_A_ASM

 generic(N: natural := 30);

 port(clk, reset: in std_logic;

 TIrqst: out std_logic; -- TI request: randomness

 r, a1, b1: in std_logic_vector(31 downto 0); --

randomness

 TIdat: in std_logic; -- TI data valid

 Srqst: out std_logic; -- Shares request

 XA, YA: in DATA_ARRAY(1 to N); -- Shares

 Sdat: in std_logic; -- Shares valid

 Birqst: in std_logic; -- Step1 data request from B

 U1, V1: out std_logic_vector(31 downto 0); -- Step1

output to B

 Bidat: out std_logic; -- Step1 data valid to B

 Borqst: out std_logic; -- Step2 data request to B

 U2, V2: in std_logic_vector(31 downto 0); -- Step2

input from B

 Bodat: in std_logic; -- Step2 data valid from B

 Xrqst: in std_logic; -- Step3 data request from B

 X: out std_logic_vector(31 downto 0); -- Step3 output

to B

 Xdat: out std_logic; -- Step3 data valid to B

 OBrqst: out std_logic; -- Step4 OutB data request

from B

 OB: in std_logic_vector(31 downto 0);

 OBdat: in std_logic; -- Step4 OutB data request from

B

 Arqst: in std_logic; -- Step4 request for output

 Aout: out std_logic; -- Party A output

131

 Adat: out std_logic); -- Step4 output valid

 end component;

 component SC_B_ASM

 generic(N: natural := 30);

 port(clk, reset: in std_logic;

 TIrqst: out std_logic; -- TI request: randomness

 I, a2, b2: in std_logic_vector(31 downto 0); --

randomness

 TIdat: in std_logic; -- TI data valid

 Srqst: out std_logic; -- Shares request

 XB, YB: in DATA_ARRAY(1 to N); -- Shares

 Sdat: in std_logic; -- Shares valid

 Aorqst: out std_logic; -- Step1 data request to A

 U1, V1: in std_logic_vector(31 downto 0); -- Step1

input from A

 Aodat: in std_logic; -- Step1 data valid from A

 Airqst: in std_logic; -- Step2 data request from A

 U2, V2: out std_logic_vector(31 downto 0); -- Step2

output to A

 Aidat: out std_logic; -- Step2 data valid to A

 Xrqst: out std_logic; -- Step3 data request to A

 X: in std_logic_vector(31 downto 0); -- Step3 input

from A

 Xdat: in std_logic; -- Step3 data valid from A

 Brqst: in std_logic; -- Step4 request for output

 Bout: out std_logic_vector(31 downto 0); -- Party B

output

 Bdat: out std_logic); -- Step4 output valid

 end component;

 signal TI_Arqst, TI_Adat, TI_Brqst, TI_Bdat: std_logic; -- TI OCDDC

 signal Step1rqst, Step1dat, Step2rqst, Step2dat, Xrqst, Xdat, OBrqst,

OBdat: std_logic; -- A&B OCDDC

 signal r, a1, a2, b1, b2, I, U1, V1, U2, V2, X, OB: std_logic_vector(31

downto 0);

begin

 TI: SC_TI_ASM

 port map(clk, reset,

 TI_Arqst, r, a1, b1, TI_Adat,

 TI_Brqst, I, a2, b2, TI_Bdat);

 A: SC_A_ASM

 port map(clk, reset,

 TI_Arqst, r, a1, b1, TI_Adat,

 A_Srqst, XA, YA, A_Sdat,

 Step1rqst, U1, V1, Step1dat,

 Step2rqst, U2, V2, Step2dat,

132

 Xrqst, X, Xdat,

 OBrqst, OB, OBdat,

 Arqst, Ao, Adat);

 B: SC_B_ASM

 port map(clk, reset,

 TI_Brqst, I, a2, b2, TI_Bdat,

 B_Srqst, XB, YB, B_Sdat,

 Step1rqst, U1, V1, Step1dat,

 Step2rqst, U2, V2, Step2dat,

 Xrqst, X, Xdat,

 OBrqst, OB, OBdat);

end structural;

 TB_SC.vhd:

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

use ieee.numeric_std.all;

use work.MY_PACKAGE.all;

use work.tb_Xshares.all;

use work.tb_Yshares.all;

entity tb_SC is

end;

architecture tb of tb_SC is

 component SC_ASM_chip is

 port(clk, reset: in std_logic;

 A_Srqst: out std_logic;

 XA, YA: in DATA_ARRAY(1 to 30); -- Shares

 A_Sdat: in std_logic;

 B_Srqst: out std_logic;

 XB, YB: in DATA_ARRAY(1 to 30); -- Shares

 B_Sdat: in std_logic;

 Arqst: in std_logic;

 Ao: out std_logic;

 Adat: out std_logic);

 end component;

 signal XA, YA, XB, YB: DATA_ARRAY(1 to 30);

 signal q: unsigned(31 downto 0);

 signal uA, vA, uB, vB, Bo: std_logic_vector(31 downto 0);

 signal X, Y: std_logic_vector(29 downto 0);

 signal clk, reset, Ao, A_Srqst, A_Sdat, B_Srqst, B_Sdat, Arqst, Adat,

Brqst, Bdat, expected: std_logic;

begin

 q <= "11111111111111111111111111111011"; -- 4294967291

133

 expected_result: process(XA, YA, XB, YB)

 variable count: natural;

 variable YgX: std_logic;

 variable Xi, Yi: std_logic_vector(31 downto 0);

 begin

 count := 1;

 YgX := '0';

 while (count < 30) and (YgX = '0') loop

 Yi :=

std_logic_vector(unsigned(('0'&std_logic_vector(YA(count))) +

('0'&std_logic_vector(YB(count)))) mod q);

 Xi :=

std_logic_vector(unsigned(('0'&std_logic_vector(XA(count))) +

('0'&std_logic_vector(XB(count)))) mod q);

 if Yi > Xi then

 YgX := '1';

 end if;

 count := count + 1;

 end loop;

 expected <= YgX;

 end process;

 uut: SC_ASM_chip

 port map(clk, reset,

 A_Srqst, XA, YA, A_Sdat,

 B_Srqst, XB, YB, B_Sdat,

 Arqst, Ao, Adat);

 test: process

 begin

 A_Sdat <= '0';

 B_Sdat <= '0';

 wait until A_Srqst = '1' and B_Srqst = '1';

 XA <= XSA;

 YA <= YSA;

 XB <= XSB;

 YB <= YSB;

 X <= XS;

 Y <= YS;

 A_Sdat <= '1';

 B_Sdat <= '1';

 Arqst <= '1';

 Brqst <= '1';

 wait until Adat = '1' and Bdat = '1';

 wait for 10 ns;

 A_Sdat <= '0';

 B_Sdat <= '0';

 Arqst <= '0';

 Brqst <= '0';

 wait;

 end process;

 clock: process

134

 begin

 clk <= '0';

 wait for 5 ns;

 clk <= '1';

 wait for 5 ns;

 end process;

 rst: process

 begin

 reset <= '1';

 wait for 10 ns;

 reset <= '0';

 wait;

 end process;

end tb;

 TB_XSHARES.vhd:

library ieee;

use ieee.std_logic_1164.all;

use work.MY_PACKAGE.all;

package tb_Xshares is

 constant XS: std_logic_vector(29 downto 0) :=

"000000000000000000000000011111";

 constant XSA: DATA_ARRAY(1 to 30) := (

 "01011110101001111111010001000101", "01101111100011010011000011100101",

 "11100111100011101110101110111010", "01100111000101111000101110000000",

 "11001000010100011100111110001100", "00101100111000001100010110001010",

 "11010110110010000100001001011100", "11111001001011001110100100100111",

 "00100101110111110110011000101101", "01001101100101101100000000000010",

 "11110001010001110011101111100011", "10101101101101011011001000111011",

 "01101101101110001001101001110000", "11110101001001111101011011110100",

 "10010110001011101101100000010001", "11110111010010101110111010011001",

 "00001101000011100100000011001100", "00111101010000001110001101111111",

 "11100010101010010100111011000111", "00001011011011111000101011010111",

 "00101000111111001000100111000100", "01111000010000001111010011101100",

 "01001111010000100011110000101110", "01101010001111001110100001101101",

 "11101110000110000000110011011110", "11101100001100000110100110001011",

 "10010111110001110100011001011011", "10001010101001001010101100001000",

"00000110100101010110010010001100",

"01111110001110001011110000011011");

 constant XSB: DATA_ARRAY(1 to 30) := (

 "10100001010110000000101110110110", "10010000011100101100111100010110",

 "00011000011100010001010001000001", "10011000111010000111010001111011",

 "00110111101011100011000001101111", "11010011000111110011101001110001",

 "00101001001101111011110110011111", "00000110110100110001011011010100",

 "11011010001000001001100111001110", "10110010011010010011111111111001",

 "00001110101110001100010000011000", "01010010010010100100110111000000",

 "10010010010001110110010110001011", "00001010110110000010100100000111",

135

 "01101001110100010010011111101010", "00001000101101010001000101100010",

 "11110010111100011011111100101111", "11000010101111110001110001111100",

 "00011101010101101011000100110100", "11110100100100000111010100100100",

 "11010111000000110111011000110111", "10000111101111110000101100001111",

 "10110000101111011100001111001101", "10010101110000110001011110001110",

 "00010001111001111111001100011101", "00010011110011111001011001110001",

 "01101000001110001011100110100001", "01110101010110110101010011110100",

"11111001011010101001101101110000",

"10000001110001110100001111100001");

end tb_Xshares;

 TB_YSHARES.vhd:

library ieee;

use ieee.std_logic_1164.all;

use work.MY_PACKAGE.all;

package tb_Yshares is

 constant YS: std_logic_vector(29 downto 0) :=

"000000000000000000000000111111";

 constant YSA: DATA_ARRAY(1 to 30) := (

 "01011110101001111111010001000101", "01101111100011010011000011100101",

 "11100111100011101110101110111010", "01100111000101111000101110000000",

 "11001000010100011100111110001100", "00101100111000001100010110001010",

 "11010110110010000100001001011100", "11111001001011001110100100100111",

 "00100101110111110110011000101101", "01001101100101101100000000000010",

 "11110001010001110011101111100011", "10101101101101011011001000111011",

 "01101101101110001001101001110000", "11110101001001111101011011110100",

 "10010110001011101101100000010001", "11110111010010101110111010011001",

 "00001101000011100100000011001100", "00111101010000001110001101111111",

 "11100010101010010100111011000111", "00001011011011111000101011010111",

 "00101000111111001000100111000100", "01111000010000001111010011101100",

 "01001111010000100011110000101110", "01101010001111001110100001101101",

 "11101110000110000000110011011110", "11101100001100000110100110001011",

 "10010111110001110100011001011011", "10001010101001001010101100001000",

"00000110100101010110010010001100",

"01111110001110001011110000011011");

 constant YSB: DATA_ARRAY(1 to 30) := (

 "10100001010110000000101110110110", "10010000011100101100111100010110",

 "00011000011100010001010001000001", "10011000111010000111010001111011",

 "00110111101011100011000001101111", "11010011000111110011101001110001",

 "00101001001101111011110110011111", "00000110110100110001011011010100",

 "11011010001000001001100111001110", "10110010011010010011111111111001",

 "00001110101110001100010000011000", "01010010010010100100110111000000",

 "10010010010001110110010110001011", "00001010110110000010100100000111",

 "01101001110100010010011111101010", "00001000101101010001000101100010",

 "11110010111100011011111100101111", "11000010101111110001110001111100",

 "00011101010101101011000100110100", "11110100100100000111010100100100",

 "11010111000000110111011000110111", "10000111101111110000101100001111",

 "10110000101111011100001111001101", "10010101110000110001011110001110",

 "00010001111001111111001100011110", "00010011110011111001011001110001",

136

 "01101000001110001011100110100001", "01110101010110110101010011110100",

 "11111001011010101001101101110000",

"10000001110001110100001111100001");

end tb_Yshares;

137

APPENDIX C. OTHER CODE

ModelSim-Altera Macro Files:

 tb_sdm.do:

add wave reset

add wave clk

add wave uA

add wave uB

add wave vA

add wave vB

add wave uut/TI/D

add wave uut/TI/count

add wave uut/B/CS

add wave uut/A/CS

add wave uut/A/countn

add wave Arqst

add wave Ao

add wave Adat

add wave Brqst

add wave Bo

add wave Bdat

add wave mult1

add wave mult2

add wave correct

#property wave -radix unsigned /tb_sdm/uA

#property wave -radix unsigned /tb_sdm/uB

#property wave -radix unsigned /tb_sdm/vA

#property wave -radix unsigned /tb_sdm/vB

#property wave -radix unsigned /tb_sdm/Ao

#property wave -radix unsigned /tb_sdm/Bo

#property wave -radix unsigned /tb_sdm/mult1

#property wave -radix unsigned /tb_sdm/mult2

run 1280 ns

 tb_pisdm.do:

add wave reset

add wave clk

add wave Arqst

add wave Ao

add wave Adat

add wave Brqst

add wave Bo

add wave Bdat

add wave expected

add wave calculated

138

run 13100 ns

 tb_sc.do:

add wave reset

add wave clk

add wave X

add wave Y

add wave uut/A/OutA

add wave uut/A/OutB

add wave uut/A/OutS

add wave Arqst

add wave Ao

add wave Adat

add wave expected

run 13100 ns.

Supporting C Files for Generating Shares:

 GenerateShares.h:

// #defines for Debugging

#define VERBOSE_GEN (0)

// #defines

#define BIT_MASK (0x00000001)

#define WORD_SIZE (32)

#define q (4294967291U)

#define FILE_MAX_LENGTH (20)

// Enum type for WriteVhdlFile return code

typedef enum returnCode

{

 INCORRECT_SHARES = -1,

 ERROR_OPENING_FILE = 0,

 SUCCESS

}returnCode;

// Generate Shares prototype

extern void GenerateShares(uint32_t *pX, uint32_t *pA, uint32_t *pB);

// Write Shares to File Prototype

extern returnCode WriteVhdlFile(FILE * pFile, const char *fileName, const

char *sharesName, uint32_t *pX, uint32_t *pA, uint32_t *pB);

139

 GenerateShares.c:

// System #includes

#include <stdio.h>

#include <stdlib.h>

#include <stdint.h>

#include <time.h>

// Custom #includes

#include "GenerateShares.h"

// ASCII numeric offset #define

#define ASCII_NUMERIC_OFFSET (0x30)

// private prototype

static void Uint32toBinaryString(uint32_t *pX, char *binaryString);

static void WriteVhdlPackageHeader(FILE * pFile, const char* packageName);

static void WriteVhdlPackageShares(FILE *pFile, const char *name, uint32_t

*pX, uint32_t *pA, uint32_t *pB);

static void WriteVhdlPackageFooter(FILE * pFile, const char* packageName);

// Generate Shares Definition

void GenerateShares(uint32_t *pX, uint32_t *pA, uint32_t *pB)

{

 // Counter variable and array to hold each bit of X

 int i;

 uint32_t X[WORD_SIZE];

 // Seed Pseudo-random Number Generator

 srand(time(NULL));

 // Populate array with bits (1 to 32)

 for(i = 0; i < WORD_SIZE; i++)

 {

 // Set bit

 X[i] = ((*pX) >> (31-i)) & BIT_MASK;

 #if (VERBOSE_GEN == 1)

 printf("Bit %02u: %u\n", i+1, X[i]);

 #endif // VERBOSE_GEN

 }

#if (VERBOSE_GEN == 1)

 printf("RAND_MAX = %#x\n", RAND_MAX);

#endif // VERBOSE_GEN

 for(i = 0; i < WORD_SIZE; i++)

 {

 // Generate random shares

 pA[i] = ((rand() % 4) + (rand() << 2) + (rand() << 17)) % q;

 pB[i] = X[i] + (q - pA[i]) % q;

 #if (VERBOSE_GEN == 1)

140

 printf("Calculated bit %02u: 0x%08x + 0x%08x mod q = %u\n", i+1,

pA[i], pB[i], (pA[i] + pB[i]) % q);

 #endif // VERBOSE_GEN

 }

}

// Create VHDL file containing a package with the shares

// Write Shares to File and returns -1 if shares are incorrect, 0 if file

fails to open, 1 if success.

returnCode WriteVhdlFile(FILE * pFile, const char *packageName, const char

*sharesName, uint32_t *pX, uint32_t *pA, uint32_t *pB)

{

 // Counter variable and array to hold each bit of X

 int i, areSharesCorrect = 1;

 uint32_t X[WORD_SIZE];

 char *fileName;

 // Populate array with bits (VHDL: 1 to 32)

 for(i = 0; i < WORD_SIZE; i++)

 {

 // Set bit

 X[i] = ((*pX) >> (31-i)) & BIT_MASK;

 if(X[i] != ((pA[i] + pB[i]) % q))

 {

 areSharesCorrect = 0;

 #if (VERBOSE_GEN == 1)

 printf("incorrect share %02u", i);

 return INCORRECT_SHARES;

 #endif // VERBOSE_GEN

 }

 }

 if(areSharesCorrect)

 {

 fileName = calloc((size_t)(FILE_MAX_LENGTH + 1), sizeof(char));

 snprintf(fileName, FILE_MAX_LENGTH, "%s.vhd", packageName);

 pFile = fopen(fileName,"w");

 if (pFile == NULL)

 {

 return ERROR_OPENING_FILE;

 }

 else

 {

 WriteVhdlPackageHeader(pFile, packageName);

 WriteVhdlPackageShares(pFile, sharesName, pX, pA, pB);

 WriteVhdlPackageFooter(pFile, packageName);

 fflush(pFile);

 fclose (pFile);

 }

 }

 return SUCCESS;

141

}

// Declare and define package

static void WriteVhdlPackageHeader(FILE *pFile, const char* packageName)

{

 // Check just in case

 if (pFile == NULL)

 {

 printf("invalid file\n");

 }

 else

 {

 fprintf(pFile, "library ieee;\n");

 fprintf(pFile, "use ieee.std_logic_1164.all;\n");

 fprintf(pFile, "use work.MY_PACKAGE.all;\n\n");

 fprintf(pFile, "package %s is\n", packageName);

 }

}

// end package definition

static void WriteVhdlPackageFooter(FILE *pFile, const char* packageName)

{

 // Check just in case

 if (pFile == NULL)

 {

 printf("invalid file\n");

 }

 else

 {

 fprintf(pFile, "end %s;\n", packageName);

 }

}

// Subroutine to write a value and its bit-shares to the VHDL package

static void WriteVhdlPackageShares(FILE *pFile, const char *name, uint32_t

*pX, uint32_t *pA, uint32_t *pB)

{

 if (pFile == NULL)

 {

 printf("invalid file\n");

 }

 else

 {

 // counter variable

 int i;

 // character array to be used for writing to the stream

 char *binaryString;

 // Allocate memory for binaryString with null terminator

 binaryString = calloc((size_t)(WORD_SIZE + 1), sizeof(char));

 // Get X easy-to-print string from subroutine and print to stream

142

 Uint32toBinaryString(pX, binaryString);

 fprintf(pFile, "\tconstant %s: std_logic_vector(31 downto 0) :=

\"%s\";\n\n", name, binaryString);

 // Get XA(1) easy-to-print strings from subroutine and print to

stream

 Uint32toBinaryString(&pA[0], binaryString);

 fprintf(pFile, "\tconstant %sA: DATA_ARRAY(1 to 32) := (\t\"%s\",

", name, binaryString);

 // Get XA(2 to 31) easy-to-print strings from subroutine and

print to stream

 for(i = 1; i < WORD_SIZE-1; i++)

 {

 Uint32toBinaryString(&pA[i], binaryString);

 fprintf(pFile, "\"%s\",", binaryString);

 if((i % 2) == 1)

 {

 fprintf(pFile, "\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t");

 }

 else

 {

 fprintf(pFile, " ");

 }

 }

 // Get XA(32) easy-to-print strings from subroutine and print to

stream

 Uint32toBinaryString(&pA[31], binaryString);

 fprintf(pFile, "\"%s\");\n\n", binaryString);

 // Get XB(1) easy-to-print strings from subroutine and print to

stream

 Uint32toBinaryString(&pB[0], binaryString);

 fprintf(pFile, "\tconstant %sB: DATA_ARRAY(1 to 32) := (\t\"%s\",

", name, binaryString);

 // Get XB(2 to 31) easy-to-print strings from subroutine and

print to stream

 for(i = 1; i < WORD_SIZE-1; i++)

 {

 Uint32toBinaryString(&pB[i], binaryString);

 fprintf(pFile, "\"%s\",", binaryString);

 if((i % 2) == 1)

 {

 fprintf(pFile, "\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t");

 }

 else

 {

 fprintf(pFile, " ");

 }

 }

143

 // Get XB(32) easy-to-print strings from subroutine and print to

stream

 Uint32toBinaryString(&pB[31], binaryString);

 fprintf(pFile, "\"%s\");\n", binaryString);

 // Free memory

 free(binaryString);

 }

}

// Subroutine to convert an unsigned 32-bit number to a char array for easy

printing

static void Uint32toBinaryString(uint32_t *pX, char *binaryString)

{

 int i;

 for(i = 0; i < WORD_SIZE; i++)

 {

 binaryString[i] = ASCII_NUMERIC_OFFSET + (((*pX) >> (31-i)) &

BIT_MASK);

 }

}

 main.c:

/*

 * Author: Gerardo Zamora Garcia

 * Copyright: AwwYiss!

 */

// Necessary system #includes

#include <stdio.h>

#include <stdlib.h>

#include <stdint.h>

// Necessary user #includes

#include "GenerateShares.h"

// Debug #define

#define DEBUG_MAIN (1)

// Program's main function

int main(int argc, char *argv[])

{

 // needed variables

 uint32_t X, Y, XA[WORD_SIZE], XB[WORD_SIZE], YA[WORD_SIZE],

YB[WORD_SIZE];

 returnCode codeX, codeY;

 FILE *pFileX, *pFileY;

144

 // Begin ROI

 // read in X and Y

 printf("Input X to Generate Shares: ");

 scanf("%u", &X);

 printf("Input Y to Generate Shares: ");

 scanf("%u", &Y);

 printf("\n");

 // Generate Shares for X and Y

 GenerateShares(&X, XA, XB);

 GenerateShares(&Y, YA, YB);

 // Write VHDL packages for X and Y

 codeX = WriteVhdlFile(pFileX,"tb_Xshares", "XS", &X, XA, XB);

 codeY = WriteVhdlFile(pFileY,"tb_Yshares", "YS", &Y, YA, YB);

#if (DEBUG_MAIN == 1)

 switch(codeX)

 {

 case INCORRECT_SHARES:

 printf("X: shares are not correct. Check GenerateShares

algorithm!\n");

 break;

 case ERROR_OPENING_FILE:

 printf("X: error opening the file!\n");

 break;

 case SUCCESS:

 printf("Borat X: Great Success *thumbs up*\n");

 break;

 }

 switch(codeY)

 {

 case INCORRECT_SHARES:

 printf("Y: shares are not correct. Check GenerateShares

algorithm!\n");

 break;

 case ERROR_OPENING_FILE:

 printf("Y: error opening the file!\n");

 break;

 case SUCCESS:

 printf("Borat Y: Great Success *thumbs up*\n");

 break;

 }

#endif // DEBUG_MAIN

 // End ROI \o/

 return 0;

}

