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ABSTRACT 

Due to negative effects of petroleum-based plastic waste on environment, a significant 

consideration is given to biopolymers as sustainable alternatives. However, incompetence in 

technology and cost prevent the applications of biopolymers. This study evaluated the effect of 

compatibilizer and wood fiber filler on five types of biopolymers. To assess weathering 

characteristics, biocomposites were subjected to 2000 h of accelerated weathering. 

Biocomposites were soil buried at temperatures of 30°C and 60°C for quantifying 

biodegradation. Compatibilization improved thermal and physico-mechanical properties. All 

properties deteriorated upon weathering, but no considerable differences were observed between 

compatibilized and uncompatibilized composites. After soil biodegradation, weight loss and 

increased water absorption were observed. Biodegradation was significant after soil burial at 

60°C. Compatibilized composites after 30°C soil burial showed lower biodegradation than 

uncompatibilized composites, but at 60°C, it was reversed.  Results confirm improved properties 

with compatibilization without affecting UV weathering characteristics, and achieving higher 

biodegradation at elevated temperatures. 
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1 

DISSERTATION ORGANIZATION 

This dissertation consists of a general introduction and six chapters. Chapter 1 is a 

literature review of current state of art in the field of biopolymers and degradation. Chapter 2, 

titled “Compatibilization improves physico-mechanical properties of biodegradable biobased 

polymer composites”, discusses the effects of compatibilizer on five types of biopolymer 

composites with wood fiber filler on physical, mechanical and thermal properties. Chapter 3, 

titled “Compatibilization improves performance of biodegradable biopolymer composites 

without affecting UV weathering characteristics”, describes the effects of accelerated weathering 

on five types of neat biopolymers and their compatibilized and uncompatibilized composites. In 

addition to physical, mechanical and thermal properties, surface color change and optical 

microscopy images were taken to assess the degradation rate. Chapter 4, titled “Biodegradation 

properties of compatibilized biopolymer composites” summarizes the effects of 

compatibilization of five types of biobased polymer composites on soil biodegradation 

properties. Biodegradation rate was determined by the weight loss. Chapter 5 discusses the 

general conclusions based on chapter 2, 3 and 4 research work. Important aspects of processing 

of the polymers have been addressed in chapter 6, titled “Recommendations for future work.” 

The appendix at the end of the dissertation contain supplementary material. 

Two manuscripts are currently under review for journal publications. The research results 

are presented at two conferences including Association for the Advancement of Industrial Crops, 

and Advancements in Fiber-Polymer Composites Symposium. 
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GENERAL INTRODUCTION 

Petroleum based polymer products have become indispensable in our society due to their 

wide variety of applications in packaging, agriculture, food, medical appliances and construction 

materials. However, widespread use of petroleum in production of plastics has a negative impact 

on environment because of the CO2 released and long degradation life of plastics. Due to the 

finite supply of petroleum and the increasing concern of environmental pollution, a special 

emphasis has been placed on biodegradable polymers from renewable resources. Use of 

renewable resources decreases the dependence of petroleum and waste accumulation. 

Biodegradability, biocompatibility, air permeability and low temperature sealability are 

beneficial properties of biopolymers that are invaluable in agricultural, packaging and medical 

applications. Nonetheless, replacing petroleum based polymers with biodegradable biobased 

alternatives is a challenge due to technical and economic complications (Halley & Dorgan, 

2011). 

Biopolymers are expensive compared to petroleum-based polymers. They are brittle, 

sensitive to thermal degradation, and have other inferior physical properties. Natural fibers are 

added to biopolymers to counter some of these undesirable properties creating biocomposites. 

Natural fibers are inexpensive and abundantly available in nature. Properties such as low density, 

high specific strength, biodegradability, and non-abrasiveness of natural fibers are vital in 

polymer composites (Saheb & Jog, 1999). In order to use biocomposites in commercial 

applications, it is important to study their degradation characteristics under different 

environmental conditions. Degradation is usually evaluated by weight loss and deterioration of 

physico-mechanical properties when subjected to degrading environments.  
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 Even though creating biocomposites with natural fibers are a solution in terms of 

strength and dimensional stability, these biocomposites exhibit poor physico-mechanical 

properties due to poor adhesion between the hydrophobic polymer matrix and hydrophilic fiber 

(Luckachan & Pillai, 2011). The fiber-matrix interaction can be improved by incorporating 

reactive functional groups such as compatibilizers to composites. Compatibilizers bond with 

fiber by covalent and/or hydrogen bonding, and molecular entanglement with the polymer matrix 

(Gunning, Geever, Killion, Lyons, & Higginbotham, 2014). Compatibilization is shown to 

improve strength properties of some polymer composites (Gunning, Geever, Killion, Lyons, & 

Higginbotham, 2013). Effect of compatibilization of biodegradable biobased polymers with 

wood fiber is not well known yet. Also, long-term performance of biocomposites with 

compatibilizers in outdoor conditions need further investigations. Low soil biodegradation rate 

due to increased water resistance of compatibilized biocomposites is a potential drawback of 

compatibilization (C.-S. Wu, 2009; C. S. Wu, 2006, 2012). However, studies showed increased 

water absorption of biobased biodegradable polymers at higher temperatures indicating an 

opportunity to achieve higher biodegradation, as the activity of microorganisms is closely 

connected to the presence of water (Grundmann, Bilitewski, Zentner, Wonschik, & Focke, 

2013). 

Despite the positive impact of biodegradable biopolymers on the environment, these 

polymers need to be engineered to have comparably good performance. Further investigations 

should be done regarding the degradation characteristics of these composites in order to 

understand their durability in degrading environment, and gain technological usefulness of the 

biopolymers in commercial applications. 
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Research Objectives 

The overall goal of this research project was to evaluate thermal, physical, mechanical 

and degradation properties of biodegradable biobased polymer composites. The specific 

objectives of this research were to: 

I. Evaluate the effect of wood fiber filler and compatibilizer on five different 

biobased biodegradable polymers in terms of mechanical, thermal and water 

absorption properties. 

II. Asses the wood fiber filler and compatibilizer on biobased biodegradable 

polymers under accelerated UV weathering. 

III. Asses the effect of wood fiber filler and compatibilizer on soil biodegradation 

properties of biopolymers under different temperatures. 
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CHAPTER 1. LITERATURE REVIEW 

Petroleum based polymers cause substantial environmental problems at disposal because 

of their slow degradation and harmful degradation products. Most of the plastic wastes end up in 

landfills, causing water and soil pollution. Biobased biodegradable polymers and natural fibers 

have the advantage of low environmental impact and high sustainability. They reduce waste 

accumulation, control carbon dioxide emission and minimize the dependency on petroleum-

based products. Incorporation of natural fibers to biobased polymers can increase in specific 

strength and degradation rate, while reducing its cost. During biodegradation, polymers 

experience deterioration in physical and chemical properties, and reduced molecular mass as a 

result of microbial activity. This chapter discusses the current state of knowledge on the behavior 

of biobased biodegradable polymers and their composites when subjected to soil, aerobic, 

anaerobic, UV accelerated weathering and thermal degradation. Effects of chemical additives 

such as compatibilizers to biobased polymers and composites are also discussed. A range of 

biobased biodegradable polymer composites are presented in this chapter, focusing on their 

degradation characteristics and mechanisms, and applications. 

Biobased Biodegradable Polymers 

Polymers can be produced from various renewable and nonrenewable resources. 

Biobased polymers are the polymers produced by or from living systems. There are some 

biobased plastics that are not biodegradable. For example, biobased polyethylene is not 

biodegradable. Biodegradable plastics are polymers that degrade from the action of 

microorganisms. Not all biodegradable plastics are biobased (Figure 1.1). There are synthetic 

polymers produced from nonrenewable petroleum resources that are biodegradable (Vroman & 

Tighzert, 2009). This chapter discusses the degradation characteristics of biobased biodegradable 
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polymers and composites. As Figure 1.2 illustrates, these biobased biodegradable polymers can 

be divided into three categories:  (i) those synthesized from bio-derived monomers (PLA), (ii) 

those produced by microorganisms (PHAs, bacterial cellulose), and (iii) those directly extracted 

from biomass with partial modification to meet the requirements (Bessadok, Belgacem, 

Dufresne, & Bras, 2010; Madbouly et al., 2012).  

 

 

Figure 1.1. Types of Biopolymers (adapted from Madbouly et al., 2012) 
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Figure 1.2.  Origin of Biobased Biodegradable Polymers (adapted from Madbouly et al., 2012) 
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a number of bacteria. The PHBV copolymer is produced by incorporating 3-hydroxyvalerate 

(3HV) units into PHB segments (Rutkowska et al., 2008). During degradation, PHA polymer is 

too large in size to be conveyed directly through the bacterial cell wall, so it should be permuted 

into corresponding hydroxyl acid monomers (Gilmore, Fuller, & Lenz, 1990). Monomers are 

soluble in water and small enough to diffuse through the cell wall. Under aerobic conditions they 

produce CO2 and water by being metabolized by β-oxidation and tricarboxylic acid cycle. Under 

anaerobic conditions, methane is also produced (Shah, Hasan, Hameed, & Ahmed, 2008).  

Starch is the most common, abundant and cheap biopolymer. It is mainly extracted from 

potatoes, corn, wheat and rice. Starch is biodegraded via hydrolysis of acetal link by enzymes. 

Starch is usually used as a thermoplastic. Thermoplastic starch (TPS) is produced by plasticizing 

starch through destructuration of molecules that are capable of hydrogen bonding with hydroxyl 

groups of starch.  However, TPS tend to have poor mechanical properties as it is highly sensitive 

to humidity and water content. Nevertheless, due to its low cost and widespread availability, 

starch has been incorporated into many products.  

Degradation 

There are  many types of polymer degradation mechanisms: thermal, mechanical, 

chemical, biological and chemical degradation (Schnabel, 1981). According to ASTM definition, 

“degradable plastics are the plastics that are designed to undergo a significant change in its 

chemical structure under specific environmental conditions, resulting in a loss of some properties 

that may vary as measured by standard methods appropriate to the plastic and the application in a 

period of time that determines its classification” (Müller, 2005). This definition can be applied to 

many polymer degradation types (Hamid, 2000).  

Biodegradation: Degradation of the polymers due to the microorganism attacks. 
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Chemical degradation: Occurs when the polymers brought into contact with chemicals 

such as acids, bases, solvents, etc. 

Thermal degradation: It is the molecular deterioration of polymer due to heat. For 

thermoplastic polymers, this occurs at the melting temperature of the polymer, where the state of 

the polymer is transformed from solid to liquid. The components of the polymer backbone chain 

detach (molecular scission) and react with each other changing the properties of the polymer. 

Mechanical degradation: Macroscopic changes occur in polymer material due to 

compression, tension, and shear forces.  

Photodegradation: When polymers undergo physical and chemical changes due to 

ultraviolet light or visible light, inducing in Norrish reactions and/or crosslinking reactions. 

 Hygrothermal degradation: Substantial loss of weight and mechanical properties of a 

material due to the effects of moisture and temperature (Balakrishnan, Hassan, Imran, & Wahit, 

2011).  

Biodegradation 

Since this chapter focuses on biobased biodegradable polymers, it is important to 

understand the biodegradation process. During biodegradation, living organism breakdown the 

organic substances to smaller and simpler structures resulting in chemical structure changes of 

the material (Figure 1.3). These smaller structures of monomers are mineralized to CO2, H2O, or 

CH4 as end products (Shah et al., 2008). Abiotic parameters are useful factors in initiating the 

biodegradation process, as these parameters help to weaken the polymer structures (Jakubowicz, 

Yarahmadi, & Petersen, 2006; Lucas et al., 2008).  Degraded products are entirely assimilated as 

a food source by soil microorganisms during biodegradation. It returns carbon into the ecosystem 

safely and effectively. Initial breakdown of the polymers prompts different kinds of physical 
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forces to occur such as heating/cooling, freezing/thawing, or wetting/drying, which results in 

mechanical damage in the polymer such as the cracking (Shah et al., 2008). Biodegradation of 

polymers includes the following steps, and the process could stop at any stage (Lucas et al., 

2008).  

(a) Biodeterioration: Microbial and other decomposer organisms or/and abiotic 

factors break the biodegradable materials into small fractions.  

(b) Depolymerization: Microorganisms produces catalytic agents (enzymes and free 

radicals) that could cleave polymeric molecules reducing their molecular weight. 

This process generates units such as oligomers, dimers and monomers, that are 

small in size to transfer through the semi-permeable outer bacterial membranes 

(Shah et al., 2008). 

(c) Assimilation: Transferred molecules are exploited by microbes as carbon and 

energy sources in the cytoplasm to produce storage, vesicles energy, new 

biomass, and many types of metabolites that helps in maintaining cellular activity, 

structure, and reproduction. Thus, microorganisms grow while reproducing and 

consuming nutrient substrate from the environment.  

(d) Mineralization: It is possible for metabolites to be excreted and reach the 

extracellular surroundings. Molecules such as CO2, N2, CH4 and H2O are released 

to the environment. When O2 is available, aerobic microorganisms produce 

microbial biomass, CO2 and H2O. Under anoxic conditions, anaerobic 

microorganisms produce microbial biomass, CO2, CH4, and H2O as end products 

(Shah et al., 2008).  
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Figure 1.3. General mechanism of plastic biodegradation under aerobic and anaerobic conditions 
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Biodegradability of manila hemp fiber reinforced starch-based plastics were studied in 

natural soil (only half buried in soil) and in compost soil (completely buried). The 

biodegradability and mechanical properties of the parts of specimens that were under soil 

changed significantly, while it was insignificant in the part exposed to atmosphere (Ochi, 2011). 

Tensile strength of composites decreased by 80% after 20 days in compost soil and 90 days in 

natural soil. Composted specimens lost 30% of weight at 90°C in 30 days, while the natural soil 

buried specimens had the same weight loss in 180 days, indicating accelerated degradation at 

elevated temperatures. When the specimen interaction with microbes is higher, significant loss of 

weight and strength can be observed.  

Investigation on biodegradability of PLA/kenaf bast fiber (KBF) study showed that the 

decompositions of the composites were faster than pure PLA (Maizatulnisa, Nor Azowa, 

Ruzaidi, Mohd Nazarudin, & Zahurin, 2012). Higher the addition of fiber to the PLA matrix, 

higher the micropore surface area of the PLA/KBF biocomposites were. Thus, the 

biodegradation rate was higher at higher fiber content. Similarly, for PHBV/peach palm particles 

(PPp) composites, soil biodegradation increased with increased content of PPp (Batista et al., 

2010). Distance between the PPp and matrix in the composites amplified as the PPp content was 

increased. Higher the PPp content in the composites, higher the moisture absorption and 

microbial attack due to poor adhesion between PPp and the polymer matrix.  

Sugar palm fiber (SPF) is used as a reinforcement material due to its high durability and 

resistance to seawater. At the end of 72 h of soil burial, sugar palm starch (SPS) lost 63.58% of 

its weight while it was 56.73% for SPF reinforced SPS composites (Sahari, Sapuan, Zainudin, & 

Maleque, 2014). The biodegradation rate of SPS was higher compared to the SPF/SPS 

biocomposites due to higher water intake of SPS, which made it more prone to microorganism 
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attack. Similarly, 8-month soil biodegradation of PHB and potato peel waste fermentation 

residue (PPW-FR) composites showed absolute debonding at higher filler content (50 wt%), 

while for lower (<50 wt%) fiber content composites only exhibited partial degradation (Wei et 

al., 2015). First component that was degraded was PPW-FR, resulting higher amount of PHB and 

holes on the surface of the specimens. In case of PHB, amorphous regions were degraded first 

followed by crystalline regions. 

When PLA/silk fiber 5 wt% composites were immersed in Phosphate Buffered Saline 

(PBs) solution, moisture absorption increased due to hydrophilic properties of the silk, resulting 

in higher biodegradability and reduction in mechanical properties compared to neat PLA (Ho, 

Lau, Wang, & Bhattacharyya, 2011). Tensile strengths of both PLA and composites decreased 

from 70 MPa to 35-40 MPa and to 55-60 MPa, respectively. Another biodegradability study of 

PLA/silk fiber composites that was conducted using PBs (pH 7.4) showed that there were no 

significant differences between the weight loss for both pure PLA and silk/PLA biocomposites 

(Cheung, Lau, Pow, Zhao, & Hui, 2010). After 16 weeks, tensile strengths of the composite and 

neat PLA decreased from 65 MPa to 60 MPa, and from 61 MPa to 42 MPa, respectively. The 

higher property loss in the composites with respect to neat PLA was attributed to higher water 

intake of the composites due to increase in the area available for hydrolysis with the 

reinforcement of hydrophilic silk fiber.  

The enzymatic biodegradation of PLA/cuphea fiber and PLA/lesquerella fiber composites 

revealed that extruded composites were more biodegradable than extruded and injection molded 

composites (Mohamed, Finkenstadt, Rayas‐Duarte, Debra, & Gordon, 2009). Extruded 

composites exhibited 5-6% weight loss, while it was only 1-2% in extruded and injection molded 

composites. Unlike extruded composites, extruded and injection molded specimens had a better 
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fiber encapsulation on the surface. Consequently, enzymes only had access from the cut edges of 

the extruded and injection molded specimens.  

When TPS/modified cellulose biocomposites were aged in Baltic Sea at Nordic Wharf of 

Gdynia harbor, samples showed a clear erosion of the surface and weight loss (Rutkowska & 

Heimowska, 2008). Modified cellulose was more affected by microbial attacks in sea water than 

TPS. Film form of starch/modified cellulose composites showed a more distinct weight changes 

than its sheet form due to large surface development at phase boundary.  

Effect of Compatibilization on Biodegradation 

Mechanical properties of composites strongly depend on the quality of the fiber-matrix 

interface (Batista et al., 2010). The main reason for poor interfacial adhesion between the 

polymer matrix and fibers is the hydroxyl and other polar groups of natural fibers which makes 

them hydrophilic in nature (Spiridon et al., 2013). Hemicelluloses and lignin in natural fibers are 

amorphous with high affinity for water. The hydrophilic fractions of the fibers with their free 

hydroxyl group makes it incompatible with the hydrophobic polymer matrix (Azwa et al., 2013). 

This leads to poor mechanical performance of the composites (Shah et al., 2008; C. S. Wu, 

2012). However, mechanical properties of the biopolymer composites can be enhanced by 

introducing reactive functional groups such as compatibilizers and coupling agents [36, 39]. 

They form both hydrogen and covalent bonds with hydroxyl groups of fiber and molecular 

entanglement with polymer. When sisal fibers (SF 20 wt%) were blended with PLA (PLA/SF), 

and also with acrylic acid-grafted PLA (AA-g-PLA/SF), AA-g-PLA/SF showed higher tensile 

strength, water resistance, and lower biodegradability compared to PLA/SF due to the greater 

compatibility and adhesion (C. S. Wu, 2012). The rate of weight loss of the composites increased 

with increased SF content. Similar results were obtained for green coconut fiber (GCF) blended 
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PLA (PLA/GCF), and maleic anhydride (MA) grafted PLA/GCF composites (C.-S. Wu, 2009). 

After exposing the composites to Burkholderia cepacia bacterium, it was found that 

biodegradation rate of PLA-g-MA/GCF was higher than PLA, but lower than PLA/GCF, and the 

rate increased with addition of GCF. After 21 days, weight loss% of PLA, PLA/GCF and MA-g-

PLA/GCF were about 15%, 80% and 75%, respectively.  

Aerobic biodegradation of PLA/Coir natural fibers with thermoplastic starch (TPS) 

composite with maleic anhydride (MA) under controlled composting conditions was measured 

by the percentage of CO2 produced (Iovino, Zullo, Rao, Cassar, & Gianfreda, 2008). At the end 

of aging period, TPS completely biodegraded due to the microorganism attacks on TPS domains. 

The amount of CO2 produced for uncompatibilized composites was 101.5 g, while it was 95.3 g 

for composites with MA. This was attributed to hindered water or microorganism penetration 

due to improved interface interaction between matrix and fiber (Iovino et al., 2008).  

Similar studies have been conducted for compatibilized PHB composites. Three different 

biocomposites of PHB with hemp, jute and lyocell fibers exhibited decreased melt flow index, 

impact and tensile strength with the addition of fibers (Gunning et al., 2013). After composting 

the samples (30 wt% fiber) using a rotary aerated composter, PHB/jute composites exhibited the 

highest level of biodegradation due to increased water absorption. When MA grafted PHB was 

used with the same fiber types, composites showed improved mechanical properties, but lower 

biodegradation rates (Gunning et al., 2014). However, when the temperature increased to 60°C in 

later weeks in the composter, the biodegradation rate of the composites with MA was higher than 

those without. After 12 weeks at rotary aerated composter, PHB, PHB/jute and MA-g-PHB/jute 

showed a weight loss of 35%, 50% and 80%, respectively. The MA increased fiber dispersion in 

the matrix compared to uncompatibilized ones. Thus, when the fiber debonded from the matrix at 
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higher temperatures, it increased the area available for microbial attack accelerating the 

degradation rate.  

Acrylic acid (AA) grafted PHB/wood flour (Wf) composites subjected to soil and 

enzymatic biodegradation environments showed lower degradation than PHB/Wf, but higher 

than neat PHB (C. S. Wu, 2006). After 12 weeks, residual weight % of PHB/Wf and AA-g-

PHB/Wf in soil was about 72% and 78%, respectively. As the wood flour content was increased, 

degradation rate of the composites increased due to increased difficulty in forming polymer 

chain arrangements. Water resistance was higher in AA-g-PHB/Wf than PHB/Wf composites, 

but lower than neat PHB. Hydrophilic nature of Wf and hydrophobic PHB caused the poor 

adhesion, which increased the water absorption resulting in increased rate of degradation. 

Degradation of Biopolymer Composites due to Weathering 

In order to use biodegradable biopolymer composites in outdoor applications, it is 

important to study the degradation behavior of these biocomposites under long-term weathering. 

To evaluate the weathering characteristics of biocomposites, materials are subjected to different 

weathering environments. 

Accelerated Weathering 

Due to the long-time duration of natural weathering, accelerated weathering is more 

commonly used. In accelerated weathering, the materials are aged in chambers that simulate 

natural environment. To transpire the damages that occurs during the long term outdoor 

exposure, weathering chambers induce harsh conditions with ultraviolet radiation, moisture and 

heat in a controlled manner. The PHB and PHB/hemp fiber composites subjected to accelerated 

weathering for 1998 h exhibited mass loss and fading (Michel & Billington, 2012). The fading 

was a result of absorbing UV by chromophores of hemp fibers and PHB. Mass loss of neat PHB 
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was due to surface erosion and reduction in molecular weight occurred due to UV photo-

oxidative and cyclic hygrothermal degradation mechanism. Mass loss of PHB/hemp composites 

was attributed to weakened adhesion between the matrix and fiber due to different coefficients of 

thermal expansion of the polymer matrix and the fiber. The decline in tensile strength was 30% 

for PHB and 47% for the composites.  

Impact of 600 h accelerated weathering on PLA/chitosan/keratin composites was 

investigated by Spiridon et al (Spiridon, Paduraru, Zaltariov, & Darie, 2013). Upon weathering, 

impact and tensile strength of PLA decreased from 11 to 4 kJ/m2, and from 59 to 13 MPa, 

respectively. For PLA/chitosan and PLA/chitosan/keratin composites, tensile strength changed 

from 36 to 5 MPa and from 50 to 10 MPa. Impact strength remained constant at 8 kJ/m2 for 

composites with keratin, while for PLA/chitosan it changed 7 to 5 kJ/m2. Composites with no 

keratin exhibited higher property loss as a result of swelling of material due to water penetration 

into the hydrophobic matrix and the hydrophilic interface. Another accelerated weathering study 

conducted by Spiridon et al (Spiridon, Leluk, Resmerita, & Darie, 2015) for PLA with softwood 

lignin (LB), and with hardwood lignin (LO) showed deterioration of mechanical properties. 

Before weathering, the composites exhibited a good adhesion with improved thermal and 

mechanical properties. After weathering, Young modulus of the composites exhibited about 8% 

increase, while it decreased by 25% for neat PLA. Weathering decreased impact strength by 17% 

in composites and 60% in neat PLA. Decrease in properties was due to lessened PLA 

macromolecules lengths. Increase in modulus was due to recrystallization of material with 

weathering conditions. 
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Applications 

A majority of biobased polymers are biodegradable and have the ability to replace the 

synthetic plastics. Biocomposites have gained a tremendous attention as they provide unique 

properties that do not exist naturally. Qualities such as biodegradability, air permeability and low 

temperature sealability of biopolymers lead them to be widely used in packaging applications 

(Vroman & Tighzert, 2009). Non-renewable and non-degradable synthetic polymers that used in 

food packaging have many health related issues (Thompson, Moore, Vom Saal, & Swan, 2009). 

Biobased biodegradable polymers provide containment and protection of food, and maintain 

quality and safety of food. Biobased polymers not only provide sustainable alternative for 

packaging but also biodegradability and compostability. 

Following is a list of different applications of biobased biodegradable polymers that were 

discussed in this paper. 

PLA  

Among biopolymers, application of PLA has increased in the recent past due to its high 

mechanical strength, easy processability, and thermal stability (Balakrishnan et al., 2011). Due to 

its lower price and higher biodegradability, its composites have been widely used as packaging 

materials, paper coatings, planting cups, disposable cups and bottles, take-away food trays, 

containers and lawn waste bags. Potential markets for PLA include sustained release systems for 

pesticides and fertilizers, greenhouse films, transparent films for wrapping food and mulch films. 

Since its physical and melt processing properties similar to conventional packaging resins, it can 

be used as a commodity resin for general packaging applications (Petinakis et al., 2013).  

PLA and kenaf fiber composites are employed in electronic applications, and in panels of 

car doors and dashboards. By incorporating carbon and kenaf fibers to PLA, NEC Corporation 
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(Japan) has produced a composite with improved thermal and flame retardancy properties (Babu, 

O’Connor, & Seeram, 2013). Compact disks and computer cases based on PLA were launched 

by Pioneer and Sanyo groups, and Fujitsu Company, respectively (Vroman & Tighzert, 2009).  

As for its high strength and biocompatibility, PLA is frequently used in biomedical 

applications such as plates or screws for the treatment of fractures and to fill in bone defects, and 

as scaffolding to facilitate the formation of new cartilage material in the body. Since it has the 

ability to degrade in human body, PLA sutures are widely used in surgeries (Luckachan & Pillai, 

2011).  

PHA 

The PHAs are used as an alternate for synthetic polymers such as polypropylene and 

polyethylene in agricultural applications. They are commonly used in commercial packaging, 

automotive and construction applications. Also as structural materials in personal hygiene 

products, and small disposable products like bottles, bags, wrapping film and disposable nappies 

(Babu et al., 2013). Biodegradability and apparent biocompatibility are main advantages of 

PHAs (Congress, 1993). Types of PHAs, such as PHB and PHBV are soluble in many solvents 

and can be processed into different shapes (Vroman & Tighzert, 2009). Also, PHB can degrade 

in D-3-hydroxybutyrate, which is a natural constituent of human blood. Thus, PHAs are 

commonly used in medical applications, such as long-term controlled drug release, drug carriers, 

tissue engineering scaffolds, surgical pins, sutures, and bone and blood vessel replacement (Shah 

et al., 2008). However, the brittleness of PHB limits its use in biomaterial. Compared to PHB, 

PHBV is less brittle, which makes PHBV more usable in this area (Congress, 1993).  
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Starch 

Due to excellent biodegradability of starch, it is used in packaging, garbage bags and golf 

tees. Close to 75% of industrial starch produced is used as adhesives in paper, paperboard and 

related industries (Congress, 1993). Thermoplastic starch polymers are used in films, such as for 

overwraps, flushable sanitary product, packing materials, special mulch films, shopping bags and 

fishing bait bags (Babu et al., 2013). Some fishing hooks are also made from starch based 

polymers. Since cornstarch can absorb 1000 times its weight in moisture, it is used in disposable 

diapers, fuel filters to remove water, and as a treatment for burns (Vroman & Tighzert, 2009).  

Other 

Natural plant fibers like pineapple, sisal, coconut, coir, jute, hemp, ramie, flax, palm, 

cotton, rice husk, bamboo, banana and wood have been used as fillers and reinforcements in 

polymer matrix composites due to their light weight and low cost. Natural fiber based 

composites are extremely useful in the applications where high specific strength and stiffness 

required, such as in automobile interior components. Interior parts like absorption panels and 

spare wheel covers of Audi and Ford car models have incorporated jute, sisal and flax fibers 

(Chen, Li, & Ren, 2011). In addition, biocomposites that include fast degrading biomaterials can 

be used in agricultural and horticultural applications in crop/plant containers and agricultural 

mulch films (Wei et al., 2015). 

For use in applications in biomedical area, it is necessary for biobased polymers to be 

biocompatible, bioabsorbable, and to have great mechanical resistance (Vroman & Tighzert, 

2009). Hence, proteins are used in haemostatic agents, sutures and scaffolds for tissue 

engineering and drug delivery systems. Gelatin, which is an animal protein, is used for preparing 



 

22 

biodegradable hydrogels, and for coating and microencapsulating many drugs for biomedical 

applications.  

Bacterial cellulose (BC) is extensively used in foods and acoustic diaphragms for audio 

speakers and headphones. Large surface area and great liquid absorbance properties of BC make 

it to use in very low concentrations to form excellent binding, thickening and coating agents 

(Congress, 1993). Papers that are coated with BC are extremely strong and smooth as the coating 

protects the underlying fibers from moisture. It is also used in medical applications as wound 

dressings and artificial skins, artificial blood vessels and tissue engineering scaffolds (Wan et al., 

2009). Cellulose acetate is used in packaging, for blisters, skins, transparent rigid containers, and 

windows in folding or setup boxes. It is also used as a write-on pressure-sensitive tape such as 

for credit card receipts (Congress, 1993). 

Conclusion 

Biodegradable biobased polymers have gained much interest recently due to their low 

impact to the environment. There are several articles that highlights the importance of utilizing 

polymers and their composites from renewable resources instead of petroleum based polymers. 

Along with desirable properties, biobased polymers have disadvantageous properties in terms of 

strength, dimensional stability, and difficulty in processing. However, by blending biopolymers 

with other natural polymers/fibers, composites can be created with unique properties that do not 

exist naturally.  

When fibers are added to polymers such as PLA, PHB and PHBV, an increase in 

degradation rate can be observed with increased content of fiber due to higher water absorption. 

Thus, fibers weaken the mechanical properties such as tensile and impact strength due to poor 

adhesion between the hydrophobic polymer matrix and the hydrophilic fiber of the composite. 
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However, a greater adhesion can be achieved by introducing reactive functional groups such as 

compatibilizers to the composites. Even though compatibilizers improve the properties of the 

composites they reduce the degradation rate due to higher water resistance. Nevertheless, both 

compatibilized and uncompatibilized composites have shown a complete debonding of fibers and 

matrix, and a complete degradation after some time duration. Overall, degradability of polymers 

depends on many factors such as environmental conditions, polymer chemical composition, 

specimen shape, processing method, fiber-matrix interaction, and microbial characteristics.  

Recent advances in biobased polymers can be found in different sectors such as in 

biomedical area, agriculture, packaging, automotive, construction, electronic applications, and as 

binding, thickening and coating agents. It is clear that most biobased polymers can be engineered 

to have improved physico-mechanical and thermal properties and also can be fully or partially 

degraded with appropriate environmental conditions.  
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CHAPTER 2. COMPATIBILIZATION IMPROVES PHYSICO-MECHANICAL 

PROPERTIES OF BIODEGRADABLE BIOBASED POLYMER COMPOSITES 

Abstract 

Biodegradable biobased polymer composites have the advantage of low environmental 

impact and high sustainability. However, these biocomposites exhibit poor mechanical properties 

due to poor fiber-matrix interfacial interaction. This study evaluated the effect of 

compatibilization of five biocomposites on their physico-mechanical properties. Composites 

were prepared with 30 wt% wood fiber and one of the five biodegradable biopolymer: poly(lactic 

acid) (PLA), polyhydroxybutyrate (PHB), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) 

(PHBV), Bioflex (PLA blend), or Solanyl (starch-based). The composites were compatibilized 

with 2-3 wt% maleic anhydride, and evaluated for melt flow index, water uptake, hardness, 

flexural, compressive, impact and thermal properties. Melt flow index was reduced by 10-16% 

for compatibilized composites implying the crosslinking of the polymer. Compatibilized 

composites of PLA, Bioflex and PHBV exhibited improved thermal and strength properties, and 

reduced water absorption. These improvements were attributed to the enhanced fiber-matrix 

interfacial interaction caused by the compatibilizer. However, compatibilization did not work in 

PHB and Solanyl. 

Introduction 

Biodegradable polymers produced from renewable and biobased resources reduce waste 

accumulation, do not contribute to CO2 emissions and ease dependency on petroleum-based fuels 

and products. Along with their positive impact to environment, biodegradable biobased polymers 

have many other desirable properties such as biocompatibility, bioactivity, chemical inertness, 

high stiffness and strength, good film-forming properties and low toxicity (Bessadok, Belgacem, 
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Dufresne, & Bras, 2010; Suryanegara, Nakagaito, & Yano, 2009). Although biobased polymers 

have numerous benefits compared to conventional plastics, they usually have high cost, higher 

crystallinity, sensitivity to thermal degradation, and poor mechanical properties (W. Srubar et al., 

2012; Suryanegara et al., 2009).  

By blending biobased polymers with other biodegradable natural fillers to create a 

composite, the overall mechanical and degradation properties can be improved while reducing 

cost (Gunning, Geever, Killion, Lyons, & Higginbotham, 2013; Petinakis, Yu, Simon, & Dean, 

2013). Despite higher mechanical properties of synthetic fibers such as glass fibers, natural fibers 

are attractive due to growing concern over environmental and ecological impacts and societal 

preferences. For example, wood fiber (WF) is an inexpensive and readily available byproduct 

from furniture manufacturing and other wood processing businesses that is reused as a filler in 

polymer composites (Shah, Selke, Walters, & Heiden, 2008). Properties such as specific 

strength, ease of separation, low density, and carbon dioxide seizure are beneficial characteristics 

of natural fibers over synthetic fibers such as glass or carbon fibers (Mukherjee & Kao, 2011). 

Natural fibers serve as good reinforcements and fillers in biocomposites for a myriad of reasons 

including low cost, fewer health hazards during processing, less abrasiveness to processing 

equipment, and good specific strength, electric and acoustic properties (Batista, Silva, Coelho, 

Pezzin, & Pezzin, 2010).  

Poor interfacial adhesion between the hydrophobic polymer and hydrophilic natural 

fibers causes decrease in some mechanical strength properties and increase affinity to water of 

the composites (Gunning et al., 2013). Mechanical properties of polymer composites can be 

improved by introducing reactive functional groups such as compatibilizers and coupling agents 

(Gunning, Geever, Killion, Lyons, & Higginbotham, 2014). Grafting a compatibilizer into a 
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polymer enhances the miscibility between the polymer and natural fiber, which improves the 

overall mechanical and thermal properties. One of the most commonly used compatibilizers, 

maleic anhydride (MA), forms hydrogen and covalent bonds with hydroxyl groups of the fiber 

and induce molecular entanglement with the polymer. These bonds improve the adhesion 

between the polymer and the fiber, and a better dispersion of fibers in the polymer matrix. Even 

though there are many studies conducted with several different natural fiber-polymer composites, 

there is only limited research reported on the effect of compatibilization on biodegradable 

biobased polymer composites with wood fiber (WF) as a filler (W. V. Srubar et al., 2012). 

Therefore, a study was conducted to understand the impact of wood fiber fillers and 

compatibilizer on five biodegradable biopolymers. The following questions were asked in this 

study. 

1. How does incorporating wood fiber filler into five different biobased 

biodegradable polymers affect their mechanical, thermal, and water absorption 

properties?  

2. Does compatibilization of the biopolymer-natural fiber composites with MA 

improve their mechanical, thermal, and water absorption properties? 

In this study, five types of MA-compatibilized biocomposites were prepared by 

compounding wood fiber (WF) with five different types of biopolymers: poly(lactic acid) (PLA), 

Bioflex (BF, PLA blend), Solanyl (SL, starch-based), poly(3-hydroxybutyric acid) (PHB), and 

poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). The effect of WF loading and 

compatibilization on mechanical and physical properties was evaluated using tests for water 

absorption, melt flow index, hardness, impact fracture energy, compressive strength, and flexural 

strength and modulus. The influence of compatibilization and WF loading on the melting 
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behavior and crystallinity of biocomposites was studied using Differential scanning calorimetry 

(DSC). 

Experimental Procedure 

Materials 

PLA used in this study was type 2003D from NatureWorks LLC (Minnetonka, MN). 

PLA is produced by polymerization of lactic acid. Lactic acid is a sugar fermentation product 

from corn, sugar beets, sugar cane, or potatoes. The PHB (ENMAT Y3000P) and PHBV 

(ENMAT Y1000P) were supplied by TianAN Biopolymer (Ningbo City, Zhejiang Province, 

China). Both PHB and PHBV are examples of polyhydroxyalkanoates (PHA). 

Polyhydroxyalkanoates are produced by bacterial fermentation of sugar or lipids. Bioflex (BF) 

biopolymer (Bio-Flex® F2110) was obtained from FKuR Plastics (Willich, Germany). Solanyl 

(SL) biopolymer (Solanyl® C2201) was purchased from Rodenburg Biopolymers (Oosterhout, 

Netherlands). The SL is made from potato starch reclaimed from the food processing industry, 

while BF is a PLA blend. Maleic anhydride (63200), Luperox® P: tert-Butyl peroxybenzoate 

(TBPB), benzoyl peroxide (BP), and Luperox 101: 2,5-bis(tert-butylperoxy)-2,5-dimethylhexane 

(L101) were purchased from Sigma-Aldrich Chemical Co. (St. Louis, MO). The WF used in this 

study was from oak wood. 

Polymer Composite Manufacturing 

Preparation of Grafted Polymer 

The procedure for biopolymer grafting included mixing each of the polymer with MA 

and an initiator, and then extruding them with a micro 18 lab-scale twin screw extruder with a 

40/1 length to diameter ratio (Leistritz Ltd., Somerville, NJ). It is a high shear force extruder 

with two co-rotating screws. It is mostly used for blending components. The diameter of the die 
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that was used is about 3 mm. Prior to extrusion, all the polymer pellets were dried according to 

recommended conditions provided by the supplier. The PHB and PHBV polymers were dried at 

80ºC for 2 hours (h), PLA at 80ºC for 6 h, SL at 45ºC for 4 h, and BF at 60ºC for 3 h. For 

grafting, 2-3 wt% of Maleic anhydride (MA) and 0.5-1 wt% of a specific initiator (TBPB, BP, or 

L101) were hand-mixed with each polymer in a zip-lock plastic bag (Table 2.1). The mixture 

was then compounded via extrusion, cut into pellets, and dried at 80ºC in an oven for 12 h. 

Extrusion temperature profiles used for PLA, BF, SL, PHB and PHBV were all different as 

shown in Table 2.2. 

Table 2.1. Compositions of maleic anhydride (MA) grafted Polymers. 

Polymer 

Formulations 

Amount of polymer, MA and initiator used in grafting (wt %) 

PLA BF SL PHB PHBV MA L101 TBPB BP 

MA-g-PLA 97.5     2 0.5   

MA-g-BF  97.5    2 0.5   

MA-g-SL   97.5   2   0.5 

MA-g-PHB    96  3  1  

MA-g-PHBV     96 3  1  

 

Table 2.2. Temperature profile used for extrusion for grafting with maleic anhydride (MA) and 

compounding of polymer with wood fiber (WF). 

Polymer 

Extruder Temperature (ºC) 
Screw 

RPM Zone 

1 

Zone 

2 

Zone 

3 

Zone 

4 

Zone 

5 

Zone 

6 

Zone 

7 

Zone 

8 
Die 

PLA 140 150 160 170 180 190 200 190 180 150 

PHB 130 135 140 145 150 155 160 155 150 200 

PHBV 140 145 150 155 160 170 180 170 160 200 

BF 150 155 160 165 170 175 180 170 160 150 

SL 130 135 140 145 150 150 160 150 140 120 
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Preparation of WF composites 

All the composites were manufactured with 30 (wt%) WF loading. For compatibilized 

composites, WF was hand mixed with grafted polymer and neat polymer pellets according to 

compositions shown in Table 2.3. For uncompatibilized composites, the WF was hand mixed 

only with neat polymer (Table 2.3). The mixture of WF, polymer, and/or MA grafted polymer 

were then compounded using the same twin screw extruder used for the preparation of grafted 

polymer composites, using the same temperature setting shown in Table 2.2. All the extruded 

strands were water cooled, cut into pellets, and dried at 80ºC in an oven for 24 h. 

Table 2.3. Compositions of biocomposites made with five different biopolymers with wood fiber 

(WF), and with and without maleic anhydride (MA). 

Treatment 

No 

Composite 

treatments 

Amount of each ingredient in composite (wt %) 

Polymer 
MA grafted 

polymer 
Wood Fiber 

1 PLA/WF 70 0 30 

2 BF/WF 70 0 30 

3 SL/WF 70 0 30 

4 PHB/WF 70 0 30 

5 PHBV/WF 70 0 30 

6 MA-g-PLA/WF 66 4 30 

7 MA-g-BF/WF 66 4 30 

8 MA-g-SL/WF 66 4 30 

9 MA-g-PHB/WF 65 5 30 

10 MA-g-PHBV/WF 65 5 30 

 

Compression Molding 

After drying, composite pellets were compression molded into 150 mm square, 5 mm 

thick sheets using a Carver hot press (model 3856, Carver Inc., Wabash, IN) at 50 atm pressure. 

The molding temperature was maintained at 180ºC for all polymers except SL, which was kept at 
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150ºC. The molding time was also different for different polymers (Table 2.4). The molded 

sheets were allowed to cool slowly under ambient conditions to prevent cracking.  

Table 2.4. Temperature profile used for compression molding. 

 Temperature (ºC) Time held at 50 atm (min.) 

PLA and composites 180 7 

BF and composites 180 10 

SL and composites 150 10 

PHB and composites 180 8 

PHBV and composites 180 7 

 

Characterization of Composites 

Differential scanning calorimetry 

To determine the thermal properties of composites, approximately 8 mg of each sample 

was characterized using a Q20 Dynamic Scanning Calorimeter (TA Instruments, New Castle, 

DE). All samples were first equilibrated at 25°C, then heated from 25°C up to 200 °C at the rate 

of 10°C/min under N2 atmosphere. From the heating scan, glass transition temperature (Tg), cold 

crystallization temperature (Tcc), melt temperature (Tm), crystallization enthalpy (∆Hc), and 

melting enthalpy (∆Hm) were determined. The degree of crystallinity (X%) of the samples was 

evaluated as follows, (Eq. 2.1):  

                                                    X% = 
∆Hm − ∆HC

∆Hm
0 (wp)

100%                                                             (Eq. 2.1) 

where, wp is the polymer fraction in the composites, and ∆Hm
0  is the estimated melting enthalpies 

of their respected pure polymer, which is 93.7 J/g for PLA and BF, and 146 J/g for PHB and 

PHBV (Abdulkhani, Hosseinzadeh, Dadashi, & Mousavi, 2015; W. Srubar et al., 2012).  
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Melt Flow Index (MFI) 

To measure the changes in MFI that occurred due to fiber loading and compatibilization, 

composite pellet samples were evaluated using a Tinius Olsen melt flow indexer (model 

MP1200, Tinius Olsen, Horsham, PA) according to ASTM D1238 standard (D. ASTM, 2004) 

with a fixed weight of 2.16 kg at melting temperatures provided in the standard and also by the 

polymer supplier (Table 2.5). 

Table 2.5. Temperatures at which MFI was calculated for each polymer. 

Polymer   Temperature (ºC) 

PLA 210 

PHB 180 

PHBV 180 

BF 190 

SL 170 

 

Water Absorption 

To measure the water absorption of samples, Eq. 2.2 was used as specified by ASTM 

D570 standard ("ASTM D570," 2010). All the test specimens were 38.1 mm long and wide, and 

5 mm in thickness. Weights were measured every 24 h for 5 weeks.  

         %Increase in weight (Mt)=  
wet weight −  conditioned weight

conditioned weight
 ×100                (Eq. 2.2) 

Diffusivity (D) was analyzed with the hypothesis of a Fickian mechanism- Fick’s second 

law of diffusion, which is given by Eq. 2.3 (Balakrishnan, Hassan, Imran, & Wahit, 2011): 

                                                     
Mt

Mm
 = 1 −

8

π2
 exp [− (

Dt

h2
) π]                                                    (Eq. 2.3) 

where, ‘t’ is the time, ‘h’ is the thickness of the sample, and Mm is the maximum water 

absorption capacity. The Mm was calculated by taking the average of several consecutive 
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measurements once the sample weight has stabilized. Diffusivity (D) was calculated using Eq. 

2.4 (Balakrishnan et al., 2011): 

                                                           D  = 
πh2(M2-M1)2

16Mm
2 (√t2-√t1)2

                                                         (Eq. 2.4) 

where, M1 and M2 are the %weight gain at times t1 and t2, respectively. 

Mechanical Properties 

Following mechanical properties of the polymers and composites were evaluated (Table 

2.6). Five specimens from each batch were used in each property testing. 

Table 2.6. Evaluated mechanical properties. 

Mechanical 

property tested 

Standard used Equipment used Other 

Impact 

fracture energy 

(notched) 

ASTM D256 

("ASTM 

D256," 2010) 

method A 

Tinius Olsen 

Impact tester 

(model IT504, 

Tinius Olsen, 

Horsham, PA) 

Pendulum with 4.497 N of weight 

and 334.949 mm of radius. Notch of 

2.54 mm was made on each sample. 

Flexural 

modulus and 

strength 

ASTM D790 

(I. ASTM, 

2007) 

Instron 5567 load 

frame (Instron, 

Norwood, MA) 

2kN load cell was used with a cross 

head rate of 2 mm/min. 

Surface 

Hardness 

ASTM D2240 

(D. ASTM, 

2000)  (manual 

operation 

method) 

type D durometer 

(Model 409, S/N 

02015, Davis 

Instrumentation, 

Vernon Hills, IL) 

Eq. 2.5 was used to calculate force. 

Force, N = (0.4445) HD      (Eq. 2.5) 

HD is the hardness reading on 

durometer. 

Compressive 

strength 

ASTM D695 

(International, 

2010) 

Instron 5567 load 

frame (Instron, 

Norwood, MA) 

30kN load cell was used with a cross 

head rate of 1.3 mm/min.  

 

Fourier transform infrared spectroscopy (FTIR) 

FTIR spectroscopy testing of PHB and SL samples was conducted using a Nicolet Magna 

spectrometer (Modal Nicolet 8700, Thermo Scientific, Waltham, MA) and MTEC photoacoustic 
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detector (Model 300, MTEC Photoacoustic Inc., Ames, IA). Analysis was performed with 32 

scans in wavenumbers ranging from 4000 to 650 cm-1 for a spectral resolution of 4 cm-1. 

Gel permeation chromatography (GPC) 

The molecular weight of neat SL and composites was analyzed by a gel permeation 

chromatography (GPC) system (EcoSEC HLC-8320GPC, Tosoh Bioscience, Tokyo, Japan) with 

a differential refractometer (DRI) detector. Tetrahydrofuran (THF) was used as the solvent at a 

flow rate of 0.4 mL/min. The detector temperature was 40°C. The sample concentration was 1.0 

mg/mL in THF, and the injection volume was 20µL. Separations were performed using two 

TSKgel SuperHM-L 6.00 mm ID× 15 cm columns. Calibration was conducted using PS 

standards (Agilent EasiVial PS-H 4ml). 

Data Analysis 

Tukey’s test of multiple comparisons (P < 0.05) was applied to determine significant 

differences between the mechanical properties of neat polymers and composites. Data analysis 

was performed with Minitab software (version 18, Minitab Inc., PA). 

Cost Analysis 

The cost of the neat and composites produced was calculated using Eq. 2.6. Prices for 

polymers and fibers were calculated at the cost per kg for 1 ton of material. Prices of the 

polymers and fiber are in $/kg. 

                   Price per kg  =%F(Fc) + %𝑃(𝑃𝑐) + %𝑀𝐴(𝑀𝐴𝑐) + %𝐼𝑁(𝐼𝑁𝑐)                     (Eq. 2.6) 

  Where, %F is the percentage of fiber used, Fc is the cost of fiber per kg, %P is the 

percentage of polymer used, Pc is the cost of the polymer per kg, %MA is the percentage of MA 

used, MAc is the cost of MA per kg, %IN is the percentage of initiator used, and INc is the cost 

of initiator per kg. 
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Results and Discussion 

 Thermal Properties 

Thermal behavior is a crucial factor in physico-mechanical behavior of polymers as it 

influences the arrangement of amorphous/crystalline phase. Overall, compatibilized composites 

exhibited improved thermal properties compared to the uncompatibilized composites (Table 2.7). 

Table 2.7. Thermal properties of the composites with and without compatibilizer, in relation to 

that of neat polymer used in the study. Here, Tg is glass transition temperature, Tcc is cold 

crystallization temperature, Tm is melting temperature, ∆Hc is crystallization enthalpy, ∆Hm is 

melting enthalpy and X (%) is crystallinity of the specimens. 

Composition 

Tg 

(ºC) 

Tg2 

(ºC) 

Tcc 

(ºC) 

∆Hc 

(J/g) 
Tm1(ºC) Tm(ºC) 

∆Hm 

(J/g) 
X (%) 

PLA 64.2  135.44 3.09  167.8 21.4 19.54 

PLA/WF 61.12  145.45 3.38  164.66 30.77 41.77 

MA-g-PLA/WF 62.52  145.55 3.33  165.33 31.55 43.08 

BF 60.2  101.7 2.61  147.7 5.67 3.26 

BF/WF 59.76  98.05 3.75  146.88 3.98 0.35 

MA-g-BF/WF 62.59 83.78 136.47 0.48  147.14 3.47 4.57 

SL 54  92.8 11.04 137.97 148.49 15.77  

SL/WF 55     152.99 13.87  

MA-g-SL/WF 55.1     149.8 11.53  

PHB 1.07     178.9 100.3 68.7 

PHB/WF -1.97     172.19 61.22 59.9 

MA-g-PHB/WF -4.06     171.8 62.14 59.6 

PHBV -0.33     170.4 110.2 75.48 

PHBV/WF 1.84     160.8 72.4 70.8 

MA-g-PHBV/WF 1.92     161 73.2 71.83 

 

The MA grafted PLA, BF and PHBV composites exhibited an increase in glass transition 

temperature (Tg) compared to uncompatibilized composites, which is in agreement with the 

results obtained by Wu et al (Wu, 2009) for the acrylic acid-grafted PLA composites. The 

addition of WF reduced Tg in PLA, BF, PHB and PHBV compared to the neat polymers due to 
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weak interaction between WF and the polymer matrix. Since the mobility of polymeric chains is 

one of the important factors affecting Tg, the slight increase in Tg in compatibilized composites 

compared to uncompatibilized ones can be ascribed to improved fiber-matrix interactions. 

Grafting MA carboxyl groups to the polymer resulted in restricting the mobility of the polymer 

chains near the fibers due to reduced space available for molecular motion (Wu, 2009). Maleic 

anhydride interacts mainly with hydroxyl groups (-OH) of cellulose to form covalent or 

hydrogen bonding (Babu, O’Connor, & Seeram, 2013). However, Tg of MA grafted PHB 

composites is lower than PHB/WF, which could be an indication of weak fiber-matrix interaction 

in compatibilized composites. The SL/WF composites exhibited higher Tg compared to neat SL, 

but compatibilization did not affect the Tg in SL composite. Starch is a hydrophilic material, and 

SL is a starch based polymer. Thus, there is good compatibility and hydrogen bonding 

interactions between the hydrophilic starch and natural fibers due to chemical similarities (Wan 

et al., 2009). Consequently, the increase in Tg could be due to the intermolecular interactions 

occurring between the starch and WF, which restricted the mobility of the amorphous starch 

chains in contact with WF (Cao, Chen, Chang, Stumborg, & Huneault, 2008). Compatibilized 

BF composites exhibited two glass transition temperatures. This could be due to the 

immiscibility of the composite. Miscibility of the binary polymer blends can be investigated by 

the number of glass transitions (Bourara, Hadjout, Benabdelghani, & Etxeberria, 2014).  

Neat SL exhibited a bimodal melting peak, in which the first melting peak (Tm1) occurred 

at 137.97°C. Polymers exhibit multiple melting peaks due to partial melting, recrystallization, 

and melting of crystals with different lamellar thickness (Gunaratne & Shanks, 2008). With the 

incorporation of WF, the Tm1 peak and cold crystallization diminished. Except for SL, the Tm of 

all the composites with no MA decreased slightly, indicating a weak interaction between WF and 
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the polymer matrix (Abdulkhani et al., 2015). The SL/WF composite exhibited a 4.5 ºC increase 

in Tm compared to neat SL, signifying strong interaction between SL and WF, as expected when 

both matrix and fiber are hydrophilic in nature. On the other hand, the MA grafted PLA, BF and 

PHBV composites exhibited increase in Tm, compared to uncompatibilized composites.  

Addition of WF to neat polymers decreased the crystallinity (X%). This could be a result 

of change in the crystalline structure of the pure polymer matrix due to steric effect, wherein the 

hydrophilic nature of WF led to poor adhesion with hydrophobic polymer matrix (Wu, 2009). 

The compatibilized PLA, BF and PHBV composites showed higher crystallinity compared to 

their uncompatibilized ones. This can be attributed to the nucleating effect of MA, which can 

assist in forming more crystals in the polymer structure (Roumeli et al., 2015). Crystallinity of 

SL could not be determined due to limited availability of necessary information to calculate the 

degree of crystallinity. The higher crystallinity of PLA composites compared to neat PLA 

showed that the presence of WF accelerates the crystallization of PLA (Suryanegara et al., 2009). 

Reduced ∆Hm suggests a less perfect arrangement of polymer crystal structures as WF was added 

to the polymer matrices. Similar results can be seen in the literature for microcrystalline 

cellulose, microfibrillated cellulose, and pulp fiber reinforcements (Mathew, Oksman, & Sain, 

2005; Suryanegara et al., 2009).  

Melt Flow Index (MFI) 

Compatibilized composites exhibited a decrease in MFI compared to their neat polymers 

and composites with no compatibilizer (Figure 2.1). Compatibilized BF, PHB and PHBV 

composites showed about 16% decrease in MFI, while compatibilized PLA and SL exhibited 

10% decrease in MFI compared to their uncompatibilized composites. MFI decreases uniformly 

with increase in degree of crosslinking (Tamboli, Mhaske, & Kale, 2004). MA is an α, β-
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unsaturated carbonyl compound, which has a conjugated structure with a carbon-carbon double 

bond and two carboxylate groups. When an initiator is added, this structure significantly 

increases the graft reactivity of the C=C bond with the polymer matrix, resulting in crosslinking 

or strong interfacial adhesion (Lu, Wu, & McNabb, 2007). Zig-zag structure of a cross linked 

polymer provides the elastic property, thus, increasing the impact properties of the composite 

(Tamboli et al., 2004). In contrast, a previous study has shown that  compatibilization of PHB 

increased its MFI due to increased interaction between the polymer and the fiber, as a result of 

MA side chains (Gunning et al., 2014). 

 

Figure 2.1. Melt flow index of the neat, uncompatibilized and MA compatibilized polymer 

specimens (PLA, BF, SL, PHB and PHBV). 

 

Water Absorption 

The water absorption of the composites was many times higher than the corresponding 

neat polymers (Table 2.8). The SL and its composites exhibited the highest water absorption 

compared to other polymers due to the high hydrophilicity of the starch based SL polymer. The 
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addition of MA decreased the water absorption of composites. The diffusion coefficient (D) 

determines the ability of the solvent to move along the polymer segment. The higher Mm 

(maximum moisture content) values show the increased equilibrium moisture absorption while 

the smaller D values show the decreased moisture diffusion rate (Table 2.8). Higher Mm values 

were observed for PLA, BF and PHBV composites with no compatibilizer. Use of MA resulted 

in reductions in Mm and D for PLA, BF and PHBV composites, as also observed by other 

researchers (Gunning et al., 2014; Wu, 2009). Decrease in Mm in compatibilized composites was 

due to reduced diffusion rate. When compatibilized, improved adhesion between matrix and 

fibers causes to lower the diffusional rate process as there are fewer gaps available in the 

interfacial region. This results in lower water accumulation in the interfacial voids, thus, 

preventing water from entering to natural fiber (Arbelaiz et al., 2005). On the other hand, 

addition of MA to SL and PHB composites did not reduce the Mm and D values with respect to 

their uncompatibilized composites. Instead, those values were slightly higher than that of 

uncompatibilized composites.  
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Table 2.8. Equilibrium water content (Mm) and diffusivity (D) of the neat biopolymer and 

composite specimens. 

Composition Mm D (x 10-6 mm2/s) 

PLA 0.87 4.87 

PLA/WF 11.86 1.3 

MA-g-PLA/WF 7.86 0.88 

BF 1.04 5.71 

BF/WF 7.82 2.11 

MA-g-BF/WF 7.73 1.94 

SL 17.99 2.79 

SL/WF 34.32 9.85 

MA-g-SL/WF 37.29 12.78 

PHB 0.61 2.85 

PHB/WF 10.15 0.84 

MA-g-PHB/WF 11.23 0.86 

PHBV 0.69 1.46 

PHBV/WF 8.64 0.83 

MA-g-PHBV/WF 7.4 0.77 

 

Mechanical Properties 

Impact Properties 

The impact toughness of polymer composites is dependent on the fiber, polymer matrix, 

and their interfacial bonding strength. Addition of WF to neat polymer matrix caused a 

significant decrease in its impact properties for PLA, BF, SL and PHBV (Figure 2.2). Similar 

results were obtained by Gunning et al (Gunning et al., 2013) for fiber reinforced PHB 

composites. However, grafting MA to the polymer significantly improved the impact properties 

of the PLA and BF composites. Compatibilized PLA, BF and PHBV composites exhibited a 

24%, 203% and 24% improvement in impact fracture energies compared to their composites 

with no compatibilizer. This can be ascribed to increased resistance to crack propagation during 

impact due to improved adhesion between the fiber and the matrix (Spiridon, Leluk, Resmerita, 
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& Darie, 2015). The increase in crosslinking in compatibilized composites, as evidenced by the 

decreased MFI, explains the improvements in the  impact properties of compatibilized 

composites (Tamboli et al., 2004). On the other hand, MA-g-SL/WF did not exhibit any 

improvement in impact fracture energy compared to SL/WF. MA grafted PHB composites 

showed 67% decrease, with respect to PHB/WF. This can be attributed to reduced compatibility 

between WF and the polymer as evidenced by the higher Mm and D values in water absorption 

for MA grafted PHB composites. 

 

Figure 2.2. Impact fracture energy of the neat biopolymer and composite specimens. The error 

bars indicate standard deviation. Different letters above the bars indicate statistically significant 

differences at P < 0.05. 

Flexural Properties 

Compatibilization increased flexural strength significantly in PLA composites compared 

to PLA/WF (Figure 2.3). Compatibilized PLA and PHBV composites showed 24% and 11% 

increase over the respective uncompatibilized composites. Compatibilized BF composite 

exhibited an increase of 58% in flexural strength compared to neat BF, and 19% over 

uncompatibilized blends. These improvements were caused by the stronger interface between the 
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fiber and the matrix in MA grafted composites. Similar behavior of compatibilized composites 

can be found in literature (Gunning et al., 2014). The SL was an exception, where fiber fillers 

increased flexural strength by 33% over neat polymer, while MA grafted composited showed 

only 16% increase over neat polymer.  

 

Figure 2.3. Flexural strength of all the 15 biopolymer compositions. The error bars indicate 

standard deviation. Different letters above the bars indicate statistically significant differences at 

P < 0.05. 

Addition of WF caused a substantial increase in the modulus of the polymer composite 

matrix compared to neat polymer (Figure 2.4). Uncompatibilized PLA, BF, SL and PHBV 

composites exhibited 27%, 92%, 119% and 33% increase in flexural modulus, over the neat 

polymer. Overall, compatibilization did not affect flexural modulus of the biopolymer 

composites. These results are contradictory to the findings of Nyambo et al (Nyambo, Mohanty, 

& Misra, 2011) that reported a slight decrease in flexural modulus of PLA/wheat straw when 

compatibilized with 5 phr MA-g-PLA. In contrast, Avella et al (Buzarovska et al., 2007) 

observed significant improvement in flexural modulus for MA compatibilized PHBV/kenaf 

composites compared to neat and uncompatibilized composites.  
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Figure 2.4. Flexural modulus of all the 15 biopolymer compositions. The error bars indicate 

standard deviation. Different letters above the bars indicate statistically significant differences at 

P < 0.05. 

Surface Hardness 

In PLA and PHBV biopolymers, addition of WF decreased the surface hardness, but the 

compatibilization significantly increased it to values similar to the neat polymer (Figure 2.5). 

Both the BF/WF and MA-g-BF/WF composites showed about 14% increase in hardness with 

respect to the neat polymer. In the case of PHB, hardness of compatibilized composites 

decreased by 9% compared to PHB/WF, and by 15% compared to neat PHB. The SL/WF 

showed a 15% increase over neat SL, but no significant difference was observed due to 

compatibilization. Hardness is the resistance of the material surface against the indentation, 

which decreases with the flexibility and mobility of the polymer chain structure. Grafting of MA 

leads to a reduction in chain mobility, thus, increasing the hardness (Mandal, Chakraborty, & 

Siddhanta, 2014). 
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Figure 2.5. Surface hardness of the composite and neat biopolymer specimens. The error bars 

indicate standard deviation. Different letters above the bars indicate statistically significant 

differences at P < 0.05. 

Compressive Strength 

For BF and SL, addition of WF increased the compressive strength by 54%, while the 

addition of MA had no effect on the composites (Figure 2.6). When MA was added to PLA/WF, 

compressive strength increased from 78.7 to 90.7 MPa, which is slightly higher than that of neat 

PLA (87.2 MPa). Compatibilized PHBV exhibited a 22% increase compared to the PHBV/WF. 

However, compatibilization had no significant effect on the compressive strength of all five 

biopolymer composites. Observed reduction in compressive strength in uncompatibilized 

composites with respect to the neat biopolymer can be attributed to voids that generated due to 

poor bonding strength between hydrophobic polymer matrix and the hydrophilic fiber.   
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Figure 2.6. Compressive strength of the biopolymer compositions. The error bars indicate 

standard deviation. Letters above the bars indicate statistically significant differences at P < 0.05. 

Cost Analysis 

The price differences between the neat polymers and the composites are substantial 

(Figure 2.7). However, the difference between the cost of composites with and without MA is 

negligible. 

 

Figure 2.7. Cost of all the neat polymers and their composites with and without compatibilizer. 
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Effect of MA Grafting on Biopolymer- Discussion 

Most thermoplastics are hydrophobic substances that are not compatible with hydrophilic 

WF, thus results in poor adhesion between polymer matrix and WF. Compatibilized 

biopolymer/natural fiber composites are fabricated to increase the interfacial adhesion between 

the hydrophobic polymer matrix and the hydrophilic fibers. When MA is melt mixed with an 

initiator and the polymer via reactive extrusion, the initiator attacks the backbone of the polymer 

and removes a hydrogen molecule to create a radical, so MA can graft. Subsequently, MA 

increases the bonding between the polymer and the fiber, acting as a bridge that links WF and 

thermoplastic polymers by covalent bonding and/or polymer chain entanglement (Gunning et al., 

2014). As can be seen from the results, compatibilized PLA, BF and PHBV composites exhibited 

improved thermal and physico-mechanical properties compared to their uncompatibilized 

composites due to improved interfacial fiber-matrix adhesion. 

Solanyl and PHB composites did not show improvements in thermal and physico-

mechanical properties with compatibilization, as expected. Solanyl used in the study (Solanyl® 

C2201) is certified according to Vinçotte (EN 13432) OK Compost and Vinçotte OK (#3) 

Biobased. Further analysis of SL composites with GPC indicated that both compatibilized and 

uncompatibilized SL composites had similar weight average molecular weight, Mw (Table 2.9). 

The Mw is a good measure of statistical size of the polymer. Higher the molecular weight is, 

higher the mechanical properties of the polymer are.  

Table 2.9. Weight-average molecular weight (Mw) of SL, SL/WF, and MA-g-SL/WF. 

Sample Mw (g/mol) 

SL 61,709 

SL/WF 56,259 

MA-g-SL/WF 56,357 
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MA could be grafted onto the starch backbone, which creates a starch ester bearing a free 

carboxylic acid group. However, the MA moieties grafted onto the starch backbone could 

promote hydrolysis (Raquez, Nabar, Narayan, & Dubois, 2008). Maleation of starch introduce 

maleinates onto starch chains, which contain hydrophilic carboxyl groups, thus significantly 

enhancing hydrophilicity of starch (Zhu & Wang, 2014). This clarifies the increase in water 

absorption in MA grafted SL composites. When WF was added to SL, increase in strength and 

thermal properties (Tm and Tg) were observed due to the intrinsic adhesion of the fiber–matrix 

interface caused by the chemical similarity of both hydrophilic starch and WF, as observed in the 

literature (Ma, Yu, & Kennedy, 2005). 

The similarity between SL and starch, and the effect of grafting of MA onto PHB were 

also analyzed with FTIR spectroscopy. FTIR spectrum of PHB composites was obtained by 

using a Magna spectrometer, while for neat PHB and SL a photoacoustic detector was used due 

to unavailability of Nicolet Magna spectrometer at the time. The FTIR spectral of SL polymer 

was similar to that of yam starch (Figure 2.8) (Ogunmolasuyi, Egwim, Adewoyin, & Awoyinka, 

2016), with similar peaks. Both SL and starch spectra showed distinctive peaks and bands 

including a broad band in the range of 3780–3010 cm-1 for hydrogen bonded hydroxyl groups, 

C–H asymmetric stretching of –CH2–  at 2995-2850 cm-1, C=O stretching at 1650-1750 cm-1, 

characteristic for –CH2– folding between 1450 and 1370 cm-1, CH2OH side chain at the peaks 

around 1250 cm-1, O–C stretching in the range of 1180–960 cm-1, and anhydroglucose ring 

stretching vibrations at 861–575 cm-1. This indicates that SL biopolymer was very similar to 

starch. 
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Figure 2.8. FTIR spectra of (a) SL and (b) Yam starch (Copyright Wiley-VCH Verlag GmbH & 

Co. KGaA. Reproduced with permission (Ogunmolasuyi et al., 2016)). 

FTIR spectroscopy was used to investigate the grafting of MA onto PHB (Figure 2.9). 

FTIR spectra of PHB samples (PHB, MA-g-PHB, PHB/WF, MA-g-PHB/WF) showed 

characteristic peaks of PHB at 2800–3200, 1700–1750, and 600–1500 cm-1. Large peak at 1720 

cm-1 was present in all samples, which represents carbonyl groups in the crystalline region of 

(a) 

(b) 
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PHB. An extra shoulder should be present at 1700-1800 peak in MA grafted composites 

compared to neat PHB, as reported at 1790 cm-1 with 3% MA (Gunning et al., 2014). The extra 

peak is due to a product of free acid from the modified polymer, which exhibits the presence of 

MA. There was no such extra shoulder present for the compatibilized samples in this study, 

indicating that the MA was not grafted to PHB successfully. This can explain why there was no 

improvement shown when MA was added to PHB composite.  

 

 

Figure 2.9. FTIR spectra of PHB composites. (a): MA-g-PHB, MA-g-PHB/WF, PHB/WF from 

Magna spectrometer; (b) PHB from photoacoustic detector. 
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Conclusion 

Compatibilization with maleic anhydride (MA) improved thermal properties such as glass 

transition temperature, melting temperature and crystallinity in PLA, Bioflex (BF, PLA blend) 

and PHBV composites indicating better adhesion between the polymer matrix and wood fiber 

(WF). Melt flow index of compatibilized composites decreased, indicating polymer crosslinking. 

Compatibilized composites of PLA, BF and PHBV showed decreased water absorption. 

Increased resistance to water is a beneficial characteristic, as the water uptake in natural fibers 

composites causes dimensional instability and poor mechanical properties. Mechanical properties 

of MA grafted PLA, BF and PHBV composites increased due to compatibilization as it improved 

fiber-matrix interfacial adhesion. Both Solanyl (SL, starch-based) and BF composites did not 

show any improvements due to compatibilization. A failure to graft MA to PHB successfully, 

and the similarity of molecular weight of grafted and ungrafted SL explain why these composites 

behaved differently.  
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CHAPTER 3. COMPATIBILIZATION IMPROVES PERFORMANCE OF 

BIODEGRADABLE BIOPOLYMER COMPOSITES WITHOUT AFFECTING UV 

WEATHERING CHARACTERISTICS 

Abstract 

With growing interest in the use of eco-friendly composite materials, biodegradable 

polymers and composites from renewable resources are gaining popularity for use in commercial 

applications. However, the long-term performance of these composites and the effect of 

compatibilization on their weathering characteristics are unknown. In this study, five 

biodegradable biopolymer composites were compatibilized with 1-2 wt% maleic anhydride 

(MA), and the effect of accelerated UV weathering on their performance was evaluated against 

composites without MA. The composite samples were prepared with 30 wt% wood fiber and one 

of the five biodegradable biobased polymer: poly(lactic) acid (PLA), polyhydroxybutyrate 

(PHB), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), Bioflex (PLA blend), or Solanyl 

(starch based). The composites were UV weathered for 2000 hours (h), and characterized for 

morphological, physical, thermal and mechanical properties at 0, 1000 and 2000 h of weathering. 

Blends containing MA grafted polymers exhibited improved properties due to increased 

interfacial adhesion between the fiber and matrix. Upon accelerated weathering, overall thermal 

and mechanical properties decreased. Surfaces of the specimens were roughened, and drastic 

color changes were observed. Water absorption increased with increased weathering exposure. 

Even though the compatibilization is shown to improve composite properties before weathering, 

after weathering, no considerable differences in properties were exhibited for the composites 

with MA and without MA. The results suggest that compatibilization improves properties of 

biodegradable biobased composites without affecting its UV degradation properties
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Introduction 

Petroleum-based polymers create substantial environmental problems at disposal due to 

low degradation rates and harmful degradation products such as carbon dioxide. These polymers 

make up about a fifth by volume of all waste generated in the U.S. every year, and contribute to 

global warming (Madbouly et al., 2012). Petroleum is a limited resource that can only last for 

another 50– 60 years at the current rate of consumption (Bronzino, 1999). Due to the 

environmental concerns associated with petroleum-based plastics and the uncertainty in supplies 

of fossil fuels, there is a great impetus on replacing conventional plastics with green/biobased 

biodegradable alternatives. 

Biobased polymers are blended with other biodegradable natural fibers to create 

composites to customize its properties such as crystallinity, thermal degradation and dimensional 

stability (Gunning, Geever, Killion, Lyons, & Higginbotham, 2014; W. Srubar et al., 2012; 

Suryanegara, Nakagaito, & Yano, 2009). Natural fibers serve as good reinforcements and fillers 

in biocomposites for a myriad of reasons including good thermal, electric and acoustic 

properties, fewer health hazards during processing, and less abrasiveness to processing 

equipment compared to conventional inorganic fillers (Batista, Silva, Coelho, Pezzin, & Pezzin, 

2010). In addition to low cost and biodegradability, properties such as specific strength and 

specific stiffness of natural fibers are similar to those of glass fibers due to the lower density of 

natural fibers. Thus, natural fibers are preferred over glass and carbon fibers in some applications 

such as panels of car doors and dashboards, compact disks and computer cases (Vroman & 

Tighzert, 2009).   

Even though the addition of natural fibers to biopolymers can be cost-effective and 

improve some properties, it can weaken other properties such as flexural, impact and tensile 
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strengths due to poor interfacial adhesion between the hydrophobic polymer matrix and the 

hydrophilic fiber (Wei, Liang, & McDonald, 2015). Polymer matrix-fiber compatibility can be 

improved by introducing reactive functional groups such as compatibilizers (Gunning et al., 

2014). Maleic anhydride (MA) is a commonly used compatibilizer. It forms hydrogen and 

covalent bonds with hydroxyl groups of the fiber, and molecular entanglement with the polymer, 

resulting in improved adhesion between the polymer and the fiber (W. V. Srubar et al., 2012). It 

is important to study the long-term behavior of compatibilized biodegradable biopolymer 

composites under accelerated weathering conditions to understand their behavior in degrading 

environments such as the outdoors. Very few studies have addressed the effect of the addition of 

compatibilizers to green composites, and their behavior under accelerated weathering (Michel & 

Billington, 2012; Sahari, Sapuan, Zainudin, & Maleque, 2014; Spiridon, Leluk, Resmerita, & 

Darie, 2015; Spiridon, Paduraru, Zaltariov, & Darie, 2013).  

The objectives of this study are to 1) quantify changes in the physical, mechanical, 

thermal and visual properties of biobased biodegradable polymers and composites under 

accelerated UV weathering, and 2) understand whether the compatibilization affects the long-

term performance of biobased biodegradable polymers with weathering exposure. To the extent 

of our knowledge no research has been presented so far regarding the behavior of these materials 

under accelerated weathering.  

Experimental Procedure 

In this study, composites of five types of biodegradable biopolymers were prepared by 

compounding them with 30 wt% oak-wood fiber (WF) filler with and without 1-2% 

compatibilizer. The five biodegradable biopolymers were poly(lactic acid) (PLA), Bioflex (BF), 

Solanyl (SL), poly(3-hydroxybutyric acid) (PHB), and poly(3-hydroxybutyrate-co-3-
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hydroxyvalerate) (PHBV). The effect of WF filler and compatibilization on thermal, mechanical 

and physical properties were evaluated. To investigate the effects of weathering on 

morphological, mechanical, thermal and physical properties, composite samples were exposed to 

accelerated weathering up to 2000 h. Morphological changes were characterized by using optical 

microscopic images and by measuring color changes. The influence of weathering on the 

crystallinity and melting behavior of biocomposites was studied using Differential scanning 

calorimetry (DSC). Thermogravimetric analysis (TGA) was used to determine degradation 

temperatures. Physical and mechanical properties such as water absorption, flexural strength and 

modulus, impact fracture energy and hardness were evaluated.  

Materials 

The PLA was type 2003D from NatureWorks LLC (Minnetonka, MN). The PHB 

(ENMAT Y3000P) and PHBV (ENMAT Y1000P) were supplied by TianAN Biopolymer 

(Ningbo City, Zhejiang Province, China). Both PHB and PHBV are polyhydroxyalkanoates 

(PHA). Bioflex (BF) biopolymer (Bio-Flex® F2110) is a PLA blend, and was obtained from 

FKuR Plastics (Willich, Germany). Solanyl (SL) biopolymer (Solanyl® C2201) was from 

Rodenburg Biopolymers (Oosterhout, Netherlands). The SL is made from potato starch 

reclaimed from the food processing industry. Maleic anhydride (63200), Luperox® P: tert-Butyl 

peroxybenzoate (TBPB), benzoyl peroxide (BP), and Luperox 101: 2,5-bis(tert-butylperoxy)-2,5-

dimethylhexane (L101) were purchased from Sigma-Aldrich Chemical Co. (St. Louis, MO).  

Polymer Composite Manufacturing 

Preparation of Grafted Polymer 

All the polymer pellets were pre-dried according to the recommendation provided by the 

supplier. The PHB and PHBV polymers were dried at 80ºC for 2 h, PLA at 80ºC for 6 h, SL at 
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45ºC for 4 h, and BF at 60ºC for 3 h. To graft biopolymers, first, each of the polymer was hand-

mixed with MA (2 or 3 wt%) and an initiator (0.5-1 wt%) in a zip-lock plastic bag (Table 2.1). 

Mixture was then extruded using a micro 18 lab-scale twin screw extruder (Leistritz Ltd., 

Somerville, NJ) with a 40/1 length to diameter ratio (Table 2.2). Extruded pallets were dried at 

80ºC in an oven for 12 h.  

Preparation of biodegradable biopolymer composites with wood fiber 

The WF was hand mixed with neat polymer for uncompatibilized composites. For MA 

compatibilized composites, grafted polymer was hand mixed with WF and neat polymer in a zip-

lock bag (Table 2.3). Each of the mixtures (with or without MA grafted polymer) were then 

extruded (Table 2.2), water cooled, cut into pellets and dried at 80ºC in an oven for 24 h. 

Compression Molding 

Dried extruded pellets were compression molded into 150 mm square, 5 mm thick sheets 

using a Carver hot press (model 3856, Carver Inc., Wabash, IN) (Table 2.4). The pressure was 

maintained at 50 atm. The molded sheets were cooled slowly under ambient conditions.  

Accelerated Weathering 

All polymer specimens were placed in a QUV accelerated weathering tester (QUV/Spray, 

Q-Lab Co., OH, USA) according to ASTM G154 standard ("ASTM G154," 2012) for a total of 

2000 h. Each 12 h weathering cycle consisted of 8 h of UV exposure at 60°C and 4 h 

condensation cycle at 45°C. Characterization of the materials were done after 1000 h of 

weathering, and again after 2000 h of weathering. 
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Characterization of Composites 

The composite materials were characterized before weathering, after 1000 h of 

weathering, and again after 2000 h of weathering. However, since the Solanyl composites 

(SL/WF and MA-g-SL/WF) deteriorated after 884 h and 1479 h of weathering, all the 

characterizations were done at 884 h for SL/WF instead of 1000 h, and at 1479 h for MA-g-

SL/WF instead of 2000 h. 

Water Absorption 

The water absorption of samples were measured with Eq. 3.1 specified by ASTM D570 

standard ("ASTM D570," 2010). All the test specimens were 38.1 mm long and wide, while 

maintaining the original thickness of 5 mm. To obtain conditioned weight, samples were dried in 

an oven for 24 h at 50°C and weighed to the nearest 0.001 g. Specimens were then immersed in 

water at room temperature and weights were measured periodically for 5 weeks. Maximum 

moisture content (Mm), which is the maximum water absorption capacity, was calculated by 

taking the average of several consecutive measurements once the sample weight has stabilized. 

              %Increase in weight (Mt)=  
wet weight −  conditioned weight

conditioned weight
 ×100           (Eq. 3.1) 

 

Differential scanning calorimetry 

Thermal properties such as glass transition temperature (Tg), melt temperature (Tm), 

crystallization enthalpy (∆Hc), and melting enthalpy (∆Hm) were determined using Q20 Dynamic 

Scanning Calorimeter (TA Instruments, New Castle, DE). About 8 mg of each sample was first 

equilibrated at 25°C, then heated from 25°C up to 200°C at the rate of 10°C/min. The degree of 

crystallinity (X%) was evaluated according to Eq. 3.2:   

                                                      X% = 
∆Hm − ∆HC

∆Hm
0 *(wp)

100%                                                          (Eq. 3.2) 
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where, wp is the polymer fraction in the composites, and ∆𝐻𝑚
0  is the estimated melting enthalpies 

of their respected pure polymer.  ∆𝐻𝑚
0  of PLA and BF is 93.7 J/g, and for PHB and PHBV it is 

146 J/g (Abdulkhani, Hosseinzadeh, Dadashi, & Mousavi, 2015; W. Srubar et al., 2012).  

Thermogravimetric analysis (TGA)  

Thermogravimetric analysis was performed using a Q500 Thermogravimetric Analyzer 

(TA Instruments, New Castle, DE) under a constant nitrogen flow of 40 mL/min, with a heating 

rate of 20°C/min. About 5-8 mg of each samples were used to perform the heating scans in the 

25–800°C range. The range of temperatures for the thermal degradation was estimated from the 

first derivative (DTG) curves, while the weight loss was determined from the TG plot. 

Optical Microscopy 

Surfaces of all the specimens before and after weathering were observed using OMAX 

AMSCOPE microscope (S7M7045/SZM7045TR, Omax, yeonggi-do, Korea) fitted with OMAX 

A3590U video camera (D/N: UCMOSO9000KPB, P/N: TP609000B) for collecting images. 

Images at 30X magnification were collected and examined using the ToupView 3.7 software that 

came with the camera.  

Color Measurement 

The surface colors of the weathered and non-weathered samples were measured using X-

Rite Spectrophotometer (Model SP62, S/N 000737, X-Rite, Grandville, MI) according to the 

CIELAB color system with L*, a*, b* coordinates. The color parameter L* is for the lightness 

coordinate and has a range of 100 (white) to 0 (dark); a* is for the coordinate of red (+a*) to 

green (-a*); and b* for the yellow (+b*) to blue (-b*) coordinate. The color difference (ΔE*) was 

calculated as specified in ASTM D2244 standard (D. ASTM, 2003) using Eq. 3.3: 
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                                                     ∆E*=√(∆L*)2+(∆a*)2+(∆b*)2                                                         (Eq. 3.3) 

where, ΔL*, Δa*, and Δb* represent the change in initial values of L*, a*, and b*, by the end of 

weathering period, respectively.  

Impact Testing 

To calculate impact fracture energy, impact tests were performed according to ASTM 

D256 standard ("ASTM D256," 2010) method A. Tinius Olsen Impact tester (model IT504, 

Tinius Olsen, Horsham, PA) was used with a pendulum of 4.497 N weight and 334.949 mm 

radius. Five specimens per batch were tested, and a notch of 2.54 mm was made on each sample 

to ensure failure. 

Flexural Testing 

To calculate flexural strength and modulus, three-point bending tests were performed 

according to ASTM D790 standard (I. ASTM, 2007) procedure A with an Instron 5567 load 

frame (Instron, Norwood, MA). A 2kN load cell was used at a cross head rate of 2 mm/min. Test 

specimens were 12.7 mm wide and 152.4 mm long with 5 mm thickness. Five specimens from 

each batch were tested.  

Hardness 

A type D durometer (Model 409, S/N 02015, Davis Instrumentation, Vernon Hills, IL) 

was used to measure the surface hardness of the composite samples. In this method, the 

resistance force of the penetration of durometer pin into the test specimen is measured. Five 

readings were taken for each batch to obtain an average value. As indicated in ASTM D2240 (D. 

ASTM, 2000) (manual operation method), Eq. 3.4 was used to calculate force: 

                                                      Force, N=(0.4445)HD                                                        (Eq. 3.4) 
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where, HD is the hardness reading on type D durometer.  

Data Analysis 

Tukey’s test of multiple comparisons was applied to determine significant differences 

between the mechanical properties of neat polymers and composites at each of the weathering 

period. P < 0.05 was used to determine statistical significance. Data analysis was performed with 

Minitab software (version 18, Minitab Inc., PA). 

Results and Discussion 

Optical Microscopy 

Micrographs of the composite samples before UV weathering showed that all the neat 

polymers and their composites had even color distribution with smooth polymer layers on top 

(Table 3.1-3.3) exhibiting decent encapsulation of fibers (Krehula et al., 2014). With weathering 

exposure, all the specimens showed roughened surfaces due to matrix degradation. Matrix 

degradation occurs under UV weathering through polymer chain scission, which leads to more 

crystalline regions in the polymer structure (Rahman et al., 2011). The cracking can be observed 

on these formed crystalline regions during weathering. Formation of cracks in the specimen with 

weathering is a result of chemicrystallization (due to photo-oxidation), in which the scission of 

polymer chain occur in amorphous regions, and then released and crystallized onto pre-existing 

crystals (Fabiyi, McDonald, Wolcott, & Griffiths, 2008). For instance, at 1000 h, PLA only had a 

few voids on the surface (Table 3.1). Those voids developed into cracks on the surface after 2000 

h, where PLA had an extreme brittleness with a glassy texture, which was broken down into 

pieces eventually. 
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Table 3.1. Comparison of surface morphology of the specimens before and after weathering at 

1000h and 2000h for five biopolymers, and their composites with and without compatibilizer: 

PLA, PLA/WF, MA-g-PLA/WF, BF, BF/WF, MA-g-BF/WF. 

Composition 
Weathering exposure 

0 h 1000 h 2000 h 

PLA 

   

PLA/WF 

 
  

MA-g-PLA/WF 

   

BF 

   

BF/WF 

  
 

MA-g-BF/WF 
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Table 3.2. Comparison of surface morphology of the specimens before and after weathering at 

1000h and 2000h: PHB, PHB/WF, MA-g-PHB/WF, PHBV, PHBV/WF, MA-g-PHBV/WF. 

Composition 
Weathering exposure 

0 h 1000 h 2000 h 

PHB 

   

PHB/WF 

   

MA-g-

PHB/WF 

 
  

PHBV 

 

 

 

PHBV/WF 

   

MA-g-

PHBV/WF 
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Table 3.3. Comparison of surface morphology of the specimens before and after weathering at 

1000h and 2000h: SL, SL/WF, MA-g-SL/WF. 

Composition 
Weathering exposure 

0 h 1000 h 2000 h 

SL 

  
 

SL/WF 

  

 

 

 

 

 

 

 

 

 

 

MA-g-SL/WF 

   
* Taken after 884 h of weathering. **Taken after 1479 h of weathering.   

For all the composites, the cracks were formed in between the polymer matrix and the 

wood fibers (WF). Most noticeably, protrusion of WF from the surface can be seen in the 

composites (Table 3.3). This can be ascribed to swelling and shrinking of the WF due to the 

higher moisture absorption of hydrophilic WF compared to the matrix during the repeated 

moisture-UV cycles. When polymer matrix is subjected to UV, it accelerates the matrix 

degradation, resulting detachment of WF and the polymer matrix. The cracks generated on the 

specimens can also be due to both polymer photo-degradation and fiber swelling (Butylina, 

Hyvärinen, & Kärki, 2012). From Table 3.1-3.3, it can clearly be seen that only a few cavities 

and/or cracks occurred after 1000 h of weathering on all the polymer specimens. For example, 

** 

* 
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BF only had a very few number of cavities at 1000 h, however the number of cracks dramatically 

increased after 2000 h of weathering (Table 3.1). As the surface matrix layer cracked under the 

combined action of UV radiation and water, both degradation agents penetrated deeper into the 

composite, resulting in more degradation and deterioration of interfacial properties.  

Surface Color of Composite Material 

Lightness (ΔL*) of all the specimens increased with increased weathering time except for 

BF and SL (Figure 3.1). Before weathering, SL and BF exhibited pure white color. After 

weathering exposure, BF turned to a yellowish color, while SL exhibited dark spots on the 

surface. At 2000 h, BF was the only specimen that had a positive Δb* value, which indicated its 

yellowness. Black mold spots of SL can be the cause for its lower ΔL* values. Whitening of all 

other specimens can be attributed to increased diffuse reflectance due to increased surface 

roughness, and photo-oxidation that occurred as a result of polymer degradation by UV (Michel 

& Billington, 2012; Rahman et al., 2011). Color change of all the composites can be attributed to 

photo-degradation of conjugated structure of WF under UV and condensation cycles, and to the 

photo-oxidation of lignin (Chen, Stark, Tshabalala, Gao, & Fan, 2016; Peng, Liu, Cao, & Chen, 

2014). Photodegradation of lignin is initiated by UV absorbance, forming free radicals and 

chromophore groups, which results in color changes after weathering (Peng et al., 2014). 
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Figure 3.1. The lightness (ΔL*) and total color changes (ΔE*) of the specimens after 2000h of 

accelerated weathering. Different letters above the bars indicate statistically significant 

differences type at P < 0.05 between the specimens in each polymer type. The error bars show 

standard deviation. 

NOTE: • Measured after 884 h of weathering, and ••Measured after 1479 h of weathering.   

Even though ΔE* of compatibilized composites were slightly lower than their 

uncompatibilized composites by the end of 2000 h, according to Tukey’s test (P > 0.05), there is 

no significant difference between ΔE* of compatibilized and uncompatibilized composites 

except for PHBV (Figure 3.1). Interestingly, at 1000 h, all the uncompatibilized composites 

exhibited lower or similar ΔE* values with respect to their compatibilized composites (Figure 

3.2). For instance, from 1000 h to 2000 h, ΔE* of PHBV/WF changed from 29 to 44, while for 

MA-g-PHBV/WF, it was from 32 to 36 (Figure 3.2b). Except for PLA composites, overall color 

change was more significant in the composites compared to neat polymers (Figure 3.1). This 

result is in agreement with a similar study on polypropylene composites, where the color change 
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increased with increasing content of wood in the composites (Butylina et al., 2012). The color of 

neat PLA was transparent before weathering, but turned into white with weathering exposure. 

This could be the reason for exhibiting higher color change in neat PLA compared to its 

composites. For all the specimens, rate of color change was higher during the first 1000 h (Figure 

3.2). Similar behavior was observed by other researchers (Butylina et al., 2012; Peng et al., 2014; 

Rahman et al., 2011). 

                                                                                                                                                       

Figure 3.2. The total color change (ΔE*) of the 15 biopolymer compositions during 2000 h of 

weathering: (a) PLA, PLA/WF, MA-g-PLA/WF, BF, BF/WF, MA-g-BF/WF; (b) PHB, 

PHB/WF, MA-g-PHB/WF, PHBV, PHBV/WF, MA-g-PHBV/WF; (c) SL, SL/WF, MA-g-

SL/WF. 
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Water Absorption 

Water absorption is a critical factor affecting dimensional stability, material degradation 

and long-term performance. Higher the water absorption, higher the degradation rate of a 

material is (Wan et al., 2009).  

As the samples degraded under UV weathering, water absorption of all the specimens 

increased (Figure 3.3).  The SL had the highest water absorption, having the highest Mm of 

51.28%, which indicated its higher hydrophilicity than other polymers (Table 3.4). The SL/WF 

and MA-g-SL/WF lasted only for 884 h and for 1479 h of weathering, respectively. At 884 h, 

SL/WF had a Mm of 36.58%, while MA-g-SL/WF had 30.76% at 1000 h. These were the highest 

Mm exhibited at half way of weathering. Higher moisture absorbance of SL composites due to 

hydrophilicity of both SL and WF can be the reason for early deterioration of these composites.  

 

Figure 3.3. Maximum moisture (Mm) content of the 15 biopolymer compositions before 

weathering, and after1000 h and 2000 h weathering (884 h instead of 1000 h for SL/WF, and 

1479 h instead of 2000 h for MA-g-SL/WF). 

NOTE: Reduced Mm with weathering is due to the destruction of the material few days after 

subjecting the samples to water absorption. 
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Table 3.4. Maximum moisture content (Mm) and standard deviation of the composite and neat 

biopolymer specimens before weathering, and 1000h and 2000h after weathering. 

Composition 
0 h 1000 h 2000 h 

Mm SD± Mm SD± Mm SD± 

PLA 0.87 0.05 0.50 0.03 0.73 0.12 

PLA/WF 11.86 2.60 12.06 0.52 17.01 0.58 

MA-g-PLA/WF 7.86 0.19 12.66 1.11 14.74 0.30 

BF 1.04 0.15 0.83 0.05 1.04 0.05 

BF/WF 7.82 0.60 7.56 0.52 10.18 0.20 

MA-g-BF/WF 7.73 0.17 7.30 0.28 10.84 1.66 

SL 17.99 0.12 25.90 0.54 51.28 2.81 

SL/WF 34.32 0.38 36.58* 1.84   

MA-g-SL/WF 37.29 1.11 30.76 1.89 39.16** 2.00 

PHB 0.61 0.08 0.31 0.03 0.26 0.10 

PHB/WF 10.15 0.67 8.65 0.19 9.62 0.57 

MA-g-PHB/WF 11.23 1.49 9.40 0.26 10.95 0.50 

PHBV 0.69 0.09 0.43 0.04 0.51 0.06 

PHBV/WF 8.64 0.51 8.09 0.27 9.07 0.22 

MA-g-PHBV/WF 7.40 0.60 9.06 0.21 9.01 0.41 

* Measured after 884 h of weathering, and **Measured after 1479 h of weathering. 

The higher water absorption of the composites compared to the neat polymers was also 

due to the degradation of WF with weathering exposure, in addition to the hydrophilicity of WF. 

The low water absorption after 1000 h of weathering is an indication of surface degradation of 

the composite instead of the bulk. With time, surface degradation develops and prompts 

microcracks in the composite, resulting in higher water absorption (Krehula, Katančić, Siročić, & 

Hrnjak-Murgić, 2014).  Microspores are also formed at the fiber-matrix interface due to 

weakened interfacial adhesion in composites. Microspores allow water to be diffused into the 

matrix easily (Balakrishnan, Hassan, Imran, & Wahit, 2011). For instance, at 1000 h, Mm of 

PLA/WF was 12.06% while it increased to 17.01% by the end of 2000 h of weathering. The 

PLA, BF, MA-g-SL/WF, PHB, PHB/WF and PHBV exhibited an irregular pattern of Mm 
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(increased and then decreased) with increased weathering time. For example, 0.69% Mm of 

PHBV was decreased to 0.43% after 1000 h of weathering, and then it increased to 0.51% at 

2000 h. Reduced Mm values with weathering can be due to deterioration of those specimens in 

water after one week of time, which resulted in lower specimen weight values. Except for PLA, 

no considerable difference was shown for the composites with and without MA after 2000 h of 

weathering.  

Differential scanning calorimetry (DSC) 

With weathering exposure, overall, Tg shifted slightly to lower temperatures for all the 

specimens except for MA-g-PLA/WF and BF (Table 3.5). The reduction can be attributed to 

plasticization effect of absorbed water. Water is a key factor in aging. When water enters in 

between the polymer chains, the mobility of the polymer chains increases, decreasing the Tg. 

Another reason for the shift of Tg is the degradation effect of water on amorphous and crystalline 

regions of the material (Niaounakis, Kontou, & Xanthis, 2011). Degradation can take place 

mainly in the amorphous regions of the polymer by chain scission, whereas the UV prompted 

crosslinking can occur in the imperfect crystalline regions (Spiridon et al.). In addition, 

plasticization effect of water prompts the growth of crystals. Higher the water absorption, higher 

the plasticization effect is, which results in higher crystallinity (X %) (Acioli‐Moura & Sun, 

2008). Amount of increase in X (%) in uncompatibilized composites was higher than the 

compatibilized composites. In the case of BF/WF, UV weathering increased the crystallinity by 

≈2400% (from 0.35 to 8.86%) after 2000 h, while it was only a 62% increase for MA-g-BF/WF 

(from 4.57% to 7.41%). This can be attributed to improved fiber-matrix interaction with the 

addition of MA, which reduced the water absorption of composites. However, there were no 
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considerable differences in X (%) between the compatibilized and uncompatibilized composites 

by the end of 2000 h of weathering except for PLA composites. 

Table 3.5. Thermal properties of the unweathered composite specimens with and without 

compatibilizer, in relation to neat polymer, for the five biopolymers used in the study. Here, Tg is 

glass transition temperature, Tm is melting temperature, and X (%) is crystallinity of the 

specimens. 

Composition 

0 h 1000 h 2000 h 

Tg 

(ºC) 
Tm(ºC) 

X 

(%) 

Tg 

(ºC) 
Tm(ºC) 

X 

(%) 

Tg 

(ºC) 
Tm(ºC) X (%) 

PLA 64.2 167.8 19.54 59.98 166.88 24.4 61.56 151.24 63.52 

PLA/WF 61.12 164.66 41.77 62.66 164.49 50.87 60.46 165.53 50 

MA-g-

PLA/WF 
62.52 165.33 43.08 62.7 163.99 46.5 65.8 165.48 42.97 

BF 60.2 147.7 3.26 60.25 149.65 6.8 61.33 151.85 7.34 

BF/WF 59.76 146.88 0.35 61.54 148.25 7.24 57.85 151.02 8.86 

MA-g-

BF/WF 
62.59 147.14 4.57 59.35 153.11 10.71 60.65 150.31 7.41 

SL 54 148.49 *** 51.83 148.25 *** 51.44 148.54 *** 

SL/WF 55 152.99 *** 53.4* 152.35* ***   *** 

MA-g-

SL/WF 
55.1 149.8 *** 56.22 153.65 *** 54.2** 

153.11

** 
*** 

PHB 1.07 178.9 68.7 0.39 169.11 56.25 -1.08 162.88 65.14 

PHB/WF -1.97 172.19 59.9 -2.06 173.61 53.94 -1.72 168.43 62.29 

MA-g-

PHB/WF 
-4.06 171.8 59.6 -2.44 168.65 58.72 -3.66 172.58 63.91 

PHBV -0.33 170.4 75.48 -1.36 173.23 65.34 -0.45 172.42 68.42 

PHBV/WF 1.84 160.8 70.8 1.52 167.3 71.07 0.88 166.54 68.16 

MA-g-

PHBV/WF 
1.92 161 71.83 0.72 172.39 61.44 -0.56 165.84 69.38 

* Measured after 884 h of weathering, and **Measured after 1479 h of weathering.  

*** Crystallinity of SL, could not be determined due to limited availability of necessary 

information to calculate the degree of crystallinity.                                                                                                                                                                                                                     

Unlike PLA or BF polymers/composites, neat PHB and PHBV and their composites only 

had a slight change in crystallinity.  For instance, crystallinity of neat PLA increased from 19.5% 

to 63.5%, whereas PHB only changed by 5% by the end 2000 h weathering exposure. As Srubar 
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et al (W. Srubar et al., 2012) explained, with aging, PHB and PHBV exhibit a gradual 

rearrangement of the inter-lamellar amorphous regions only with slight changes in crystalline 

structure and its stability. Both PHB and PHBV undergo long-term degradation/aging period in 

amorphous region (W. Srubar et al., 2012). 

Most of the specimens showed slightly lower melting temperatures with weathering. This 

was a result of both enhanced mobility of chains combined with higher crystal formation with 

lower melting points (Niaounakis et al., 2011). Chain scission of the polymers increases the 

mobility of the polymer chains, which can be result in modifications in crystalline region. These 

split chains rearranged into more organized structure (Iovino, Zullo, Rao, Cassar, & Gianfreda, 

2008). Hence, the reduction in Tm can be attributed to consequent molecular weight reduction 

and breakage of polymer chains (Iovino et al., 2008). Photodegradation of polymers after 

exposure to weathering can be one other reason for lower Tm as well as for lower Tg (Spiridon et 

al.). However, after 2000 h, Tm of all the BF specimens increased by 5°C.  

 Thermo-Gravimetric Analysis (TGA) 

TGA delivers a good insight of the polymer behavior during oxidation or thermal 

degradation. The thermogravimetric parameters determined from differential thermo-gravimetric 

(DTG) curve included the starting thermal degradation temperature (Tonset), the temperature 

corresponding to the maximum mass loss (Tpeak), and the temperature corresponding to the end 

of the thermal degradation stage (Tendset). The total weight loss (W%) was also determined from 

the TG plots (Table 3.6).  
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Table 3.6. Starting thermal degradation temperature (Tonset), the temperature corresponding to the 

maximum mass loss (Tpeak), the temperature corresponding to the end of the thermal degradation 

stage (Tendset), and the total weight loss (W%) for the five biopolymers and their composites, 

derived from thermo-gravimetric analysis. 

 

The TG data shows that the decomposition of PLA started at 282.6°C and completed at 

368°C. During PLA degradation, many gaseous products such as cyclic oligomers, lactide 

molecules, acetaldehyde, carbon monoxide, and CO2 are released (Spiridon et al., 2013). The 

total weight loss (W%) for PLA was 98.6%. However, it was about 10% less for PLA 

composites. Overall, the W% of every composite was lower than their neat polymers. For all the 

PLA composites, DTG curves only showed one peak, with different Tpeak values (Figure 3.4a). 

The addition of MA substantially increased the thermal stability of PLA and BF composites. 

When WF was added to PLA and BF, the thermal degradation (Tonset1) started about 30°C and 

50°C earlier. With the incorporation of MA, Tonset1 increased by about 12-15°C for both PLA and 

BF. This can be attributed to improved fiber-matrix interfacial adhesion. With MA, it requires a 

Sample 
T onset1 

(°C) 

T peak1 

(°C) 

T endset1 

(°C) 

T onset2 

(°C) 

T peak2 

(°C) 

T endset2 

(°C) 
W% 

PLA 282.57 355 368    98.55 

PLA/WF 251.06 345 396    87.5 

MA-g-PLA/WF 263.66 363 402    91.07 

BF 309.58 366 379 379 408 455 88.92 

BF/WF 251.06 355 367 367 403 452 84.79 

MA-g-BF/WF 265.46 352 371 371 398 454 86.12 

SL 254 341 405 405 453 484 92 

SL/WF 243 352 410 410 446 478 86.29 

MA-g-SL/WF 245 348 401 401 446 485 87.28 

PHB 238.04 264 287    92.78 

PHB/WF 249.67 302 336 336 376 402 91.92 

MA-g-PHB/WF 242.96 307.26 337.16 337.16 366.12 398.79 90.62 

PHBV 261.43 293 305    97.1 

PHBV/WF 246 296 328 328 372 399 90.76 

MA-g-PHBV/WF 245 295 327 327 365 397 91.55 
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larger amount of energy to decompose the matter due to improved interfacial adhesion between 

the matrix and fiber (Acioli‐Moura & Sun, 2008; Wong, Shanks, & Hodzic, 2004). 

 

 

Figure 3.4. First derivative thermo-gravimetric (DTG) curves of (a) PLA and BF specimens (b) 

SL, PHB, and PHBV specimens. 
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With the addition of WF to PHB and PHBV, two stages of mass loss occurred. For both 

PHB/WF and PHBV/WF, the 1st peak was around 300°C, while the 2nd peak was around 370°C 

(Figure 3.4b). Similar results of two peaks in the derivative spectra were observed by Wong et al 

(Wong et al., 2004), when flax fibers were added to PHB. Neat PHB showed a single Tpeak at 

264°C, while it was at 293°C for neat PHBV. This single derivative peak of PHB and PHBV was 

due to degradation of the neat polymers by polymer chain scission. In this stage, crotonic acid 

and its oligomers are produced as degradation products (Wong et al., 2004). For PHBV, the 

addition of WF decreased the Tonset by 15°C. The PHBV degradation consists of chain scission 

and hydrolysis (Batista et al., 2010), which results in molecular weight reduction, and crotonic 

acid as a degradation product. When fiber is added, it increases the moisture in the matter, thus 

increasing the hydrolytic degradation of the polymer. In PHB and PHBV composites, first Tpeak 

can be ascribed to degradation of the neat polymer, while the second peak corresponds to fiber 

degradation. There were no major differences in degradation temperatures (Tonset) of PHBV/WF 

and MA-g-PHBV/WF. On the other hand, Tonset of PHB/WF were slightly shifted to a lower 

value when MA was added.  

For all SL specimens, an initial mass loss was observed in between 100-200°C (Figure 

3.4b) due to moisture loss (Acioli‐Moura & Sun, 2008). No significant moisture losses were 

apparent for the PHB and PHBV specimens. Slight moisture losses were observed for PLA/WF, 

BF/WF, and MA-g-BF/WF between 50-150°C. All the SL and BF specimens exhibited multiple 

degradation stages. 

 Mechanical Properties 

Grafting MA to the polymers significantly improved the impact, flexural and hardness 

properties of PLA, BF and PHBV composites due to increased interfacial adhesion between the 
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fiber and the matrix in MA grafted composites (Table 3.7- 3.8). On the other hand, 

compatibilized PHB and SL did not exhibit any significant improvement in strength properties 

with respect to the uncompatibilized composites.  

Table 3.7. Flexural strength and modulus all the specimens at 0, 1000 and 2000 h of UV 

weathering. Different letters indicate statistically significant differences at P < 0.05 between the 

specimens in each polymer type. 

 Flexural Strength [MPa] Flexural Modulus [MPa] 
 

0 h  1000 h  2000 h  0 h  1000 h  2000 h  

PLA 79.65 ± 

6.17 
A* 10.16 

± 1.56 
A* 

0.91 ± 

0.39 
A* 

2753.05 

± 211.4 
A* 

2886.72 

± 339.86 
A* 

 * 

PLA/WF 42.58 ± 

2.59  
B 

26.03 

± 4.88 
B 

13.79 

± 0.86 
B 

3489.18 

± 530.57 
B 

2289.34 

± 236.12 
B 

1828.08 

± 146.71 
A 

MA-g-

PLA/WF 

52.8 ± 

4.05 
C 

18.78 

± 1.37 
C 

13.5 ± 

0.07 
B 

3545.6 ± 

308.67 
B 

2267.96 

± 156.26 
B 

1900.75 

± 73.09 
A 

BF 9.52 ± 

1.56 
B 

5.88 ± 

0.5 
A 

2.98 ± 

0.31 
A 

265.31 ± 

30.16 
A 

337.86 ± 

17.34 
A 

220.59 ± 

43.42 
A 

BF/WF 12.6 ± 

1.34 
A 

9.75 ± 

0.28 
B 

5.43 ± 

1.48 
B 

510.32 ± 

31.68 
B 

360.93 ± 

37.68 
A 

467.94 ± 

23.25 
B 

MA-g-

BF/WF 

15.04 ± 

0.92 
A 

10.52 

± 0.96 
B 

4.69 ± 

1.56 
AB 

445.79 ± 

52.57 
B 

398.55 ± 

57.04 
A 

423.78 ± 

16.9 
B 

SL 15.24 ± 

1.45 
A 

2.22 ± 

0.96 
A 

1.38 ± 

0.33 
A 

1050.34 

± 134.06 
A 

265.18 ± 

113.8 
A 

252.75 ± 

104.85 
A 

SL/WF 20.45 ± 

1.05 
B 

•3.89 ± 

0.76 
A 

 

 2305.08 

± 150.76 
B 

•446.49 ± 

55.92 
A 

 
 

MA-g-

SL/WF 

17.7 ± 

0.38 
C 

2.77 ± 

0.71 
A 

••0.63 

± 0.31 
B 

2159.8 ± 

83.89 
B 

399.8 ± 

154.43 
A 

••79.55 

± 33.87 
B 

PHB 66.1 ± 

12.86 A 

50.33 

± 2.66 A 

27.84 

± 3.13 A 

3636.83 

± 

1091.73 

A 

3659.64 

± 307.19 A 

2970.64 

± 687.85 A 

PHB/WF 33.6 ± 

3.88 
B 

32.73 

± 1.88 
B 

23.64 

± 5.29 
AB 

2854.63 

± 611.49 
A 

2619.27 

± 303.92 
B 

2294.72 

± 663.09 
A 

MA-g-

PHB/WF 

33.79 ± 

4.57 
B 

25.9 ± 

1.56 
C 

16.7 ± 

2.76 
B 

2882.48 

± 449.97 
A 

2347.41 

± 121.31 
B 

2444.18 

± 314.37 
A 

PHBV 52.61 ± 

2.68 
A 

41.21 

± 7.81 
A 

22.34 

± 5.11 
A 

2321.89 

± 111.66 
A 

3432.75 

± 150.54 
A 

3209.27 

± 376.4 
A 

PHBV/WF 27.88 ± 

6.16 
B 

24.9 ± 

5.25 
B 

20.51 

± 3.47 
A 

3093.76 

± 637.26 
A 

2180.01 

± 490.87 
B 

2260.82 

± 315.05 
B 

MA-g-

PHBV/WF 

30.95 ± 

3.75 
B 

25.26 

± 3.76 
B 

17 ± 

1.37 
A 

2715.47 

± 547.68 
A 

2231.47 

± 265.46 
B 

2270.88 

± 174.46 
B 

* Tukey multiple comparison (P > 0.05) of the effects of WF and MA content on each polymer 

type. •Measured after 884 h of weathering, and ••Measured after 1479 h of weathering.   
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Table 3.8. Impact fracture energy and hardness of all the specimens before weathering and after 

weathering (1000h and 2000h). Different letters indicate statistically significant differences type 

at P < 0.05 between the specimens in each polymer type. 

 Impact Fracture Energy [J] Hardness [Force, N] 
 

0 h 1000 h 2000 h 0 h 1000 h 2000 h 

PLA 0.31 ± 

0.05 
A* 

0.17 ± 

0.05 
A* 

0.03 ± 

0.01 
A* 

35.47 

± 1.01 
A* 

34.98 

± 1.16 
A* 

31.95 

± 2.92 

A
* 

PLA/WF 0.20 ± 

0.05 
B 

0.16 ± 

0.05 
A 

0.14 ± 

0.06 
B 

32.98 

± 1.15 
B 

35.07 

± 1.15 
A 

34.18 

± 1.15 
A 

MA-g-

PLA/WF 

0.25 ± 

0.05 
AB 

0.14 ± 

0.05 
A 

0.13 ± 

0.05 
B 

35.29 

± 0.51 
A 

33.91 

± 1.19 
A 

34.71 

± 1.19 
A 

BF 1.27 ± 

0.23 
A 

0.23 ± 

0.05 
A 

0.10 ± 

0.02 
A 

23.03 

± 0.73 
A 

23.05 

± 1.27 
A 

22.25 

± 1.13 
A 

BF/WF 0.41 ± 

0.07 
B 

0.24 ± 

0.02 
A 

0.11 ± 

0.01 
A 

25.96 

± 0.92 
B 

24.65 

± 1.02 
A 

24.3 ± 

0.4 
B 

MA-g-

BF/WF 

1.24 ± 

0.08 
A 

0.20 ± 

0.01 
A 

0.09 ± 

0.01 
A 

26.31 

± 0.38 
B 

24.39 

± 0.96 
A 

21.36 

± 0.31 
A 

SL 0.19 ± 

0.05 
A 

0.07 ± 

0.01 
A 

0.06 ± 

0.02 
A 

30.49 

± 1.43 
A 

29.01 

± 3.2 
A 

24.92 

± 1.81 
A 

SL/WF 0.10 ± 

0.02 
B 

•0.12 ± 

0.02 
B   35.12 

± 1.04 
B 

•23.2± 

1.9 
B 

 
 

MA-g-

SL/WF 

0.10 ± 

0.01 
B 

0.11 ± 

0.01 
B 

••0.07 

± 0.01 
A 

34.49 

± 0.81 
B 

27.23 

± 1.39 
A 

••22.3 

± 1.39 
B 

PHB 0.45 ± 

0.13 
A 

0.26 ± 

0.05 
A 

0.24 ± 

0.03 
A 

33.52 

± 1.49 
A 

33.02 

± 1.62 
A 

34 ± 

0.74 
A 

PHB/WF 0.37 ± 

0.11 
A 

0.10 ± 

0.01 
B 

0.08 ± 

0.01 
B 

31.47 

± 1.38 
A 

30.44 

± 1.02 
A 

31.6 ± 

2.16 
A 

MA-g-

PHB/WF 

0.12 ± 

0.02 
B 

0.10 ± 

0.01 
B 

0.07 ± 

0.01 
B 

28.54 

± 1.38 
B 

30.53 

± 2.45 
A 

33.29 

± 1.76 
A 

PHBV 0.38 ± 

0.07 
A 

0.21 ± 

0.04 
A 

0.15 ± 

0.07 
A 

33.78 

± 0.99 
A 

33.46 

± 0.52 
A 

33.38 

± 1.64 
A 

PHBV/WF 0.16 ± 

0.04 
B 

0.12 ± 

0.04 
B 

0.10 ± 

0.02 
A 

29.25 

± 0.73 
B 

34.35 

± 0.73 
A 

32.93 

± 2.59 
A 

MA-g-

PHBV/WF 

0.20 ± 

0.09 
B 

0.09 ± 

0.01 
B 

0.09 ± 

0.02 
A 

34.05 

± 1.12 
A 

34 ± 

1.74 
A 

31.33 

± 1.43 
A 

* Tukey multiple comparison (P > 0.05) of the effects of WF and MA content on each polymer 

type. •Measured after 884 h of weathering, and ••Measured after 1479 h of weathering.   

All the polymer specimens showed decrease in mechanical strength with increased 

weathering exposure. A considerable drop of impact fracture energy and flexural strength can be 

observed for most of the polymer specimens after 2000 h of weathering (Figure 3.5-3.6). Impact 

fracture energy of 0.45 J decreased by 47% by the end of 2000 h weathering for neat PHB (Table 
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3.8). PLA exhibited substantial reduction in flexural strength from 79.7 MPa to 10.2 MPa 

by1000 h, and then to 0.9 MPa by 2000 h of weathering (Table 3.7). Main mechanism of 

degradation of PLA is the hydrolysis, and higher temperatures (>50°C) increase the rate of the 

hydrolysis process (Niaounakis et al., 2011). Hydrolysis first occurs in amorphous region, and 

then progresses into crystalline region, which results in lower molecular weight ensuing in 

reduced strength properties. Compared to neat PLA, loss of strength was notably lower for 

PLA/WF and MA-g-PLA/WF (Figure 3.5-3.6). This can be ascribed to antioxidant properties of 

lignin in wood fiber of the composites. Lignin assists in stabilization of the material against 

photo and thermooxidation during weathering (Peng et al., 2014; Spiridon et al., 2015; Spiridon 

et al., 2013). 

 

Figure 3.5. Impact fracture energy of the neat biopolymer and composite specimens before 

weathering, and after 1000 h and 2000 h of weathering (884 h instead of 1000 h for SL/WF, and 

1479 h instead of 2000 h for MA-g-SL/WF). 
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Figure 3.6. Flexural strength of the neat biopolymer and composite specimens before weathering, 

and after 1000 h and 2000 h of weathering (884 h instead of 1000 h for SL/WF, and 1479 h 

instead of 2000 h for MA-g-SL/WF). 

Flexural modulus reduced with weathering for most of the specimens (Figure 3.7). 

Highest reduction of 96% was shown for MA-g-SL/WF after 1479 h (Table 3.7). No 

considerable reduction was shown for PHBV/WF, and compatibilized BF, PHB and PHBV 

composites between 1000 h and 2000 h of weathering (Figure 3.7). For instance, modulus of 

MA-g-PHBV/WF reduced to 2231.5 MPa from 2715.5 by 1000 h, and then slightly increased to 

2270.9 MPa by 2000 h. For the specimens that exhibited an increase of the property with 

weathering, Tukey’s pairwise method was conducted to test the significance of the increase at 

each weathering period. The decreased modulus of BF/WF at 1000 h exhibited a significant 

increase by the end of 2000 h (Figure 3.7). At 1000 h, modulus of BF and PHBV significantly 

increased by 27% and 48%, respectively. It should be stated that the flexural modulus of neat 

PLA at 2000 h could not be obtained by the test method due to its extreme brittleness.  
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Figure 3.7. Flexural modulus of the neat biopolymer and composite specimens before 

weathering, and after 1000 h and 2000 h of weathering (884 h instead of 1000 h for SL/WF, and 

1479 h instead of 2000 h for MA-g-SL/WF). Different letters indicate statistically significant 

difference of the specimen on the property at each weathering exposure.  

Hardness is the resistance of the material surface against the indentation, which decreases 

with the flexibility and mobility of the polymer chain structure (Mandal, Chakraborty, & 

Siddhanta, 2014). It is apparent, that hardness properties were affected to lesser degree by the 

weathering exposure (Figure 3.8). The highest reduction of 35% can be seen in for MA-g-SL/WF 

after 1479 h of weathering (Table 3.8). On the other hand, hardness of PLA/WF, MA-g-

PHB/WF, and PHBV/WF significantly increased with weathering. This can be attributed to 

increased degree of crystallinity of the polymer specimens. 
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Figure 3.8. Hardness of the neat biopolymer and composite specimens before weathering, and 

after 1000 h and 2000 h of weathering (884 h instead of 1000 h for SL/WF, and 1479 h instead 

of 2000 h for MA-g-SL/WF). Different letters indicate statistically significant difference of the 

specimen on the property at each weathering exposure. 

Overall, strength property loss during weathering was due to the formed shorter polymer 

chains as a result of continuous polymer chain scission, which lead to reduction of 

macromolecules length and higher degree of crystallinity. Even though the crystallinity increased 

as evident in DSC results, these formed crystalline regions were weaker due to the shortness of 

the chains, which resulted in decreased strength properties (Peng et al., 2014). For instance, 

though the crystallinity of BF increased by ≈2400% after 2000 h of weathering, its impact 

fracture energy decreased by 74% (Table 3.5, Figure 3.5). 

For the composites, change in strength properties also depend on fiber-matrix interaction. 

With weathering, fiber−matrix interaction decreased, and cracks were formed due to swelling of 

WF because of moisture absorbance property of hydrophilic WF. Consequently, deterioration of 

the mechanical properties of the material can be observed due to reduction of stress transfer from 
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fiber to matrix  (Butylina et al., 2012; Chen et al., 2016). UV radiation, relative humidity and 

temperature are the fundamental factors causing deterioration of composites with natural fiber 

(Islam et al., 2013). Overall, with increased weathering exposure, compatibilized composites did 

not seem to have any significant difference in mechanical property loss compared to the 

uncompatibilized composites (Table 3.7-3.8). 

Conclusion 

Five different types of biodegradable biobased composites were prepared by blending 

wood fiber with biopolymers: PLA, Bioflex (PLA blend), Solanyl (starch based), PHB, or 

PHBV. Maleic Anhydride was used to compatibilize the composites. Compatibilization 

improved physical, thermal and mechanical properties of PLA, Bioflex (BF) and PHBV 

composites. With increased weathering exposure, increased surface degradation was evident 

through surface color change and microcracks in the specimens, which led to higher water 

absorption. After weathering, smooth surfaces of the specimen roughened due to matrix 

degradation that occurred because of polymer chain scission. Color change of the samples was 

attributed to photo-degradation, photo-oxidation, and increased diffuse reflectance. Overall, glass 

transition temperature shifted slightly to lower temperatures with weathering. This reduction was 

attributed to the plasticization and degradation effect of absorbed water. Reduced melting 

temperature of weathered specimens was a result of both enhanced mobility of chains combined 

with higher crystal formation at lower melting points. Even though the crystallinity increased due 

to chain scission of the polymers, these formed crystalline regions were mechanically weaker 

because of the shorter polymer chains. Most the polymer specimens showed decrease in impact, 

flexural and hardness properties with increased weathering exposure due to decrease in 

molecular weight, intensive chain scission, and decreased fiber-matrix interaction. Some 
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polymer materials exhibited significant improvements in flexural modulus and hardness with 

weathering. Even though the compatibilized composites showed improved properties before 

weathering, there were no differences between compatibilized and uncompatibilized composites 

on how weathering impacted thermal, physical and mechanical properties. The study indicates 

that there is an opportunity to design sustainable green composites with better strength properties 

by adding compatibilizers, without affecting their UV weathering properties. 
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CHAPTER 4. BIODEGRADATION PROPERTIES OF COMPATIBILIZED 

BIOPOLYMER COMPOSITES 

Abstract 

Because of the environmental sustainability concerns regarding petroleum-based 

polymers, biodegradable polymers from renewable and biobased resources are gaining 

popularity for use in commercial applications. It is critical to design biobased biodegradable 

polymers to be cost effective, resistance to environmental factors during use, and quickly 

biodegradable under disposal conditions. Although degradation properties of biopolymers are 

quantified, biodegradation of their composites and the effect of compatibilization on 

biodegradation properties are not well understood. In this study, five biobased biodegradable 

polymers were compatibilized with 1-2 wt% maleic anhydride (MA), and their biodegradation 

was evaluated against composites without MA under different soil temperatures. The composite 

samples were prepared with 30 wt% wood fiber and one of the five biopolymers: poly(lactic 

acid) (PLA), polyhydroxybutyrate (PHB), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) 

(PHBV), Bioflex (PLA blend), or Solanyl (starch based). The composites were subjected to soil 

burial analysis for 60 days under two different temperatures of 30°C and 60°C. The samples 

were characterized for morphological, physical and mechanical properties. Weight loss and 

increased water absorption were observed in all soil buried specimens. Surface deterioration was 

more visible in 60°C soil buried samples with drastic color change and roughened surfaces due 

to increased hydrolysis and hydrophilicity of biopolymers at higher temperatures. Mechanical 

properties were decreased with soil biodegradation. Even though the compatibilized composites 

showed lower biodegradation at 30°C, the 60°C biodegradation of compatibilized composites 
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were higher than the composites without MA.  The results confirm that compatibilization not 

only improves mechanical properties but also biodegradation at elevated temperatures. 

Introduction 

Synthetic and petroleum based polymers cause substantial environmental problems at 

disposal. Annual global production of plastic is about 300 million tons. Even though recycling is 

an effective solution, only about 10% of plastics are being recycled each year. Around 7 million 

metric tons of plastic fragments end up in the sea every year, harming nearly 267 different 

animal species due to plastic entanglement and ingestion. About 60-95% of the land-based 

sources of marine pollution are plastics debris (Lytle, 2009; Wassener, 2011). Petroleum based 

polymers also cause air pollution during production. For each ounce of polyethylene production, 

about five ounces of carbon dioxide are emitted (Glazner, 2015). 

Biodegradable polymers produced from renewable and biobased resources are considered 

highly sustainable. They reduce waste accumulation, CO2 emission, and the dependency on 

petroleum-based fuels and products. Although biobased polymers have numerous benefits, they 

are restricted in many applications due to high cost and a few undesirable properties such as slow 

biodegradation rate, sensitivity to thermal degradation, and high brittleness. Compared to the rate 

of waste accumulation, the degradation rate of biobased polymers such as PLA is still too slow 

(Niaounakis, Kontou, & Xanthis, 2011). To improve these properties and reduce the cost, 

biobased polymers could be blended with biodegradable natural cellulose fibers. Natural 

lignocellulosic fibers are expected to increase the biodegradability of the fibers while imparting 

desirable material properties for certain applications. Wood fiber is an inexpensive and readily 

available byproduct from wood processing operations that is reused for manufacturing polymer 

composites. Nevertheless, due to poor interfacial adhesion between the hydrophobic polymer and 
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the hydrophilic fiber, incorporating fibers to polymer matrices causes decrease in some 

properties such as impact and tensile strength. By introducing reactive functional groups such as 

compatibilizers, mechanical properties of these biopolymer composites could be enhanced. The 

biodegradation behavior of biopolymer composites with natural fibers and compatibilizers at 

different conditions is not well known yet. Some studies showed that even though the addition of 

compatibilizers to biocomposites improved the mechanical properties, biodegradability of the 

composites reduced due to increased water resistance (C.-S. Wu, 2009; C. S. Wu, 2006, 2012). 

In biodegradation, degraded products are completely assimilated as a food source by soil 

microorganisms. It ensures the safe and effective returning of carbon into the ecosystem. 

Biodegradability of polymers does not necessarily assure the degradation of the polymer in any 

environment under any conditions. Rate of biodegradability depends on factors such as 

temperature and humidity of the environment, processing conditions, and polymer characteristics 

such as molecular weight, crystallinity, and plasticizers or additives added to the polymer. When 

a compatibilizer such as maleic anhydride (MA) is grafted, improvement in adhesion between 

the polymer substrate and the fiber can be observed due to formation of both hydrogen and 

covalent bonds with fiber and polymer. Consequently, at lower temperatures, compatibilized 

composites have poor biodegradation due to hindered water absorption. However, increased 

water absorption of polymer matrices at elevated temperature (60°C) has been reported in the 

literature (Balakrishnan, Hassan, Imran, & Wahit, 2011; Gunning, Geever, Killion, Lyons, & 

Higginbotham, 2014; Itävaara, Karjomaa, & Selin, 2002). Higher water absorption increases 

polymer hydrophilicity, resulting in chemical hydrolysis as well as higher microbe attachments 

on the polymer surface (Itävaara et al., 2002).  
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The hypothesis of this research is that biodegradation of polymers could be higher at 

elevated temperatures due to increased water absorption. Biodegradation of compatibilized 

composites also could be higher than that of uncompatibilized composites if the increased 

attachment of WF could expand the surface area available for biodegradation when the bonds 

between the WF and the polymer hydrolyze at higher temperatures. The objectives of this study 

are to 1) evaluate and compare the biodegradability of biocomposites made with different types 

of biopolymers and a wood fiber filler, and 2) quantify the effect of compatibilization of the 

biopolymer-wood fiber composites on biodegradation properties at different temperatures. 

Experimental 

In this study, five types of MA-compatibilized biocomposites were prepared by 

compounding wood fiber (WF) with five different types of biopolymers: poly(lactic acid) (PLA), 

Bioflex (BF), Solanyl (SL), poly(3-hydroxybutyric acid) (PHB), and poly(3-hydroxybutyrate-co-

3-hydroxyvalerate) (PHBV). The PLA is a biodegradable polyester produced by polymerization 

of lactic acid. Both PHB and PHBV are polyhydroxyalkanoates (PHA). The PHA is a linear 

polyester produced by bacterial fermentation of sugar or lipids. Bioflex is a PLA blend, and 

Solanyl is a potato starch based polymer. All the specimens were subjected to soil 

biodegradation at two different temperatures, 30°C and 60°C. Weight loss, water absorption, 

hardness and compressive tests were undertaken to predict the biodegradation performance. The 

surface morphology changes due to soil biodegradation were studied by optical microscopy and 

color changes.  

Materials 

The PLA used in this study was type 2003D from NatureWorks LLC (Minnetonka, MN). 

The PHB (ENMAT Y3000P) and PHBV (ENMAT Y1000P) were supplied by TianAN 
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Biopolymer (Ningbo City, Zhejiang Province, China). Bioflex (BF) biopolymer (Bio-Flex® 

F2110) was obtained from FKuR Plastics (Willich, Germany). Solanyl (SL) biopolymer 

(Solanyl® C2201) was from Rodenburg Biopolymers (Oosterhout, Netherlands). Maleic 

anhydride (63200), Luperox® P: tert-Butyl peroxybenzoate (TBPB), benzoyl peroxide (BP), and 

Luperox 101: 2,5-bis(tert-butylperoxy)-2,5-dimethylhexane (L101) were purchased from Sigma-

Aldrich Chemical Co. (St. Louis, MO). Oak wood fiber was used in this study. 

 Polymer Composite Manufacturing 

Preparation of Grafted Polymer 

All the polymer pellets were dried according to guidelines provided by the supplier, 

which included drying for 2 hours (h) at 80ºC for PHB and PHBV, 6 h at 80ºC for PLA, 4 h at 

45ºC for SL, and 3 h at 60ºC for BF.  Each of the dried polymers were then hand-mixed with 2-

3% of MA and 0.5-1 % selected initiator (Table 2.1). For extrusion of the mixtures, a micro 18 

lab-scale twin screw extruder with a 40/1 length to diameter ratio (Leistritz Ltd., Somerville, NJ) 

was used (Table 2.2). To remove any moisture present, extruded pallets were dried in an oven for 

12 h at 80ºC.  

Preparation of WF composites 

All the composites consisted of 30 wt% of WF loading. According to the compositions 

indicated in Table 2.3, each of the neat polymer pellets were mixed with WF and/or grafted 

polymer pellets. The mixtures were then extruded (Table 2.2), and dried for 24 h at 80ºC in an 

oven. 

Compression Molding 

Using different temperatures and time for each of the polymer types, extruded pellets 

were compression molded into 150 mm square and 5 mm thick sheets with a Carver hot press 
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(model 3856, Carver Inc., Wabash, IN) at 50 atm pressure (Table 2.4). The molded sheets were 

slowly cooled under ambient conditions to prevent cracking.  

Soil Biodegradation 

Soil burial degradation experiments were carried out according to ASTM G160 standard 

("ASTM G160," 2012) under temperature and moisture controlled conditions in an 

environmental chamber. The surrounding atmosphere was maintained at 80% relative humidity 

(RH). The moisture content of soil was maintained at 30% by adding water periodically. Soil 

biodegradation test was conducted at two different temperature settings of 30°C and 60°C. 

Sample specimens of 31.75 mm × 31.75 mm size were buried in glass bottles containing a soil 

mixture at a depth of 127 mm. Soil mixture was included fertile topsoil, well-rotted and shredded 

horse manure and coarse sand. The prepared soil was sifted through 6.4 mm mesh screen. The 

soil pH was maintained between 6.5 to 7.5, and checked periodically. Samples were dug out of 

soil after 60 days, and washed thoroughly with distilled water and dried to constant weight at 

50% RH. Biodegradability of the samples was assessed by measuring the weight loss of the 

samples using Eq. 4.1. All results are the average of three replicates. 

                                               Weight loss (%)=
W0- W1

W0
 ×100                                                 (Eq. 4.1) 

Where, W0 and W1 are sample weights before and after the soil burial test, respectively, 

after conditioning samples at 25°C and 50% RH. 
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Characterization of Composites 

Water Absorption 

The water absorption of the samples was measured using Equation 4.2 as specified by 

ASTM D570 ("ASTM D570," 2010) standard. Weights were measured periodically for 5 weeks. 

Dimensions of the test specimens were 38.1 mm in length and width, and 5 mm in thickness.  

     %Increase in weight (Mt)=  
wet weight −  conditioned weight

conditioned weight
 ×100                   (Eq. 4.2) 

 

Optical Microscopy 

Surface conditions of the specimens before and after soil burial analysis were observed 

using OMAX AMSCOPE microscope (S7M7045/SZM7045TR, Omax, yeonggi-do, Korea). 

OMAX A3590U video camera (D/N: UCMOSO9000KPB, P/N: TP609000B) and ToupView 3.7 

software was used for capturing images at 30X magnification, and to examine the images.  

Color Measurement 

The surface colors of the samples were measured using X-Rite Spectrophotometer 

(Model SP62, S/N 000737, X-Rite, Grandville, MI). CIELAB color system with L*, a*, b* 

coordinates was used to evaluate the color changes. The parameter L* represents the lightness 

coordinate, which ranges between 100 (white) and 0 (dark). The a* represents the red (+a*) to 

green (-a*), and b* represents the yellow (+b*) to blue (-b*) coordinates. The color difference 

(ΔE*) was calculated using Eq. 4.3 in ASTM D2244 standard (D. ASTM, 2003): 

                                             ∆E*=√(∆L*)2+(∆a*)2+(∆b*)2                                                           (Eq. 4.3) 

where, ΔL*, Δa*, and Δb* represent the change in initial values of L*, a*, and b* by the end of 

soil burial analysis, respectively.  
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Hardness 

Hardness tests were carried out according to ASTM D2240 standard (D. ASTM, 2000) 

(manual operation method) using a type D durometer (Model 409, S/N 02015, Davis 

Instrumentation, Vernon Hills, IL). The resistance force of the penetrated durometer pin in the 

test specimen is calculated using Eq. 4.4 (ASTM D2240 standard): 

 

                                                                 Force, N=(0.4445)HD                                            (Eq. 4.4) 

where, HD is the hardness reading on type D durometer.  

Compressive Strength 

Compressive strength was determined according to ASTM D695 standard (ASTM, 2015) 

on Instron 5567 load frame (Instron, Norwood, MA) with a 30kN load cell. Cross head rate was 

1.3 mm/min. Specimens were 12.7 by 12.7 mm square and 5 mm in thickness. 

Data Analysis 

Tukey’s test of multiple comparisons (P < 0.05) was applied to determine the significant 

difference between the properties of each polymer formulation before soil burial, and after 30°C 

and 60°C soil burial. Data analysis was performed with Minitab software (version 18, Minitab 

Inc., PA). 

Results and Discussion 

Water Absorption 

Water absorption is a key factor affecting material degradation. After 60 days of soil 

burial at 30°C, all the samples except for SL composites, showed similar Mm values as before 

soil burial (Figure 4.1). Solanyl (SL) and its composites exhibited the highest water absorption 

(Mm) compared to other specimens. After 30°C soil burial (SB), the Mm of SL, SL/WF and MA-
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g-SL/WF were 36%, 50% and 44% respectively. This can be attributed to higher hydrophilicity 

of both SL and WF. Compatibilized PLA, BF and PHBV composites exhibited lower Mm values 

compared to their uncompatibilized composites.  

 

Figure 4.1. Maximum moisture content of all the neat polymers and composites before soil burial 

(SB), and after soil burial at 30°C and 60°C. Different letters indicate statistically significant 

difference of the specimens after SB at 60°C with respect to specimens after SB at 30°C.  

NOTE: All the specimens after soil burial at 30°C are in group ‘A’ (P < 0.05). 

On the other hand, after 60°C SB, all the specimens exhibited substantial increase in 

water absorption. Water diffusion into the polymer sample causes swelling of cellulosic fibers, 

and enhanced biodegradation. Contrast to water absorption after 30°C SB, compatibilized PLA, 

BF and PHBV composites after 60°C SB exhibited higher or similar Mm values with respect to 

the composites without MA. The water absorption of MA-g-PHB/WF was still higher than 

PHB/WF after degradation at both temperatures. Neat PHB and PHBV showed the lowest water 
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absorption after degradation test at both temperatures. This can be attributed to higher degree of 

crystallinity. Crystalline regions are less susceptible to degradation (Balakrishnan et al., 2011).  

Soil Biodegradation 

Biodegradation of the buried specimens were determined by the weight loss of the 

material. Specimens degraded at 60°C showed a significant %weight loss compared to 

specimens degraded at 30°C (Figure 4.2). Most importantly, the compatibilized PLA, BF and 

PHBV exhibited lower weight loss than their uncompatibilized composites after 30°C SB, but a 

higher rate of biodegradation after 60°C SB. The degradation behavior of compatibilized PHB 

and SL were different than the other three biopolymer composites. 

 

Figure 4.2. % Weight loss of all the neat polymers and composites after soil burial (SB) at 30°C 

and 60°C. Different letters indicate statistically significant difference of the specimens after SB 

at 60°C with respect to specimens after SB at 30°C.  

NOTE: All the specimens after soil burial at 30°C are in group ‘A’ (P < 0.05). 
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Optical Microscopy 

Micrographs of the samples before soil burial showed that all the neat polymers and their 

composites with smooth surfaces with polymer layers on top indicating proper fiber 

encapsulation (Krehula, Katančić, Siročić, & Hrnjak-Murgić, 2014). After soil burial, all the 

specimens showed roughened surfaces. The first stage of biodegradation involves microorganism 

attacking the surface of specimens. As the bacteria digest the polymer, surface roughness 

increases (Gunning, Geever, Killion, Lyons, & Higginbotham, 2013). 

The surface cracking was visible on all the specimens after soil burial at both 

temperatures (Table 4.1-4.3). However, the formation of cracks and voids were more prominent 

for the specimens buried at 60°C. Specimens were more fragile after 60°C soil burial (SB) 

compared to the specimens buried at 30°C. For example, neat PLA and its composites only had a 

few voids on the surface after 30°C SB (Table 4.1). After 60°C SB, both neat PLA and its 

composites exhibited more surface cracks and voids, and an extremely fragile texture. The 

samples broke down into small pieces eventually. Compatibilized composites subjected to 60°C 

SB exhibited larger voids and more destruction of the material with respect to their 

uncompatibilized composites. 
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Table 4.1. Comparison of surface morphology of the specimens before, and after soil burial at 

30°C and 60°C: PLA, PLA/WF, MA-g-PLA/WF, BF, BF/WF, MA-g-BF/WF. 

Composition 
Control (before soil 

burial) 
30°C soil burial 60°C soil burial 

PLA 

   

PLA/WF 

   

MA-g-

PLA/WF 

   

BF 

   

BF/WF 

   

MA-g-

BF/WF 
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Table 4.2. Comparison of surface morphology of the specimens before, and after soil burial at 

30°C and 60°C: PHB, PHB/WF, MA-g-PHB/WF, PHBV, PHBV/WF, MA-g-PHBV/WF. 

Composition 
Control (before soil 

burial) 
30°C soil burial 60°C soil burial 

PHB 

   

PHB/WF 

   

MA-g-

PHB/WF 

   

PHBV 

   

PHBV/WF 

   

MA-g-

PHBV/WF 
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Table 4.3. Comparison of surface morphology of the specimens before, and after soil burial at 

30°C and 60°C: SL, SL/WF, MA-g-SL/WF. 

Composition 
Control (before soil 

burial) 
30°C soil burial 60°C soil burial 

SL 

   

SL/WF 

    

 

 

 

 

 

 

 

 

 

MA-g-

SL/WF 

   
 

Surface Color 

Lightness (ΔL*) of the all specimens except PLA decreased after degradation at 30°C 

(Figure 4.3). Neat PLA and its composites exhibited white surface after 30°C SB (Table 4.4). 

The decrease in ΔL* for non-PLA specimens can be attributed to development of small black 

spots on the surface. Neat SL specimens also developed green color spots. Specimens subjected 

to 60°C SB exhibited greater color change than that of the specimens after 30°C SB. It is 

noteworthy that the color change of PLA, PLA/WF, MA-g-PLA/WF and MA-g-SL/WF after 

60°C SB could not be measured as these specimens broke down completely. After 60°C SB, 

white surfaces of neat BF and PHB turned yellowish. Neat SL completely turned into dark brown 

(Table 4.4). Color of neat PHBV and its composites including PHB composites faded. Similar to 
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composites buried at 30°C, all the other composites at 60°C SB exhibited black spots all over the 

surface along with some fading.  

 

Figure 4.3. The lightness (ΔL*) and total color changes (ΔE*) of the specimens after soil burial 

at 30°C and 60°C.  
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Table 4.4. Digital camera photos of the specimens before, and after soil burial at 30°C and 60°C: 

PLA, PLA/WE, BF/WF, SL, MA-g-PHBV/WF. 

Composition 
Control (before soil 

burial) 
30°C soil burial 60°C soil burial 

PLA 

   

PLA/WF 

 

 
 

BF/WF 

 

 

 

SL 

    

 

 

 

 

 

 

 

 

 

MA-g-

PHBV/WF 

   

 

Whitening of the soil buried specimens can be attributed to increased surface roughness 

(Michel & Billington, 2012; Rahman et al., 2011). As the bacteria digest the polymer, surface 

roughness increases. When the specimen interacts with microbes, state of the specimen change 

significantly (Ochi, 2011). Starch is degraded by bacterial or fungal strains, whereas PLA is 
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degraded by fungal strains. PHB is degraded by numerous microorganisms in various 

ecosystems. During degradation, PHA polymer is considerably excessive in size to be conveyed 

directly through the bacterial cell wall, so it should be permuted into corresponding hydroxyl 

acid monomers (Gilmore, Fuller, & Lenz, 1990). The compost is a very suitable environment for 

the biodegradation of such materials. Clearly, specimens after 60°C SB showed higher color 

change and more destruction of the material (Figure 4.3, Table 4.4). Before the action of 

microorganisms, it is possible that the high temperature and relative humidity facilitated the 

hydrolytic degradation of the polymer material (Iovino, Zullo, Rao, Cassar, & Gianfreda, 2008). 

Exposing polymers to various degrading conditions such as weathering, ageing and soil burying 

results in different transformations of polymers due to light, thermal and chemical agents. These 

abiotic parameters are useful factors in initiating the biodegradation process, as they help to 

weaken the polymer structures (Jakubowicz, Yarahmadi, & Petersen, 2006; Lucas et al., 2008).  

Mechanical Properties 

For specimens buried at 30°C, hardness properties were affected to lesser degree (Figure 

4.4). Similar to water absorption test, only neat SL and its composites showed a significant 

reduction with respect to their control samples. The highest reduction of 45% can be observed 

for MA-g-SL/WF. On the other hand, hardness of PHBV/WF and MA-g-PHBV/WF 

significantly increased compared to their composites before soil burial. Hardness of specimens 

buried at 60°C could not be measured as the specimens were too thin according to ASTM 

standard. 
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Figure 4.4. Surface hardness of all the neat biopolymers and composites before and after soil 

burial at 30°C. Different letters indicate statistically significant difference of the specimen on the 

property after soil burial at 30°C with respect to specimens before soil burial. 

Unlike hardness property, compressive strength was significantly reduced after 

biodegradation at 30°C for PLA/WF, BF/WF and SL with respect to the specimens before soil 

burial (Figure 4.5). Neat SL and its composites exhibited substantial reductions, both of its 

composites having the highest drop of 90%. However, MA-g-PHB/WF and PHBV/WF showed 

considerable increase of the strength compared to their unburied samples. Except for BF and 

PHB, compressive properties could not be determined for specimens buried at 60°C as they were 

too thin (<3 mm). All the tested samples of 60°C SB exhibited significant drop of strength 

compared to unburied and 30°C SB specimens, where neat BF and its composites had the highest 

drop of 90%. Significant reduction in compressive modulus can be observed for 30°C soil buried 

compatibilized composites of PLA, SL, PHB, and uncompatibilized composites of BF, SL, PHB 

and PHBV with respect to their specimens before soil burial (Figure 4.6). For specimens buried 

at 60°C, except for neat PHB, all the tested specimens exhibited significant decrease in 

compressive modulus compared to unburied and 30°C SB specimens. 
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Figure 4.5. Compressive strength of the biopolymer compositions before and after soil burial 

(SB) at 30°C and at 60°C. Different letters indicate statistically significant difference of the 

specimen on the property after SB at 30°C and at 60°C with respect to specimens before SB. 

NOTE: All the specimens before soil burial are in group ‘A’ (P < 0.05). 

 

 

Figure 4.6. Compressive modulus of all the neat biopolymers and composites before and after 

soil burial (SB) at 30°C and at 60°C. Different letters indicate statistically significant difference 

of the specimens after SB at 30°C and 60°C with respect to specimens before SB.  

NOTE: All the specimens before soil burial are in group ‘A’ (P < 0.05). 
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When the specimens interacted with microbes in soil, strength properties changed 

substantially as the surface matrix layer cracked under the combined action of microorganisms 

and water (Ochi, 2011). For composites, fiber−matrix interaction was weakened, and cracks were 

formed due to swelling of hydrophilic WF. Consequently, the structure was loosened, and the 

force required to rupture the material was decreased resulting weaker mechanical properties.  

Discussion 

Weight loss%, material destruction, and reduction in strength properties were higher for 

60°C SB samples. The higher the temperature of the degradation environment, the higher the 

rates of chemical hydrolysis and hydrophilicity of the polymers are (Itävaara et al., 2002). As 

evidenced, water absorption of the material substantially increased at 60°C, thus, increasing the 

microbe attachments. Consequently, all the polymer samples showed significant increase in 

%weight loss after 60°C SB than after 30°C SB. When polymers are exposed to high 

temperatures, microstructural changes and molecular rearrangements occur in the material 

(Iovino et al., 2008). At temperatures higher than the glass transition temperature (Tg) of the 

polymer, the flexibility of the polymer chain increases, enabling the higher diffusivity of water 

into the matrix (Balakrishnan et al., 2011). The Tg of PLA, BF and SL is between 55-65°C 

(Yatigala, Bajwa, & Bajwa, 2017). Accordingly, all these polymer samples exhibited higher 

water absorption, and therefore higher weight loss% after 60°C SB compared to 30°C SB. For 

neat PHB and PHBV, water absorption and biodegradation rate did not seem to correlate. For 

instance, the biodegradation of neat PHBV at 60°C was higher, even though the water absorption 

capacity of the specimens was not changed (Figure 4.1-4.2). During biodegradation, the 

microorganisms attack the surface of the polymer first (Gunning et al., 2013). As the bacteria 

digest through the polymer specimen, complete disappearance of composites/matrices can be 
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observed (Iovino et al., 2008). The remaining material (after SB) of some of the specimens such 

as PHB and PHBV showed a robust structure. This could be due to microorganisms not being 

able to reach all the way through the specimens as evidenced by lower water absorption capacity 

of these remaining material. 

Biodegradation rate of polymers was different from each other. Weight loss% of neat BF 

was lower than those of neat PLA. Soil Biodegradation of PLA based polymers strongly depends 

on the copolyester and additives (Barragán, Pelacho, & Martin-Closas, 2010). Neat PHB and 

PHBV had the lowest biodegradation at both temperatures. Degradation is faster when the 

molecular weight of polymers are low (Prados & Maicas, 2016). Higher molecular weight lowers 

the solubility of the polymer, reducing the microbial attack (Shah et al., 2008). Insolubility of 

polymers reduces the availability of substrates to bacteria that can be assimilated through the 

cellular membrane. Molecular weight of PHB and PHBV range from 300,000 - 400,000 g/mol. 

For PLA it is around 72,000 g/mol, while it is around 75,000 g/mol for BF. Solanyl has a 

molecular weight of around 61,000 g/mol, the lowest of the five biopolymers considered in this 

study. In addition to water absorption, biodegradation appeared to be linked closely to the 

molecular weight of these polymers.  

Most of the composites showed more degradation than neat polymers. This can be 

ascribed to higher moisture absorption of hydrophilic WF. All composites subjected to 

degradation showed cracks between the polymer matrix and WF. When water is absorbed, WF 

detach from the polymer matrix. As the surface matrix layer is cracked under the combined 

actions of microorganisms and water, both degradation agents penetrate deeper into the 

composite, resulting in more degradation (Batista, Silva, Coelho, Pezzin, & Pezzin, 2010). 
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Lower biodegradation of compatibilized composites compared to uncompatibilized 

composites after 30°C SB can be attributed to reduced water absorption of the MA grafted 

composites due to improved fiber-matrix adhesion. Most thermoplastics are hydrophobic matters 

that are incompatible with hydrophilic WF, resulting in poor fiber-matrix interaction. 

Compatibilized biopolymer/natural fiber composites are fabricated to increase the interfacial 

adhesion between the polymer matrix and the fibers (Gunning et al., 2014). The compatibilizer, 

MA, interacts with hydroxyl groups of cellulose and lignin of the fiber to form covalent or 

hydrogen bonds. Therefore, the fibers are well attached with matrix. In contrast to 30°C SB, after 

60°C SB, compatibilized composites showed increased biodegradation with respect to the 

uncompatibilized composites. At higher temperatures, bonds such as covalent ester carbonyl 

bonds between the polymer and the fiber hydrolyzes, allowing the debonded fibers and matrix to 

absorb more water. If the fibers are well attached with the matrix due to compatibilization, 

debonding of fiber and matrix can results in even higher biodegradation due to higher surface 

area available for biodegradation [8]. This is visible in MA-g-PLA/WF samples after 60°C SB as 

they exhibited larger voids and more degradation of the material compared to PLA/WF at 60°C 

SB (Table 4.1). 

Conclusion 

Five different types of biodegradable biobased composites were prepared by blending 

wood fiber with biopolymers: PLA, Bioflex (PLA blend), Solanyl (starch based), PHB, or 

PHBV. Maleic anhydride (MA) was used to compatibilize the composites. Soil microbial 

degradation of the specimens was apparent with surface color change, roughened surface, and 

microcracks of the specimens, which led to higher water absorption. Solanyl and its composites 

showed the highest biodegradation. Destruction of the material, weight loss, and mechanical 
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strength loss were more prominent for the specimens after biodegradation at 60°C than after 

30°C biodegradation. Elevated temperatures enhance the hydrolysis and hydrophilicity of 

biodegradable polymers, thus, resulting in higher rate of biodegradation. Some polymer materials 

buried at 30°C exhibited significant improvements in hardness and compressive properties.  

Composites showed more degradation than neat polymers due to hydrophilicity of the wood fiber 

filler. Even though the compatibilized composites showed lower biodegradation than their 

composites without MA at 30°C, biodegradation was higher in compatibilized composites at 

60°C.  
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CHAPTER 5. GENERAL CONCLUSIONS 

Polymer derived from renewable resources are gaining attention as non-toxic, low impact 

alternatives to undegradable petroleum based polymers.  

Five different types of biodegradable biobased composites were prepared by blending 

wood fiber with biopolymers: PLA, Bioflex (BF, PLA blend), Solanyl (SL, starch based), PHB, 

or PHBV. Maleic Anhydride (MA) was used to compatibilize the composites. Compatibilization 

improved thermal properties such as glass transition temperature, melting temperature, 

degradation temperature and crystallinity in PLA, BF and PHBV composites. Resistance to water 

and mechanical properties such as flexural, impact and hardness improved due to increased fiber-

matrix interaction in PLA, BF and PHBV composites. Failure to graft MA to PHB successfully, 

and the similarity of molecular weight of grafted and ungrafted SL explain the unresponsiveness 

of these composites to compatibilization. 

It is important to study the behavior of the biocomposites in long-term outdoor conditions 

to understand their durability. Therefore, biocomposites were subjected to accelerated 

weathering for 2000 h under 4 h of condensation cycle and 8 h of UV exposure. With increased 

weathering exposure, increased surface degradation was evident through roughened surface, 

surface color change, and microcracks in the specimens. The degraded samples exhibited higher 

moisture absorption. Due to plasticization effect of absorbed water, glass transition temperature 

and melting temperature decreased, and crystallinity increased. Since the formed crystalline 

regions were mechanically weaker, impact, flexural and hardness properties decreased. Some 

polymer materials exhibited significant improvements in flexural modulus and hardness. 

Composites showed higher degradation compared to neat polymers due to reduced fiber-matrix 

interaction. Though the compatibilization improved thermal and physico-mechanical properties, 
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no considerable difference was shown between the composites with and without MA after 

weathering.   

One of the downsides of compatibilization could be reduction in biodegradation of the 

biocomposites. To increase the soil microbial degradation, biocomposites were buried in soil at 

two different temperatures of 30°C and 60°C. Destruction of the material, weight loss, increased 

water absorption, and mechanical strength loss were significantly higher at 60°C than at 30°C. 

Higher temperature enhances the hydrolysis and hydrophilicity of biopolymers, increasing the 

rate of biodegradation. Some polymer materials exhibited significant improvements in hardness 

and compressive properties at 30°C. Most composites exhibited higher deterioration of the 

material compared to neat polymers. Even though the compatibilized composites showed 

reduced biodegradation compared to composites without MA at 30°C, biodegradation was higher 

in composites with MA at 60°C.  

Potential applications of the compatibilized composites in this study are garden fences 

and golf tees (Tatara, DiOrio, & Ziemer, 2008). The composites without MA can be used in 

planting cups and take-away food trays (Schwarzkopf & Burnard, 2016). Properties such as 

flexural strength and modulus, impact strength, and water absorption of these applications are 

similar to the composites produced in this study (Z-Trust, 2004). 

The study indicates a possibility of designing sustainable and inexpensive biodegradable 

biobased polymer composites with increased strength and soil biodegradation properties, without 

affecting their UV degradation characteristics. 
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CHAPTER 6. RECOMMENDATIONS FOR FUTURE WORK 

Creating biocomposites by incorporating wood fiber and compatibilizer into biopolymers 

provide solution in terms of cost, strength and biodegradation properties. However, widespread 

usage of PLA and PHA has been limited due to narrow melt processing window and slow 

crystallization rate than conventional plastics (Khosravi-Darani & Bucci, 2015). 

Out of the five biopolymers used in the study, Bioflex (BF, PLA blend) was the only 

biopolymer that provided a smooth processing in extruding. It was difficult to receive continuous 

extruded strands of PLA/fiber. The PHB was extremely susceptible to thermal degradation 

during extrusion. The extruded SL strands expanded when it came out of the extruder, which 

made it difficult to cut into to pallets. During compression molding, all the materials exhibited 

tackiness except for PLA. However, use of Teflon sheets aided in avoiding unnecessary 

tackiness. The addition of wood fiber or compatibilizer did not have a significant positive impact 

on processing of the biopolymers except for SL. When wood fiber was incorporated to SL, it was 

less tacky during compression molding, and did not expand much during extrusion.  

Other processing methods such as in 3D printing, PLA creates bubbles or spurting at the 

nozzle. Since PLA can react with water at high temperatures and undergo de-polymerization, 

discoloration and a reduction of properties can be observed in 3D printed parts. Even though 

PLA can be dried, this could alter the crystallinity ratio of PLA and resulting in changed 

extrusion temperature and characteristics (Chilson, 2013). In film blowing process, the shape of 

the PLA bubble is unstable due to low melt strength of PLA. The resulting films tend to have 

large variation of dimension and thickness. (Hongdilokkul et al., 2015). Since PLA has low heat 

distortion temperature, developing crystallinity in PLA has additional steps in processing such as 

one-step process/in-mold annealing, and two-step process/post-annealing (Hongdilokkul et al., 
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2015; Manjure & Annan, 2016). Using PHAs in some automotive applications is a failure due to 

difficult melt processing and limited availability of knowledge to identify the best operational 

parameters to avoid thermal degradation (Barletta, Trovalusci, Puopolo, Tagliaferri, & Vesco, 

2016). 

Accordingly, if these materials/composites are to replace petroleum-based products in 

majority of applications, biopolymers need more modifications. Otherwise, extensive use of 

these biopolymer and composites would not be practical. Even though the addition of fibers to 

neat biopolymer reduces the cost, production cost would still be high due to time consuming and 

difficult processing. For future work, it would be invaluable if the neat biopolymers were 

engineered to be easy to process. Perhaps, addition of chain extenders, enzymes, plasticizers and 

chemicals/additives could help reduce processing difficulties (Khosravi-Darani & Bucci, 2015). 

More research studies should be done evaluating how the addition of different kind of 

chemicals/additives impact on processing techniques such as extrusion, 3D printing, film 

blowing, compression molding and injection molding.  
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APPENDIX A. ADDITIONAL INFORMATION OF BIOFLEX BIOPOLYMER 

Bioflex (Bio-Flex® F 2110) used in this study is a polymer-blend based on PLA, 

contains copolyester, mineral fillers and recyclable additives (Kucharczyk et al., 2012). Bioflex 

(BF) is certified as compostable material according to European standard EN 13432, and is a 

USDA certified biobased product. The main component of BF is PLA. When tested for MW, BF 

had a MW of 75000 g/mol, while it was 72000 g/mol for PLA. Researches prefer to use BF 

instead of PLA due to easy processing (Kucharczyk et al., 2012). In order to determine the 

chemical difference between the PLA and BF, FTIR analysis was performed (Figure A1). 

 

Figure A1. FTIR spectra of PLA and Bioflex (BF). 

 
 

The PLA spectrum showed CH3 stretching at 3000–2930 cm-1. The strong IR bands at 

2997.8 and 2947 cm-1 can be assigned to the CH stretching region (Spiridon, Paduraru, Zaltariov, 

& Darie, 2013). Conversely, BF only had one peak at 2957.6 cm-1. The C=O stretching between 

BF 

PLA 
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1730-1760 cm-1 was shown for both PLA and BF. The peaks presented between 1550-1580 cm-1 

for BF could be due to N-H bending (Cui et al., 2001; Yang, 2011). These peaks were not in 

PLA spectra. Peaks between 1350-1450 cm-1 can be attributed to CH2 & CH3 deformation. The 

O–C=O stretching at 1200–1050 cm-1 are characteristics of ester bonds (Orozco, Brostow, 

Chonkaew, & Lopez, 2009). Only 2 peaks were presented for BF in this range in contrast to 3 

peaks of PLA. The peaks around 870 cm-1 were for amorphous phase of the polymer. Peak at 

756 cm-1 represents the crystalline phases of PLA, and this peak was not in BF spectra. 
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