

PROTEIN-LIGAND DOCKING APPLICATION AND COMPARISON USING DISCOVERY

STUDIO AND AUTODOCK

A Thesis

Submitted to the Graduate Faculty

of the

North Dakota State University

of Agriculture and Applied Science

By

Qi Wang

In Partial Fulfillment of the Requirements

for the Degree of

MASTER OF SCIENCE

Major Program:

Genomics and Bioinformatics

February 2017

Fargo, North Dakota

North Dakota State University

Graduate School

Title

 PROTEIN-LIGAND DOCKING APPLICATION AND COMPARISON

USING DISCOVERY STUDIO AND AUTODOCK

 By

Qi Wang

The Supervisory Committee certifies that this disquisition complies with North Dakota State

University’s regulations and meets the accepted standards for the degree of

 MASTER OF SCIENCE

 SUPERVISORY COMMITTEE:

 Dr. Changhui Yan

 Chair

 Dr. Yarong Yang

 Dr. Jun Kong

 Approved:

 2/24/2017 Dr. Phillip McClean

 Date Department Chair

iii

ABSTRACT

 Protein-ligand docking is a structure-based computational method, which is used to

predict the small molecule binding modes and binding affinities with protein receptors. The goals

of this study are to compare the docking performances of different software and apply the

docking method to predict how protein fatty acid desaturase 1 (FADS1) interact with ligands.

Two docking software, Discovery Studio and AutoDock, are used for docking comparison of 195

protein-ligand complexes from PDBind dataset. AutoDock performs a little bit better than

Discovery Studio on the docking percentage, which is the percent of the docked complexes out

of 195. On the other hand, Discovery Studio has a higher accuracy (successfully docked

complexes, within 5 RMSD of the native complex structures) than AutoDock. The interaction

between FADS1 and Sesamin shows a similar pattern comparing to the interaction between a

homolog of FADS1 and a ligand shown in a PDB structure (PDB id 1EUE).

iv

TABLE OF CONTENTS

ABSTRACT ... iii

LIST OF TABLES ... vi

LIST OF FIGURES .. vii

CHAPTER 1. INTRODUCTION ... 1

CHAPTER 2. DOCKING ALGORITHMS AND SCORING FUNCTIONS 4

2.1. Docking methods ... 4

2.1.1. Systematic conformational search .. 4

2.1.2. Stochastic algorithm.. 5

2.1.3. Simulation algorithm .. 6

2.1.4. Receptor flexibility ... 7

2.2. Scoring functions ... 7

2.2.1. The force-field based scoring function ... 8

2.2.2. Empirical scoring function .. 8

2.2.3. Knowledge-based scoring function... 9

CHAPTER 3. CASE STUDY ... 10

3.1. PDBbind data set.. 10

3.2. Protein FADS1 ..11

CHAPTER 4. METHODS .. 13

4.1. LibDock (Discovery Studio) .. 13

4.2. Autodock .. 14

4.3. Protein FADS1 ... 15

CHAPTER 5. RESULTS .. 18

v

5.1. PDBbind Dataset .. 18

5.2. Protein FADS1 ... 20

CHAPTER 6. DISCUSSION .. 24

REFERENCES ... 26

APPENDIX A. STRUCTURES OF THE FADS1 LIGANDS ... 29

APPENDIX B. PDBIND CORE SET .. 31

APPENDIX C. PDBIND CORE SET DOCKING SUMMARY .. 38

APPENDIX D. PYTHON CODE FOR RECEPTOR PREPARATION IN AUTODOCK 44

APPENDIX E. PYTHON CODE FOR LIGAND PREPARATION IN AUTODOCK 50

vi

LIST OF TABLES

Table Page

1. Templates alignment results ... 16

2. Interaction between 1EUE and Protoporphyrin IX .. 22

3. Interaction between FADS1 and Sesamin .. 23

vii

LIST OF FIGURES

Figure Page

1. The histograms of RMSD for Discovery Studio and AutoDock results 19

2. The box-plot of the RMSD values ... 19

3. The sequences alignment of FADS1 with templates. .. 20

4. The predicted 3D structure of FADS1 ... 21

5. 1EUE chain B interacting with Protoporphyrin IX containing Fe 22

6. FADS1 interacting with sesamin ... 23

1

CHAPTER 1. INTRODUCTION

Protein-ligand interaction is the process of protein interacting with small molecules

(referred as ligands) to form stable complexes which have significant biological functions.

Protein-ligand complexes play an important role in many biological processes. For example, the

serum protein complement factor H (FH) have to interact with some specific glycans on host cell

surfaces to function correctly to down-regulate the complement alternative pathway (Blaum, et

al., 2015). Thus, a slight change on the structure of glycans might cause serum protein

complement factor H to fail on the pathway regulation. Therefore, the accurate protein-ligand

interaction modes would be necessary to understand the function of the proteins.

Ligands bind with proteins through intermolecular forces, such as ionic bonds, hydrogen

bonds and van der Waals forces. Basically, there are three experimental methods to analyze the

structure of protein-ligand complex: X-Ray, Nuclear magnetic resonance spectroscopy (NMR)

and electron microscopy. X-Ray crystallography is the most common used experimental

technique to study protein-ligand interactions. In general, it involves 7 steps: protein preparation,

crystallization, testing crystals, X-ray data collection, structure solution, model building and

refinement (Lawson, n.d.). Normally X-Ray crystallography is really time consuming, but the

results from it is often reliable and accurate.

Due to the considerable number of publications of protein three-dimensional structures,

the protein-ligand docking becomes a hot area recent years. Protein-ligand docking is a

structure-based computational method, which is used to predict how small molecules bind with

2

protein receptors and the affinities of the binding. Given the structures of the specific protein and

ligand, protein-ligand docking can predict the stable complex using various docking methods and

scoring functions. Since protein-ligand docking is a computational method, which only requires

the accurate structures of the protein and ligand as the inputs, it can analyze hundreds of

interactions simultaneously. Therefore, protein-ligand docking is effective and less time

consuming. But on the other hand, the docking results might be influenced by different docking

software and scoring functions. To date, there is no docking method that can guarantee perfect

binding results. An experimental verification is necessary for any application. Various of

protein-ligand algorithms and software are used in biological and pharmaceutical researches,

such as disease treatment (Halima, et al., 2016) (Huang, Lee, & Chen, 2014), signal

transduction (Khaw, et al., 2014) and drug designs (Dawood, Zarina, & Bano, 2014).

 The goals of this study are to compare the docking performances of two docking

software, Discovery Studio and AutoDock, and apply the docking method to predict how protein

fatty acid desaturase 1 (FADS1) interact with ligands. Discovery Studio is used to predict the 3D

structure of FADS1 and its interaction with several ligands. Fatty acid desaturase 1 is an enzyme

which can remove the hydrogen atoms from a fatty acid and result in double bonds and the

unsaturation of the fatty acid. The protein-ligand docking modes are analyzed between protein

FADS1 and the ligands CP-24879, Sesamin, Curcumin, Anthranilicanilide, Dibenzoazepine,

Iminodibenzyl, 5H-Dibenz[b,f]azepine, Dibenz[b,f]azepine-5-carbonyl Chloride and

Clomipramine Hydrochloride. The interactions are compared with the template interaction

3

between a homolog of FADS1 and a ligand shown in a PDB structure (PDB id 1EUE). The

dataset for docking comparison is the PDBbind core set which contains 195 protein-ligand

complexes in 65 clusters (Liu, et al., 2014). This dataset can be also widely used as the standard

benchmark for evaluating docking and scoring methods.

4

CHAPTER 2. DOCKING ALGORITHMS AND SCORING FUNCTIONS

In general, protein-ligand docking involves two major steps: complex conformation

prediction (docking algorithm) and near-native conformation selection (scoring function). The

docking algorithm is aim to use effective methods to find the minimum global energy of

protein-ligand complex. The scoring function is used to rank and select the best conformation

which ideally should be the same as the natural conformation of the complex.

2.1. Docking methods

 Protein-docking involves a large amount of calculation, different algorithms have been

developed to predict protein and ligand interactions. Based on their treatment of ligand flexibility,

the searching algorithms can be divided into three basic categories: systematic conformational

search, stochastic (or random) search and simulation (or deterministic) search.

2.1.1. Systematic conformational search

 Systematic protein-ligand docking algorithms allow ligands to rotate in all directions,

which often will lead to high cost on future evaluation time. The advantage of this method is that

it can evaluate all the possible interactions between protein and ligand. But as the number of

combinational evaluations increases, the time to conduct docking increases rapidly. One of the

methods to deal with this problem is to define an active site region and let the ligand just rotate

within this site, which can greatly reduce the amount of calculation. Another way is to divided

the ligand into rigid and flexible fragments. Docking these fragments separately into the active

site and then link them together to rebuild the ligand.

5

DOCK algorithm use anchor-and-grow method to increment conformations. First of all,

the ligand is divided into rigid parts, the anchor segments (Meng, Shoichet, & Kuntz, 1992)

(Ewinga, Makinoa, Skillmana, & Kuntz, 2001) (Moustakas, et al., 2006). The docking anchor(s)

can be selected either by user or some segment size cutoff. Then the anchor is docking to the

active site of the protein using geometrical matching. The rest of the ligand can grow freely onto

the docked anchor. Finally, local optimization is applied to each conformation.

FlexX algorithm uses MIMUMBA program for conformation generation (Klebe &

Mietzner, 1994) (Rarey, Kramer, Lengauer, & Klebe, 1996). Original ligand is separated into

different parts and docked into the active site of protein using geometrically restrictive

interactions, which mainly based on hydrogen bonds. The bond lengths and angles in the ligand

are used as reference for conformations. For each acyclic single bond, it can freely rotate to any

preferred torsion angles. Similar to DOCK algorithm, some minimized geometries are used for

final optimization.

2.1.2. Stochastic algorithm

 The stochastic algorithms randomly change the structure or the position of the ligand.

New structure of the ligand is randomly generated and evaluated by some criteria, such as

Metropolis or some scoring functions. Monte Carlo method and genetic algorithm are two

examples of random algorithm. Some popular software are using stochastic algorithm, such as

AutoDock (Goodsell & Olson, 1990), and GOLD (Jones, Willett, Glen, Leach, & Taylor, 1997).

6

 AutoDock algorithm use Lamarckian genetic search for conformation selection (Morris,

et al., 2009). Random conformations are created and competing with each other and the

conformation with lowest energy is selected and later generations are further created based on

the information of current conformation. Other searching methods, such as simulated annealing

method and traditional genetic algorithm, can also be used in AutoDock.

 A genetic algorithm is used in GOLD software (Jones, Willett, Glen, Leach, & Taylor,

1997) (Jones, Willett, & Glen, 1995) (Verdonk, Cole, Hartshorn, Murray, & Taylor, 2003). In the

first stage of docking, parameters for docking are randomized, which include ligand positions in

the binding site, ligand rotatable bonds, protein chemical groups and so on. Hydrogen atoms

were added to the ligand and the ligand was fully minimized using the MAXIMIN2 module.

Then the ligand is docking to the protein and is optimized based on fitting points.

2.1.3. Simulation algorithm

 In simulation algorithm, an initial state is determined based on some pre-knowledge of

the ligand. And new state is generated based on the previous state. The problem of this method is

that some choice of initial state will lead to local minima instead of the real near-native structure.

Another issue is that it normally requires high computational cost to get the potential

protein-ligand complex structure. Molecular dynamics and energy minimization are two widely

used simulation methods. There are some standardized packages for molecular dynamic, for

example CHARMM (Brooks, et al., 2009), Amber and GROMACS. But unlike molecular

7

dynamics, energy minimization method is barely used alone but combined with some other

searching algorithms.

 CHARMM is a program for molecular simulation and modeling (Brooks, et al., 2009).

It uses energy minimization techniques to optimize the conformations, performs molecular

dynamics simulation, and analyzes the simulation results to determine structural, equilibrium,

and dynamic properties.

2.1.4. Receptor flexibility

 Since receptor proteins are much more complex than ligands, protein with full flexibility

during docking procedure would increase calculation complexity dramatically. But some degrees

of receptor flexibility are available in a lot of software. Most approaches of receptor flexibility

would apply some restrictions on the protein, for example some software requires an active site

and allows the amino acids within the active site rotate freely, some would divide the protein into

rigid part and flexible part to reduce the calculation time. Similar algorithms applied to ligand

flexibility could also be used to analyze receptor flexibility, such as Monte Carlo method

(Trosset & Scheraga, 1999) and molecular dynamics (Pak & Wang, 2000).

2.2. Scoring functions

 After docking, multiple conformations of protein-ligand docking complexes are

generated using various algorithms. Next step would be to evaluate and rank the conformations

based on scoring functions. Because thousands of conformations might be generated from

docking procedure, scoring and ranking all the conformations are time consuming. The key

8

function of scoring procedure is to effectively differentiate the near-native complexes form

incorrect ones. Currently a number of different scoring functions are available, which can be

divided into three types: force-field-based, empirical and knowledge-based scoring functions.

2.2.1. The force-field based scoring function

 The force-field-based scoring function can evaluate the potential energy of a system, as

the sum of different particles (ligand and protein) in the system. Normally, the receptor-ligand

interaction energy and internal ligand energy are evaluated using the force-field-based scoring

function and most solvent effects as well as solute entropies are ignored. Coulomb and van der

Waals interactions are often used in the scoring functions to calculate the energy (Goodsell &

Olson, 1990) (Meng, Shoichet, & Kuntz, 1992).

 AMBER force field is a widely-used scoring function to calculate the total binding

energy of protein-ligand docking (Cornel, et al., 1995).

2.2.2. Empirical scoring function

 Empirical methods use physical-chemical properties of known protein-ligand complexes

to predict the free binding energy of a predicted conformation. Empirical methods are usually

less computational demanding than force-field-based methods.

 Hans-Joachim Bohm (Bohm, 1994) developed an empirical scoring function to calculate

the free energy of binding for protein-ligand complexes. This function includes the hydrogen

bonds, ionic interactions, the lipophilic protein-ligand contact surface and the number of

rotatable bonds in the ligand.

9

∆𝐺𝑏𝑖𝑛𝑑𝑖𝑛𝑔 = ∆𝐺0

+ ∆𝐺ℎ𝑏 ∑ 𝑓(∆𝑅, ∆𝛼) + ∆𝐺𝑖𝑜𝑛𝑖𝑐

ℎ−𝑏𝑜𝑛𝑑𝑠

∑ 𝑓(∆𝑅, ∆𝛼) + ∆𝐺𝑙𝑖𝑝𝑜|𝐴𝑙𝑖𝑝𝑜|

𝑖𝑜𝑛𝑖𝑐−𝑖𝑛𝑡

+ ∆𝐺𝑟𝑜𝑡𝑁𝑅𝑂𝑇

𝑓(∆𝑅, ∆𝛼) = 𝑓1(∆𝑅)𝑓2(∆𝛼)

where 𝑓(∆𝑅, ∆𝛼) is a penalty function related with hydrogen-bond length and angle. The

problem of this function is that it does not take into account the water-mediated hydrogen bonds,

which might take an important role in protein-ligand binding. And obviously the accuracy of this

scoring function highly depends on the experimental binding energies, which might not available

sometime.

2.2.3. Knowledge-based scoring function

 Knowledge-based scoring functions use the frequency of experimental structures in

large 3D databases to evaluate the possibility of the protein-ligand complex. Not like empirical

methods, knowledge-based methods do not need any additional analysis on the training dataset,

which reduces the amount of calculation. But on the other hand, it is also limited by the size of

the database used.

10

CHAPTER 3. CASE STUDY

 To analyze the docking performances, protein FADS1 was used to study the binding

modes with 9 ligands: CP-24879, Sesamin, Curcumin, Anthranilicanilide, Dibenzoazepine,

Iminodibenzyl, 5H-Dibenz[b,f]azepine, Dibenz[b,f]azepine-5-carbonyl Chloride and

Clomipramine Hydrochloride. Furthermore, the PDBbind core set containing 195 protein-ligand

complexes was used to compare the docking results of different software, Discovery Studio and

AutoDock.

3.1. PDBbind data set

 The PDBbind core set contains 195 protein-ligand complexes in 65 clusters (Liu, et al.,

2014), which is a part of the PDBbind dataset, which includes a collection of the bimolecular

complexes binding affinity measured with experiments in the Protein Data Bank (PDB). Each

cluster in the dataset is selected by the protein sequence similarity with 90% cutoff and it

contains 3 members: the one with the highest, medium and the lowest binding constant (logKa).

The PDBbind core set is a high-quality benchmark for evaluating different docking methods and

scoring functions. A study of the docking performances has been done among Discovery Studio

3.5, GOLD 5.1, SYBYL 8.1 Schrodinger 2011, MOE 2011 Academic software 1.3 (Li, Han, Liu,

& Wang, 2014). One the other hand, AutoDock is the most highly used docking software lately

(Sousa, et al., 2013). Therefore, the two software, Discovery Studio 4.1 and AutoDock 4.0, are

selected for the docking comparison. For each protein-ligand complex in PDBbind core set, the

resolution of the structure is smaller than 2.5 A and the inhibition constant (Ki,) or dissociation

11

constants (Kd) is known. In X-Ray crystallography, resolution is the highest value in the

diffraction pattern (Frank, 2006). And the smaller the resolution is, the less errors in the

structures (Huang Y.-F. , 2007). Ki and Kd are special types of equilibrium constants that are

theoretical relative to each other. This dataset can be used as the standard benchmark for

evaluating docking and scoring methods.

3.2. Protein FADS1

 The protein FADS1 is the fatty acid desaturase 1 enzyme in Human, which is located in

chromosome 11q12.2-13.1 (Nakamura & Nara, 2004). The fatty acid chain is the foundation of

biological membranes and the degree of unsaturation would highly influence the melting

temperature and the fluidity of the membranes. Fatty acid desaturase 1 can remove the hydrogen

atoms from a fatty acid and result in double bonds and the unsaturation of the fatty acid. It plays

an important role in lipid metabolic pathway. The ligands used in this study are CP-24879,

Sesamin, Curcumin, Anthranilicanilide, Dibenzoazepine, Iminodibenzyl, 5H-Dibenz[b,f]azepine,

Dibenz[b,f]azepine-5-carbonyl Chloride and Clomipramine Hydrochloride. The docking between

FADS1 and the ligands will provide another way to better understand the function of fatty acid

desaturase 1. The sequence of the protein can be obtained on UniProt.org (UniProtKB - O60427

(FADS1_HUMAN), 2017). It is 444 amino acids long and its 3D structure is still unknown.

>sp|FADS1|1-444

MAPDPVAAETAAQGPTPRYFTWDEVAQRSGCEERWLVIDRKVYNISEFTRRHPGGSRVIS

HYAGQDATDPFVAFHINKGLVKKYMNSLLIGELSPEQPSFEPTKNKELTDEFRELRATVE

RMGLMKANHVFFLLYLLHILLLDGAAWLTLWVFGTSFLPFLLCAVLLSAVQAQAGWLQHD

FGHLSVFSTSKWNHLLHHFVIGHLKGAPASWWNHMHFQHHAKPNCFRKDPDINMHPFFFA

12

LGKILSVELGKQKKKYMPYNHQHKYFFLIGPPALLPLYFQWYIFYFVIQRKKWVDLAWMI

TFYVRFFLTYVPLLGLKAFLGLFFIVRFLESNWFVWVTQMNHIPMHIDHDRNMDWVSTQL

QATCNVHKSAFNDWFSGHLNFQIEHHLFPTMPRHNYHKVAPLVQSLCAKHGIEYQSKPLL

SAFADIIHSLKESGQLWLDAYLHQ

13

CHAPTER 4. METHODS

4.1. LibDock (Discovery Studio)

LibDock uses the systematic conformational search algorithm to dock ligands freely to

the receptor and rank the compounds via the default scoring function LigScore (Krammer,

Kirchhoff, Jiang, Venkatachalam, & Waldman, 2005). First, random conformations of each

ligand from 195 protein-ligand complexes with different rotatable single non-ring bonds were

generated to calculate the internal energy by using van der Waals potentials and a dihedral angle

term. The conformations will be minimized using Broyden–Fletcher–Goldfarb–Shanno (BFGS)

algorithm (Fletcher, 1987) and ranked based on SASA, which is the solvent accessible surface

area of a specific conformation. Then the binding sites were determined by locating the apolar

and polar hot spots on the protein. The hot spots are the locations within the binding sphere that

have a high chance to form either an apolar bond or a hydrogen bond. Thirdly, the geometric

hashing algorithm was used to dock the conformations to the binding site of protein. Finally, the

complexes were optimized using BFGS optimization algorithm, ranked and clustered for in the

final stage (Diller & Merz, 2001).

All the proteins and ligands have been standardized by applying the CHARMm forcefield

to the proteins and monitoring the valences of the ligands. After the preparation, a sphere was

defined around the binding site for each protein. The spheres are defined by randomly selecting

about 10 amino acids around the native binding site of the protein to define it. The binding site

sphere is a required input for running LibDock in Discovery Studio. The number of polar or

14

apolar receptor binding site features (hotspots) was 200, which is chosen to increase the chance

of finding the native protein-ligand structure while still has a reasonable computational time. To

ensure the docking quality, the RMSD tolerance (Å) was chosen as 1 Å.

4.2. Autodock

 Autodock uses the stochastic algorithm to optimize the random conformations with the

lowest energy. At first, the protein receptor is embedded in a grid with 40 grid points in each of

the x-y-z direction centering (15.45, 26.233, 3.593). The grid spacing is 0.375 Å. Then, the

ligand can be put at each grid point with a random initial position and Dihedral offset. A

receptor-ligand interaction energy calculated and stored using the formula:

∆G = ∆𝐺𝑣𝑑𝑤 + ∆𝐺ℎ𝑏𝑜𝑛𝑑 + ∆𝐺𝑒𝑙𝑒𝑐 + ∆𝐺𝑐𝑜𝑣 + ∆𝐺𝑡𝑜𝑟 + ∆𝐺𝑠𝑜𝑙

where ∆𝐺𝑣𝑑𝑤 stands for the energy for van der Waals, ∆𝐺ℎ𝑏𝑜𝑛𝑑 represents hydrogen bond,

∆𝐺𝑒𝑙𝑒𝑐 is electrostatics, ∆𝐺𝑐𝑜𝑣 measures the deviations from covalent geometry, ∆𝐺𝑡𝑜𝑟 models

the internal and external rotation restriction and ∆𝐺𝑠𝑜𝑙 models the solvent entropy changes

(Morris, et al., 1998). Also each conformation of the ligand generated by Monte Carlo simulated

annealing search is allowed to search its local space in the current valley by replacing the

conformation based on the result to find the minima, which can be used in the later generation

(Morris, et al., 2009).

 In Autodock, formatted ligand files are required in pdbqt format, which contain atom

types as well as rotatable bonds supported by AutoDock. Protein and ligand files are prepared

using the Python scripts provided by AutoDock. For the docking procedures, the initial position

15

of ligand and relative dihedral offset set to be random. Genetic algorithm (GA) is used to search

parameters, such as number of GA runs, maximum number of evaluations, rate of nutation and so

on, with all default parameters. Defaults are also used in the docking parameters for random

number generator, energy parameters, step size parameters and output format parameters. After

that, .dpf files are saved containing docking parameters and instructions for Lamarakian Genetic

Algorithm docking (Morris, et al., 1998), which is also known as Genetic Algorithm Local

Search. Finally, with all parameters set, the .dpf files are required to run AutoDock. All the

docking results are clustered using a tolerance of 3.0 Å. For each protein-ligand complex, 10

generations of Genetic algorithm have been run with 50 cycles in each run and the maximum

number of conformations in each cycle is set to be 25000.

4.3. Protein FADS1

 The protein FADS1 is the fatty acid desaturase 1 protein in Human. Since the 3D

structure of this protein is still unknown, the first step is to predict the 3D structure of FADS1.

Currently there are two major methods for protein structure prediction: template-based modeling

and free modeling (Zhang, 2008). The template-based modeling, also known as homology

modeling, is to predict the structure using the known structures of the templates who share

similar sequences with the target protein. The result of homology modeling is highly depending

on the template alignment and selection. And it is possible to build high quality models given

close templates. Free modeling, also termed as “de novo” modeling, is mainly using physical

principles or sometimes small fragments to build the 3D structure of the target protein. But this

16

approach is often time consuming and the prediction qualities for large proteins are usually poor.

In this study, homology modeling is used to study the interaction between FADS1 and its

possible ligands.

 For templates alignment and selection, the Basic Local Alignment Search Tool (BLAST)

within Discovery Studio is used with E-value cutoff equals to 10 in the PDB_nr95 database. The

scoring matrix of this search is BLOSUM62 with the word size 3. The gap existence penalty is

11 and gap extension penalty is 1. Based on the Identity, alignment length, Resolution, E-value

and the Organism of the structures, 6 homology proteins are selected as the templates to build the

3D structure of FADS1: 1EUE, 1LJ0, 1CYO, 2M33, 3NER and 2I96.

Table 1

Templates alignment results

PDB ID
Identity with

FADS1

Alignment

Length
Resolution E-value Organism

1EUE_B 43 57 1.8 5.278 e-11 Rattus norvegicus

1LJ0_A 42 57 2 1.079 e-10 Rattus norvegicus

1CYO_A 31 82 1.5 6.014 e-10 Bos taurus

2M33_A 31 82 9.042 e-10 Oryctolagus cunic

3NER_B 43 53 1.45 1.240 e-09 Homo sapiens

2I96_A 31 89 1.615 e-09 Homo sapiens

The possible ligands of protein FADS1 are CP-24879, Sesamin, Curcumin,

Anthranilicanilide, Dibenzoazepine, Iminodibenzyl, 5H-Dibenz[b,f]azepine,

Dibenz[b,f]azepine-5-carbonyl Chloride and Clomipramine Hydrochloride in this study.

(Structures of the ligands are showd in Appendix A.) For docking preparation, the FADS1

17

protein and all 9 ligands have been standardized by applying the CHARMm (Chemistry at

Harvard Macromolecular Mechanics) forcefield, which uses some formula and parameters to

calculate the potential energy of a system. Also the valences of the ligands need to be balanced

for correct docking. After the preparation, a sphere was defined around the binding site the

receptor protein, which covers the entire FADS1 protein. A binding site sphere is required for

LibDock in Discovery Studio. To increase the possible conformations, the number of polar or

apolar receptor binding site features (hotspots) was 200 and the RMSD tolerance was chosen as

1 Å. The root mean square deviation (RMSD) is a measurement of the average atom distance

between two molecules, which is calculated using the formula:

RMSD(a, b) = √
1

𝑛
∑ [(𝑎𝑖𝑥 − 𝑏𝑖𝑥)2 + (𝑎𝑖𝑦 − 𝑏𝑖𝑦)

2
+ (𝑎𝑖𝑧 − 𝑏𝑖𝑧)2]

𝑛

𝑖=1

where i refers to the atoms in molecules a and b, n is the total number of atoms and x, y, z are the

x-y-z coordinates in three-dimensional space. Therefore, the smaller RMSD it, the closer the

protein-ligand complex is to the native structure.

 Docking preferences was set to be High quality, which is a specific mode in Discovery

Studio with all parameters are predefines. The conformation method was FAST, which quickly

generate diverse low-energy conformations using a systemic search for small molecules. To

reduce the time consumption, no minimization method was used in all the docking processes.

Other parameters, such as sp2-sp2 rotation grid scoring, were kept on default settings (true).

18

CHAPTER 5. RESULTS

5.1. PDBbind Dataset

 The results of the docking software evaluation are summarized in Table 1. The

successfully docked complexes are considered to be within 3.0 Å tolerance of RMSD. A larger

RMSD tolerance will increase the successfully docking percentage. But the protein-ligand

complexes with larger RMSD are less reliable than the ones with smaller RMSD. The

successfully docking percentage is defined as the percentage of the docked complexes having a

RMSD less than or equal to 3.0 Å among 195 protein-ligand complexes. Figure 1 and 2 show the

protein-ligand docking RMSD summary of Discovery Studio and AutoDock. It is clear that the

predicted complex RMSD using Discovery Studio is more stable, mainly around 10 Å,

comparing to the complex RMSD using AutoDock, which has a higher percentage on the RMSD

greater than 15 Å. AutoDock performs a little bit better than Discovery Studio regarding to the

successfully docking percentage, 16.92% (33 out of 195) and 10.26% (20 out of 195),

respectively. But while comparing the minimum RMSD for the two software, Discovery Studio

has 109 protein-ligand complexes with lower RMSD than their results of AutoDock. Detailed

docking results from both softwares are showed in Appendix C.

19

Figure 1. The histograms of RMSD for Discovery Studio and AutoDock results

Figure 2. The box-plot of the RMSD values

20

5.2. Protein FADS1

Based on the Identity, alignment length, Resolution, E-value and the Organism of the

structures, 6 homology sequences are selected as the templates to build the 3D structure of

FADS1: 1EUE, 1LJ0, 1CYO, 2M33, 3NER and 2I96. Figure 3 shows the protein FADS1

alignment with 6 Homology sequences from BLAST search. The sequences in blue color are

highly conserved, which is good for predicting the 3D structure of FADS1 through alignment.

One thing needs to be mention that there is no sequence alignment beyond amino acid 138 L to

the last amino acid 440 Q, thus no reliable 3D structure could possible generated for this part of

the sequence.

Figure 3. The sequences alignment of FADS1 with templates.

Figure 4 is the predicted 3D structure of FADS1 based on the structures of the homology

sequences. This protein folds a β-sheet (in blue color) in the middle surrounded by several

α-helices (in red color). Thus a hydrophobic binding site is formed in the center.

21

Figure 4. The predicted 3D structure of FADS1

By comparing the docking results between FADS1 with 9 ligands and the template 1EUE

with Protoporphyrin IX containing Fe, it showed that the interaction between FADS1 and

Sesamin has the highest similarity to the template complex. 1EUE is rat outer mitochondrial

membrane cytochrome B5 protein, which belongs to the electron transport system (Oganesyan &

Zhang, 2001). The amino acids ILE45, LEU46, ALA54, PHE58 and ALA67 in 1EUE are

important in the interaction with Protoporphyrin IX. The detailed information of the interactions

is showed in Table 2.

22

Table 2

Interaction between 1EUE and Protoporphyrin IX

Amino acid Category types Distance

ILE45 Hydrophobic Alkyl 3.643370

LEU46 Hydrophobic Alkyl 5.214600

ALA54 Hydrophobic Alkyl 3.777066

PHE58 Hydrophobic Pi-Alkyl 4.409321

ALA67 Hydrophobic Alkyl 3.676638

Figure 5. 1EUE chain B interacting with Protoporphyrin IX containing Fe

Based on the results of alignment, it’s clear that VAL94, ILE95, ALA103, PHE107 and

VAL117 are the sequence aligned amino acids in FADS1, which also play important roles in the

interaction with Sesamin. Figure 5 and 6 shows the interaction results. The results indicate that

the interaction between FADS1 and Sesamin share a similar binding pattern to the interaction

23

between 1EUE and Protoporphyrin IX. Thus it will help us better understand the biological

function of FADS1 as well as shed some light on drug design.

Table 3

Interaction between FADS1 and Sesamin

Amino acid Category types Distance

VAL94 Hydrophobic Pi-Alkyl 5.368634

ILE95 Hydrophobic Alkyl 5.476260

ALA103 Hydrophobic Pi-Alkyl 4.461106

PHE107 Hydrophobic Pi-Alkyl 5.171723

VAL117 Hydrophobic Pi-Alkyl 5.087928

Figure 6. FADS1 interacting with sesamin

24

CHAPTER 6. DISCUSSION

The goals of this study are to compare the docking performances of different software

and apply the docking method to predict how protein fatty acid desaturase 1 (FADS1) interact

with ligands. Two docking software, Discovery Studio and AutoDock, are used for docking

comparison of 195 protein-ligand complexes from PDBind dataset. The PDBbind core set is

widely used as the standard benchmark for evaluating docking and scoring methods. The

docking results show that the predicted complex RMSD using Discovery Studio is more stable,

mainly around 10 Å, comparing to the complex RMSD using AutoDock, which has a higher

percentage on the RMSD greater than 15 Å. AutoDock performs a little bit better than Discovery

Studio regarding to the successfully docking percentage, 16.92% (33 out of 195) and 10.26% (20

out of 195), respectively. But while comparing the minimum RMSD gained by the two softwares,

Discovery Studio has 109 protein-ligand complexes with lower RMSD than their results of

AutoDock. The docking accuracy of protein-ligand complexes is highly related with the specific

complexes as well as the docking software. Some complexes could not be successfully docked

based on the specific parameter settings using one software, but can get somewhat accurate result

using the other one. All the results are run based on the default settings; therefore it’s possible to

get a higher accuracy for specific complex by trying different combinations of parameters.

 Discovery Studio is commercial software and the installation cost of it is pretty high

comparing to the free of charged AutoDock. But Discovery Studio provides detailed tutorials for

users to get familiar with its functions and the technical support team from the Accelrys

25

Company is very helpful with troubleshooting of Discovery Studio. On the other hand, limited

tutorials are given in the AutoDock website regarding docking using AutoDock. Also the

understanding of Python language is pretty useful while dealing with hundreds of protein-ligand

docking using the same parameter settings.

 Discovery Studio is used to predict the 3D structure of protein fatty acid desaturase 1

(FADS1) and its interaction with several ligands. Fatty acid desaturase 1 is an enzyme which can

remove the hydrogen atoms from a fatty acid and result in double bonds and the unsaturation of

the fatty acid. It plays an important role in lipid metabolic pathway. The 3D structure of FADS1

is predicted using homology modeling based on its amino acid sequence. Based on the Identity,

alignment length, Resolution, E-value and the Organism of the structures, 6 homology sequences

(1EUE, 1LJ0, 1CYO, 2M33, 3NER and 2I96) are selected as the templates to build the 3D

structure of FADS1. The 9 of its possible ligands for FADS1 are CP-24879, Sesamin, Curcumin,

Anthranilicanilide, Dibenzoazepine, Iminodibenzyl, 5H-Dibenz[b,f]azepine,

Dibenz[b,f]azepine-5-carbonyl Chloride and Clomipramine Hydrochloride. As a result of the

docking, the interaction between FADS1 and Sesamin shows a similar pattern comparing to the

interaction between a homolog of FADS1 and a ligand shown in a PDB structure (PDB id 1EUE).

The structures of the other 8 protein-ligand complexes of FADS1 are not as close to the template

structure as FADS1-Sesamin complex. The interaction between FADS1 and Sesamin would

provide another way to understand the function of fatty acid desaturase 1 and possible drug

design.

26

REFERENCES

Blaum, B. S., Hannan, J. P., Herbert, A. P., Kavanagh, D., Uhrín, D., & Stehle, T. (2015).

Structural basis for sialic acid–mediated self-recognition by complement factor H. Nature

Chemical Biology, 11, 77–82. doi:10.1038/nchembio.1696

Bohm, H.-J. (1994). The development of a simple empirical scoring function to estimate the

binding constant for a protein-ligand complex of known three-dimensional structure.

Journal of Computer-Aided Molecular Design, 8, 243-256.

Brooks, B. R., Brooks, C. L., MacKerell, A. D., Nilsson, L., Petrella, R. J., Roux, B., . . . Karplus,

M. (2009). CHARMM: The Biomolecular Simulation Program. Journal of

Computational Chemistry, 30(10), 1545-1614.

Cornel, W. D., Cieplak, P., Bayly, C. I., Gould, I. R., Merz, K. M., Ferguson, D. M., . . . Kollman,

P. A. (1995). A Second Generation Force Field for the Simulation of Proteins, Nucleic

Acids, and Organic Molecules. Journal of the American Chemical Society, 5179-5197.

Dawood, S., Zarina, S., & Bano, S. (2014). Docking studies of antidepressants against single

crystal structure of tryptophan 2, 3-dioxygenase using Molegro Virtual Docker software.

Pakistan journal of pharmaceutical sciences, 27(5), 1529-1539.

Diller, D. J., & Merz, K. M. (2001). High Throughput Docking for Library Design and Library

Prioritization. PROTEINS: Structure, Function, and Genetics, 43, 113-124.

Ewinga, T. J., Makinoa, S., Skillmana, G., & Kuntz, I. D. (2001). DOCK 4.0: Search strategies

for automated molecular docking of flexible molecule databases. Journal of

Computer-Aided Molecular Design, 411-428.

Fletcher, R. (1987). Practical methods of optimization. New York: John Wiley & Sons.

Frank, J. (2006). Three-Dimnsional Electron Microscopy of Macromolecular Assemblies. New

York: Oxford University Press.

Goodsell, D. S., & Olson, A. J. (1990). Automated docking of substrates to proteins by simulated

annealing. Proteins Structure Function and Bioinformatics, 8(3), 195-202.

doi:10.1002/prot.340080302

Halima, S. B., Mishra, S., Raja, K. P., Willem, M., Baici, A., Simons, K., . . . Rajendran, L.

(2016). Specific Inhibition of β-Secretase Processing of the Alzheimer Disease Amyloid

Precursor Protein. Cell Reports, 14(9), 2127-2141. doi:10.1016/j.celrep.2016.01.076

Huang, H.-J., Lee, C.-C., & Chen, C. Y.-C. (2014). Medicine, Lead Discovery for Alzheimer’s

Disease Related Target Protein RbAp48 from Traditional Chinese. BioMed Research

International, Article ID 764946. doi:doi:10.1155/2014/764946

Huang, Y.-F. (2007, 12 11). Study of Mining Protein Structural Properties and its Application .

Retrieved from http://www.csie.ntu.edu.tw/~yfhuang/papers/phdprop.yfhuang.pdf

Jones, G., Willett, P., & Glen, R. C. (1995). Molecular recognition of receptor sites using a

genetic algorithm with a description of desolvation. Journal of Molecular Biology, 245(1),

43-53. doi:10.1016/S0022-2836(95)80037-9

27

Jones, G., Willett, P., Glen, R. C., Leach, A. R., & Taylor, R. (1997). Development and validation

of a genetic algorithm for flexible docking. Journal of Molecular Biology, 267(3),

727-748. doi:http://dx.doi.org/10.1006/jmbi.1996.0897

Khaw, K. Y., Choi, S. B., Tan, S. C., Wahab, H. A., Chan, K. L., & Murugaiyah, V. (2014).

Prenylated xanthones from mangosteen as promising cholinesterase inhibitors and their

molecular docking studies. Phytomedicine, 21(11), 1303-1309.

doi:http://dx.doi.org/10.1016/j.phymed.2014.06.017

Klebe, G., & Mietzner, T. (1994). A fast and efficient method to generate biologically relevant

conformations. Journal of Computer-Aided Molecular Design, 8(5), 583-606.

doi:10.1007/BF00123667

Krammer, A., Kirchhoff, P. D., Jiang, X., Venkatachalam, C., & Waldman, M. (2005). LigScore:

a novel scoring function for predicting binding affinities. Journal of Molecular Graphics

and Modelling, 23(5), 395-407.

Lawson, D. (n.d.). A Brief Introduction to Protein Crystallography by Dave Lawson. Retrieved

from https://www.jic.ac.uk/staff/david-lawson/xtallog/summary.htm

Li, Y., Han, L., Liu, Z., & Wang, R. (2014). Comparative Assessment of Scoring Functions on an

Updated Benchmark: 2. Evaluation Methods and General Results. Journal of Chemical

Information and Modeling, 54, 1717-1736.

Liu, Z., Li, Y., Han, L., L, J., Liu, J., Zhao, Z., . . . Wang, R. (2014). PDB-wide collection of

binding data: current status of the PDBbind database. Bioinformatics, 31(3), 405-12.

doi:10.1093/bioinformatics/btu626

Meng, E. C., Shoichet, B. K., & Kuntz, I. D. (1992). Automated docking with grid-based energy

evaluation. Journal of Computational Chenistry, 13(4), 505-524.

doi:10.1002/jcc.540130412

Morris, G. M., Goodsell, D. S., Halliday, R. S., Huey, R., Hart, W. E., Belew, R. K., & Olson, A.

J. (1998). Automated docking using a Lamarckian genetic algorithm and an empirical

binding free energy function. Journal of Computational Chemistry, 19(4), 1639-1662.

Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R., Goodsell, D. S., & Olson, A. J.

(2009). AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor

Flexibility. Journal of Computational Chemistry, 30(16), 2785-2791.

doi:10.1002/jcc.21256

Moustakas, D. T., Lang, P., Pegg, S., Pettersen, E., Kuntz, I. D., Brooijmans, N., & Rizzo, R. C.

(2006). Development and validation of a modular, extensible docking program: DOCK 5.

Journal of Computer-Aided Molecular Design, 20(10), 601-619.

doi:10.1007/s10822-006-9060-4

Nakamura, M. T., & Nara, T. Y. (2004). Structure, function, and dietary regulation of Δ6, Δ5, and

Δ9 desaturases. Annual Review Nurtition, 24, 345-376.

Oganesyan, V., & Zhang, X. (2001, 4 4). 1EUE. Retrieved from RCSB PDB:

http://www.rcsb.org/pdb/explore.do?structureId=1EUE

28

Pak, Y., & Wang, S. (2000). Application of a molecular dynamics simulation method with a

generalized effective potential to the flexible molecular docking problems. The Journal of

Physical Chemistry B, 104(2), 354-359.

Rarey, M., Kramer, B., Lengauer, T., & Klebe, G. (1996). A fast flexible docking method using

an incremental construction algorithm. Journal of Molecular Biology, 261(3), 470-489.

doi:http://dx.doi.org/10.1006/jmbi.1996.0477

Sousa, S., Ribeiro, A. J., Coimbra, J. T., Neves, R. P., Martins, S., Moorthy, N. H., . . . Ramos, M.

J. (2013). Protein-Ligand Docking in the New Millennium – A Retrospective of 10 Years

in the Field. Current Medicinal Chemistry, 20(18), 2296-2314.

Trosset, J. Y., & Scheraga, H. A. (1999). Prodock: software package for protein modeling and

docking. Journal of Computional Chemistry, 20, 412-427.

UniProtKB - O60427 (FADS1_HUMAN). (2017, 2 22). Retrieved from UniProt:

http://www.uniprot.org/uniprot/O60427

Verdonk, M. L., Cole, J. C., Hartshorn, M. J., Murray, C. W., & Taylor, R. D. (2003). Improved

Protein–Ligand Docking Using GOLD. PROTEINS:Structure, Function, and Genetics,

609-623.

Zhang, Y. (2008). Progress and challenges in protein structure prediction. Current Opinion in

Structure Biology, 18(3), 342-348.

29

APPENDIX A. STRUCTURES OF THE FADS1 LIGANDS

 Ligand name Structure

CP-24879

Sesamin

Curcumin

Dibenzoazepine

Iminodibenzyl

30

 Ligand name Structure

5H-Dibenz[b,f]azepine

Dibenz[b,f]azepine-5-carbonyl chloride

clomipramine hydrochloride

31

APPENDIX B. PDBIND CORE SET

PDB code log Ka protein name

1PS3 2.28 α-mannosidase II

3D4Z 4.89 α-mannosidase II

3EJR 8.57 α-mannosidase II

2QMJ 4.21 maltase-glucoamylase, intestinal

3L4W 6.00 maltase-glucoamylase, intestinal

3L4U 7.52 maltase-glucoamylase, intestinal

3L7B 2.40 glycogen phosphorylase, muscle form

3G2N 4.09 glycogen phosphorylase, muscle form

3EBP 5.91 glycogen phosphorylase, muscle form

2W66 4.05 O-glcnacase BT_4395

2WCA 5.60 O-glcnacase BT_4395

2VVN 7.30 O-glcnacase BT_4395

2X97 5.66 angiotensin converting enzyme

2XHM 6.80 angiotensin converting enzyme

2X8Z 7.96 angiotensin converting enzyme

2X0Y 4.60 O-glcnacase NAGJ

2CBJ 8.27 O-glcnacase NAGJ

2J62 11.34 O-glcnacase NAGJ

3BKK 6.08 angiotensin converting enzyme

3L3N 8.18 angiotensin converting enzyme

2XY9 9.19 angiotensin converting enzyme

1GPK 5.37 acetylcholinesterase

1H23 8.35 acetylcholinesterase

1E66 9.89 acetylcholinesterase

3CJ2 4.85 RNA-dependent RNA polymerase

2D3U 6.92 RNA-dependent RNA polymerase

3GNW 9.10 RNA-dependent RNA polymerase

3F3A 4.19 transporter

3F3C 6.02 transporter

3F3E 7.70 transporter

32

PDB code log Ka protein name

4GQQ 2.89 α-amylase

1U33 4.60 α-amylase

1XD0 7.12 α-amylase

2WBG 4.45 β-glucosidase A

2J78 6.42 β-glucosidase A

2CET 8.02 β-glucosidase A

2ZXD 5.22 α-l-fucosidase

2ZWZ 7.79 α-l-fucosidase

2ZX6 10.60 α-l-fucosidase

3UDH 2.85 β-secretase 1

4DJV 6.72 β-secretase 1

4GID 10.77 β-secretase 1

3FK1 2.62 3-phosphoshikimate 1-carboxyvinyltransferase

2QFT 5.26 3-phosphoshikimate 1-carboxyvinyltransferase

2PQ9 8.11 3-phosphoshikimate 1-carboxyvinyltransferase

1F8D 3.40 neuraminidase

1F8B 5.40 neuraminidase

1F8C 7.40 neuraminidase

1N2V 4.08 queuine tRNA-ribosyltransferase

1R5Y 6.46 queuine tRNA-ribosyltransferase

3GE7 8.70 queuine tRNA-ribosyltransferase

3HUC 5.99 mitogen-activated protein kinase 14

3GCS 7.25 mitogen-activated protein kinase 14

3E93 8.85 mitogen-activated protein kinase 14

1Q8T 4.76 cAMP-dependent protein kinase

1Q8U 5.96 cAMP-dependent protein kinase

3AG9 8.05 cAMP-dependent protein kinase

3OWJ 6.07 casein kinase II, α subunit

2ZJW 7.70 casein kinase II, α subunit

3PE2 9.76 casein kinase II, α subunit

2V00 3.66 endothiapepsin

3PWW 7.32 endothiapepsin

33

PDB code log Ka protein name

3URI 9.00 endothiapepsin

3MFV 2.52 arginase-1

3F80 4.22 arginase-1

3KV2 7.32 arginase-1

2HB1 3.80 protein-tyrosine phosphatase 1b

2QBR 6.33 protein-tyrosine phosphatase 1b

2QBP 8.40 protein-tyrosine phosphatase 1b

3FCQ 2.77 thermolysin

1OS0 6.03 thermolysin

4TMN 10.17 thermolysin

3PXF 4.43 cell division protein kinase 2

2XNB 6.83 cell division protein kinase 2

2FVD 8.52 cell division protein kinase 2

1QI0 2.35 endoglucanase B

1W3K 4.30 endoglucanase 5A

1W3L 6.28 endoglucanase 5A

3IMC 2.96 pantothenate synthetase

3IVG 4.30 pantothenate synthetase

3COY 6.02 pantothenate synthetase

3B3S 2.55 leucyl aminopeptidase

3B3W 4.19 leucyl aminopeptidase

3VH9 6.24 leucyl aminopeptidase

3MSS 4.66 tyrosine-protein kinase ABL1

3K5 V 6.30 tyrosine-protein kinase ABL1

2V7A 8.30 tyrosine-protein kinase ABL1

2BRB 4.86 serine/threonine-protein kinase Chk1

3JVS 6.54 serine/threonine-protein kinase Chk1

1NVQ 8.25 serine/threonine-protein kinase Chk1

3ACW 4.76 dehydrosqualene synthase

2ZCR 6.87 dehydrosqualene synthase

2ZCQ 8.82 dehydrosqualene synthase

1BCU 3.28 thrombin

34

PDB code log Ka protein name

1OYT 7.24 thrombin

3UTU 10.92 thrombin

3U9Q 4.38 peroxisome proliferator-activated receptor γ

2YFE 6.63 peroxisome proliferator-activated receptor γ

2P4Y 9.00 peroxisome proliferator-activated receptor γ

3UO4 6.52 serine/threonine-protein kinase 6

2WTV 8.74 serine/threonine-protein kinase 6

3MYG 10.70 serine/threonine-protein kinase 6

3KGP 2.57 urokinase-type plasminogen activator

1O5B 5.77 urokinase-type plasminogen activator

1SQA 9.21 urokinase-type plasminogen activator

3KWA 4.08 carbonic anhydrase II

2WEG 6.50 carbonic anhydrase II

3DD0 9.00 carbonic anhydrase II

2XDL 3.10 heat shock protein Hsp90-α

1YC1 6.17 heat shock protein Hsp90-α

2YKI 9.46 heat shock protein Hsp90-α

1P1Q 4.89 glutamate receptor 2

3BFU 6.27 glutamate receptor 2

4G8M 7.89 glutamate receptor 2

3G2Z 2.36 β-lactamase

4DE2 4.12 β-lactamase

4DE1 5.96 β-lactamase

1VSO 4.72 glutamate receptor, ionotropic kainate 1

3GBB 6.90 glutamate receptor, ionotropic kainate 1

3FV1 9.30 glutamate receptor, ionotropic kainate 1

2Y5H 5.79 coagulation factor XA

2XBV 8.43 coagulation factor XA

1MQ6 11.15 coagulation factor XA

1LOQ 3.70 orotidine 5′-monophosphate decarboxylase

1LOL 6.39 orotidine 5′-monophosphate decarboxylase

1LOR 11.06 orotidine 5′-monophosphate decarboxylase

35

PDB code log Ka protein name

1UTO 2.27 trypsin β

3GY4 5.10 trypsin β

1O3F 7.96 trypsin β

2YGE 5.06 heat shock protein Hsp82

2IWX 6.68 heat shock protein Hsp82

2VW5 8.52 heat shock protein Hsp82

2YMD 3.16 acetylcholine receptor

2XYS 7.42 acetylcholine receptor

2X00 11.33 acetylcholine receptor

2R23 3.72 antibody FAB fragment

3BPC 4.80 antibody FAB fragment

1KEL 7.28 antibody FAB fragment

3OZT 4.13 catechol O-methyltransferase

3OE5 6.88 catechol O-methyltransferase

3NW9 9.00 catechol O-methyltransferase

1ZEA 5.22 antibody FAB fragment

2PCP 8.70 antibody FAB fragment

1IGJ 10.00 antibody FAB fragment

1LBK 3.18 glutathione S-transferase P1-1

2GSS 4.94 glutathione S-transferase P1-1

10GS 6.40 glutathione S-transferase P1-1

3SU5 5.58 NS3/4A protease

3SU2 7.35 NS3/4A protease

3SU3 9.13 NS3/4A protease

3N7A 3.70 3-dehydroquinate dehydratase

3N86 5.64 3-dehydroquinate dehydratase

2XB8 7.59 3-dehydroquinate dehydratase

3AO4 2.07 HIV-1 integrase

3ZSX 3.28 HIV-1 integrase

3ZSO 5.12 HIV-1 integrase

3NQ3 3.78 β-lactoglobulin

3UEU 5.24 β-lactoglobulin

36

PDB code log Ka protein name

3UEX 6.92 β-lactoglobulin

3LKA 2.82 macrophage metalloelastase (MMP-12)

3EHY 5.85 macrophage metalloelastase (MMP-12)

3F17 8.63 macrophage metalloelastase (MMP-12)

3CFT 4.19 transthyretin

4DES 5.85 transthyretin

4DEW 7.00 transthyretin

3DXG 2.40 ribonuclease A

1W4O 5.22 ribonuclease A

1U1B 7.80 ribonuclease A

3OV1 5.20 growth factor receptor-bound protein 2

3S8O 6.85 growth factor receptor-bound protein 2

1JYQ 8.70 growth factor receptor-bound protein 2

1A30 4.30 HIV-1 protease

3CYX 8.00 HIV-1 protease

4DJR 11.52 HIV-1 protease

3I3B 2.23 β-galactosidase

3MUZ 3.46 β-galactosidase

3VD4 4.82 β-galactosidase

2VO5 4.89 β-mannosidase

2VL4 6.01 β-mannosidase

2VOT 7.14 β-mannosidase

1N1M 5.70 dipeptidyl peptidase 4

2OLE 7.25 dipeptidyl peptidase 4

3NOX 8.66 dipeptidyl peptidase 4

1HNN 6.24 phenylethanolamine N-methyltransferase

2G70 7.77 phenylethanolamine N-methyltransferase

2OBF 8.85 phenylethanolamine N-methyltransferase

1Z95 7.12 androgen receptor

3B68 8.40 androgen receptor

3G0W 9.52 androgen receptor

1SLN 6.64 stromelysin-1

37

PDB code log Ka protein name

2D1O 7.70 stromelysin-1

1HFS 8.70 stromelysin-1

2JDY 4.37 fucose-binding lectin PA-IIL

2JDM 5.40 fucose-binding lectin PA-IIL

2JDU 6.72 fucose-binding lectin PA-IIL

38

APPENDIX C. PDBIND CORE SET DOCKING SUMMARY

PDB code DS Min DS Num AutoDock Min AutoDock Num Method

10gs 5.8083 0 9.55 0 DS

1a30 9.18772 0 2.86 2 AutoDock

1bcu 6.80629 0 9.56 0 DS

1e66 7.9146 0 NA 0 DS

1f8b 8.6072 0 30.34 0 DS

1f8c 0 10 26.58 0 DS

1f8d 0 1 26.3 0 DS

1gpk 8.21955 0 1.89 10 AutoDock

1h23 6.02768 0 3.33 0 AutoDock

1hfs 11.4727 0 7.28 0 AutoDock

1hnn 8.38057 0 8.03 0 AutoDock

1igj 6.87317 0 21.21 0 DS

1jyq 10.6376 0 12.59 0 DS

1kel 0 14 23.83 0 DS

1lbk 7.91016 0 6.61 0 AutoDock

1lol 5.11139 0 13.26 0 DS

1loq 17.4876 0 17.57 0 DS

1lor 10.7718 0 9.73 0 AutoDock

1mq6 6.54068 0 15.06 0 DS

1n1m 9.32917 0 25.94 0 DS

1n2v 7.73697 0 2.77 2 AutoDock

1nvq 0 5 12.41 0 DS

1o3f 9.99304 0 8.1 0 AutoDock

1o5b 15.5201 0 2.41 1 AutoDock

1os0 12.0796 0 6.8 0 AutoDock

1oyt 11.7536 0 9.7 0 AutoDock

1p1q 7.0728 0 12.3 0 DS

1ps3 NA 0 14.45 0 AutoDock

1q8t 8.47348 0 1.58 4 AutoDock

1q8u 8.55204 0 4.48 0 AutoDock

1qi0 6.72785 0 14.81 0 DS

1r5y 6.00367 0 3.67 0 AutoDock

1sln 9.63172 0 10.67 0 DS

1sqa 8.4153 0 9.8 0 DS

1u1b 8.21593 0 4.4 0 AutoDock

1u33 8.45949 0 9.77 0 DS

39

PDB code DS Min DS Num AutoDock Min AutoDock Num Method

1uto 0 2 1.81 4 DS

1vso 5.22074 0 14.75 0 DS

1w3k 7.56717 0 11.52 0 DS

1w3l 7.89011 0 11.43 0 DS

1w4o 9.42634 0 13.76 0 DS

1xd0 14.0578 0 8.77 0 AutoDock

1yc1 8.0417 0 2.96 1 AutoDock

1z95 12.3223 0 2.42 1 AutoDock

1zea 0 1 27.72 0 DS

2brb 7.57076 0 12.81 0 DS

2cbj 19.6322 0 15.15 0 AutoDock

2cet 7.84718 0 1.07 6 AutoDock

2d1o 9.37148 0 12.66 0 DS

2d3u 0 9 21.57 0 DS

2fvd 7.6841 0 14.1 0 DS

2g70 0 17 7.92 0 DS

2gss 0 16 10.71 0 DS

2hb1 12.5937 0 16.2 0 DS

2iwx 8.08911 0 1.5 10 AutoDock

2j62 9.8234 0 16.73 0 DS

2j78 7.77791 0 0.52 10 AutoDock

2jdm 18.4474 0 22.98 0 DS

2jdu 18.2474 0 22.38 0 DS

2jdy 9.61378 0 25.35 0 DS

2obf 11.2736 0 7.32 0 AutoDock

2ole 9.95456 0 19.51 0 DS

2p4y 12.9 0 18.75 0 DS

2pcp 19.3825 0 22.76 0 DS

2pq9 0 10 1.25 10 DS

2qbp 0 14 12.94 0 DS

2qbr 0 1 14.2 0 DS

2qft 0 20 0.88 8 DS

2qmj 8.65159 0 15.34 0 DS

2r23 10.3994 0 27.12 0 DS

2v00 5.1149 0 0.89 6 AutoDock

2v7a 7.80045 0 9.71 0 DS

2vl4 5.99009 0 11.07 0 DS

2vo5 7.68767 0 13.09 0 DS

40

PDB code DS Min DS Num AutoDock Min AutoDock Num Method

2vot 7.1551 0 15.38 0 DS

2vvn 12.2275 0 12.6 0 DS

2vw5 11.3336 0 3.32 0 AutoDock

2w66 15.9783 0 14.81 0 AutoDock

2wbg 5.95828 0 17.17 0 DS

2wca 6.74984 0 14.59 0 DS

2weg 5.25847 0 0.63 10 AutoDock

2wtv 7.06107 0 8.1 0 DS

2x00 14.4063 0 22.05 0 DS

2x0y 7.80722 0 19.93 0 DS

2x8z 8.5603 0 0.8 9 AutoDock

2x97 11.0496 0 3.69 0 AutoDock

2xb8 7.81645 0 19.86 0 DS

2xbv 13.0473 0 15.71 0 DS

2xdl 7.77039 0 8.66 0 DS

2xhm NA 0 5.98 0 AutoDock

2xnb 10.4256 0 13.47 0 DS

2xy9 13.6116 0 2.44 3 AutoDock

2xys 9.90856 0 20.24 0 DS

2y5h 7.2362 0 16.04 0 DS

2yfe 8.07678 0 5.7 0 AutoDock

2yge 10.1024 0 3.59 0 AutoDock

2yki 9.01784 0 3.03 0 AutoDock

2ymd 8.78006 0 32.1 0 DS

2zcq 6.39122 0 2.74 1 AutoDock

2zcr 14.4761 0 1.7 5 AutoDock

2zjw NA 0 14.27 0 AutoDock

2zwz 6.24192 0 29.9 0 DS

2zx6 12.508 0 22.17 0 DS

2zxd 9.0221 0 32.82 0 DS

3acw 12.0784 0 1.36 10 AutoDock

3ag9 12.5201 0 NA 0 DS

3ao4 13.5706 0 14.5 0 DS

3b3s 6.63154 0 13.82 0 DS

3b3w 5.25895 0 NA 0 DS

3b68 0 18 5.25 0 DS

3bfu 7.56331 0 13.7 0 DS

3bkk 11.224 0 2.16 2 AutoDock

41

PDB code DS Min DS Num AutoDock Min AutoDock Num Method

3bpc 10.5394 0 27.49 0 DS

3cft 17.2524 0 9.54 0 AutoDock

3cj2 11.1617 0 23.13 0 DS

3coy 8.15473 0 15.87 0 DS

3cyx 13.1025 0 3.41 0 AutoDock

3d4z 25.8236 0 15.46 0 AutoDock

3dd0 7.7338 0 1.97 5 AutoDock

3dxg 7.25655 0 2.4 7 AutoDock

3e93 12.3006 0 6.8 0 AutoDock

3ebp 12.1055 0 28.36 0 DS

3ehy 10.1327 0 10.88 0 DS

3ejr 6.38707 0 14.8 0 DS

3f17 11.5185 0 11.99 0 DS

3f3a 0 20 23.15 0 DS

3f3c 9.28237 0 22.52 0 DS

3f3e NA 0 21.59 0 AutoDock

3f80 0 52 18.96 0 DS

3fcq 7.52613 0 3.62 0 AutoDock

3fk1 5.29645 0 0.4 10 AutoDock

3fv1 9.93798 0 0.32 10 AutoDock

3g0w 12.7258 0 4.47 0 AutoDock

3g2n 23.9442 0 1.73 10 AutoDock

3g2z 4.63534 0 15.38 0 DS

3gbb 10.5483 0 0.43 10 AutoDock

3gcs 10.8583 0 5.66 0 AutoDock

3ge7 7.0495 0 23.02 0 DS

3gnw 9.27252 0 1.91 4 AutoDock

3gy4 16.8961 0 8.81 0 AutoDock

3huc 9.44927 0 10.58 0 DS

3i3b 6.05309 0 NA 0 DS

3imc 6.26741 0 19.98 0 DS

3ivg 22.181 0 15.44 0 AutoDock

3jvs 0 2 13.1 0 DS

3k5v 8.92985 0 19.47 0 DS

3kgp 14.5175 0 7.83 0 AutoDock

3kv2 12.6006 0 22.8 0 DS

3kwa 11.6569 0 1.92 8 AutoDock

3l3n 12.2073 0 2.43 3 AutoDock

42

PDB code DS Min DS Num AutoDock Min AutoDock Num Method

3l4u NA 0 14.56 0 AutoDock

3l4w 14.2631 0 17.88 0 DS

3l7b NA 0 27.15 0 AutoDock

3lka 7.87774 0 3.14 0 AutoDock

3mfv 14.4811 0 19.31 0 DS

3mss 27.0544 0 25.81 0 AutoDock

3muz 16.7868 0 NA 0 DS

3myg 7.28649 0 9.15 0 DS

3n7a 7.08678 0 17 0 DS

3n86 15.6088 0 21.61 0 DS

3nox 19.8031 0 20.25 0 DS

3nq3 8.36094 0 1.38 6 AutoDock

3nw9 12.6828 0 6.64 0 AutoDock

3oe5 0 34 5.35 0 DS

3ov1 6.37898 0 8.3 0 DS

3owj 10.8669 0 14.54 0 DS

3ozt 0 40 3.17 0 DS

3pe2 9.7509 0 13.94 0 DS

3pww 9.44403 0 4.3 0 AutoDock

3pxf 8.98203 0 20.31 0 DS

3s8o NA 0 8.49 0 AutoDock

3su2 13.0231 0 7.91 0 AutoDock

3su3 17.0831 0 9.19 0 AutoDock

3su5 16.5936 0 9.98 0 AutoDock

3u9q 8.08309 0 11.47 0 DS

3udh 5.78807 0 1.38 10 AutoDock

3ueu 20.6858 0 19.84 0 AutoDock

3uex 22.0354 0 20.56 0 AutoDock

3uo4 8.22252 0 6.48 0 AutoDock

3uri NA 0 6.76 0 AutoDock

3utu 16.3407 0 11.15 0 AutoDock

3vd4 10.8686 0 NA 0 DS

3vh9 5.65174 0 12.58 0 DS

3zso 0 24 14.01 0 DS

3zsx 15.2521 0 14.14 0 AutoDock

4de1 5.94607 0 13.59 0 DS

4de2 7.02555 0 14 0 DS

4des 18.8617 0 7.27 0 AutoDock

43

PDB code DS Min DS Num AutoDock Min AutoDock Num Method

4dew 11.5001 0 6.62 0 AutoDock

4djr 11.207 0 3.2 0 AutoDock

4djv 7.47272 0 3.3 0 AutoDock

4g8m 7.71106 0 0.51 10 AutoDock

4gid 16.5132 0 3.63 0 AutoDock

4gqq 17.2052 0 18.23 0 DS

4tmn 9.39099 0 6.34 0 AutoDock

44

APPENDIX D. PYTHON CODE FOR RECEPTOR PREPARATION IN AUTODOCK

prepare_receptor4.py

import os

from MolKit import Read

import MolKit.molecule

import MolKit.protein

from AutoDockTools.MoleculePreparation import AD4ReceptorPreparation

if __name__ == '__main__':

 import sys

 import getopt

 def usage():

 "Print helpful, accurate usage statement to stdout."

 print "Usage: prepare_receptor4.py -r filename"

 print

 print " Description of command..."

 print " -r receptor_filename "

 print " supported file types include pdb,mol2,pdbq,pdbqs,pdbqt, possibly

pqr,cif"

 print " Optional parameters:"

 print " [-v] verbose output (default is minimal output)"

 print " [-o pdbqt_filename] (default is 'molecule_name.pdbqt')"

 print " [-A] type(s) of repairs to make: "

 print " 'bonds_hydrogens': build bonds and add hydrogens "

 print " 'bonds': build a single bond from each atom with no bonds to its

closest neighbor"

 print " 'hydrogens': add hydrogens"

 print " 'checkhydrogens': add hydrogens only if there are none already"

 print " 'None': do not make any repairs "

 print " (default is 'None')"

 print " [-C] preserve all input charges ie do not add new charges "

 print " (default is addition of gasteiger charges)"

 print " [-p] preserve input charges on specific atom types, eg -p Zn -p Fe"

 print " [-U] cleanup type:"

45

 print " 'nphs': merge charges and remove non-polar hydrogens"

 print " 'lps': merge charges and remove lone pairs"

 print " 'waters': remove water residues"

 print " 'nonstdres': remove chains composed entirely of residues of"

 print " types other than the standard 20 amino acids"

 print " 'deleteAltB': remove XX@B atoms and rename XX@A

atoms->XX"

 print " (default is 'nphs_lps_waters_nonstdres') "

 print " [-e] delete every nonstd residue from any chain"

 print " 'True': any residue whose name is not in this list:"

 print " ['CYS','ILE','SER','VAL','GLN','LYS','ASN', "

 print " 'PRO','THR','PHE','ALA','HIS','GLY','ASP', "

 print " 'LEU', 'ARG', 'TRP', 'GLU', 'TYR','MET', "

 print " 'HID', 'HSP', 'HIE', 'HIP', 'CYX', 'CSS']"

 print " will be deleted from any chain. "

 print " NB: there are no nucleic acid residue names at all "

 print " in the list and no metals. "

 print " (default is False which means not to do this)"

 print " [-M] interactive "

 print " (default is 'automatic': outputfile is written with no further user

input)"

 print " [-d dictionary_filename] file to contain receptor summary

information"

 # process command arguments

 try:

 opt_list, args = getopt.getopt(sys.argv[1:], 'r:vo:A:Cp:U:eM:d:')

 except getopt.GetoptError, msg:

 print 'prepare_receptor4.py: %s' %msg

 usage()

 sys.exit(2)

 files = os.listdir('C:\Users\wang28\Desktop\left')

mol = []

 for file in files:

 # ligand_filename = None

46

 receptor_filename = os.path.join("C:\\Users\\wang28\\Desktop\\left\\", file)# initialize

required parameters

 #-s: receptor

 #receptor_filename = None

 # optional parameters

 verbose = None

 #-A: repairs to make: add bonds and/or hydrogens or checkhydrogens

 repairs = ''

 #-C default: add gasteiger charges

 charges_to_add = 'gasteiger'

 #-p preserve charges on specific atom types

 preserve_charge_types=None

 #-U: cleanup by merging nphs_lps, nphs, lps, waters, nonstdres

 cleanup = "nphs_lps_waters_nonstdres"

 #-o outputfilename

 outputfilename = None

 #-m mode

 mode = 'automatic'

 #-e delete every nonstd residue from each chain

 delete_single_nonstd_residues = None

 #-d dictionary

 dictionary = None

 #'r:vo:A:Cp:U:eMh'

 for o, a in opt_list:

 if o in ('-r', '--r'):

 receptor_filename = a

 if verbose: print 'set receptor_filename to ', a

 if o in ('-v', '--v'):

 verbose = True

 if verbose: print 'set verbose to ', True

 if o in ('-o', '--o'):

 outputfilename = a

 if verbose: print 'set outputfilename to ', a

 if o in ('-A', '--A'):

 repairs = a

 if verbose: print 'set repairs to ', a

 if o in ('-C', '--C'):

47

 charges_to_add = None

 if verbose: print 'do not add charges'

 if o in ('-p', '--p'):

 if not preserve_charge_types:

 preserve_charge_types = a

 else:

 preserve_charge_types = preserve_charge_types + ','+ a

 if verbose: print 'preserve initial charges on ', preserve_charge_types

 if o in ('-U', '--U'):

 cleanup = a

 if verbose: print 'set cleanup to ', a

 if o in ('-e', '--e'):

 delete_single_nonstd_residues = True

 if verbose: print 'set delete_single_nonstd_residues to True'

 if o in ('-M', '--M'):

 mode = a

 if verbose: print 'set mode to ', a

 if o in ('-d', '--d'):

 dictionary = a

 if verbose: print 'set dictionary to ', dictionary

 if o in ('-h', '--'):

 usage()

 sys.exit()

 if not receptor_filename:

 print 'prepare_receptor4: receptor filename must be specified.'

 usage()

 sys.exit()

 mols = Read(receptor_filename)

 if verbose: print 'read ', receptor_filename

 mol = mols[0]

 preserved = {}

 if charges_to_add is not None and preserve_charge_types is not None:

 preserved_types = preserve_charge_types.split(',')

 if verbose: print "preserved_types=", preserved_types

 for t in preserved_types:

48

 if verbose: print 'preserving charges on type->', t

 if not len(t): continue

 ats = mol.allAtoms.get(lambda x: x.autodock_element==t)

 if verbose: print "preserving charges on ", ats.name

 for a in ats:

 if a.chargeSet is not None:

 preserved[a] = [a.chargeSet, a.charge]

 if len(mols)>1:

 if verbose: print "more than one molecule in file"

 #use the molecule with the most atoms

 ctr = 1

 for m in mols[1:]:

 ctr += 1

 if len(m.allAtoms)>len(mol.allAtoms):

 mol = m

 if verbose: print "mol set to ", ctr, "th molecule with",

len(mol.allAtoms), "atoms"

 mol.buildBondsByDistance()

 if verbose:

 print "setting up RPO with mode=", mode,

 print "and outputfilename= ", outputfilename

 print "charges_to_add=", charges_to_add

 print "delete_single_nonstd_residues=", delete_single_nonstd_residues

 RPO = AD4ReceptorPreparation(mol, mode, repairs, charges_to_add,

 cleanup, outputfilename=outputfilename,

 preserved=preserved,

delete_single_nonstd_residues=delete_single_nonstd_residues,

 dict=dictionary)

 if charges_to_add is not None:

 #restore any previous charges

 for atom, chargeList in preserved.items():

 atom._charges[chargeList[0]] = chargeList[1]

 atom.chargeSet = chargeList[0]

49

To execute this command type:

prepare_receptor4.py -r pdb_file -o outputfilename -A checkhydrogens

50

APPENDIX E. PYTHON CODE FOR LIGAND PREPARATION IN AUTODOCK

prepare_ligand4.py

import os

from MolKit import Read

from AutoDockTools.MoleculePreparation import AD4LigandPreparation

if __name__ == '__main__':

 import sys

 import getopt

 def usage():

 "Print helpful, accurate usage statement to stdout."

 print "Usage: prepare_ligand4.py -l filename"

 print

 print " Description of command..."

 print " -l ligand_filename (.pdb or .mol2 or .pdbq format)"

 print " Optional parameters:"

 print " [-v] verbose output"

 print " [-o pdbqt_filename] (default output filename is ligand_filename_stem

+ .pdbqt)"

 print " [-d] dictionary to write types list and number of active torsions "

 print " [-A] type(s) of repairs to make:\n\t\t bonds_hydrogens, bonds,

hydrogens (default is to do no repairs)"

 print " [-C] do not add charges (default is to add gasteiger charges)"

 print " [-p] preserve input charges on atom type, eg -p Zn"

 print " (default is not to preserve charges on any specific atom type)"

 print " [-U] cleanup type:\n\t\t nphs_lps, nphs, lps, '' (default is 'nphs_lps')

"

 print " [-B] type(s) of bonds to allow to rotate "

 print " (default sets 'backbone' rotatable and 'amide' + 'guanidinium'

non-rotatable)"

 print " [-R] index for root"

51

 print " [-F] check for and use largest non-bonded fragment (default is not

to do this)"

 print " [-M] interactive (default is automatic output)"

 print " [-I] string of bonds to inactivate composed of "

 print " of zero-based atom indices eg 5_13_2_10 "

 print " will inactivate atoms[5]-atoms[13] bond "

 print " and atoms[2]-atoms[10] bond "

 print " (default is not to inactivate any specific bonds)"

 print " [-Z] inactivate all active torsions "

 print " (default is leave all rotatable active except amide and

guanidinium)"

 print " [-g] attach all nonbonded fragments "

 print " [-s] attach all nonbonded singletons: "

 print " NB: sets attach all nonbonded fragments too"

 print " (default is not to do this)"

 # process command arguments

 try:

 opt_list, args = getopt.getopt(sys.argv[1:], 'l:vo:d:A:Cp:U:B:R:MFI:Zgsh')

 except getopt.GetoptError, msg:

 print 'prepare_ligand4.py: %s' %msg

 usage()

 sys.exit(2)

 # initialize required parameters

 #-l: ligand

 files = os.listdir('C:\Users\wang28\Desktop\PDbind\ligand')

 mol = []

 for file in files:

 # ligand_filename = None

 ligand_filename = os.path.join("C:\\Users\\wang28\\Desktop\\PDbind\\ligand\\", file)

 # optional parameters

 verbose = None

 add_bonds = False

 #-A: repairs to make: add bonds and/or hydrogens

52

 repairs = ""

 #-C default: add gasteiger charges

 charges_to_add = 'gasteiger'

 #-p preserve charges on specific atom types

 preserve_charge_types=''

 #-U: cleanup by merging nphs_lps, nphs, lps

 cleanup = "nphs_lps"

 #-B named rotatable bond type(s) to allow to rotate

 #allowed_bonds = ""

 allowed_bonds = "backbone"

 #-r root

 root = 'auto'

 #-o outputfilename

 outputfilename = None

 #-F check_for_fragments

 check_for_fragments = False

 #-I bonds_to_inactivate

 bonds_to_inactivate = ""

 #-Z inactivate_all_torsions

 inactivate_all_torsions = False

 #-g attach_nonbonded_fragments

 attach_nonbonded_fragments = False

 #-s attach_nonbonded_singletons

 attach_singletons = False

 #-m mode

 mode = 'automatic'

 #-d dictionary

 dict = None

 #'l:vo:d:A:CKU:B:R:MFI:Zgs'

 for o, a in opt_list:

 #print "o=", o, " a=", a

 if o in ('-l', '--l'):

 ligand_filename = a

 if verbose: print 'set ligand_filename to ', a

 if o in ('-v', '--v'):

 verbose = True

 if verbose: print 'set verbose to ', True

 if o in ('-o', '--o'):

53

 outputfilename = a

 if verbose: print 'set outputfilename to ', a

 if o in ('-d', '--d'):

 dict = a

 if verbose: print 'set dict to ', a

 if o in ('-A', '--A'):

 repairs = a

 if verbose: print 'set repairs to ', a

 if o in ('-C', '--C'):

 charges_to_add = None

 if verbose: print 'do not add charges'

 if o in ('-p', '--p'):

 preserve_charge_types+=a

 preserve_charge_types+=','

 if verbose: print 'preserve initial charges on ', preserve_charge_types

 if o in ('-U', '--U'):

 cleanup = a

 if verbose: print 'set cleanup to merge ', a

 if o in ('-B', '--B'):

 allowed_bonds = a

 if verbose: print 'allow ', a, 'bonds set to rotate'

 if o in ('-R', '--R'):

 root = a

 if verbose: print 'set root to ', root

 if o in ('-F', '--F'):

 check_for_fragments = True

 if verbose: print 'set check_for_fragments to True'

 if o in ('-M', '--M'):

 mode = a

 if verbose: print 'set mode to ', a

 if o in ('-I', '--I'):

 bonds_to_inactivate = a

 if verbose: print 'set bonds_to_inactivate to ', a

 if o in ('-Z', '--Z'):

 inactivate_all_torsions = True

 if verbose: print 'set inactivate_all_torsions to ', inactivate_all_torsions

 if o in ('-g', '--g'):

 attach_nonbonded_fragments = True

54

 if verbose: print 'set attach_nonbonded_fragments to ',

attach_nonbonded_fragments

 if o in ('-s', '--s'):

 attach_singletons = True

 if verbose: print 'set attach_singletons to ', attach_singletons

 if o in ('-h', '--'):

 usage()

 sys.exit()

 if not ligand_filename:

 print 'prepare_ligand4: ligand filename must be specified.'

 usage()

 sys.exit()

 if attach_singletons:

 attach_nonbonded_fragments = True

 if verbose: print "using attach_singletons so attach_nonbonded_fragments also"

 mols = Read(ligand_filename)

 if verbose: print 'read ', ligand_filename

 mol = mols[0]

 if len(mols)>1:

 if verbose:

 print "more than one molecule in file"

 #use the one molecule with the most atoms

 ctr = 1

 for m in mols[1:]:

 ctr += 1

 if len(m.allAtoms)>len(mol.allAtoms):

 mol = m

 if verbose:

 print "mol set to ", ctr, "th molecule with", len(mol.allAtoms),

"atoms"

 coord_dict = {}

 for a in mol.allAtoms: coord_dict[a] = a.coords

 mol.buildBondsByDistance()

55

 if charges_to_add is not None:

 preserved = {}

 preserved_types = preserve_charge_types.split(',')

 for t in preserved_types:

 if not len(t): continue

 ats = mol.allAtoms.get(lambda x: x.autodock_element==t)

 for a in ats:

 if a.chargeSet is not None:

 preserved[a] = [a.chargeSet, a.charge]

 if verbose:

 print "setting up LPO with mode=", mode,

 print "and outputfilename= ", outputfilename

 print "and check_for_fragments=", check_for_fragments

 print "and bonds_to_inactivate=", bonds_to_inactivate

 LPO = AD4LigandPreparation(mol, mode, repairs, charges_to_add,

 cleanup, allowed_bonds, root,

 outputfilename=outputfilename,

 dict=dict, check_for_fragments=check_for_fragments,

 bonds_to_inactivate=bonds_to_inactivate,

 inactivate_all_torsions=inactivate_all_torsions,

attach_nonbonded_fragments=attach_nonbonded_fragments,

 attach_singletons=attach_singletons)

 #do something about atoms with too many bonds (?)

 #FIX THIS: could be peptide ligand (???)

 # ??use isPeptide to decide chargeSet??

 if charges_to_add is not None:

 #restore any previous charges

 for atom, chargeList in preserved.items():

 atom._charges[chargeList[0]] = chargeList[1]

 atom.chargeSet = chargeList[0]

 if verbose: print "returning ", mol.returnCode

 bad_list = []

 for a in mol.allAtoms:

 if a in coord_dict.keys() and a.coords!=coord_dict[a]:

 bad_list.append(a)

56

 if len(bad_list):

 print len(bad_list), ' atom coordinates changed!'

 for a in bad_list:

 print a.name, ":", coord_dict[a], ' -> ', a.coords

 else:

 if verbose: print "No change in atomic coordinates"

 if mol.returnCode!=0:

 sys.stderr.write(mol.returnMsg+"\n")

 sys.exit(mol.returnCode)

To execute this command type:

prepare_ligand4.py -l pdb_file -v

