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ABSTRACT 

 

 Protein-ligand docking is a structure-based computational method, which is used to 

predict the small molecule binding modes and binding affinities with protein receptors. The goals 

of this study are to compare the docking performances of different software and apply the 

docking method to predict how protein fatty acid desaturase 1 (FADS1) interact with ligands. 

Two docking software, Discovery Studio and AutoDock, are used for docking comparison of 195 

protein-ligand complexes from PDBind dataset. AutoDock performs a little bit better than 

Discovery Studio on the docking percentage, which is the percent of the docked complexes out 

of 195. On the other hand, Discovery Studio has a higher accuracy (successfully docked 

complexes, within 5 RMSD of the native complex structures) than AutoDock. The interaction 

between FADS1 and Sesamin shows a similar pattern comparing to the interaction between a 

homolog of FADS1 and a ligand shown in a PDB structure (PDB id 1EUE).  
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CHAPTER 1. INTRODUCTION 

Protein-ligand interaction is the process of protein interacting with small molecules 

(referred as ligands) to form stable complexes which have significant biological functions. 

Protein-ligand complexes play an important role in many biological processes. For example, the 

serum protein complement factor H (FH) have to interact with some specific glycans on host cell 

surfaces to function correctly to down-regulate the complement alternative pathway (Blaum, et 

al., 2015). Thus, a slight change on the structure of glycans might cause serum protein 

complement factor H to fail on the pathway regulation. Therefore, the accurate protein-ligand 

interaction modes would be necessary to understand the function of the proteins.     

Ligands bind with proteins through intermolecular forces, such as ionic bonds, hydrogen 

bonds and van der Waals forces. Basically, there are three experimental methods to analyze the 

structure of protein-ligand complex: X-Ray, Nuclear magnetic resonance spectroscopy (NMR) 

and electron microscopy. X-Ray crystallography is the most common used experimental 

technique to study protein-ligand interactions. In general, it involves 7 steps: protein preparation, 

crystallization, testing crystals, X-ray data collection, structure solution, model building and 

refinement (Lawson, n.d.). Normally X-Ray crystallography is really time consuming, but the 

results from it is often reliable and accurate. 

Due to the considerable number of publications of protein three-dimensional structures, 

the protein-ligand docking becomes a hot area recent years. Protein-ligand docking is a 

structure-based computational method, which is used to predict how small molecules bind with 



 

2 
 

protein receptors and the affinities of the binding. Given the structures of the specific protein and 

ligand, protein-ligand docking can predict the stable complex using various docking methods and 

scoring functions. Since protein-ligand docking is a computational method, which only requires 

the accurate structures of the protein and ligand as the inputs, it can analyze hundreds of 

interactions simultaneously. Therefore, protein-ligand docking is effective and less time 

consuming. But on the other hand, the docking results might be influenced by different docking 

software and scoring functions. To date, there is no docking method that can guarantee perfect 

binding results. An experimental verification is necessary for any application. Various of 

protein-ligand algorithms and software are used in biological and pharmaceutical researches, 

such as disease treatment  (Halima, et al., 2016) (Huang, Lee, & Chen, 2014), signal 

transduction (Khaw, et al., 2014) and drug designs (Dawood, Zarina, & Bano, 2014). 

 The goals of this study are to compare the docking performances of two docking 

software, Discovery Studio and AutoDock, and apply the docking method to predict how protein 

fatty acid desaturase 1 (FADS1) interact with ligands. Discovery Studio is used to predict the 3D 

structure of FADS1 and its interaction with several ligands. Fatty acid desaturase 1 is an enzyme 

which can remove the hydrogen atoms from a fatty acid and result in double bonds and the 

unsaturation of the fatty acid. The protein-ligand docking modes are analyzed between protein 

FADS1 and the ligands CP-24879, Sesamin, Curcumin, Anthranilicanilide, Dibenzoazepine, 

Iminodibenzyl, 5H-Dibenz[b,f]azepine, Dibenz[b,f]azepine-5-carbonyl Chloride and 

Clomipramine Hydrochloride. The interactions are compared with the template interaction 
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between a homolog of FADS1 and a ligand shown in a PDB structure (PDB id 1EUE). The 

dataset for docking comparison is the PDBbind core set which contains 195 protein-ligand 

complexes in 65 clusters (Liu, et al., 2014). This dataset can be also widely used as the standard 

benchmark for evaluating docking and scoring methods. 
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CHAPTER 2. DOCKING ALGORITHMS AND SCORING FUNCTIONS 

In general, protein-ligand docking involves two major steps: complex conformation 

prediction (docking algorithm) and near-native conformation selection (scoring function). The 

docking algorithm is aim to use effective methods to find the minimum global energy of 

protein-ligand complex. The scoring function is used to rank and select the best conformation 

which ideally should be the same as the natural conformation of the complex.  

2.1. Docking methods 

 Protein-docking involves a large amount of calculation, different algorithms have been 

developed to predict protein and ligand interactions. Based on their treatment of ligand flexibility, 

the searching algorithms can be divided into three basic categories: systematic conformational 

search, stochastic (or random) search and simulation (or deterministic) search.  

2.1.1. Systematic conformational search 

 Systematic protein-ligand docking algorithms allow ligands to rotate in all directions, 

which often will lead to high cost on future evaluation time. The advantage of this method is that 

it can evaluate all the possible interactions between protein and ligand. But as the number of 

combinational evaluations increases, the time to conduct docking increases rapidly. One of the 

methods to deal with this problem is to define an active site region and let the ligand just rotate 

within this site, which can greatly reduce the amount of calculation. Another way is to divided 

the ligand into rigid and flexible fragments. Docking these fragments separately into the active 

site and then link them together to rebuild the ligand. 
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DOCK algorithm use anchor-and-grow method to increment conformations. First of all, 

the ligand is divided into rigid parts, the anchor segments (Meng, Shoichet, & Kuntz, 1992) 

(Ewinga, Makinoa, Skillmana, & Kuntz, 2001) (Moustakas, et al., 2006). The docking anchor(s) 

can be selected either by user or some segment size cutoff. Then the anchor is docking to the 

active site of the protein using geometrical matching. The rest of the ligand can grow freely onto 

the docked anchor. Finally, local optimization is applied to each conformation.  

FlexX algorithm uses MIMUMBA program for conformation generation (Klebe & 

Mietzner, 1994) (Rarey, Kramer, Lengauer, & Klebe, 1996). Original ligand is separated into 

different parts and docked into the active site of protein using geometrically restrictive 

interactions, which mainly based on hydrogen bonds. The bond lengths and angles in the ligand 

are used as reference for conformations. For each acyclic single bond, it can freely rotate to any 

preferred torsion angles. Similar to DOCK algorithm, some minimized geometries are used for 

final optimization. 

2.1.2. Stochastic algorithm 

 The stochastic algorithms randomly change the structure or the position of the ligand. 

New structure of the ligand is randomly generated and evaluated by some criteria, such as 

Metropolis or some scoring functions. Monte Carlo method and genetic algorithm are two 

examples of random algorithm. Some popular software are using stochastic algorithm, such as 

AutoDock (Goodsell & Olson, 1990), and GOLD (Jones, Willett, Glen, Leach, & Taylor, 1997). 
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 AutoDock algorithm use Lamarckian genetic search for conformation selection (Morris, 

et al., 2009). Random conformations are created and competing with each other and the 

conformation with lowest energy is selected and later generations are further created based on 

the information of current conformation. Other searching methods, such as simulated annealing 

method and traditional genetic algorithm, can also be used in AutoDock. 

 A genetic algorithm is used in GOLD software (Jones, Willett, Glen, Leach, & Taylor, 

1997) (Jones, Willett, & Glen, 1995) (Verdonk, Cole, Hartshorn, Murray, & Taylor, 2003). In the 

first stage of docking, parameters for docking are randomized, which include ligand positions in 

the binding site, ligand rotatable bonds, protein chemical groups and so on. Hydrogen atoms 

were added to the ligand and the ligand was fully minimized using the MAXIMIN2 module. 

Then the ligand is docking to the protein and is optimized based on fitting points.  

2.1.3. Simulation algorithm 

 In simulation algorithm, an initial state is determined based on some pre-knowledge of 

the ligand. And new state is generated based on the previous state. The problem of this method is 

that some choice of initial state will lead to local minima instead of the real near-native structure. 

Another issue is that it normally requires high computational cost to get the potential 

protein-ligand complex structure. Molecular dynamics and energy minimization are two widely 

used simulation methods. There are some standardized packages for molecular dynamic, for 

example CHARMM (Brooks, et al., 2009), Amber and GROMACS. But unlike molecular 
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dynamics, energy minimization method is barely used alone but combined with some other 

searching algorithms. 

 CHARMM is a program for molecular simulation and modeling (Brooks, et al., 2009). 

It uses energy minimization techniques to optimize the conformations, performs molecular 

dynamics simulation, and analyzes the simulation results to determine structural, equilibrium, 

and dynamic properties. 

2.1.4. Receptor flexibility 

 Since receptor proteins are much more complex than ligands, protein with full flexibility 

during docking procedure would increase calculation complexity dramatically. But some degrees 

of receptor flexibility are available in a lot of software. Most approaches of receptor flexibility 

would apply some restrictions on the protein, for example some software requires an active site 

and allows the amino acids within the active site rotate freely, some would divide the protein into 

rigid part and flexible part to reduce the calculation time. Similar algorithms applied to ligand 

flexibility could also be used to analyze receptor flexibility, such as Monte Carlo method 

(Trosset & Scheraga, 1999) and molecular dynamics (Pak & Wang, 2000).  

2.2. Scoring functions 

 After docking, multiple conformations of protein-ligand docking complexes are 

generated using various algorithms. Next step would be to evaluate and rank the conformations 

based on scoring functions. Because thousands of conformations might be generated from 

docking procedure, scoring and ranking all the conformations are time consuming. The key 
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function of scoring procedure is to effectively differentiate the near-native complexes form 

incorrect ones. Currently a number of different scoring functions are available, which can be 

divided into three types: force-field-based, empirical and knowledge-based scoring functions.  

2.2.1. The force-field based scoring function 

 The force-field-based scoring function can evaluate the potential energy of a system, as 

the sum of different particles (ligand and protein) in the system. Normally, the receptor-ligand 

interaction energy and internal ligand energy are evaluated using the force-field-based scoring 

function and most solvent effects as well as solute entropies are ignored. Coulomb and van der 

Waals interactions are often used in the scoring functions to calculate the energy  (Goodsell & 

Olson, 1990) (Meng, Shoichet, & Kuntz, 1992).  

 AMBER force field is a widely-used scoring function to calculate the total binding 

energy of protein-ligand docking (Cornel, et al., 1995). 

2.2.2. Empirical scoring function 

 Empirical methods use physical-chemical properties of known protein-ligand complexes 

to predict the free binding energy of a predicted conformation. Empirical methods are usually 

less computational demanding than force-field-based methods.  

 Hans-Joachim Bohm (Bohm, 1994) developed an empirical scoring function to calculate 

the free energy of binding for protein-ligand complexes. This function includes the hydrogen 

bonds, ionic interactions, the lipophilic protein-ligand contact surface and the number of 

rotatable bonds in the ligand.  
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∆𝐺𝑏𝑖𝑛𝑑𝑖𝑛𝑔 = ∆𝐺0

+ ∆𝐺ℎ𝑏 ∑ 𝑓(∆𝑅, ∆𝛼) + ∆𝐺𝑖𝑜𝑛𝑖𝑐

ℎ−𝑏𝑜𝑛𝑑𝑠

∑ 𝑓(∆𝑅, ∆𝛼) + ∆𝐺𝑙𝑖𝑝𝑜|𝐴𝑙𝑖𝑝𝑜|

𝑖𝑜𝑛𝑖𝑐−𝑖𝑛𝑡

+ ∆𝐺𝑟𝑜𝑡𝑁𝑅𝑂𝑇 

𝑓(∆𝑅, ∆𝛼) = 𝑓1(∆𝑅)𝑓2(∆𝛼) 

where 𝑓(∆𝑅, ∆𝛼) is a penalty function related with hydrogen-bond length and angle. The 

problem of this function is that it does not take into account the water-mediated hydrogen bonds, 

which might take an important role in protein-ligand binding. And obviously the accuracy of this 

scoring function highly depends on the experimental binding energies, which might not available 

sometime. 

2.2.3. Knowledge-based scoring function 

 Knowledge-based scoring functions use the frequency of experimental structures in 

large 3D databases to evaluate the possibility of the protein-ligand complex. Not like empirical 

methods, knowledge-based methods do not need any additional analysis on the training dataset, 

which reduces the amount of calculation. But on the other hand, it is also limited by the size of 

the database used. 
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CHAPTER 3. CASE STUDY 

 To analyze the docking performances, protein FADS1 was used to study the binding 

modes with 9 ligands: CP-24879, Sesamin, Curcumin, Anthranilicanilide, Dibenzoazepine, 

Iminodibenzyl, 5H-Dibenz[b,f]azepine, Dibenz[b,f]azepine-5-carbonyl Chloride and 

Clomipramine Hydrochloride. Furthermore, the PDBbind core set containing 195 protein-ligand 

complexes was used to compare the docking results of different software, Discovery Studio and 

AutoDock. 

3.1. PDBbind data set 

 The PDBbind core set contains 195 protein-ligand complexes in 65 clusters (Liu, et al., 

2014), which is a part of the PDBbind dataset, which includes a collection of the bimolecular 

complexes binding affinity measured with experiments in the Protein Data Bank (PDB). Each 

cluster in the dataset is selected by the protein sequence similarity with 90% cutoff and it 

contains 3 members: the one with the highest, medium and the lowest binding constant (logKa). 

The PDBbind core set is a high-quality benchmark for evaluating different docking methods and 

scoring functions. A study of the docking performances has been done among Discovery Studio 

3.5, GOLD 5.1, SYBYL 8.1 Schrodinger 2011, MOE 2011 Academic software 1.3 (Li, Han, Liu, 

& Wang, 2014). One the other hand, AutoDock is the most highly used docking software lately 

(Sousa, et al., 2013). Therefore, the two software, Discovery Studio 4.1 and AutoDock 4.0, are 

selected for the docking comparison. For each protein-ligand complex in PDBbind core set, the 

resolution of the structure is smaller than 2.5 A and the inhibition constant (Ki,) or dissociation 
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constants (Kd) is known. In X-Ray crystallography, resolution is the highest value in the 

diffraction pattern (Frank, 2006). And the smaller the resolution is, the less errors in the 

structures (Huang Y.-F. , 2007). Ki and Kd are special types of equilibrium constants that are 

theoretical relative to each other. This dataset can be used as the standard benchmark for 

evaluating docking and scoring methods.  

3.2. Protein FADS1 

 The protein FADS1 is the fatty acid desaturase 1 enzyme in Human, which is located in 

chromosome 11q12.2-13.1 (Nakamura & Nara, 2004). The fatty acid chain is the foundation of 

biological membranes and the degree of unsaturation would highly influence the melting 

temperature and the fluidity of the membranes. Fatty acid desaturase 1 can remove the hydrogen 

atoms from a fatty acid and result in double bonds and the unsaturation of the fatty acid. It plays 

an important role in lipid metabolic pathway. The ligands used in this study are CP-24879, 

Sesamin, Curcumin, Anthranilicanilide, Dibenzoazepine, Iminodibenzyl, 5H-Dibenz[b,f]azepine, 

Dibenz[b,f]azepine-5-carbonyl Chloride and Clomipramine Hydrochloride. The docking between 

FADS1 and the ligands will provide another way to better understand the function of fatty acid 

desaturase 1. The sequence of the protein can be obtained on UniProt.org (UniProtKB - O60427 

(FADS1_HUMAN), 2017). It is 444 amino acids long and its 3D structure is still unknown.  

>sp|FADS1|1-444 

MAPDPVAAETAAQGPTPRYFTWDEVAQRSGCEERWLVIDRKVYNISEFTRRHPGGSRVIS 

HYAGQDATDPFVAFHINKGLVKKYMNSLLIGELSPEQPSFEPTKNKELTDEFRELRATVE 

RMGLMKANHVFFLLYLLHILLLDGAAWLTLWVFGTSFLPFLLCAVLLSAVQAQAGWLQHD 

FGHLSVFSTSKWNHLLHHFVIGHLKGAPASWWNHMHFQHHAKPNCFRKDPDINMHPFFFA 
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LGKILSVELGKQKKKYMPYNHQHKYFFLIGPPALLPLYFQWYIFYFVIQRKKWVDLAWMI 

TFYVRFFLTYVPLLGLKAFLGLFFIVRFLESNWFVWVTQMNHIPMHIDHDRNMDWVSTQL 

QATCNVHKSAFNDWFSGHLNFQIEHHLFPTMPRHNYHKVAPLVQSLCAKHGIEYQSKPLL 

SAFADIIHSLKESGQLWLDAYLHQ 
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CHAPTER 4. METHODS 

4.1. LibDock (Discovery Studio) 

LibDock uses the systematic conformational search algorithm to dock ligands freely to 

the receptor and rank the compounds via the default scoring function LigScore (Krammer, 

Kirchhoff, Jiang, Venkatachalam, & Waldman, 2005). First, random conformations of each 

ligand from 195 protein-ligand complexes with different rotatable single non-ring bonds were 

generated to calculate the internal energy by using van der Waals potentials and a dihedral angle 

term. The conformations will be minimized using Broyden–Fletcher–Goldfarb–Shanno (BFGS) 

algorithm (Fletcher, 1987) and ranked based on SASA, which is the solvent accessible surface 

area of a specific conformation. Then the binding sites were determined by locating the apolar 

and polar hot spots on the protein. The hot spots are the locations within the binding sphere that 

have a high chance to form either an apolar bond or a hydrogen bond. Thirdly, the geometric 

hashing algorithm was used to dock the conformations to the binding site of protein. Finally, the 

complexes were optimized using BFGS optimization algorithm, ranked and clustered for in the 

final stage (Diller & Merz, 2001). 

All the proteins and ligands have been standardized by applying the CHARMm forcefield 

to the proteins and monitoring the valences of the ligands. After the preparation, a sphere was 

defined around the binding site for each protein. The spheres are defined by randomly selecting 

about 10 amino acids around the native binding site of the protein to define it. The binding site 

sphere is a required input for running LibDock in Discovery Studio. The number of polar or 
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apolar receptor binding site features (hotspots) was 200, which is chosen to increase the chance 

of finding the native protein-ligand structure while still has a reasonable computational time. To 

ensure the docking quality, the RMSD tolerance (Å) was chosen as 1 Å.  

4.2. Autodock 

 Autodock uses the stochastic algorithm to optimize the random conformations with the 

lowest energy. At first, the protein receptor is embedded in a grid with 40 grid points in each of 

the x-y-z direction centering (15.45, 26.233, 3.593). The grid spacing is 0.375 Å. Then, the 

ligand can be put at each grid point with a random initial position and Dihedral offset. A 

receptor-ligand interaction energy calculated and stored using the formula: 

∆G =  ∆𝐺𝑣𝑑𝑤 + ∆𝐺ℎ𝑏𝑜𝑛𝑑 + ∆𝐺𝑒𝑙𝑒𝑐 + ∆𝐺𝑐𝑜𝑣 + ∆𝐺𝑡𝑜𝑟 + ∆𝐺𝑠𝑜𝑙 

where ∆𝐺𝑣𝑑𝑤 stands for the energy for van der Waals, ∆𝐺ℎ𝑏𝑜𝑛𝑑  represents hydrogen bond,  

∆𝐺𝑒𝑙𝑒𝑐 is electrostatics, ∆𝐺𝑐𝑜𝑣 measures the deviations from covalent geometry, ∆𝐺𝑡𝑜𝑟 models 

the internal and external rotation restriction and ∆𝐺𝑠𝑜𝑙 models the solvent entropy changes  

(Morris, et al., 1998). Also each conformation of the ligand generated by Monte Carlo simulated 

annealing search is allowed to search its local space in the current valley by replacing the 

conformation based on the result to find the minima, which can be used in the later generation 

(Morris, et al., 2009). 

 In Autodock, formatted ligand files are required in pdbqt format, which contain atom 

types as well as rotatable bonds supported by AutoDock. Protein and ligand files are prepared 

using the Python scripts provided by AutoDock. For the docking procedures, the initial position 
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of ligand and relative dihedral offset set to be random. Genetic algorithm (GA) is used to search 

parameters, such as number of GA runs, maximum number of evaluations, rate of nutation and so 

on, with all default parameters. Defaults are also used in the docking parameters for random 

number generator, energy parameters, step size parameters and output format parameters. After 

that, .dpf files are saved containing docking parameters and instructions for Lamarakian Genetic 

Algorithm docking  (Morris, et al., 1998), which is also known as Genetic Algorithm Local 

Search. Finally, with all parameters set, the .dpf files are required to run AutoDock. All the 

docking results are clustered using a tolerance of 3.0 Å. For each protein-ligand complex, 10 

generations of Genetic algorithm have been run with 50 cycles in each run and the maximum 

number of conformations in each cycle is set to be 25000. 

4.3. Protein FADS1  

 The protein FADS1 is the fatty acid desaturase 1 protein in Human. Since the 3D 

structure of this protein is still unknown, the first step is to predict the 3D structure of FADS1. 

Currently there are two major methods for protein structure prediction: template-based modeling 

and free modeling (Zhang, 2008). The template-based modeling, also known as homology 

modeling, is to predict the structure using the known structures of the templates who share 

similar sequences with the target protein. The result of homology modeling is highly depending 

on the template alignment and selection. And it is possible to build high quality models given 

close templates. Free modeling, also termed as “de novo” modeling, is mainly using physical 

principles or sometimes small fragments to build the 3D structure of the target protein. But this 
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approach is often time consuming and the prediction qualities for large proteins are usually poor. 

In this study, homology modeling is used to study the interaction between FADS1 and its 

possible ligands.  

 For templates alignment and selection, the Basic Local Alignment Search Tool (BLAST) 

within Discovery Studio is used with E-value cutoff equals to 10 in the PDB_nr95 database. The 

scoring matrix of this search is BLOSUM62 with the word size 3. The gap existence penalty is 

11 and gap extension penalty is 1. Based on the Identity, alignment length, Resolution, E-value 

and the Organism of the structures, 6 homology proteins are selected as the templates to build the 

3D structure of FADS1: 1EUE, 1LJ0, 1CYO, 2M33, 3NER and 2I96.  

Table 1 

Templates alignment results 

PDB ID 
Identity with 

FADS1 

Alignment 

Length 
Resolution E-value Organism 

1EUE_B 43 57 1.8 5.278 e-11 Rattus norvegicus 

1LJ0_A 42 57 2 1.079 e-10 Rattus norvegicus 

1CYO_A 31 82 1.5 6.014 e-10 Bos taurus 

2M33_A 31 82  9.042 e-10 Oryctolagus cunic 

3NER_B 43 53 1.45 1.240 e-09 Homo sapiens 

2I96_A 31 89  1.615 e-09 Homo sapiens 

 

The possible ligands of protein FADS1 are CP-24879, Sesamin, Curcumin, 

Anthranilicanilide, Dibenzoazepine, Iminodibenzyl, 5H-Dibenz[b,f]azepine, 

Dibenz[b,f]azepine-5-carbonyl Chloride and Clomipramine Hydrochloride in this study. 

(Structures of the ligands are showd in Appendix A.) For docking preparation, the FADS1 
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protein and all 9 ligands have been standardized by applying the CHARMm (Chemistry at 

Harvard Macromolecular Mechanics) forcefield, which uses some formula and parameters to 

calculate the potential energy of a system. Also the valences of the ligands need to be balanced 

for correct docking. After the preparation, a sphere was defined around the binding site the 

receptor protein, which covers the entire FADS1 protein. A binding site sphere is required for 

LibDock in Discovery Studio. To increase the possible conformations, the number of polar or 

apolar receptor binding site features (hotspots) was 200 and the RMSD tolerance was chosen as 

1 Å. The root mean square deviation (RMSD) is a measurement of the average atom distance 

between two molecules, which is calculated using the formula: 

RMSD(a, b) = √
1

𝑛
∑ [(𝑎𝑖𝑥 − 𝑏𝑖𝑥)2 + (𝑎𝑖𝑦 − 𝑏𝑖𝑦)

2
+ (𝑎𝑖𝑧 − 𝑏𝑖𝑧)2]

𝑛

𝑖=1
 

where i refers to the atoms in molecules a and b, n is the total number of atoms and x, y, z are the 

x-y-z coordinates in three-dimensional space. Therefore, the smaller RMSD it, the closer the 

protein-ligand complex is to the native structure. 

 Docking preferences was set to be High quality, which is a specific mode in Discovery 

Studio with all parameters are predefines. The conformation method was FAST, which quickly 

generate diverse low-energy conformations using a systemic search for small molecules. To 

reduce the time consumption, no minimization method was used in all the docking processes. 

Other parameters, such as sp2-sp2 rotation grid scoring, were kept on default settings (true). 
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CHAPTER 5. RESULTS 

5.1. PDBbind Dataset 

 The results of the docking software evaluation are summarized in Table 1. The 

successfully docked complexes are considered to be within 3.0 Å tolerance of RMSD. A larger 

RMSD tolerance will increase the successfully docking percentage. But the protein-ligand 

complexes with larger RMSD are less reliable than the ones with smaller RMSD. The 

successfully docking percentage is defined as the percentage of the docked complexes having a 

RMSD less than or equal to 3.0 Å among 195 protein-ligand complexes. Figure 1 and 2 show the 

protein-ligand docking RMSD summary of Discovery Studio and AutoDock. It is clear that the 

predicted complex RMSD using Discovery Studio is more stable, mainly around 10 Å, 

comparing to the complex RMSD using AutoDock, which has a higher percentage on the RMSD 

greater than 15 Å. AutoDock performs a little bit better than Discovery Studio regarding to the 

successfully docking percentage, 16.92% (33 out of 195) and 10.26% (20 out of 195), 

respectively. But while comparing the minimum RMSD for the two software, Discovery Studio 

has 109 protein-ligand complexes with lower RMSD than their results of AutoDock. Detailed 

docking results from both softwares are showed in Appendix C. 
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Figure 1. The histograms of RMSD for Discovery Studio and AutoDock results 

 

 

 

Figure 2. The box-plot of the RMSD values 
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5.2. Protein FADS1 

Based on the Identity, alignment length, Resolution, E-value and the Organism of the 

structures, 6 homology sequences are selected as the templates to build the 3D structure of 

FADS1: 1EUE, 1LJ0, 1CYO, 2M33, 3NER and 2I96. Figure 3 shows the protein FADS1 

alignment with 6 Homology sequences from BLAST search. The sequences in blue color are 

highly conserved, which is good for predicting the 3D structure of FADS1 through alignment. 

One thing needs to be mention that there is no sequence alignment beyond amino acid 138 L to 

the last amino acid 440 Q, thus no reliable 3D structure could possible generated for this part of 

the sequence. 

 

 

Figure 3. The sequences alignment of FADS1 with templates. 

 

Figure 4 is the predicted 3D structure of FADS1 based on the structures of the homology 

sequences. This protein folds a β-sheet (in blue color) in the middle surrounded by several 

α-helices (in red color). Thus a hydrophobic binding site is formed in the center. 



 

21 
 

 

Figure 4. The predicted 3D structure of FADS1 

 

By comparing the docking results between FADS1 with 9 ligands and the template 1EUE 

with Protoporphyrin IX containing Fe, it showed that the interaction between FADS1 and 

Sesamin has the highest similarity to the template complex. 1EUE is rat outer mitochondrial 

membrane cytochrome B5 protein, which belongs to the electron transport system (Oganesyan & 

Zhang, 2001). The amino acids ILE45, LEU46, ALA54, PHE58 and ALA67 in 1EUE are 

important in the interaction with Protoporphyrin IX. The detailed information of the interactions 

is showed in Table 2.  
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Table 2 

 

Interaction between 1EUE and Protoporphyrin IX 

Amino acid Category types Distance 

ILE45 Hydrophobic Alkyl 3.643370 

LEU46 Hydrophobic Alkyl 5.214600 

ALA54 Hydrophobic Alkyl 3.777066 

PHE58 Hydrophobic Pi-Alkyl 4.409321 

ALA67 Hydrophobic Alkyl 3.676638 

 

 

Figure 5. 1EUE chain B interacting with Protoporphyrin IX containing Fe 

 

Based on the results of alignment, it’s clear that VAL94, ILE95, ALA103, PHE107 and 

VAL117 are the sequence aligned amino acids in FADS1, which also play important roles in the 

interaction with Sesamin. Figure 5 and 6 shows the interaction results. The results indicate that 

the interaction between FADS1 and Sesamin share a similar binding pattern to the interaction 
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between 1EUE and Protoporphyrin IX. Thus it will help us better understand the biological 

function of FADS1 as well as shed some light on drug design.  

 

Table 3 

 

Interaction between FADS1 and Sesamin 

Amino acid Category types Distance 

VAL94 Hydrophobic Pi-Alkyl 5.368634 

ILE95 Hydrophobic Alkyl 5.476260 

ALA103 Hydrophobic Pi-Alkyl 4.461106 

PHE107 Hydrophobic Pi-Alkyl 5.171723 

VAL117 Hydrophobic Pi-Alkyl 5.087928 

 

 

Figure 6. FADS1 interacting with sesamin 
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CHAPTER 6. DISCUSSION 

The goals of this study are to compare the docking performances of different software 

and apply the docking method to predict how protein fatty acid desaturase 1 (FADS1) interact 

with ligands. Two docking software, Discovery Studio and AutoDock, are used for docking 

comparison of 195 protein-ligand complexes from PDBind dataset. The PDBbind core set is 

widely used as the standard benchmark for evaluating docking and scoring methods. The 

docking results show that the predicted complex RMSD using Discovery Studio is more stable, 

mainly around 10 Å, comparing to the complex RMSD using AutoDock, which has a higher 

percentage on the RMSD greater than 15 Å. AutoDock performs a little bit better than Discovery 

Studio regarding to the successfully docking percentage, 16.92% (33 out of 195) and 10.26% (20 

out of 195), respectively. But while comparing the minimum RMSD gained by the two softwares, 

Discovery Studio has 109 protein-ligand complexes with lower RMSD than their results of 

AutoDock. The docking accuracy of protein-ligand complexes is highly related with the specific 

complexes as well as the docking software. Some complexes could not be successfully docked 

based on the specific parameter settings using one software, but can get somewhat accurate result 

using the other one. All the results are run based on the default settings; therefore it’s possible to 

get a higher accuracy for specific complex by trying different combinations of parameters. 

 Discovery Studio is commercial software and the installation cost of it is pretty high 

comparing to the free of charged AutoDock. But Discovery Studio provides detailed tutorials for 

users to get familiar with its functions and the technical support team from the Accelrys 
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Company is very helpful with troubleshooting of Discovery Studio. On the other hand, limited 

tutorials are given in the AutoDock website regarding docking using AutoDock. Also the 

understanding of Python language is pretty useful while dealing with hundreds of protein-ligand 

docking using the same parameter settings. 

 Discovery Studio is used to predict the 3D structure of protein fatty acid desaturase 1 

(FADS1) and its interaction with several ligands. Fatty acid desaturase 1 is an enzyme which can 

remove the hydrogen atoms from a fatty acid and result in double bonds and the unsaturation of 

the fatty acid. It plays an important role in lipid metabolic pathway. The 3D structure of FADS1 

is predicted using homology modeling based on its amino acid sequence. Based on the Identity, 

alignment length, Resolution, E-value and the Organism of the structures, 6 homology sequences 

(1EUE, 1LJ0, 1CYO, 2M33, 3NER and 2I96) are selected as the templates to build the 3D 

structure of FADS1. The 9 of its possible ligands for FADS1 are CP-24879, Sesamin, Curcumin, 

Anthranilicanilide, Dibenzoazepine, Iminodibenzyl, 5H-Dibenz[b,f]azepine, 

Dibenz[b,f]azepine-5-carbonyl Chloride and Clomipramine Hydrochloride. As a result of the 

docking, the interaction between FADS1 and Sesamin shows a similar pattern comparing to the 

interaction between a homolog of FADS1 and a ligand shown in a PDB structure (PDB id 1EUE). 

The structures of the other 8 protein-ligand complexes of FADS1 are not as close to the template 

structure as FADS1-Sesamin complex. The interaction between FADS1 and Sesamin would 

provide another way to understand the function of fatty acid desaturase 1 and possible drug 

design.  
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APPENDIX A. STRUCTURES OF THE FADS1 LIGANDS 

 

  Ligand name Structure 

CP-24879 

 

Sesamin 

 

Curcumin 

 

Dibenzoazepine 

 
Iminodibenzyl 
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  Ligand name Structure 

5H-Dibenz[b,f]azepine 

 

Dibenz[b,f]azepine-5-carbonyl chloride 

 

clomipramine hydrochloride 
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APPENDIX B. PDBIND CORE SET 

 

PDB code log Ka protein name 

1PS3 2.28 α-mannosidase II 

3D4Z 4.89 α-mannosidase II 

3EJR 8.57 α-mannosidase II 

2QMJ 4.21 maltase-glucoamylase, intestinal 

3L4W 6.00 maltase-glucoamylase, intestinal 

3L4U 7.52 maltase-glucoamylase, intestinal 

3L7B 2.40 glycogen phosphorylase, muscle form 

3G2N 4.09 glycogen phosphorylase, muscle form 

3EBP 5.91 glycogen phosphorylase, muscle form 

2W66 4.05 O-glcnacase BT_4395 

2WCA 5.60 O-glcnacase BT_4395 

2VVN 7.30 O-glcnacase BT_4395 

2X97 5.66 angiotensin converting enzyme 

2XHM 6.80 angiotensin converting enzyme 

2X8Z 7.96 angiotensin converting enzyme 

2X0Y 4.60 O-glcnacase NAGJ 

2CBJ 8.27 O-glcnacase NAGJ 

2J62 11.34 O-glcnacase NAGJ 

3BKK 6.08 angiotensin converting enzyme 

3L3N 8.18 angiotensin converting enzyme 

2XY9 9.19 angiotensin converting enzyme 

1GPK 5.37 acetylcholinesterase 

1H23 8.35 acetylcholinesterase 

1E66 9.89 acetylcholinesterase 

3CJ2 4.85 RNA-dependent RNA polymerase 

2D3U 6.92 RNA-dependent RNA polymerase 

3GNW 9.10 RNA-dependent RNA polymerase 

3F3A 4.19 transporter 

3F3C 6.02 transporter 

3F3E 7.70 transporter 
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PDB code log Ka protein name 

4GQQ 2.89 α-amylase 

1U33 4.60 α-amylase 

1XD0 7.12 α-amylase 

2WBG 4.45 β-glucosidase A 

2J78 6.42 β-glucosidase A 

2CET 8.02 β-glucosidase A 

2ZXD 5.22 α-l-fucosidase 

2ZWZ 7.79 α-l-fucosidase 

2ZX6 10.60 α-l-fucosidase 

3UDH 2.85 β-secretase 1 

4DJV 6.72 β-secretase 1 

4GID 10.77 β-secretase 1 

3FK1 2.62 3-phosphoshikimate 1-carboxyvinyltransferase 

2QFT 5.26 3-phosphoshikimate 1-carboxyvinyltransferase 

2PQ9 8.11 3-phosphoshikimate 1-carboxyvinyltransferase 

1F8D 3.40 neuraminidase 

1F8B 5.40 neuraminidase 

1F8C 7.40 neuraminidase 

1N2V 4.08 queuine tRNA-ribosyltransferase 

1R5Y 6.46 queuine tRNA-ribosyltransferase 

3GE7 8.70 queuine tRNA-ribosyltransferase 

3HUC 5.99 mitogen-activated protein kinase 14 

3GCS 7.25 mitogen-activated protein kinase 14 

3E93 8.85 mitogen-activated protein kinase 14 

1Q8T 4.76 cAMP-dependent protein kinase 

1Q8U 5.96 cAMP-dependent protein kinase 

3AG9 8.05 cAMP-dependent protein kinase 

3OWJ 6.07 casein kinase II, α subunit 

2ZJW 7.70 casein kinase II, α subunit 

3PE2 9.76 casein kinase II, α subunit 

2V00 3.66 endothiapepsin 

3PWW 7.32 endothiapepsin 
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PDB code log Ka protein name 

3URI 9.00 endothiapepsin 

3MFV 2.52 arginase-1 

3F80 4.22 arginase-1 

3KV2 7.32 arginase-1 

2HB1 3.80 protein-tyrosine phosphatase 1b 

2QBR 6.33 protein-tyrosine phosphatase 1b 

2QBP 8.40 protein-tyrosine phosphatase 1b 

3FCQ 2.77 thermolysin 

1OS0 6.03 thermolysin 

4TMN 10.17 thermolysin 

3PXF 4.43 cell division protein kinase 2 

2XNB 6.83 cell division protein kinase 2 

2FVD 8.52 cell division protein kinase 2 

1QI0 2.35 endoglucanase B 

1W3K 4.30 endoglucanase 5A 

1W3L 6.28 endoglucanase 5A 

3IMC 2.96 pantothenate synthetase 

3IVG 4.30 pantothenate synthetase 

3COY 6.02 pantothenate synthetase 

3B3S 2.55 leucyl aminopeptidase 

3B3W 4.19 leucyl aminopeptidase 

3VH9 6.24 leucyl aminopeptidase 

3MSS 4.66 tyrosine-protein kinase ABL1 

3K5 V 6.30 tyrosine-protein kinase ABL1 

2V7A 8.30 tyrosine-protein kinase ABL1 

2BRB 4.86 serine/threonine-protein kinase Chk1 

3JVS 6.54 serine/threonine-protein kinase Chk1 

1NVQ 8.25 serine/threonine-protein kinase Chk1 

3ACW 4.76 dehydrosqualene synthase 

2ZCR 6.87 dehydrosqualene synthase 

2ZCQ 8.82 dehydrosqualene synthase 

1BCU 3.28 thrombin 
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PDB code log Ka protein name 

1OYT 7.24 thrombin 

3UTU 10.92 thrombin 

3U9Q 4.38 peroxisome proliferator-activated receptor γ 

2YFE 6.63 peroxisome proliferator-activated receptor γ 

2P4Y 9.00 peroxisome proliferator-activated receptor γ 

3UO4 6.52 serine/threonine-protein kinase 6 

2WTV 8.74 serine/threonine-protein kinase 6 

3MYG 10.70 serine/threonine-protein kinase 6 

3KGP 2.57 urokinase-type plasminogen activator 

1O5B 5.77 urokinase-type plasminogen activator 

1SQA 9.21 urokinase-type plasminogen activator 

3KWA 4.08 carbonic anhydrase II 

2WEG 6.50 carbonic anhydrase II 

3DD0 9.00 carbonic anhydrase II 

2XDL 3.10 heat shock protein Hsp90-α 

1YC1 6.17 heat shock protein Hsp90-α 

2YKI 9.46 heat shock protein Hsp90-α 

1P1Q 4.89 glutamate receptor 2 

3BFU 6.27 glutamate receptor 2 

4G8M 7.89 glutamate receptor 2 

3G2Z 2.36 β-lactamase 

4DE2 4.12 β-lactamase 

4DE1 5.96 β-lactamase 

1VSO 4.72 glutamate receptor, ionotropic kainate 1 

3GBB 6.90 glutamate receptor, ionotropic kainate 1 

3FV1 9.30 glutamate receptor, ionotropic kainate 1 

2Y5H 5.79 coagulation factor XA 

2XBV 8.43 coagulation factor XA 

1MQ6 11.15 coagulation factor XA 

1LOQ 3.70 orotidine 5′-monophosphate decarboxylase 

1LOL 6.39 orotidine 5′-monophosphate decarboxylase 

1LOR 11.06 orotidine 5′-monophosphate decarboxylase 
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PDB code log Ka protein name 

1UTO 2.27 trypsin β 

3GY4 5.10 trypsin β 

1O3F 7.96 trypsin β 

2YGE 5.06 heat shock protein Hsp82 

2IWX 6.68 heat shock protein Hsp82 

2VW5 8.52 heat shock protein Hsp82 

2YMD 3.16 acetylcholine receptor 

2XYS 7.42 acetylcholine receptor 

2X00 11.33 acetylcholine receptor 

2R23 3.72 antibody FAB fragment 

3BPC 4.80 antibody FAB fragment 

1KEL 7.28 antibody FAB fragment 

3OZT 4.13 catechol O-methyltransferase 

3OE5 6.88 catechol O-methyltransferase 

3NW9 9.00 catechol O-methyltransferase 

1ZEA 5.22 antibody FAB fragment 

2PCP 8.70 antibody FAB fragment 

1IGJ 10.00 antibody FAB fragment 

1LBK 3.18 glutathione S-transferase P1-1 

2GSS 4.94 glutathione S-transferase P1-1 

10GS 6.40 glutathione S-transferase P1-1 

3SU5 5.58 NS3/4A protease 

3SU2 7.35 NS3/4A protease 

3SU3 9.13 NS3/4A protease 

3N7A 3.70 3-dehydroquinate dehydratase 

3N86 5.64 3-dehydroquinate dehydratase 

2XB8 7.59 3-dehydroquinate dehydratase 

3AO4 2.07 HIV-1 integrase 

3ZSX 3.28 HIV-1 integrase 

3ZSO 5.12 HIV-1 integrase 

3NQ3 3.78 β-lactoglobulin 

3UEU 5.24 β-lactoglobulin 
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PDB code log Ka protein name 

3UEX 6.92 β-lactoglobulin 

3LKA 2.82 macrophage metalloelastase (MMP-12) 

3EHY 5.85 macrophage metalloelastase (MMP-12) 

3F17 8.63 macrophage metalloelastase (MMP-12) 

3CFT 4.19 transthyretin 

4DES 5.85 transthyretin 

4DEW 7.00 transthyretin 

3DXG 2.40 ribonuclease A 

1W4O 5.22 ribonuclease A 

1U1B 7.80 ribonuclease A 

3OV1 5.20 growth factor receptor-bound protein 2 

3S8O 6.85 growth factor receptor-bound protein 2 

1JYQ 8.70 growth factor receptor-bound protein 2 

1A30 4.30 HIV-1 protease 

3CYX 8.00 HIV-1 protease 

4DJR 11.52 HIV-1 protease 

3I3B 2.23 β-galactosidase 

3MUZ 3.46 β-galactosidase 

3VD4 4.82 β-galactosidase 

2VO5 4.89 β-mannosidase 

2VL4 6.01 β-mannosidase 

2VOT 7.14 β-mannosidase 

1N1M 5.70 dipeptidyl peptidase 4 

2OLE 7.25 dipeptidyl peptidase 4 

3NOX 8.66 dipeptidyl peptidase 4 

1HNN 6.24 phenylethanolamine N-methyltransferase 

2G70 7.77 phenylethanolamine N-methyltransferase 

2OBF 8.85 phenylethanolamine N-methyltransferase 

1Z95 7.12 androgen receptor 

3B68 8.40 androgen receptor 

3G0W 9.52 androgen receptor 

1SLN 6.64 stromelysin-1 
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PDB code log Ka protein name 

2D1O 7.70 stromelysin-1 

1HFS 8.70 stromelysin-1 

2JDY 4.37 fucose-binding lectin PA-IIL 

2JDM 5.40 fucose-binding lectin PA-IIL 

2JDU 6.72 fucose-binding lectin PA-IIL 
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APPENDIX C. PDBIND CORE SET DOCKING SUMMARY 

 

PDB code DS Min DS Num AutoDock Min AutoDock Num Method 

10gs 5.8083 0 9.55 0 DS 

1a30 9.18772 0 2.86 2 AutoDock 

1bcu 6.80629 0 9.56 0 DS 

1e66 7.9146 0 NA 0 DS 

1f8b 8.6072 0 30.34 0 DS 

1f8c 0 10 26.58 0 DS 

1f8d 0 1 26.3 0 DS 

1gpk 8.21955 0 1.89 10 AutoDock 

1h23 6.02768 0 3.33 0 AutoDock 

1hfs 11.4727 0 7.28 0 AutoDock 

1hnn 8.38057 0 8.03 0 AutoDock 

1igj 6.87317 0 21.21 0 DS 

1jyq 10.6376 0 12.59 0 DS 

1kel 0 14 23.83 0 DS 

1lbk 7.91016 0 6.61 0 AutoDock 

1lol 5.11139 0 13.26 0 DS 

1loq 17.4876 0 17.57 0 DS 

1lor 10.7718 0 9.73 0 AutoDock 

1mq6 6.54068 0 15.06 0 DS 

1n1m 9.32917 0 25.94 0 DS 

1n2v 7.73697 0 2.77 2 AutoDock 

1nvq 0 5 12.41 0 DS 

1o3f 9.99304 0 8.1 0 AutoDock 

1o5b 15.5201 0 2.41 1 AutoDock 

1os0 12.0796 0 6.8 0 AutoDock 

1oyt 11.7536 0 9.7 0 AutoDock 

1p1q 7.0728 0 12.3 0 DS 

1ps3 NA 0 14.45 0 AutoDock 

1q8t 8.47348 0 1.58 4 AutoDock 

1q8u 8.55204 0 4.48 0 AutoDock 

1qi0 6.72785 0 14.81 0 DS 

1r5y 6.00367 0 3.67 0 AutoDock 

1sln 9.63172 0 10.67 0 DS 

1sqa 8.4153 0 9.8 0 DS 

1u1b 8.21593 0 4.4 0 AutoDock 

1u33 8.45949 0 9.77 0 DS 
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PDB code DS Min DS Num AutoDock Min AutoDock Num Method 

1uto 0 2 1.81 4 DS 

1vso 5.22074 0 14.75 0 DS 

1w3k 7.56717 0 11.52 0 DS 

1w3l 7.89011 0 11.43 0 DS 

1w4o 9.42634 0 13.76 0 DS 

1xd0 14.0578 0 8.77 0 AutoDock 

1yc1 8.0417 0 2.96 1 AutoDock 

1z95 12.3223 0 2.42 1 AutoDock 

1zea 0 1 27.72 0 DS 

2brb 7.57076 0 12.81 0 DS 

2cbj 19.6322 0 15.15 0 AutoDock 

2cet 7.84718 0 1.07 6 AutoDock 

2d1o 9.37148 0 12.66 0 DS 

2d3u 0 9 21.57 0 DS 

2fvd 7.6841 0 14.1 0 DS 

2g70 0 17 7.92 0 DS 

2gss 0 16 10.71 0 DS 

2hb1 12.5937 0 16.2 0 DS 

2iwx 8.08911 0 1.5 10 AutoDock 

2j62 9.8234 0 16.73 0 DS 

2j78 7.77791 0 0.52 10 AutoDock 

2jdm 18.4474 0 22.98 0 DS 

2jdu 18.2474 0 22.38 0 DS 

2jdy 9.61378 0 25.35 0 DS 

2obf 11.2736 0 7.32 0 AutoDock 

2ole 9.95456 0 19.51 0 DS 

2p4y 12.9 0 18.75 0 DS 

2pcp 19.3825 0 22.76 0 DS 

2pq9 0 10 1.25 10 DS 

2qbp 0 14 12.94 0 DS 

2qbr 0 1 14.2 0 DS 

2qft 0 20 0.88 8 DS 

2qmj 8.65159 0 15.34 0 DS 

2r23 10.3994 0 27.12 0 DS 

2v00 5.1149 0 0.89 6 AutoDock 

2v7a 7.80045 0 9.71 0 DS 

2vl4 5.99009 0 11.07 0 DS 

2vo5 7.68767 0 13.09 0 DS 
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PDB code DS Min DS Num AutoDock Min AutoDock Num Method 

2vot 7.1551 0 15.38 0 DS 

2vvn 12.2275 0 12.6 0 DS 

2vw5 11.3336 0 3.32 0 AutoDock 

2w66 15.9783 0 14.81 0 AutoDock 

2wbg 5.95828 0 17.17 0 DS 

2wca 6.74984 0 14.59 0 DS 

2weg 5.25847 0 0.63 10 AutoDock 

2wtv 7.06107 0 8.1 0 DS 

2x00 14.4063 0 22.05 0 DS 

2x0y 7.80722 0 19.93 0 DS 

2x8z 8.5603 0 0.8 9 AutoDock 

2x97 11.0496 0 3.69 0 AutoDock 

2xb8 7.81645 0 19.86 0 DS 

2xbv 13.0473 0 15.71 0 DS 

2xdl 7.77039 0 8.66 0 DS 

2xhm NA 0 5.98 0 AutoDock 

2xnb 10.4256 0 13.47 0 DS 

2xy9 13.6116 0 2.44 3 AutoDock 

2xys 9.90856 0 20.24 0 DS 

2y5h 7.2362 0 16.04 0 DS 

2yfe 8.07678 0 5.7 0 AutoDock 

2yge 10.1024 0 3.59 0 AutoDock 

2yki 9.01784 0 3.03 0 AutoDock 

2ymd 8.78006 0 32.1 0 DS 

2zcq 6.39122 0 2.74 1 AutoDock 

2zcr 14.4761 0 1.7 5 AutoDock 

2zjw NA 0 14.27 0 AutoDock 

2zwz 6.24192 0 29.9 0 DS 

2zx6 12.508 0 22.17 0 DS 

2zxd 9.0221 0 32.82 0 DS 

3acw 12.0784 0 1.36 10 AutoDock 

3ag9 12.5201 0 NA 0 DS 

3ao4 13.5706 0 14.5 0 DS 

3b3s 6.63154 0 13.82 0 DS 

3b3w 5.25895 0 NA 0 DS 

3b68 0 18 5.25 0 DS 

3bfu 7.56331 0 13.7 0 DS 

3bkk 11.224 0 2.16 2 AutoDock 
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PDB code DS Min DS Num AutoDock Min AutoDock Num Method 

3bpc 10.5394 0 27.49 0 DS 

3cft 17.2524 0 9.54 0 AutoDock 

3cj2 11.1617 0 23.13 0 DS 

3coy 8.15473 0 15.87 0 DS 

3cyx 13.1025 0 3.41 0 AutoDock 

3d4z 25.8236 0 15.46 0 AutoDock 

3dd0 7.7338 0 1.97 5 AutoDock 

3dxg 7.25655 0 2.4 7 AutoDock 

3e93 12.3006 0 6.8 0 AutoDock 

3ebp 12.1055 0 28.36 0 DS 

3ehy 10.1327 0 10.88 0 DS 

3ejr 6.38707 0 14.8 0 DS 

3f17 11.5185 0 11.99 0 DS 

3f3a 0 20 23.15 0 DS 

3f3c 9.28237 0 22.52 0 DS 

3f3e NA 0 21.59 0 AutoDock 

3f80 0 52 18.96 0 DS 

3fcq 7.52613 0 3.62 0 AutoDock 

3fk1 5.29645 0 0.4 10 AutoDock 

3fv1 9.93798 0 0.32 10 AutoDock 

3g0w 12.7258 0 4.47 0 AutoDock 

3g2n 23.9442 0 1.73 10 AutoDock 

3g2z 4.63534 0 15.38 0 DS 

3gbb 10.5483 0 0.43 10 AutoDock 

3gcs 10.8583 0 5.66 0 AutoDock 

3ge7 7.0495 0 23.02 0 DS 

3gnw 9.27252 0 1.91 4 AutoDock 

3gy4 16.8961 0 8.81 0 AutoDock 

3huc 9.44927 0 10.58 0 DS 

3i3b 6.05309 0 NA 0 DS 

3imc 6.26741 0 19.98 0 DS 

3ivg 22.181 0 15.44 0 AutoDock 

3jvs 0 2 13.1 0 DS 

3k5v 8.92985 0 19.47 0 DS 

3kgp 14.5175 0 7.83 0 AutoDock 

3kv2 12.6006 0 22.8 0 DS 

3kwa 11.6569 0 1.92 8 AutoDock 

3l3n 12.2073 0 2.43 3 AutoDock 
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PDB code DS Min DS Num AutoDock Min AutoDock Num Method 

3l4u NA 0 14.56 0 AutoDock 

3l4w 14.2631 0 17.88 0 DS 

3l7b NA 0 27.15 0 AutoDock 

3lka 7.87774 0 3.14 0 AutoDock 

3mfv 14.4811 0 19.31 0 DS 

3mss 27.0544 0 25.81 0 AutoDock 

3muz 16.7868 0 NA 0 DS 

3myg 7.28649 0 9.15 0 DS 

3n7a 7.08678 0 17 0 DS 

3n86 15.6088 0 21.61 0 DS 

3nox 19.8031 0 20.25 0 DS 

3nq3 8.36094 0 1.38 6 AutoDock 

3nw9 12.6828 0 6.64 0 AutoDock 

3oe5 0 34 5.35 0 DS 

3ov1 6.37898 0 8.3 0 DS 

3owj 10.8669 0 14.54 0 DS 

3ozt 0 40 3.17 0 DS 

3pe2 9.7509 0 13.94 0 DS 

3pww 9.44403 0 4.3 0 AutoDock 

3pxf 8.98203 0 20.31 0 DS 

3s8o NA 0 8.49 0 AutoDock 

3su2 13.0231 0 7.91 0 AutoDock 

3su3 17.0831 0 9.19 0 AutoDock 

3su5 16.5936 0 9.98 0 AutoDock 

3u9q 8.08309 0 11.47 0 DS 

3udh 5.78807 0 1.38 10 AutoDock 

3ueu 20.6858 0 19.84 0 AutoDock 

3uex 22.0354 0 20.56 0 AutoDock 

3uo4 8.22252 0 6.48 0 AutoDock 

3uri NA 0 6.76 0 AutoDock 

3utu 16.3407 0 11.15 0 AutoDock 

3vd4 10.8686 0 NA 0 DS 

3vh9 5.65174 0 12.58 0 DS 

3zso 0 24 14.01 0 DS 

3zsx 15.2521 0 14.14 0 AutoDock 

4de1 5.94607 0 13.59 0 DS 

4de2 7.02555 0 14 0 DS 

4des 18.8617 0 7.27 0 AutoDock 
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PDB code DS Min DS Num AutoDock Min AutoDock Num Method 

4dew 11.5001 0 6.62 0 AutoDock 

4djr 11.207 0 3.2 0 AutoDock 

4djv 7.47272 0 3.3 0 AutoDock 

4g8m 7.71106 0 0.51 10 AutoDock 

4gid 16.5132 0 3.63 0 AutoDock 

4gqq 17.2052 0 18.23 0 DS 

4tmn 9.39099 0 6.34 0 AutoDock 
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APPENDIX D. PYTHON CODE FOR RECEPTOR PREPARATION IN AUTODOCK 

 

# prepare_receptor4.py 

import os  

 

from MolKit import Read 

import MolKit.molecule 

import MolKit.protein 

from AutoDockTools.MoleculePreparation import AD4ReceptorPreparation 

 

 

if __name__ == '__main__': 

    import sys 

    import getopt 

 

 

    def usage(): 

        "Print helpful, accurate usage statement to stdout." 

        print "Usage: prepare_receptor4.py -r filename" 

        print 

        print "    Description of command..." 

        print "         -r   receptor_filename " 

        print "        supported file types include pdb,mol2,pdbq,pdbqs,pdbqt, possibly 

pqr,cif" 

        print "    Optional parameters:" 

        print "        [-v]  verbose output (default is minimal output)" 

        print "        [-o pdbqt_filename]  (default is 'molecule_name.pdbqt')" 

        print "        [-A]  type(s) of repairs to make: " 

        print "             'bonds_hydrogens': build bonds and add hydrogens " 

        print "             'bonds': build a single bond from each atom with no bonds to its 

closest neighbor"  

        print "             'hydrogens': add hydrogens" 

        print "             'checkhydrogens': add hydrogens only if there are none already" 

        print "             'None': do not make any repairs " 

        print "             (default is 'None')" 

        print "        [-C]  preserve all input charges ie do not add new charges " 

        print "             (default is addition of gasteiger charges)" 

        print "        [-p]  preserve input charges on specific atom types, eg -p Zn -p Fe" 

        print "        [-U]  cleanup type:" 
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        print "             'nphs': merge charges and remove non-polar hydrogens" 

        print "             'lps': merge charges and remove lone pairs" 

        print "             'waters': remove water residues" 

        print "             'nonstdres': remove chains composed entirely of residues of" 

        print "                      types other than the standard 20 amino acids" 

        print "             'deleteAltB': remove XX@B atoms and rename XX@A 

atoms->XX" 

        print "             (default is 'nphs_lps_waters_nonstdres') " 

        print "        [-e]  delete every nonstd residue from any chain" 

        print "              'True': any residue whose name is not in this list:" 

        print "                      ['CYS','ILE','SER','VAL','GLN','LYS','ASN', " 

        print "                      'PRO','THR','PHE','ALA','HIS','GLY','ASP', " 

        print "                      'LEU', 'ARG', 'TRP', 'GLU', 'TYR','MET', " 

        print "                      'HID', 'HSP', 'HIE', 'HIP', 'CYX', 'CSS']" 

        print "              will be deleted from any chain. " 

        print "              NB: there are no  nucleic acid residue names at all " 

        print "              in the list and no metals. " 

        print "             (default is False which means not to do this)" 

        print "        [-M]  interactive " 

        print "             (default is 'automatic': outputfile is written with no further user 

input)" 

        print "        [-d dictionary_filename] file to contain receptor summary 

information" 

 

 

    # process command arguments 

    try: 

        opt_list, args = getopt.getopt(sys.argv[1:], 'r:vo:A:Cp:U:eM:d:') 

 

    except getopt.GetoptError, msg: 

        print 'prepare_receptor4.py: %s' %msg 

        usage() 

        sys.exit(2) 

 

    files = os.listdir('C:\Users\wang28\Desktop\left') 

#    mol = [] 

    for file in files: 

        # ligand_filename =  None 
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        receptor_filename = os.path.join("C:\\Users\\wang28\\Desktop\\left\\", file)# initialize 

required parameters 

        #-s: receptor 

        #receptor_filename =  None 

     

        # optional parameters 

        verbose = None 

        #-A: repairs to make: add bonds and/or hydrogens or checkhydrogens 

        repairs = '' 

        #-C default: add gasteiger charges  

        charges_to_add = 'gasteiger' 

        #-p preserve charges on specific atom types 

        preserve_charge_types=None 

        #-U: cleanup by merging nphs_lps, nphs, lps, waters, nonstdres 

        cleanup  = "nphs_lps_waters_nonstdres" 

        #-o outputfilename 

        outputfilename = None 

        #-m mode  

        mode = 'automatic' 

        #-e delete every nonstd residue from each chain 

        delete_single_nonstd_residues = None 

        #-d dictionary 

        dictionary = None 

     

        #'r:vo:A:Cp:U:eMh' 

        for o, a in opt_list: 

            if o in ('-r', '--r'): 

                receptor_filename = a 

                if verbose: print 'set receptor_filename to ', a 

            if o in ('-v', '--v'): 

                verbose = True 

                if verbose: print 'set verbose to ', True 

            if o in ('-o', '--o'): 

                outputfilename = a 

                if verbose: print 'set outputfilename to ', a 

            if o in ('-A', '--A'): 

                repairs = a 

                if verbose: print 'set repairs to ', a 

            if o in ('-C', '--C'): 
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                charges_to_add = None 

                if verbose: print 'do not add charges' 

            if o in ('-p', '--p'): 

                if not preserve_charge_types: 

                    preserve_charge_types = a 

                else: 

                    preserve_charge_types = preserve_charge_types + ','+ a 

                if verbose: print 'preserve initial charges on ', preserve_charge_types 

            if o in ('-U', '--U'): 

                cleanup  = a 

                if verbose: print 'set cleanup to ', a 

            if o in ('-e', '--e'): 

                delete_single_nonstd_residues  = True 

                if verbose: print 'set delete_single_nonstd_residues to True' 

            if o in ('-M', '--M'): 

                mode = a 

                if verbose: print 'set mode to ', a 

            if o in ('-d', '--d'): 

                dictionary  = a 

                if verbose: print 'set dictionary to ', dictionary 

            if o in ('-h', '--'): 

                usage() 

                sys.exit() 

     

     

        if not receptor_filename: 

            print 'prepare_receptor4: receptor filename must be specified.' 

            usage() 

            sys.exit() 

     

     

        mols = Read(receptor_filename) 

        if verbose: print 'read ', receptor_filename 

        mol = mols[0] 

        preserved = {} 

        if charges_to_add is not None and preserve_charge_types is not None: 

            preserved_types = preserve_charge_types.split(',')  

            if verbose: print "preserved_types=", preserved_types 

            for t in preserved_types: 
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                if verbose: print 'preserving charges on type->', t 

                if not len(t): continue 

                ats = mol.allAtoms.get(lambda x: x.autodock_element==t) 

                if verbose: print "preserving charges on ", ats.name 

                for a in ats: 

                    if a.chargeSet is not None: 

                        preserved[a] = [a.chargeSet, a.charge] 

     

        if len(mols)>1: 

            if verbose: print "more than one molecule in file" 

            #use the molecule with the most atoms 

            ctr = 1 

            for m in mols[1:]: 

                ctr += 1 

                if len(m.allAtoms)>len(mol.allAtoms): 

                    mol = m 

                    if verbose: print "mol set to ", ctr, "th molecule with", 

len(mol.allAtoms), "atoms" 

        mol.buildBondsByDistance() 

     

        if verbose: 

            print "setting up RPO with mode=", mode, 

            print "and outputfilename= ", outputfilename 

            print "charges_to_add=", charges_to_add 

            print "delete_single_nonstd_residues=", delete_single_nonstd_residues 

     

        RPO = AD4ReceptorPreparation(mol, mode, repairs, charges_to_add,  

                            cleanup, outputfilename=outputfilename, 

                            preserved=preserved,  

                            

delete_single_nonstd_residues=delete_single_nonstd_residues, 

                            dict=dictionary)     

     

        if charges_to_add is not None: 

            #restore any previous charges 

            for atom, chargeList in preserved.items(): 

                atom._charges[chargeList[0]] = chargeList[1] 

                atom.chargeSet = chargeList[0] 
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# To execute this command type: 

# prepare_receptor4.py -r pdb_file -o outputfilename -A checkhydrogens  
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APPENDIX E. PYTHON CODE FOR LIGAND PREPARATION IN AUTODOCK 

 

# prepare_ligand4.py 

import os  

 

from MolKit import Read 

 

from AutoDockTools.MoleculePreparation import AD4LigandPreparation 

 

 

 

if __name__ == '__main__': 

    import sys 

    import getopt 

 

 

    def usage(): 

        "Print helpful, accurate usage statement to stdout." 

        print "Usage: prepare_ligand4.py -l filename" 

        print 

        print "    Description of command..." 

        print "         -l     ligand_filename (.pdb or .mol2 or .pdbq format)" 

        print "    Optional parameters:" 

        print "        [-v]    verbose output" 

        print "        [-o pdbqt_filename] (default output filename is ligand_filename_stem 

+ .pdbqt)" 

        print "        [-d]    dictionary to write types list and number of active torsions " 

 

        print "        [-A]    type(s) of repairs to make:\n\t\t bonds_hydrogens, bonds, 

hydrogens (default is to do no repairs)" 

        print "        [-C]    do not add charges (default is to add gasteiger charges)" 

        print "        [-p]    preserve input charges on atom type, eg -p Zn" 

        print "               (default is not to preserve charges on any specific atom type)" 

        print "        [-U]    cleanup type:\n\t\t nphs_lps, nphs, lps, '' (default is 'nphs_lps') 

" 

        print "        [-B]    type(s) of bonds to allow to rotate " 

        print "               (default sets 'backbone' rotatable and 'amide' + 'guanidinium' 

non-rotatable)" 

        print "        [-R]    index for root" 
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        print "        [-F]    check for and use largest non-bonded fragment (default is not 

to do this)" 

        print "        [-M]    interactive (default is automatic output)" 

        print "        [-I]    string of bonds to inactivate composed of " 

        print "                   of zero-based atom indices eg 5_13_2_10  " 

        print "                   will inactivate atoms[5]-atoms[13] bond " 

        print "                               and atoms[2]-atoms[10] bond " 

        print "                      (default is not to inactivate any specific bonds)" 

        print "        [-Z]    inactivate all active torsions     " 

        print "                      (default is leave all rotatable active except amide and 

guanidinium)" 

        print "        [-g]    attach all nonbonded fragments " 

        print "        [-s]    attach all nonbonded singletons: " 

        print "                   NB: sets attach all nonbonded fragments too" 

        print "                      (default is not to do this)" 

 

 

    # process command arguments 

    try: 

        opt_list, args = getopt.getopt(sys.argv[1:], 'l:vo:d:A:Cp:U:B:R:MFI:Zgsh') 

    except getopt.GetoptError, msg: 

        print 'prepare_ligand4.py: %s' %msg 

        usage() 

        sys.exit(2) 

 

    # initialize required parameters 

    #-l: ligand 

     

     

    files = os.listdir('C:\Users\wang28\Desktop\PDbind\ligand') 

    mol = [] 

    for file in files: 

        # ligand_filename =  None 

        ligand_filename = os.path.join("C:\\Users\\wang28\\Desktop\\PDbind\\ligand\\", file) 

            

        # optional parameters 

        verbose = None 

        add_bonds = False 

        #-A: repairs to make: add bonds and/or hydrogens 
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        repairs = "" 

        #-C  default: add gasteiger charges  

        charges_to_add = 'gasteiger' 

        #-p preserve charges on specific atom types 

        preserve_charge_types='' 

        #-U: cleanup by merging nphs_lps, nphs, lps 

        cleanup  = "nphs_lps" 

        #-B named rotatable bond type(s) to allow to rotate 

        #allowed_bonds = "" 

        allowed_bonds = "backbone" 

        #-r  root 

        root = 'auto' 

        #-o outputfilename 

        outputfilename = None 

        #-F check_for_fragments 

        check_for_fragments = False 

        #-I bonds_to_inactivate 

        bonds_to_inactivate = "" 

        #-Z inactivate_all_torsions 

        inactivate_all_torsions = False 

        #-g attach_nonbonded_fragments 

        attach_nonbonded_fragments = False 

        #-s attach_nonbonded_singletons 

        attach_singletons = False 

        #-m mode  

        mode = 'automatic' 

        #-d dictionary 

        dict = None 

         

        #'l:vo:d:A:CKU:B:R:MFI:Zgs' 

        for o, a in opt_list: 

            #print "o=", o, " a=", a 

            if o in ('-l', '--l'): 

                ligand_filename = a 

                if verbose: print 'set ligand_filename to ', a 

            if o in ('-v', '--v'): 

                verbose = True 

                if verbose: print 'set verbose to ', True 

            if o in ('-o', '--o'): 
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                outputfilename = a 

                if verbose: print 'set outputfilename to ', a 

            if o in ('-d', '--d'): 

                dict = a 

                if verbose: print 'set dict to ', a 

            if o in ('-A', '--A'): 

                repairs = a 

                if verbose: print 'set repairs to ', a 

            if o in ('-C', '--C'): 

                charges_to_add = None 

                if verbose: print 'do not add charges' 

            if o in ('-p', '--p'): 

                preserve_charge_types+=a 

                preserve_charge_types+=',' 

                if verbose: print 'preserve initial charges on ', preserve_charge_types 

            if o in ('-U', '--U'): 

                cleanup  = a 

                if verbose: print 'set cleanup to merge ', a 

            if o in ('-B', '--B'): 

                allowed_bonds = a 

                if verbose: print 'allow ', a, 'bonds set to rotate' 

            if o in ('-R', '--R'): 

                root = a 

                if verbose: print 'set root to ', root 

            if o in ('-F', '--F'): 

                check_for_fragments = True 

                if verbose: print 'set check_for_fragments to True' 

            if o in ('-M', '--M'): 

                mode = a 

                if verbose: print 'set mode to ', a 

            if o in ('-I', '--I'): 

                bonds_to_inactivate = a 

                if verbose: print 'set bonds_to_inactivate to ', a 

            if o in ('-Z', '--Z'): 

                inactivate_all_torsions = True 

                if verbose: print 'set inactivate_all_torsions to ', inactivate_all_torsions 

            if o in ('-g', '--g'): 

                attach_nonbonded_fragments = True 
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                if verbose: print 'set attach_nonbonded_fragments to ', 

attach_nonbonded_fragments 

            if o in ('-s', '--s'): 

                attach_singletons = True 

                if verbose: print 'set attach_singletons to ', attach_singletons 

            if o in ('-h', '--'): 

                usage() 

                sys.exit() 

     

     

        if not  ligand_filename: 

            print 'prepare_ligand4: ligand filename must be specified.' 

            usage() 

            sys.exit() 

     

        if attach_singletons: 

            attach_nonbonded_fragments = True 

            if verbose: print "using attach_singletons so attach_nonbonded_fragments also" 

         

        mols = Read(ligand_filename) 

        if verbose: print 'read ', ligand_filename 

        mol = mols[0] 

        if len(mols)>1: 

            if verbose:  

                print "more than one molecule in file" 

            #use the one molecule with the most atoms 

            ctr = 1 

            for m in mols[1:]: 

                ctr += 1 

                if len(m.allAtoms)>len(mol.allAtoms): 

                    mol = m 

                    if verbose: 

                        print "mol set to ", ctr, "th molecule with", len(mol.allAtoms), 

"atoms" 

        coord_dict = {} 

        for a in mol.allAtoms: coord_dict[a] = a.coords 

     

     

        mol.buildBondsByDistance() 
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        if charges_to_add is not None: 

            preserved = {} 

            preserved_types = preserve_charge_types.split(',')  

            for t in preserved_types: 

                if not len(t): continue 

                ats = mol.allAtoms.get(lambda x: x.autodock_element==t) 

                for a in ats: 

                    if a.chargeSet is not None: 

                        preserved[a] = [a.chargeSet, a.charge] 

     

     

     

        if verbose: 

            print "setting up LPO with mode=", mode, 

            print "and outputfilename= ", outputfilename 

            print "and check_for_fragments=", check_for_fragments 

            print "and bonds_to_inactivate=", bonds_to_inactivate 

        LPO = AD4LigandPreparation(mol, mode, repairs, charges_to_add,  

                                cleanup, allowed_bonds, root,  

                                outputfilename=outputfilename, 

                                dict=dict, check_for_fragments=check_for_fragments, 

                                bonds_to_inactivate=bonds_to_inactivate,  

                                inactivate_all_torsions=inactivate_all_torsions, 

                                

attach_nonbonded_fragments=attach_nonbonded_fragments, 

                                attach_singletons=attach_singletons) 

        #do something about atoms with too many bonds (?) 

        #FIX THIS: could be peptide ligand (???) 

        #          ??use isPeptide to decide chargeSet?? 

        if charges_to_add is not None: 

            #restore any previous charges 

            for atom, chargeList in preserved.items(): 

                atom._charges[chargeList[0]] = chargeList[1] 

                atom.chargeSet = chargeList[0] 

        if verbose: print "returning ", mol.returnCode  

        bad_list = [] 

        for a in mol.allAtoms: 

            if a in coord_dict.keys() and a.coords!=coord_dict[a]:  

                bad_list.append(a) 
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        if len(bad_list): 

            print len(bad_list), ' atom coordinates changed!'     

            for a in bad_list: 

                print a.name, ":", coord_dict[a], ' -> ', a.coords 

        else: 

            if verbose: print "No change in atomic coordinates" 

        if mol.returnCode!=0:  

            sys.stderr.write(mol.returnMsg+"\n") 

    sys.exit(mol.returnCode) 

     

 

# To execute this command type: 

# prepare_ligand4.py -l pdb_file -v 


