
INFIELD BIOMASS BALES AGGREGATION LOGISTICS AND EQUIPMENT TRACK

IMPACTED AREA EVALUATION

A Thesis
Submitted to the Graduate Faculty

of the
North Dakota State University

of Agriculture and Applied Science

By

Subhashree Navaneetha Srinivasagan

In Partial Fulfillment of the Requirements
for the Degree of

MASTER OF SCIENCE

Major Department:
Agricultural and Biosystems Engineering

November 2017

Fargo, North Dakota



NORTH DAKOTA STATE UNIVERSITY
Graduate School

Title

INFIELD BIOMASS BALES AGGREGATION LOGISTICS AND EQUIPMENT

TRACK IMPACTED AREA EVALUATION

By

Subhashree Navaneetha Srinivasagan

The supervisory committee certifies that this thesis complies with North Dakota State

University’s regulations and meets the accepted standards for the degree of

MASTER OF SCIENCE

SUPERVISORY COMMITTEE:

Dr. Igathinathane Cannayen
Chair

Dr. Halis Simsek

Dr. David Ripplinger

Approved:

11/22/2017
Date

Dr. Sreekala Bajwa
Department Chair



ABSTRACT

Efficient bale stack location, infield bale logistics, and equipment track impacted

area were conducted in three different studies using simulation in R. Even though the

geometric median produced the best logistics, among the five mathematical grouping

methods, the field middle was recommended as it was comparable and easily accessible in

the field. Curvilinear method developed (8–259 ha), incorporating equipment turning

(tractor: 1 and 2 bales/trip, automatic bale picker (ABP): 8–23 bales/trip, harvester, and

baler), evaluated the aggregation distance, impacted area, and operation time. The

harvester generated the most, followed by the baler, and the ABP the least impacted area

and operation time. The ABP was considered as the most effective bale aggregation

equipment compared to the tractor. Simple specific and generalized prediction models,

developed for aggregation logistics, impacted area, and operation time, have performed

well (0.88≤ R2 ≤ 0.99). An ABP of 8 bales capacity, also capable of 11 bales/trip,

was recommended.
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1. GENERAL INTRODUCTION

Global demand for biomass is ever increasing to cater to the pressing societal energy

needs such as energy security and sustainability. Production of energy from biomass is a

well-recognized opportunity as biomass is locally available in abundance and is renewable.

Biomass is not only used as an energy source but also serves as an excellent fodder source

for cattle and dairy industry. Efficient utilization of biomass for energy and feed involves

harvest, collection, storage and handling, and finally transportation to point of utilization.

The major impetus to the growth of bioenergy is related to its logistics. Secure, reliable and

low-cost delivery of the biomass is the key to the successful harness of bioenergy and

economic activities utilizing biomass.

The on-road logistics of biomass between the field and the storage facilities of

bioenergy plant has been largely studied, and many models have been developed to

optimize the logistics. Some of the research related to biomass logistics include: Study of

the economic, energy inputs and the greenhouse gas emission of the logistic system which

managed the collection and transportation of round bales of corn stover to the storage

location (Morey et al., 2010); development of 8 different logistics models to identify low

cost feedstock system by evaluating their influence on the key system parameters (Cook &

Shinners, 2011); and developing methods to efficiently load the bales at the storage

location and hauling them to meet the demand (Cundiff & Grisso, 2008).

Postharvest operations such as bailing, stacking and transporting the bales to the

field edge for collection also contribute significantly to the biomass logistics. Efficient
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infield logistic should be carried out in a timely manner as the bales lying on the field too

long, might lose the dry matter content which determines the net biomass yield and harvest

efficiency (Sanderson et al., 1997). Prolonged exposure of the bales in the sun creates a

perfect environment and host to the development of fungi and other microorganisms. This

fungal biomass reduces the animal performance (Mohanty et al., 1969). Also, the dispersed

bales on the field will hinder the other operations and possibly affect the regrowth

potential of the soil if the bales remain on the field for a longer time. Overall, the quality of

the biomass bales produced on the field deteriorates if an efficient logistics, handling, and

storage techniques are not followed.

The most conventional method of aggregating the bales from the field is using the

simple equipment like tractor and wagon. Bale collection using a tractor is achieved by

using additional attachments such as grapple or spear. Using these attachments the tractor

is capable of collecting 1 or 2 bales/trip. Using the tractor the bales are loaded into the

wagon which is hauled from infield to the designated outlet. The capacity of the wagon

varies from 6 to 32 bales/trip (Igathinathane et al., 2014). Once the wagon is loaded to its

fullest capacity, the bales are then transported to the edge or corner of the field, for easy

loading for on-road transportation to the point of utilization. In this case of conventional

bale aggregation, two equipment, involving more than a single operator and more time is

utilized. In the modern-day agriculture, farmers resort to labor saving equipment to

enhance their operational efficiencies. One such equipment related to bale aggregation is

the automatic bale picker (ABP), which combines the activity of a tractor and wagon

during aggregating the bales from the field. The efficiency of this relatively new
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equipment, namely, ABP has to be studied in comparison with the conventional tractor bale

collection method.

The modern-day mechanical farming has been equipped with several advanced

equipment and machinery. As this trend moves forward, the equipment increase in capacity

and becomes heavier. These heavy machinery generate the track impacted area during

operation, which leads to soil compaction. The weight of the equipment mainly contributes

to the soil compaction (Håkansson & Reeder, 1994). Avoidance of soil compaction leads to

essential maintenance of good soil structure and plant health. Rut depth is the major

indicator of the topsoil compaction which is caused by the weight of the agricultural

machinery, tire width, inflation pressure and the intensity of equipment passes in the field

(Soane et al., 1980). Many models and methods have been developed to predict the

response of the soil upon soil compaction (Defossez & Richard, 2002).

Very few studies have been conducted so far to determine the efficient infield bale

logistics operation. Few of the research that are currently available include: Simulation

developed to determine the effect of subfield stack formation on the collection logistic

distances (Igathinathane et al., 2016). Different bale aggregation methods were designed,

the method which generated the least aggregation distance for different simulated

scenarios was considered the most efficient method (Igathinathane et al., 2014). Studies

related to infield logistics were lacking, hence any development within this area of infield

logistics is very beneficial.

With this background, this study focused on various infield logistic operations and

evaluation of equipment track impacted area by several field equipment. Simulations were

developed using R for the study. Programs were developed to represent different scenarios
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in the field and to mimic the action of the field equipment in the field. The simulation also

included the turn path of the equipment considered in the study for evaluating the harvest,

baling, and aggregation distances and compared with the simpler Euclidean distance

method.

1.1. Statement of Objectives

The major objectives of this study were:

1. Simulate different bale aggregation stack location methods following different

mathematical grouping strategies to evaluate the efficient infield logistics.

2. Evaluate the equipment track impacted area generated by different farm

equipment, such as harvester, baler, tractor, and ABP during infield operations

through simulation.

3. Evaluate and compare the performance of tractor and ABP for infield bale

aggregation based on the logistics distance generated for similar scenarios.

1.2. Thesis Organization

The thesis consists of (i) general introduction, (ii) review of literature, (iii) the

study is presented in the form of peer-reviewed journal articles as three research papers,

(iv) general conclusions, and (v) two appendices. The review of literature synthesizes the

available literature from the overall perspective of the major operations of biomass supply

chain, which also covers the objectives subject area in particular. Each research paper

presented here is full-fledged in the sense that they have their own introduction with

supporting review of literature, materials and methods, results and discussion, and

conclusions. However, the overall literature review provides a detailed discussion on
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various studies, experiments, and models developed in biomass logistics under a broad

spectrum.

Among the individual studies presented, Paper 1 entitled: “Optimized location of

biomass bales stack for efficient logistics” determined the efficient stack location method to

aggregate the bales on the field (Objective 1); Paper 2 entitled: “Equipment track impacted

field areas during harvesting, baling, and infield bale logistics” analyzed the track impacted

areas generated by the farm equipment during various field operations (Objective 2); and

Paper 3 entitled: “Biomass bale infield logistics scenarios using an automatic bale picker”

evaluated the efficiency of the bale aggregation equipment ABP compared with tractor

during the event of bale collection (Objective 3).

A general conclusion summarizing the results derived from the papers (1–3) is then

presented and is followed by suggestions for future work. All the collected reference listing

of the study is presented as a separate final chapter. Finally, the details about the

construction cases of equipment turn paths and the respective derivations of representative

cases with some simulation results and portions of the R code are included as two

appendices (Appendices A and B).
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2. REVIEW OF LITERATURE

Different studies conducted and models developed for efficient logistics operation of

the equipment between the agricultural field and the bioenergy plant or the cattle industry

are reviewed. The research gap and importance of infield logistics for more efficient

biomass bales logistics will be explained. Current bale aggregation scenario and studies are

reviewed. Finally, the detrimental effects of application of modern agricultural equipment

on soil caused by the equipment track on the field are explained and the background

studies are discussed.

2.1. Biomass Supply Chain and Logistics

A bioenergy supply chain consists of five main components such as harvest and

collection, pre-treatment, storage, transport, and energy conversion Fig.2.1 (Iakovou et al.,

2010). The biomass suppliers, transportation and distribution bodies, bioenergy plant

developers and operators, and the end users are the major parties involved in the supply

chain logistics of biomass (Adams et al., 2011).

The biomass supply chain logistics differs widely from the traditional supply chain

logistics in several manner such as seasonal availability, variation of demand and biomass

material, and the intermittent energy production pattern (Mafakheri & Nasiri, 2014). All of

these factors have a major implication in the transport and storage of biomass (Fig.2.1).

2.1.1. Biomass Logistics Modeling

The models and methods developed for predicting and decision making of various

aspects of the biomass logistics (Fig.2.1) are reviewed in this section.
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Figure 2.1. Major operation components of a biomass supply chain (Mafakheri and Nasiri,
2014).

2.1.1.1. Biomass harvest and bale aggregation

Harvest scheduling models were developed by considering the spatial restriction

based on the biomass productivity and land availability (Murray, 1999). Two separate

models known as the ‘Unit Restriction Model’ (URM) and ‘Area Restriction Model’ (ARM)

were proposed. In the case of URM, scheduling of the harvest is performed in such a way

that no two adjacent field harvest blocks are selected at the same time, while in an ARM,

each block can be scheduled to harvest only once during each planning period. An integer

programming model was developed to analyze true or false decision for the harvest areas

(Gunnarsson et al., 2004). The decision of the harvest for a particular land is made using

this model. This decision is made based on the several parameters such as bioenergy

demand and biomass availability. Several cost minimization models were also developed

using linear and mixed-integer programs for decisions on land allocation and scheduling

the biomass harvest (Martins et al., 2005; Gunn & Richards, 2005; Goycoolea et al., 2005;

Constantino et al., 2008). A model was proposed to evaluate the soil and water contents of

the aggregated cotton stalks, over the period of two years, from the various field located in

Greece (Gemtos & Tsiricoglou, 1999). The model was developed to determine the

influence of the water and soil parameters on the biomass aggregation costs. Based on the

biomass availability and seasonality, another mixed-integer programming model was
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proposed with an objective to minimize the total biomass supply chain cost (S. D. Ekşioğlu

et al., 2009). This model identifies a number of factors such as number, size, location of

aggregation facility, biomass availability, and the amount of biomass that has been

processed for logistic operations. Considering the demand of bio-refinery and biomass

delivery, a discrete-event model to predict the number and size of the equipment required

to meet the harvest rate (Sokhansanj et al., 2006).

2.1.1.2. Pre-treatment and storage

Conversion of biomass into the denser form using chemical, mechanical, or a

combination of both is called as pre-treatment. This denser form of conversion of biomass

not only increases the rate of energy conversion but also reduces the cost associated with

the handling, storage, and transport facilitates (Kumar & Sokhansanj, 2007; Larson et al.,

2010). The biomass energy industry adopts some of the processes such as drying,

carbonization, shredding, pelletizing, and torrefaction as the pre-treatment methods (Uslu

et al., 2008). Torrefaction is the process of reducing the moisture content of biomass in the

presence of heat without oxygen. It was observed that the combination of the processes,

torrefaction and pelletization reduced the logistic cost of biomass, and also improved the

energy efficiency at the bio-refinery plants. Special pre-treatment processes such as

pyrolysis and hydrolysis are required for the production of liquid bio-fuels from the

lignocellulosic biomass (McKendry, 2002). A GIS model was developed to evaluate the

carbon emission and cost efficiency for a pre-treatment facility location under various

scenarios (Chiueh et al., 2012). A model was developed based on the decentralization of

pre-treatment processes with several small units of pre-treatment facilities, which

minimizes the transportation and storage cost (Carolan et al., 2007). However, certain
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biomass does not require any pre-processing treatment, since the moisture content in

certain biomass is considered as the quality parameter in producing pellets (Lehtikangas,

2001).

The transportation availability plays a major role in choosing a site for the biomass

storage, hence on-site storage of biomass is recommended to reduce the delivery cost of the

biomass to the storage facility (Huisman et al., 1997; Allen et al., 1998). Using a dynamic

discrete simulation, the options of the intermediate storage location between the field and

bio-energy plant has been well designed (Nilsson & Hansson, 2001), with the same

objective, models using linear programming was also developed for energy wood and

cotton stalk logistics respectively (Kanzian et al., 2009; Tatsiopoulos & Tolis, 2003). The

influence of the intermediate biomass storage system has also been captured by another

study using the mixed-integer optimization model (S. Ekşioğlu et al., 2010). This model

was created as a decision-making tool for the bioenergy investors to estimate the real cost

of logistics as it extensively includes details such as the size and capacity of the plant, the

shipment size, and prices. Locating the biomass storage facility next to the bioenergy plant

was also considered as one of the viable options with an intention to reduce the transport

cost from the storage facility to the plant (Papapostolou et al., 2011). Considering the cost

associated with the storage expansion and operation, another linear programming model

was proposed (Cundiff et al., 1997). This model also includes the uncertain weather

conditions as one of the parameters. On the basis of the model used in the process industry,

which operates to generate products in batches, an optimization framework was adopted

including the inventories and storage activities for the entire supply chain process (Dunnett

et al., 2007). Predicting the location of biomass storage was done using an integer linear
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programming method, while considering the quantity and type of mode available for

transportation (Zhu et al., 2011).

2.1.2. Biomass Transport Models

Linear programming models were developed considering various parameters such

as availability of biomass, transportation, and energy demand (Shabani & Sowlati, 2013).

Model was developed to evaluate the minimal cost for the transport of biomass in 11 states

of the United States using Geographic Information System (GIS) (Graham et al., 2000).

The study also additionally considered the environment impact in the process of

transporting biomass. On similar lines, another GIS model was developed exclusively for

the woody biomass with an objective to reduce the transportation network cost (Frombo et

al., 2009). Also, optimization of forest fuels logistics to the heating plants was studied,

forest fuels are slightly different from the woody biomass, as the bigger wooden logs are

chipped before being transported to the heating facility (Flisberg et al., 2012). Hence, a

model was developed to predict the location and the best technology for the chipping

operation. Heuristic network model was used to compare the transport cost in the

centralized and decentralized model of biomass supply chain (Gronalt & Rauch, 2007).

A logistic system that is based on the satellite storage location for intermediate storage and

loading of the round bales before transporation to the bio-energy conversion plant was

designed (Judd et al., 2012). It further recommended that biomass densification was not

required for the location which is less than 81 km from the source. Evaluation of transport

options for moving the straws from the agricultural fields to an intermediate storage

location before transporting to the heating farms was done using a dynamic simulation

model (Nilsson, 1999). A concept namely ‘Regional Biomass Processing Deposits’ was

10



studied which strategically distributed the facilities that collects, processes, and densifies

the biomass products (Eranki et al., 2011). This process recommends densification to

reduce the size of the biomass for convenient transportation. Another study on determining

the environmental impact of transporting the biomass from Sweden to Holland was

developed using life cycle analysis method (Forsberg, 2000). Using a discrete event model

simulation, comparison between two policies was done to evaluate the one that contributes

to the least logistic cost (Ravula et al., 2008a).

2.2. Infield Biomass Bale Logistics

It was observed that many studies have been conducted and models developed to

optimize the cost of logistics on road. It is also necessary to understand that the efficient

infield logistics of biomass in the field during bale aggregation, in terms of labor, operation

time, equipment used, fuel cost, and other resources, can greatly influence the cost of

biomass logistics as whole. Limited studies have been conducted in this area of infield

biomass bale aggregation logistics which are as follows. The effect of formation of stacks

on the total logistic distance was studied through simulation (Igathinathane et al., 2016).

The study found that formation of more stacks on the field and increasing the number of

bales transported per trip from the stack location to the field outlet, significantly reduced

the logistic distance. Several aggregation strategies involving the equipment were

modeled. These models were then evaluated to derive the best strategy which contributed

to less aggregation logistic distance (Igathinathane et al., 2014). Logistics analysis

conducted in this study showed that great savings were achieved on fuel, operation time,

and hence the cost, with increased number of bales transported per trip and by utilizing

additional equipment.
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2.3. Equipment Track Impacted Field Area

Soil compaction in the field is a global issue and is reported from many places such

as Australia (Hamza & Anderson, 2001), Azerbaijan (Aliev, 2001), China (Suhayda et al.,

1997), Ethiopia (Mwendera & Saleem, 1997), Japan (Ohtomo & Tan, 2001), and Russia

(Bondarev & Kuznetsova, 1999). It is a major threat to farmers as soil compaction reduces

the soil and plant health, which significantly influences the yield. Compaction in the fields

is mainly caused by the vehicular traffic during various operations such as fertilizer

spraying, harvesting, baling, and during a aggregation of bales. A lot of researches have

been conducted to study the effects and causes of soil compaction. Compaction caused by

the field equipment are considered as the major reason. Compaction studies generated by

the equipment such as harvester and tractor are available in plenty, but there are none

available which studies the effect of compaction caused by the equipment during bale

aggregation process, which is quite an intensive process that cannot be performed without

farm equipment.

The available studies on the effect of soil compaction and the impact of the

equipment, harvester and tractor are as follows. A study shows that globally about

68 million hectares of land are being affected due to equipment traffic in the field (Poesse,

1992). The mineralization of the compounds such as soil organic nitrogen and carbon

(De Neve & Hofman, 2000), and the carbon dioxide concentration (Conlin & Driessche,

2000) present in the soil is greatly affected by soil compaction. Prolonged soil compaction

might cause soil degradation, which is an irreversible process, and hence it is very serious

environmental issue (Mc Garry & Sharp, 2003). The soil structure degradation causes less

water infiltration and air penetration which leads to weak yield in the field. Most of the soil
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compaction happens where intensive agriculture is practiced, and where an external load

such as farm equipment or livestock generates a considerable damage to the soil structure

(Defossez & Richard, 2002). The soils are generally compacted more in the areas near the

edges, where the equipment turns occur (Cyganow & Kloczkow, 2001). Structural

degradation in the soil caused by the equipment should be limited to certain soil layers that

can be easily reclaimed using some minimal tillage operations (Gysi et al., 1999). The

pressure applied by the equipment on the field is much beyond the limits that are

considered safe (Hetz, 2001). Compaction can be significantly reduced if an equipment

with multiple purposes in used on the field (Aliev, 2001). The soil bulk density greatly

influences the soil compaction, and the load and inflation pressure of the tyres causes

increased soil bulk density (Horn et al., 1994). However, operating equipment with

low-pressure tyres sginficantly decreased the soil compaction and increased the yield

productivity (Ridge, 2002). Soil deformation is greatly influenced by the number of passes

of the equipment, and increase in the equipment passes can increase the soil degradation

(Bakker & Davis, 1995). The number of passes leads to the subsoil compaction and the

effects exists for certain long time (Balbuena et al., 2000).

2.4. Present Study on Bale Aggregation and Equipment Track Impacted Area

Application of a variety of equipment, such as harvester, baler, tractor, and

automatic bale picker (ABP) in field operations, including infield biomass bale aggregation

logistics, the best bale stack location method, and equipment track impacted areas

involving equipment turn paths using simulation approach were already reported

(Subhashree et al., 2017; Subhashree & Igathinathane, 2017b, 2017a). Details of these

studies are presented in the form of chapters subsequently.

13



3. PAPER 1 - OPTIMIZED LOCATION OF BIOMASS BALES

STACK FOR EFFICIENT LOGISTICS *

3.1. Abstract

Producers often aggregate bales into stacks before transporting these bales to an

outlet for consumption or delivery to industrial applications. Efficiency improvement in this

infield bale logistics will be beneficial. To address this, an R simulation program involving

five methods for field stack location, namely field middle, middle data range, centroid,

geometric median, and medoid, as well as origin, a direct aggregation method to outlet,

were developed. These methods were evaluated against field areas, ranging from

0.5–520 ha, for infield bale logistics (aggregation, transport, and total) using Euclidean

distances. The simulation used several input field variables, laid out bales based on yield

variation, determined optimized bale stack locations of methods, evaluated distances of

aggregation to the stack, transport from the stack to the outlet, and total logistics. The

origin method used 1-bale handling tractor for direct aggregation to the outlet, while

others formed the bale stacks and transported bales to the outlet using 6-bales/trip

equipment. Results indicated for aggregation showed that geometric median was the best,

followed by field middle or centroid, middle data range, medoid, and finally origin.

Methods aggregation were about 76 % and transport about 24 % of the total (for <2 ha);

* Paper 1 material was already published in the journal Biomass and Bioenergy. Authors: Subhashree, S. N.,
Igathinathane, C., Bora, G. C., Ripplinger, D., and Backer, L. Title: Optimized location of biomass bales stack
for efficient logistics. Volume: 96. Page numbers: 130-141. DOI: http://dx.doi.org/10.1016/j.biombioe.
2016.11.007. Subhashree conducted the experiments, developed the simulation, analyzed and visualized
data, and wrote the paper. The co-authors have assisted in all aspects of the paper.
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and total distance were about 65 % of the origin. ANOVA, excluding origin, indicated that

all methods were not significantly different (p < .05) for the areas studied. The ‘field

middle’ was recommended as an easy and practical method for locating field stacks. Fitted

power models described well (R2 > 0.99) all the logistics distances.

3.2. Introduction

Infield logistics of collecting and moving biomass to a location suitable for further

use represents a substantial field operation. Transport of biomass from the point of origin

to the point of consumption was conceptually considered as a single logistics operation.

However, a careful examination can reveal that the infield biomass logistics is a

time-consuming operation involving several components. Biomass after harvest is usually

made in a compacted form, such as bales and are initially left on the field. In a biomass

supply chain, the compacted biomass (e.g., bales) has assumed to be transported to the

final destination or grouped at a field edge or collected with self-loading wagons for off-site

transport (Perlack & Turhollow, 2002). The aggregated bales are transported to a field

outlet, such as a corner or edge of the field before moved to the point of final usage (e.g.,

biorefinery) or consumption (e.g., cattle feedlot). This logistics operation of land clearance

for the next crop is essential for efficient crop production.

Producers often aggregate bales into several stacks in the field before transporting

the bales to an outlet. The desire for forming bale stacks in the field is to utilize efficient

multiple bale-hauling equipment from the stack to the outlet. Other motivations for the

bale stacks formation that will lead to efficient logistics include (i) clearing the field for

next crop, (ii) smoother mechanical crop management operations without bales hindrance,

(iii) short window between harvest and next planting schedule, and (iv) field conditions
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may not allow for driving equipment. Thus, given the advantageous role of bale stacks in

the infield bale logistics, it will be pertinent to investigate “where” to locate the bale stack

so that the logistics will be efficient. Therefore, a study that focuses on the strategic

location of the bale stacks, so that the bale aggregation and subsequent transport distances

will be minimized, would improve the infield logistics efficiency.

Considering bales as points on a 2D plane, several mathematical grouping methods

can be employed to simulate the aggregation of the bales into stacks. These methods of

locating bale stack will lead to different locations in the field, based on their algorithm.

Using these methods, the optimum bale stack location can be determined that gave the

least aggregation or total distances, and the methods can be ranked based on these

distances. Thus, it was hypothesized that the bale stack location methods will be

significantly different from one another, from the viewpoint of infield logistics distances.

Several biomass logistics based studies addressing the biomass logistics in general,

supply of biomass to the biorefinery, economics of biomass logistics, and patents related to

bale forming and handling machinery were available. Studies involving biomass bale

logistics include development of integrated biomass supply and logistics (IBSAL) model

and its implementation for feedstock supply chain (Sokhansanj et al., 2006; Kumar &

Sokhansanj, 2007); development of a MATLAB training tool on the timing and handling

and storing round bales with a self-loading wagon (Grisso et al., 2007); biomass bales

transport system based on cotton logistics as model and explored the difference and

application (Ravula et al., 2008b); herbaceous biomass bales transportation cost

optimization (Cundiff & Grisso, 2008); large biomass modules logistics system to maximize

legal highway loads and to minimize feedstock cost based on IBSAL (An & Searcy, 2012);
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hybrid genetic algorithm solution for the efficient bale collection routes with a 15- and

35-bales wagon (Gracia et al., 2013); and simulation of the bales layout mimicking the

baler operation, and evaluation of several infield biomass bales aggregation strategies

(Igathinathane et al., 2014).

These studies demonstrate that biomass logistics simulation is a possible way to

study the infield logistics and the various components of the supply chain from field to

factory including the feedstock supply economics. However, literature on the infield bale

logistics involving bale stacks were highly limited. Recently, a bale stack logistics study

considered the bale collection logistics effect on the number of subfield bale stacks,

locations of bale stack and field outlet, and the number of bales/trip in transport

(Igathinathane et al., 2016). This study concluded that the best bale stacks location was the

subfield middle compared to mid-edges or corners. Given the random layout of bales, it was

expected that there could be better locations for the bale stack other than the field middle.

Thus, in the present study, further exploration was performed around the field middle to

obtain the optimum bale stack location. Several mathematical grouping strategies to obtain

different bale stack locations using simulation, and the effect of field variables involved in

the infield bale logistics with statistical analysis are proposed to be evaluated in this study.

The specific objectives of the study on the optimized bale stack location are:

(i) simulate different bale aggregation methods that represent bale stack locations after

simulating the layout of bales in the field from various field operation inputs; (ii) evaluate

the aggregation, transport, and total infield bale logistics distances of different methods;

(iii) determine the effect of area or number of bales on logistics distances and compare
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methods; and (iv) develop regression models for infield bale logistics distance as a function

of area.

3.3. Materials and Methods

3.3.1. Simulation of Bales Layout on Field

In this study, the bale logistics simulation, data analysis, and data visualization

codes were developed using the statistical analysis software R (R Core Team, 2017).

‘RStudio,’ the integrated development environment that ran R, was used in this study. The

bale layout algorithm (Igathinathane et al., 2014), which mimicked the baling equipment

actions of bale formation and layout on the field (Fig.3.1A), was used in the simulation.

A

B
Start

Read inputs related
to bales layout and
stacks formation

Evaluate number of bales
and their layout (xi, yi)

Determine bale stack
locations for the methods

Evaluate aggregation and
transportation distances

Determine MD and TSP
distances of methods

Perform ANOVA and
develop regression models

using scenario results
End

Figure 3.1. (A) Formed bales on the field ready to be aggregated into bale stacks, and
(B) flow diagram of process simulation of bale stack aggregation methods, infield transport
logistics, and statistical analysis.

This algorithm simulated (1) collection of required quantity of biomass that go into

the formation of a bale, (2) establishes the “collection length” of the windrow for a bale,

(3) lays out the bale and records its coordinates, (4) continues the baling operation after
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turning at the field edge and keeps accumulating the biomass in the collection length for

the next bale, (5) variation of biomass yield through variation factor limit, and random

number generation within this limit, and (6) accounted for various input factors, such as

field area, length/width ratio, swath of harvester, biomass yield, yield variation, and bale

mass. The output of this algorithm will be the total number of bales and their coordinate

locations (x i, yi) on the field. This Java-based algorithm was re-coded in R to simulate the

bales layout on the field, along with simulation of different bale stack location methods.

3.3.2. Bales Stack Formation and Transport

Once the bales layout was generated based on the various inputs to simulate

different crops and field sizes, the bales need to be aggregated into field stacks. This bale

stack formation makes the movement of bales from the stack to the outlet more efficient

during transport. This was because the aggregation can handle only a few bales (≤3) using

a bale loader (tractor attached to bale grapple or spear) compared to wagons/trucks that

can handle multiple bales (≤32) during transport. In this study, it was assumed that 1 bale

was handled in aggregation (e.g., tractor with grapple) and 6 bales in transport (e.g., open

trailer) to represent the most basic equipment available in the field. It was also recognized

that with the latest equipment, it was possible to handle multiple bales during aggregation

(e.g., advanced automatic bale picker) and increase the number of bales (≥6) during

transport. The lower left corner (origin) of the field was assumed to serve as the outlet. It

was also assumed that the distances involved in aggregation and transport were obtained

through linear distance connecting the bales and the stack location coordinates, and that

between the stack and the outlet, respectively.
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3.3.3. Process Simulation and Parameters Considered

The processes involved in determining the efficient location of bale stack from the

bales layout along with analysis and visualization in the developed program are presented

in the form of a flowchart (Fig.3.1B). Several inputs can be varied to accommodate

different scenarios to be studied. Areas representing actual field areas in the form of

fractional parcels of a “section” of land (259 ha) were considered. Thus, for the purpose of

primary analysis, the areas in hectares used in the simulation were 0.41, 0.51, 1.01, 2.02,

4.05, 8.09, 16.19, 32.38, 64.75, 129.5, and 259 ha. Furthermore, several areas at finer

intervals (2 ha) from 0.5 to 520 ha were used in the statistical analysis. The other

parameter considered in the simulation study were: length by width ratio of 1.0; biomass

yield per hectare of 5 Mg/ha; harvester swath of 6 m; bale mass of 600 kg; percentage

variation of biomass yield of 5 %, 7 %, and 10 %; number of bales moved during

aggregation/trip was 1; number of bales moved during transport/trip was 6; and the

random seed arbitrarily chosen and used for random number generation in R that was

2015. Three simulated replications are derived from the biomass yield percentage

variation (5 %–10 %).

3.3.4. Optimum Bale Stack Location Methodologies

Optimum location is the most favorable spot on the field for stacking the bales so

that the total aggregation distance is the least. Many bale grouping/clustering

(aggregation) methods based on mathematical techniques of grouping points that are

distributed on a two-dimensional plane were considered. These geometrical points used in

the grouping were replaced by the layout of bales (Sec. 3.3.1), and mathematical

techniques were applied. Various methods selected for this study were field midpoint,
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middle data range, centroid, geometric median, and medoid (Fig.3.2). The hypothesis to

be tested was the aggregation or total distances of the methods will be significantly

different from one another, and an optimized method will emerge. Direct aggregation of

bales to the field outlet was also considered as one of the methods called ‘origin.’ Details of

these six methods are given next.
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Figure 3.2. Bale aggregation methods studied are illustrated with a small field area
(0.8 ha) with a limited number of bales (n = 5).
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3.3.4.1. Field midpoint

Field midpoint was the simplest method of all. This represented a constant physical

midpoint of the field that was based on field dimensions, and was not affected by the bales

layout (Fig.3.2). It is easy to locate the midpoint of the field by simply dividing the length

and width dimensions by two. Midpoint of a square or rectangular field can also be found

out using the midpoints or point of intersection of diagonals. In the simulation, the length

and width of the field were calculated from its area and the aspect ratio (length/width).

The x-axis represents the width of the field and y-axis the length. Thus, the field midpoint

x- and y-coordinates were calculated as:

Length (m)=
Æ

10 000×Area (ha)× Length/Width (3.1)

Width (m)= Area/Length (3.2)

Field midpoint=
�

Width
2

,
Length

2

�

(3.3)

3.3.4.2. Middle data range of bale coordinates

Middle data range of bale coordinates is the number that separated the data set’s

upper half from the lower (Fig.3.2). From the bale coordinates (x i, yi), which were stored

as one-dimensional vectors, the minimum and maximum values of each vector were

obtained using the R’s ‘min()’ and ‘max()’ standard functions. Therefore, the middle value

of the bale coordinates was obtained as:

Middle data range=
�

min(x i) +max(x i)
2

,
min(yi) +max(yi)

2

�

(3.4)
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where, x i and yi are the x- and y-coordinate vectors of the bales layout, respectively.

3.3.4.3. Centroid of bale coordinates

Centroid of an area is similar to the center of mass, center of gravity of a body, or

barycenter, which is the point at which the whole body can be balanced. Centroid of a

plane is also known as its ‘geometric center.’ Similar to the mean, the location of the

centroid minimizes the weighted sum of generalized squared Euclidean distances from

vector to any points in the space (Abdi, 2009). Applying this concept to a set of points in a

plane, the centroid represents the mean position of all the points both in x and y directions

(Fig.3.2). The centroid was determined using R’s ‘mean()’ standard function, and was

expressed with usual notations as:

Centroid=

�

1
n

n
∑

i=1

x i,
1
n

n
∑

i=1

yi

�

(3.5)

where, n is the total number of bales in the field.

3.3.4.4. Geometric median of bale coordinates

Geometric median is similar to median, however it is used to compute median for

multivariate data and multidimensional spaces. Geometric median of points generated

randomly in the X-Y plane is the point from which the sum of Euclidean distances of all the

randomly generated points is the least (Fig.3.2). Thus, by definition, the geometric median

will be the best location for the bale stack. However, it will be useful to statistically

compare this method with other simpler methods. There were no explicit formulae for

geometric median determination, but iterative process could be used. Theoretically, for a

given set of m points x1, x2, . . . , xm with each x i ∈ Rn, the geometric median was defined as:
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Geometric median= argmin
y∈Rn

m
∑

i=1

‖x i − y‖2 (3.6)

The ‘argmin’ of Eq.(3.6) means the value of the argument y which minimizes the

sum. In this case, it was the point y from where the sum of all Euclidean distances to the

x i ’s was minimum. Using the R package ‘pracma,’ the geometric median of random points

in the two-dimensional space was calculated. This package solved the task by applying an

iterative process known as the Weisfield’s algorithm (Weiszfeld & Plastria, 2009). This

algorithm defined a set of weights that were inversely proportional to the distances from

the current estimate of the samples; and created a new estimate that was the weighted

average of the samples according to these weights.

3.3.4.5. Medoid of bale coordinates

Medoid is defined as a representative object of a data set or a cluster with a data set

whose average dissimilarity to all the objects in the cluster is minimal. It was more robust

because it minimized the sum of dissimilarities instead of the sum of squared Euclidean

distances. The medoid is similar to mean or centroid, but it always belongs to a member of

a data set (Fig.3.2), unlike the other methods studied. Cluster analysis is required to find

the medoid of the X-Y plane. Clustering is the process of grouping data objects into a set of

disjoint classes, called clusters. The objects within a class have high similarity to each other

while objects in separate classes are more dissimilar (Jiang et al., 2004).

The medoid was calculated using the algorithm called partitioning around medoids

(PAM) with the R package ‘cluster’ (Maechler et al., 2015; Reynolds et al., 2006). For

bale aggregation, the medoid was evaluated by setting the number of clusters equal to one.

The evaluated medoid coordinates coincide with one of the bale coordinates while in the
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other methods it may be a point in the field. This means it was easy to mark the medoid on

the field, which was nothing but identifying a particular bale (Fig.3.2).

3.3.4.6. Field origin

Origin is the basic and the most simple method where all bales are directly

aggregated to the final outlet. It is also the method where no bale stacks are involved in the

bale collection. In this method, only bale loader was used in aggregation and bales were

directly collected to the outlet; hence, will not have the transport component and the

aggregation and total logistics were the same. As the loaders were used in the direct

collection of the origin method, and with one bale handling assumption, the logistics

distances tend to be the greatest. The origin method can serve as the ‘reference method’ to

compare the other methods.

3.3.5. Aggregation to Stack Location or to Outlet

The aggregation distance determination involved the sum of Euclidean distances of

all the bales (x i, yi) to the point of interest (e.g., methods bale stack location, origin). The

point of interest with methods were the different bale stack locations coordinates (xm, ym),

and for the origin method this was the origin (0, 0). Therefore, the aggregation distances

of the methods and that of origin are:

Aggregation to stack=
n
∑

i=1

Æ

(x i − xm)2 + (yi − ym)2 (3.7)

Aggregation to origin=
n
∑

i=1

Æ

(x i − 0)2 + (yi − 0)2 (3.8)

Only the direct single distance connecting the bales location to the point of interest

as described through Eqs.(3.7)-(3.8) was considered in the analysis. However, for practical
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operation that involved to-and-fro movement of the equipment, this distance should

be doubled.

3.3.6. Bale Transport to the Outlet

The stacked bales at the optimum locations, based on different methods other than

origin, have to be transported to the outlet. The lower-left corner of the field was

considered as the outlet in this study, and it coincided with the origin of the field. It was

assumed that 6-bales/trip were transported using a bale wagon/truck from the stack

location. The total transport distance can be obtained from the constant distance between

the bale stack location and the origin times the whole number of 6 bales-trips (N6_bales) to

include all the bales of the stack. The transport distances determined were similar to the

aggregation process (Eqs.(3.7)-(3.8)), but they involved simply the bale stack location of

the five methods and the outlet (0, 0) as:

Transport to outlet= N6_bales ×
Æ

(xm − 0)2 + (ym − 0)2 (3.9)

The collection equipment for transporting round bales includes bale loaders (tractor

with grapple; also used in aggregation), and bale wagons/trucks. The different types of

bale loaders can handle 1, 2, or 3 bales. Based on the design and capacity, the bale wagons

can transport 6, 12, 26, 30, 32 or more bales. There are also other advanced automatic

bales pickers that combine the operations of bales loader and wagon, and capacities of 6,

10, and 14 bales (Igathinathane et al., 2014). These bale pickers can also be used for

aggregation, but their application was not considered in the study.
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3.3.7. Comparison of Bale Stack Location Methods

The distribution of the bale stack locations from the different methods in the X-Y

plane, as it varies with different field areas, is a measure of the variations produced by

these methods. One way of evaluating the distribution is by measuring the closed

polygonal distance of the stack locations for the five methods. This distance can be

evaluated by simply connecting the distances in the order of the methods and termed

‘methods distance’ (MD) or finding the least distance of a unique polygonal path following

the ‘traveling salesperson’ (TSP) technique (Hahsler & Hornik, 2007).

The MD was calculated by adding the distance among various stack locations in the

order of the methods used in the analysis, which was arbitrary. The TSP distance was

calculated by using the R package ‘TSP’ (Hahsler & Hornik, 2015). This package deals with

Euclidean TSP problem of traversing each point once with the least possible route and

solves the problem from the set of points. It is expected that the TSP distance will be

smaller than the MD. When the bales locations from different methods converge, as

affected by the area of the field, the MD and TSP values will reduce and signify that the

methods are not different from one another and vice versa. Therefore, MD and TSP

distances serve as measures to quantify the variation of bale stack locations generated by

different methods and compare them.

3.3.8. Statistical Analysis

Apart from simulation model development (Fig.3.1B), R (R Core Team, 2017) was

also used for statistical analysis and results visualization. The one-way ANOVA was carried

out to test the significant difference between the means of two or more aggregation

methods studied. In the ANOVA, the ‘origin’ method was not considered as it was different
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and no bale stack was produced in the field before transport to the outlet. Aggregation and

total logistics (aggregation + transport) were considered as dependent variables. Statistical

significance at α of 0.05 and 0.001 was considered. Based on the results, a practical

method will be selected and further analysis, such as correlation and regression models will

be developed using R’s ‘cor()’ and ‘lm()’ commands, respectively. Pearson correlation

between area and the logistics distances were evaluated to understand the association of

these variables. Suitable regression models were developed with logistics distances as the

dependent and field area as the independent variables. The model style was selected by

observing the plot diagnostics (e.g., residuals). For visualization and presentation of

graphical results, R packages like ‘base’ and ‘ggplot2’ were used.

3.3.9. Field Shape Effect on Bale Logistics

The bale stack location methods described thus far considered only square and

rectangular field shapes (Fig.3.3). In U.S. land surveying, it is common to delineate parcels

of farmlands in terms of square “sections” (259 ha) to enable mechanized agriculture.

Therefore, most of the field shapes are square or rectangular, as they were derived usually

by division from these standard sections of land. However, some of the fields tend to be of

other shapes as well, such as circular (pivot-irrigated fields) and other polygonal shapes

due to existing boundaries of the land holdings in the U.S. and other parts of the world.

The cultivation practices (e.g., planting, spraying, harvesting), most of the times

follow a concentric pattern based on the field shapes (e.g., circular/spiral in pivot-irrigated

fields). In such cases, the bale layout simulation for square and rectangular fields outlined

earlier (Sec. 3.3.1) will not work and new specific simulation algorithms should be

developed, and this may require a future study. However, once the coordinates of bales
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layout for different shapes were obtained, the bale stack locations methods and other other

analysis described above (Fig.3.1B) will be equally applicable.

3.4. Results and Discussion

3.4.1. Bale Stack Location Methods Distribution

The hypothesis of different stack location from methods lead to significantly

different results can be visualized by plotting their locations among the bales layout. To

illustrate the various bale stack locations generated by the methods, a small field of 0.8 ha

that made only 5 (600 kg) bales was plotted to show the extent of the field (Fig.3.2).

The field midpoint (blue cross) was a fixed location based on the field dimensions

while the other methods were based on the bales layout data. It can be seen that the

centroid, middle data, and geometric mean methods locations were on the field between

the bale locations (green circles), but the medoid coincided with the third bale (from left)

location (Fig.3.2). Given the layout of these bales, the geometric median (brown circle)

was the best location to aggregate the bales into a stack. However, the middle data (pink

circle) and centroid (blue circle) methods were not much separated from the geometric

median. The field outlet (gray diamond), which is the left bottom field corner, is the origin

and to where all the bales will be finally transported. It was possible to have the outlet

anywhere along the boundary of the field, but the origin was considered in this study,

which was equivalent to any other three corners of the field.

To visualize the bale stack locations and their distribution in the field, a ‘section’

(259 ha) area was considered in the background and four field areas of 32.5, 65, 130, and

259 ha were overlaid (Fig.3.3), unlike the zoomed-in view of an exclusive small field

(Fig.3.2). This plot indicates that all the methods’ stack locations converge and methods
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Figure 3.3. Bales layout and bale aggregation methods location for different field areas
overlaid in a section area of land. Simulation data: biomass yield/ha = 5 Mg; bale mass
= 600 kg; harvester swath = 6 m; aspect ratio = 1.0 and 0.5; random variation in biomass
yield = 10 %; and random number seed used = 2015.
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were indistinguishable, irrespective of the areas (32.5 through 259 ha) and the shape

(square and rectangular) tested. This cursory observation indicated that the alternative

hypothesis, which implied that all the methods were statistically similar, was true.

However, through rigorous statistical analysis, the correct variation will be revealed.

3.4.2. Optimized Bale Stack Location Methods Results

Bale stack aggregation methods generated different locations with respect to several

field areas considered. These locations produced the associated logistics distances. The

logistics distances and the distribution of stack locations evaluated through MD and TSP

were determined and presented (Table3.1). The origin method had the highest

aggregation among all methods and areas, whereas the other methods’ aggregation

distances were different and they did not vary much from one another because of

convergence of locations (Fig.3.3). As the origin method directly collected all the bales to

the outlet during the aggregation, the transport component was not present (Table3.1).

However, the origin method was not as efficient as the other methods, because only single

bale was handled each time that increased the logistics distance.

Table 3.1. Methods of optimum bale stack locations and their logistics distances and
methods combined distances.

Area (ha) Number Methods Aggregation Transport Total MD† TSP‡

[ac] of bales (km) (km) (km) (km) (km)

0.41 3 Origin 0.196 0 0.196 0.070 0.045
[1] Field middle 0.085 0.045 0.130

Middle data range 0.070 0.061 0.131
Centroid 0.068 0.062 0.130
Geometric median 0.065 0.064 0.129
Medoid 0.068 0.075 0.143

continued . . .
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Table 3.1 Methods of optimum bale stack locations and their logistics distances and
methods combined distances – (continued).

Area (ha) Number Methods Aggregation Transport Total MD† TSP‡

[ac] of bales (km) (km) (km) (km) (km)

0.51 4 Origin 0.240 0 0.240 0.054 0.048
[1.25] Field middle 0.107 0.050 0.158

Middle data range 0.108 0.052 0.160
Centroid 0.102 0.057 0.159
Geometric median 0.099 0.067 0.166
Medoid 0.101 0.072 0.172

1.01 8 Origin 0.462 0 0.462 0.095 0.051
[2.5] Field middle 0.404 0.142 0.546

Middle data range 0.205 0.109 0.315
Centroid 0.206 0.114 0.320
Geometric median 0.205 0.109 0.314
Medoid 0.206 0.103 0.308

2.02 18 Origin 1.80 0 1.80 0.054 0.034
[5] Field middle 0.87 0.30 1.17

Middle data range 0.87 0.30 1.17
Centroid 0.86 0.31 1.17
Geometric median 0.86 0.31 1.18
Medoid 0.89 0.35 1.24

4.05 33 Origin 5.26 0 5.26 0.144 0.100
[10] Field middle 3.11 0.85 3.96

Middle data range 3.11 0.86 3.97
Centroid 3.11 0.86 3.97
Geometric median 3.11 0.88 3.99
Medoid 3.45 1.09 4.53

8.09 67 Origin 14.63 0 14.63 0.024 0.021
[20] Field middle 7.29 2.41 9.71

Middle data range 7.29 2.43 9.72
Centroid 7.29 2.43 9.72
Geometric median 7.28 2.45 9.73
Medoid 7.29 2.41 9.70

continued . . .
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Table 3.1 Methods of optimum bale stack locations and their logistics distances and
methods combined distances – (continued).

Area (ha) Number Methods Aggregation Transport Total MD† TSP‡

[ac] of bales (km) (km) (km) (km) (km)

16.19 133 Origin 40.67 0 40.67 0.074 0.072
[40] Field middle 20.28 6.54 26.82

Middle data range 20.29 6.61 26.89
Centroid 20.28 6.51 26.79
Geometric median 20.28 6.58 26.86
Medoid 20.52 6.88 27.39

32.38 270 Origin 117.89 0 117.89 0.060 0.052
[80] Field middle 58.92 18.11 77.03

Middle data range 58.92 18.22 77.14
Centroid 58.92 18.16 77.08
Geometric median 58.92 18.19 77.11
Medoid 59.18 18.11 77.29

64.75 540 Origin 333.12 0 333.12 0.049 0.043
[160] Field middle 166.52 51.21 217.73

Middle data range 166.53 51.41 217.93
Centroid 166.52 51.26 217.78
Geometric median 166.52 51.30 217.82
Medoid 166.81 51.23 218.05

129.5 1082 Origin 943.38 0 943.38 0.051 0.029
[320] Field middle 470.83 145.65 616.48

Middle data range 470.83 145.79 616.62
Centroid 470.83 145.91 616.74
Geometric median 470.83 145.83 616.66
Medoid 471.26 148.53 619.79

259 2163 Origin 2665.34 0 2665.34 0.028 0.027
[640] Field middle 1331.20 410.81 1742.01

Middle data range 1331.21 411.45 1742.66
Centroid 1331.19 411.07 1742.27
Geometric median 1331.19 411.25 1742.44
Medoid 1331.32 407.51 1738.83

continued . . .
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Table 3.1 Methods of optimum bale stack locations and their logistics distances and
methods combined distances – (continued).

Area (ha) Number Methods Aggregation Transport Total MD† TSP‡

[ac] of bales (km) (km) (km) (km) (km)

517 4324 Origin 7531.35 0 7531.35 0.022 0.020
[1280] Field middle 3765.75 1160.34 4926.09

Middle data range 3765.77 1160.95 4926.72
Centroid 3765.75 1160.51 4926.26
Geometric median 3765.75 1160.39 4926.15
Medoid 3765.86 1159.71 4925.57

† MD - Methods distance i.e. total polygonal distance of all methods taken in the selected order
‡ TSP - Traveling salesperson distance i.e. total polygonal distance of all methods following trav-
eling sales man technique; Origin was the outlet location where bales were finally transported;
and medoid was the aggregation method where it coincided on one of the field stacks but other
methods may not.

Among the other methods, the geometric median was the most efficient with the

lowest aggregation distance for all areas, and the reason being the very definition of this

method to produce the least grouping distance (Table3.1). Similarly, the least efficient

(areas ≥2.02 ha) was the medoid with the largest aggregation distance. The reason being

the medoid was restrictive and made to coincide with an existing bale location, which

might be away from the optimum location in the field. Field middle method closely

followed the best geometric median method, while the middle data range and centroid

methods also had a similar trend with no clear best.

The transport component was always lower than the aggregation because multiple

bales (6-bales/trip) were transported from the bale stack to the outlet (Table3.1). The

trend of total logistics distance (aggregation + transport) did not follow the similar trend

of aggregation, as the transport component was different for each method. For example,

the bale stack location closer to the outlet produced a smaller transport distance than

stacks away from the outlet. Thus, sometimes even though the geometric median produced
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the lowest aggregation distance, the total distance was always not the best. In general,

when the total distance was considered, all the methods had similar values, but the origin

was always significantly larger compared to the other methods.

3.4.3. Effect of Field Area on the Bale Stack Location Methods

Increased field area obviously produced more bales but in an overall sense, it did

not affect the ranking of the methods. It was evident from the area results (Fig.3.4): (i) all

logistics distances increased with area; (ii) origin method’s aggregation distances were

significantly higher (about twice) than the other methods; (iii) for the rest of the methods,

aggregation were similar; (iv) methods’ aggregation other than origin were about 76 % and

transport about 24 % of the total (for >2 ha); (v) the transport distances, however, were

about 32 % of aggregation or 24 % of total; (vi) with the multiple 6-bales transports, the

total distance of the methods were still significantly smaller (about 65 %) than the origin;

and (vii) no clear distinction was observed in the total distance among the methods other

than the origin. Overall, since a similar pattern emerged for all logistics distances (Fig.3.4),

it can be concluded that field areas or the number of bales did not affect the ranking of the

methods. This also indicated that any method other than the origin can be equally used.

3.4.4. Distribution of Bale Stack Location Methods

The distribution of the methods (excluding origin) were studied through MD and

TSP distances (Table3.1). The TSP distances were always smaller than the MD. Both these

values were quite small (MD ≤ 0.114 km and TSP ≤ 0.1 km) compared to the total

distance (0.13–4927 km) for the area range studied (0.41–517 ha). These low values of

the methods distribution (MD and TSP) indicated that there was no variation in the layout
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Figure 3.4. Aggregation, transport, and total logistics distances of different aggregation
methods studied as presented in Figure 3.3. The number of bales hauled per transport trip
was six.

distribution among the methods, irrespective of the area or number of bales, as earlier

observed (Fig.3.3).

A plot of these distributions with a series of areas from 0.5 to 520 ha at 2 ha

intervals helped further to explore any converging trend of these distributions (Fig.3.5).

Along with MD and TSP, the difference between the two allowed for easy comparison.
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The TSP was most often smaller than MD, but the difference was very small in most areas

as well.

The pattern of these distribution parameters did not show any convergence with the

increase in area. These variations, however, changed with different random number seeds

(e.g., 2016 and 2017; Fig.3.5). This result showed that there was no particular area where

the methods distances converge. The emergence of random variation or no trend again

confirms the non-convergence of the methods distribution. Thus, any method other than

origin can serve well and this observation is applicable to any area.

3.4.5. Statistical Analysis Results

The analysis was conducted using the one-way ANOVA, where the methods

(excluding origin) were tested for their significant difference based on field areas (0.5 to

520 ha at 2 ha intervals) and biomass yield variations (5 %, 7 %, and 10 %) produced the

replications. The ANOVA results are given in the form of a figure showing the significant

difference at p-levels of 0.05 and 0.01 for aggregation and total logistics distances

(Fig.3.6A).

The results showed that several areas (≤11.8 %) produced significant differences

among the methods, while the predominant area ranges were not for aggregation and total

logistics (Fig.3.6A). Of the 262 levels of areas studied, 7 (2.7 %) and 4 (1.5 %) areas were

significantly different for aggregation and 31 (11.8 %) and 12 (4.6 %) for total logistics at

p-levels of 0.05 and 0.01, respectively. No single area cutoff was found that divided the

methods to be significant. The results were obtained by a random seed of 2015, and the

results patterns were expected to be different with other seed values as observed earlier

(Fig.3.6A).
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Figure 3.6. (A) ANOVA of aggregation and total logistics as influenced by field area. Field
parameters used were similar to Figure 3.3. The presence of a bar represents a significant
difference among studied methods but origin, at that field area and level of significance
(α= 0.05). The total refers to the sum of aggregation and transport with 6-bales/trip.
(B) Fitted power models for logistics distances for the selected field middle method.
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3.4.6. Comparison of Geometric Median and Field Middle Methods

A further analysis was performed to exclusively compare the best geometric median

(GM) and simplest field middle (FM) methods closely considering 262 areas continuously

from 0.5 to 520 ha at an interval of 2 ha for windrow variations of 5 %–10 % (Table3.2).

The actual values of both methods were close, showing only a deviation of ≥±0.2 % GM

from FM for areas ≤4 ha with aggregation and ≤34 ha with total logistics distances, and no

deviations with larger areas (data not shown). By principle, the GM should yield the lowest

aggregation distances. It was found that GM was exclusively lower than FM for ≤ 85.5%,

and coincides with FM for about 14 %–21 % of cases, which resulted in ≤ 99.6 % cases

for GM≤FM.

Table 3.2. Comparison of field middle and geometric median logistics among various field
areas from 0.5 to 520 ha.

Windrow Aggregation (% cases) Total logistics (% cases)

variation (%) GM<FM GM≤FM Abs.GM:FM GM<FM GM>FM Abs.GM:FM
Dev. ≥0.2%† Dev. ≥0.2%†

5 78.2 99.2 1.5 44.3 55.7 3.4
7 81.7 99.6 1.1 46.6 53.4 3.8
10 85.5 99.2 0.8 58.4 41.2 3.8

† Percent of cases having absolute deviation of GM with respect to FM ≥0.2%; GM - Geometric
median; FM - Field middle. The total number of field areas considered continuously spaced at
2 ha = 262.

With the total logistics distances, GM was equally lower than FM in a reduced range

of 44 %–58 %, but will be greater than FM for 41 %–56 % (Table3.2). Even though in

aggregation GM was the most efficient, in total distance either GM or FM were equally

good, because the transport distance that affects the total logistics will be greater if the GM

location was away from the outlet compared to FM. Thus, it appears that both GM and FM
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were located towards the outlet equally leading to reduced total logistics distances.

Furthermore, the actual deviations between GM and FM (≥0.2 %) were very low, as the

number of cases was ≤1.5 % for aggregation and ≤3.8 % for total logistics distances. These

deviations were observed only in the lower ranges of field areas ≤4 ha and ≤34 ha for

aggregation and total logistics, respectively. In addition, a 1 % deviation or more was

observed only with 1 ha field area or less for both distances. Based on these results and

considering the simplicity, the FM can be readily recommended as the method for bale

stack location, as the FM was easy to delineate and practical to use.

The differences in strategies between the recent (Igathinathane et al., 2016) and the

present studies lies in the locating the field stacks, namely the former used directly the

mid-edges along the boundaries of the field, field corners, and field middle, but the latter

used the bale layout coordinates to arrive at several methods around the field middle to

determine the optimum location, but rest of the evaluation of bale logistics distances are

the same. The previous study (Igathinathane et al., 2016) indicated that formation of

stacks in the middle of the subfield compared to mid-edges or corners significantly reduced

the all logistics (aggregation, transport, and total) distances. While the present work

supporting the previous findings, it further indicates that unless the subfield areas are

≤1 ha the FM is the best location for the bale stacks. Based on the results, for smaller field

areas (≤1 ha), GM is the best location for aggregation, and the total logistics should be

decided according to the nearness of GM or FM with respect to the outlet.

3.4.7. Regression Models of Logistics Distances

Even though the aggregation distances of the FM were larger, especially with

smaller areas (≤1.01 ha) with fewer bales (≤8), the total distance was comparable to the
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other methods (Table3.1). For areas ≥2.02 ha, the difference of the total logistics distance

of FM ranged only from -0.34 % to 0.18 % with reference to the best method in each area.

Exclusive comparison between GM and FM (Table3.2) also supports this observation.

Similar differences were expected in the other intermediate areas comparing other

methods, but were not tested. Therefore, for practical use and simplicity, the FM method

was selected for further correlation analysis and regression model development. The

logistics distances (aggregation, transport, and total) with field areas incorporating the

biomass yield variation (0.5 to 520 ha→ 262 areas; 3 yield variations of 5 %, 7 %, and

10 %; 786 data points) were well correlated, and the Pearson’s correlation coefficients

are ≥0.989.

The basic plot of area versus logistics distances showed a power variation.

Therefore, the simplest linear model was found inadequate and the regression diagnostics

of residuals revealed a systematic pattern (parabolic). However, with logarithmic

transformation both for area and logistic distances, the linear variations were observed and

power models were developed (Fig.3.6B). The following models of logistics distances of

the FM method had excellent fits (R2 > 0.99):

Aggregation (km)= 0.325×Area (ha)1.497 (R2 > 0.99) (3.10)

Transport (km)= 0.108×Area (ha)1.483 (R2 > 0.99) (3.11)

Total (km)= 0.434×Area (ha)1.493 (R2 > 0.99) (3.12)

Residuals of these models did not show any systematic variation and the models

were acceptable. These models are easy to apply and estimate the logistics distances from
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the areas. Because the difference in the logistics distance of the other methods was

coinciding, a similar power model variations were expected as well with other methods.

The bale stack location methods can be extended to multiple bale stacks, wherein

the large field can be conceptually divided into smaller subfield units and the bales stacks

were made at each subfield as reported earlier (Igathinathane et al., 2016). Then the bales

of the multiple stacks can be transported as usual to the outlet. As the harvest usually takes

place for the entire field in a single stretch, the bale formation can be for the whole field,

but the stacks formation can be for the identified subfields. The outlets can also be located

anywhere along the field boundary (e.g., middle of width, middle of length) or even at the

center or other locations based on farmstead location, especially when existing

roads/pathways were available. With such alternate locations for the outlet, all the

logistics distances will be different and smaller, as the corner outlet was the farthest point

from the field middle. Future research work should address these multiple bale stacks,

locations of various outlets, other field shapes, use of automatic bale-picker for

aggregation, the economics involved, and their effect on the various bale stack location

methods in the infield bale logistics operations.

3.5. Conclusions

Five bale stack location methods, namely field middle, middle data range, centroid,

geometric median, and medoid, as well as a direct bale aggregation method to the outlet

were simulated and compared using a developed R-program. The geometric median

followed by field middle, middle data range, medoid, and finally origin were the best

method for bale stack location. Methods’ aggregation were about 76 % and transport about

24 % of the total (for >2 ha); and total distance were about 65 % of the ‘origin.’
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Distribution of the five bale stacking methods evaluated through ‘grouped methods

distance’ and ‘travel salesperson’ did not follow any pattern with field areas, which

indicated no convergence and meant any method can be applied equally. Even though

ANOVA indicated that several areas (≤11.8 %) produced significant differences among the

methods (p < 0.05), predominant area ranges (0.5–520 ha) were not different for

aggregation and total logistics excluding origin for the 6-bales/trip transport. Only 1 %

deviation or more was observed with field area ≤1 ha for both aggregation and total

logistics distances, when geometric median and field middle methods were exclusively

compared. Therefore, the ‘field middle’ was recommended as an easier and practical

method because its location can be readily obtained. All the logistics distances of field

middle method with 6-bales/trip were well described by power models (R2 > 0.99). These

logistics models can be used to predict the aggregation, transport, and total distances from

the field area of interest (0.5–520 ha).
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4. PAPER 2 - EQUIPMENT TRACK IMPACTED FIELD AREAS

DURING HARVESTING, BALING, AND INFIELD BALE

LOGISTICS *

4.1. Abstract

The intensity of the traffic caused by the farm equipment in mechanized agriculture

generates track impacted areas, which aggravate the soil compaction in the fields. To

evaluate the track impacted areas generated by farm equipment during bale aggregation

along with harvesting and baling, an R simulation program was developed to evaluate the

impacted field area and operational time of the equipment. Track impacted areas were

studied for ABP with several bales/trip (8–23 bales/trip) and areas (1–259 ha) were

compared with a control method, using a tractor that can handle 1 and 2 bale/trip. The

simulation used the strategy of collecting the “next-nearest” bale in the collection loop.

Distance traveled by equipment of various operation speeds and their respective track

widths (footprint) determined the track impacted areas under different scenarios. The

simulation evaluates the circular turning paths (for the harvester, baler, tractor, and ABP)

which represents the most practical approach than simper Euclidean paths. Curvilinear

method impacted areas, despite not statistically different (p ≥ 0.5) for the tractor, were

* Paper 2 is an extensively revised version of the paper presented at 2017 ASABE Annual International
Meeting in Spokane, Washington, July 16-19, 2017. Authors: Subhashree, S. N., and Igathinathane, C.
Title: Equipment Track Impacted Field Areas during Harvesting, Baling, and Infield Bale Logistics.
Paper number: 1700599. DOI: 10.13031/aim.201700599. Subhashree conducted the experiments,
developed the simulation, analyzed and visualized data, and wrote the paper. The co-author had assisted in
all aspects of the paper.
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1.03 to 1.21 times of the Euclidean method. Simulation results also indicated that the

infield bale logistics had a significant reduction of track impacted areas with ABP compared

to the control method. Prediction models using linear, power, and multi-variable nonlinear

models following isotherms of good performance to determine the curvilinear track path

from Euclidean distances, impacted area from the field area for different and combined

operations, as well as overall operational time were developed (0.88≤ R2 ≤ 0.99). Results

indicated that the harvester followed by baler produced the most impacted area and the

ABP the least, and a small ABP of 8 bales/trip (which is capable of 11 bales/trip) was

recommended based on the least impacted area and operation time.

4.2. Introduction

The industrial revolution in agriculture, during the 20th century, has led to the

introduction of numerous large machinery in modern day farming to address the

ever-expanding need for food production. Advanced farm machinery is very important in

today’s farming to meet the food demand with less labor involvement. Machinery help in

planting, spraying, harvesting, baling, and aggregation of bales from the field. While the

introduction of large machinery in agriculture increased productivity and reduced the

drudgery, yet mechanization also impacts the field area which leads to increased soil

compaction and this, in turn, affects the subsequent crop production.

The equipment traffic caused by modern machines generates equipment track

impacted areas on the field. These impacted areas are an indication of the extent of field

soil compaction. Soil compaction is a densification process where the porosity and

permeability of the soil decrease and affects the soil characteristics (Soane &

Van Ouwerkerk, 1994). It leads to altered soil structure and texture, restrained air and
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water activity in the soil, reduced root growth, low germination rate, and stunted growth in

plants. Soil compaction is a multi-disciplinary issue as it produces a delirious effect on both

soil and plant which has a huge consequence on economy and environment in world

agriculture.

The effect of soil compaction was studied on different monocots and dicots crop

varieties (Arvidsson & Håkansson, 2014). A dynamic model developed as a part of this

study to determine the structural changes in the soil proved that the micro-structure of the

soil is greatly affected by compaction. The dicots reacted more to compaction than the

monocots. Yield loss due to compaction was observed in the dicots, such as horse bean,

peas, potato, and sugar beet. Soil compaction was observed based on the changes in soil

bulk density pattern in a freshly prepared test plot using tractor and sprayer (Raghavan et

al., 1976). Soil under compaction exhibits increased bulk density, which causes less root

penetration, less pore space that leads to reduced aeration, and impedes the root

development (Horn et al., 1995). Wet soils with high moisture content are more vulnerable

to soil compaction than the dry soils, as the soil strength is heavily dependent on the water

content of the soil (Botta et al., 2004). However, in the freeze-thaw region of North

Dakota, USA, it was observed that the cone index, grain yield, and plant height did not

show any significant difference between the most and least equipment trafficked fields

among five soil transects (Sivarajan et al., 2018).

Modern harvester (combine), a very complex machine, which combines various

activities such as crop cutting, cleaning, and threshing during harvest operation continues

to grow heavier. Increased weight of the combine harvesters decreased the soybean crop

yield in a study conducted with three harvester combines of different weights (Botta et al.,
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2016). This study also revealed that harvesting with heavy axle loads resulted in the

sub-soil compaction, which causes permanent effects on the soil that are not

easily resolvable.

Soil moisture contributed more to the compaction than the fully loaded or empty

harvester in a sugar beet field study (Arvidsson & Håkansson, 2014). Also, the study

recommended that compaction can be greatly reduced by equipping the machine with

more tires and reducing the load of the harvester.

Tractors are used to aggregate and stack the bales in the field, and the bales are

then transported to the designated outlet using wagons. Collection of the bales is done

using various bale handling attachments. A single grapple or spear attached to the front of

the tractor is capable of collecting 1 bale/trip, while the spears attached to the front and

rear are capable of collecting 2 bales/trip. The grapple enables better grip while lifting the

bale from the field and bale stacking, and hence is the most common among small

landholders and simplest equipment for bale aggregation. The effect of the tractor on the

subsoil compaction was studied by varying the passes and load capacity of the tractor

(Patel & Mani, 2011). Load, the frequency of travel, and the tire are few parameters that

promote compaction on the field. The results show that the compaction due to the passes

was more than that caused by increasing the load. The compaction did not greatly affect

the sub-soil layers when the load was low, and only the combination of high load and

multiple passes of the tractor increased the sub-soil layer compaction.

The automatic bale picker (ABP) is a modern-day equipment that combines the

actions of a tractor grapple and wagon (Fig.4.1). It is capable of handling multiple bales

and can handle a minimum of 8 bales to a maximum of 23 bales/trip. ABP is a single
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person operated system, which reduced the time and fuel consumption in collecting and

transporting the bales from the field. Most of the commercially available ABPs use high

flotation tires that keep the equipment on the soil surface without much sinking. This leads

to the reduced intensity of soil compaction in the field (Gray, 1982).

Figure 4.1. Bales on the field ready for aggregation. Insert: An example of an automatic
bale picker of capacity 8 or 11 bales/trip (usual minimum) with loading arm — Image
source: http://www.grpanderson.com.

Various studies on soil compaction caused during general field operations mainly

involving tractors and the available solutions have been reviewed (Hamza & Anderson,

2005). Postharvest bale aggregation logistics operation also contribute to track impacted

area generation as the load becomes heavy with multiple bales. Previous studies on infield

bale aggregation logistics through simulation determining the efficient bale stack logistics

(Igathinathane et al., 2016), bale aggregation logistics scenarios (Igathinathane et al.,

2014), and the best stack location in the field (Subhashree et al., 2017) have used direct

Euclidean path (straight lines) connecting bales with no consideration of equipment turns.
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A simulation that incorporates the turn paths (curvilinear) of respective equipment

of infield operations will represent the best possible accuracy in logistics distances. Studies

on the impacted area and soil compaction during these infield logistics were not reported.

Thus, the overall objective of this research was to evaluate the track impacted areas

generated by the equipment, such as harvester, baler, tractor, and ABP during infield

operations through simulation while incorporating the equipment turn paths in the

analysis. In the analysis, the effect of parameters such as field operation types, area,

number of bales/trip, and field outlet location on the equipment impacted area will be

determined; and practical mathematical models will be developed to estimate the impacted

areas directly from the field areas for different field operations.

4.3. Materials and Methods

Statistical software R (R Core Team, 2017) was used to develop codes for

simulating various field operations to evaluate the track impacted areas, mathematical

models development for convenient estimation of track impacted areas, statistical data

analysis, and results data visualization (Subhashree & Igathinathane, 2017b). One of the

many strengths of R computing system is the output data visualization capability.

High-quality data visualization and vector-based graphical outputs of this research were

also generated with R using graphical tools. GeoGebra (IGI, 2017), a dynamic mathematics

software, was used to help mathematically derive the various equipment turning cases.

Various aspects involved in this research work are represented in the flow diagram

(Fig.4.2), and are subsequently described in respective sections.
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Figure 4.2. Equipment track impacted field areas evaluation during field operations and
statistical analysis process flow diagram.

4.3.1. Software Simulation for Bale Field Layout

The logistic distance is determined based on the location of the bales in the field,

hence the coordinates of the bales in the field layout is fundamental. These coordinates are

simulated by mimicking the baler operation in the field. Several input parameters such as

the biomass yield per hectare, field shape, equipment swath, bale mass, and windrow

variation of biomass influence the number of bales and their layout. Some of these values

were fixed, while others varied to study their effect. In this study, the bales layout

simulation methodology previously reported (Igathinathane et al., 2014, 2016; Subhashree

et al., 2017) was followed.

4.3.2. Simulating Minimum Path Distance

During bales collection, the path traced by the tractor and ABP was simulated in

such a manner to achieve the minimum cumulative distance. All the recorded bale

coordinates and that of the selected outlet were used in the path calculations. The

equipment was assumed to start and end each trip at the outlet location after collecting the

selected number of bales. For bales aggregation loop, the strategy used was (i) the first

bale, in the whole layout, which was at the minimum distance from the outlet was
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searched and selected for pick-up, (ii) subsequent bales were again selected for pick-up,

from the rest of the layout, based on the minimum distance from the equipment, and

(iii) after collecting the last bale of the trip, the equipment returns to the outlet for

unloading the bales and start for the next trip.

R function ‘sort()’ and dynamic vector allocation method were used to find the

minimum distance bales for aggregation. The number of bales in a trip (bales/trip) is based

on user’s input to the program, the bales/trip value for the tractor was 1 and 2 (controls)

and for ABP it was 8, 11, 14, 17, and 23. Based on the total number of bales in the layout

and bales/trip, the aggregation will produce whole and fractional trip. The number of

bales in a whole trip equals the user selected bales/trip, and the fractional trip corresponds

to the last trip that may contain the remaining bales.

4.3.3. Equipment Turning Path Track Simulations

Curvilinear turning paths of the equipment on the field, based on the equipment

turning radius, represent realistic track impact areas. The smallest turn that an equipment

can use is its turning radius and is considered in the simulation for efficient turning. The

turning radius of the harvester, baler, and ABP are 6, 4.3, and 10 m respectively (AASHTO,

2001). Simulation of turning scenarios depends on the equipment type and operation.

Geometrical and trigonometrical properties were used to derive different turning cases. All

the turning cases were constructed using GeoGebra (IGI, 2017), and the different cases

using mathematical derivations were used to code the R simulation (Appendices A and B).

4.3.3.1. Harvester and baler operations

Though the operation of the harvester and baler are different, the paths traced by

this equipment are practically the same, while the difference lies only in their turning

52



radius. Both equipment moves along the field and turn back on approaching the end of the

field to enter the next swath/windrow (Fig.4.3). Therefore, the algorithms for determining

the track impacted equipment areas generated by baler and harvester were similar. The

linear distance along each run was the same for both the operations, but the curvilinear

turn path distance vary as a function of equipment turning radius.

Figure 4.3. Turning path case of harvester and baler; θt = turning angle; γs = sweep angle;
and OB = swath width.

A “tangential” smooth transition between the line and the arc (Fig.4.3) was derived

from the trigonometrical and geometrical properties and used in the simulation. The

distance between points O and B is the ‘swath’ width and distance between point O and A
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is the ‘length’ of the field. The path traced by the equipment (orange trail: Fig.4.3)

includes the linear distance between the points EF and E′F′, the outward and inward

turning curves (with respective center of D and G) between the points F – H, and H – J.

Based on symmetry, the return path consisting of arc JH′, arc H′F′, and straight line F′E′

was derived. Points F and F′ were the points of tangency between a line and arc, and points

H and H’ were between two arcs. To derive the smooth tangential transition, two external

center points (D and G) with constant turning radius (rt), and the corresponding angle of

sweeps (θt and γs) were used (Appendix A). Based on these turning path parameters, the

curvilinear length of travel was calculated using the arc length formula.

The successive sum of the straight run (EF) and turn paths (FH + HH′ + H′F′)

constitute a complete repeating cycle of the distance of the selected equipment. The

number of swaths in the field was based on the user’s input for swath width and the field

area. The sum of the linear and curvilinear turn distance cycles obtained for the total

number of swaths of the field determines the total logistic distance covered by

the equipment.

4.3.3.2. Tractor and automatic bale picker operations

Simulating the turn paths for ABP was quite intricate and challenging as the

location of bales in the layout will be continuously changing. In this study, the picker arm is

assumed to be located to the left of the ABP. Thus, in the simulation, the equipment goes

to the right of the bale and picks it up from the left of ABP. For the bale aggregation path

simulation, the known coordinates of the three consecutive bales A, B, and C, turning

radius (rt) of the equipment, and the bale radius (rb - picker arm length) were used for the

calculation (Fig.4.4).
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Figure 4.4. Equipment turning case of ‘Up-Right’ to collect two bales; points A = starting
location, B and C = bale points; rt = turning radius; rb = bale radius or picker arm length;
and 17 more such equipment turning cases are derived (Appendix B).

The path along the two bale locations B and C starting from A, is represented as a

first straight AD path, then the second arc DG path, and followed by the second straight GH

path. It can be visualized that if the second straight path (GH) is rotated γGJ CCW, it will

become vertical and resemble the first straight path (AD) and evaluated as usual (Fig.4.4).

Thus, the repeating path for any number of bales in a group will be the first straight and

the second arc portions of the path (e.g., AD + DG). Based on the location of C, which may

fall anywhere around B (quadrant I through IV) giving rise to several unique cases of path
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derivation. The four major family of cases, derived based on C position, were: ‘Up-Right’

(I quadrant, above and right of B, Fig.4.4), ‘Up-Left’ (II quadrant, above and left of B),

‘Down-Right’ (IV quadrant, below and right of B), and ‘Down-left’ (III quadrant, below and

right of B). These major cases were further divided into 18 unique cases based on the

positions of points of projections J (of G) and K (of H) with respect the center of arc F and

projection I (of C) along the horizontal line through B (Appendix A).

The ABP (i) starts from the outlet (e.g., point A) and travels straight to point D;

(ii) stops at D, tangential to the bale B circle with radius rb, and pick-up the bale;

(iii) makes a turn towards the next bale C along an arc with radius rt and center at F, and

reach point G; (iv) travel straight to point H (tangential to bale C circle) to pick up the

bale C; (v) makes a turn towards the next bale (not shown) and the process continues until

all bales of the trip were collected; and (vi) the equipment heads back to the outlet

(Fig.4.4). The track in blue from the point A to H is the path traced by ABP in the field.

Points D, G and H are the tangent points between a line and the turning and will result in

efficient and smooth turns.

If two bales lie too close, and fall within the turning path circle (DF = DF = rt) of

the equipment, it will not be possible to collect the second bale without reversing the

equipment. Thus, when FH < (rt + rb) for right cases and FH < (rt - rb) for left cases, the

second bale was skipped. However, closer lying bales away from the turning path circle can

be collected without reversing the equipment. To address this issue, two nearest bales from

a given location were always selected, and aggregation was processed. The unpicked closer

bale will be picked in the later part of the same trip or on another trip based on the bale

coordinates. Details and derivation of two representative cases, viz. ‘Up-Right’ and
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‘Down-Left’ are presented in Appendix A1 and the derivation outputs and track paths

generated in Appendix A2.

4.3.4. Statistical Analysis and Model Development

R functions ‘aov()’ and ‘TukeyHSD()’ evaluated the variation among the impacted

area by the curvilinear method based on different bales/trip and field areas. The statistical

significance was considered at α = 0.05. Duncan’s new multiple range test using R package

‘agricolae’ was applied study the mean differences among methods and other subdata

(De Mendiburu, 2017). One-way ANOVA was conducted for individual bales/trip and field

areas. Further, Tukey analysis of the results determined the specific bales/trip and field

area that produced the significant differences. Among the predictor variables, such as area,

bales/trip, windrow variation, and outlet location, the most influential variables were

determined using the R function ‘relweights()’ (Kabacoff, 2015; Johnson, 2000). The

relative weights ranked all the predictor variables, and the high-ranking variables were

used in the prediction models development. Linear and nonlinear logistics distance

prediction models were developed for harvester, baler, and ABP.

4.4. Results and Discussion

4.4.1. Simulated Results of Equipment Track Paths

The equipment track path simulation results of the harvester, baler, tractor and ABP

are presented in Figure 4.5. For harvester (Fig.4.5A) and baler (Fig.4.5B), the field was

divided into equal swaths, represented by solid black lines, and the paths traced were

represented by the colored dotted lines. It was considered that the harvester and baler

enter the immediate next swath for harvesting and bale formation, respectively. The

harvester and baler tracks were simulated with the same area 0.5 ha, for illustration. The
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turning radius of the harvester is greater (rt = 6 m) than the baler (rb = 4.3 m), hence

harvester had more curvilinear track distance along the edges of the field than the baler.

The program simulation generated 200 bales for an input area of 10 ha, where the

tractor (control; Fig.4.5C) and ABP (Fig.4.5D) aggregated the bales the paths are

generated using the curvilinear method. The outlet is located at the field middle. The

number of bales collected per trip (bales/trip) is 1 for tractor and 8 (ABP usual minimum)

for ABP. The number of trips is the same as the number of bales generated in the field for

tractor, while for ABP, the program generated 25 whole and 0 fractional trips. For better

visualization, the trips are color-coded, even and odd number trips are in red and green,

respectively. The trip numbers are labeled in blue and are located near the first bale of

each trip.

The dotted blue circles, tangential to the bale points, are the turning circles, which

help in visualizing the turning of the equipment during collection of the bales (Fig.4.5D).

ABP track simulation presented used almost all the different turning cases discussed;

therefore, a smooth transitioned curvilinear bale collection path for 8 bales/trip can be

observed. It can also be seen that the paths sometimes intersect/coincide creating multiple

passes on the same area (Fig.4.5C-D) creating severe impact and soil compaction,

especially around the outlet. Such multiple passes over the same area are also possible

among different operations by equipment. However, accounting of these multiple passes

was not simulated in this study, and the reported impacted area was based on the

cumulative track distances. Observing the aggregation impacted areas between tractor

collecting 1 bale/trip (control; Fig.4.5C) and ABP collecting 8 bales/trip, the impacted area
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Figure 4.5. Logistics simulation results of different operations and equipment:
A. Harvester, B. Baler, C. Tractor, D. ABP; simulation data — area: harvester and
baler = 0.5 ha, tractor and ABP = 10 ha; turning radius: harvester = 6 m, baler = 4.3 m,
ABP = 10 m; and bales/trip: tractor = 1, ABP = 8.
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by ABP (Fig.4.5D) was clearly smaller than the tractor aggregation indicating that multiple

bales pick-up tend to be more efficient than handling single bale at a time.

4.4.2. Euclidean vs Curvilinear Methods of Bale Aggregation

The Euclidean method of determining the logistics distance is quite simple as the

length of the straight line between the two points of interest denotes the distance, and this

was used in previous research (Igathinathane et al., 2014, 2016; Subhashree et al., 2017).

However, the curvilinear track path, developed for this study, is elaborate and will be useful

to determine how these two methods correlate with one another and will be helpful to

develop prediction models.

4.4.2.1. Characteristics of methods

The Euclidean and curvilinear methods were compared using the paths generated by

tractor and ABP (Fig.4.6). For this comparison, an area of 4 ha (considered for illustration)

generated about 80 bales, and the tractor used 1 bale/trip and ABP used 8 bales/trip. The

outlet is fixed at the field middle for both the methods, and each equipment trip starts and

ends at the outlet. In the case of the tractor, the number of trips was same as the number of

bales (80 trips), but for ABP, it was 10 whole trips and 0 fractional trips. The odd and even

trips in both methods are color-coded differently to visualize them better.

In the case of bale aggregation with tractor handling 1 bale/trip, the Euclidean

method is represented by a line connecting the field outlet to all the bale points in the field

(Fig.4.6A), while the curvilinear method represents the two different straight paths

connected by an arc representing the turn (Fig.4.6B). The tractor’s straight path of

Euclidean method denotes the to and fro movement in collecting the bales with respect to

the outlet, and should be doubled to obtain the logistics distances. In the case of ABP, the
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Figure 4.6. Difference between Euclidean and curvilinear methods of track paths generated
by tractor and ABP. A. Euclidean method with tractor (1 bale/trip), B. Curvilinear method
with tractor (1 bale/trip), C. Curvilinear method with ABP (8 bales/trip); and simulation
data: area = 4 ha; turning radius = 10 m; biomass yield/ha = 5 Mg, bale mass = 600 kg,
harvester swath = 6 m, aspect ratio = 1.0, random variation in biomass yield = 10 %, and
random number seed = 2016.
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bale collection path involves pick-up of multiple bales with start and finish at the outlet.

Therefore, for ABP, Euclidean method simply involves straight lines connecting the bales

and outlet (Fig.4.6C), but for curvilinear method involves straight line and circular arc

travel paths (Fig.4.6D), as described earlier. The curvilinear method is considered as the

practical bale collection procedure in the field as it accounts for the turns, which actually

present in any bale aggregation operation. It can be observed that the curvilinear method

(Fig.4.6B&D) tend to produce more logistics path distance, hence more impacted area,

than the Euclidean method (Fig.4.6A&C), and the increase was due to the additional

portion of the path due to turns.

4.4.2.2. Comparison between methods

The difference between the Euclidean and curvilinear methods on the impacted

area, as influenced by the field area and bales/trip per trip, showed a similar trend of

higher value for curvilinear method (Fig.4.7). The impacted areas are proportional to the

logistics distances as impacted areas are logistics distance times the equipment track width.

The turning curve length of the equipment caused this increase in the impacted area. With

the increase in area from 8 to 259 ha the ratio of curvilinear to Euclidean slightly reduced

from 1.15 to 1.05 (Fig.4.7A); however with the increase in bales/trip from 1 to 23, the

ratio slightly increased from 1.03 to 1.21 (Fig.4.7B). Thus, with the increase in area the

Euclidean-based impacted area converges toward and curvilinear method and with the

increase in bales/trip, the opposite trend was observed.

Further statistical analysis of combined data using Duncan’s new multiple range test

revealed that the differences between Euclidean and curvilinear methods among areas

(0.52≤ p ≤ 0.92; Fig.4.7A) as well as among bales/trip (0.95≥ p ≥ 0.65; Fig.4.7B) were
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Figure 4.7. Comparison between Euclidean and curvilinear methods of bale aggregation.
A. Effect of area, and B. Effect of bales/trip on Euclidean and curvilinear impacted area;
simulation data is similar to Figure 4.6; and random variation in biomass yield used for the
three replications = 5 %, 10 %, and 15 %.

not significant. This overall result indicates that when the curvilinear method of path

distance measurements was not available, the simpler Euclidean method can be used.

However, area-wise subset data were subjected to Tukey HSD analysis, significant

differences between Euclidean and curvilinear methods were observed among several

bales/trip (Fig.4.8). For an area, if a bales/trip produced a significant difference between

the methods, then any other higher bales/trip also produced the significant difference.

Also, the range of bales/trip that made the significant difference between the methods

reduced by the increase in area. For example, 8–23 bales/trip were significant at 8 ha, but

only 23 bales/trip at 129 ha, and none at 259 ha. It can be concluded that larger the

bales/trip more significant will be the differences between Euclidean and curvilinear
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methods. For commonly used 8 bales/trip areas ≥ 24 ha will not produce any significant

difference between the methods (Fig.4.8).
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Figure 4.8. Tukey HSD analysis of area-wise ANOVA for different bales/trip comparing the
Euclidean and curvilinear methods of bale aggregation; and significance level: α= 0.05.
Presence of bar indicates a significant difference.

4.4.2.3. Path distance model between methods

As both methods were close in their path length, regression models will establish

the relationship between them and lead to prediction of one from the other. For specific

handling situations like tractor with 1 and 2 bales and ABP with 8 bales, the Euclidean and

curvilinear methods varied linearly, and the linear regression models, applicable to

8–259 ha, predicting the curvilinear aggregation distance from the Euclidean distance

produced good fit as shown below.
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Tractor (1 bale): DC = 1.016× DE + 7.20 (R2 = 0.99) (4.1)

Tractor (2 bales): DC = 1.013× DE + 3.01 (R2 = 0.99) (4.2)

ABP (8 bales): DC = 1.050× DE + 2.35 (R2 = 0.99) (4.3)

where, DC = the curvilinear distance (km), and DE = the Euclidean distance (km).

Similarly, a general model for ABP that predicts the curvilinear path distance for any

number of bales (1–23) was fitted using nonlinear regression based on the Langmuir

isotherm model (Olsen & Watanabe, 1957).

ABP (1-23 bales): DC = DE ×
�

1.01+
B′T

8.04

�

(R2 = 0.99) (4.4)

where, B′T = the normalized bales/trip = BT/max(BT ), and BT = the number of bales per

trip (bales/trip).

These models indicate that both methods yield a similar result, with the ‘slope’ term

between them varying only from 1.01 to 1.05, and can be used to update the Euclidean

distances to obtain the increased curvilinear distances easily.

4.4.3. Impacted Area Generated by Tractor and ABP

The impacted area by the common aggregation equipment, namely tractor tested as

control and ABP were compared. The impacted area was generated using the curvilinear

method for both the bale aggregation equipment, as curvilinear method represents the

most accurate path length and hence the impacted area. For illustration, control methods

of tractor handling 1 and 2 bales/trip were compared with the ABP handing 8 bales/trip
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(Fig.4.9). Increased traffic was observed, especially near the outlet in the field middle for

tractor handling 1 bale/trip (Fig.4.9A and 2 bales/trip Fig.4.9B) than ABP handling

8 bales/trip Fig.4.9C). It is clear that more area was impacted during the bale aggregation

using a tractor than ABP. Despite the bales should be aggregated to the outlet, the

impacted areas were relatively distributed, and lesser traffic was found around the outlet,

which less detrimental compared with the tractor control methods. Tractor with 1 bale/trip

is 6.02 times and tractor with 2 bales/trip is 3.1 times more than ABP with 8 bales/trip.

This result demonstrates the effectiveness of ABP compared with the control method of

using the tractor. The effect of several fields and operational parameters on the impacted

area was analyzed and presented subsequently.
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Figure 4.9. Tractor vs ABP A. Tractor control-1, B. Tractor control-2, C. ABP : Area = 6 ha;
bales/trip, tractor control-1 = 1, tractor control-2 = 2, ABP = 8; and simulation data is
similar to Figure 4.6.

4.4.3.1. Effect of field area on impacted area

The effect of area on the track impacted area generated by tractor (1–2 bales/trip)

and ABP (8–23 bales/trip) was evaluated by varying the field area input (8–259 ha). For

both the equipment, the obvious trend of increased field area produced an increased
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impacted area, and increased bales/trip reduced the impacted area (Fig.4.10A). However,

to determine which field area combinations were significantly different for a given

bales/trip the Tukey HSD analysis on ANOVA was performed (Fig.4.10B). Overall, these

results revealed that for both the tractor and ABP areas greater than 65 ha with other areas

produced a significant difference, while the combination of smaller areas (< 65 ha)

showed no significant difference.
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Figure 4.10. A. Effect of area on impacted area, and B. Tueky HSD significance result of the
impacted area as influenced by field area, and field parameters used were similar to
Figure 4.6. Presence of bar represents significant difference between field areas at α= 0.05
level of significance.

4.4.3.2. Effect of the number of bales collected on impacted area

The impact of different bales/trip of the tractor (1 and 2) and ABP (8, 11, 14, 17,

and 23) for different areas, ranging from 8 ha to 65 ha against the impacted area was

studied (Fig.4.11A). Across all the areas considered, as bales/trip increased from 1 to 8 a

steep drop and from 8 to 23 a gradual drop was observed. The steep drop in the curve

denotes the significant difference in the impacted areas generated by the tractor and ABP.
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Table 4.1. ANOVA of area and bales/trip parameters on impacted area.

Parameter df Sum sq. Mean sq. F value Pr (>F)

Field area 7 799324 114189 52.49 7.43e−10***
bales/trip 6 1232.1 205.35 24.48 1.16e−06***

Note: df - degrees of freedom; field areas = 8, 16, 24, 32, 40, 65, 129, and 259 ha; bales/trip = 1, 2, 8,
11, 14, 17, and 23; and *** - significance level at α= 0.05.

Increase in the bales/trip decreased the impacted area. This trend was similar across the

areas studied.
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Figure 4.11. A. Effect of bales/trip on the impacted area, B. Tueky HSD significance result
of impacted area as influenced by bales/trip, and field parameters used was similar to
Figure 4.6. Presence of bar represents significant difference between bales/trip at α= 0.05
level of significance.

To determine the significant difference between the ABP bales/trip, ANOVA analysis

was conducted with the combined data for all the bales/trip. The analysis revealed that the

tractor and ABP bales/trip are significantly different from each other (Table 5.1). Further

analysis using Tukey HSD showed that the only the tractor bales/trip 1 and 2 showed a

significant difference with ABP bales/trip of 8–23, while all combinations between the ABP

bales/trip did not show significant difference (Fig.4.11B).
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The impacted area generated by the tractor is always observed to be more than ABP,

but the weight of the increased number of the bales on ABP may induce more compaction.

Among the ABP bales/trip, 8 and 11 are considered optimum as the operation will be

relatively buoyant and no significant difference was observed from 8 bales/trip onwards.

Nevertheless, commercially available ABP of higher capacity, if affordable, would reduce

the impact area and the operation time. Based on this study an ABP of 8 bales/trip was

recommended for bale aggregation. This small equipment will also have the capacity of

11 bales/trip, when the third row of three bales was added on top the two rows of bales.

4.4.3.3. Effect of outlet location on impacted area

The outlet was located at the field middle (M:M), along the mid-width (W:O), along

the mid-length (O:L), and at the origin (O:O) for a 65 ha field and various bales/trip to

study its impact on the impacted area (Fig.4.12). The outlet location of the origin

generated the most impacted area, followed by outlet location at mid-length and

mid-width, and field middle for the tractor and ABP. The outlet in the field middle on an

average generates about 45 % less impacted area than the origin outlet. However, with

increased bales/trip, the differences in the impacted area of four outlet locations are

observed to be less significant.

69



200

400

600

800

1 2 8 11 14 17 23
Bale groups

 Im
pa

ct
ed

 a
re

a 
(k

m
2 )

Outlet
O:O
W:O
O:L
M:M

Figure 4.12. Effect of outlet locations on impacted area; outlet location at O:O = origin,
W:O = along the mid-width edge, O:L = along the mid-length edge; M:M = field middle;
Field area = 65 ha; and simulation data is similar to Figure 4.6.

4.4.4. Harvester, Baler, and ABP Impacted Area

The total impacted areas involving the harvester, baler, and ABP for bale

aggregation at different field areas are plotted to study the effect of each equipment

(Fig.4.13). As ABP was found to be the most efficient than tractor (Figs.4.10–4.11) only

ABP with 8 bales/trip was considered for the analysis. Among these field equipment, the

harvester generated the most impacted area closely followed by the baler and the ABP the

least. On average, the harvester impacted area was only slightly higher than the baler

(≈ 0.5 %), which was caused by the increased turning radius value of the harvester with

compared to baler (6.0 m vs 4.5 m; Fig.4.5). When ABP compared with harvester and
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baler, the impacted area on average was about 79.7 %-78.8 % as its path was based on the

position of the bales on the field, and it needs not to cover the entire field.
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Figure 4.13. Impacted area of harvester, baler, tractor and ABP (km2) vs field area (ha).

Of the total impacted areas average across all areas, the harvester (≈ 36%) and

baler (≈ 35.6 %) generated more impacted area as these equipment operated along the

swath covering the whole field, whereas ABP (≈ 28.4%) traveling based on the bales

layout and following the efficient aggregation strategy with 8 bales/trip generated the least

impacted area.

4.4.5. Regression Analysis and Models on Impacted Area

In modeling the impacted area, among the predictor variables, namely area,

bales/trip, windrow variation, and outlet location using relative weights analysis, the area

and bales/trip emerged to be the most significant variables. The area and bales/trip

71



secured the first and second highest weights at 73.74 % and 25.03 %, respectively,

followed by windrow variation and outlet location. Hence, only the area and bales/trip

were used to develop linear and nonlinear models for impacted area prediction.

4.4.5.1. Harvester and baler models

The plot of impacted area versus the field area (Fig.4.13) had shown a linear

variation for harvester and baler (Fig.4.14). Hence, linear prediction models fitted for both

harvester and baler impacted area gave good performance (R2 = 0.99).

Harvester: AIH = 3.616× AF + 5.333 (R2 = 0.99) (4.5)

Baler: AIB = 3.593× AF + 3.662 (R2 = 0.99) (4.6)

where, AIH = the harvester impacted area (km2), AF = field area (ha), and AIB = the baler

impacted area (km2).

4.4.5.2. Tractor and ABP aggregation models

The plot of field area versus the impacted area of ABP with 8 bales/trip (Fig.4.14)

indicated a non-linear variation, and is expected for other bales/trip as well. Therefore, a

non-linear power model fitted for studied bales/trip (1–23) including 8 bales/trip

(Fig.4.15) for the field areas (8–259 ha) has produced good fit performance (R2 > 0.99).

These power models have the form:

y = ax b [a = 1.328− 0.212; b = 1.488− 1.312] (4.7)

where, y = the impacted area (km2), a = the coefficient, x = the field area (ha), and

b = the exponent. For the increase in bales/trip from 1 to 23 for the studied areas, the

72



0 50 100 150 200 250

0
50

0
10

00
15

00
20

00
25

00

Area (ha)

 Im
pa

ct
ed

 a
re

a 
(k

m
2 )

Harvester: 

Baler: 

ABP, (BT = 8): 

Total: 

AI = 3.62 AF + 5.33      , (R2 = 0.99)

AI = 3.59 AF + 3.67      , (R2 = 0.99)

AI = 0.39 AF
1.39            , (R2 = 0.99)

AI = 10.92 AF − 69.46 , (R2 = 0.99)

Figure 4.14. Prediction models of impacted areas of different field equipment and their
total.

coefficient ‘a’ (1.73 down to 0.32) as well as the exponent ‘b’ (1.49 down to 1.24) showed

a decreasing trend (Eq.(4.7)) that indicated the trends became flatter (Fig.4.15).

For the bale aggregation with the recommended ABP with 8 bales/trip the model is:

ABP (8 bales): AIA = 0.272×1.412 (R2 = 0.99) (4.8)

where, AIA = the ABP impacted area (km2).

73



0 50 100 150 200 250

0
10

00
20

00
30

00
40

00
50

00

Area (ha)

 Im
pa

ct
ed

 a
re

a 
(k

m
2 )

Tractor (BT = 1) :     AI = 1.33 AF
1.488

Tractor (BT = 2) :     AI = 0.69 AF
1.482

ABP (BT = 8) :          AI = 0.27 AF
1.419

ABP (BT = 11) :        AI = 0.23 AF
1.395

ABP (BT = 17) :        AI = 0.22 AF
1.339

ABP (BT = 23) :        AI = 0.21 AF
1.312

Figure 4.15. Fitted tractor and ABP power models of bale aggregation.

The bales/trip 1 and 2 represent the tractor operating 1 and 2 bales/trip (Fig.4.15),

respectively. Given the field area in the hectare, these bales/trip-specific models would

predict the aggregation impacted area in km2. It will be convenient, rather than having the

specific models for different bales/trip, to have a combined model for bale aggregation

irrespective of the bales/trip. A multivariable nonlinear model following the isotherms was

explored. The isotherm model based on modified Henderson equation (ASAE Standards,
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2003; Igathinathane et al., 2005), which uses both the field area (ha) and bales/trip, to

predict the impacted area (km2) was developed, and the fit produced a good performance.

AIA =
�

AF

0.330× (BT + 0.972)

�1.423

(R2 = 0.94) (4.9)

4.4.6. Overall Simulation Results and Impacted Area Model

Time taken for the simulated field operations is a direct factor of the path length of

each operation and the speed of the equipment. The operation speeds in the field for all the

equipment considered, lies between the range of 8–11 km/h (5–7 mph) (Hanna, 2016);

hence, the operation time generated was not greatly influenced by the equipment speed. As

the path length also correlated to the impacted area through the track width of each

equipment, the operational time is proportional to the impacted area (Fig.4.16).

Therefore, the operation time followed the same trend as the impacted area, on an average

harvester generated the most (≈ 42 %), closely followed by the baler (≈ 41 %), while ABP

generated the least operation time (≈ 17 %) for all the areas considered. It was also

observed that ABP contributed more to the total operation time of the increase in area.

The operation time of harvester and baler, on an average was about 1.61 and 1.58

times of ABP respectively. Increase in the bales/trip for ABP can further reduce the total

operation time, but 8 and 11 bales/trip was considered optimum. The ABP equipment

capacity of 8 and 11 bales/trip is the same, 11 bales/trip is simply loading three more bales

on the top of the two rows of 4 bales each.

Total impacted area and operation time models combining all equipment (harvester,

baler, and ABP) were derived for easy prediction. Among the equipment, it was found that
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Figure 4.16. Operation time (h) of harvester, baler, tractor and ABP vs field area (ha).

harvester and baler, having higher contribution in the total, followed linear trend and the

only ABP, having relatively lower contribution, followed the parabolic power law. Thus, it is

expected that the total impacted area will follow the linear trend and a linear model, as

observed (Fig.4.14), produced comparable good performance of a power model.

Considering the optimal ABP with 8 bales/trip the specific combined total impacted area

linear model is as follows:

Total impacted area with ABP - 8 bales (km2):

AI T = 10.917× AF − 69.459 (R2 = 0.99) (4.10)

where, AI T = the total impacted area generated by harvester, baler, and ABP

operations (km2).
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The above equation (Eq.(4.10)) is specific to 8 bales/trip operation, and the most

general form should handle any number of bales (similar to Eq.(4.9)). Using the

multivariable nonlinear regression model and isotherm form of equations (ASAE Standards,

2003; Igathinathane et al., 2005), it was found that the following modified Oswin for total

impacted area and modified Henderson for operation time gave the best fit as follows:

Total impacted area (km2) — Modified Oswin:

AI T = 6229.533− (225.873 BT )×
�

A′F
�0.813

(R2 = 0.88) (4.11)

Total operation time (h) — Modified Hendenson:

TT =
�

AF

1.340× (BT + 0.964)

�1.403

(R2 = 0.99) (4.12)

where, A′F = the normalized area = AF/max(AF), and TT = the total operational time (h).

The above equations (Eqs.(4.11)-(4.12)) are applicable to any field areas (AF) ranging

from 8 to 259 ha, and any bales/trip ranging from 1 to 23.

4.5. Conclusions

The track impact areas due to different field operations using equipment, such as

harvester, baler, tractor, and ABP for various field areas (8–259 ha) and bales/trip (1–23)

involving curvilinear equipment turn paths were simulated. The bale aggregation ratio of

Euclidean and curvilinear methods reduced with the increase in field area (1.15 to 1.05)

and increased with the increase in bales/trip (1.03 to 1.21), despite the methods were not

statistically different (p ≥ 0.5) for tractor and a combination of reduced bales/trip and

increased field area for ABP. The overall results suggested that the Euclidean path distance
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can be used in the place of the curvilinear method or it can be upgraded using the

developed specific or Langmuir isotherm-based generalized models (R2 ≥ 0.99).

ABP effectiveness over the tractor in bale aggregation was shown by tractor’s

impacted area for 1 and 2 bales/trip was about 6.02 and 3.1 times the ABP 8 bales/trip.

Field areas ≥ 65 ha showed a significant difference in the equipment track impacted area

between tractor and ABP. Similarly, 1 and 2 bales/trip of the tractor were significantly

different from ABP 8 bales/trip, but among ABP from 8 to 23 bales/trip were not. An ABP

with a capacity of 8 bales/trip was efficient and recommended, as this equipment can also

accommodate 11 bales/trip. Among the outlet locations considered, the field middle was

found to be the best as it generated the least impacted area for both tractor and ABP.

Among the field equipment, the harvester generated the most (≈ 36 %) impacted

area, followed by baler (≈ 35.6%), and ABP generated the least (≈ 28.4%). Field area

(73.74 %) and bales/trip (25.03 %) with increased relative weights were used to develop

models. Equipment impacted area linear (harvester and baler), and power (ABP,

8 bales/trip) models from the field area produced good fit (R2 ≥ 0.99), also a generalized

model for ABP based on modified Henderson isotherm suitable for 1–23 bales/trip and

8–259 ha area also performed well (R2 = 0.94). For the operation times, ABP required the

least (≈ 17 %), followed by the baler (≈ 41 %), while the harvester the most (≈ 42 %).

Models of the total impacted area, by all the equipment collectively, with 8 bales/trip ABP

(linear: R2 = 0.99) and generalized with any bales/trip and area studied (modified Oswin:

R2 = 0.88), as well as generalized operation time (modified Henderson: R2 = 0.94) gave

good and comparable performance.
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5. PAPER 3 - BIOMASS BALE INFIELD LOGISTICS

SCENARIOS USING AN AUTOMATIC BALE PICKER *

5.1. Abstract

The infield logistics of baled biomass aggregation and transportation to a specified

field outlet is an elaborate operation and is comparable to crop harvest itself. Traditionally,

tractor and wagon are the common and simplest equipment used for infield bale

aggregation; however, the modern automatic bale picker (ABP) that combines the bale

picking, accumulation, and transportation to the outlet tends to be efficient and was not

studied for logistics. Tractor handling 1 and 2 bales/trip (control method) and ABP

handling 8 to 23 bales/trip in aggregation with curvilinear turning paths were studied for

field areas ranging from 8 to 259 ha through simulation using R. Decrease in logistics

distance of ABP (8–259 ha) with 8 bales/trip was 82.9 %± 0.01% and 66.9 %± 0.01%

compared to that of the tractor with 1 and 2 bales/trip, respectively, proved the

effectiveness of ABP over the tractor. The field middle outlet produced the least

aggregation distance (≈ 44% of origin) followed by the mid-edge (≈ 30% of origin) and

the origin outlet the most. The ABP of capacity 8 bales/trip produced the least operating

time for the field areas (8–259 ha) was about 5.0 and 2.6 times lesser than the tractor with

bale capacity 1 and 2 bales/trip, respectively. Influential predictor variables with highest

* Paper 3 is an extensively revised version of the paper presented at 2017 ASABE Annual International
Meeting in Spokane, Washington, July 16-19, 2017. Authors: Subhashree, S. N., and Igathinathane, C.
Title: Biomass Bale Infield Logistics Scenario using Automatic Bale Picker. Paper number: 1700598.
DOI: 10.13031/aim.201700598. Subhashree conducted the experiments, developed the simulation,
analyzed and visualized data, and wrote the paper. The co-author has assisted in all aspects of the paper.
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relative weights, such as field area (64.9 %) and bales/trip (32.0 %) were used to develop

logistics models. Specific bales/trip logistics distance prediction models using field area

following the power model; and generalized model for logistics distance and operation

time using both field area and bales/trip following the modified Henderson model

produced good performance (R2 ≥ 0.98). Overall, an ABP with a capacity of 8 bales/trip,

which can also handle 11 bales/trip, was recommended considering its less soil impact

pressure compared to higher capacity ABPs. Future work should concentrate on other

parameters influencing the logistics, bale stacks on the field and at the edge of the field,

and economic analysis of the infield logistics.

5.2. Introduction

Agricultural biomass is one of the most abundant renewable energy resources. The

need and demand for biomass is ever increasing due to its versatility. Biomass is used to

generate different forms of usual energy such as electricity and heat, as well as serves as

biofuels feedstock and feed for livestock. Biofuel production at a large scale faces a lot of

issues and challenges, which are extremely associated with logistics, schedule of delivery,

and inconsistent feedstock supply (Hess et al., 2007). Also, logistic operations of biomass

contribute to the major cost of bio-energy. Supply chain modeling, involving five different

types of biomass (Miscanthus, forest fuel, short rotation coppice, and straw), concluded

that 20–50 % of the cost associated with biomass logistics involving handling and transport

(Allen et al., 1998).

The biomass logistics cost is one of the major barriers to biomass utilization. Hence,

several models on supply chain logistics have been developed as an objective to improve

the biomass logistics efficiency. These models studied ethanol production (Lin et al., 2014),
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supply chain for Miscanthus giganteus (Shastri et al., 2010; Huisman et al., 1997), biomass

supply (IBSAL) to biorefinery (Sokhansanj et al., 2006), forest residues (Gallis, 1996),

woody biomass (Svanberg et al., 2013), geographical information system (GIS) based

switchgrass logistics across 11 U.S. states (Graham et al., 2000), and GIS-based specific

location biomass delivery (Graham et al., 1997).

These logistics studies usually assume that the biomass is a “point source” available

at the field location and is moved to a distant processing facility. In reality it is a

“distributed source” throughout the field, as after the harvest the biomass residues are left

on the field to sun dry until an optimum moisture of 5–20 % w.b. (Rotz & Muck, 1994; Rotz

& Shinners, 2007) and baled for collection. These biomass bales infield logistics of

aggregation and transportation to a field outlet, which can be considered a biomass point

source, is an elaborate operation as biomass harvest. Furthermore, these bales need to be

collected to clear the field for the subsequent crops, avoid microbial quality changes

(Coblentz et al., 1996), spontaneous heating (Coblentz & Hoffman, 2009), dry matter loss

(Scarbrough et al., 2005), and nutritive value changes (Turner et al., 2002). Therefore, the

infield biomass logistics of bale collection should be efficiently performed and completed

within a limited timeframe. Efficient infield biomass collection and handling not only

reduce the logistics cost but preserve the quality of the bales.

However, studies on infield logistics of biomass bales collection are highly limited.

A minimum distance path method for efficient aggregation of bales based on the minimum

distance between subsequent bales was developed (Igathinathane et al., 2014). The study

showed that using additional equipment for collection (e.g., bale wagon/trailer) and

increasing the number of bales/trip improved the infield logistics efficiency. Another study
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involving bale stacks before transporting them to the outlet revealed that the field middle

was the best and practical method for temporarily stacking the bales (Igathinathane et al.,

2016). Evaluation of the best field stack position by comparing the field middle method to

other mathematical grouping methods, such as centroid, middle data range, geometric

median, medoid, and origin were performed (Subhashree et al., 2017). Results of this

study showed that the geometric median was the most efficient method closely followed by

the field middle, and the origin the least, but the field middle was recommended as the

bale stack position since it is practicable and simple to locate on the field.

With a goal of improving the efficiency of infield biomass bales logistics, this study

was proposed to evaluate the efficiency of a modern bale collection equipment, “automatic

bale picker” (ABP) also known as “self-loading bale carrier,” which aggregates as well as

transports the bales to the outlet in a single trip. The ABP is a trailer attached to the tractor

with a bale picking arm to its side. The conventional method of bale collection using a

tractor was considered the “control” method and tested with the ABP. Unlike tractor, which

can usually handle only 1 or 2 bales/trip, the ABP can handle multiple bales ranging

between 8–23 bales/trip.

In this study, a mathematical simulation will be employed to mimic the bale

collection process, while involving the actual turning paths of the bale aggregation

equipment. The major objectives of this research on the infield biomass bales logistics

include (i) comparison of logistic distances generated by the tractor and ABP,

(ii) determination of the effect of field parameters, such as field area, outlet location,

bales/trip, and windrow variation on logistics distances, and (iii) development of
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convenient prediction models to evaluate the logistics distances and operation time from

the field area and bales/trip.

5.3. Materials and Methods

All logistics operations involved in the study were performed through mathematical

simulation using the statistical software environment R (R Core Team, 2017). Codes were

developed to simulate the bales layout in the field, mimic the equipment action, generate

logistic distances, perform statistical analysis, generate prediction models, and visualize the

results (Appendix.B). R ‘base’ graphics and package ‘ggplot2’ (Wickham, 2016) were

used to generate high-quality vector-based graphics for visualization and reports. Bale

aggregation by tractor (1 and 2 bales/trip) and ABP (8–23 bales/trip) gave rise to several

turning cases based on the location of adjacent bales (see Section 4.3.3.2). These different

turning cases of equipment were drawn using an interactive mathematical software

platform called Geogebra (ver. 5.0.42) (IGI, 2017). Various aspects of this study are

represented in the form of a flow diagram (Fig.5.1), parts of it presented elsewhere

(Subhashree & Igathinathane, 2017a), are dealt in detail in the following sections.

5.3.1. Simulation of Bales Layout

The bales layout in the field, represented by ‘x i ’ and ‘yi ’ coordinates, influences the

path generated by the equipment. The randomness in the bales layout depends upon on

the biomass availability along the window that came from the plant growth variability in

the field. This variation was directly achieved through random numbers from a uniform

distribution based on the selected levels of variation. The simulation process of bale

formation and bale layout reported earlier (Igathinathane et al., 2014) was followed in this
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Start

Read inputs
(Field area, L/W, swath width, mass of bale, windrow variation, bale groups)

Simulate bale layout

Generate bale layout coordinates  

Evaluate aggregation logistics distances
(Minimum distance collection approach and vehicle turning path method)

Performs statistical analysis and develop models
(ANOVA and regression linear and nonlinear prediction models)

End

No Yes

Tractor
(1 and 2 bales/trip)

ABP
(8 to 23 bales/trip)

Is bales/trip > 2

Figure 5.1. Flowchart showing the details of the developed algorithm for the R program
simulation to determine the efficiency between the tractor and ABP based on the generated
logistics distances.
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study. Using the coordinates (x i, yi) of the bales on the field, infield bale aggregation

logistics calculations were performed.

5.3.2. Parameters Considered for Simulation

Various inputs into the program of infield bale aggregation logistics provide a way

to represent different conditions in the field and generate appropriate scenarios. The input

parameters variation considered for the study are: (i) field areas expressed as fractional or

multiples of real "sections" as 8, 16, 32.5, 65, 130, and 260 ha; and (ii) percentage of

windrow variation are 5 %, 10 %, 15 %, and 20 % — the windrow variation causes the

randomness in the pattern of the bales layout (Igathinathane et al., 2014). The other field

parameters that can affect the simulation, but assumed as constant based on the findings of

the previous studies that showed no significant difference of these parameters on logistics

distances (Igathinathane et al., 2014; Subhashree et al., 2017), include (i) length by width

(L/W) ratio values representing the field shape — L/W of 1 representing the square field

was considered as this shape was more prevalent and field "sections" were usually divided

into squares; (ii) biomass yield/ha — a value of 5 Mg/ha was considered; (iii) random

number generation seed — a value of 2016 was considered.

5.3.3. Simulation of the Equipment

The simulation procedure for both the tractor and ABP was the same. Collection of

bales by the equipment uses the minimum distance approach. Initially, the equipment from

the outlet approaches the bale at the nearest distance for collection. After collecting the

nearest bale, the equipment searches for the next nearest bale. The procedure was

repeated until the equipment collected its desired bale capacity, which depended on the

user’s bales/trip input into the program.
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During bale collection, the ABP was assumed to have the picker arm on its left and

bales were collected from the left side of the equipment as it travels to the right of the

bales. Even though the turning path derivations were performed assuming the left-side

bale pickup, the right-side bale pickup will be similar due to symmetry and would not

affect the total path length. With the tractor, the bale pickup will not be on the side but

straight; however, this difference was assumed to be negligible and not considered for the

study. The whole operation of equipment starting from the outlet, aggregating bales based

on the bales/trip values were returning to the outlet mark one trip of the equipment. The

number of trips was based on the total number of bales generated and the bales/trip. The

trips containing bales equal to the bales/trip value was called the whole trips, and the

collection of left out bales in the final trip was called the fractional trip.

5.3.4. Equipment Turn Path Simulation

Logistics distance of infield bale aggregation calculations was always performed

using the “Euclidean method” in the previous research (Igathinathane et al., 2014, 2016;

Subhashree et al., 2017), which was very straightforward and simple. In this study, to

achieve a more realistic result, the logistics distances were calculated based on the turning

path of the equipment termed “curvilinear method” using turning radius of

specific equipment.

Details of the curvilinear method are presented and discussed extensively in the

previous chapter (Subhashree & Igathinathane, 2017b). Analytic geometry and geometric

principles were used for the derivation and visualization of the curvilinear method of

equipment turning Appendix B. Geogebra was used in constructing the various turning

cases, which served as a visual aid, and deriving the various cases and developing the
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necessary simulation codes in R. The turning radius of the tractor, as well as the ABP

(drawn by the tractor), was considered as 10 m (AASHTO, 2001).

During the bale collection process, three selected points of interest (bales or outlet)

were used in a cycle to derive the path of the trip. The three known points A (outlet or

bale), B (bale), and C (bale or outlet) serve as the initial framework and this repeats after

one bale was picked up and the framework shifts by one point. The turning radius

(rt = 10 m), and bale radius also the picker arm length (rb = 1.25 m) was used in the

derivation (Fig.5.2). The position of the collection bale coordinates (bale point C, which

can lie anywhere between I - IV quadrant) gave rise to 4 major cases (quadrant I - Up and

Right; quadrant II - Up and Left; quadrant III - Down and Left; and quadrant IV - Down and

Right). These major cases along with the positions of the projected points J, K, and I with

respect to F (Fig.5.2) gave rise to 17 different unique cases in total (Appendix B). The

collection path was derived in such a way that the equipment turning had smooth

transitioning between straight and circular arc path using the principle of tangents to

circles. The path traced by the equipment is represented by the blue line in Figure 5.2.

The total travel distance from the points A to C includes, two linear paths (AD and

GH) and one curvilinear path (DG). The points D, G, and H are the tangent points, which

aid to smooth transition between the lines and curves. Using the known values, the sweep

angle (180−αGJ) based on the equipment turning radius was calculated, which was then

used to calculate the curve length DG. Detailed derivation of two opposite cases ‘Up-Right’

and ‘Down-Left’ (quadrant I and III) is given in Appendix A, and all the 17 track path cases

and their respective derived expression is presented as a table in Appendix B. Some of the

results of simulation and portions of the R code are also presented in Appendix B.
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Figure 5.2. A typical turning case of ABP (Up-Right) using the two three known collection
points showing turning radius (rt) and bale radius (rb). B and C represent bale centers.
AD and GH are straight sections of the collection path. DG is the turning arc section along
the collection path. D and G are the points of tangency representing smooth transition.

5.3.5. Statistical Analysis and Developing Prediction Models

One-way ANOVA was conducted to evaluate the variation among the logistic

distances generated by the aggregation equipment on different areas and bales/trip as well

as the effect of field areas and specific bales/trip on logistics distance. The statistical

analysis was conducted with 5 % level of significance (α= 0.05). In addition to the

one-way ANOVA, Tukey HSD was further used to determine the specific field area and

bales/trip that contributed to the significant difference by comparing within the groups.

88



Functions ‘aov()’ and ‘TukeyHSD()’ in R ‘stats’ package were used to conduct

these analysis.

Useful prediction models to evaluate the logistics distances and time expended were

developed from common input variables. The most influential predictor variables among

field area, bales/trip, outlet location, and windrow variation were determined using the R

function ‘relweights()’ (Kabacoff, 2015; Johnson, 2000). The variables with more

weights were considered for developing logistics and time expended prediction models.

Linear models and multivariate nonlinear models were developed for tractor and ABP using

‘lm()’ and ‘nls()’ functions of R ‘stats’ package, respectively.

5.4. Results and Discussion

5.4.1. Bale Collection Using Tractor and ABP

The simulation of the tractor and ABP using the curvilinear path method for a field

area of 5 ha with windrow variation of 15 % and other parameters listed using base R

drawing capabilities is illustrated in Figure 5.3. The outlet location in the bale layout was

fixed at the field middle. For the 5 ha area, with other input parameters, 101 bales were

generated. The control methods with tractor handling 1 bale/trip (Fig.5.3A) and

2 bales/trip (Fig.5.3B) were compared with ABP handling 8 bales/trip (Fig.5.3C). The

number of trips generated by tractor with 1 bales/trip is equal to the number of bales

generated in the bale field layout. The number of whole and fractional trips generated by

tractor (2 bales/trip) ABP (8 bales/trip) were 50 and 1, and 12 and 1, respectively.

The black dots in the layout indicate the bale points within the field (Fig.5.3). The

circle enclosing the bale points was drawn using the bale radius, rb. The bale radius also

represented the bale picking arm of the equipment and bales collected from the left of the
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Figure 5.3. Vehicle simulation results A. Tractor, bales/trip = 1; B. Tractor, bales/trip = 2;
C. ABP, bales/trip = 8; and simulation data: area = 5 ha, turning radius (rt) = 10 m,
biomass yield/ha = 10 Mg, bale mass = 500 kg, harvester swath = 9 m, aspect ratio = 1.0,
random variation in biomass yield = 15 %, and random number seed used = 2016.

ABP. The bale radius circle was color coded with red for every first bale of the trip and blue

for rest of the bales of the trip. The trip number was also marked next to the first bale of

the trip. Also, the odd and even bale trip paths were color coded in green and red,

respectively, for better visualization. The larger dashed blue circles, tangential to the bales,

represent the turning circle which allowed for better visualization of the vehicle turning

path during bale collection. This bale layout with the generated vehicle path represents the

actual collection of bales on the field. The bale collection starts from the center and radially

expands to outer bales after collecting the bales near the outlet. It can also be seen that the

logistics distance was greater with the tractor, it reduced with ABP and the traffic near the

outlet was reduced to the number of bales/trip increased.

5.4.2. Effect of Field Area on Logistics Distance

A general increasing trend of bale aggregation logistics distance with an increase in

field area from 8 to 259 ha was observed (Fig.5.4). This trend was obvious as more field
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area generates more bales and hence the aggregation distances. The effect of area on the

logistic distance as influenced by the tractor (1 and 2 bales/trip) and ABP (8 and

23 bales/trip) was determined by selecting representative bales/trip while varying the field

areas selectively from 8 to 259 ha (Fig.5.4A). With all bales/trip tested, the increase in

logistics distances showed similar increasing trend across the field areas, but significant

reduction in the number of bales/trip increased.

Bales/trip 1 Bales/trip 2 Bales/trip 8 Bales/trip 17 Bales/trip 23

8 32 65 12
9

25
9 8 32 65 12
9

25
9 8 32 65 12
9

25
9 8 32 65 12
9

25
9 8 32 65 12
9

25
9

0

50

100

150

200

250

Area (ha)

Lo
gi

st
ic

s 
di

st
an

ce
 (k

m
)

B
ales/trip 1

B
ales/trip 2

B
ales/trip 8

B
ales/trip 17

B
ales/trip 23

16
−8

24
−8

32
−8

40
−8

65
−8

12
9−
8

25
9−
8

24
−1
6

32
−1
6

40
−1
6

65
−1
6

12
9−
16

25
9−
16

32
−2
4

40
−2
4

65
−2
4

12
9−
24

25
9−
24

40
−3
2

65
−3
2

12
9−
32

25
9−
32

65
−4
0

12
9−
40

25
9−
40

12
9−
65

25
9−
65

25
9−
12
9

0

1

0

1

0

1

0

1

0

1

Area (ha)

B
al

es
/tr

ip
 s

ig
ni

fic
an

ce
 b

ar
s

A B

Figure 5.4. Effect of field area on the aggregation logistics distance: A. Logistics distances
generated by the tractor (1 and 2 bales/trip) and ABP (8 and 23 bales/trip) for different
field areas; B. Tukey HSB bar chart of the aggregation distance influenced by field area at
selected bales/trip — presence of bar indicates significant difference (p < 0.05).

A one-way ANOVA was conducted with field area as the dependent variable using

the combined data of all the bales/trip studied, with the replications derived from the

windrow variations of 5 %, 10 %, and 15 %, to determine the field area variation on logistics

distances (Table 5.1). The results showed that the field areas are highly significantly

different (p < 2× 10−16) for different bales/trip. Further, Tukey HSD conducted on the

ANOVA results to study for a bales/trip value which two field areas are significantly

different, and the difference was indicated by the presence of a bar (Fig.5.4B). The Tukey
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Table 5.1. ANOVA of field area and bales/trip on bale aggregation logistics distances.

Parameter df Sum Sq Mean Sq F value Pr(>F)

Field area 7 882.9 126.12 3170 <2e−16 ***
Bales/trip 6 263110 43852 612169 <2e−16 ***

Combined data with field areas of 8, 16, 24, 32, 40, 65, 129, and 259 ha and bales/trip of 1, 2, 8, 11, 14,
17, and 23 using the other assumptions given in Fig.5.3; df is the degrees of freedom; level of significance
used is α= 0.05; *** is the significance level of p < 0.001.

HSD results showed that all the areas were significantly different (p < 0.05) for the tractor

and ABP bales/trip ≤ 17. For higher ABP bales/trip values > 17, only the combinations of

close field areas (e.g., 8 and 16 ha, 16 and 24 ha, 24 and 32 ha, and 32 and 40 ha) did not

show any significant difference. Overall, the results indicate that field areas tend to

produce significant difference when the number of bales/trip was smaller (≤ 17).

5.4.3. Effect of Bales/trip on Logistics Distance

A similar logistics distance reduction trend, as observed with field areas, was

observed across all the tractor and ABP bales/trip values (Fig.5.5). Among the bales/trip,

the tractor with 1 and 2 bales/trip contributed to the most logistics distance when

compared to the ABP with 8–23 bales/trip. A steep drop in the logistics distance was

observed between the tractor and ABP (Fig.5.5A). Reduction in logistics distance on an

average, 82.90%± 0.01% and 66.91 %± 0.01 % were observed for ABP of 8 bales/trip

when compared with tractor of 1 and 2 bales/trip respectively. This shows the clear

advantage of using the ABP in place of the tractor. However, the reduction in logistics

distances between ABP bales/trip was observed to be less different with each other across

all the areas considered. A one-way ANOVA with the combined data of all the areas and

bales/trip with the replications derived from the windrow variations of 5 %, 10 %, and

15 % showed that there was a highly significant difference (p < 2× 10−16) among the
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Figure 5.5. Effect of bales/trip on the aggregation logistics distance: A. Logistics distances
generated by the tractor (1 and 2 bales/trip) and ABP (8 and 23 bales/trip) for different
bales/trip; B. Tukey HSB bar chart of the aggregation distance influenced by bales/trip at
selected field areas — presence of bar indicates significant difference (p < 0.05).

bales/trip (Table 5.1). The Tukey HSD analysis (Fig.5.5B) indicated that for smaller areas

(≤ 24 ha), the closer bales/trip combinations did not produce any significant difference

(p < 0.05), while rest of the combinations were significantly different. For areas ≥ 32 ha,

both the tractor and ABP bales/trip values were significantly different. Based on these

results, ABP was recommended over a tractor for aggregation in general for reduced bale

aggregation logistics distances. However, an ABP with 8 bales/trip, which is also capable of

handling 11 bales, was recommended as the equipment will have a smaller footprint and

relatively reduced pressure on the track impacted areas. This capacity of ABP with

8 bales/trip (extendible to 11) will not be significantly different for smaller field areas of

≤ 24 ha and will be similar to 11 or 14 bales/trip (Fig.5.5B). However, with increased field

area’s higher capacity ABPs are significantly efficient but considering the equipment size

and the compaction due to load, the ABP with 8 bales/trip would be a good choice.
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5.4.4. Effect of Outlet Location on Logistics Distance

The effect of outlets at four locations: field middle (M:M), origin (O:O), along

mid-width edge (W:O), along mid-length edge (O:L), were analyzed on logistics distance.

An illustration of these four outlet locations in an area of 4 ha and 8 bales/trip depict the

variation in the bale aggregation paths and traffic near the outlet (Fig.5.6).

The field middle (M:M) represents the middle location in the field (Fig.5.6A),

mid-width (W:O) is the outlet along the width-edge (x-axis) of the field (Fig.5.6B),

mid-length (O:L) is the outlet along the length-edge (y-axis) of the field (Fig.5.6C), and

the origin (O:O) is the field corner (Fig.5.6D). Different paths were generated for different

outlet locations for the same area and bales/trip capacity.

Aggregation distances of the tractor and ABP bales/trip followed a similar trend for

all the outlet locations (Fig.5.7). With the square fields considered, the logistics distance of

edge outlets (W:O and O:L) has coincided. It was observed that the field middle outlet

produced the least logistics distance, followed by the mid-edge, and the origin outlet the

least. Compared to the origin outlet for the entire field area studied (8–259 ha), the

logistics distance reduction of field middle was 44%± 0.02 % and for mid-edges was

30%± 0.01%. With the increased number of ABP bales/trip the differences among the

outlet locations tend to diminish. However, while aggregating bales with tractors handling

fewer bales, the outlet choice makes significant difference and field middle becomes the

best choice.
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Figure 5.6. Effect of outlet location bale aggregation simulation with outlet positions at
A. M:M = field middle; B. W:O = along mid-width edge; C. O:L = along mid-length edge;
D. O:O = field origin; and simulation data: area = 4 ha, and rest of the data were similar
to Figure 5.3.
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Figure 5.7. Outlet locations effect on logistics distance (km); and simulation data:
area = 65 ha, random variation in biomass yield = 10 %, and rest of the data were similar
to Figure 5.3.

5.4.5. Relative Weights Analysis for Statistical Model Development

Relative weights analysis was conducted to determine the weights of the

independent variables such as bales/trip, field area, outlet locations, and windrow

variation on the bale aggregation logistics distances (Fig.5.8). Independent variables with

highest weights were considered for developing the prediction models. The results from

the weights analysis conducted among the predictor variables revealed that field area had

64.89 % and bales/trip had 32.03 % of weights with a total of 96.92 %, while other

variables had insignificance contributions. Therefore, the field area and bales/trip were

selected to develop simple regression and multivariate nonlinear regression logistics

prediction models.
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Figure 5.8. Relative weights analysis on the predictor variables, including field area,
bales/trip, outlet location, and windrow variation on bale aggregation logistics distances.

5.4.5.1. Simple specific prediction models

A simpler and convenient logistics distance model was developed using only the

independent variable of field area. The simulation using areas ranging between 8 to 259 ha

for each bales/trip of 1, 2, 8, 11, 14, 17, and 23 along with three windrow variations of

5 %, 10 %, and 15 % yielded about 141 data points. These generated aggregation logistics

data for specific bales/trip were well-correlated with field area as the Pearson’s correlation

coefficient ranged from 0.990–0.996. However, in the basic plot of field area against the

logistic distances for each bales/trip values, it can be observed that all trends showed a

power variation (Fig.5.9). Hence, a nonlinear regression analysis was employed for all the

bales/trip to fit a power model. The model predicted the aggregation distances (km) from
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field areas for specific bales/trip value. All these specific models developed produced a very

good fit performance (R2 > 0.99). As the bales/trip increased both the coefficient of field

area, and its exponent reduced from 0.107 down to 0.019 and from 1.489 down to 1.298,

respectively, indicating the logistics distance reduction effect of increased bales/trip.
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Figure 5.9. Specific bales/trip nonlinear power models to predict the aggregation distance
(km) using the predictor variable of field area (ha). All models had R2 > 0.99.

5.4.5.2. Combined multivariate prediction model

Rather than bales/trip specific prediction models, the combined multivariate model

used both the influential predictor variables, namely, field area and bales/trip (Fig.5.8).

Data considered in the models included field areas (8, 16, 24, 32, 40, 65, and 129 ha),
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bales/trip (1, 2, 8, 11, 14, 17, and 23) values with fixed windrow variation of 5 % and

outlet location of field middle (M:M). The isotherm format models, originally meant for

modeling equilibrium moisture contents of hygroscopic materials (ASAE Standards, 2003;

Igathinathane et al., 2005) that used two parameters, such as modified Hendersen and

modified GAB models, were adapted to model the bale aggregation logistics distances.

These two developed models predicted the logistic aggregation distance in km given the

area in ha (ranging from 8 to 259 ha) and bales/trip values (ranging from 1 to 23).

Modified Henderson:

DL =
�

AF

2.341× (BT + 1.066)

�1.401

(R2 = 0.989) (5.1)

Modified GAB:

DL =
49.112× A′F × BT

(1− 0.356 A′F)×
�

(1− 0.356 A′F) +
�

0.143 A′F
BT

��

(R2 = 0.995)

(5.2)

where, DL = total bale aggregation logistic distance (km); AF = field area (ha); BT = the

number of bales per trip (bales/trip); and A′F = AF/max(AF).

Among the two models, the modified GAB model produced the highest R2 value of

0.995 while the modified Henderson model produced a closely comparable R2 of 0.989

(Fig.5.10). The value of the variable field area must be normalized for the GAB model.

Though the R2 value from the Henderson model is only slightly lower than the GAB model,

due to its simple construction, the modified Henderson is preferred to the modified

GAB model.
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5.4.6. Aggregation Logistics Operation Time

The operation time for the tractor and ABP is directly dependent on the aggregation

logistics distance and the operational speed of the respective equipment. The speed of

these equipment during bale aggregation lies between the range 6.4–10.5 km/h

(4–6.5 mph) (Taylor et al., 1991). Since the equipment operation speed in the field is

always low, the tractor and ABP drawn by the tractor will have similar speeds, and the

difference in the operational times will come from the aggregation distances. The

operation time of the tractor, for the studied areas (8–259 ha), with 1 and 2 bales/trip on

an average was 5.04± 0.04 and 2.58± 0.02 times of ABP with 8 bales/trip, respectively.

Reduction in operation time of ABP with capacity 8 bales/trip while operating on a quarter

section of the field (≈ 65 ha) is 78 % and 58 %, respectively, compared to the tractor with

1 and 2 bales/trip.

Furthermore, increase in the number of bales will reduce the operation time of ABP,

but 8 or 11 bales/trip was considered as optimum, considering the cost of equipment and

soil compaction under equipment tracks. The equipment size of the 8 or 11 bales/trip is the

same for the modern ABP, as the 11 bales/trip is basically loading three more bales on the

top and middle of the two rows of 4 bales each of the 8 bales ABP. The operation time was

well-correlated with field area for all bales/trip producing a Pearson’s correlation

coefficient range of 0.990–0.996. Based on this good correlation, a multivariate nonlinear

model following the isotherm style of equations that predicted the operation time in h from

the field area (ranging from 8 to 259 ha) and bales/trip values (ranging from 1 to 23) was

developed. Among the isotherm equations modified Henderson model, which is also

simpler, offered the best fit performance (R2 ≥ 0.98).
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Modified Henderson:

TL =
�

AF

1.591× (BT + 1.422)

�1.372

(R2 = 0.98) (5.3)

where, TL = bale aggregation logistics operation time (h).

5.5. Conclusions

The performance of the aggregation equipment (8–259 ha), such as tractor and ABP

in bale aggregation logistics distances analyzed through simulation showed a decrease of

82.9%± 0.01 % and 66.9%± 0.01 %, respectively, with ABP 8 bales/trip compared to the

tractor with 1 and 2 bales/trip, which proved the effectiveness of ABP. Logistic distances

for the ABP with < 17 bales/trip showed a significant variation (p ≤ 0.001) in the studied

field areas (8–259 ha); however, ABP with 8 bales/trip for field areas < 24 ha was not.

Overall, an ABP with a capacity of 8 bales/trip, which can also handle 11 bales/trip, was

recommended considering its lesser footprint and less soil impact pressure compared to

higher capacity ABPs.

Among the four outlet locations considered (origin, field middle, mid-width, and

mid-length in 8–259 ha), the field middle produced the least (≈ 44% of origin) followed

by the mid-edge (mid-width and mid-length: ≈ 30 % of origin) and the origin the most

aggregation distances. Influential predictor variables, based on relative weights analysis,

such as field area (64.9 %) and bales/trip (32.0 %) were identified and used to develop

logistics models. Simple power models of logistics distance, specific to each bales/trip,

using only the field area produced good fits (R2 > 0.99), and generalized multivariate
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nonlinear isotherm-based models considering both field area and bales/trip such as

modified Henderson (R2 = 0.989) and modified GAB (R2 = 0.995) also performed well.

The ABP operation time (8–259 ha) with 8 bales/trip was ≈ 5.0 and ≈ 2.6 times

less than that of the tractor with 1 and 2 bales/trip, respectively. A modified Henderson

model using the field area and bales/trip for operation time also produced a good fit

(R2 = 0.98). Other parameters influencing the overall logistics, application of bale stacks

on the field, locating bales stacks along the edge of the field, and economic analysis of the

infield logistics leading to a better selection of equipment and methods should be

addressed in the future.
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6. GENERAL CONCLUSIONS AND SUGGESTIONS FOR

FUTURE WORK

6.1. General Conclusions

Infield logistics of biomass bales aggregation involving field equipment and their

efficient use in terms of reduced logistics distance, equipment impacted area, and operation

time are important research areas and related literature are highly limited, which formed

the motivation of this simulation-based research work. Simulation results of three different

studies were evaluated and statistically analyzed to determine the efficient bale stack

location (Paper 1), equipment track impacted areas (Paper 2), and efficiency of bale

aggregation equipment automatic bale picker (Paper 3).

Among the five different mathematical grouping methods evaluated for stack

location, across the field areas ranging from 0.5–260 ha, the geometric median was

considered as the best location, followed by field middle, middle data range, medoid, and

origin. The aggregation distance of the methods together was about 76 % while the

transportation contributed to about 24 % of the total aggregation distance. The methods’

distribution based on the traveling salesperson and the methods’ order considered showed

no pattern or convergence. Though the geometric median was the best stack location, field

middle was the recommended because it is readily available, and is comparable with the

geometric median. Developed power models predicted well the logistic distance from field

area with 6 bales/trip (R2 ≥ 0.99).
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Track impacted areas of different field equipment, such as harvester, baler, tractor,

and ABP were evaluated using the developed curvilinear method of realistic equipment

turning paths. Using the curvilinear method, an average of 0.5 % more aggregation

distance than the simpler Euclidean method was observed. A significant difference was

observed between the methods for smaller areas (< 24 ha) when the area-wise results were

analyzed. Euclidean method of aggregation distance can be used instead of the curvilinear

method (1.03–1.21 times of Euclidean) in general, or the developed models that predict

the curvilinear aggregation distance from the Euclidean distance (R2 ≥ 0.99) can be used.

Among the equipment, harvester contributed the most (≈ 36%) and ABP the least

(≈ 35.6 %) to the total impacted area. Linear (harvester and baler) and power models

(tractor and ABP) developed for predicting the curvilinear impacted area of the equipment

for the field area produced a good fit (R2 ≥ 0.99). Furthermore, combined multivariate

non-linear models developed based on isotherm models to predict the total equipment

impacted area (Oswin) and operation time (modified Handerson) also produced good

performance (0.94≤ R2 ≤ 0.99).

Comparison of bale aggregation with ABP (8 bales/trip) and tractor (1 and

2 bales/trip), across the field areas (8–259 ha), showed that the tractor impacted area was

about 6 and 3 times more than ABP, while the ABP aggregation distance was ≈ 83% and

≈ 67 % reduction, respectively, which indicated the better efficiency of ABP over the tractor.

Among the outlet locations, the impacted area and aggregation logistics distance showed a

reduction of ≈ 44% and ≈ 30 % for the field middle and mid-edge, respectively, when

compared to the origin outlet. Furthermore, the operation time of ABP (8 bales/trip) was
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the least; and a ≈ 5.0 and ≈ 2.6 times reduction was observed (8–258 ha), respectively,

when compared with the tractor (1 and 2 bales/trip).

Simple power models developed to predict the aggregation distance from the field

areas specific to bales/trip performed well (R2 ≥ 0.99). Also, the generalized models based

on the isotherm for the aggregation equipment (using field area and bales/trip as inputs)

such as modified Henderson, developed to predict the impacted area and operation time

(R2 ≥ 0.98), and modified Henderson (R2 = 0.989) and modified GAB (R2 = 0.995) models

developed to predict the aggregation distance have performed well; however, the modified

Henderson model was recommended due to the model’s simplicity. Based on the results of

the impacted area, aggregation distance, and operation time, an ABP with a capacity of

8 bales/trip was efficient and recommended, as this equipment can also accommodate

11 bales/trip and will have less soil impact pressure compared to higher capacity ABPs.

6.2. Suggestions for Future Work

Future research work in infield bale aggregation logistics and other field operations

in terms of distance and time, and the track impact of equipment should be extended to:

1. Study on the effect of other field shapes (e.g., rectangular, quadrilateral

polygons, circular) and other field parameters.

2. Study on application of ABP on multiple bale stacks formation and the different

stack location methods for efficient infield bale logistics determination.

3. Study on the overlapping runs of the equipment track on the field, which may

lead to increased soil compaction.
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4. Measure the actual field compaction caused by field equipment and relate to the

results from the track impact simulation study.

5. Evaluate the economics involved in the logistics and track impact research

works described.
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APPENDIX A. DERIVATION OF FIELD EQUIPMENT

TURNING PATHS

This appendix illustrates the mathematical derivation of the turning paths of

equipment, such as harvester and baler and a few representative cases of ABP.

A.1. Harvester and Baler Turning Path Derivation

Turn path derivation of harvester and baler are similar (Fig.A1), but varies only on

the equipment turning radius. The harvester turning radius is greater (6 m) than the baler

(4.3 m). Therefore, the harvester had to trace increased length of curvilinear track along

the field edges than the baler.

Known parameters: Turning radius of the harvester and baler, swath width (s),

number of swaths (ns), and the field dimensions (Length = L and Width = W).

To find: Points A, I, F, D, H, G, and sweep angles.

Finding points A, E, F, and C.

xA = 0; yA = L (A1)

xE =
s
2

; yE = 0 (A2)

xF =
s
2

; yF = L (A3)
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g

Figure A1. Harvester and Baler turning construction cases (rb) — same as Fig. 4.3 and is
reproduced for ready reference.

xC = s; yC = L (A4)

Finding point D:

With respective to point F,

xd = rH; yd = 0
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With respective to the origin points,

xD = xF − xd; yD = yF + yd (A5)

Finding the turning angle θt:

In 4 DHI, DI = (s+2(rH))
4 ; HI =

p

DH2 −DI2

Therefore,

θt = tan−1 HI
DI

(A6)

Finding point H:

In 4 DHI, DH = rH

xh = rH × cosθt; yh = rH × sinθt

xH = xD + xh; yH = yD + yh (A7)

Finding point G:

In 4 DGC, DG = 2 ×rH; DC = rH +
s
2 ; GC =

p

DG2 −DC2

With respective to the point F,

xg = 2 × rH × cosθt; yg = 2 × rH × sinθt

With respective to the origin,

xG = xD − xg; yG = yD + yg (A8)

Finding sweep angle, γs:

In 4 GCD, θg = 90 - θt
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Therefore,

γs = 360− (2× θg) (A9)

Calculating the length of the whole curve, FF′:

Length of curve of FH, HJ, and FJ:

FH = θt
360 × 2×πrH ; HJ = (γs/2)

360 × 2×πrH (using the length of arc formula)

Length of curve FJ = FH + HJ

FF′ = 2× FJ (A10)

Calculating the linear travel distance, EF:

EF=
Æ

(xE − xF)2 + (yE − yF)2 (A11)

Calculating the total travel distance:

Total curve distance= (ns − 1)× F F ′ × Total linear distance= ns × EF (A12)

Total travel distance= Total curve distance + Total linear distance (A13)

A.2. ABP Turning Path Derivations

The derivation of ABP with two representative cases of right-up (I-quadrant) and

left-down (III-quadrant) given the three selected bale coordinates and the turning radius of

equipment is illustrated in this section.
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A.2.1. Up-Right I-Quadrant Case

Known parameters: Coordinate values of the points A, B, and C. Turning radius of

the vehicle, rt, and the bale radius rb (Fig.A2).

Figure A2. Case: Up and Right, Turning case ABP using three known bale points, turning
radius (rt) and bale radius (rb).

To find : Points D, F, H, G, sweep angle, and start angle.

Finding point D(xD, yD):

Calculating the distance of AB, and BC:

With respective to the point B,
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xd = rb; yd = 0

With respective to the origin,

xD = x2 + rb; yD = y2 (A14)

Finding point F(xF, yF):

AD =
p

(x1 − xD)2 + (y1 − yD)2; BF = FN = rt + rb

With respective to the point B,

xf = BF; yf = 0

With respective to the origin,

xF = x2 + xf; yD = y2 + yf (A15)

Finding point H(xH, yH):

FC =
p

(x3 − xF)2 + (y3 − yF)2; NC = GH =
p

(FC)2 − (rt + rb)2; FH =
Æ

NC2 + rt
2

αNC = tan−1(NC
FN ); αCI = cos−1( x3−xF

FC ); αGH = tan−1(GH
rt
)

αHK = αCI - (αGH - αNC); FK = FH × cos(αHK); HK = FH × sin(αHK)

With respective to the point B,

xh = rt + rb + FK; yh = HK

With respective to the origin,

xH = x2 + xh; yH = y2 + yh (A16)
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Finding sweep angle, γs:

γs = 180− (αCI +αNC) (A17)

Finding point G(xG, yG):

αGJ = αCI + αNC

FJ = rt × cos(αGJ); GJ = rt × sin(180− γs)

With respective to the point B,

xg = FJ; yg = GJ

With respective to the origin,

xG = x2 + xg; yG = y2 + yg (A18)

Start angle, γt:

γt = 180− γs (A19)

Calculating the length of the curve, DG:

Using length of an arc formula,

DG=
γs

360
× 2πrt (A20)

Calculating the linear distances, AD and GH:

AD=
Æ

(x1 − xD)2 + (y1 − yD)2 (A21)
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GH=
Æ

(xG − xH)2 + (yG − yH)2 (A22)

Calculating the distance traveled:

In the event of collecting a bale located at up and right with respective to the points

A and B, the distance traveled by the vehicle is:

Distance traveled = AD + DG + GH (A23)

A.2.2. Down-Left, III-Quadrant Case

Known parameters: Coordinate values of the points A, B, and C. Turning radius of the

vehicle, rt, and the bale radius rb (Fig.A3).

To find : Points D, F, H, G, sweep angle, and start angle.
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Figure A3. Case: Down and Left, Turning case ABP using three known bale points, turning
radius (rt) and bale radius (rb).

Finding point D(xD, yD):

With respective to the point B,

xd = rb; yd = 0

With respective to the origin,

xD = x2 + rb; yD = y2 (A24)

Finding point F(xF, yF):
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AD =
p

(x1 − xD)2 + (y1 − yD)2; BF = FN = rt - rb

With respective to the point B,

xf = BF; yf = 0

With respective to the origin,

xF = x2 − xf; yD = y2 + yf (A25)

Finding point H(xH, yH):

FC =
p

(x3 − xF)2 + (y3 − yF)2; NC = GH =
p

(FC)2 − (rt − rb)2; FH =
Æ

NC2 + rt
2

αNC = tan−1(NC
FN ); αCI = cos−1( x3−xF

FC ); αGH = tan−1(GH
rt
)

αHK = (αCI - αNC) + αGH; FK = FH × cos(αHK); HK = FH × sin(αHK)

With respective to the point B,

xh = (rt - rb) + FK ; yh = HK

With respective to the origin,

xH = x2 − xh; yH = y2 − yh (A26)

Finding sweep angle, γs:

γs = 180+ (αCI −αNC) (A27)

Finding point G(xG, yG):

αGJ = αCI - αNC

FJ = rt × cos(αGJ); GJ = rt × sin(180− γs)
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With respective to the point B,

xg = FJ; yg = GJ

With respective to the origin,

xG = x2 − xg; yG = y2 + yg (A28)

Start angle, γt:

γt = 0 (A29)

Calculating the length of the curve, DG:

Using length of an arc formula,

DG=
γs

360
× 2πrt (A30)

Calculating the linear distances, AD and GH:

AD=
Æ

(x1 − xD)2 + (y1 − yD)2 (A31)

GH=
Æ

(xG − xH)2 + (yG − yH)2 (A32)
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Calculating the distance traveled:

In the event of collecting a bale located at down and left with respective to the

points A and B, the distance traveled by the vehicle is:

Distance traveled = AD + DG + GH (A33)
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APPENDIX B. VARIOUS ABP TURNING PATH CASES,

DERIVATIONS, SIMULATION RESULTS, AND SAMPLE

R CODES

B.1. ABP Turning Cases

Using the turning radius of the ABP vehicle and three known bale points,

17 different cases were observed while moving the point C over the points A and B.

Four main cases, Up and right, Up and Left, Down and left, and Down and right emerged

based on the position of point C with respective to points A and B. For instance, the point C

up and right to the points A and B gave arise to the Up and Right case. Point F is the center

of the turning circle, while points D, G, and H are the tangent points. The points K, J, and I

are the perpendicular drop from the points H, G and C to the line drawn at F. The positions

of the points K, J, and I with respective to the point F gave arise to different cases within

the main cases. These major four cases and the sub-cases are illustrated in Figs.B1–B4.
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Up-Right turn cases

Figure B1. A. RegRt - Regular right (point J on right with respective to point F), B. RegLt -
Regular left, (point J on left with respective to point F), C. StRt - Straight right, point K lies
on the right, with respective to point F, D. StLt - Straight left, point K lies on the left of point
F; bale radius (rb)= 1.5 m, and turning radius (rt)= 10 m.
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Up-Left turn cases

Figure B2. A. StRt - Straight right (point I, K, and J lie on right with respective to point F),
B. StLt - Straight left, (point I lies on left, and point K and J lie on the right with respective
to point F), C. RegLt - Regular left, point I and K lie on the left, and point J lies on the right
with respective to point F, D. RegLt - Regular left, point I, K , and J lie on the left of point F;
bale radius (rb) = 1.5 m, and turning radius (rt) = 10 m.
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Down-Right turn cases

Figure B4. A. StLt - Straight left (points K and I lie on the left and point J lies on the right
with respective to point F), B. StRt - Straight right (point K lies on the left, and points I and
J lie on the right with respective to point F), C. RegDn - Regular down (points K, I, and J lie
on the right of point F, and point G lies below point F), D. RegUp - Regular up (points K, I,
and J lie on the right of point F, and point G lies above point F).
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B.2. Turning Case Derivations and Track Impacted Area Simulation Results

The consolidated derived equations for all the 17 turning cases of ABP are presented

in TableB2–B1. Table B3 shows the simulation results of impacted area obtained across

different areas (8–259) and bales/trip (1–23).
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B.3. Sample R Codes for Simulation, Visualization, and Model Fitting

##############################################################
# This section represents a small portions of the original
# code (more than 2700 lines). The program simulated
# biomass bales on fields , mimicks the equipment harvester ,
# baler , tractor and automatic bale picker , and evaluates
# the distance traveled. Contains the code for curvilinear
# method which incorporates vehicle turning used for
# calculating the aggregation distance and impacted area
# generate by the equipment. This code also includes
# statistical analysis and plotting.

# Developed by: Subhashree N Srinivasagan and
# C. Igathi; ABEN , NDSU
###############################################################
# -----------------------------------------------------------
# Intputs:
# areaHectare # field area in hectare
# LbyW # field shape as length(y)/width(x)

# ratio
# yieldPerHa # biomass yield in mt/ha or Mg/ha (10.0)
# baleMass # mass of bale in Mg (0.68)
# swath # swath width of harvester in m (6)
# perWindVer # percentage windrow biomass variation

# in % (0 to 20%)
# fieldOutletX # code indicating the outlet location

# X of whole field (0 to 1)
# fieldOutletY # code indicating the pile location

# Y of whole field (0 to 1)
# noTrans # number bales transported at a time
# baleAccu # accumulator added
###############################################################

###################### Functions ###################

#Calculate two -point distance

dist_pts <- function(x1 , y1, x2, y2){
dx = abs(x1-x2); dy = abs(y1-y2)
dis = sqrt(dx^2+dy^2)
return(dis)

}

#---------------------------------------------------
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# Finding number of trips and deciding whether whole
# or fractional trip

num_trips <- function(numpoints , ntrans ){
wholeNtrips = numpoints %/% ntrans
if (numpoints %% ntrans == 0) {

totTrips = wholeNtrips
partBales = 0

}
else{

totTrips = wholeNtrips + 1
partBales = numpoints %% ntrans

}
num_list <- list(wholeNtrips , totTrips , partBales)
return(num_list)

}

#---------------------------------------------------

# Calculating turning cases based on the
# bale points A, B, and C, turning radius ,
# and bale radius.

TransformThreePtsSimple <-
function(rb, rt , xa, ya, xb, yb, xc, yc){

# xa, ya is pivot point
turn = 0

Dact <- Tangent_Point_WithRb(xa, ya, xb, yb, rb)

sx = xd - xa; sy = yd - ya
dx = abs(sx); dy = abs(sy)
ang = atan(dx/dy) * 180/pi

# All rotaions in CW and projected to the
# positive y-axis (vertical direction)

if(sx >= 0 && sy >= 0) turn = 360 - ang # 1st quadrant
if(sx <= 0 && sy >= 0) turn = ang # 2nd quadrant
if(sx <= 0 && sy <= 0) turn = 180 - ang # 3rd quadrant
if(sx >= 0 && sy <= 0) turn = 180 + ang # 4th quadrant

# Deciding on the cases

#if(xcd >= xbd) Case = "Rt" else Case = "Lt"
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if(xcd >= xbd) Case = "Rt" else Case = "Lt"

# General parameters I

## Finding D
AB <- dist_pts(x1, y1, x2, y2)
BC <- dist_pts(x2, y2, x3, y3)
thetaC <- atan(abs(y3-y2) / abs(x3 -x2))
thetaBD <- asin(rb/AB)
xD = x2 + rb; yD = y2
AD <- dist_pts(x1, y1, xD, yD)

# Different cases are determined and curvilinear distance
# is calculated.

#---------------------------------------------------

# Drawing Euclidean track path

if (jj %% 2 == 0) {mycolor = "purple"}
else {mycolor = "green"}
tripd = dist_pts(xt , yt, pathx[1], pathy [1])
if(isTRUE(drawAccuPath )){

segments(xt, yt , pathx[1], pathy[1], col = mycolor)
}
if (ncollect != 1){

for (i in 1:(bc -1)) {
tripd <- tripd + dist_pts(pathx[i], pathy[i],
pathx[i+1], pathy[i+1])

if(isTRUE(drawAccuPath )){
segments(pathx[i], pathy[i], pathx[i+1],
pathy[i+1], col = mycolor)

}
}
tripd = tripd + dist_pts(xt, yt, pathx[bc], pathy[bc])
if(isTRUE(drawAccuPath )){

segments(xt, yt, pathx[bc], pathy[bc], col = mycolor)
}

}
else {

tripd = tripd *2 # to and fro for the single bale
}
tottripd = tottripd + tripd
compLength = tottripd
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#---------------------------------------------------

# Draw curvilinear track path

require(plotrix)
par(mar=c(5 ,6 ,4 ,1)+.1)

if( isTRUE (drawTrackPath )){
i = 0
plot(apaths[,2], apaths[,3], xlab = "Width(m)",

ylab = "Length(m)", pch = 20, cex=0.5,
xlim = c(0,W), ylim = c(0,L),asp = 1,
cex.axis = 1.2, cex.lab = 1.2)
points(xt, yt, pch = 22, xlim = c(0,W),
ylim = c(0,L), bg = "yellow", cex = 3)

for (jj in 1: wholeTrips ){
if(ncollect == 1){

i = i + 1
draw.circle(rdf$xB[i], rdf$yB[i], rb,

border="red", lty=1, lwd =0.5)
if(drawCheckCircle) draw.circle(rdf$xF[i],
rdf$yF[i], vchk[i], border="black",
lty=1, lwd =0.1)
text(rdf$xB[i], rdf$yB[i], label = jj,

col = "blue", pos = 1, cex = textFactor)
segments(rdf$xA[i], rdf$yA[i], rdf$xD[i],

rdf$yD[i], col = mycolor , lty=1, lwd=(TDW))
draw.arc(rdf$xF[i], rdf$yF[i], radius = rt,

deg1 = rdf$deg1[i], deg2 = rdf$deg2[i],
col = mycolor , lwd = (TDW),lty =2)

segments(rdf$xG[i], rdf$yG[i], rdf$xA[i], rdf$yA[i],
col = mycolor , lty=1, lwd=(TDW))

} else {
i = i + 1
# Drawing the 1st bale of the path
draw.circle(rdf$xB[i], rdf$yB[i], rb,border="red",

lty=1, lwd =0.5)
draw.circle(rdf$xF[i], rdf$yF[i], rt, border="blue",

lty=2, lwd =0.5)if(drawCheckCircle)
draw.circle(rdf$xF[i], rdf$yF[i], vchk[i],

border="black", lty=1, lwd =0.1)
text(rdf$xB[i], rdf$yB[i], label = jj, col = "blue",

pos =1, cex = textFactor)
segments(rdf$xA[i], rdf$yA[i], rdf$xD[i], rdf$yD[i],

col = mycolor , lty=1, lwd=(TDW))
draw.arc(rdf$xF[i], rdf$yF[i], radius = rt,
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deg1 = rdf$deg1[i], deg2 = rdf$deg2[i],
col = mycolor , lwd = (TDW),lty =2)

i = i + 1
}

}

#---------------------------------------------------

# Model fitting

# Modified Handerson Model
a = 2; b = 2; c = 2; d = 2
x1 <- df$Area ;x2 <- df$Balegrp; y <- df$Dist
RSS <- sum(residuals(m)^2)
TSS <- sum((y - mean(y))^2)
R.square <- 1 - (RSS/TSS)
m <-nls(y ~ e + a*(x1) + b* I(x1^2) +

(c*(1/x2)) + d * I(x1 * x2),
start = list(a = a, b = b,
c = c, d = d, e = e))

(n <- coef(m))
summary(m)
RSS <- sum(residuals(m)^2)
TSS <- sum((y - mean(y))^2)
R.square <- 1 - (RSS/TSS)
cor(y,predict(m))

#plot

pchv <- c( 8, 13, 12, 9,10, 17, 6)
colvf <- c("blue","darkgreen","purple", "red",

"orange", "yellow", "coral4" )
colvp <- c("darkmagenta", "darkorange", "darkred",

"deeppink4", "chartreuse4","darkcyan","gold")
par(mar=c(5 ,5 ,4 ,1)+.1)
plot(x1,y, col = "blue", type = "n",

xlab = expression(bold(paste(Area~(ha)))),
ylab = expression(bold(paste(Logistic~distance~(km)))),
cex.axis = 1.7, cex.lab = 1.7,
main = "Modified␣Henderson␣model", cex.main = 1.8)

text(5, 400, expression(paste(Dist. == (Area / 2.28 *
(Balegroup + 1.2)))^(1.4)) , adj = 0, cex = 1.5)

text (65,400, expression(paste(",(", R^2 == 0.98, ")")),
cex = 1.5, adj = 0)

#---------------------------------------------------
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# Model plotting

dat <- read.table(input data)
par(mar=c(5 ,5 ,2 ,1)+.1)
Area <- dat$Area ; Harv <- dat$Harv
Baler <- dat$Baler ; ABP <- dat$ABP
Total <- dat$Total
plot(Area ,Total , cex.lab = 1.4,

cex.axis = 1.5, cex = 1.8)
Arr <- seq(1, 260, by = 5)
ResrH <- array(0, c(length(Arr), 1))
ResrB <- array(0, c(length(Arr), 1))
ResrABP <- array(0, c(length(Arr), 1))
ResrTot <- array(0, c(length(Arr), 1))
ResrH <- 3.62 * Arr + 5.33
ResrB <- 3.59 * Arr + 3.67
ResrABP <- 0.39 * Arr ^1.39
ResrTot <- (10.92 * Arr) - 69.46
#ResrTot <- 7.56 * Arr ^1.06
lines(Arr ,ResrH , col = "red", lwd = 3)
lines(Arr ,ResrB , col = "blue", lwd = 3)
lines(Arr ,ResrABP , col = "darkgreen", lwd = 3)
lines(Arr ,ResrTot , col = "darkmagenta", lwd = 3)
points(Area , Harv , col = "red", pch = 17, cex = 2.2)
points(Area , Baler , col = "blue", pch = 18, cex = 2.5)
points(Area ,ABP , col = "darkgreen", pch = 16, cex = 2.2)
points(Area ,Total , col = "darkmagenta", pch = 15, cex = 2.2)
legend_texts =expression("Harvester:", "Baler:",
paste(’ABP ,(’,italic(’B’[’T’]) == ’8):’), "Total:")
legend(5, 2850, legend = legend_texts ,

col=c("red", "blue", "darkgreen","darkmagenta"),
cex=1.2, lty = 1, lwd = 2.5, bty = "n",
pch = c(17,18,16,15), y.intersp =0.62)

#---------------------------------------------------
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