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ABSTRACT 

A challenge for hard red spring wheat (HRSW) (Triticum aestivum L. emend Thell.) 

producers is to obtain both high yields and market-required grain protein content (GPC). The 

ability to accurately predict HRSW yield with the Decision Support System for Agrotechnology 

Transfer (DSSAT) crop model early in the growing season may help producers determine 

probable GPC and lead to management decisions on whether to apply supplemental nitrogen (N) 

to enhance protein. A management decision HRSW producers may consider in high yielding 

environments is a late-season foliar N application to increase GPC. A second objective of this 

research was to test methods to improve the efficiency of a foliar N application. Improving the 

efficiency of a late-season foliar N application coupled with the ability to predict high yielding 

environments using DSSAT, can provide producers with effective management tools to 

determine the optimum situation in which supplementing GPC will have the most economic 

success. 
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PREFACE 

This thesis was written as two manuscripts that will be submitted for publication in the 

appropriate scientific journals. The ‘Introduction’ provides a general review of this study and 

how both chapters are related to the main issue, developing methodology to predict and increase 

grain protein content in spring wheat. Following the Introduction, the thesis is divided into two 

manuscripts which contain Introduction, Materials and Methods, Results and Discussion, 

Conclusion, and References Cited sections that are specific to the chapter. The references for the 

‘General Introduction’ can be found in the ‘General References Cited’ section. 
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INTRODUCTION 

Hard red spring wheat (HRSW) (Triticum aestivum L. emend Thell.) producers not only 

depend on quantity of grain in terms of yield, but also need to achieve market-standard grain 

protein content (GPC)  in order to achieve maximum  economic returns. Previous research has 

indicated a negative relationship between yield and GPC within a given cultivar and at a given 

level of fertility, which poses a challenge for HRSW producers as quality discounts at point of 

sale result when protein levels do not reach the market-standard (Alkier, 1972). However, a 

premium can usually be obtained when GPC levels exceed the market-standard (Jones and 

Olson-Rutz, 2012).  Environmental and agronomic challenges influence maximum yield, which 

may encourage some HRSW producers to make in-season management decisions in order to 

regain the desired yield if the factors are negative, or may prompt some to conduct an in-season 

nitrogen (N) application if yield is likely to be high and the probability of a price premium for 

high GPC seems likely.  

The ability to accurately predict yield may assist producers in determining probable GPC; 

however, environmental factors that influence crop growth and yield are highly unpredictable 

between years. A crop simulation model (CSM), such as the Decision Support System for 

Agrotechnology Transfer (DSSAT) is a prediction tool that uses environmental and agronomic 

interactions to determine soil impacts, crop growth, and yield components (Boote et al., 2015). 

The DSSAT-CSM has been used extensively to predict yield with preseason weather and 

agronomic inputs such as planting, fertilizer, and irrigation options (Bannayan et. al, 2003). 

Implementing DSSAT-CSM with in-season weather information has not been as widely studied 

for HRSW production, but its use may prove be an effective predictive tool to help producers 

make improved management decisions.  
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 A management decision HRSW producers may consider in high yielding environments is 

an application of foliar N, such as urea (46-0-0) solution (US) or urea ammonium nitrate (UAN, 

28-0-0), to increase GPC. Increasing GPC has been successfully practiced through this additional 

N application between ZGS 45 and ZGS 73 with the most effective at ZGS 69 (Zadoks et al., 

1974); however, the efficiency of N absorption into the plant has been limited (Finney et al., 

1957; Jones and Olson-Rutz, 2012). Therefore, developing methods to improve the efficiency of 

this foliar N application may prove to be economically feasible.  

 Developing techniques to improve N use efficiency from a late-season foliar N 

application coupled with improved yield prediction through the use of DSSAT-CSM may result 

in improved protein management for producers. These tools can assist producers in determining 

when supplemental N would have the greatest economic benefit.  
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ARTICLE 1: RELIABILITY OF PREDICTING SPRING WHEAT YIELD WITH DSSAT 

USING EARLY SEASON WEATHER DATA 

Abstract 

 A crop simulation model (CSM) can be a predictive tool to help hard red spring wheat 

(HRSW) (Triticum aestivum L. emend Thell.) producers make in-season crop management 

decisions, such as a late-season foliar N application to increase grain protein content (GPC) in 

high yielding environments. The objective of this research was to evaluate the Decision Support 

System for Agrotechnology Transfer (DSSAT) CSM in predicting HRSW yield at various points 

in the growing season to determine how early the model could be implemented to accurately 

predict final grain yield. Historic weather data was used in three approaches (distribution, 

historical average, analogue) to forecast weather for the remainder of the season from Zadoks 

growth stage (ZGS) 14, 45, and 61 for five locations throughout North Dakota. Across 

environments the strength of relationship between observed and simulated anthesis date and 

yield was significant at p≤0.01. The optimum approach to simulate grain yield with forecasted 

weather was through a distribution style from ZGS 45 or 61. 

Introduction 

 Weather events are often unpredictable and vary considerably between and within years. 

These events have a tremendous impact on the success of agricultural producers due to the 

environmental impact on yield potential. In order to obtain the desired grain quality, HRSW 

producers often make in-season management decisions based on the weather. However, 

generalized weather patterns are frequently used, which can make these decisions risky due to 

lack of specific accuracy (Hansen et al., 2000). 
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Crop models, such as DSSAT, are software applications that use environmental and 

agronomic interactions to predict soil processes, vegetative growth, and yield outcomes 

(Batchelor et al., 2015). The DSSAT has the potential to predict these outcomes with defined 

weather and agronomic inputs, which allows users to make improved crop management 

recommendations (Hansen et al., 2000). In this paper the abbreviation ‘DSSAT’ will refer to the 

software application of the CSM used in this study.  

In HRSW production, GPC determined at the point of sale must meet the market-standard 

level to avoid discounts for low GPC or receive a premium if GPC is greater. For a given 

cultivar, a negative relationship exists between yield and GPC at a given level of soil fertility. A 

management technique to increase GPC is through a foliar application of N fertilizer between the 

ZGS 45 and 73 growth stages (Finney et al., 1957). However, this application is not economical 

unless crop yields coupled with the premium increase or discount results in revenue that is 

greater than the cost of the additional N application. 

A decision to make the additional application of N carries risk due to the unknown yield 

of the current crop, since future weather events throughout the season are unpredictable. Yield 

and protein prediction can be done through multiple strategies, but do not take into consideration 

the impact of future weather. The DSSAT has predictive capabilities by using updated weather 

information during the growing season supplemented with estimated future weather. Therefore, 

the use of DSSAT may be beneficial to agricultural producers by more accurately simulating 

crop growth, allowing for proactive in-season management practices to achieve maximum 

economic return. 
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Crop Simulation Models and DSSAT Overview 

Crop simulation models estimate crop growth and yield throughout the growing season 

by simulating the multiple ecological and agronomic interactions that impact growth. These 

include daily weather data, soil characteristics, and crop management practices (Batchelor et al., 

2003). The DSSAT is a computer program developed in 1985 and first released in 1986 for 

maize (Zea mays L.), wheat, soybean (Glycine max L.), and peanut (Arachis hypogea L.) crops 

(Batchelor et al., 2003). Further upgraded versions included an expansion of 42 crops and 

improved model calibration. The DSSAT simulates crop development, ontogeny, and phenology 

through heat unit accumulation and using carbon, N, and water balance principles within a 

defined area (Clarke et al., 2010).  

The DSSAT incorporates models for broadleaf and cereal crops within a single program. 

The CROPGRO model computes the growth of various broadleaf crops and is further described 

by Boote et al. (1998). The CERES-maize, wheat, and barley (Hordeum vulgare L.) models 

compute the growth of cereal crops. Crop developments in the CERES models are regulated by 

growing degree days (GDD), which are computed internally from daily maximum and minimum 

temperatures uploaded into the program. Clarke et al. (2010) details the function of CERES-

wheat model with a base temperature for GDD calculations of 0°C.  

The soil program within DSSAT integrates water, temperature, carbon, and N within the 

soil profile. A soil series is represented by a one-dimensional profile that is vertically layered and 

horizontally homogenous (Batchelor et al., 2003). Decomposition of organic matter and plant 

availability of N is determined by two primary soil organic modules, CENTURY (Parton et al., 

1988; Parton et al., 1994) and PAPRAN (Seligman and Van Keulen, 1981). Soil water content is 

determined by soil layer characteristics and changes as water is supplied by precipitation or 
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irrigation. The lower limit and saturated water content within each layer is computed and 

subsequent water exceeding the drained upper limit percolates to the soil layer below and 

continues downward for each layer, depending on the initial amount of water added. Surface 

water runoff is computed using a modified runoff curve number from the USDA-Soil and 

Conservation Service (Williams, 1990).  Soil evaporation is computed by an approach used by 

Priestly and Taylor (1972). Nutrient availability and movement use similar functions as soil 

water. 

The DSSAT accounts for genotypic and phenotypic variations within a specific crop to 

environmental conditions. This allows for more accurate representations of cultivar-environment 

interactions (Batchelor et al., 2003). To represent the genetic makeup of a crop and cultivar, data 

files within the program have set parameters called genetic coefficients. The genetic coefficients 

are determined for each cultivar using crop, weather, and soil data (Batchelor, et al., 2003). Crop 

species may require different coefficients. Wheat genetic coefficients include vernalization, 

photoperiod response, grain filling duration, interval between leaf tip appearances, kernel 

number per unit canopy weight at anthesis, kernel size, and non-stressed mature tiller weight. 

A strength of DSSAT is that expensive and time-consuming agronomic experiments can 

be simulated in a relatively short amount of time; however, limitations exist within models. 

Model performance is limited by the accuracy of the input variables, which can be affected by 

spatial and temporal variability, costs of measuring data, and technical knowledge. Model 

performance is only as good as the data quality input (Antle et al., 2016). Misuse as well as 

misrepresentation or misunderstanding of the tool can affect the usefulness of the model; 

therefore, limitations of the model output must be understood. 
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Crop Modeling Techniques 

Crop model development began from a need for improving decisions for multiple 

environments from a single system that combined soil, climate, crops, and management 

information (Batchelor et al., 2003). The crop modeling software has been used extensively by 

researchers as a supplement to experiments and more recently has been used to support 

management decisions for producers (Boote et al., 1996). The DSSAT has specifically been used 

for research on the impact of fertilization, irrigation, pest management, climate variability, and 

site-specific farming on crop production. A new concept in the use of DSSAT by consultants is 

to forecast yield to help agricultural producers make management decisions (Bannayan et al., 

2003).  

Spring wheat producers might directly benefit from the use of a CSM if yield can be 

more accurately predicted for their region. As the growing season progresses, yield prediction is 

increasingly more accurate, whereas early season weather provides limited guidance for later 

season conditions and yield prediction. Bannayan et al. (2003) used the CERES-wheat model to 

predict wheat yield during the growing season with updated weather conditions as the growing 

season progressed. Results indicated forecasting grain yield improved significantly from early 

vegetative growth stages through the appearance of the flag leaf, with no significant 

improvement after that point.  

Crop models have been used to forecast yield on both a small and large-scale through 

different approaches (Bannayan et al., 2003). In these approaches, the weather throughout the 

entire growing season is unknown, so past weather data are often used as an indication of 

probable future weather patterns. One technique in forecasting is to use past weather represented 

by daily averages calculated over multiple years. This approach uses a generalized climate since 
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it does not take into account the variability that can exist between years and will give a single 

predicted outcome of crop production (Barnett, 2004). A range of crop production expectations 

for a given year can be achieved when multiple past weather years are used for the same forecast. 

This range will give a distribution of outcomes with a maximum, median, and minimum 

expectation. The ability to accurately predict yield early in the growing season would be 

beneficial to producers and researchers as this would allow them the opportunity to make in-

season management decisions more successfully (Batchelor et al., 2001).  

Predicting Yield and Grain Protein  

Spring wheat producers can effectively estimate grain yield prior to harvest through 

multiple techniques including kernel counts (Wiersma and Ransom, 2005), empirical based 

models (Balaghi et al., 2008), or proximal canopy sensing (Arnall et al., 2006). However, these 

techniques have limitations. For example, kernel counts are not taken until late in the growing 

season when it is too late to improve yield with additional inputs. Empirical based models and 

canopy sensing indicate the current condition of the crop, but cannot take into consideration the 

impact of future weather. Crop simulation models may be a tool that can assess the current 

condition of the crop and use estimated future weather to give an accurate assessment of yield. In 

turn, producers can use this information to make late season management decisions.   

A foliar application of N fertilizer during the fruiting period in HRSW may be a 

management option to increase GPC (Baltensperger et al., 2008). However, this application may 

not be economical if the yield is not high enough to realize an economic benefit from the 

additional application. The premium received for protein levels above the market threshold of 

140 g kg-1 for HRSW and 120 g kg-1 for hard red winter wheat is not fully realized until after 
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harvest due to the uncertainty of GPC of the current crop. The level of GPC is only determined 

after harvest, as there are currently no techniques to predict protein levels in-season. 

 Grain yield and GPC have an inverse relationship for a given cultivar and at a certain 

level of soil fertility. Therefore, understanding the impact of weather events on grain yield may 

indicate whether GPC levels are likely to be high or low. Weather variables such as temperature, 

solar radiation, soil moisture, and nutrient availability directly impact grain yield. Wheat 

response to N applications can depend on water and nutrient availability with low response to N 

in environments with low soil moisture from lack of rainfall or high temperatures. The DSSAT 

has the ability to depict the effect of weather events on the soil and crop to provide an estimation 

of end season yield. If high yields are estimated by the crop model, with insufficient N, then the 

simulations may provide support for a late season foliar N application to increase GPC. 

Objective 

 The objective of this research was to determine if DSSAT could be used to predict 

HRSW yield in order to support a decision on the use of a late season foliar N application. If so, 

a further objective was to determine the best strategy to predict yield with estimated future 

weather through multiple modeling approaches at various HRSW growth stages. 

Materials and Methods 

Crop Model Experiment Setup 

In order for simulations to be conducted within the DSSAT, hypothetical experiments 

had to be created with the experiment builder called the ‘Crop Management’ program. The 

program combines management inputs to enable of the simulation of soil and crop behavior. 

Required inputs for the experiment builder include cultivar, soil series, weather data, planting 

characteristics, fertility and water conditions, simulation execution and harvest dates, and model 
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functions (water and nutrients on/off). In this study, the DSSAT version 4.6 was used to simulate 

separate HRSW experiments using inputs for the years 2005-2016 at Carrington, Hettinger, 

Langdon, Minot, and Williston, ND. 

All input variables were the same for each experiment except planting date, soil type, and 

weather data. Planting dates for each location and all years are presented in Table 1.1. The 

required planting information included seeding rate, seeding depth, and row width, which were 

set at 290 seeds m-2, 4 cm, and 18 cm, respectively. Other required information includes initial 

field conditions such as previous crop with N credit. The previous crop was not known; 

therefore, wheat was set as the previous crop since it provided no N credit. Simulation start date 

and nutrient and water options were also set the same across all locations. The simulation start 

date was set to the day of planting and water set to run using recorded precipitation. Fertilization 

information was not available for all years so the assumption was made that experiments were 

fertilized to the recommended level and not limited throughout the year so nutrient options were 

turned off. 

Simulations were executed for each year and location for a total of 60 simulations (5 

locations, 12 years). Anthesis date (days after planting, DAP) and grain yield were extracted to 

be used for statistical analysis. Additional simulations were executed within the ‘Sensitivity 

Analysis’ program with the various formatted weather files. The sensitivity analysis enables the 

user to change a single variable such as planting population, planting date, weather year, soil 

type, or cultivar in a previously created experiment. Then, the experiment can be simulated again 

rather quickly with the new variable.  
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Table 1.1. Planting dates needed to run model simulations for five locations in North 

Dakota in 2005-2016. 

Year Langdon Carrington Hettinger Minot Williston 

2005 16 May 21 April 1 May† 1 May† 28 April 

2006 09 May 20 April 1 May† 1 May† 05 May 

2007 24 April 27 April 1 May† 1 May† 27 April 

2008 29 April 15 April 1 May† 1 May† 23 April 

2009 19 May 06 May 1 May† 07 May 23 April 

2010 20 April 23 April 12 April 11 May 23 April 

2011 17 May 06 May 2 May 11 May 13 May 

2012 24 April 17 April 28 March 25 April 25 April 

2013 16 May 13 May 23April 15 April 10 May 

2014 14 May 02 May 22 April 15 May 09 May 

2015 28 April 10 April 10 April 23 April 24 April 

2016 02 May 12 April 01 April 02 May 03 May 

† Planting date not available. An assumed planting date of 1 May was used to run model 

simulations.  
 

Weather Data and Forecasting Approach 

Daily minimum and maximum air temperature, rainfall, and solar radiation were 

collected from the North Dakota Agricultural Weather Network (NDAWN) for the period 1991-

2016 for Carrington, Hettinger, Langdon, Minot, and Williston, ND (NDAWN, 2017a). The 

weather data were uploaded into the WeatherMan program within DSSAT. WeatherMan 

compiles the weather data with weather station details to be used within the experiment builder 

(Batchelor et al., 2015).  The NDAWN weather station information is presented in Table 1.2. 

Table 1.2. Location, coordinates, and elevation of weather station locations obtained 

from the North Dakota Agricultural Weather Network. 

Location Latitude Longitude Elevation 

 °N °W m 

Carrington 47.51 -99.13 475 

Hettinger 46.01 -102.64 840 

Langdon 48.76 -98.35 492 

Minot 48.18 -101.29 542 

Williston 48.13 -103.74 649 
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The accuracy of crop growth can be predicted by updating DSSAT with measured 

weather data throughout the growing season. This concept was applied by Bannayan et al., 2003 

for forecasting winter wheat yield. A similar approach was used in this study. Weather data had 

to be in the proper format before being uploaded into WeatherMan. Weather files were formatted 

with historic daily measured data from January 1 through ZGS 14, 45, and 61, then from that 

date supplemented with historical measured data throughout the remainder of the year. This 

procedure was done in three different ways (analogue, distribution, historic average), referred to 

as modeling approaches. The dates of these growth stages were estimated using the NDAWN 

wheat GDD calculator (NDAWN, 2017b), which predicts wheat growth stages through a method 

developed by Bauer et al. (1984). 

The historic weather data was formatted in three different ways to forecast weather for 

the remainder of the season in order to determine the best technique to simulate yield with 

DSSAT. These were referred to as ‘modeling approaches’ and are described as analogue, 

distribution, and historical average. An analogue represents a previous weather year with a 

similar weather pattern as the current weather year up to the point in the season where future 

weather data is needed. The weather analogue program (WAP) within DSSAT uses historic 

weather conditions at a given location and estimates a previous year (analogue year) that is best 

representative of the current year. The WAP estimated an analogue year from measured weather 

data up to each growth stage. The weather data from the selected analogue year was then used 

after each growth stage through the remainder of the year to give a single outcome. The 

distribution modeling approach used daily historic weather data from 1991-2016 after each 

growth stage through the remainder of the year. This provided a distribution of outcomes with 

higher yields in favorable weather years, and poor yield in years when weather was suboptimal 
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for HRSW growth. The historical average modeling approach used daily averages (1991-2016) 

after each growth stage through the remainder of the year. Figure 1.1 further illustrates how 

weather data were formatted. 

 
Figure 1.1. Depiction of the different modeling approaches (distribution, historical average, 

analogue) using historic weather data to forecast the weather for the rest of the season and model 

wheat growth. 

Genetic Coefficients Development 

 There were no genetic coefficients for any of the currently grown HRSW cultivars in 

North Dakota. Therefore, genetic coefficients for the cultivar, Glenn, were estimated using the 

generalized likelihood uncertainty estimation (GLUE) program within DSSAT. The GLUE 

program estimates the seven genetic coefficients using an established HRSW cultivar within the 

model as a template. The program then alters the coefficients of the template cultivar to match 

the crop measurements of the desired cultivar and give a new output with the estimated genetic 

coefficients. Crop measurements required to run GLUE include key phenological dates and yield 

or yield components (Hunt, 1993).  

Glenn is a HRSW cultivar developed by North Dakota State University HRSW breeding 

program and released in 2005 (North Dakota Crop Improvement and Seed Association, 2005). 

Glenn was selected because many crop measurements needed for the GLUE program to estimate 
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genetic coefficients were available. Information on planting date, harvest date, and grain yield 

were obtained from North Dakota Research Extension Center (REC) cultivar trials that included 

Glenn. Emergence date and anthesis date were estimated with the NDAWN wheat GDD 

calculator (NDAWN, 2017b). These data were collected for 2005-2016 at Carrington, Hettinger, 

Langdon, Minot, and Williston, ND. Yield trial data has previously indicated to be useful for 

calibrating crop models (Piper et al., 1998). Additional phenological measurements were 

collected from plots established in 2016. These plots were seeded at a rate of 2.9 million viable 

seeds per ha-1 with a no-till 3P605NT drill (Great Plains Mfg. Inc., Salina, KS) at Prosper 

(47.00°N, -97.11°W) and Casselton (46.88°N, -97.23°W), ND. Twenty-five individual tillers 

were collected in order to obtain kernel and tiller weight. The genetic coefficients estimated for 

Glenn by the GLUE program are summarized in Table 1.3. 

Table 1.3. Genetic coefficients for Glenn estimated by the generalized likelihood uncertainty 

estimator using data from North Dakota Research Extension Center cultivar trials. 
P1V† P2D‡ P5§ G1¶ G2# G3†† PHINT‡‡ 

% day-1 % reduction hr-1 °C day-1 # g-1 mg kernel-1 g °C day-1 

30 40 475 18 35 2.0 76 

† PIV- Vernalization coefficient. 

‡ P2D- Photoperiod coefficient. 

§ P5- Thermal time from linear fill through maturity. 

¶ G1- Kernel number per unit stem + spike weight at anthesis. 

# G2- Kernel growth rate. 

†† G3- Tiller death coefficient. 

‡‡PHINT- Thermal time between leaf tip appearances . 
 

Soil Data 

The DSSAT requires details of the soil where the simulations are performed. Site-specific 

soil information for each location where yield data were obtained for cultivar calibration was not 

available. Cultivar trials were conducted on or near REC’s in Carrington, Hettinger, Langdon, 

Minot, and Williston, ND so a predominant soil series was determined for each using the Web 

Soil Survey (USDA-NRCS, 2017). The predominant soil series was chosen to give a good 
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representation of the soil type in the area. A soil profile cannot be created within DSSAT without 

specific soil profile characteristics, but the soil program within DSSAT has established default 

soil profiles with soil layer characteristics. An established soil series was chosen from DSSAT 

that best represented the predominant soil series for each location. The DSSAT soil profile 

selected may have varied slightly from the site-specific soil, but these profiles were fairly 

representative of the soil at the location. Soil series information for each location is reported in 

Table 1.4.  

Table 1.4. North Dakota REC† locations with the predominant soil series, soil taxonomy, and 

slope with the corresponding DSSAT soil series. 

Location Soil 

Series‡ 

Soil Taxonomy§ Slope DSSAT Soil 

Series 

      %  

Carrington Heimdal- Coarse-loamy, mixed, superactive, 

frigid Calcic Hapludolls 
0-5 Silty Loam 

Hettinger Shambo Fine-loamy, mixed, superactive, frigid 

Typic Haplustolls 
0-5 Loam 

Langdon Svea Fine-loamy, mixed, superactive, frigid 

Pachic Hapludolls  
0-5 Silty Loam 

Minot Forman Fine-loamy, mixed, superactive, frigid 

Calcic Argiudolls 
0-5 Clay Loam 

Williston Williams Fine-loamy, mixed, superactive, frigid 

Typic Argiustolls 
0-5 Loam 

† Research extension center. 

‡ Soil data obtained from (USDA-NRCS, 2017). 

§ Soil taxonomy listed on individual lines based on hyphenated soil series name. 
 

Statistical Analysis  

Model evaluation and verification was done using PROC REG in SAS 9.3 (SAS Institute, 

Cary, NC) to determine the strength of relationship between observed and simulated anthesis 

date and yield using full season weather data. Regression analysis was also used to determine the 

strength of relationship between simulated anthesis date and grain yield using full season 

weather data to simulated anthesis date and grain yield using forecasted weather with each 

modeling approach from each growth stage. Root mean square error (RMSE) and coefficient of 
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variation (CV) were determined to explain model performance and the strength of the 

relationship was determined at the 90%, 95%, and 99% (p≤0.10, p≤0.05, p≤0.01) levels of 

significance. 

Model accuracy was determined by computing the difference of anthesis date and grain 

yield between simulations using full season weather data and simulations forecasting weather 

using each modeling approach and from each growth stage. A smaller difference indicated better 

model predictions. The means of the differences were determined with PROC ANOVA in SAS. 

Means were separated using Fisher’s protected least significant difference at the 95% (p≤0.05) 

level of confidence. 

Results and Discussion 

Model Evaluation  

 The DSSAT-CSM had to be properly validated before conducting experiments. 

Validation was performed by determining the accuracy between simulated crop growth and 

observed crop growth. In this study, the ‘observed’ data included anthesis date, which was 

determined using the NDAWN wheat GDD calculator (NDAWN, 2017b), and Glenn yield data 

from North Dakota REC cultivar trials. The NDAWN wheat GDD calculator determines anthesis 

date through a method developed by Bauer et al. (1984), which showed that wheat development 

could be accurately estimated using GDD with a base temperature of 0°C. Observed data was 

used to describe these variables in these comparisons. Anthesis date and yield were used to 

evaluate model accuracy in order to determine the ability of DSSAT to simulate the vegetative 

and reproductive development of Glenn. The validation procedure is performed in order to 

understand the expected error between simulations from the crop model and observed data 

(Batchelor et al., 2008).   
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Simulated anthesis date was consistently later than the observed data across all locations. 

The RMSE between simulated and observed anthesis date ranged between 6 days to 1 day across 

locations. A lower RMSE indicates better model performance. Overestimation of anthesis date 

has occurred in other DSSAT applications and may be due to misrepresentation of some of the 

genetic coefficients that govern the rate of vegetative growth (Boote et al., 2001). Another 

explanation may be the use of NDAWN to determine anthesis date. Glenn is an earlier maturing 

cultivar and may mature slightly earlier than what was determined by the NDAWN wheat GDD 

calculator. Combined across all locations, the relationship between simulated and observed 

anthesis date was significant at p≤0.01 (r2=0.70) (Table 1.5). This was similar across all locations 

except Williston, which resulted in a significant relationship between simulated and observed 

anthesis date at p≤0.05.  

Table 1.5. Comparison between simulated and observed anthesis date for five locations in 

North Dakota and combined across all locations and years in 2005-2016. 

 Carrington Hettinger Langdon Minot Williston Combined 

 Sim.†  Obs.‡ Sim. Obs. Sim. Obs. Sim. Obs. Sim. Obs. Sim. Obs. 

 ---------------------------------------------days after planting----------------------------------------- 

Average§ 71 68 74 71 70 63 69 63 69 65 71 66 

RMSE¶ 2 1 6 3 6 2 

CV# 3 2 9 4 9 3 

r2†† 0.92*** 0.96*** 0.73*** 0.66*** 0.39** 0.70*** 

† Simulated data from model simulations. 

‡ Observed data determined using the NDAWN wheat GDD calculator (NDAWN, 

2017b). 

§ Averaged anthesis date for simulated and observed data in 2005-2016. 

¶ Root mean square error. 

# Coefficient of variation. 

†† Coefficient of determination between simulated and observed. 

*, **, *** Significant at (P≤0.10), (P≤0.05), and (P≤0.01) respectively. 

 

 In this study, configuring DSSAT to simulate grain yield is critical, but also difficult due 

to various environmental and agronomic variables that can affect yield throughout the growing 

season. Simulated yield significantly related to observed yield combined across all locations with 
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a RMSE of 814 kg ha-1and r2=0.46 (Table 1.6). Previous research has shown the inability to 

consistently simulate grain yield. Boote et al. (2002) realized the relationship between simulated 

and observed yield ranged from r2= 0.33 to 0.74 with simulations using different cultivars in 

North Carolina. Similar results occurred in this research because the relationship between 

simulated and observed yield ranged between r2= 0.16 to 0.61 across locations (Table 1.6). The 

relationship between simulated and observed yield at Carrington and Williston were significant 

at p≤0.01, while Hettinger and Minot were significant at p≤0.05. Simulated yield at Langdon was 

not well related to observed yield with r2=0.16. For these locations, the RMSE between 

simulated and observed grain yield was 705, 548, 806, 733, and 617 kg ha-1, respectively (Table 

1.6). The variability between locations may be due to differences in the management practices 

between locations that can impact environment x cultivar interactions and cannot be accurately 

accounted for in the model (Adiku et al., 2017).  

Table 1.6. Comparison between simulated and observed yield for five locations in North 

Dakota and combined across all locations and years in 2005-2016. 

 Carrington Hettinger Langdon Minot Williston Combined 

 Sim.† Obs.‡ Sim. Obs. Sim. Obs. Sim. Obs. Sim. Obs. Sim. Obs. 

 ----------------------------------------------------kg ha-1--------------------------------------------------- 

Average§ 4023 4028 4068 3626 4594 5082 4520 4225 3426 3165 4126 4025 

RMSE¶ 705 806 617 733 548 814 

CV# 17 22 12 17 17 20 

r2†† 0.52*** 0.52** 0.16 0.50** 0.61*** 0.46*** 

† Simulated data from model simulations. 

‡ Observed data obtained from North Dakota Research Extension Center cultivar trials. 

§ Averaged yield for simulated and observed data in 2005-2016. 

¶ Root mean square error. 

# Coefficient of variation. 

†† Coefficient of determination between simulated and observed. 

*, **, *** Significant at (P≤0.10), (P≤0.05), and (P≤0.01) respectively. 

 

Overall, the ability to simulate anthesis date and grain yield with DSSAT was deemed 

adequate across all locations. Therefore, it appeared reasonable to apply the model to predict 
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yield from various growth stages using historic weather data, while understanding the expected 

error from model simulations. The growth and development processes of crop models and how 

they respond to environmental conditions can explain the error between the observed data and 

model simulations. These plant processes are determined by algorithms that respond to the 

environmental variables (temperature, N status, and moisture) input within the model, which 

may not adequately account for a plant response when environmental thresholds are exceeded 

(Bannayan et al., 2003). Model simulations can be improved by better adjusting soil and genetic 

components. The soil profiles used in this study represented a generalized profile and may 

account for some error from model simulations. Also, the genetic coefficients for Glenn were an 

estimation by the GLUE program. Improved cultivar response can be achieved when coefficients 

are developed using more intensive physical measurements during plant development.  

Assessment of Model Simulations using Different Forecasting Methods 

 Historic weather data was used in the respective year in order to conduct simulations. 

Measured weather data was logged from the observed planting date through each growth stage, 

then supplemented with historic weather data to forecast the weather for the remainder of the 

season. In order to forecast weather, the weather data were formatted in three modeling 

approaches to determine the best method for predicting crop growth. The three modeling 

approaches were referred to as distribution, historical average, and analogue, which are 

previously described. In this study, simulated anthesis date and grain yield using full season 

weather data (FSWD) were compared to simulated anthesis date and grain yield with forecasted 

weather using the three modeling approaches (regardless of growth stage at which forecasting 

began) for all locations and years of model simulation. The smallest difference between 

simulated anthesis date and grain yield using FSWD and forecasted weather indicated better 
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model performance. Therefore, the optimum approach for using historic weather data to forecast 

weather for the remainder of the season was determined. The distribution approach used multiple 

weather years, which provided a range of outcomes. Therefore, the mean of these simulated 

values were used for comparisons. 

There were significant differences for simulated anthesis date and grain yield when 

comparing the simulations using each modeling approach. Combined across all locations, the 

average difference between simulated anthesis date using FSWD and simulated anthesis date 

using the distribution, historical average, and analogue modeling approaches were 1.0, 0.9, and 

1.5 days, respectively (Table 1.7). Data indicated the strength of relationship between anthesis 

date using FSWD and simulated anthesis date using each modeling approach varied across all 

locations. However, simulations using distribution and historical average approaches consistently 

agreed the best with simulations using FSWD with r2 = 0.87 and 0.90 for distribution and 

historical average modeling approaches, respectively (p≤0.01) (Table 1.8). 

 The ability to adequately simulate grain yield using the three modeling approaches 

varied greatly. The average difference of simulated grain yield using FSWD and simulated grain 

yield using forecasted weather with each modeling approach was 486, 695, and 648 kg ha-1, for 

distribution, historical average, and analogue approaches, respectively (Table 1.7). The strength 

of relationship between simulated grain yield using FSWD and each modeling approach was 

r2=0.64, 0.61, and 0.49 for distribution, historical average, and analogue approaches, respectively 

(Table 1.9). Data indicated simulating grain yield using the distribution and historical average 

approaches were the most effective since the relationship between simulated grain yield with 

FSWD and these two approaches were significant at p≤0.01. However, simulations using the 

analogue modeling approach were not as effective since the same relationship was only 
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significant at p≤0.05. The analogue approach may be less effective due to the inability for short-

range weather to match a weather year accurately. This can most likely be attributed to the lack 

of measured data available since it has only been available over roughly the last 30 yrs., as well 

as the inability to account for any variability between years (Van den Dool, 1988).  

In this study, the optimum technique to simulate crop growth using historic weather data 

to forecast the weather for the remainder of the season was through a distribution approach. 

Overall, all three modeling approaches simulated anthesis date satisfactorily when compared to 

simulated anthesis date using FSWD. The greatest RMSE between simulated anthesis date using 

FSWD was found using the analogue modeling approach; however, variations between the 

modeling approaches were minor. Simulating grain yield with the distribution approach resulted 

in the lowest RMSE from simulated grain yield using FSWD with 348 kg ha-1 combined across 

all locations (Table 1.9). In general, crop development was better represented using the 

distribution approach because the variability of weather conditions that affect plant growth are 

taken into account. A historical average or analogue approach used a single data set and may not 

have effectively taken into account the possible variability of weather for the remainder of the 

season. This was similar to observations in previous research (Thorton et al., 1997; Bannayan et 

al., 2003).  

Table 1.7. Average difference† for anthesis date and grain yield between simulations 

using full season weather data and forecasted weather using each modeling approach 

combined across all locations and years in 2005-2016 
 Anthesis Date Yield 

 Days kg ha-1 

Distribution 1 486 

Historical Avg. 0.9 695 

Analogue  1.5 648 

LSD0.05 0.2 105 

† Averages calculated by determining the difference between simulations using FSWD 

and simulations using each modeling approach, combined across all locations and years. 



 

 

2
3
 

 

Table 1.8. Comparison between simulated anthesis date using full season weather data and simulated anthesis date 

using three modeling approaches (distribution, historical average, analogue) in 2005-2016 for five locations. 
 Carrington Hettinger Langdon Minot Williston Combined 

 RMSE r2 RMSE r2 RMSE r2 RMSE r2 RMSE r2 RMSE r2 

 Days  Days  Days  Days  Days  Days  

Distribution 1.0 0.95*** 1.3 0.92*** 1.3 0.88*** 1.2 0.80*** 0.7 0.97*** 1.0 0.87*** 

Historical 

Ave. 
0.9 0.96*** 1.3 0.93*** 1.6 0.81*** 1.4 0.74*** 0.5 0.98*** 0.9 0.90*** 

Analogue 1.3 0.92*** 1.9 0.84*** 2.3 0.61*** 1.1 0.83*** 0.8 0.95*** 1.0 0.87*** 

† Zadoks Growth Stage 

*,**,*** Significant at (P≤0.10), (P≤0.05), and (P≤0.01) respectively 
 

Table1.9. Comparison between simulated grain yield using full season weather data and simulated grain yield using 

three modeling approaches (distribution, historical average, analogue) in 2005-2016 for five locations. 
 Carrington Hettinger Langdon Minot Williston Combined 

 RMSE r2 RMSE r2 RMSE r2 RMSE r2 RMSE r2 RMSE r2 

 kg ha-1  kg ha-1  kg ha-1  kg ha-1  kg ha-1  kg ha-1  

Distribution 463 0.70*** 858 0.42** 539 0.81*** 433 0.70*** 470 0.76*** 348 0.64*** 

Historical 

Ave. 
527 0.60*** 905 0.35** 718 0.66*** 526 0.56*** 510 0.72*** 360 0.61*** 

Analogue 570 0.54*** 1006 0.20 1059 0.26*** 772 0.06 422 0.81*** 411 0.49** 

†Zadoks Growth Stage 

*,**,*** Significant at (P≤0.10), (P≤0.05), and (P≤0.01) respectively 
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Assessment of Model Simulations from Multiple Growth Stages 

 Measured weather data were logged up to three growth stages (ZGS 14, 45, 61) for the 

respective year and forecasted weather data was supplemented from that date through the 

remainder of the growing season (regardless of modeling approach). Simulated anthesis date and 

grain yield using FSWD were compared to simulated anthesis date and grain yield with forecasts 

made from ZGS 14, 45, and 61 for all locations and years of model simulation. The ability to 

effectively predict grain yield early in the season can assist producers in making a range of more 

informed management decisions (Bannayan et al., 2003). 

In theory, simulations that forecasted anthesis date from ZGS 61 should have had zero 

deviation from the simulated anthesis date using FSWD. Simulated anthesis date resulted in an 

RMSE of 0.3 days with forecasted weather from ZGS 61 compared to simulated anthesis date 

using FSWD indicating some error in the model (Table 1.10). However, the relationship between 

simulated anthesis date using FSWD to forecast anthesis date from ZGS 61 was very high 

(r2=0.99), indicating satisfactory performance. The maximum difference between simulated 

anthesis date using FSWD and forecasted anthesis date from ZGS 14 was 2.0 days (Table 1.11). 

This was significantly greater compared to the difference in anthesis date when forecasting from 

ZGS 45 and 61 with 1.0 and 0.5 days, respectively (Table 1.11). Overall, the deviation from 

simulated anthesis date using FSWD was minor. Combined across all locations, anthesis date 

was significant between simulated anthesis date using FSWD and forecasted anthesis date from 

ZGS 14 and 45 at p≤0.01 with r2=0.65 and 0.94, respectively (Table 1.10).   
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Table 1.10. Comparison between simulated anthesis date using full season weather data and  simulated anthesis 

date with forecasted weather from three growth stages in 2005-2016 for five locations. 
 Carrington Hettinger Langdon Minot Williston Combined 

 RMSE r2 RMSE r2 RMSE r2 RMSE r2 RMSE r2 RMSE r2 

 Days  Days  Days  Days  Days  Days  

ZGS14 2.0 0.81*** 2.5 0.73*** 2.5 0.53*** 2.0 0.47*** 1.0 0.92*** 1.7 0.65*** 

ZGS 45 1.1 0.94*** 1.1 0.95*** 1.7 0.79*** 1.3 0.77*** 0.4 0.98*** 0.7 0.94*** 

ZGS 61 0.5 0.99*** 0.7 0.98*** 1.0 0.92*** 0.8 0.91*** 0.6 0.97*** 0.3 0.99*** 

† Zadoks Growth Stage 

*,**,*** Significant at (P≤0.10), (P≤0.05), and (P≤0.01) respectively 

 

Table 1.11. Average difference† for anthesis date and grain yield between simulations using 

full season weather data and forecasted weather from ZGS 14, 45, and 61. 
 Anthesis Date Yield 

 Days kg ha-1 

ZGS 14‡ 2.0 890 

ZGS 45 1.0 610 

ZGS 61 0.5 331 

LSD0.05 0.2 115 

† Averages calculated by determining the difference between simulations using FSWD and 

simulations using each modeling approach. Then combined across all locations and averaged. 

‡ Zadoks growth stage. 
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In contrast to the prediction of anthesis date, DSSAT was weaker in predicting grain 

yield. Generally, predicting yield from any growth stage resulted in an overestimation compared 

to simulations using FSWD. The maximum deviation of yield resulted when forecasts were made 

from ZGS 14 and the deviation in yields were reduced at later growth stages. The average 

difference between grain yield using FSWD and forecasted grain yield from ZGS 14, 45 and 61 

was 890, 610, and 331 kg ha-1, respectively (Table 1.11). A significant relationship was found for 

simulations with forecasts from ZGS 45 (p≤0.05) and 61 (p≤0.01); however, not from ZGS 14 

(Table 1.12).  The strength of the relationship between simulated grain yield using FSWD and 

forecasted grain yield from ZGS 14, 45, and 61 was r2=0.24, 0.41, and 0.86, respectively (Table 

1.12). Previous research reported yield predication within 15% when grain yield was forecasted 

from simulations conducted halfway through the growing season (Thorton et al., 1997). Similar 

results were obtained with this study with forecasted grain yield from ZGS 45 within 7% of full 

season grain yield and within 5% when forecasted from ZGS 61 (Data not shown). 

 Across all locations, model performance improved as measured data was input as the 

growing season progressed. Anthesis date was significant (p≤0.01) with the relationship between 

simulated using FSWD and forecasted from ZGS 14. Improved performance with forecasted 

anthesis date at ZGS 45 suggested forecasts would have the greatest accuracy when conducted at 

this growth stage. However, forecasted anthesis date resulted in an average difference from 

simulated anthesis date using FSWD of only 2 days, indicating only minor differences when 

simulations are conducted with forecasted weather earlier in the growing season. The 

relationship between simulated yield using FSWD and simulated yield using forecasted weather 

also improved as measured weather data was input later into the growing season. In this study, 

data indicated grain yield should not be simulated with forecasted weather from ZGS 14 since 
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the relationship was not significant with simulations using FSWD. The impact weather will have 

on grain yield is unknown early in the growing season, since yield is not yet determined in the 

plant. Predicting yield from ZGS 14 may be unlikely for this reason. However, as crop 

development progresses, grain yield is further determined; therefore, weather will have less 

impact and yield prediction will be more accurate (Wiersma and Ransom, 2005).  

Assessment of Forecasted Crop Growth 

 In this study, data indicated there was no significant interaction when supplementing each 

of the modeling approaches (distribution, historical average, analogue) to forecast anthesis date 

or grain yield from each growth stage (ZGS 14, 45, 61). The strength of relationship between 

simulated anthesis date using FSWD and simulated anthesis date using each modeling approach 

to forecast from all growth stages varied across locations. However, simulations using 

distribution and historical average modeling approaches supplemented at ZGS 45 consistently 

provided the greatest relationship with simulations using FSWD for anthesis date (Table 1.13). 

Similar results were observed when predicting grain yield. The best relationship consistently 

occurred with simulations using the distribution and historical average approach when 

supplemented from ZGS 61 (Table 1.14). Simulated using these approaches from ZGS 61 was 

significant at p≤0.01 and when supplemented from ZGS 45 the relationship was still significant 

(p≤0.05). Simulating crop growth using the analogue modeling approach to forecast weather was 

the least effective and should not be used.  
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Table 1.12. Comparison between simulated grain yield using full season weather data and simulated grain yield 

with forecasted weather from three growth stages in 2005-2016 for five locations. 
 Carrington Hettinger Langdon Minot Williston Combined 

 RMSE r2 RMSE r2 RMSE r2 RMSE r2 RMSE r2 RMSE r2 

 kg ha-1  kg ha-1  kg ha-1  kg ha-1  kg ha-1  kg ha-1  

ZGS14 789 0.11 1083 0.07 1226 0.00 790 0.01 773 0.35** 503 0.24 

ZGS 45 418 0.75*** 1041 0.14 850 0.52*** 686 0.26* 550 0.67*** 444 0.41** 

ZGS 61 189 0.95*** 710 0.60*** 464 0.86*** 360 0.80*** 357 0.86*** 215 0.86*** 

†Zadoks Growth Stage 

*,**,*** Significant at (P≤0.10), (P≤0.05), and (P≤0.01) respectively 

 

Table 1.13. Comparison between simulated anthesis date using full season weather data and simulated anthesis date using 

three approaches to forecast weather from three growth stages in 2005-2016 for five locations. 

Variable 

Carrington Hettinger Langdon Minot Williston Combined 

RMSE r2 RMSE r2 RMSE r2 RMSE r2 RMSE r2 RMSE r2 

Days  Days  Days  Days  Days  Days  

Distribution ZGS† 14 1.9 0.80*** 2.3 0.77*** 1.9 0.72*** 1.9 0.53*** 1.3 0.86*** 1.7 0.65*** 

Distribution ZGS 45 0.8 0.96*** 1.1 0.95*** 1.6 0.80*** 1.2 0.79*** 0.8 0.95*** 0.8 0.92*** 

Distribution ZGS 61 0.6 0.98*** 0.7 0.98*** 0.7 0.96** 0.8 0.92*** 0.7 0.96*** 0.6 0.96*** 

Historical Ave. ZGS 14 2.1 0.79*** 2.1 0.81*** 2.7 0.47** 2.0 0.47** 1.2 0.89*** 1.8 0.61*** 

Historical Ave. ZGS 45 0.8 0.97*** 1.1 0.95*** 1.8 0.76*** 1.3 0.77*** 0.5 0.97*** 0.8 0.92*** 

Historical Ave. ZGS 61 0.4 0.99*** 0.6 0.99*** 0.7 0.96*** 0.6 0.95*** 0.5 0.98*** 0.4 0.98*** 

Analogue ZGS 14 2.2 0.76*** 3.3 0.55*** 3.3 0.2 1.9 0.50** 1.2 0.8832*** 1.8 0.58*** 

Analogue ZGS 45 2.2 0.75*** 1.7 0.87*** 2.2 0.65*** 1.3 0.77*** 0.7 0.96*** 0.9 0.91*** 

Analogue ZGS 61 0.4 0.99*** 1.1 0.95*** 1.6 0.80*** 1.1 0.84*** 1.0 0.92*** 0.7 0.94*** 

† Zadoks Growth Stage 
*,**,*** Significant at (P≤0.10), (P≤0.05), and (P≤0.01) respectively 
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Table 1.14. Comparison between simulated grain yield using full season weather data and simulated grain yield 

using three approaches to forecast weather from three growth stages in 2005-2016 for five locations. 

Variable 

Carrington Hettinger Langdon Minot Williston Combined 

RMSE r2 RMSE r2 RMSE r2 RMSE r2 RMSE r2 RMSE r2 

kg ha-1  kg ha-1  kg ha-1  kg ha-1  kg ha-1  kg ha-1  

Distribution ZGS† 14 816 0.05 1081 0.07 1218 0.01 741 0.13 794 0.32 513 0.21 

Distribution ZGS 45 451 0.71*** 1004 0.20 658 0.71*** 608 0.42** 629 0.57*** 440 0.42** 

Distribution ZGS 61 217 0.93*** 723 0.59*** 390 0.90*** 251 0.90** 358 0.86*** 223 0.85*** 

Historical Ave. ZGS 14 797 0.10 1098 0.04 1219 0.01 744 0.13 742 0.40** 531 0.15 

Historical Ave. ZGS 45 441 0.72*** 990 0.22 765 0.61*** 666 0.30 697 0.47** 437 0.43** 

Historical Ave. ZGS 61 296 0.88*** 767 0.53*** 484 0.84*** 345 0.81*** 474 0.76*** 206 0.87*** 

Analogue ZGS 14 798 0.09 1099 0.04 1226 0.00 792 0.01 894 0.13 517 0.20 

Analogue ZGS 45 497 0.65*** 1099 0.04 1097 0.20 794 0.00 578 0.64*** 494 0.27 

Analogue ZGS 61 251 0.91*** 716 0.59*** 703 0.67*** 617 0.40** 405 0.82*** 305 0.72*** 

† Zadoks Growth Stage 

*,**,*** Significant at (P≤0.10), (P≤0.05), and (P≤0.01) respectively 
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In this study, supplementing the distribution and historical average approach to forecast 

grain yield provided similar results across all locations, therefore, either would be a suitable 

method to forecast weather and predict crop growth. However, the distribution approach may 

improve yield forecasting because a generalized average is not being used, but rather a frequency 

of the distribution can be determined from the range of outcomes. The information obtained from 

these outcomes can be used as a decision support system to make improved management 

decisions (Bannayan et al., 2003).  

As plant development progresses throughout the growing season, the precision of the 

simulations will increase as the distribution of the simulated values narrows around the likely 

outcome. In this study, the precision of simulations using the distribution approach improved 

when anthesis date and grain yield were forecasted from ZGS 45 and 61. As plant development 

progressed the range between the projected outcomes decreased for anthesis date with an average 

range of 10, 6, and 2 days for ZGS 14, 45, and 61, respectively (Table 1.15). Similar results were 

obtained for grain yield with the range between the projected outcome decreased by 3305, 1910, 

and 988 kg ha-1 for ZGS 14, 45, and 61, respectively (Table 1.16).  

Overall, the DSSAT-CSM can effectively predict anthesis date within 1-2 days from ZGS 

14 and 45. Therefore, the crop model may be a beneficial decision support system to effectively 

determine when anthesis date will occur. This would be beneficial for a producer to make 

management decisions that occur around this time, such as a foliar fertilizer or pesticide 

application. Also, DSSAT is most accurate in predicting grain yield from ZGS 45 and 61. 

Therefore, the model may be a useful management tool for producers to make an informed 

decision for an additional N application to increase GPC if predicted yield is high. However, 
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since grain yield cannot be accurately predicted until ZGS 45, a small time frame is available to 

make the decision whether or not this additional application should be conducted. 

Table 1.15. Mean and range of simulated anthesis date using the distribution approach 

to forecast weather from ZGS† 14, 45, and 61 for five locations in North Dakota 

combined across all years in 2005-2016.  

 ZGS 14 ZGS4 45 ZGS 61   

 Mean‡ Range§ Mean Range Mean Range Obs.¶ Sim.# 

 -----------------------------days after planting----------------------------- 

Carrington 72 68 - 77 71 69 - 74 71 70 - 73 68 71 

Hettinger 75 70 - 80 75 72 - 78 74 74 - 75 63 70 

Langdon 71 67 - 77 70 68 - 75 70 69 - 72 72 74 

Minot 70 66 - 77 69 67 - 74 69 68 - 71 63 69 

Williston 70 67 - 77 70 68 - 74 70 69 - 71 65 69 

Combined 71 68 - 78 71 69 - 75 71 70 - 72 65 71 

Avg. Range  10  6  2   

† Zadoks growth stage. 

‡ Mean anthesis date in 2005-2016 from simulations using the distribution approach 

to forecast weather from the respective growth stage. 

§ Average range of anthesis date in 2005-2016 from simulations using the distribution 

approach to forecast weather from the respective growth stage. 

¶ Mean of anthesis date in 2005-2016 determined from NDAWN wheat GDD 

calculator. 

# Mean of anthesis date in 2005-2016 from simulations using full season weather 

data. 

 

Table 1.16. Mean and range of simulated grain yield using the distribution approach to 

forecast weather from ZGS† 14, 45, and 61 for five locations in North Dakota combined 

across all years in 2005-2016.  

 ZGS 14 ZGS4 45 ZGS 61   

 Mean‡ Range§ Mean Range Mean Range Obs.¶ Sim.# 

 -------------------------------------------------kg ha-1--------------------------------------------- 

Carrington 3951 2161 - 5559 4099 3359 - 4874 4034 3607 - 4456 4028 4023 

Hettinger 3885 2000 - 5411 4012 3119 - 5059 4020 3596 - 4441 5082 4594 

Langdon 4563 2668 - 5959 4679 3642 - 5683 4711 4131 - 5319 3717 4034 

Minot 4409 2758 - 5691 4559 3646 - 5498 4562 4074 - 5084 4225 4520 

Williston 3820 2285 - 5774 3672 2782 - 4985 3541 3120 - 4169 3165 3426 

Combined 4125 2374 - 5679 4204 3310 - 5220 4174 3706 - 4694 4083 4068 

Avg. Range  3305  1910  988   

† Zadoks growth stage. 

‡ Mean yield in 2005-2016 from simulations using the distribution approach to forecast 

weather from the respective growth stage. 

§ Average range of yield in 2005-2016 from simulations using the distribution approach to 

forecast weather from the respective growth stage. 

¶ Mean of observed yield in 2005-2016 from North Dakota Research Extension Centers. 

# Mean of simulated yield in 2005-2016 from simulations using full season weather data.   
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Conclusion 

The ability of DSSAT-CSM to simulate plant development varied across locations, but 

overall the crop model simulated anthesis date and grain yield with adequate accuracy for HRSW 

in North Dakota. Simulation error can most likely be attributed to the use of generalized soil 

types and estimated genetic coefficients, which can be improved with increased physical soil and 

plant measurements.  

The three approaches used to forecast weather for the remainder of the season were all 

able to forecast anthesis date similarly. However, the greatest precision was obtained when 

simulating grain yield with the distribution and historical average modeling approaches. The 

analogue approach was the least effective, which may be explained by the inability to account for 

the variability of weather between years with this approach. Yield simulations using the 

distribution and historical average modeling approaches were similar and could predict yield 

with the greatest accuracy compared to yield simulations using FSWD. However, simulations 

using the distribution approach may be more beneficial because a frequency of the distribution 

from the range of outcomes can be determined in addition to a generalized average.  

Across all locations, model performance improved as measured weather data was input as 

the growing season progressed. The associated error with simulated anthesis date using 

forecasted weather from ZGS 14 and ZGS 45 was minimal. In this study, grain yield was not 

accurately simulated with forecasted weather from ZGS 14 and should not be attempted. This 

may be due to yield still undetermined within the plant and the weather for the remainder of the 

season being unknown, which can have a major impact on plant development. Simulated grain 

yield with forecasted weather from ZGS 45 and 61 had an average RMSE of 444 and 215 kg ha-1 
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from simulated yield using FSWD. Grain yield was predicted with the greatest accuracy with 

forecasted weather from ZGS 61.   

The method implemented to update measured weather data during the growing season 

was time consuming and would be very difficult on a large scale. However, an updating system 

that is incorporated into the model that updates weather data on a daily or weekly basis might 

provide more accurate forecasting with DSSAT (Bannayan et al., 2003). The information 

obtained in these yield predictions can provide an effective decision support system that allows 

producers to make improved management decisions, especially during the later part of the 

growing season. The results from this study indicate that an informed decision can be better 

made with simulations conducted from ZGS 45 or later since yield is not accurately predicted 

until this time. Therefore, a management decision to apply a late-season foliar N application 

could be determined during the growing season. However, since predictions cannot be made 

until at least ZGS 45, this decision would have to be made relatively quickly in order to achieve 

the most success from the additional N application.   
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ARTICLE 2: TECHNIQUES TO IMPROVE GRAIN PROTEIN CONTENT OF HARD 

RED SPRING WHEAT WITH A LATE SEASON NITROGEN APPLICATION 

Abstract 

 A late-season foliar nitrogen (N) application may increase grain protein content (GPC) 

for hard red spring wheat (HRSW) (Triticum aestivum L. emend Thell.) in environments or 

cultivars with low protein potential. Two experiments were conducted to evaluate the 

effectiveness of a foliar N application through the combination of N solutions with a fungicide, 

urease inhibitor (N-(n-butyl) thiophosphoric triamide - NBPT), and various adjuvants using 

multiple droplet sizes. Urea ammonium nitrate (UAN) and urea solution (US) were applied at 

Zadoks growth stage (ZGS) 65 and 69. Applications resulted in greater leaf burn when combined 

with a fungicide, NBPT, or adjuvant. The best technique to increase GPC was through a foliar 

application of UAN or US at ZGS 69. The addition of a fungicide, NBPT, or adjuvants with the 

N solutions did not increase GPC. Therefore, the associated additional costs do not make these 

additions economically feasible. Spring wheat growers are advised to only consider a late-season 

foliar N application when environments are favorable for high yields and a profitable protein 

premium seems likely  

Introduction 

Spring wheat producers depend on grain yield and GPC in order to be economically 

successful. High grain yield and high GPC can be achieved if N availability and environmental 

conditions are favorable.  However, attaining both high grain yield and GPC can be challenging 

due to environmental impacts, N availability, and cultivar selection. Protein in the grain has to 

reach a market threshold at point of sale, otherwise discounts are imposed leading to reduced 

producer profit. However, if GPC is above the market threshold a premium may be realized by 
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the grower (Jones and Olson-Rutz, 2012). Spring wheat producers may be prompted to make in-

season management decisions to increase GPC if environmental factors are positive for greater 

yield and N supply is perceived to be deficient. A management practice utilized to increase GPC 

when conditions point to reduced GPC is through a late season foliar application of N fertilizer.  

Urea ammonium nitrate (28-0-0) or urea solution (ranging from 14 to 20 percent N by 

weight) are two possible N fertilizers that HRSW producers use to increase GPC. Increasing 

GPC has been successfully achieved with this additional N application between ZGS 45 and 73 

with the most effective response occurring at ZGS 69 (Zadoks et al., 1974; Finney et al., 1957; 

Endres and Schatz, 1993). Even at the optimum timing, the efficiency of N absorption into the 

plant with this method application is limited (Finney et al., 1957; Alkier et al., 1972). Therefore, 

it may be possible to develop methods to improve the efficiency of this foliar application and 

could reduce costs and amount of residual N in the environment.  

Wheat Nitrogen Use 

Nitrogen is an essential nutrient in the production of chlorophyll and rubisco, which are 

essential for photosynthesis. Photosynthesis promotes the formation of compounds and 

carbohydrates needed by the plant for growth, storage, and energy (Lawlor et al., 1989). 

Nitrogen is also an essential component of amino acids, which are the building blocks of protein. 

Plant roots absorb inorganic N in the form of NO3
- and NH4

+ from residual soil N, mineralization 

of organic matter, or fertilizer applications (Flaten and Grant, 1998). Environmental conditions, 

concentration of N in the soil solution, and the growth stage and growth rate of the plant can 

influence the amount of N uptake (Brown et al., 2005).  

Grain yield and GPC are produced simultaneously during wheat development, but N is 

first be allocated towards grain yield before it is allocated to protein development in the kernel 
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(Goos et al., 1982). Most of the N taken up during early vegetative growth is used in the 

formation of tillers, leaves, and spikes, which impact grain yield potential (Brown et al., 2005). 

Nitrogen is supplied to the developing kernel by remobilization from the vegetative biomass or 

uptake during or after heading. Nitrogen that is taken up around heading will usually influence 

GPC, but can only marginally influence yield because the number and size of kernels are mostly 

fixed at this time (Brown et al., 2005)  

Environmental and agronomic factors, especially cultivar selection and nutrient and water 

availability, affect the rate and timing of N uptake (Fowler et al., 1990; Campbell, 1977). 

Therefore, an inverse relationship between grain yield and GPC result from a certain level of 

fertility. This can be explained by differences in N uptake and the plants’ ability to utilize energy 

and nutrient reserves from the vegetative stage during kernel development (Brown et al., 2005). 

Inverse relationships between yield and grain protein has been reported in a number of crops 

including barley (Hordeum vulgare L.), oat (Avena sativa L.), corn (Zea mays L.), rice (Oryza 

sativa L.), sorghum (Sorghum bicolor L. Moench), and wheat (Baltensperger et al., 2008).  

The proportion of N supplied to the grain is influenced by concentration of N in the 

vegetative tissues, cultivar grown, and environmental conditions, particularly soil moisture 

availability (Flaten and Grant, 1998). Yield potential is higher in favorable environments with 

adequate soil moisture that promotes N uptake during early plant development, but less N may 

be available during the grain filling period resulting in kernels with high starch content and low 

protein. Protein content can be high in environments with sufficient N, but inadequate moisture 

or environmental stress during early plant development can limit N assimilation during grain 

filling if the environmental conditions improve (Neidig and Snyder, 1924). High grain yield and 
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GPC can be obtained when N availability within an environment is greater than what is sufficient 

to support maximum yield potential for the seasonal environment (Bailey et al., 1992).  

Foliar Nitrogen Application 

 A late season foliar N application has been found to increase GPC in low protein 

potential cultivars or environments. A potential increase of 5 to 10 g kg-1 in protein has been 

realized with a 34 kg ha-1 application of N between ZGS 45 and 73, when kernel development 

demands requires high levels of N (Finney et al., 1957; Schatz and Endres, 1993; Ransom et al., 

2012). Studies have reported the most effective timing was directly post-anthesis (ZGS 69), with 

decreased effectiveness before and after this stage (Finney et al., 1957; Gooding and Davis, 

1992; Schatz and Endres, 1993; Bly and Woodard, 2003). The optimum N rate for a post-

anthesis N application is 34 kg N ha-1, with larger rates only slightly increasing protein levels 

while decreasing yield (Freeman et al., 2002). Schatz (2012) observed a 10 g kg-1 increase in 

protein across three HRSW cultivars when 34 kg ha-1 of N was applied to the foliage post-

anthesis. 

Urea ammonium nitrate or US are commonly used as N sources for foliar applications. A 

solution of UAN allows for N to be readily absorbed by the foliage in the form of NO3
- and 

NH4
+, as well as water-soluble organic N from urea (Christiaens et al., 2015). A US is made by 

dissolving dry fertilizer urea (46-0-0) in water, which can then be directly applied to the foliage 

using a sprayer. A US has been found to produce less burn to the foliage than UAN, but is more 

susceptible to ammonia volatilization from the activity of the urease enzyme present in the soil 

(Gooding and Davies, 1992).  

Liquid forms of fertilizer N can cause leaf burning due to the salt content of the solution 

and a potential to form high concentrations of ammonia on the leaf tissue (Bremner, 1995). Since 
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US generally cause less burn than UAN and US are lower in salt and higher in potential 

ammonia, the greatest cause of leaf burn with these fertilizers is probably salt content. The 

degree of phytotoxicity depends on the growth stage, N concentration, and the cultivar (Gooding, 

1988). The flag leaf in particular can be significantly affected by ammonia accumulation from a 

foliar application. Maintenance of the flag leaf before and during anthesis is needed for 

achieving high grain yield and GPC because it is the major source of photosynthates to create 

carbohydrates and amino acids during the grain filling period (Simpson et al., 1983).  A 

management tactic to reduce phytotoxicity is to make the application in the cool of the day when 

humidity is high (Garcia and Hanway, 1976; Franzen, 2017). After anthesis, protection of the 

flag leaf does not appear to be as important as before or during anthesis (Schatz and Endres, 

1993). 

Techniques to Improve Efficiency of Foliar Nitrogen Applications 

A late season foliar N application can be rapidly absorbed by the foliage, but efficiency is 

often low (Gooding and Davies, 1992). The foliar fertilizer is often absorbed through the leaf 

cuticle; however, irregularities of the leaf surface and waxes can prevent wetting of the cuticle, 

reducing absorption (Akin and Gray, 1984). A greenhouse study reported less than 1% of the N 

in the foliar application was supplied to the grain (Alkier et al., 1972). The remaining N is 

subject to environmental losses or washed off by precipitation and absorbed through the roots. 

However, N absorption through the foliage may be improved with the addition of an adjuvant or 

urease inhibitor, NBPT. Altman et al. (1983) reported N recovery in the grain was 44% for 

winter wheat when an adjuvant was added with a US applied directly to the foliage.  

 Adjuvant is the general term that includes surfactants, oils, and fertilizers, which vary in 

their chemical makeup, overall effect, and intended use (Zollinger, 2010). The purpose of an 
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adjuvant is to increase uptake of the active ingredient of the pesticide applied by decreasing 

surface tension and increasing droplet retention (Hanzen, 2000). The addition of an adjuvant to 

the N solution has been reported to improve uptake; however little exploration has been 

performed to test multiple types of adjuvants.  

 Surfactants help spray solutions absorb through the leaf cuticle by emulsifying, 

dispersing, sticking, and spreading on the leaf surface (Zollinger, 2010). The addition of a 

surfactant with N solutions can increase retention of the spray solution, more effectively 

transferring N to the grain (Altman et al., 1983; Brinck et al., 2000). Oil agents, or penetrants, are 

also common spray adjuvants. These include methylated seed oil (MSO) and various crop oil 

concentrates (COC). The oil in methylated seed oils are derived from plants, while the oil in 

COCs are derived from petroleum oil (Zollinger et al., 2017). A penetrant allows the spray 

solution to infiltrate leaf cuticles by breaking down waxy extracellular and lipid cellular barriers 

of the plant (Hanzen, 2000). 

 Droplet size can also impact pesticide absorption, retention, and deposition, which may 

improve the action of an N solution. Spray pressure, spray mixture, or nozzle type affects droplet 

size, which ranges from very fine (<145 microns) to ultra-coarse (> 650 microns) (Hofman and 

Solseng, 2004; Askew et al., 2013). The optimum size varies depending on intended use, 

volume, or liquid form being applied. Creech et al., (2016) reported that dicamba control of 

common lambsquarter (Chenopodium album) was improved using a medium droplet compared 

to a fine droplet. However, common sunflower (Helianthus annuus L.) was best controlled by 

dicamba with a very coarse droplet.  

 Another technique to improve the effectiveness of a foliar N application is through the 

use of a urease inhibitor in conjunction with a urea containing liquid fertilizer. A urease inhibitor 
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reduces the breakdown of the urea molecule by binding the active site of the urease enzyme 

(Deiana et al., 1999). The urease enzyme breaks the urea molecule into its component parts of 

NH3 and CO2. The ammonia can then be lost to the environment if it is located near or at the soil 

surface, and especially if soil pH is greater than 7. The addition of a urease inhibitor to US has 

resulted in reduced N loss from ammonia volatilization (Bemner and Douglas, 1971, 1973). 

Brinck et al. (2000) reported improved N recovery by the crop when a urease inhibitor was 

added to a soil-applied US, but the urease inhibitor was not significantly beneficial when applied 

to foliage.  

 If the environment is favorable for disease development, wheat quality can also be 

negatively affected. A fungicide application at ZGS 65 in HRSW can prevent the grain-

damaging effects of fusarium head blight (Fusarium graminearum). Recommendations for 

fungicide and foliar N applications almost always urge growers to apply them separately in 

HRSW, even though the recommended application timing overlap. This is due to the phytotoxic 

effects of the liquid fertilizer on the leaf tissue, which the fungicide is intended to protect 

(Franzen, 2015). However, information on the effect of applying a fungicide with N solutions 

simultaneously is lacking. Spring wheat producers might be able to reduce costs if the fungicide 

and N solution could be applied together.  

Economic Return 

 Wheat grain yield and GPC are the two most important constituents in generating an 

economic return in HRSW production. The standard market threshold for GPC are 140 g kg-1 for 

HRSW and 120 g kg-1 for hard red winter wheat in the upper Midwest. Price deductions are 

imposed if GPC falls below this market standard, while premiums may be realized if protein 

content is greater than the market standard. The price discounts and premiums vary depending on 
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the year (Bly and Woodard, 2003). For example, discounts ranged from $22.05 Mg-1 in 

September 2010 and $9.18 Mg-1 in September 2015 (Olson, 2015). When high protein HRSW is 

limited in supply, the premium for high protein may represent as much as 50% or more of the 

total market price of HRSW in some years (Brown et al., 2005).  

 A foliar N application carries an additional input cost to growers, but if the environment 

if favorable for high yields with insufficient N throughout the grain filling period, then an 

additional N application to increase GPC may be justified. The additional N application may be 

highly profitable if an increase in GPC reduces low-protein discounts or results in a protein 

premium payment greater than the cost of the application.  

Objective 

 The objective of this research was to test techniques that might improve the effectiveness 

of increasing GPC with a foliar N application of N alone or in combination with a fungicide, a 

urease inhibitor, adjuvants, and using different droplet sizes. 

Materials and Methods 

 General Information  

 Field experiments were conducted near Casselton (46.88°N, -97.23°W), Fargo (46.93°N, 

-96.86°W), and Prosper (47.00°N, -97.11°W), ND in 2016 and repeated in 2017 at Ada, MN 

(47.35°N, -96.41°W), Casselton (46.88°N, -97.23°W) and Prosper (47.00°N, -97.11°W), ND. 

Soil series, taxonomy, and slope for each location are presented in Table 2.1. Soil samples were 

collected in the fall to determine the levels of plant-available phosphorous (P), potassium (K), 

and residual nitrate-N. Five random 2.5 cm core samples at a 0-30.5 and 30.5-60 cm depths were 

collected from the trial and combined prior to this analysis.  A uniform application of dry urea 

(46-0-0) was applied at 75% of the recommended rate for each location and incorporated prior to 
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planting using a field cultivator. The North Dakota wheat nitrogen calculator was used to 

determine the recommended N rate (North Dakota Wheat Nitrogen Calculator, 2017). A full N 

rate was not applied in order to improve the probability of a protein response from a foliar N 

application. Table 2.2 indicates N level, previous crop, and N rate applied at each location in 

2016 and 2017. 

Table 2.1. Soil series, taxonomy and slope at Casselton, Fargo, and Prosper, ND, and Ada, 

MN in 2016-2017. 

Location 
Soil 

Series† 
Soil Taxonomy‡ Slope 

      % 

Casselton 
Bearden Fine-silty, mixed, superactive, frigid Aeric 

Calciaquolls 
0-2 

Fargo Fargo Fine, smectitic, frigid Typic Epiquerts 0-2 

Prosper 
Bearden Fine-silty, mixed, superactive, frigid Aeric 

Calciaquolls 
0-2 

Ada 
Glyndon Coarse-silty, mixed, superactive, frigid Aeric 

Calciaquolls 
0-3 

† Soil data obtained from (USDA-NRCS, 2016).  

‡ Soil taxonomy listed on individual lines based on hyphenated soil series name. 

 

Table 2.2. Previous crop with nitrogen (N) credit, soil N, P, and K test, and N rate applied 

for locations in 2016-2017. 

Year Location 
Previous 

crop 

Residual soil 

nitrate-N† 
N credit N rate P K 

   ----------------kg ha-1---------------- ppm ppm 

2016 

Casselton, ND Wheat 37 0 119 25 455 

Fargo, ND Soybean‡ 20 44 98 25 --§ 

Prosper, ND Wheat 103 0 70 18 250 

2017 

Ada, MN Soybean 16 50 135 11 107 

Casselton, ND Wheat 83 0 95 11 368 

Prosper, ND Wheat 108 0 78 17 370 

† 2.5 cm core samples taken at 0-60 cm depth.   

‡ Glycine max L. 

§ Data not available. 

Two experiments were designed as randomized complete blocks with four replications to 

develop best practices for stimulating a protein response following a foliar N application. The 
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first experiment (Experiment One) consisted of twelve treatments in 2016 and fourteen 

treatments in 2017 and was constructed to evaluate the effects of separate and combined 

applications of two N solutions with a fungicide at ZGS 65 and 69 (Table 2.3). Experiment Two 

consisted of fifteen treatments in 2016 and eighteen treatments in 2017 and was designed to 

identify the effects a foliar application of N fertilizer combined with four adjuvants using two 

droplets sizes at ZGS 69 (Table 2.4). Additional treatments in Experiment One included a urease 

inhibitor. Two dilution ratios and the use of streamer bars to deliver the foliar N fertilizer in a 

concentrated band instead of broadcast were included in Experiment Two.  

Two N solutions, UAN and a US, were used to supply N at a rate of 34 kg N ha-1. In 

treatments receiving foliar fertilizer, N solutions were applied at a rate of 187 l ha-1. In both 

experiments, UAN was applied at a dilution ratio (volume:volume) of 50:50, unless stated 

otherwise. The US was prepared by mixing dry urea with lukewarm water to provide a solution 

that was 50% urea by weight (23-0-0). For treatments requiring a urease inhibitor, (NBPT) 

(Agrotain Advanced, Koch Agronomic Services, LCC, Wichita, KS), was added to the US at a 

label recommended rate of 2.10 ml kg-1 and UAN at 1.05 ml kg-1. In treatments receiving 

fungicide, prothioconazole and tebuconazole at 126 g and 126 g ai ha-1, respectively, were 

applied with a non-ionic surfactant (NIS) (Activator 90, Loveland Products, Loveland, CO) at 

0.25% v/v. In Experiment Two, adjuvants included an NIS (Activator 90, Loveland Products, 

Loveland, CO), MSO (Super Spread MSO, San Francisco, CA), methylated seed oil 

organosilicone surfactant (MSOOS) (Dyne-Amic, Helena Chemical Company, Collierville, TN), 

and petroleum oil concentrate (POC) (Herbimax, Loveland Products, Loveland, CO) at 0.5% v/v, 

1.8 l ha-1, 438 ml ha-1, and 2.3 l ha-1, respectively. Foliar applications were made in Experiment 

One using XR TeeJet 11002 nozzles (TeeJet Technologies, Wheaton, IL), while Experiment 
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Two utilized streamer bars, and XR TeeJet 11002 and TT11002 nozzles which delivered droplet 

sizes of 226-325 and 326-400 microns, respectively. Treatments were applied using a CO2 

pressurized hand-held backpack sprayer at 207 kPa and constant speed of 3.8 km h-1 with the 

boom height 46 cm above the crop canopy. 

Planting and Plot Maintenance  

 Experiments One and Two were seeded side by side at a seeding rate of 2.9 million 

viable seeds ha-1 using a no-till 3P605NT drill (Great Plains Mfg. Inc., Salina, KS) with seven 

rows spaced 18 cm apart. Experimental units were 1.5 m wide by 5.2 m long with 0.3 m gaps 

between units. Alleys between replications were cut mid-season at a width of 1.5 m, leaving the 

total harvested area of each experimental unit to be 1.5 m by 3.7 m. Trials at Casselton and Fargo 

were planted on 13 April and Prosper on 14 April in 2016. In 2017, Ada, Casselton, and Prosper 

were planted on 17 April, 2 May, and 15 April, respectively. A uniform seed bed was prepared 

before planting using a field cultivator. The HRSW cultivar, Croplan 3419, was planted across 

all locations. Cropland 3419 is a 2014 cultivar release of Winfield United (Arden Hills, 

Minnesota) with high yield potential and intermediate protein potential. 
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Table 2.3. Treatment structure of Experiment One including tank mix combinations of 

fungicide, nitrogen solution, and tank mix additions at the specified timing for all 

locations in 2016-2017. 

Treatment Nitrogen Solution Tank Mix Addition Stage† 

1)‡ Unfertilized Control    

2) Fertilized Control    

3)‡ Fungicide   ZGS 65 

4) Fungicide  NIS§ ZGS 65 

5) Fungicide UAN¶ NIS ZGS 65 

6) Fungicide UAN NIS, NBPT ZGS 65 

7)  UAN  ZGS 65 

8) Fungicide US# NIS ZGS 65 

9) Fungicide US NIS, NBPT ZGS 65 

10)  US  ZGS 65 

11) Fungicide   NIS ZGS 65 

      UAN  ZGS 69 

12)  UAN  ZGS 69 

13) Fungicide   NIS ZGS 65 

 US  ZGS 69 

14)  US  ZGS 69 

† Stage = Zadoks growth stage (ZGS) 65 is Anthesis, ZGS 69 is Post-Anthesis.  

‡ Treatments included in 2017 only. 

§ Nonionic surfactant. 

¶ Urea ammonium nitrate (28-0-0). 

# Urea (46-0-0) solution. 

All locations were scouted throughout the season for pathogens and weed presence. 

Pathogen pressure was minimal in 2016 and 2017 at all locations; however, a fungicide 

application of prothioconazole and tebuconazole at 126 g and 126 g ai ha-1, respectively, were 

applied at ZGS 65 in Experiment Two to reduce the influence of disease at anthesis, due to 

prediction of possible fusarium head blight by the NDSU small grains disease forecasting model 

(NDSU small grain disease forecasting model, 2017). Broadleaf and grass weeds were controlled 

with an application at ZGS 14 of fenoxaprop, pyrasulfotole, bromoxynil octanoate, and 

bromoxynil heptanoate at 56, 18, 74, and 73 g ai ha-1, respectively. 
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Table 2.4. Treatment structure of Experiment Two, including dilution ratio of 

nitrogen (N) solution and rate of tank mix additions for the specified droplet size for 

all locations in 2016-2017. 

Treatment, N Solution 
Tank Mix 

Addition 

Droplet 

Size 
Dilution Ratio† Adjuvant Rate 

1)‡Unfertilized Control     

2)   Fertilized Control     

3)   UAN§  1¶ 50:50  

4)   UAN  2# 50:50  

5)   UAN MSO†† 1 50:50 1.8 l ha-1 

6)   UAN MSO 2 50:50 1.8 l ha-1 

7)   UAN POC‡‡ 1 50:50 2.3 l ha-1 

8)   UAN POC 2 50:50 2.3 l ha-1 

9)   UAN NIS§§ 1 50:50 0.5 % v/v 

10) UAN NIS 2 50:50 0.5  % v/v 

11) UAN MSOOS¶¶ 1 50:50 438  ml ha-1 

12) UAN MSOOS 2 50:50 438 ml ha-1 

13)## UAN Urease Inhibitor 1 50:50 1.05 ml kg-1 

14)## Urea solution Urease Inhibitor 1  2.10 ml kg-1 

15) UAN   1 60:40   

16) UAN  1 75:25  

17)‡ UAN  3††† 50:50  

18)‡ UAN  3 50:50  

† Dilution ratio of spray solution %fertilizer:%water. 

‡ Treatments included in 2017 locations only. 

§ Urea ammonium nitrate (28-0-0). 

¶ 226-325 micron droplet size produced by a XR11002 nozzle. 

# 236-400 micron droplet size produced by a TT1102 nozzle. 

†† Methylated seed oil. 

‡‡ Petroleum oil doncentrate. 

§§ Non-Ionic Surfactant. 

¶¶Methylated seed oil organosilicone surfactant. 

## Treatments not included at Fargo location in 2016.  

††† Streamer bars. 
 

Data Collection and Harvest Methods 

Plots were harvested using a Wintersteiger Classic plot combine (Wintersteiger Ag, Reid, 

Austria). In 2016, Fargo was harvested on 26 July, and Casselton and Prosper were harvested on 

29 July. In 2017, Ada, Casselton, and Prosper were harvested on 11, 22, and 7 Aug., 

respectively. After harvest, grain samples were cleaned using a Clipper Office Tester and 

Cleaner (Seedburo Equipment Co., Chicago, IL) and dried (if necessary).  Grain yield, moisture, 

and test weight (TW) were recorded using a GAC 2100 moisture tester (DICKEY-John Corp., 
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Minneapolis, MN) and GPC was analyzed using Perten Instruments DA 7250 (Perten 

Instruments, Springfield, IL). Yield was adjusted and expressed at 13.5% moisture.  

Field measurements in 2016 included stand counts and the percent of flag leaf 

phytotoxicity (leaf burn), which was visually estimated seven days after foliar applications. Leaf 

burn was based on symptoms across the entire plot using a percent scale of 0% (no injury) to 

100% (complete leaf necrosis). In 2017, field measurements also included normalized difference 

vegetative index (NDVI) and normalized difference red edge (NDRE) readings using a handheld 

CropCircle ACS 470 (Holland Scientific, Lincoln, NE) before each foliar application and seven 

days post application. Times of application, average temperature, wind speed, and wind direction 

were recorded for each application using the nearest NDAWN weather station. 

Statistical Analysis  

 Data were statistically analyzed using the PROC GLM procedure in SAS 9.3 (SAS 

Institute, Cary, NC). Random variables included year, location, and replicate, while treatments 

were considered fixed. Experiment One and Experiment Two were analyzed separately by 

location and year. Bartlett’s test for homogeneity error of variance was conducted to determine if 

environments could be combined. Application timing and N source were additional factors 

analyzed in experiment one. Adjuvant and droplet size were separately analyzed as a factorial 

arrangement in experiment two. Both NDVI and NDRE readings were measured, and the 

strength of relationship between the two measurements were strong (r2=0.70), therefore, only 

NDVI readings will be discussed. Main effects and interactions were tested using the appropriate 

error terms. A square root transformation was applied to percent leaf burn data prior to analysis 

to obtain a normal distribution of the data. The control was not included in leaf burn analysis 

because 0 values would provide an inaccurate assessment of means separation for treatments 



 

53 

receiving a foliar application. Means were separated using Fisher’s protected least significant 

difference (LSD) at the 95% level of confidence (α=0.05).  

Results and Discussion 

Combined Analysis 

Barltett’s test for homogeneity error of variance was not significant when comparing 

environments for both experiments, thus allowing for combining of environments in the 

ANOVA. In the combined analysis, the environment by treatment interactions (E x T) for GPC, 

leaf burn, and NDVI measurements were significant between environments in 2016 and 2017. 

Therefore, GPC, leaf burn, and NDVI measurements and will be discussed separately by 

environment, then combined across all environments within each year. Test weight and yield did 

not have significant E x T interactions and were combined across all environments in 2016 and 

2017. 

Experiment One: Combined and Separate Applications of Fungicide with UAN and US  

Leaf Burn 

Experiment One investigated the effects of combining the applications of a fungicide 

with two N solutions (UAN or US) applied at ZGS 65 and 69. Across all environments, leaf 

burning was observed with all treatments receiving a spray solution (fungicide or N solution), 

but was greatest with treatments receiving an N solution. Phytotoxicity of the leaf tissue 

following a foliar N application can be described as scorching, burning, or tipping (Gooding and 

Davies, 1992). Burning was the greatest when fungicide was combined with NIS and UAN and 

applied at ZGS 65. Less damage was observed when either UAN or US were applied alone at the 

same timing (Table 2.5). The addition of NBPT to the N solution had no effect on leaf burn. 

Treatments containing UAN consistently caused significantly greater leaf burn than US, 
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regardless of timing (Table 2.6). Others have also found that the severity of leaf burn varied 

depending on the type of N solution used (Alkier et al., 1972; Gooding et al., 1992; Bremner, 

1995). Some forms of N fertilizer, such as urea has a lower salt concentration compared to UAN. 

Thus, desiccation of leaf cells with urea through osmosis is reduced and caused less injury than 

UAN (Gary, 1977). 

There was a significant E x T interaction for leaf burning. The severity of burning across 

environments can be explained by differences in weather conditions at the time of application. In 

2016, locations were planted within one day of each other and the plants matured at the same 

time causing some applications to take place when weather conditions were not ideal. However, 

in 2017 maturity varied between locations so applications could be made when weather 

conditions were favorable. The recommended weather conditions to reduce the chance of 

burning are to apply the solution in the cool of the day and when humidity is high (Garcia and 

Hanway, 1976). High temperatures and low humidity can lead to less moisture in the leaf tissue, 

resulting in lower dilution of N compounds in the concentrated solution, causing the burn (Akin 

and Gary, 1984; Gooding and Davies, 1992).  

In 2016, leaf burn was assessed by visually determining the percentage of the flag leaf 

damaged, seven days after application. Burning was assessed in 2017 from NDVI values 

measured with a handheld CropCircle ACS-470. The CropCircle is an active optical sensor that 

is capable of quantifying the leaf biomass through red NDVI values (Sharma, L.K. et al., 2015). 

Foliage damaged by the N solution was necrotic and less green, resulting in a lower red NDVI 

value measured by the sensor. 
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Table 2.5. Effects of treatment applications on leaf burn measured by visual percent leaf 

burn (2016) and red NDVI† (2017) for all environments and combined within years. 
  2016 2017 

    Leaf Burn‡ NDVI 

Treatment 

Application 

Timing Cass. 

Farg

o Pros. Comb. Ada Cass. Pros. Comb. 

   --------------------%--------------------- 
    

1) Control, no treatment§      0.79 0.72 0.73 0.75 

2) Fungicide + NIS¶ ZGS 65 18 a# 23 a 15 a 18 a 0.74 0.74 0.74 0.74 

3) Fungicide + NIS + UAN†† ZGS 65 53 c 55 c 38 bcd 48 f 0.60 0.59 0.62 0.60 

4) Fungicide + UAN + 

NBPT‡‡ 
ZGS 65 40 bc 43 bc 38 bcd 40 ef 0.64 0.56 0.66 0.62 

5) UAN ZGS 65 30 ab 30 ab 28 abcd 29 bcde 0.74 0.74 0.70 0.72 

6) Fungicide + NIS + US§§ ZGS 65 25 ab 30 ab 20 ab 25 abcd 0.75 0.64 0.70 0.70 

7) Fungicide + US + NBPT ZGS 65 30 ab 40 bc 25 abc 32 bcde 0.73 0.65 0.70 0.69 

8) US ZGS 65 23 a 20 a 23 ab 22 ab 0.76 0.69 0.71 0.72 

9) Fungicide + NIS  ZGS 65 
20 a 43 bc 43 cd 35 cdef 0.73 0.65 0.69 0.69 

      UAN ZGS 69 

10) UAN  ZGS 69 18 a 53 c 45 d 38 def 0.73 0.55 0.69 0.66 

11) Fungicide + NIS  ZGS 65 
18 a 35 ab 20 ab 24 abc 0.76 0.69 0.71 0.72 

      US ZGS 69 

12) US  ZGS 69 18 a 28 ab 23 ab 23 abc 0.75 0.65 0.70 0.70 

  Mean 26 36 29 30 0.72 0.66 0.70 0.69 

  LSD0.05 15 17 16 12 0.06 0.08 0.02 0.06 

† Normalized difference vegetative index. 

‡ Means separation based on transformed values of % leaf burn, which are used to 

calculate the LSD values. 

§ Control excluded % leaf burn analysis because no leaf burn occurred. 

¶ Nonionic surfactant.  

# LSD values valid for comparisons within locations.      

†† Urea ammonium nitrate (28-0-0). 

‡‡ N-n-butyl thiophosphoric triamide, urease inhibitor. 

§§ Urea (46-0-0) solution. 

 

The average percent leaf burn (PLB) in 2016 was 26, 36, and 29% at Casselton, Fargo, 

and Prosper, respectively (Table 2.5). Across all environments, the greatest amount of burning 

was observed for treatments containing fungicide + UAN and fungicide + UAN + NBPT with 48 

and 40%, respectively (Table 2.5). Similar results were observed in 2017, with these treatments 

giving the lowest NDVI values with 0.60 and 0.62, respectively (Table 2.5). This is compared to 
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an average NDVI value of 0.78 for fertilized plots shortly before application (Data not shown). 

Significantly less burning was observed in treatments with US when combined with a fungicide, 

as well as US alone. In 2016, treatments containing fungicide alone, fungicide + US, and US 

alone resulted in average PLB of 18, 25, and 22%, respectively (Table 2.5). The NDVI values for 

these treatments in 2017 had similar results with 0.74, 0.70, and 0.72, respectively (Table 2.5).  

Table 2.6. Effects of treatment applications on leaf burn influenced by nitrogen source and 

measured by visual percent leaf burn (2016) and red NDVI† (2017) for all environments and 

combined within years. 
  2016 2017  

  Leaf Burn‡ NDVI  

  Cass. Fargo Pros. Comb. Ada Cass. Pros. Comb. 

 --------------------%-------------------     

Control, no treatment§     0.79 a 0.72 a 0.73 a 0.75 a 

Fungicide + NIS# 17 a¶ 22 a 15 a 18 a 0.78 a 0.74 a 0.74 a 0.75 a 

UAN†† 32 b 44 b 38 b 38 c 0.69 c 0.62 c 0.67 c 0.66 b 

Urea Solution‡‡ 22 a 30 a 22 a 25 b 0.75 b 0.66 b 0.70 b 0.71 a 

† Normalized difference vegetative index. 

‡ Means separation based on transformed values of % leaf burn, which are used to calculate 

the LSD values. 

§ Control excluded % leaf burn analysis because no leaf burn occurred. 

¶ Nonionic Surfactant. 

# LSD values valid for comparisons within locations.     

†† Means derived from all treatments receiving urea ammonium nitrate (28-0-0), regardless 

of timing. 

‡‡ Means derived from all treatments receiving urea (46-0-0) solution, regardless of timing.  

 

Test Weight and Yield 

 Treatments did not differ significantly for TW and yield whether fungicide or N solutions 

were combined or applied separately, and with or without NBPT. The combined average TW and 

yield were 761 kg m-3 and 5180 kg ha-1, respectively (Data not shown). Previous studies have 

reported decreased yields when foliar N applications caused severe burning (Mullins and 

Phillips, 2004). However, these results have not been consistent (Mullins and Phillips, 2004). In 

this study, burning may not have been sufficient to negatively influence TW and yield.   



 

57 

The N source supplied from UAN or US, as well as the timing of application at ZGS 65 

or 69, did not differ significantly for TW or yield. The average TW and yield for treatment 

applications of UAN or US were 760 and 761 kg m-3, and 5158 and 5185 kg ha-1, respectively 

(Data not shown). Treatments with N solutions applied at ZGS 65 or 69 (regardless of N source) 

had a TW of 760 and 761 kg m-3 and yielded 5172 and 5170 kg ha-1, respectively. 

An additional treatment in 2017 included an unfertilized control with zero N pre-plant 

and no foliar N application. Test weight and yield of the unfertilized control were significantly 

lower from all other treatments at Ada and Casselton (data not shown). However, the unfertilized 

control was not significant from all other treatments in Prosper. This may be due to well below 

normal rainfall at the beginning of the growing season (Table 2.7). The N in the fertilized plots 

was not effective because of lack of soil moisture and the plant roots could not effectively uptake 

N. Colman and Lazenby (1975) reported perennial ryegrass to have a low response to N fertilizer 

under low soil moisture conditions. The residual N at Prosper was high and therefore the applied 

N may not have affected the unfertilized plot greatly.  

Table 2.7. Monthly rainfall totals from planting to harvest in Casselton, Prosper, and Fargo, 

ND, and Ada, MN in 2016 and 2017, along with normal (1981-2010)†. 

 Casselton‡ Prosper Fargo Ada 

 2016 2017 Normal 2016 2017 Normal 2016 Normal 2017 Normal 

Month -----------------------------------------------mm----------------------------------------------- 

April 71 32 37 43 17 37 59 35 27 36 

May 90 25 77 82 17 77 33 71 34 82 

June 77 121 100 38 88 100 69 99 74 114 

July 106 53 88 88 50 88 132 71 68 93 

August 37 58 67 26 53 67 48 65 32 70 

Total 381 289 369 277 224 369 340 341 235 395 

† Information collected from NDAWN, 2017. 

‡ Weather information collected from Casselton Agronomy Farm, Casselton, ND.  
 



 

58 

Grain Protein Content 

The E x T interaction was significant for GPC. The average GPC in 2016 at Casselton, 

Prosper, and Fargo was 139, 129, and 134 g kg-1, respectively.  In 2017, the average GPC was 

140, 135, and 135 g kg-1 at Casselton, Prosper, and Ada, respectively (Table 2.8). The major 

differences in GPC across environments can be explained by environmental conditions that 

impacted grain quality, such as temperature and rainfall. These weather conditions can impact N 

uptake from the soil, N absorption by the foliage, and redistribution of N within the plant, 

especially during grain filling (Altenbach et al., 2003; Jenner et al., 1991).  

Table 2.8. Grain protein content influenced by all treatments in experiment one for 

individual and combined environments.   

  Casselton Prosper Fargo Ada Comb. 

 Treatment 
Application 

Timing 
2016 2017 2016 2017 2016 2017 2016-2017 

 ------------------------------g kg-1----------------------------- 

1) Control, No treatment  137 129 126 132 132 127 131 

2) Fungicide + NIS† ZGS 65 138 136 130 132 131 128 132 

3) Fungicide + NIS + UAN ‡ ZGS 65 139 141 129 137 133 134 135 

4) Fungicide + UAN + NBPT§ ZGS 65 137 132 128 135 134 135 134 

5) UAN ZGS 65 138 142 129 135 137 139 137 

6) Fungicide + NIS + US¶ ZGS 65 140 133 128 133 132 137 134 

7) Fungicide + US + NBPT ZGS 65 139 141 127 135 132 137 135 

8) US  ZGS 65 139 139 128 135 133 137 135 

9) Fungicide + NIS ZGS 65 
142 146 133 138 137 138 139 

    UAN ZGS 69 

10) UAN ZGS 69 144 148 131 139 137 138 139 

11) Fungicide + NIS ZGS 65 
140 145 131 138 133 138 138 

    US§ ZGS 69 

12) US ZGS 69 141 150 132 135 132 136 138 

Range# 7 21 7 7 6 12 8 

Mean 139 140 129 135 134 135 136 

LSD0.05 4 8 3 3 5 3 3 

† Non Ionic Surfactant. 

‡ Urea Ammonium Nitrate (28-0-0). 

§ N-n-butyl thiophosphoric triamide, urease inhibitor.  

¶ Urea (46-0-0) solution. 

# Range = Difference between maximum and minimum values across all treatments for 

that location. 
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Significant differences in GPC were also found between treatments. The greatest increase 

between the control and foliar N applications occurred at Casselton in 2017 with 21 g kg-1 (Table 

2.8). In this study, combining a fungicide with either UAN or US did not significantly influence 

GPC compared the N solution alone at the same timing. The average GPC for treatments with 

applications at ZGS 65 were 135, 134, 137, 134, 135, and 135 g kg-1 for fungicide + NIS + UAN, 

fungicide + NIS + UAN + NBPT, UAN alone, fungicide + NIS + US, fungicide + NIS + US + 

NBPT, and US alone, respectively (Table 2.8). Gooding et al. (2009) reported similar results 

with no impact in grain N from applications of US combined with propiconazole (250 a.i ha-1). 

However, GPC consistently increased with foliar N applications at ZGS 69, indicating 

application timing may have a greater influence on GPC.  

Data indicated that applications of either UAN or US at ZGS 69 had the highest GPC 

across all environments. Protein levels were significantly lower in four out of the six 

environments when foliar N applications (regardless of N solution) occurred at ZGS 65 

compared to ZGS 69. Across all environments, average GPC was 135 and 138 g kg-1 when foliar 

N applications occurred at ZGS 65 and 69, respectively (Table 2.9). Findings in this study are 

contrasting to previous research that has indicated foliar N applications at ZGS 61 had the 

greatest influence in GPC and responses from a foliar N application decreased as the kernel 

developed (Finney et al., 1957; Bly and Woodard, 2003; Endres and Schatz, 1993). The N source 

(UAN or US), regardless of timing, did not significantly influence GPC. 

  Overall, a combined fungicide and N solution application will not influence GPC 

compared to a foliar application of N solution alone at the same timing. However, these data 

indicated that the timing of application may have a greater influence on the effectiveness of this 
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application. Therefore, foliar applications of fungicide and N solutions should be done separately 

to achieve the greatest increase in GPC.  

Table 2.9. Grain protein content influenced by timing of application, regardless of N 

solution, for individual and combined environments in experiment one.   

  Casselton Prosper Fargo Ada Combined 

  2016 2017 2016 2017 2016 2017 2016-2017 
 ----------------------------------g kg-1------------------------------- 

Control, No Treatment 137 a† 129 a 127 ab 132 a 132 a 127 a 131 a 

Fungicide + NIS‡ 138 a 130 a 130 a 132 a 131 a 130 a 133 ab 

ZGS 65§ 139 b 138 b 128 b 135 b 134 a 137 b 135 b 

ZGS 69  142 c 147 c 132 c 138 c 134 a 137 b 138 c 

† Non Ionic Surfactant. 

‡ LSD values valid for comparisons within locations.    

§ Zadoks growth stage at which N solution applications occurred, regardless of N source.  

 

Experiment Two: Adjuvant and Droplet Size Combinations with UAN 

Leaf Burn 

Experiment Two investigated the effects of foliar applications of UAN combined with 

different adjuvants and droplet size combinations at ZGS 69. Across all environments, foliar N 

applications caused leaf burning. However, the severity of burning was greater than in 

experiment one, with the flag leaf completely desiccated in some environments. The E x T 

interactions were significant for PLB and NDVI. The interactions can be explained by weather 

conditions at the time of application similar to experiment one, since applications occurred at the 

same time for both experiments.   

The adjuvant x droplet interaction was not significant for leaf burning in 2016 and 2017. 

The droplet size can affect the proportion of spray solution in contact with the leaf surface. Chan 

et al. (2009) reported the coverage of the spray solution on the leaf surface increased 

exponentially as droplet diameter increased. Therefore, a larger droplet may increase the 
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potential for burning if it retained. However, in this study, foliar N applications with either 

medium or coarse droplets did not significantly increase burning across all environments.  

The average PLB in 2016 was 47, 49, and 45% at Casselton, Fargo, and Prosper, 

respectively (Data not shown). Different UAN and adjuvant combinations resulted in different 

amounts of burning across environments in 2016 and 2017. The greatest burning resulted from 

foliar treatments of UAN and NIS with average an PLB of 60% in 2016 and NDVI value of 0.62 

in 2017 (Table 2.10). This is compared to an average NDVI value of 0.75 for fertilized plots 

shortly before application. Foliar applications of UAN and all adjuvants resulted in greater 

burning compared to UAN alone. The average PLB in 2016 was 33, 55, 57, 60, and 55% for 

UAN, UAN + MSO, UAN + POC, UAN + NIS, and UAN + MSOOS, respectively (Table 2.10). 

The NDVI values for these treatments had similar results in 2017 with 0.70, 0.65, 0.65, 0.62, and 

0.63, respectively (Table 2.10). Burning has occurred in previous research with foliar 

applications of N solutions combined with an adjuvant. Kaiser (2017) found leaf burning to 

increase in corn from foliar UAN applications with the addition of an MSO adjuvant.  

Overall, the addition of an adjuvant, regardless of formulation, increased burning over 

UAN applications alone. The addition of an adjuvant to a UAN solution most likely increases 

burning due to the action of the adjuvant that allows the solution to increase coverage, “stick” to 

the leaf surface, or dissolve the leaf cuticle. Due to these actions, the accumulation of N on the 

leaf surface increases resulting in leaf desiccation, especially under favorable weather conditions 

(Poulton et al., 1990). 
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Table 2.10. Effects of adjuvant, droplet, and adjuvant x droplet interaction on leaf burn 

measured by visual percent leaf burn (2016) and red NDVI† (2017) for all environments 

and combined within years in experiment two. 
  2016 2017 
 Visual Leaf Burn‡ NDVI 

  Cass.  Fargo Pros. Comb. Ada Cass. Pros. Comb. 

 ------------------%-------------------     

UAN§ Medium Droplet 38 25 33 32 0.72 0.68 0.70 0.70 

UAN Coarse Droplet 35 38 28 33 0.75 0.69 0.68 0.71 

UAN + MSO¶ Medium Droplet 33 65 78 58 0.73 0.56 0.68 0.65 

UAN + MSO Coarse Droplet 33 55 70 53 0.69 0.58 0.67 0.65 

UAN + POC# Medium Droplet 75 66 33 58 0.69 0.56 0.70 0.65 

UAN + POC Coarse Droplet 75 63 30 56 0.70 0.55 0.68 0.65 

UAN + NIS†† Medium Droplet 68 60 65 64 0.68 0.55 0.67 0.63 

UAN + NIS Coarse Droplet 60 50 58 56 0.69 0.53 0.60 0.61 

UAN + MSOOS‡‡ Medium Droplet 63 48 65 58 0.67 0.55 0.65 0.62 

UAN+ MSOOS Coarse Droplet 48 48 60 52 0.71 0.56 0.68 0.65 

UAN Alone 36 a 31 a 30 a 33 a 0.73 0.69 0.69 0.70 

UAN MSO 33 a 60 b 74 b 55 ab 0.71 0.57 0.67 0.65 

UAN POC 75 c 64 b 31 a 57 ab 0.70 0.56 0.69 0.65 

UAN NIS 64 bc 55 ab 61 b 60 b 0.68 0.54 0.63 0.62 

UAN MSOOS 55 ab 48 ab 63 b 55 ab 0.69 0.55 0.66 0.63 

Medium Droplet 55 53 55 54 0.70 0.58 0.68 0.65 

Coarse Droplet 50 51 49 50 0.71 0.58 0.66 0.65 

Adjuvant x Droplet LSD0.05 NS NS NS NS NS NS NS NS 

Adjuvant LSD0.05  NA§§ NA NA NA 0.02 0.05 NS 0.05 

Droplet LSD0.05 NS NS NS NS NS NS NS NS 

† Normalized difference vegetative index. 

‡ Means separation based on transformed values of % leaf burn, which were used to 

calculate the LSD values. LSD values valid for comparisons within locations 

§ Urea ammonium nitrate (28-0-0). 

¶ Methylated seed oil. 

# Petroleum oil concentrate. 

†† Nonionic surfactant. 

‡‡ Methylated seed oil organisilicone surfactant. 

§§ Means separation represented by letters in table, LSD values valid for comparisons 

within locations. 
 

Test Weight and Yield 

 A relationship between TW and yield has been reported in previous research, and when 

yield is reduced, often a decrease in TW is also realized (Lopez-Bellido et al., 2003). The 

adjuvant x droplet interaction and droplet size (regardless of adjuvant) was not significant for 
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TW or yield.  In this study, data indicated TW and yield were not significantly different between 

foliar applications of UAN and the control. However, foliar applications of UAN combined with 

an adjuvant significantly reduced TW and yield.  

 The combined average TW and yield for all treatments across all environments was 762 g 

kg-1 and 5334 kg ha-1 (Data not shown). The average TW for UAN, UAN + MSO, UAN + POC, 

UAN + NIS, and UAN + MSSOS was 765, 760, 758, 760, and 763 g kg-1, respectively (Table 

2.11). The differences in TW between UAN and adjuvant combinations can be explained by the 

severity of burning that occurred from these foliar applications. The burning causes plant stress, 

especially during the grain-filling period when these applications occur. This stress, along with 

the reduced photosynthesis of the flag leaf can reduce starch accumulation, thus lowering TW 

(Altenbach et al., 2003).  

 Yield decreased only marginally with foliar applications of UAN and adjuvants. A foliar 

application of UAN and NIS reduced yield the greatest and was significantly lower yielding than 

UAN alone. The yield for these treatments was 5133 and 5476 kg ha-1, respectively (Table 2.11).  

Foliar applications of UAN and the other three adjuvants were not significantly lower yielding 

than UAN alone. Yield is also negatively affected if the plant is stressed during the grain filling 

period. These stresses can include high temperatures, lack of water or N, and phytotoxicity. 

These stresses reduce the duration of grain filling, limiting starch deposition (Tewolde et al., 

2006). The severe phytotoxicity stress may explain the reduction in grain yield (Figure 2.1). 
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Table 2.11. Average test weight and yield for adjuvant, droplet, and 

adjuvant x droplet interactions combined across environments in 

2016 and 2017 in experiment two.   

  Test Weight Yield 

 kg m-3 kg ha-1 

UAN† Medium Droplet 766 5526 

UAN Coarse Droplet 765 5426 

UAN + MSO‡ Medium Droplet 760 5360 

UAN + MSO Coarse Droplet 761 5247 

UAN + POC§ Medium Droplet 758 5326 

UAN + POC Coarse Droplet 759 5182 

UAN + NIS¶ Medium Droplet 761 5093 

UAN + NIS Coarse Droplet 758 5173 

UAN + MSOOS# Medium Droplet 764 5256 

UAN+ MSOOS Coarse Droplet 761 5310 

UAN 765 5476 

UAN MSO 760 5304 

UAN POC 758 5254 

UAN NIS 760 5133 

UAN MSOOS 763 5283 

Medium Droplet 762 5312 

Coarse Droplet 761 5268 

Adjuvant x Droplet LSD0.05 NS NS 

Adjuvant LSD0.05  4 165 

Droplet LSD0.05 NS NS 

† Urea Ammonium Nitrate (28-0-0). 

‡ Methylated seed oil. 

§ Petroleum oil concentrate. 

¶ Nonionic surfactant. 

# Methylated seed oil organisilicone surfactant. 
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Grain Protein Content 

 There were significant E x T interactions for GPC. In 2016, the average GPC for 

Casselton, Prosper, and Fargo was 139, 132, and 133 g kg-1, respectively, and in 2017 was 136, 

138, and 135 g kg-1 for Casselton, Prosper, and Ada (data not shown). Differences in GPC across 

environments may be due to weather conditions at the time of application and immediately 

following the foliar N application. High temperatures and low moisture can affect the efficiency 

of this application (Terman, 1979). The average temperature during the grain filling period was 

normal, with minimal variation between locations (data not shown). However, in 2016, average 

precipitation during the same time was normal, but was below normal in 2017 (Table 2.7). 

Environments with no response to the late season foliar N application may be due to sufficient N 

in the soil profile above what is needed to produce yield and GPC under the conditions in that 

particular year.  

 Significant differences in GPC were found between treatments in four out of the six 

environments in 2016 and 2017. An average increase of 8 g kg-1 over the control occurred across 

all environments (Table 2.12). The adjuvant x droplet interaction was not significant for GPC. 
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Figure 2.1. Effect of leaf burn on yield in 2016 (left) and 2017 (right) caused by foliar 

N applications. Leaf burn measured by visual % leaf burn in 2016 and normalized 

difference vegetative index in 2017. 
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Mercer (2007) suggested that decreasing droplet size would lead to an increase in the uptake of 

the active ingredient and therefore increase grain N. Findings in this study indicated GPC was 

only marginally different between droplet sizes and was not significant across all environments. 

Different UAN and adjuvant combinations (regardless of droplet size) resulted in 

different GPC, but was not significantly different compared to UAN alone in five out of the six 

environments. The greatest increase in GPC occurred with a foliar application of UAN and POC 

at Prosper in 2016 with 136 g kg-1 compared to UAN alone with 133 g kg-1 (Table 2.12). 

However, this was not consistent across environments. Grain protein content may not have been 

increased with the addition of an adjuvant due to phytotoxicity caused by the N solution. After 

foliar N applications, the solution is either absorbed through the leaf stomata or run off leaf 

surfaces and absorbed by the roots and redistributed to the grain. The function of the adjuvants 

are to increase retention of the droplets, improve the interface between the leaf surface and N 

compounds, or increase penetration of the N compounds. However, the rate or amount of uptake 

of the N compounds may have been so great that it resulted in localized cell death. The 

consequence of this resulted in the inability of the N to translocate out of the leaf, reducing the 

effectiveness of the applications (Brian, 1972; Merritt, 1982; Knoche et al., 1992; Forster et al., 

1997). 

Overall, combined data confirmed that a late season foliar UAN application at ZGS 69 

can reliably increase GPC. Findings in this study suggest the addition of adjuvants used in this 

experiment (regardless of formulation) will not increase GPC greater than an application of UAN 

alone. Also, droplet size will not have an impact on the efficiency of this late season application. 

This is contrasting to previous research that has reported an increase in GPC while using smaller 

droplet sizes with an adjuvant and UAN (Wyatt, 2013). Different responses in GPC to various 
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adjuvants added to late season foliar N applications across environments suggests that additional 

research needs to be conducted to help determine favorable environmental conditions to use an 

adjuvant with UAN.  

Table 2.12. Grain protein content influenced by adjuvant, droplet, and adjuvant x 

droplet interactions for individual and combined environments in experiment two.  
 Casselton Prosper Fargo Ada Comb. 

 2016 2017 2016 2017 2016 2017 2016-2017 
 

----------------------------g kg-1----------------------------- 

UAN† Medium Droplet 140 139 133 139 136 136 137 

UAN Coarse Droplet 138 138 133 141 130 134 136 

UAN + MSO‡ Medium Droplet 140 138 130 138 132 134 136 

UAN + MSO Coarse Droplet 140 136 132 138 134 133 136 

UAN + POC§ Medium Droplet 140 136 135 138 130 135 135 

UAN + POC Coarse Droplet 138 142 136 138 132 134 137 

UAN + NIS¶ Medium Droplet 138 135 130 140 134 134 135 

UAN + NIS Coarse Droplet 139 137 132 138 134 135 136 

UAN + MSOOS# Medium Droplet 138 132 132 139 132 136 135 

UAN+ MSOOS Coarse Droplet 138 138 133 138 133 136 136 

UAN Alone 139 138 133 140 133 135 136 

UAN MSO 140 137 131 138 133 134 136 

UAN POC 139 139 136 138 131 134 136 

UAN NIS 139 136 131 139 134 135 135 

UAN MSOOS 138 135 133 138 133 136 135 

Medium Droplet 139 136 132 139 133 135 136 

Coarse Droplet 139 138 133 139 132 134 136 

Adjuvant x Droplet LSD0.05 NS NS NS NS NS NS NS 

Adjuvant LSD0.05  NS NS 4 NS NS NS NS 

Droplet LSD0.05 NS NS NS NS NS NS NS 

† Urea Ammonium Nitrate (28-0-0). 

‡ Methylated seed oil. 

§ Petroleum oil concentrate. 

¶ Nonionic surfactant. 

# Methylated seed oil organisilicone surfactant. 
 

Additional Treatments 

In 2016 and 2017, additional foliar N applications included dilution ratios (UAN:Water) 

of 60:40 and 75:25, as well as NBPT combined with UAN and US. These treatments showed no 
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effect on leaf burn, TW, yield, or GPC, with the exception of UAN and NBPT. Foliar 

applications of UAN and NBPT significantly reduced TW compared to UAN alone and the 

control (data not shown). Similar GPC was achieved with UAN:Water dilution ratio of 50:50, 

60:40, and 75:25. This suggests that a single volume of the N solution can cover a larger area, 

and the same N rate can be applied using less total volume, ultimately saving costs for a 

producer. Foliar applications of UAN and US with NBPT were not significantly different from 

all treatments receiving a foliar N application. 

Experiment Two included an unfertilized control in 2017, similar to experiment one. 

Parallel results were obtained in experiment two and TW and yield were significantly lower 

compared to fertilized treatments at Ada and Casselton, but no significant difference was found 

at Prosper. This can be explained for similar reasons described in experiment one with greater 

levels of residual N and low soil moisture at the beginning of the growing season in Prosper. 

Additional treatments in 2017 included foliar applications of UAN at ZGS 65 and 69 

using streamer bars rather than broadcast nozzles. A streamer bar is adapted to a spray nozzle 

and delivers a uniform stream of the N solution. This is contrasting to broadcast nozzles that 

deliver the N solution in a pattern to the foliage. A benefit of streamer bars is that foliar 

applications can be made in windy conditions and less contact of the N solution with the foliage, 

unlike broadcast nozzles (Arnall et al., 2009). In this study, the severity of leaf burning was 

significantly decreased when UAN was applied with streamer bars compared to UAN 

applications with broadcast nozzles. A single stream applies the spray solution allowing less 

contact to be made with the foliage, thus causing less burning. Test weight and yield were not 

significantly different between foliar applications of UAN with streamer bars and UAN 

applications using broadcast nozzles (data not shown). Streamer bars may be an effective method 
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to apply UAN in environments with sufficient soil moisture and adequate rainfall following 

application. However, without sufficient moisture or rainfall to move N into the soil solution, the 

plant roots cannot absorb and redistribute N to the grain.  

Conclusion 

The severity of leaf burn from a late-season foliar N application can vary depending on 

the weather conditions at the time of application, as well as the N solution. An application of 

UAN will often increase leaf burning over US. This has been reported in previous research due 

to the increased toxicity of ammonia in UAN. Also, combining a fungicide with either UAN or 

US will increase leaf burning compared to applications done separately. The addition of an 

adjuvant (regardless of formulation) will most likely cause severe leaf burning when combined 

with UAN due to increased coverage and absorption of the N compounds. In this study, droplet 

size did not impact leaf burning, TW, yield, or GPC.  

Test weight and grain yield are often significantly related. Previous research has 

indicated foliar N applications to have variable effects on grain yield. In this study, a foliar 

application at ZGS 65 of N solution combined with a fungicide to have no substantial effect on 

TW or yield. However, the addition of an adjuvant, regardless of formulation, reduced TW and 

yield compared to UAN alone. This is likely due to an increase in leaf burn realized with the 

additional adjuvant. Damage to the foliage can decrease TW and yield due to reduced starch 

accumulation during grain filling.  

A late-season foliar N application significantly increased GPC. In this study, an increase 

between 6 to 21 g kg-1 was observed between treatments receiving supplemental N and the check 

for both experiments. The combination of a fungicide with N solution will not have a negative 

impact on GPC, but rather the timing of this application will more effectively influence GPC. 
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The greatest increase was realized with an application at ZGS 69, with N source from either 

UAN or US. The addition of an adjuvant or NBPT will not significantly increase GPC beyond 

that of UAN alone, therefore, the additional cost of these inputs would not be recommended for 

producers.  

 Overall, a benefit from a late season foliar N application can be realized due to an 

increase in GPC, especially in years that weather conditions favor N uptake and redistribution of 

N to the grain. However, no benefit in increasing GPC is realized with the use of an adjuvant or 

NBPT and the additional cost would not be worth the expense for the producer. The additional 

treatments such as increased dilution ratios and the use of streamer bars to apply the N solution 

may have some benefits to producers and future research should investigate the effectiveness of 

these further.  
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CONCLUSION 

Grain quality for HRSW producers can be difficult to consistently predict within and 

across years. The DSSAT can be a valuable tool to accurately predict HRSW growth by updating 

the CSM with measured weather data during the growing season, while supplementing historic 

weather data to forecast weather for the remainder of the growing season. In this study, the best 

approach to forecast weather was through a style that uses daily weather over multiple years to 

give a range of possible outcomes (distribution). However, plant growth should not be predicted 

with forecasted weather before ZGS 45. The accuracy of simulations improves as plant 

development progresses to ZGS 61. Variability in simulation accuracy existed between locations, 

therefore improved physical soil and cultivar measurements would be needed to improve the 

accuracy of predictions. However, overall DSSAT was determined to be an effective tool to 

predict HRSW yield during the growing season. Since yield was predicted with adequate 

accuracy, DSSAT could be used as a decision support system to allow producers to make 

informed management decisions after ZGS 45. A decision producers may determine based on 

grain yield is whether or not a late season foliar N application would be needed to increase GPC.  

A late season foliar N application might be considered to optimize GPC, if anticipated 

grain yields are likely to exceed the yield considered when pre-plant recommendations were 

determined (Wuest and Cassman, 1992). In this study, a foliar N application at either ZGS 65 or 

69 significantly increased GPC, with the greatest increase occurring with applications at ZGS 69 

using either UAN or US. An N solution combined with a fungicide and applied at ZGS 65 will 

not decrease GPC. However, the timing of this application indicated that a more effective 

increase in GPC can be realized if the applications are done separately. The addition of different 

adjuvants or NBPT did not improve the effectiveness of a UAN application to increase GPC. 
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However, phytotoxicity from the N solution was severely increased with these additions. The 

severity of leaf burn caused by foliar N applications also depended on the weather conditions at 

the time of application. Depending on the severity of burning, TW and yield were significantly 

decreased. 

The cost of a late season foliar N application must be equal to or less than the economic 

return from a premium or reduced discount in GPC from the market threshold of 140 g kg-1. 

Implementing DSSAT can be a management tool for producers to accurately predict grain yield 

from the ZGS 45 if predicted yields are sufficient for an economic return to be realized. This 

would allow little time for a management decision to be made, since the optimum timing to 

increase GPC from this application occurs at ZGS 69. The techniques used in this study suggest 

the additional cost of an adjuvant or NBPT would not increase GPC high enough to realize an 

economic return. 
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APPENDIX 

Table A.1. Simulated anthesis date using full season weather data and anthesis date 

determined by the NDAWN wheat GDD calculator† in 2005-2016.  

 Carrington Hettinger Langdon Minot Williston Combined 

 Sim.‡ Obs.§ Sim. Obs. Sim. Obs. Sim. Obs. Sim. Obs. Sim. Obs. 

Year -------------------------------------------DAP¶----------------------------------------------- 

2005 73 71 71 65 67 52 70 64 73 67 71 64 

2006 69 66 68 61 67 55 67 61 67 58 68 60 

2007 69 62 67 62 71 72 67 61 69 63 69 64 

2008 79 80 73 69 75 76 72 68 75 70 75 73 

2009 69 67 72 68 69 56 71 66 74 71 71 66 

2010 69 68 78 78 74 79 69 59 71 70 72 71 

2011 69 63 72 68 65 52 68 61 66 59 68 61 

2012 73 69 82 81 72 72 72 68 69 82 74 74 

2013 63 56 74 70 64 50 63 57 66 58 66 58 

2014 69 63 74 74 72 54 69 57 66 60 70 62 

2015 77 76 79 79 72 70 71 68 69 66 74 72 

2016 73 72 79 78 70 62 68 61 65 59 71 66 

† North Dakota Agricultural Weather Network wheat Growing Degree Day calculator 

(NDAWN, 2017b).  

‡ Simulated anthesis date from model output. 

§ Observed anthesis date determined by the NDAWN wheat GDD calculator. 

¶ Days after planting. 
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Table A.2. Simulated grain yield using full season weather data and observed grain yield obtained from 

North Dakota REC† cultivar trials in 2005-2016.  

 Carrington Hettinger Langdon Minot Williston Combined 

 Sim.‡ Obs.§ Sim. Obs. Sim. Obs. Sim. Obs. Sim. Obs. Sim. Obs. 

Year -----------------------------------------------kg ha-1------------------------------------------------------ 

2005 4128 3945 4438 2623 5551 4052 5066 5044 4813 4830 4799 4099 

2006 4281 4104 2536 2408 1744 3904 2426 2170 2109 2358 2594 3014 

2007 4396 3922 3425 2650 5250 5631 5237 5367 4275 3687 4362 4406 

2008 4968 4708 3563 2585 4860 5631 4531 4484 2841 2548 3957 4187 

2009 3432 4032 3967 2246 6041 5955 4064 5203 2698 3582 3696 4548 

2010 4456 5341 4807 4350 5087 5373 4462 4754 3660 2892 4403 4633 

2011 4250 2746 4545 4486 3949 5160 4418 3014 2855 2715 3992 3636 

2012 4318 3778 4078 4713 4854 4792 4301 3330 3581 2235 4353 3643 

2013 2032 2014 4779 4258 3647 5105 4685 3635 4682 3765 3861 3860 

2014 4926 5564 4797 5392 3859 5437 5124 4225 2408 2340 4342 4473 

2015 3580 4207 5373 4491 4565 5408 5162 4757 2922 2783 4144 4506 

2016 3506 3975 2507 3308 5716 4540 4761 4720 4267 4240 4312 3996 

† Research extension center. 

‡ Simulated grain yield from model output. 

§ Observed yield from North Dakota Research Extension Center cultivar trials. 
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Table A.3. Weather conditions at the time of treatment applications for all environments 

in experiment one and two in 2016 and 2017. 

  Experiment One Experiment Two 

Location, 

Year 

 
ZGS† 65 ZGS 69 ZGS 65 ZGS 69 

Fargo, 

2016 

Date‡ 18 June 2016 21 June 2016 NA†† 18 June 2016 

Time§ 9:00 am 2:15 PM  10:00 am 

Temp.¶ 18 28  18 

Wind# 6 NW 14-16 N  6 NW 

Prosper, 

2016 

Date  28 June 2016 18 June 2016 NA 28 June 2016 

Time 11:00 am 11:45 am  12:00 PM 

Temp. 21 27  21 

Wind 14 N-NW 3 NW  17 N-NW 

Casselton, 

2016 

Date  28 June 2016 18 June 2016 NA 28 June 2016 

Time 12:30 PM 1:00 PM  1:30 PM 

Temp. 22 28  22 

Wind 6-8 N-NW 16-18 NW  6-8 N-NW 

Ada, 

2017 

Date  3 July 2017 26 June 2017 26 June 2017 3 July 2017 

Time 7:00 am 7:30 am 7:30 am 8:30 am 

Temp. 20 13 13 20 

Wind 6-10 S 5-8 NW 5-8 NW 6-10 S 

Prosper, 

2017 

Date  30 June 2017 26 June 2017 26 June 2017 30 June 2017 

Time 7:00 am 2:00 PM 1:00 PM 8:00 am 

Temp. 18 23 23 18 

Wind 3-13 NW 6-14 NW 6-14 NW 3-13 NW 

Casselton, 

2017 

Date  5 July 2017 5 July 2017 28 June 2017 10 July 2017 

Time 8:45 am 7:00 am 8:30 am 7:40 am 

Temp.  24 23 18 18 

Wind 6-11 E-SE 5-10 E-SE 8-10 S 2-5 E 

† Zadoks growth stage. 

‡ Date of treatment application. 

§ Time of application. 

¶ Air temperature (°C). 

# Wind speed and direction. Wind speed measured in km h-1. 

†† Not applicable, no treatment applications at ZGS 65 in 2016 
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Table A.4. Effects of treatment applications on leaf burn measured by normalized 

difference red edge (NDRE) in 2017 for individual and combined environments in 

Experiment One. 

Treatment 
Application 

Timing 
Ada Cass Pros Combined 

1) Control, no treatment  0.20 0.25 0.31 0.25 

2) Fungicide + NIS† ZGS 65 0.33 0.29 0.33 0.32 

3) Fungicide + NIS + UAN‡ ZGS 65 0.33 0.30 0.32 0.32 

4) Fungicide + UAN + NBPT§ ZGS 65 0.32 0.31 0.33 0.32 

5) UAN ZGS 65 0.30 0.28 0.29 0.29 

6) Fungicide + NIS + US¶ ZGS 65 0.31 0.29 0.29 0.30 

7) Fungicide + US + NBPT ZGS 65 0.24 0.26 0.28 0.26 

8) US ZGS 65 0.31 0.27 0.31 0.30 

9) Fungicide + NIS  ZGS 65 0.30 0.33 0.31 0.31 

      UAN ZGS 69 0.31 0.30 0.32 0.31 

10) UAN  ZGS 69 0.29 0.36 0.29 0.31 

11) Fungicide + NIS  ZGS 65 0.30 0.28 0.29 0.29 

      US ZGS 69 0.25 0.23 0.29 0.26 

12) US  ZGS 69 0.30 0.28 0.30 0.29 

 Mean 0.29 0.29 0.3 0.29 

 LSD0.05 0.02 NS 0.01 0.04 

† Nonionic surfactant. 

‡ Urea ammonium nitrate (28-0-0). 

§ N-n-butyl thiophosphoric triamide, urease inhibitor. 

¶ Urea (46-0-0) solution.   
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Table A.5. Test weight and yield for all treatments in experiment one 

combined across six environments in 2016 and 2017. 

 Timing† Treatment TW Yield 

  kg m-3 kg ha-1 

 1)   Control, No treatment 763 5153 

ZGS 65 2)   Fungicide + NIS‡ 764 5295 

ZGS 65 3)   Fungicide + NIS + UAN  762 5184 

ZGS 65 4)   Fungicide + UAN + NBPT# 760 5140 

ZGS 65 5)   UAN 760 5148 

ZGS 65 6)   Fungicide + NIS + US 762 5221 

ZGS 65 7)   Fungicide + US + NBPT 761 5233 

ZGS 65 8)   US  760 5095 

ZGS 65 9)   Fungicide + NIS 
759 5179 

ZGS 69       UAN§ 

ZGS 69 10) UAN 755 5139 

ZGS 65 11) Fungicide + NIS 
765 5294 

ZGS 69       US¶ 

ZGS 69 12) US 760 5077 

Mean 761 5180 

LSD0.05 NS NS 

† Timing of application.  

‡ Non Ionic Surfactant. 

§ Urea Ammonium Nitrate (28-0-0). 

¶ Urea (46-0-0) Solution. 

# N-n-butyl thiophosphoric triamide, urease inhibitor.  
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Table A.6. Test weight, yield, and grain protein content influenced by all treatments in experiment one for individual and 

combined environments in 2017.  

  Test Weight Yield Protein 

Application 

Timing† 
Treatment Ada Cass Pros Comb. Ada Cass Pros Comb. Ada Cass Pros Comb. 

   --------------kg m-3-------------- -------------kg ha-1------------ ------------g kg-1------------ 

 1) Control, no Fertilizer  779 758 768 769 3854 4185 4543 4194 125 128 129 127 

 2) Control, with Fertilizer 792 769 765 775 6080 5818 4604 5500 127 129 132 129 

ZGS 65 3) Fungicide, no NIS‡  794 772 768 778 6165 5519 4524 5403 132 124 134 130 

ZGS 65 4) Fungicide + NIS 801 774 765 780 6264 5805 4871 5647 128 136 132 132 

ZGS 65 5) Fungicide + NIS + UAN§ 791 768 763 774 5803 5726 4426 5318 134 141 136 137 

ZGS 65 6) Fungicide + UAN + NBPT¶ 789 766 762 772 5873 5502 4700 5359 135 132 135 134 

ZGS 65 7) UAN 790 772 766 776 6260 5993 4519 5591 139 142 135 139 

ZGS 65 8) Fungicide + NIS + US# 799 775 766 780 6293 5645 4819 5585 137 133 133 134 

ZGS 65 9) Fungicide + US + NBPT 793 771 763 776 6191 6046 4737 5658 137 141 135 138 

ZGS 65 10) US 790 767 765 774 6321 5591 4378 5430 137 139 135 137 

ZGS 65 11) Fungicide + NIS  
793 773 761 776 6186 5869 4523 5526 137 146 138 141 

ZGS 69     UAN 

ZGS 69 12) UAN 793 767 760 774 6053 5766 4517 5445 138 148 139 142 

ZGS 65 13) Fungicide + NIS 
795 774 764 778 6257 5781 4703 5580 138 145 138 140 

ZGS 69      US 

ZGS 69 14) US 791 764 761 772 5831 5295 4628 5251 136 150 135 141 

LSD0.05 9 6 NS 56 337 767 NS 561 3 8 3 6 

† Timing of application.  

‡ Non Ionic Surfactant. 

§ Urea Ammonium Nitrate (28-0-0). 

¶ N-n-butyl thiophosphoric triamide, urease inhibitor. 

# Urea (46-0-0) Solution. 
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Table A.7. Effects of treatment applications on leaf burn measured by 

normalized difference red edge (NDRE) in 2017 for individual and combined 

environments in Experiment Two. 

  Ada Cass Pros Combined 

1) Control, no Fertilizer 0.22 0.23 0.29 0.25 

2) Control, with Fertilizer 0.31 0.29 0.30 0.30 

3) UAN† Medium Droplet 0.28 0.29 0.29 0.29 

4) UAN Coarse Droplet 0.30 0.28 0.29 0.29 

5) UAN + MSO‡ Medium Droplet 0.30 0.22 0.28 0.27 

6) UAN + MSO Coarse Droplet 0.28 0.24 0.28 0.26 

7) UAN + POC§ Medium Droplet 0.29 0.24 0.27 0.27 

8) UAN + POC Coarse Droplet 0.29 0.23 0.29 0.27 

9) UAN + NIS¶ Medium Droplet 0.28 0.23 0.26 0.26 

10) UAN + NIS Coarse Droplet 0.28 0.22 0.27 0.26 

11) UAN + MSOOS# Medium Droplet 0.28 0.22 0.28 0.26 

12) UAN+ MSOOS Coarse Droplet 0.27 0.23 0.28 0.26 

13) UAN 60:40 Dilution Ratio†† 0.29 0.26 0.28 0.28 

14) UAN 75:25 Dilution Ratio 0.29 0.29 0.28 0.28 

15) UAN + NBPT‡‡ 0.28 0.26 0.26 0.27 

16) Urea Solution + NBPT 0.31 0.28 0.27 0.29 

17) UAN Streamer Bars at ZGS 65 0.31 0.30 0.31 0.31 

18) UAN Streamer Bars at ZGS 65 0.29 0.27 0.28 0.28 

Mean 0.28 0.25 0.28 0.27 

LSD0.05 0.03 0.04 0.02 0.03 

† Urea ammonium nitrate (28-0-0). 

‡ Methylated seed oil. 

§Petroleum oil concentrate. 

¶ Nonionic surfactant. 

# Methylated seed oil organisilicone surfactant. 

†† Dilution ratio of nitrogen solution (UAN:Water) 

‡‡ N-n-butyl thiophosphoric triamide, urease inhibitor 
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Table A.8. Effects of treatment applications on leaf burn measured by visual percent leaf burn 

(2016) and red normalized difference vegetative index (NDVI) (2017) for individual 

environments and combined within years in experiment two. 
 2016 2017 
 Visual Leaf Burn† NDVI 
 Cass. Fargo Pros. Comb Ada Cass. Pros. Comb. 

 -------------------%----------------     

1) Control, No Treatment     0.77 0.72 0.74 0.74 

2) UAN‡ Medium Droplet 37 ab 25 a 33 a 32 ab 0.72 0.68 0.70 0.70 

3) UAN Coarse Droplet 35 ab 38 bc 28 a 33 ab 0.75 0.69 0.68 0.71 

4) UAN + MSO§ Medium Droplet 33 ab 65 d 78 c 58 c 0.73 0.56 0.68 0.65 

5) UAN + MSO Coarse Droplet 33 ab 55 cd 70 bc 53 bc 0.69 0.58 0.67 0.65 

6) UAN + POC¶ Medium Droplet 75 d 66 d 33 a 58 c 0.69 0.56 0.70 0.65 

7) UAN + POC Coarse Droplet 75 d 63 d 30 a 56 bc 0.70 0.55 0.68 0.65 

8) UAN + NIS# Medium Droplet 68 cd 60 d 65 bc 64 c 0.68 0.55 0.67 0.63 

9) UAN + NIS Coarse Droplet 60 cd 50 cd 78 bc 56 c 0.69 0.53 0.60 0.61 

10) UAN + MSOOS†† Medium Droplet 63 cd 48 cd 65 bc 58 c 0.67 0.55 0.65 0.62 

11) UAN+ MSOOS Coarse Droplet 38 bc 48 cd 60 bc 52 bc 0.71 0.56 0.68 0.65 

12) UAN 60:40 Dilution Ratio‡‡ 40 ab 36 bc 28 a 34 ab 0.73 0.64 0.69 0.68 

13) UAN 75:25 Dilution Ratio 40 ab 33 bc 35 a 36 ab 0.72 0.68 0.67 0.69 

14) UAN + NBPT§§ 25 a ¶¶ 35 a 27 ab 0.71 0.64 0.65 0.66 

15) Urea Solution + NBPT 25 a ¶¶ 20 a 23 a 0.75 0.67 0.66 0.69 

Means 47 49 45 47 0.71 0.62 0.68 0.67 

##LSD0.05 
    0.03 0.08 0.06 0.06 

† Means separation based on transformed values of % leaf burn, which were used to calculate 

the LSD values. 

‡ Urea ammonium nitrate (28-0-0). 

§ Methylated seed oil. 

¶ Petroleum oil concentrate. 

# Nonionic surfactant. 

†† Methylated seed oil organisilicone surfactant. 

‡‡ Dilution ratio of nitrogen solution (UAN:Water). 

§§ N-n-butyl thiophosphoric triamide, urease inhibitor. 

¶¶ Treatments not included at Fargo in 2016. 

## Least significant difference not indicated due to means separation available in table.  
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Table A.9. Means for test weight and yield for adjuvant† and droplet‡ treatments 

combined across all environments in 2016 and 2017 in experiment two.  

  TW Yield 

 kg m-3 kg ha-1 

Control, no treatment 766 5397 

UAN§ 765 5476 

UAN + MSO¶ 760 5304 

UAN + POC# 758 5260 

UAN + NIS†† 760 5133 

UAN + MSOOS‡‡ 763 5283 

Medium Droplet 762 5314 

Coarse Droplet 761 5268 

§§LSD0.05  4 198 

¶¶ LSD0.05 4 NS 

† Means derived from all treatments receiving respective adjuvant regardless of 

droplet size.  

‡ Means derived from all treatments receiving respective droplet size regardless 

of adjuvant.  

§ Urea ammonium nitrate (28-0-0). 

¶ Methylated seed oil. 

# Petroleum oil concentrate. 

†† Nonionic surfactant. 

‡‡ Methylated seed oil organisilicone surfactant. 

§§ LSD comparing adjuvant treatments to control. 

¶¶ LSD comparing droplet treatments to control. 
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Table A.10.  Means for test weight and yield influenced by all treatments 

combined across all environments in 2016 and 2017 in experiment two. 
 TW Yield 

  kg m-3 kg ha-1 

1) Control, No Treatment 766 a 5397 abc 

2) UAN† Medium Droplet 766 a 5526 a 

3) UAN Coarse Droplet 765 ab 5426 ab 

4) UAN + MSO‡ Medium Droplet 760 bcd 5360 abc 

5) UAN + MSO Coarse Droplet 761 abcd 5247 bcd 

6) UAN + POC§ Medium Droplet 758 d 5339 abc 

7) UAN + POC Coarse Droplet 759 cd 5182 cd 

8) UAN + NIS¶ Medium Droplet 761 abcd 5093 d 

9) UAN + NIS Coarse Droplet 758 d 5173 cd 

10) UAN + MSOOS# Medium Droplet 764 abc 5256 bcd 

11) UAN+ MSOOS Coarse Droplet 761 abcd 5310 abcd 

12) UAN 60:40 Dilution Ratio†† 762 abcd 5479 ab 

13) UAN 75:25 Dilution Ratio 763 abcd 5446 ab 

14) UAN + NBPT‡‡ 758 d 5330 abc 

15) Urea Solution + NBPT 762 abcd 5498 a 

Mean 762 5334 

† Urea ammonium nitrate (28-0-0). 

‡ Methylated seed oil. 

§Petroleum oil concentrate. 

¶ Nonionic surfactant. 

# Methylated seed oil organisilicone surfactant. 

†† Dilution ratio of nitrogen solution (UAN:Water) 

‡‡ N-n-butyl thiophosphoric triamide, urease inhibitor 
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Table A.11.  Grain protein content influenced by all treatments for individual and 

combined environments in experiment two. 
  Casselton Prosper Fargo Ada Combined 

  2016 2017 2016 2017 2016 2017 2016-2017 
 ---------------------------------g kg-1---------------------------- 

1) Control, No Treatment 132 129 126 134 132 129 130 

2) UAN† Medium Droplet 140 139 133 139 136 136 137 

3) UAN Coarse Droplet 138 138 133 141 130 134 136 

4) UAN + MSO‡ Medium Droplet 140 138 130 138 132 135 136 

5) UAN + MSO Coarse Droplet 140 136 132 138 134 133 136 

6) UAN + POC§ Medium Droplet 140 136 135 138 129 135 135 

7) UAN + POC Coarse Droplet 138 142 136 138 132 134 137 

8) UAN + NIS¶ Medium Droplet 138 136 130 140 134 134 135 

9) UAN + NIS Coarse Droplet 139 137 132 138 134 135 136 

10) UAN + MSOOS# Medium Droplet 138 132 132 139 132 136 135 

11) UAN+ MSOOS Coarse Droplet 138 138 133 138 133 136 136 

12)  UAN 60:40 Dilution Ratio†† 141 135 134 139 135 135 136 

13)  UAN 75:25 Dilution Ratio 143 139 135 140 135 136 138 

14) UAN + NBPT‡‡ 141 138 133 139 ## 135 137 

15) Urea Solution + NBPT 138 132 131 138 ## 136 135 

§§Range 11 13 10 7 7 7 8 

Mean 139 136 132 138 133 135 136 

LSD0.05 4 NS 4 NS 4 4 2 

† Urea ammonium nitrate (28-0-0). 

‡ Methylated seed oil. 

§Petroleum oil concentrate. 

¶ Nonionic surfactant. 

# Methylated seed oil organisilicone surfactant. 

†† Dilution ratio of nitrogen solution (UAN:Water). 

‡‡ N-n-butyl thiophosphoric triamide, urease inhibitor. 

§§ Difference between maximum and minimum values across all treatments for that location. 
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Table A.12.  Test weight, yield, and grain protein content influenced by all treatments for individual and combined 

environments in 2017 in experiment two.  
 Protein TW Yield 

  Ada Cass. Pros. Comb. Ada Cass. Pros. Comb. Ada Cass. Pros. Comb. 
 ---------------g kg-1-------------- --------------kg m-3-------------- --------------kg ha-1------------- 

1) Control, no Fertilizer 127 123 131 127 778 755 765 766 3819 4728 4723 4423 

2) Control, with Fertilizer 129 129 134 131 801 758 762 774 6175 5907 4712 5598 

3) UAN† Medium Droplet 136 139 139 138 797 761 766 775 6458 6225 4684 5789 

4) UAN Coarse Droplet 134 138 141 138 800 756 757 771 6235 5788 4225 5416 

5) UAN + MSO‡ Medium Droplet 135 138 138 137 794 754 764 771 6130 5686 4606 5474 

6) UAN + MSO Coarse Droplet 133 136 138 136 796 757 761 771 6020 5531 4409 5320 

7) UAN + POC§ Medium Droplet 135 136 138 136 788 757 757 767 6129 5755 4604 5496 

8) UAN + POC Coarse Droplet 134 142 138 138 793 741 764 766 6028 5156 4652 5278 

9) UAN + NIS¶ Medium Droplet 134 136 140 136 794 755 762 770 6045 5556 4074 5225 

10) UAN + NIS Coarse Droplet 135 137 138 137 787 753 761 767 6101 5484 4421 5335 

11) UAN + MSOOS# Medium Droplet 136 132 139 135 795 754 765 771 5992 5390 4612 5331 

12) UAN+ MSOOS Coarse Droplet 136 138 138 137 793 755 763 770 6285 5516 4393 5398 

13) UAN 60:40 Dilution Ratio†† 135 135 139 136 796 759 760 772 6443 5819 4563 5608 

14) UAN 75:25 Dilution Ratio 136 139 140 138 793 761 758 771 6257 5973 4428 5553 

15) UAN + NBPT‡‡ 136 138 139 138 796 750 759 769 6253 5570 4288 5370 

16) Urea Solution + NBPT 136 132 138 135 796 762 759 773 6529 5838 4759 5709 

17) UAN Streamer Bars at ZGS 65 135 128 135 133 797 761 767 775 6317 5696 4349 5454 

18) UAN Streamer Bars at ZGS 65 138 128 136 134 796 758 765 773 6181 5465 4419 5355 

LSD0.05 4 9 4 4 10 12 6 7 369 815 506 577 

† Urea ammonium nitrate (28-0-0). 

‡ Methylated seed oil. 

§ Petroleum oil concentrate. 

¶ Nonionic surfactant. 

# Methylated seed oil organisilicone surfactant. 

†† Ratio of UAN:Water. 

‡‡ N-n-butyl thiophosphoric triamide, urease inhibitor. 

 
 


