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ABSTRACT 

Since common bean is the most important legume crop for human consumption around 

the world, bean breeders are challenged to increase production of beans while facing new 

problems like climate change. Guatemalan climbing beans have been suggested to represent race 

Guatemala, a newly identified race in the Middle American gene pool that may represent an 

untapped source of alleles for bean improvement. This study confirmed the existence of race 

Guatemala in the Middle American gene pool and its differentiation from other races. The low 

population structure found within these Guatemalan beans also makes this population ideal for 

discovery of candidate genes for important traits. We demonstrate that the Guatemalan 

population was useful to provide candidate genes for previously reported genetic factors like the 

V gene for flower color, and the Asp gene for seed coat luster. The important relationship 

between flowering time and altitudinal adaptation of beans was also emphasized.  
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INTRODUCTION 

Common bean (Phaseolus vulgaris L.) is the most important pulse crop for human 

consumption around the world (Broughton et al., 2003), and 46% of the global area for legume 

production is represented by common bean (Akibode and Maredia, 2012). The production of 

beans is more than 23 million tons worldwide and almost a third of it is produced by 

smallholders from developing countries of Africa and Latin America (Broughton et al., 2003). 

According to Beebe et al. (2000), common beans from the Middle American gene pool constitute 

more than 60% of the production in the world.  In Central America, beans are considered the 

most profitable crop among the traditional crops especially when compared to cereals. However, 

income may vary due to the small farm size used for production in this area of the world 

(Broughton et al., 2003).  

 Guatemala is a Central America country with the highest chronic malnutrition among all 

Latin American countries (Marini and Gragnolati, 2003). Malnutrition primarily affects native 

children 5 years of age or less (Osorno and McClean, 2013).  In Guatemala, common bean per 

capita consumption is 9.4 kg per year (Osorno and McClean, 2013), and it represents 11% of per 

capita protein intake (Akibode and Maredia, 2012), making it the most important protein source 

in the country. Dry bean seed contain about 20% protein, and protein content is higher in black 

beans than kidney and pinto beans (Akibode and Maredia, 2012; Broughton et al., 2003). 

Common bean production represents 17.8% of all the available crop production area in 

Guatemala (MAGA, 2013). In the western highlands of the country, climbing beans are 

intercropped with maize (Zea mays L.) and/or squash (Cucurbita spp.) in a cropping system 

known as milpa (Zizumbo-Villareal and Colunga-Garcia, 2012). The primary species of 

Guatemalan climbing beans is P. vulgaris.  P. dumosus (syn. P. polyanthus) and P. coccineus are 
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two other climbing bean species grown in the milpa system.  The seeds of P. vulgaris are mostly 

black and round and have been used by small farmers in this region for generations.  

Common bean originated in Mexico (Bitocchi et al., 2012) and is distributed from 

Mexico to Argentina (Gepts et al., 1986). Two independent domestication events gave rise to the 

Middle American and Andean gene pools (Gepts et al., 1986; Singh et al., 1991a, b). 

Historically, each gene pool was divided into three different races: Mesoamerica, Durango, and 

Jalisco in the Middle American gene pool and; Peru, Chile and Nueva Granada in the Andean 

gene pool (Singh et al., 1991a). These races represent most of the diversity known in common 

bean. However, Beebe et al. (2000) suggested that Guatemalan climbing beans are genetically 

distinct from the six races and should be considered a unique race. Other studies also support the 

existence of a race Guatemala (Chacón et al., 2005; Blair et al., 2006; Diaz and Blair, 2006; Blair 

et al., 2009; Blair et al., 2013). 

Genetic diversity measures the variation within a population, which has a fundamental 

role in the evolution of that population (Hughes et al., 2008). To preserve population diversity, it 

is necessary to understand how genetic diversity is distributed across a species (Loveless and 

Hamrick, 1984). The current population structure of a collection of individuals within a species 

reflects evolution over space and time of this population and is important to our understanding of 

how the species evolved. Evaluating genetic diversity and population structure is necessary to 

improve a population through plant breeding because it informs decisions such as parental 

selection and long-term conservation of important germplasm (Acosta-Gallegos et al., 2007; 

Bittochi et al., 2012). From this perspective, understanding the genetic structure of Guatemalan 

climbing beans relative to other races will support decisions regarding this germplasm as a 

potential source of new alleles for plant breeding.    
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Common bean diversity analyses have used different types of molecular markers such as 

random amplified polymorphic DNA (RAPD), single nucleotide polymorphism (SNP) and single 

sequence repeat (SSR) (Beebe et al., 2000; Ponciano-Samayoa et al., 2009; McClean et al., 2012; 

Blair et al., 2013; Mercati et al., 2013). SNPs are a recent tool that provides the most abundant 

set of markers across the genome (Blair et al., 2013).  It has been reported that SNPs detect lower 

polymorphism compared with SSRs, due to the higher number of alleles in SSRs. However, 

SNPs can detect higher heterozygosity, allow for the generation of denser genetic maps, and are 

useful for association mapping studies (Blair et al., 2013; Müller et al., 2015). In their study, 

Müller et al. (2015) concluded that three times more SNPs than SSRs are needed to generate the 

same diversity information. Currently, it is relatively inexpensive to generate a large number of 

common bean SNPs using methods such as genotype-by-sequencing (Schröder et al., 2016).  The 

availability of the reference genomes (Schmutz et al., 2014; Vlasova et al., 2016) enables the 

accurate physical placement of the SNPs in the genome.  

Genome-wide association studies (GWAS) associate a phenotype relative to a specific 

physical position in the genome. It has several advantages relative to bi-parental mapping (Li et 

al., 2013) principally the ability to evaluate a larger number of recombinant events. GWAS is 

based on the linkage disequilibrium (LD) of the population; the higher LD, the lower the 

resolution necessary to detect genomic regions associated with the trait of interest (Rossi et al., 

2009).  Many LD studies in common bean have concluded that population structure is the most 

important cause of LD (Rossi et al., 2009; Mamidi et al., 2011a; Mamidi et al., 2013; Müller et 

al., 2015). For this reason, GWAS should be performed within genotypes of the same gene pool 

or same race.  
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Ponciano-Samayoa et al. (2009) characterized a Guatemalan climbing bean collection 

using six microsatellites with the objectives of identifying duplicated lines and detecting 

significant genes.  The lines were divided into twelve major groups, and 46.8% of the lines were 

duplicates. They recommended the use of at least 30 markers for a complete characterization of 

the population. The population was morphologically characterized by Orellana et al. (2006). 

They used 34 varietal descriptors (12 quantitative and 24 qualitative) from the International 

Center for Tropical Agriculture (CIAT) and identified groups with 71% similarity. 

The primary objectives of this research were: 1) to analyze the genetic diversity, 

population structure and population differentiation of two Guatemalan climbing bean collections 

(GUA_1966-82 and GUA_2015) of P. vulgaris, using SNP markers; 2) to perform a GWAS to 

locate genomic regions associated with a large collection of phenotypes; and 3) identify 

candidate genes associated with altitudinal adaptation, seed shape and size, flower color and 

disease resistance of the Guatemalan climbing beans. Diversity analysis of this germplasm will 

allow a confirmation of Guatemalan highland beans as another race within the Middle American 

gene pool.  These results will inform decisions regarding the best management practices for this 

population as its use by common bean breeding programs in Guatemala and the United States.   
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LITERATURE REVIEW 

Common Dry Bean 

Worldwide, common bean (Phaseolus vulgaris L.), is the most important pulse crop for 

human consumption and for many countries in Latin America, it is the main source of protein 

(Broughton et al., 2003). Common bean originated in Mexico (Bitocchi et al., 2012) and is 

adapted to a large range of environments (Singh et al., 1991b). It belongs to the Fabaceae family 

(Kelly, 2010). Common bean has a taproot and many secondary roots, with nodules developed 

from an association with the nitrogen-fixing bacteria Rhizobium. Four types of growth habit have 

been described in common bean: bushy or determinate upright (I), indeterminate upright (II), 

semi-climbing (III), and strong climbing (IV). The leaves are trifoliate. The flowers have a 

tubular calyx, five unequal petals, ten stamens, and one receptive stigma which could be white, 

lilac, purple, or bicolor. Fruits are pods, and the seeds have two cotyledons. Inside pods are 

protein-rich seeds (Clavijo, 1980).  

Nutritional content 

Within pulses, common bean is considered of high nutritional value. It consists of 20-

25% protein, mostly phaseolin, the main storage protein of common bean (Broughton, 2003). 

Generally, phaseolin has a deficiency in the amino acid methionine. For this reason, a bean diet 

needs to be complemented with the amino acids provided by a carbohydrate rich grain that 

contains the methionine amino acid. Akibode and Maredia, (2012) reported that the pinto and 

kidney market classes of beans have around 22% protein, while black beans had around 24% of 

protein. Common bean is also an important source of potassium, magnesium and iron 

(Broughton, 2003). In their study, McClean et al. (2017) found that race Mesoamerica has on 

average a higher concentration of micro and macro elements compared to race Durango.  
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Climbing beans 

Climbing beans with the type IV growth habit can reach over three meters in height. They 

are found in the lowlands of Latin America in the case of race Mesoamerica, the humid 

highlands of Mexico and Guatemala in the case of race Jalisco, and the Andean highlands in the 

case of race Peru (Singh et al., 1991a). Climbing beans that grow in the western highlands of 

Guatemala are characterized by having late maturity compared to the climbers from Mexico (180 

days) and by having spherical seeds (Beebe et al., 2000). These climbing beans, known as 

“bolonillos”, can grow at 3200 meters above sea level (masl) and mostly have black seeds, but 

genotypes with red and white seeds are also found.  In this geographical region common bean is 

also intercropped with maize and other crops (Lepiz-Ildefonso et al., 2009). 

The milpa system 

The milpa agro-ecosystem was developed by natives of Mesoamerica and consists of an 

array of maize, climbing beans and squashes (Ebel et al., 2017). Maize is used as a support for 

the growth of the beans, beans fix nitrogen in the soil, and squash covers the soil secreting 

substances that are poisonous for the insects. The three crops also provide complementary 

dietary components. Maize is rich in carbohydrates, beans provide proteins, and squashes 

provide lipids. It is suggested that the complementary nutrition was the driver to develop the 

system and to domesticate the species around 5500-4300 years before present (Zizumbo-

Villareal et al., 2012). The milpa system is still used today by farmers in Mesoamerica (Ebel et 

al., 2017). Families who live in the western highlands of Guatemala use the system to grow 

maize and climbing beans, and these crops represent the source of their basic diet.  
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Origin and Domestication of Common Bean 

Common bean diverged from soybean (Glycine max L. Merr.) and cowpea (Vigna 

unguiculata L. Walp.) an estimated 18 million years and 8 million years ago, respectively (Kelly, 

2010). There was a whole genome duplication within the legume lineage that occurred before the 

divergence of common bean and soybean, and this duplication event took place ~55 million 

years ago (Schmutz et al., 2014). The wild ancestral forms of common bean are viny plants 

found in the highlands of Middle America and the Andes (Gepts and Debouck, 1991). The wild 

ancestral population diverged around 165,000 years ago to form the Middle American and the 

Andean wild gene pools (Schmutz et al., 2014).   

There are five domesticated species within the Phaseolus genus. The species listed in 

order of genetic similarity to common bean are P. vulgaris, P. coccineus (scarlet runner bean), P. 

dumosus syn. P. polyanthus (year bean), P. acutifolius (tepary bean), and P. lunatus (lima bean) 

(Kelly, 2010). Nine clades were defined within the Phaseolus genus. However, the five 

domesticated species come from only two of the clades (P. vulgaris and P. lunatus) (Delgado-

Salinas et al., 1999).  Common, scarlet runner, year, and tepary bean all belong to the P. vulgaris 

clade, and Lima bean belongs to the P. lunatus clade.  

Many theories about the center of origin of common bean as a species have been 

published. Kami et al. (1995) suggested the western slope of the Andes in Ecuador and northern 

Peru was the center of origin of common bean, based on the phaseolin sequences of wild types 

that had no tandem repeats compared to the predominant phaseolin sequence found with other 

bean germplasm from other regions.  This discovery was made in a wild bean population that is 

almost extinct and has an intermediate phaseolin pattern between Middle American and Andean 

gene pools. The authors suggested that beans were then disseminated northwards to areas 
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including Colombia, Central America, and Mexico to develop the Middle American gene pool, 

and also southwards to Peru, Bolivia and Argentina to form the Andean gene pool. However, 

Bitocchi et al. (2012) suggested that the origin of common bean is in Mesoamerica, specifically 

in the Oaxaca Valley of Mexico, which would mean that the Andean gene pool arose after 

migration from Mesoamerica. Interestingly, Rendón-Anaya et al. (2017) suggested that the 

Ecuador and Northern Peru wild population described by Kami et al. (1995), diverged from the 

ancestral P. vulgaris population before it underwent the split into the Middle American and 

Andean gene pools. 

Population structure and phylogeny analyses as well as evidence of a bottleneck in the 

Andes before domestication, supports the theory of a Mesoamerican origin of common bean 

(Bitocchi et al., 2012). Rossi et al. (2009) supported the occurrence of a substantial bottleneck in 

the Andean gene pool and explained that Phaseolin type I could become extinct in Mesoamerica. 

Schmutz et al. (2014) suggested that wild Andean gene pool derived from the wild Middle 

American population, supporting the Mesoamerican origin as well as the strong bottleneck in the 

Andean gene pool. The genetic diversity studies of Rodríguez et al. (2016) and Rendón-Anaya et 

al. (2017) also supported the Oaxaca valley origin.  

It has been suggested that the Middle American and Andean gene pools were 

domesticated at least once around 8,000 years ago in Mexico and South America, respectively 

(Mamidi et al., 2013). The number of domestication events for both gene pools have been widely 

discussed (Singh et al., 1991a; Beebe et al., 2000; Papa and Gepts, 2003; Chacón et al., 2005; 

Kwak and Gepts, 2009; Mamidi et al., 2013; McClean et al., 2012; Schmutz et al., 2014; 

Rodríguez et al., 2016). Nowadays, the single domestication theory is accepted for each gene 

pool (Mamidi et al., 2011), and the population bottleneck associated with the appearance of the 
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Andean gene pool lasted ~76,000years. The Andean population began expanding ~90,000 years 

ago, and this growth still continues today. In comparison, there was not a bottleneck observed 

with the wild Middle American gene pool (Schmutz et al., 2014).  

 Genetic diversity was significantly reduced during domestication, which is commonly 

associated with a founder effect (Bitocchi et al., 2013; Mamidi et al., 2013; Schmutz et al., 

2014). The reduction in genetic diversity was more pronounced for the Middle American 

domestication event than for the Andean (Blair et al., 2013). Wild common bean could have 

adaptive traits that are not present in the domesticated forms due to domestication and the 

associated bottleneck (Acosta-Gallegos et al., 2007). Domesticated common beans are very 

similar to the wild relatives still found in Mexico, Central America, and the Andean region 

(Porch et al., 2013). The main differences are that the domesticated forms of common bean were 

selected for larger seeds, non-shattering pods, and an upright bush architecture.  

Schmutz et al. (2014) determined that the Middle American wild populations were more 

diverse than Middle American landrace populations, however, the wild Andean population was 

less diverse than the Andean landraces. They reported 1,835 domestication-associated candidate 

genes for the Middle American gene pool, and only 748 Andean domestication-associated 

candidate genes. Along with common bean domestication came changes in morphological and 

physiological characteristics. Two major changes associated with domestication were larger seed 

and plant size (Gepts and Debouck, 1991). There are several Middle American candidate genes 

involved in common bean domestication that are associated with plant size (Schmutz et al., 

2014), and there are also 15 Middle American candidate genes that are known to be involved in 

seed weight. 
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Photoperiod sensitivity is another trait that differs between wild and cultivated forms of 

dry bean. The wild forms typically are photoperiod sensitive. However, photoperiod sensitivity 

decreased as cultivation continued (Gepts and Debouck, 1991; Broughton et al., 2003). Cultivars 

of common bean also tend to flower earlier than the wild forms (Gepts and Debouck, 1991). 

Flowering genes are commonly involved in domestication events (Olsen and Wendel, 2013), and 

there are 25 Middle American and 13 Andean candidate domestication genes involved in 

flowering (Schmutz et al., 2014). 

Other traits associated with dry bean domestication include growth habit, pod shattering, 

and permeability of the seed coat (Gepts and Debouck, 1991). In dry bean, the wild form has an 

extreme intermediate climbing growth habit whereas the domesticated forms can have 

determinate bush growth habits. Pod shattering, another trait affected by domestication, is an 

undesirable trait, and the wild types of common bean have highly fibrous pod walls that facilitate 

the shattering. The pods of domesticated cultivars pods lack the fibers and do not shatter, which 

is a beneficial trait for harvesting seed. Dormancy and water permeability are also essential for 

germination. The wild forms of common bean have water impermeable seed coats, and the 

cultivated forms have a water permeable seed coat which helps with germination. 

Diversity of Common Bean 

Singh et al. (1991a) performed a detailed study that identified six races of common bean 

(three for each gene pool) based on associations of molecular (phaseolin and allozymes) and 

morphological markers, phenotypical traits, reproductive factors, ecological adaptation, and 

geographical distribution of related landraces of common bean. The Middle American races are 

found in Mesoamerica and include race Mesoamerica found from Mexico through Central 

America and in Colombia, Venezuela, and Brazil. Race Durango is located in the semiarid 
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highlands of Mexico and the southwestern US, and race Jalisco is found in highlands of Mexico 

and Guatemala. The Andean races are Nueva Granada (located in Los Andes in Colombia, 

Ecuador and Peru; and in Argentina, Belize, Bolivia, Brazil, Chile, Panama and The Caribbean), 

Chile (found in the dry Southern Andes), and Peru (found in highlands of Colombia to 

Argentina).  

After this initial determination of gene pools and races, many common bean genetic 

diversity studies were performed using molecular markers, isozymes, phaseolin and 

morphological traits (Velasquez and Gepts, 1994; Sonnante et al., 1994; Galvan et al., 2003; 

Kwak and Gepts, 2009; Bitocchi et al., 2012; Blair et al., 2013). These studies generally 

confirmed this common bean race structure. However, molecular markers have allowed a more 

specific description of this diversity. 

Beebe et al. (2000) evaluated the structure of the Middle American races using RAPD 

markers. They found that race Mesoamerica divides into two sub-races, M1 and M2, consistent 

with differences in plant habit, isozymes and resistance to several diseases.  Black beans seem to 

be related to M1, and red beans seem to be related to M2. Race Jalisco was not divided into sub-

populations, and most of the accessions were from the Oaxacan highlands. Race Durango was 

divided into two sub-races: D1 and D2 found in different regions. Beebe et al. (2000) also 

proposed a fourth race in the Middle American gene pool, which was named race Guatemala. 

Accessions of this race were from the highlands of Chiapas (Mexico) and Guatemala. It is 

believed that a lack of migration led to the creation of this race with distinctive characteristics. 

This race included most of the Guatemalan climbing beans, with accessions resistant to some 

races of angular leaf spot (ALS) caused by Pseudocercospora griseola. Based on a chloroplast 
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DNA analysis, all the Guatemalan climbing beans evaluated belong to the Haplotype I. 

Haplotype I was not found in any other race of common bean (Chacon et al., 2005). 

Diaz and Blair, (2006) performed a diversity analysis in the Middle American gene pool 

genotypes. They questioned the existence of race Guatemala due to the limited number of 

Guatemalan accessions that were classified. However, when Blair et al. (2013) analyzed the 

diversity of another population of Middle American and Andean beans with a set of 736 SNPs, 

they found that the two gene pools are highly differentiated and that race Guatemala was highly 

differentiated from the Mesoamerican sub-races. They also found the diversity of the Middle 

American gene pool was larger when compared to the Andean gene pool. 

Blair et al. (2009) evaluated the diversity of a core collection of common bean using 

microsatellites. Their results are in agreement with Beebe et al. (2000). They divided race 

Mesoamerica into two sub-races: M1 and M2 based on seed color. However, races Durango and 

Jalisco formed a Durango-Jalisco complex rather than being separate races. The complex also 

divided into two sub-races: DJ1 and DJ2.  A third group represented the Guatemalan climbing 

beans with black or cream-colored seeds. While the race Guatemala was the most diverse race, 

the diversity was not associated to a specific phaseolin allele or seed width.   Figure 1 shows the 

neighbor-joining tree developed by Blair et al. (2009). 
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Figure 1. Phylogenetic tree for the races published by Blair et al. (2009) with 604 accessions of 

common bean.  

D= Durango-Jalisco complex (n=108), G= race Guatemala (n=61), NG= race Nueva Granada 

(n=115), P= race Peru (n=186), M= race Mesoamerica (n=134). 
 

Common Bean in the U.S. 

After domestication, common bean was introduced around the world. The currently 

accepted dissemination pathway is based on phaseolin diversity patterns. A possible 

dissemination pathway explains that the Middle American and Andean landraces were 

disseminated to South America and Africa, but Middle American races were predominant in 

Africa, Europe, and the northeastern portion of the United States (Kelly, 2010). Domesticated 

beans were introduced to the U.S. by trade. Bean is known as a good source of protein, which is 

the reason why it is believed that beans expanded into the United States. This expansion was 

facilitated by native people who lived around the Great Lakes. Market classes of beans typically 

grown in the U.S. include: pinto (Durango race), which after domestication were presumably 

moved to central U.S. by native people all the way to the Canadian province of Alberta. Navy 

and black beans (Mesoamerican race) were moved from the Caribbean to the east coast and then 

to the Great Lakes region in the US, and kidney beans (Nueva Granada race) were transported 
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via slave trade by Europeans to Europe and East Africa, then early settlers returned kidney beans 

to the east coast of the United States (Kelly, 2010). 

Common bean cultivation dates back to 2,300 years ago in the southwestern part of the 

United States (Kaplan, 1965). Dry bean breeding programs in the United States were introduced 

to improve market classes grown in different regions (Vandermark et al., 2014).  Michigan State 

University started the first dry bean breeding program in the early 1900s (Kelly, 2010). Other 

universities with dry bean breeding programs include the University of Nebraska, Colorado State 

University, University of Idaho, and most recently, North Dakota State University. The dry bean 

breeding program began in the early 1980s at North Dakota State University.  

There are also USDA dry bean breeding programs located in Washington, Maryland, 

Michigan, and Puerto Rico (Kelly, 2010). Different breeding programs in different areas of the 

United States were known for specializing in certain market classes (Vandemark et al., 2014). 

For example, navy beans were bred in Michigan, kidney market classes in New York, pinto bean 

in Colorado and the Pacific Northwest, great northern in Nebraska, small red and pink beans in 

Washington, and pink bean in California. The preferred market classes in the United States 

include pinto, black, great northern, red kidney, and navy (Singh, 1999).  

Initially, common bean breeding in the U.S. focused on breeding for resistance to Bean 

common mosaic virus (BCMV) and Beet curly top virus (BCTV) (Singh et al., 2007). Around the 

1970s, when breeding efforts expanded westward, exotic germplasm began to be introgressed to 

produce cultivars with the upright Type II growth habit. Breeding of common bean tends to be 

within market classes to maintain the specific characteristics of each market class (Moghaddam 

et al., 2014). Due to breeding within market classes, the variation within market classes is 

limited.  
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Although beans are a good source of protein, only about 14 percent of individuals in the 

United States eat dry edible beans on any given day (USDA-ERS, 2016). The United States is 

the second leading producer of dry beans behind only Brazil (Singh, 1999). Currently, North 

Dakota is the largest producer of commercial dry beans in the United States but that was not 

always the case (Kelly, 2010). New York was the original state where the dry edible bean 

industry began in the mid-1800s (USDA-ERS, 2016). Michigan then took the lead in the early 

1900s and was the largest dry bean producer until the early 1990s.  Since 1994 North Dakota has 

been the leading producer of beans in the US. 

There were 672,588 ha of dry beans produced across the entire United States in 2016 

(USDA-ERS, 2016). North Dakota alone accounted for 252,929 of those hectares across 1,682 

farms. Most dry bean production in North Dakota takes place around the Red River Valley. Pinto 

and navy beans are the two main market classes grown in North Dakota accounting for 70% and 

17% of production in 2007, respectively. North Dakota also leads the nation in the production of 

both of these market classes.  

Common Bean in Guatemala 

Guatemala has the highest rate of chronic malnutrition in Latin America. Maize is the 

basis of all diets and is the primary source of carbohydrates while bean is the primary source of 

protein. In Guatemala, common bean is the second most important crop (Aldana, 2010), and 

black beans are the most consumed market class in the country. The national production in 2014 

was 225,760 ton on an area of 243,040 ha. The average seed yield was 928.57 kg·ha-1 in 2013 

(MAGA, 2013). The production was distributed within 292,961 producers with an average of 

0.82 ha for each producer (IICA, 2014).  
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The main areas for the production of common bean in Guatemala are the North region in 

the department of Petén and South East region in the departments of Jutiapa, Chiquimula, and 

Santa Rosa, where bush type beans are grown. Climbing beans are located mostly in the western 

highlands of Guatemala, generally in association with maize (Aldana, 2010).  

Drought is a problem reported in the production of climbing beans in Guatemala, and in the last 

few years a 70% drop in yield was reported due to limited rain fall (SESAN, 2014). The most 

common diseases of common bean in Guatemala are: anthracnose (Colletotrichum 

lindemuthianum (Sacc and Magn.) Scrib), rust (Uromyces appendiculatus (Pers: Pers.) Unger), 

angular leaf spot [Phaeoisariopsis griseola (Sacc.)], asccochyta leaf spot (Phoma exigua 

Desmaz.), bacterial brown spot (Pseudomonas syringae van Hall.), and some viruses (Schwartz, 

2005). Climbing beans are mostly associated with corn, and an aggressive growth is undesirable 

(Ponciano-Samayoa et al., 2009). Finally, some climbing bean accessions are harvested 180 days 

after planting. This characteristic is undesirable because it increases the likelihood of damage 

due to frost during winter. 

The Genome of Common Bean 

Common bean is a diploid species with eleven chromosomes (2n=22). The genome size 

is around 587 Mb pairs (Schmutz et al., 2014), and 49.2% of the genome is repetitive sequences. 

The Andean genotype G19833 known as “Chaucha Chuga” and the Mesoamerican genotype 

BAT93 were used to develop reference genomes for common bean (Schmutz et al., 2014 

https://phytozome.jgi.doe.gov/pz/portal.html#!info?alias=Org_Pvulgaris; Vlasova et al., 2016). 

The protein coding genes that have been reported in both genome annotations are 27,197 for the 

genotype G19833 and 30,491 for the genotype BAT93.  

 

https://phytozome.jgi.doe.gov/pz/portal.html#!info?alias=Org_Pvulgaris


 

17 
 

Molecular markers for diversity analysis 

Molecular markers can identify genotypic differences without analyzing the entire 

genome, and can be used to identify regions of the genome associated with specific phenotypic 

traits. They can be defined as DNA fragments that function as “sign posts” and identify 

information of interest. Also, molecular markers are useful in many biological fields of study.  

For these reasons, new techniques for their development have emerged (Agarwal et al., 2008). 

To evaluate diversity, the first DNA-based molecular markers used were the restriction fragment 

length polymorphism (RFLP). However, the most common markers used in this field are the 

RAPD, SSR, SNPs, and more recently transposable elements based markers (Poczai et al., 2013). 

SNPs are the most abundant markers because they represent the smallest unit in a gene that can 

change. The advances in sequencing have made the use of SNPs as markers possible.   

Chen et al. (2013) developed a SSR marker map in common bean with the objective to 

evaluate genetic diversity and facilitate gene cloning. They found 90 genomic SSR markers and 

utilized 85 primers into the bean map. They crossed the lines Hong Yundou (known as a 

standard Chinese landrace with high yield, quality, and resistance to Anthracnose) and Jingdou. 

In this study, the F2 segregating population was used to develop the map. The markers were 

distributed across the eleven chromosomes of common bean. Galeano et al. (2012) developed 

313 gene-based SNPs markers, and 53 of these markers were used to develop a molecular map 

using the recombinant inbred lines (RILs) population of the cross of DOR364 (control genotype) 

x G19833 (Andean genotype). This map was used to form a consensus map that merged two 

linkage maps developed from the crosses of BAT93 x JALO EEP558 and DOR364 x BAT477. 

There were 1060 markers identified in the map, and the length of the map was 2042 cM across 
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the eleven chromosomes. They concluded these results are useful for population structure 

analysis and association mapping. 

Another type of molecular marker recently developed is based on insertion-deletion 

events. They are abundant across the genome and less common compared to SNPs. They can 

also be screened using PCR techniques and have a lower rate of genotyping error compared with 

the SSRs (Vali et al., 2008). InDels are codominant markers that have been successfully used in 

diversity studies (Bhattramakki et al., 2002; Vali et al., 2008; Moghaddam et al., 2014). 

Moghaddam et al. (2014) developed a set of 2687 InDel markers for the market classes of 

common bean that have demonstrated to be polymorphic and easily amplified.    

Genotyping-by-sequencing (GBS) 

Considering the interest in discovering gene sequences that control phenotypes in 

organisms, the development of technologies that make sequencing more efficient has recently 

been a prime interest. Since the 1990’s, Sanger sequencing has helped in genomic advances. 

However, in the last years, next-generation sequencing (NGS) technologies, such as Illumina’s 

sequencing-by-synthesis (Illumina.com), have allowed the sequencing of whole genomes more 

efficiently (Mardis, 2008). Now that sequencing is faster and more accurate, the use of sequences 

to identify single nucleotide polymorphisms is a common tool. However, sequencing plant 

genomes, which have a high number of repetitive sequences, has been limited by time and cost.  

Importantly, most genes are located in low copy regions (Elshire et al., 2011). Genotyping-by-

sequencing (GBS) is an approach that reduces complexity in a genome, using restriction 

enzymes that target low copy regions and then sequence just those regions (Poland et al., 2012). 

GBS was first performed by Elshire et al. (2011) in maize and barley (Hordeum vulgare), and is 

based on the creation of DNA libraries using restriction enzymes and polymerase chain reaction 
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(PCR) to amplify a subset of DNA fragments. Libraries are then sequenced. Schröeder et al. 

(2016) improved the quality of GBS data for P. vulgaris, using the MseI and TaqαI restriction 

enzymes, which allowed the identification of more SNPs, because the enzymes target low copy 

regions of the P. vulgaris genome.   

SNP calling 

The advances in sequencing technologies have brought advances in bioinformatics, due to 

the need for powerful tools for data processing. SNP calling is crucial for the correct analysis of 

genetic diversity and association mapping. Alignment to a reference genome works with two 

kinds of algorithms, the suffix tries, and the hash tables. Suffix aligners are faster and efficient 

with increased memory availability. The SNP calling works with two kinds of processes as well, 

the probabilistic and the heuristic approach. Other crucial steps in the pipeline are the removing 

of PCR duplications and the realignment process that corrects mismatches. Many computational 

programs have been created for SNP calling, and the choice of which one to use depends on the 

resources available and the goal of the research. A recommended pipeline includes the use of 

BWA (Burrows-Wheeler aligner) for alignment to the reference, SAMtools (Sequence 

alignment/map) for removing duplicates, and GATK (Genome analysis toolkit) for realignment 

of sequences (Mielczarek and Szyda, 2015). 

Association mapping 

Linkage disequilibrium (LD) is defined as a non-random association between two 

markers, two genes or quantitative trait loci (QTL), or a marker with a gene (Gupta et al., 2005). 

This genome characteristic can have many uses, including association mapping. Association 

mapping discovers linkages between a marker and a phenotype (Zhu et al., 2008). Thus, a QTL 

can be found using a large suite of molecular markers to discover markers associated with the 
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trait of interest due to a strength linkage of the molecular marker with the gene region (LD). LD 

can be caused by factors other than true linkage, such as population structure or relatedness 

within individuals. For this reason, both effects have to be controlled during the association 

mapping analysis (Nordborg and Weigel, 2008).  

EMMA (Efficient mixed model association) is a method to determine relatedness of a 

population (Kang et al., 2008), while a standard principal components analysis (PCA) is often 

used to evaluate population structure. Considering these effects, different models are typically 

used to discover true associations that are not the result of structure or relatedness. A naïve 

model does not consider the effects of structure and relatedness; a fixed effect model can control 

for structure; relatedness can be treated as a random effect; and a mixed fixed and random effect 

model can control for both structure and relatedness. The best model can be selected based on an 

eye-ball test of the quantile-quantile (Q-Q) plot or the mean square deviation (Mamidi et al., 

2011b), which compares observed and expected P-values of the models used to discover 

associations.  To determine significant markers associated with a trait, several methods are used. 

The Bonferroni test uses the number of markers and the Type I error rate to define a cut-off for 

significant markers. The permutation test gives a P-value for each trait, and the cut-off values are 

related to the total number of markers (Mamidi et al., 2014). Since SNPs are the most abundant 

markers, these adapt well to the association mapping studies (Blair et al., 2013; Müller et al., 

2015).  
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MATERIALS AND METHODS 

Genetic Diversity and Population Structure Analysis 

Plant material 

The Institute of Agricultural Science and Technology in Guatemala (ICTA) provided two 

Guatemalan climbing bean populations for this analysis. The first (GUA_1966-82) was collected 

between years 1966 and 1982 in the western highlands of the country (Orellana et al., 2006; 

Ponciano-Samayoa et al., 2009) and has been maintained in the experimental center at La 

Alameda Chimaltenango, Guatemala. It is composed of 604 accessions belonging to three 

species: P. vulgaris (n=569), P. dumosus (n=18), and P. coccineus (n=17). For this study, 369 

accessions of P. vulgaris were evaluated. Accessions that did not belong to P. vulgaris were 

discarded to focus only in the comparison between races of common bean. Accessions with 

discrepancies in color and shape within the same accession were discarded to avoid high intra 

accession diversity in the analysis. Passport data for this collection was lost many years ago. 

   Seeds of a second population (GUA_2015) were also collected in the western highlands 

of Guatemala in 2015 from the following departments: Chimaltenango, Quetzaltenango, 

Huehuetenango, San Marcos and Quiche (Figure 2). These lines were collected as part of a 

socio-economic survey performed by NDSU in collaboration with Michigan State University 

(MSU) and ICTA. The survey focused on Guatemalan smallholder farmers that grow common 

bean. The farmers were asked for a sample of the seed they grow on their land. This collection 

consists of 452 accessions belonging to three species:  P. vulgaris (n=287), P. dumosus (n=138) 

and P. coccineus (n=27) (Agreda et al., 2017). For this study, 260 accessions of P. vulgaris were 

evaluated. Other accessions were excluded from the study because they belonged to different 
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species, had different growth habit, or because of color and shape variation within the accession. 

Passport data for this collection is available.  

For comparative purposes, 95 race Mesoamerica (M) accessions and 95 race Durango-

Jalisco (DJ) accessions were included as representatives of the Middle American gene pool.  

These lines are part of the Middle American diversity panel (MDP; Moghaddam et al., 2016). 

Additionally, 138 accessions from the Andean diversity panel (ADP; Cichy et al., 2015), 

including mostly race Nueva Granada accessions, were part of the study.  These accessions were 

randomly chosen from the panels to have representatives of all the market classes belonging to 

these panels. Finally, 12 wild Guatemalan accessions were also included.  Seeds of the wild 

Guatemalan accessions were provided by USDA National Plant Germplasm System. The MDP 

and ADP accessions were previously genotyped by the Dry Bean Genomics Lab at NDSU.  

Figure 2. Map of the Guatemalan western highlands where climbing bean seed from 

GUA_2015 was collected. (Map source: De Young et al., 2017). 
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Tissue collection and DNA extraction 

For the GUA_1966-82 collection and the wild Guatemalan accessions, tissue was 

collected from the first trifoliate leaf of two plants and placed in a 1.5 ml Eppendorf tube 15 days 

after planting. Tubes were immediately frozen using liquid nitrogen. For the GUA_2015 

collection, leaf tissue was placed in 96 wells plates. Plates were immediately frozen using liquid 

nitrogen. For GUA_1966-82 (n=369 accessions), DNA isolation and extraction was done using 

the Genomic DNA Mini Kit (Plant) from IBI SCIENTIFIC protocol. For GUA_2015 (n=260 

accessions), DNA isolation and extraction was done using the PureLink Pro 96 Genomic DNA 

Kit from Thermo Fisher SCIENTIFIC. DNA samples were then quantified using a NanoDrop 

from Thermo SCIENTIFIC and tested in a 2% agarose gel. Samples were adjusted to 20ng/µl.  

Genotyping-by-sequencing (GBS) 

DNA samples were transferred to 96 cells plates to be processed simultaneously. In this 

study, the optimized Genotype-by-Sequencing protocol for common bean, developed by 

Schröder et al. (2016) was used. 10 µl of DNA (200 ng) and 8 units of restriction enzymes MseI 

and Taqα1 were added to the plates for digesting the DNA samples in the thermocycler (37°C for 

2 hours, 65°C for 2 hours, 80°C for 20 min, and hold at 8°C). Barcodes ranged from 5 to 10 base 

pairs (bp) and were randomly ordered in a 96 cells plate. One barcode was assigned to each 

digested DNA sample, and each DNA plate had the same barcode order assigned. Digested 

DNA, barcodes, and a ligation MasterMix were used for ligation in the thermocycler (22°C for 4 

hours, 65°C for 20 min, and hold at 8°C). Small DNA fragments (<300bp) were eliminated using 

the AMPure Bead protocol from Agencourt, that uses magnetic beads to retain long fragments of 

DNA. To ensure the presence of DNA in the samples, a test PCR was performed using PCR 

MasterMix and primers for the barcoded adaptors (95°C for 30 sec; 36 cycles of: 95°C for 30 
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sec, 62°C for 20 sec, 68°C for 17 sec; 72°C for 5 min, and hold at 8°C). Results were checked 

using a 2% agarose gel. DNA of each plate was pooled into one library, and PCR reactions were 

prepared for amplification using PCR MasterMix and primers for the barcoded adaptors (95°C 

for 30 sec; 16 cycles of: 95°C for 30 sec, 62°C for 20 sec, 68°C for 15 sec; 72°C for 5 min, and 

hold at 8°C). Small DNA fragments were eliminated again with the AMPure Beads, and the 

library was finally validated on a 2% agarose gel to check the presence of DNA.  A 100 bp 

ladder was used as comparison. Libraries were sent for sequencing to HudsonAlpha Institute for 

Biotechnology, Huntsville Alabama, USA.  

Genotypes separation and barcodes trimming 

Sequence data was received as compressed FASTQ files (one file per plate). A genotype 

file was created that included the genotype name, barcodes information for each genotype, plate 

and well assigned to each genotype, read group ID (RGID), read group library identifier 

(RGLB), read group platform (RGPL), and read group platform unit (RGPU).  The last four were 

provided by HudsonAlpha.  Using the barcode information, sequences for each genotype were 

separated and placed in separate folders using the FASTX toolkit barcode splitter 

(http://hannonlab.cshl.edu/fastx_toolkit/). Once the files were separated based on the barcodes 

and given unique names, the barcodes were trimmed from the sequences using the FASTA/Q 

trimmer from FASTX toolkit (http://hannonlab.cshl.edu/fastx_toolkit/).  

Quality control 

 To check the quality of the sequences, the software SICKLE from UC Davis (Joshi and 

Fass, 2011) was used. The software discarded all the reads that were less than 80bp length. The 

default quality threshold was 20; if quality was too low, the 3’ end of the reads were trimmed 
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and if quality was high enough the 5’ end of the reads were trimmed, considering the assumption 

that sequencing can produce reads with low quality towards the 3’ and 5’ ends of the reads. 

Mapping and read group information 

The Burrows-Wheeler Alignemt (BWA) Tool (Li, 2013) was used to map the reads to the 

reference genome. Version 2 assembly of Race Peru landrace G19833 was used as the reference 

(Schmutz et al., 2014; https://phytozome.jgi.doe.gov/pz/portal.html#!info?alias=Org_Pvulgaris).  

The main genome (11 chromosomes) was indexed using BWA and SAMtools faidx (Li et al., 

2009) to generate the BAM file for each genotype. At this step, the MDP and ADP genotypes 

were included in the analysis. Since read group information is necessary for SNP calling, the 

information (RGID, RGLB, RGPL and RGPU) was added to the BAM files using Picard tools 

(http://broadinstitute.github.io/picard).  

SNP calling 

Variant calling was performed using the Unified Genotyper from the Genome Analysis 

Toolkit (GATK) (DePristo et al., 2011). The standard minimum confidence threshold for calling 

was 30. Eleven VCF files were created (one for each chromosome). VCF files were then filtered 

for read depth with GATK, and any call with less than three reads was discarded. The filtered 

VCF files were filtered again for the next criteria: at least five genotypes should have the 

reference allele, at least five genotypes should have the alternative allele, and there has to be less 

than 50% missing data. All the chromosomes were merged to a single file using the CAT 

function in Linux, and the header was added manually.  

Data imputation 

 Missing data was imputed using the software fastPHASE in Linux (Scheet and Stephens, 

2006). The VCF file was first converted to a HAPMAP file using Tassel 5 (Bradbury et al., 
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2007).  Markers with more than two alleles and genotypes with more than 90% missing data 

were discarded using R (R Core Team, 2015; www.R-project.org). Missing data were converted 

to question marks and base pairs were converted to “AA” for homozygous reference alleles, 

“BB” for homozygous alternative alleles, and “AB” for heterozygous alleles using a Perl 

function (http://strawberryperl.com), and the file was then transposed. The file was converted to 

the fastPHASE format using R.   In the fastPHASE command line, the lower limit for number of 

clusters (KL) was set at 2, the upper limit for number of clusters (KU) was set at 40, and the 

interval between values for number of clusters (Ki) was set at 2.  The imputed file was converted 

again to a HAPMAP file with its original alleles using a Perl function and R.  Using TASSEL 5, 

the file was filtered for minor allele frequency (MAF) of 5% and for no more than 50% of 

heterozygous markers. The pipeline used for SNP calling is described by Mielczarek and Szyda 

(2015). 

Population structure analysis 

STRUCTURE 

 Alleles in the HAPMAP file were converted to numbers (G=1, C=2, A=3, T=4). 

STRUCTURE, version 2.3 (Pritchard et al., 2000) was used to estimate the number of 

subpopulations (K) represented by the population. An “Admixture Model with Allele 

Frequencies Correlated among Populations” was used with 10 runs and with K size ranging from 

1 to 10. Burnin period and number of iterations were set at 20000/10000, based on McClean et 

al. (2012) in their comparison of two burnin/iteration combinations.  Evano’s ΔK statistic (Evano 

et al., 2005) was used to determine the most likely number of subpopulations. The software 

DISTRUCT (Rosemberg, 2004) was used to display the results in a graph.   

 

http://strawberryperl.com/


 

27 
 

Principal components analysis (PCA) 

 PCA was performed using R (R Core Team, 2015; www.R-project.org) with the prcomp 

function. Alleles in the HAPMAP file were converted to numeric data, were “0” was 

homozygous reference, “2” was homozygous alternative, and “1” was heterozygous. The 

principal components matrix, variance explained by each principal component, and the 

cumulative variance were calculated. PCA plots for PC1 vs PC2, PC2 vs PC3 and PC1 vs PC3 

were created using the ggbiplot function (http://github.com/vqv/ggbiplot) in R.  

Maximum likelihood (ML) tree 

The ML tree was developed using the software SNPhylo (Lee et al., 2014), which accepts 

the HAPMAP file. Linkage disequilibrium (LD) was set at 0.2 and the unrooted tree was 

bootstrapped 1000 times. The software creates a FASTA file with a subset of markers in LD that 

are used to create the tree file and can also be used with other software like MEGA (Kumar et 

al., 2016). The resulting tree file was opened with Figtree 

(http://tree.bio.ed.ac.uk/software/figtree/) for visualization. These results were compared with the 

PCA and the STRUCTURE analyzes. 

Genetic diversity analysis 

To calculate genetic diversity statistics, the original allele data of the HAPMAP were 

used. Genetic statistics such as observed heterozygosity (Ho), Polymorphic Information Content 

(PIC), and Nei’s expected heterozygosity (He) (Nei and Li, 1979), were estimated using the 

software PowerMarker (Liu and Muse, 2005). A pairwise population differentiation (FST) matrix 

and an analysis of molecular variance (AMOVA) for gene pools, races of the Middle American 

gene pool and Guatemalan collections were generated using the software GenAlex (Peakall and 

Smouse, 2006, 2012). ΔH (Vigoroux et al., 2002) was used to determine the loss of genetic 

diversity of the climbing bean collections when compared to the wild accessions. ΔH = 1-
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(Hc/Hw), where Hc and Hw represent the expected heterozygosity of the climbing bean accessions 

and the Guatemalan wild accessions, respectively.   

Geographical distribution in the GUA_2015 collection 

The association between genetic structure and geography of the second population of 

climbing beans was analyzed using PCA. Genotypes were classified first based on its range of 

elevation (meters above the sea level) and then by location (department where seed was 

collected), and a different color was assigned to each group. PCA was performed using R (R 

Core Team, 2015; www.R-project.org) with the prcomp function. Alleles in the HAPMAP file 

were converted to numeric data, were “0” was homozygous reference, “2” was homozygous 

alternative, and “1” was heterozygous. The principal components matrix, variance explained by 

each principal component, and the cumulative variance were calculated. PCA plots for PC1 vs 

PC2, PC2 vs PC3 and PC1 vs PC3 were created using the ggbiplot function 

(http://github.com/vqv/ggbiplot) in R.  

Intra-accession diversity analysis 

Population 

To evaluate the genetic diversity within accessions in the GUA_1966-82 collection, a 

sample of 48 accessions was used, including accessions of the three species: P. vulgaris (n=40), 

P. dumosus (n=4), and P. coccineous (n=4). Accessions for this analysis were randomly chosen 

from the original GUA_1966-82 collection (604 accessions). The second collection was not 

included in this analysis due to a limited seed supply.  

Tissue collection and DNA extraction 

12 seeds of each accession were planted in trays of eighteen cells at the NDSU 

greenhouse. Tissue was collected 15 days after planting from the first trifoliate leaf of each plant 

http://github.com/vqv/ggbiplot
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and placed in 96 wells plates (12 columns x 8 rows), where each row in the plate represented one 

genotype. Plates were immediately frozen using liquid nitrogen. DNA isolation and extraction 

was done using the PureLink Pro 96 Genomic DNA Kit from Thermo Fisher SCIENTIFIC. 

DNA samples were then quantified using NanoDrop from Thermo SCIENTIFIC. 

Polymerase chain reaction (PCR) and electrophoresis 

A set of 33 insertion-deletion (InDel) markers (three for each chromosome) for black 

beans were chosen from the set of market class specific InDel markers developed by 

Moghaddam et al. (2014). The sequences of the forward and reverse primers for the InDel 

markers, as well as their physical positions are listed in Table A1. DNA was amplified in the 

thermocycler running at 94°C during 3 min; 45 cycles of 94°C during 20 sec, 55°C during 30 

sec, and 72°C during 1 min; a run at 72°C during 10 min and held at 12°C. Amplified DNA was 

run in a 3% agarose gel with 7 µl of ethidium bromide. Each gel contained 288 samples. Gels 

were then photographed in an AlphaImager HP system from ProteinSimple. Bands for each 

marker were then quantified and converted to numeric data, where each allele represented a 

number. Numeric file was used for diversity analysis.  

Genetic diversity analysis 

Heterozygosity (Ho), polymorphic information content (PIC), and Nei’s expected 

heterozygosity (He) were estimated for each genotype using the software PowerMarker (Liu and 

Muse, 2005). General He was also calculated. The proportion of the genetic variation found 

among accessions and within accessions was also calculated using AMOVA implemented in 

GenAlex (Peakall and Smouse, 2006, 2012). 
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Genome-Wide Association Study (GWAS) 

SNP markers were compared with phenotypic data to discover important genetic 

associations. Phenotypic data for the analysis was described by Orellana et al. (2006) for the 

GUA_1966-82 collection, and the traits analyzed are listed on Table 1. Elevation data was used 

as the dependent variable for the GUA_2015 collection.  This data was provided by the 

Agriculture, Food and Resources Department at Michigan State University. Other agro-

morphological traits are not available for GUA_2015.    

The only trait measured at NDSU Dry Bean Genomics lab was seed shape. Seed shape 

was measured in the genotypes of the GUA_1966-82 population. The length (mm), and width 

(mm) of five seeds for each genotype were measured with a digital caliper Performance Tool. 

Least Square Means (LSMeans) of length, width, and the ratio of width/length was calculated in 

SAS version 9.3 (SAS Institute Inc. 2011).  In the case of disease resistance, a scale from 1 

(resistant) to 9 (susceptible) was used. However, the measure was based on natural pressure of 

the diseases in the place where the plants were grown, and no specific races of pathogens were 

evaluated.   

 GAPIT package (Zhang et al., 2010) in R (R Core Team, 2015; www.R-project.org) was 

used to perform the GWAS for most of the traits. For traits scored as binary data, a logistic 

regression analysis was performed using the R package GENABEL (Aulchenko et al., 2007). 

Several models were tested in the study: 1) naïve linear model; 2) structure fixed effect control 

model; 3) relatedness random effect control model; and 4) structure and relatedness mixed effect 

control model. The best model was selected for each trait based on the calculation of the mean 

square deviation (MSD) (Mamidi et al., 2011b) and the quantile-quantile plots. Significant SNP 

markers were defined using a permutation test with 10,000 permutations and a cut-off p-value 
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was set as lowest at 0.1 percentile (Mamidi et al., 2014).  Population structure was controlled 

using a PCA matrix, and relatedness was controlled using a Kinship matrix that was calculated 

with the EMMA algorithm in GAPIT. R-square values of the peak SNP for each trait, as well as 

R-square values for the most important SNPs associated with each trait were calculated in R 

using GENABEL, which accounts for structure and relatedness during calculation. Candidate 

genes were searched based on 100 kb upstream and downstream window relative to the location 

of the peak SNPs (Moghaddam et al., 2016) in Version 2 of the genome annotation of P. vulgaris 

(Schmutz et al., 2014; https://phytozome.jgi.doe.gov/pz/portal.html#!info?alias=Org_Pvulgaris). 
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Table 1.  Phenotypic data for the GUA_1966-82 population. 

Feature Scale 

Altitudinal adaptation1 masl2 

Cotyledon color 1 to 8 

Flower color 1 to 7 

Growth habit Type I, II, III or IV. 

Stem color 1 to 5 

Hypocotyl color 1 to 6 

Pod color 1 to 9 

Pod shape 1 to 4 

Pod distribution in the plant 1 to 4 

Pod profile 1 to 4 

Seed color 1 to 18 

Seed coat luster Dull or shiny 

Seed length mm 

Seed width mm 

Seed length/width ratio - 

Rust3 1 (resistant) to 9 (susceptible) 

Anthracnose 1 (resistant) to 9 (susceptible) 

Aschochyta 1 (resistant) to 9 (susceptible) 

Phytophthora 1 (resistant) to 9 (susceptible) 

Angular leaf spot 1 (resistant) to 9 (susceptible) 

The scales follow the methodology of the varietal descriptors developed by the International 

Center for Tropical Agriculture (CIAT) for common bean (Muñoz et al., 1993). 1Altitudinal 

adaptation was the only trait that was evaluated in the GUA_2015 collection. 2masl=meters 

above sea level. 3Disease resistance scores are based on natural pressure of the pathogen because 

specific races were not available at the time of evaluation.  
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RESULTS 

Genetic Diversity and Population Differentiation 

SNP calling 

 A total of 971 P. vulgaris genotypes were analyzed including the two Guatemalan 

collections, the Guatemalan wild accessions, members of races Mesoamerica and Durango-

Jalisco, and Andean gene pool accessions. A total of 134,152 SNPs were discovered for all the 

Middle American races including the Guatemalan groups. The ADP collection consisted of 

265,765 SNPs. A total of 45,128 shared ADP and Middle American SNPs, distributed across all 

11 linkage groups of common bean, were used for the analysis.  

Genetic diversity analysis 

For the genetic diversity analysis of the 971 genotypes, the 2,453 SNPs with local LD 

values less than 0.2 were evaluated. 100% of the markers were polymorphic over the entire 

population. However, when they were separated by subpopulations, the percentage of 

polymorphic markers ranged from 94.8% (wild accessions subpopulation) to 100% (Middle 

American gene pool). All markers had two alleles per locus. Mean diversity statistics for each 

subpopulation are presented in Table 2.  

When the overall population was evaluated, the mean He  was 0.41 with a range of  0.18 

to 0.50. The lowest Ho was 0.003, and the highest was 0.96, with a mean of 0.32. The lowest PIC 

value was 0.16 and the highest was 0.38, with a mean of 0.32. When the two gene pools were 

compared He, Ho and PIC values were higher in the Middle American gene pool (He=0.38; 

Ho=0.34; PIC=0.30) than in the Andean gene pool (He=0.24; Ho=0.17; PIC=0.20). The He for the 

Guatemalan wild subpopulation (0.35) was higher than He for the GUA_1966-82 (0.31). 

However, it was lower when compared to He in GUA_2015 (0.36). Consequently, diversity loss 
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(ΔH) was 11% in GUA_1966-82, while there was almost 3% of diversity gain in GUA_2015 

relative to the wild population.  

In general, the greatest diversity difference was between the two gene pools, while the 

magnitude of diversity was similar among the different Middle American subpopulations. The 

Andean gene pool had the lowest He among all subpopulations (0.24), while GUA_2015 had the 

highest He (0.36).  Among the Middle American groups, GUA_1966-82 had the lowest He (0.31), 

followed by M (0.34), DJ (0.35) and GUA_2015 (0.36). The group DJ had the highest Ho (0.36) 

and GUA_1966-82 had the lowest (0.32). As expected, GUA_2015 had the highest PIC value 

(0.28), followed by DJ (0.27), M (0.26) and GUA_1966-82 (0.25). 

Table 2.  Summary of diversity statistics of the different populations. 

Subpopulation 

Genotypes 

(n) 

% Polymorphic 

SNPs He Ho 

PIC 

values ΔH 

MA gene pool 819 100.00 0.38 0.34 0.30 - 

GUA-1966-72 369 99.28 0.31 0.32 0.25 0.11 

GUA-2015 260 99.83 0.36 0.35 0.28 -0.03 

Mesoamerica 95 97.27 0.34 0.35 0.26 - 

Durango-Jalisco 95 96.87 0.35 0.36 0.27 - 

Guatemalan wild 12 94.83 0.35 0.31 0.28 - 

Andean gene pool 138 99.93 0.24 0.17 0.20 - 

Entire population 971 100.00 0.41 0.31 0.32 - 

MA=Middle American; He=Expected heterozygosity; Ho=Observed heterozygosity; 

PIC=polymorphic information content; ΔH=Diversity loss, when ΔH is negative, the diversity of 

the domesticated population is higher than the diversity of the wild population. 

Intra-accession diversity analysis 

 A total of 33 InDel markers and 48 accessions from GUA_1966-82 were used to evaluate 

diversity among individuals within an accession. Among all the markers, four were 

monomorphic across all accessions. The remaining 29 markers had 2 alleles. The percentage of 

monomorphic markers for the accessions ranged from 12.12 (Guate248) to 96.97 (Guate200).  

He ranged from 0.013 (Guate1003) to 0.26 (Guate248) with a mean of 0.09 (Table 6). Ho ranged 
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from 0.0 (Guate200) to 0.12 (Guate1112) with a mean of 0.04. PIC values ranged from 0.01 

(Guate1003) to 0.21 (Guate248) with a mean of 0.07. In general, just two accessions had Ho 

higher than 0.1, which means that the heterozygosity within all of the accessions is low. In 

contrast, almost half of the accessions evaluated had He higher than 0.1, which means that 

diversity within accessions is still high. Results of the AMOVA (Table 3) showed that variation 

among accessions (59%) is greater than variation within accessions (41%). However, within 

accession diversity is still considered high.  

Table 3.  Analysis of molecular variance (AMOVA) among and within accessions. 

Source df MS St. Var. 

Variation 

explained P-value 

Among accessions 47 82.17 3.33 59% <0.001 

Within accessions 1104 2.28 2.28 41% <0.001 

Total 1151  5.61 100%  

df = degrees of freedom.. MS = mean squares. St. Var. = Standard variation. 

Population differentiation 

All pairwise FST values among the six subpopulations evaluated were significant 

(α=0.05). The degree of differentiation between any two subpopulations ranged from 0.026 to 

0.264 (Table 4). All the Middle American races including race Guatemala had a high genetic 

differentiation when compared with the Andean gene pool. The genetic differentiation within the 

Middle American subpopulations was moderate. It was interesting to note that differentiation 

between DJ and GUA_2015 was lower than between M and GUA_2015. The highest 

differentiated subpopulations were race M and the Andean group (0.264). The two 

subpopulations that had lowest genetic differentiation (0.026) were GUA_1966-82 and 

GUA_2015. Interestingly, the Guatemalan wild subpopulation was highly differentiated from the 

Andean, DJ and M groups, while it was just moderately differentiated with the two Guatemalan 

subpopulations.  



 

36 
 

Table 4.  Pairwise FST values of all the populations evaluated. 

 

Andean 

gene 

pool 

Durango/ 

Jalisco Mesoamerica GUA_2015 GUA_1966-82 

Guatemalan 

wild 

Andean gene pool 0.000 0.001 0.001 0.001 0.001 0.001 

Durango/Jalisco 0.240 0.000 0.001 0.001 0.001 0.001 

Mesoamerica 0.264 0.073 0.000 0.001 0.001 0.001 

GUA_2015 0.195 0.099 0.134 0.000 0.001 0.001 

GUA_1966-82 0.217 0.125 0.161 0.026 0.000 0.001 

Guatemalan wild 0.155 0.147 0.157 0.084 0.109 0.000 

FST =Fixation index. FST values are below the diagonal. Probability (α=0.05) based on 1000 

permutations is shown above the diagonal. 
 

AMOVAs were performed to evaluate the variation explained by gene pools, races of the 

Middle American gene pool and, the Guatemalan collections. Table 5 showed that variation 

among gene pools (29%) is lower than variation explained within gene pools (71%). Similarly, 

the variation among races (22%) is lower than variation within races (78%). In general, the 

variation within each gene pool is higher than the variation between gene pools. On the other 

hand, variation among the Guatemalan groups is very low (5%) and most of the variation is 

explained within the groups. These results are in accordance with the results of the pairwise FST 

that showed that the less differentiated subpopulations are the Guatemalan groups, and the most 

differentiated subpopulations are the Andean and Middle American gene pools.  
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Table 5.  AMOVA for separation of gene pools, Middle American races and Guatemalan 

groups. 

 

Source of variation df MS St. Var. 

Variation 

explained 

P 

values 

Gene pools      

  Among gene pools 1 86241.16 181.61 29% <0.001 

  Within gene pools 1912 448.19 448.19 71% <0.001 

  Total for gene pools 1913  629.80 100%  

Races      

  Among races 2 37024.08 116.61 22% <0.001 

  Within races 1635 421.47 421.47 78% <0.001 

  Total for races 1637  538.08 100%  

Guatemalan groups      

  Among groups 1 13657.74 21.72 5% <0.001 

  Within groups 1256 408.58 408.58 95% <0.001 

  Total for groups 1257  430.30 100%  

df = degrees of freedom. MS = mean squares. St. Var. = Standard variation. 
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Table 6.  Summary of intra-accession diversity statistics for GUA_1966-82 genotypes.  

Genotype He Ho PIC % monomorphic markers 

Guate248 0.2641 0.0397 0.2118 12.12 

Guate192 0.0481 0.0341 0.0442 90.90 

Guate200 0.0142 0.0000 0.0109 96.97 

Guate233 0.0373 0.0278 0.0319 81.82 

Guate891 0.0393 0.0303 0.0313 87.88 

Guate949 0.0328 0.0303 0.0272 87.88 

Guate977 0.1197 0.0588 0.0946 69.70 

Guate1246 0.1650 0.0732 0.1360 45.45 

Guate135 0.0964 0.0135 0.0815 63.64 

Guate385 0.0686 0.0000 0.0589 69.70 

Guate578 0.1661 0.0599 0.1327 51.52 

Guate992 0.0471 0.0135 0.0381 81.82 

Guate1000 0.0909 0.0323 0.0833 87.88 

Guate1242 0.0569 0.0462 0.0479 69.70 

Guate297 0.0764 0.0283 0.0625 78.79 

Guate639 0.0948 0.0340 0.0749 72.73 

Guate888 0.1388 0.0320 0.1110 60.61 

c815cm6 0.0785 0.0193 0.0642 75.76 

Guate10071 0.1578 0.1047 0.1291 48.48 

Guate1069 0.0182 0.0061 0.0150 93.94 

Guate1222 0.1054 0.0495 0.0877 63.64 

Guate1234 0.0767 0.0177 0.0634 72.73 

Guate945 0.0847 0.0269 0.0689 72.73 

Guate952 0.0436 0.0344 0.0376 78.79 

Guate1005 0.1482 0.0636 0.1188 57.58 

Guate1100 0.0653 0.0076 0.0561 75.76 

Guate1244 0.0606 0.0313 0.0530 90.91 

Guate12803PM 0.0814 0.0278 0.0696 66.67 

LCH86V87 0.1012 0.0407 0.0850 60.61 

Guate1053 0.0752 0.0379 0.0649 63.64 

Guate1073 0.1017 0.0396 0.0820 72.73 

Guate1511 0.0405 0.0076 0.0342 84.85 

LaborOvalle 0.0764 0.0404 0.0645 72.73 

LCH86V23 0.1817 0.0404 0.1428 54.55 

c495cm6cm12 0.0992 0.0583 0.0795 69.70 

c495cm6cmb 0.0806 0.0185 0.0662 75.76 

Guate1112 0.1856 0.1200 0.1550 24.24 

Guate1418 0.1290 0.0383 0.1038 63.64 

Guate1429 0.1101 0.0482 0.0927 60.61 
He=Expected heterozygosity; Ho=Observed heterozygosity; PIC=polymorphic information content. 
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Table 6.  Summary of intra-accession diversity statistics for GUA_1966-82 genotypes 

(continued).  

 

Genotype He Ho PIC % monomorphic markers 

Guate1003 0.0125 0.0177 0.0099 96.97 

Guate1192 0.1548 0.0863 0.1249 48.48 

Guate1275 0.0369 0.0078 0.0362 93.94 

Guate1451 0.0814 0.0573 0.0710 81.82 

Guate1470 0.0843 0.0708 0.0741 78.79 

Guate1101 0.0417 0.0104 0.0395 93.94 

Guate1210 0.0797 0.0717 0.0701 81.82 

Guate1286 0.0349 0.0052 0.0346 93.94 

Guate1313 0.0387 0.0052 0.0376 93.94 

MEAN 0.0880 0.0368 0.0731 72.35 
He=Expected heterozygosity; Ho=Observed heterozygosity; PIC=polymorphic information content. 

Population structure analysis 

The population structure analysis was performed using 971 genotypes and 2,453 SNPs 

(local LD <0.2). Three subpopulations (K=3) were identified as the most important hierarchical 

level of structure using ΔK (Figure 3) based on the Evanno et al. (2005) calculation. The first 

partition (K=2) split the population into Middle American and Andean gene pools. When K=3, 

the Guatemalan collections (GUA) separated from races M and DJ (MA group). K=4 split race 

M from race DJ. At K=5, GUA_1966-82 separated from GUA_2015. Wild accessions never 

formed a separate group. To assign genotypes to each subpopulation (using K=3), genotypes 

with qi<0.70 were classified as admixed. A single accession from GUA_2015 was classified as 

Andean. Ten accessions classified originally as Andean were assigned to the MA group. Also 

four accessions classified originally as GUA were assigned to the MA group. Four accessions of 

the Andean group were admixed with the MA group. 16 accessions of the MA group were 

admixed with the GUA group. Additionally, 46 accessions from the GUA group were admixed 

with the MA group. Within the wild accessions, one was assigned to the MA group, two were 
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assigned to the GUA group and nine were admixed between the MA group, the GUA group and 

the Andean gene pool. 

 

 

 

 

 

 

 

 

 

Figure 3.  ΔK results showing the best K=3. 

 

K=4 was also analyzed to evaluate races M and DJ separately. Two accessions classified 

originally as M were assigned to the DJ group, and six accessions classified originally as DJ 

were assigned to the M group.  Five genotypes of the M group were admixed with the DJ group 

and 13 genotypes of the DJ group were admixed with the M group. In general, the DJ group had 

more admixture (37%) compared to M group (14%), and most of this admixture included the 

GUA group. Interestingly, with K=4 it was revealed that wild accessions had admixture of all the 

groups except DJ.  

With K=5, GUA_1966-82 and GUA_2015 split. However, GUA_2015 had a high 

percentage of admixture (84%), with most of it explained by admixture of the two Guatemalan 

groups. Interestingly, 49 genotypes from GUA_2015 were admixed with the DJ group. In 

contrast, just six genotypes were admixed with the M group. Just 17 genotypes (5%) of 

GUA_1966-82 were admixed, most of them with the M group. Figure 4 shows the results for 

population structure analysis using STRUCTURE. 
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Figure 4. Results of population structure analysis with K values ranging from 2 to 5.  

M= race Mesoamerica, DJ= race Durango_Jalisco, GW= Guatemalan wilds.   

 

Principal components analysis 

 PCA analysis was performed using 971 genotypes and all 45,128 SNPs markers. This 

analysis was consistent with the STRUCTURE results. The first component explained 22.1% of 

the variation and separated the Andean gene pool from the Middle American gene pool. The 

second component explained 16.9% of the variation and separated the Guatemalan collections 

from the Middle American races. The third component explained 4.9% of variation and 

separated race M from race DJ (Figure 5). In the plots, it was also observed that one accession 

from GUA_2015 clustered with the Andean gene pool. Nine accessions classified as Andean 

clustered with the M group, and one clustered with the DJ group. One wild accession was 

clustered in the M group. Admixture between the two Guatemalan collections and between races 

M and DJ was also observed in the PC plots. These misclassifications and admixtures were also 

identified by STRUCTURE. Interestingly, admixture between some GUA_2015 accessions with 

the DJ group is observed in the plots. The STRUCTURE results showed that a higher percentage 

of GUA_2015 were admixed with the DJ group. In general, high admixture between Middle 
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K=4 

K=5 
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American gene pool races is observed. In contrast, low admixture between gene pools is 

detected.  

 

 

Figure 5. Results of PCA for the first three principal components based on the SNPs information. 

 

Phylogenetic analysis 

A maximum likelihood tree was generated using 971 genotypes and 2,453 SNPs (local 

LD<0.2). The results matched with the analyses using STRUCTURE and principal components. 

A cluster formed by the lower branches of the tree was represented mostly by accessions from 

the Andean gene pool, while a cluster formed by the upper branches of the tree was represented 

by accessions of races M and DJ. The Guatemalan collections clustered mostly together but it 

was observed that they formed subgroups. It was also observed that GUA_2015 may be a 

subpopulation of GUA_1966-82 since many accessions of this subpopulation are interleaved 

within the GUA_1966-82 subpopulation. The tree also detected this relationship. One wild 

accession clustered with the M group, 12 accessions classified as Andeans clustered with the M 

group and one with the DJ group. Five accessions classified as M clustered with the group DJ, 
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GUA_1966-82 

Mesoamerica 

Guatemalan wilds 

Durango-Jalisco 

and 10 classified as DJ clustered with the M group. Two accessions from GUA_2015 were 

clustered with the Andean group and one with the MA group. Guatemalan accessions that were 

admixed with the M group in STRUCTURE clustered together closer to the M group in the tree. 

Guatemalan accessions that had admixture with the DJ group clustered together in one of the 

Guatemalan sub clusters. Figure 6 shows results of the ML tree with the branches collapsed. The 

original tree is showed in Figure A1.  

Figure 6.  Results of the maximum likelihood tree. Clustered branches are collapsed.  
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GUA_2015 
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Geographical structure of the genetic variation in population GUA_2015 

 This analysis was performed only with population GUA_2015 because no passport data 

was available for population GUA_1966-82. SNP calling for the GUA_2015 collection was 

performed separately. A total of 112,592 SNPs were discovered originally and the total of SNPs 

after filtering for a 5% MAF was 104,110. SNP loss after filtering was 7.5%. PCA was 

performed using all the SNPs and 253 genotypes. Accessions that did not belong strictly to the 

type IV climbing growth habit were discarded. Genotypes were identified based on the collection 

location and the elevation of those regions, and PCA analysis was performed individually for 

each, location and elevation data. PCA plots showed that PC1 explained 11.8% and PC2 

explained 9.5% of the total genetic variation. Figure 6a showed that PC1 separated accessions 

collected in Huehuetenango from the rest of locations, and PC2 separated most of the accessions 

collected in Chimaltenango from accessions collected in Quetzaltenango. Accessions from 

Quiche and San Marcos do not form a specific cluster. Interestingly, when genotypes were 

identified with elevation, PC1 separated those genotypes grown at less than 1500 masl from 

genotypes grown at more than 2500 masl. Genotypes grown in intermediate elevation were 

mostly in the middle of the plot. In general, the elevation of the locations where the accessions 

were grown is an important factor for population structure of GUA_2015.  

 

 

 

 



 

45 
 

Figure 7.  Results of PCA for the first two principal components.  

 

 

Genome Wide Association Study 

369 accessions from GUA_1966-82 and 78,754 SNPs were used for the GWAS analysis. 

SNP calling of only GUA_1966-82 identified a total of 102,822 SNPs. SNP loss after filtering 

for MAF and heterozygosity (0.05 and 0.5, respectively) was 23%. Phenotypic data were 

provided by ICTA, and a description of the scales used to score the traits are provided in Table 2. 

Since nine traits did not present strong associations with genomic regions, only 12 of the 20 traits 

evaluated are analyzed in this section. GWAS results for the other nine traits are presented in the 

Figure A2. 

Altitudinal adaptation was the only trait that was evaluated exclusively for GUA_2015. 

GWAS analysis for this population was performed using its own set of markers (104,110 SNPs) 

and 256 genotypes (some of them lack data for elevation), and it used 3PCs (25% of variation) to 

control for population structure instead of 6PCs that was used for the other traits. 

The best GWAS models were chosen based on the lowest MSD values (Mamidi et al., 

2014) and the best quantile-quantile (Q-Q) plots. Table 7 shows the MSD values for each model 
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and each trait evaluated. Q-Q plots show how the data is adjusted relative to the chosen models 

(Figures 8b to 15b). For most of the traits, Q-Q plots and MSD values agreed. Also, mixed 

models usually gave the lowest MSD values, while the naïve models was not the best fitting 

model for any trait.  This demonstrates the strong influence of relatedness and population 

structure for the expression of the traits. In the case of seed coat luster and rust resistance, the 

best model was chosen based only on the Q-Q plots. Many genomic regions were associated with 

the traits evaluated. Table A2. lists the significant markers for the 0.01 percentile and the 

candidate genes based on an evaluation of 100 kb downstream and upstream window relative to 

the marker position for each trait. Manhattan plots (Figures 8a to 15a) show the significant 

markers, with chromosomal position on the x-axis and the –log10 (P) values on the y-axis.   

Table 7.  Mean Square Deviation (MSD) for each GWAS model and each trait evaluated. 

Trait Mixed Model2 EMMA3 6PC4 Naïve 

Altitudinal adaptation1 3.85E-05 1.21E-55 9.52E-03 4.22E-02 

Seed length 5.41E-06 8.07E-06 4.31E-03 1.84E-02 

Seed width 1.69E-04 3.81E-04 1.93E-03 3.17E-02 

Seed width/length ratio 7.17E-05 1.96E-04 4.29E-03 2.89E-02 

Seed coat luster 1.78E-04 1.64E-04 3.50E-03 2.16E-02 

Flower color 3.92E-06 8.38E-05 1.40E-03 1.79E-02 

Cotyledon color 2.87E-05 1.68E-05 1.16E-05 4.51E-03 

Stem color 5.96E-06 8.52E-05 1.48E-03 4.53E-03 

Pod color 3.88E-06 1.27E-04 9.05E-04 4.35E-03 

Downy mildew resistance 1.39E-04 1.88E-04 4.08E-05 5.21E-03 

Anthracnose resistance 1.56E-05 1.53E-05 1.50E-03 4.22E-03 

Rust resistance 2.62E-05 1.56E-05 3.21E-03 3.77E-03 
1Trait analyzed for GUA_2015. 2Mixed model control both relatedness and population structure. 
3EMMA control for relatedness. 46PC control population structure based on 6 principal 

components (25% of variation). 5Lowest MSD for each trait are in bold.  
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Genomics regions associated with altitudinal adaptation in population GUA_2015 

The altitude where the genotypes from GUA_2015 were grown ranged from 1183 to 

3050 masl, with an average of 2000 masl. Genomic regions controlling altitudinal adaptation 

were found in Pv02, Pv03, Pv05 and Pv11 (Figure 8). Pv02 has two significant peaks, the first 

one encompasses an interval of 76 Kb and the second peak encompasses a region of 121 Kb. The 

two peaks are 6Mb one from another, and for that reason, they were evaluated separately. In 

Pv05, peaks were also evaluated separate because there was a region of 7Mb between them. The 

distance encompassed by significant SNPs in Pv11 was 317 Kb. Candidate genes for altitudinal 

adaptation are listed in Table A2 after a search of 50 kb downstream and 50 kb upstream of the 

significant SNP in the V2. Phaseolus v. genome assembly and annotation. Variation explained 

by significant markers (R2) was calculated for each significant peak found. Peaks in Pv02 

explained 12% and 9% of phenotypic variation, respectively. Peak in Pv03 explained 8% of the 

variation, while each peak in Pv05 explained 7% of the variation. Finally, a significant peak in 

Pv11 explained 9% of the phenotypic variation.  

 

Figure 8. a) Manhattan plot for altitudinal adaptation of GUA_2015. b) quantile-quantile plot 

for the best model. Green lines represent the cutoff values for 0.1 and 0.01 percentiles. Markers 

significant for the 0.01 and 0.1 percentiles are colored in red and blue, respectively. Best model 

is indicated in parenthesis.  
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Genomics regions associated with seed length, seed width and seed width/length ratio in 

population GUA_1966-82. 

Length of the seeds measured ranged from 8.6 to 14.9 mm, with an average of 11.4 ± 

0.55 mm. Width of the seeds ranged from 3.6 to 7.7 mm, with an average of 5.0 ± 0.35 mm. The 

width/length ration ranged from 0.3 to 0.8 with an average of 0.45 ± 0.03. An important genomic 

region was found at the end of Pv02 associated with seed length, seed width and the seed 

width/length ratio (Figure 9). For seed length, a minor peak was found in Pv04. Table A2 shows 

the significant markers with the candidate gene models that best explained the traits. In the case 

of seed length, the significant peak in Pv02 explained 11% of the phenotypic variation while the 

significant peak in Pv04 explained 5% of the variation. For seed width, the peak in Pv02 

explained 11% of phenotypic variation and in the seed width/length ratio the significant peak in 

Pv02 explained 25% of variation. The strongest signal for seed length in Pv02 covered a region 

of 535 kb, while for seed width the signal on Pv02 covered a region of 282 kb. However, the 

signal for both traits was located in the same region. As expected, the same region was identified 

for the seed width/length ratio. 
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Figure 9. a) Manhattan plots for seed length, seed width and seed width/length ratio in 

accessions from GUA_1966-82. b) quantile-quantile plots for the best models. Green lines 

represent the cutoff values for 0.1 and 0.01 percentiles. Markers significant for the 0.01 and 0.1 

percentiles are colored in red and blue, respectively. Best model is indicated in parenthesis.  

 

Genomic regions associated with flower color, cotyledon color and stem color 

Phenotypic results show that the Guatemalan climbing bean collection has mostly purple 

flowers but white, lilac and pink flowers are also found. In the case of cotyledon color, yellow is 

the predominant color, but also green, purple and brown are found. For stem, the colors found 

are green, green with pink stripes and green with purple stripes.  

Genomic regions associated with flower color, cotyledon color and stem color were 

found at the beginning of Pv06 (Figure 10). For cotyledon color, additional genomic regions 
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were found in Pv02, Pv03, Pv04, Pv05, and Pv08. The candidate genes for significant peaks of 

these traits are listed in Table A2. In Pv06, the significant peak present in the three traits 

encompass a region of 5Kb. A second peak in the same chromosome is shared between flower 

color and stem color, and embrace an interval of 13Kb. However, no candidate gene was found 

around this region. Additional peaks were found in Pv06 for flower color and stem color. 

However, none of these peaks were close to gene models related to flower or stem color. Peaks 

in Pv04 and Pv08 for cotyledon color were also distant from any candidate gene.  

The significant peak shared by the three traits explained 9%, 6% and 6% of phenotypic 

variation for flower color, cotyledon color and stem color, respectively. It seems that for flower 

color, both peaks (13Kb and 5Kb) explain the same phenotypic variation, and this may explain 

why no candidate gene was found for the second peak. The significant peak in Pv02 for 

cotyledon color explains 5% of the phenotypic variation.  
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Figure 10. a) Manhattan plots for flower color, cotyledon color and stem color in accessions of 

GUA_1966-82. b) quantile-quantile plots for the best model. Green lines represent the cutoff 

values for 0.1 and 0.01 percentiles. Markers significant for the 0.01 and 0.1 percentiles are 

colored in red and blue, respectively. Best model is indicated in parenthesis. 

 

Genomic regions associated with seed coat luster in population GUA_1966-82 

 Phenotypic results show that almost 79% of the Guatemalan climbing bean seeds are 

shiny and the rest are dull seeds. Two significant regions were found in Pv02 and Pv07 

associated with seed coat luster (Figure 11).  The peak in Pv02 spans an interval of 282Kb while 

the peak in Pv07 covers a region of 20Kb.  Phenotypic variation explained by the peak in Pv02 is 

a) b) 
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6%, and the phenotypic variation explained by the peak in Pv07 is 8%. Candidate genes for seed 

coat luster are listed on Table A2.  

 

 

 

 

 

 

Figure 11. a) Manhattan plot for seed coat appearance in accessions of GUA_1966-82. b) 

quantile-quantile plot for the best model.  Green lines represent the cutoff values for 0.1 and 0.01 

percentiles. Markers significant for the 0.01 and 0.1 percentiles are colored in red and blue, 

respectively. Best model is indicated in parenthesis 

 

Genomic regions associated with pod color in population GUA_1966-82 

 Pod color in the Guatemalan collection is mostly green. However, yellow, yellow with 

brown stripes, yellow with purple stripes, and purple pods are also found. A significant genomic 

region associated with pod color was found at the beginning of Pv08 (Figure 12). The region 

encompass an interval of 122bp. The candidate gene for this peak is described in table A.2. Total 

phenotypic variation explained by the markers in the significant peak is 6%. 
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Figure 12. a) Manhattan plot for pod color in accessions of GUA_1966-82. b) quantile-quantile 

plot for the best model. Green lines represent the cutoff values for 0.1 and 0.01 percentiles. 

Markers significant for the 0.01 and 0.1 percentiles are colored in red and blue, respectively. 

Best model is in indicated parenthesis.    

 

Genomic regions associated with rust (Uromyces appendiculatus (Pers) Unger) resistance in 

population GUA_1966-82 

 Phenotypic data for rust resistance show that only 18% of the population show complete 

resistance, and it has a normal distribution. Genomic regions associated with resistance to rust 

were found in Pv02 and Pv08 (Figure 13). Markers in Pv02 are located in a region of 332 Kb, 

while markers found in Pv08 are located 25 Kb one from another. Table A2 shows the candidate 

genes proposed for this trait. Phenotypic variation explained by the significant peak in Pv02 is 

6%, while variation explained by the significant peak in Pv08 is 4%. These results suggest that 

resistance to rust is controlled by many factors.  
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Figure 13. a) Manhattan plot for rust resistance in accessions of GUA_1966-82. b) quantile-

quantile plot for the best model. Green lines represent the cutoff values for 0.1 and 0.01 

percentiles. Markers significant for the 0.01 and 0.1 percentiles are colored in red and blue, 

respectively. Best model is indicated in parenthesis. 

 

Genomic regions associated with anthracnose (Colletotrichum lindemuthianum) resistance 

in population GUA_1966-82 

 Contrary to rust, 50% of the Guatemalan accessions show resistance to anthracnose, and 

just a few genotypes are completely susceptible. Two genomics regions associated with 

anthracnose resistance were found in Pv01. Minor peaks were found in Pv03 and Pv05 (Figure 

14).  Significant markers in Pv01 span a region of 2.5 Mb. Phenotypic variation explained by the 

first peak in Pv01 is 9%. The second peak in Pv01 explained 5% of the variation, and peaks in 

Pv03 and Pv05 explained 5% of the variation each one. Candidate genes in these genomic 

regions are listed in table A2. 
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Figure 14. a) Manhattan plot for anthracnose resistance in accessions of GUA_1966-82. b) 

quantile-quantile plot for the best model. Green lines represent the cutoff values for 0.1 and 0.01 

percentiles. Markers significant for the 0.01 and 0.1 percentiles are colored in red and blue, 

respectively. Best model is in parenthesis.  

 

Genomic regions associated with downy mildew (Phytophthora nicotianae) resistance in 

population GUA_1966-82 

 Phenotypic data shows that 80% of the Guatemalan population is completely susceptible 

to downy mildew, and just 5 genotypes are resistant. Genomics regions associated with downy 

mildew resistance were located in Pv04 and Pv06 (Figure 15). Significant markers in Pv06 are 

located in a region of 94 Kb, while in Pv04 significant markers are located very close one from 

the other (3 bp). Phenotypic variation explained by the significant peak in Pv04 is 5% and for 

Pv06 is 13%. Candidate genes proposed for this trait are listed in table A2. 
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Figure 15. a) Manhattan plot for downy mildew resistance in accessions of GUA_1966-82. b) 

quantile-quantile plot for the best model. Green lines represent the cutoff values for 0.1 and 0.01 

percentiles. Markers significant for the 0.01 and 0.1 percentiles are colored in red and blue, 

respectively. Best model is indicated in parenthesis. 
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DISCUSSION 

Genetic Diversity and Population Structure 

The analysis of two large collections of Guatemalan climbing beans has allowed us to 

confirm the unique diversity of this group.  All evidence generated by these analyses 

demonstrates that Guatemalan climbing beans can be classified as another race within the Middle 

American gene pool.  

Gene pools differentiation and race structure as proposed by Singh et al. (1991a), Beebe 

et al. (2000) and Blair et al. (2009) was confirmed in this study. We found that the Middle 

American gene pool and the Andean gene pool are highly differentiated. Race structure in the 

Middle American gene pool includes races Mesoamerica, Durango-Jalisco and Guatemala. Our 

study also found greater admixture between races of the Middle American gene pool and very 

low admixture between gene pools. Geographic proximity between races and breeding within 

market classes can explain this admixture. Misclassification of accessions found in this study can 

be explained by possible germplasm introgression from different regions.  

The Middle American gene pool has been described as more diverse than the Andean 

gene pool (Chacón et al., 2005; Rossi et al., 2009; Bitocchi et al., 2012; Mamidi et al., 2013; 

Blair et al., 2013). In this study we found greater diversity for Middle American gene pool races 

than the Andean gene pool population that was evaluated. However, it is necessary to consider 

that the ADP population is mostly represented by accessions from race Nueva Granada, and 

diversity from races Peru and Chile could have been underrepresented. Additionally, we used 

fewer accessions to represent the Andean gene pool than the Middle American gene pool.  

When we compare our diversity results with similar diversity studies using SNPs (Blair et 

al., 2013; Rodríguez et al., 2016), it can be observed that our study was able to identify greater 
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diversity in both the Middle American and Andean gene pools. However, all studies consistently 

observed a higher diversity in the Middle American gene pool. Differences in diversity can be 

explained by the number of SNPs used for each study. This would be in agreement with Müller 

et al. (2015) who suggested that at least three times more SNPs are needed than SSRs to obtain 

similar estimates of diversity. In all the cases, when we compared our study with diversity 

studies that used SSRs, diversity was lower using SNPs.  

Independent domestication events for the Middle American and Andean gene pools have 

been widely discussed. Chloroplast haplotypes of races Mesoamerica, Durango, Jalisco and 

Guatemala are closely related and distantly related to chloroplast haplotypes of Andean races.  

Organelle DNA evidence supports a single domestication event in each gene pool (Chacón et al., 

2005). In their diversity study, Kwak and Gepts (2009) found that the Middle American races 

cluster together, suggesting a single domestication for this gene pool and a later development of 

races. Similar results were found by Papa and Gepts (2003) who suggested that races were 

formed by farmer selection and ecological and geographical features rather than by many 

domestications events in the Middle American gene pool. McClean et al. (2012) suggested that 

difference in FST values between markers located close to domestication loci and markers located 

far from domestications loci result after domestication events, supporting a single domestication 

event in each gene pool. We found that population differentiation was the highest when gene 

pools were compared, and moderate when comparing between Middle American gene pool 

races, including race Guatemala. These results confirm the existence of race Guatemala in the 

Middle American gene pool, and also that greater diversity is found in this gene pool. Race 

Guatemala cluster with the other Middle American races and separate from the Andean gene 
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pool, suggesting that it appeared after the domestication event in the Middle American gene pool 

similar to the other races.  

The percentage of heterozygous genotypes was high (31%) for the entire population 

(Andean and Middle American gene pools). This suggests that SNPs can detect higher amount of 

heterozygotes compared to other molecular markers (Blair et al., 2013). However, other studies 

with SNPs have reported a low percentage of heterozygotes (<0.01) for common bean (Müller et 

al., 2015). This discrepancy may suggest that landraces of Guatemalan climbing beans have a 

high amount of heterozygous loci despite their self-pollinated nature. The percentage of 

outcrossing in common bean can range from 1 to 70% depending on the conditions where it 

grows (Rendón-Anaya et al., 2017), and if it was high in the Guatemalan highlands a higher 

amount of heterozygotes would be observed. However, a high percentage of heterozygotes was 

observed across all the subpopulations evaluated here, especially within race DJ. This 

observation agrees with the STRUCTURE analysis results where a higher amount of race DJ 

accessions were admixed compared with the admixed accessions found in race M.  

When both Guatemalan collections are compared, we can observe that GUA_2015 is 

more diverse and admixed than GUA_1966-82. However, pairwise FST values and the AMOVA 

show that both subpopulations are very similar.  Unfortunately, passport data is not available for 

GUA_1966-82, which seems to be a very unique germplasm population. Beebe et al. (2000) 

described race Guatemala as the least diverse. However, they used a small population size of 

climbing beans for this study. On the other hand, Blair et al. (2009) described race Guatemala as 

one of the most diverse races in the Middle American gene pool. Our results for GUA_1966-82 

agree with Beebe et al. (2000), while GUA_2015 was the most diverse population.  
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Results of STRUCTURE analysis showed that GUA_2015 has more admixture than 

GUA_1966-82. GUA_2015 also has more introgression of DJ than M, even though race M is 

predominant for the bush type beans in Guatemala. There is very little information about 

climbing beans from Guatemala. De Young et al. (2017) collected data in a survey performed in 

the highlands of the country, where smallholders stated that only 6% of them use an improved 

variety and they also reported that they have used the same market class and recycled seed for 

over 23 years.  It seems that introgression of DJ in the Guatemalan climbing beans is recent, 

since the old collection does not show this introgression. The nature of this introgression is 

unknown especially since this region has not been targeted for the development and release of 

new varieties specifically adapted to this region.  Interestingly, Blair et al (2009), described in 

their analysis that race Guatemala and race DJ had the lower genetic differentiation between 

them and suggested that these races may have shared ancestry. 

 The GUA_2015 collection is also unique because it shows introgression of material that 

is not present in any of the common bean races. Since this common bean race is grown in close 

proximity with genotypes from the domesticated P. dumosus and P. coccineus species, natural 

crosses between these and P.vulgaris may have generated the introgression observed. However, 

a SNP diversity analysis of these other species need to be performed. 

It was observed that GUA_2015 was 3% more diverse when compared to the wild 

accessions. In their study, Papa and Gepts (2003) reported that wild genotypes from Central 

America (Guatemala and Costa Rica) were the least diverse among all the wild accessions from 

the Middle American gene pool. Since we use only wild accessions from Guatemala, this may 

explain why we found genetic gain in the GUA_2015 group. However, introgression between 
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this newer population and wild germplasm may provide an explanation for the greater diversity 

for this newer population.  

Intra-accession diversity analysis of the Guatemalan beans showed that there is a low 

percentage of heterozygotes within accessions, but moderate genetic diversity is still found. 

Despite variation among accessions is high, within accessions is also relatively high. Species P. 

dumosus and P. coccineus have a major percentage of outcrossing compared to P. vulgaris. 

Since these species were included in the intra-accession analysis, it can partially explain why we 

found moderate genetic diversity. Another possible reason that explains the amount of diversity 

is that genotypes analyzed are mostly landraces, since breeding efforts to improve Guatemalan 

climbing beans was only initiated a few years ago. Just recently, and for the first time, two 

improved varieties of climbing beans (ICTA Utatlan and ICTA Labor Ovalle) were released by 

ICTA in collaboration with NDSU at the beginning of 2017, and their features included less 

aggressiveness when grown in combination with maize (LIL, 2017). 

Genome Wide Association Study 

Altitudinal adaptation 

 Selection, gene flow and genetic drift are major factors leading to local adaptation. 

Climatic and geographic factors, and biotic and abiotic stresses are factors that drive these three 

effects and lead to local adaptation and fitness of the species (Joshi et al., 2001). In Guatemala, 

altitude is an important geographic factor influencing local/regional climate. In the country, 

altitude can range from 0 to more than 3,000 masl in an area of 108,889 km2 (Lachniet and 

Patterson, 2009). Moreover, in our analysis of the GUA_2015 population, we found that altitude 

is an important factor that can explain population structure. Flowering time and leaf length are 
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two traits that appear to exhibit phenotypic differentiation because of local adaptation (Klaedtke 

et al., 2017; Romero-Navarro et al., 2017).  

 In this study, genomic regions associated with altitudinal adaptation in the Guatemalan 

climbing beans were identified using elevation data as the dependent variable. The significant 

SNP Pv02_38216242 fell inside the candidate gene Phvul.002G213600, which encodes a RNA-

binding KH domain-containing protein (HEN4). The significant SNP Pv02_38337312 is also 

close to the gene model Phvul.002G215500 that encodes an AGAMOUS-like 21 protein (AGL). 

AGL is a gene that participates in the differentiation of stamen and carpel cells. The presence of 

AGL in the floral meristem is regulated by positive and negative RNA transcription regulators 

(Lenhard et al., 2001; Franks et al., 2002). However, it has been suggested that AGL can also be 

controlled at a posttranscriptional level (Cheng et al., 2003). HEN4, HUA1 and HUA2 are 

proteins involved in the differentiation of floral reproductive organs via processing of AGL 

mRNA, and HEN4 is directly linked to differentiation of stamen cells and conditions floral 

determinacy (Cheng et al., 2003).  

Flowering time is regulated by different factors including photoperiod, circadian clock 

and vernalization. Different protein pathways regulate the response of the plant to these factors 

(Blumel et al., 2015). One of the significant markers found on Pv11 (Pv11_13054356) is 52kb 

from the gene model Phvul.011G105600 that encodes a homeodomain-like superfamily protein, 

also known as LATE ELONGATED HYPOCOTYL (LHY). LHY is a gene involved in the 

photoperiodic induction of flowering in Arabidopsis (Mouradov et al., 2002). The CIRCADIAN 

CLOCK ASSOCIATED 1 (CCA1) and the LHY genes regulate the expression of the TIMING 

OF CAB EXPRESSION 1 (TOC1) gene, which is related to the photoperiod response (Alabadı́ 

et al., 2001). This interaction generates a negative regulation of the photoperiod flowering 
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pathway (Niwa et al., 2007). This suggests that the expression of LHY affects flowering time 

based on the duration of the light period during the day because overexpression of the gene 

generates late flowering during long day plants (Mouradov et al., 2002). In general, AGL, HEN4 

and LHY have important roles in flowering time, suggesting that flowering time is also an 

important trait for the altitudinal adaptation of the Guatemalan climbing beans. 

 Significant SNP Pv02_46664311 was found inside the gene model Phvul.002G298300 

that encodes a RING/U-box superfamily protein. The ubiquitin/26S proteasome pathway is 

involved in most of the cellular processes, including circadian rhythms, hormone signaling, and 

biotic and abiotic stress responses (Vierstra, 2003).  The ubiquitin protein is interceded by three 

enzymes (Ubiquitin-activating enzyme, ubiquitin-conjugating enzyme and ubiquitin protein 

ligase). The third enzyme can be of the RING, F-box or U-box type (Yee and Goring, 2009). U-

box proteins have been related specifically with stress responses that are  up-regulated in the 

presence of cold, drought, osmotic stress and other abiotic stresses, factors that are related to 

adaptation to ecological pressures (Yee and Goring, 2009). Hypersensitive response (HR) has 

also been related to the upregulation of U-box genes. In parsley (Petroselinum crispum. (Mill.) 

Fuss), the gene activated in the first level of defense response was PcCMPG1 (a U-box gene) 

(Kirsch et al., 2001). 

 Two significant markers in Pv02 (Pv02_46736576 and Pv02_46740440) fell 7kb close to 

the candidate gene Phvul.002G299400 that encodes a calcineurin B-like protein 8 (CBL8). CBL 

proteins, similar to U-box proteins, are related to stress responses but via interaction with CBL-

interacting protein kinases (CIPKs) (Pandey et al., 2015). Interestingly, CBL19 in Arabidopsis 

has also been related to pollen tube growth and polarity, which suggests it also participates in the 

flowering process (Zhou et al., 2015). Pandey et al., (2015) determined that CBL2 and CBL3, 
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while interacting with CIPK21, control the responses to salt stress conditions. Similarly, 

upregulation of CIPK31 in the grass species Brachypodium distachyon (L.) P. Beauv. improved 

the tolerance to salt and drought, via stomatal closure (Luo et al., 2017).  

 In Pv03, one significant SNP (Pv03_39752668) was located 35kb from the gene model 

Phvul.003G175700, which encodes a dicer-like 4 protein (DCL4).  The function of the DCL 

genes, is the biogenesis of small RNAs that negatively interfere with the RNA process in a way 

to regulate gene expression (Xie et al., 2005). Small RNAs are classified in micro-RNAs and 

small interfering RNAs (siRNAs). In their study, Xie et al. (2005) proposed that DCL4 regulates 

the trans-acting siRNAs, which accelerates the vegetative phase change and shortens the life 

cycle of the plant. The change of vegetative phases is also related to the start of the reproductive 

phase in plants (flowering time). DCL4 has also been suggested to have antiviral response 

(Deleris et al., 2006). As mentioned above, local adaptation of species is related to the response 

of biotic stresses including viruses that can be present in specific regions.  

  One significant SNP located in Pv05 (Pv05_32602302) was found 3kb near to the 

candidate gene Phvul005G106100 that encodes a protein phosphatase 2C family protein (PP2C). 

One of the most important pathways for biotic and abiotic stresses responses, which ensures the 

rapid adaptation to different environments in plants, is the abscisic acid (ABA) signaling 

pathway (Sirichandra et al., 2009). Genes related to the ABA pathway are upregulated when the 

plant is submitted to osmotic stresses (Nambara and Marion-Poll, 2005). The PP2C family 

proteins are known as regulators of the ABA pathway (Umezawa et al., 2009) and therefore 

related with the plant response to biotic and abiotic stresses.  

 The second most significant marker found on Pv05 (Pv05_39204798) is located 3kb near 

the gene model Phvul.005G164300 that encodes a leucine-rich repeat protein kinase family 
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protein (LRR-PK). Genes associated with defense response in constantly evolve to overcome 

susceptibility to pathogens (Brown, 2003). Pathogen-associated-molecular-pattern (PAMP)-

triggered immunity (PTI) is a nonspecific pathogen defense response and can be general to many 

pathogens. It triggers immunity by recognizing PAMPs like flagellin in bacteria or chitin in fungi 

(Nicaise et al., 2009). PTI is considered less aggressive than effector-trigger-immunity (ETI), 

where pathogen specific effectors are recognized by the plant, which then activate the HR 

(Rafiqi et al., 2009). LRR-PK genes are usually associated with PTI. However, it is believed that 

there is an important link between PTI and ETI since proteins involved in PTI are targets of the 

pathogen effectors that activate ETI (Chisholm et al., 2006). Interestingly, in common bean, a 

virulent strain of anthracnose decreased when different altitudinal distances were evaluated 

(Sicard et al., 2007). These results support the possibility of local adaptation of common bean for 

resistance to most common strains of pathogens found in the region. In summary, significant 

genetic factors associated with altitudinal adaptation in Guatemalan climbing beans map near 

genes related to flowering time and response to biotic and abiotic stresses.  

Seed shape 

Seed shape is indirectly related to seed yield and seed weight. Most of Guatemalan 

climbing beans have a round shape. However, the GUA_1966-82 populations segregated for 

both round and flat seed shape.  This provided an ideal population to map genes associated with 

seed shape. Markers associated with seed size traits have been reported in all chromosomes 

except Pv08 and Pv10 (Blair et al., 2009). In this study, SNPs related to seed shape and seed size 

colocalized signals at the end of Pv02. The signal at Pv02, clusters a group of SNPs that fell 

inside different candidate genes that may explain differences in seed shape. Pv02_47556089 is a 

SNP within the gene model Phvul.002G307600, which encodes for a profilin protein (PRF). 
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Profilin is a small actin-binding protein. Actin forms the cytoskeleton of plant cells and have 

important functions in many cellular processes, including cell expansion (Baskin 2005). In 

Arabidopsis, PRF1 is involved in cell shape and cell elongation (Ramachandran et al., 2000). 

Profilin is also necessary for tip growth in the moss Physcomitrella patens (Hedw.) Bruch & 

Schimp. (Vidali et al., 2007). Cao et al. (2016) found that PRF1 coordinates the organization of 

actin filaments during cell expansion. No report about the effect of profilins in seed size and 

shape exists. However, as a protein involved in cell shape it has a direct effect in tissue shape. 

SNP Pv02_47021193 fell inside a gene model that encodes a SH3 domain-containing 

protein (Phvul.002G302000). It has been suggested that SH3 domains interact with cytoskeletal 

molecules and GTP binding proteins (Matuoka et al., 1993). In their study, the actin 

accumulation generated a change in human cells shape. In plants, the function of SH3 domain-

containing proteins has been demonstrated to be similar to one in yeast that is involved in the 

arrangement of actin and vesicle trafficking via cytoskeleton (Lam et al., 2001). 

SNP Pv02_47294046 is located 6kb from Phvul.002G304600, which encodes a pyridoxal 

phosphate phosphatase-related protein.  A similar SNP is found for seed width, where 

Pv02_47516312 is found near Phvul.002G307100, which encodes a phosphotyrosine protein 

phosphatase superfamily protein. Protein phosphatase regulatory pathways have been reported to 

have important effects on grain length and grain width in Oryza sativa (Zheng et al., 2015). 

qGL3/GL3.1 is a rice QTL that encodes a serine/threonine phosphatase related with grain length 

and grain weight (Qi et al., 2012; Zhang et al., 2012).  

Two SNPs, Pv02_47352798 and Pv02_47352799 were found within the gene model 

Phvul.002G305400, which encodes an F-box/RNI-like superfamily protein. This protein, known 

as SKP2A protein in Arabidopsis, has been suggested to regulate a transcription factor that 



 

67 
 

regulates cell multiplication.  The ubiquitin/26S proteasome pathway is related to grain shape in 

rice (Song et al., 2007) and to seed size of plants in general by negatively regulating cell division 

(Du et al., 2014). As mentioned above, the ubiquitin protein is interceded by three enzymes 

(ubiquitin-activating enzyme, ubiquitin-conjugating enzyme and ubiquitin protein ligase). The 

third enzyme can be of the type SKP or F-box proteins (Smalle and Vierstra, 2004). In their 

study, Jurado et al. (2008) reported that SKP2A regulates a transcription factor that inhibits the 

cell division, and therefore the overexpression of SKP2A increases the number of cells.  

Three SNPs for seed width (Pv02_47234713, Pv02_47234716 and Pv02_47234824) fell 

inside the gene model Phvul.002G304100, which encodes a tetraspanin protein. Similar to the 

ubiquitin/26S pathway, TET5 and TET6 have been suggested to have a negative role on cell 

proliferation in roots and leaves (Wang et al., 2015). Tetraspanins take part in important 

processes of the cell like morphogenesis (Yáñez-Mó et al., 2009), cell specification and some 

molecular pathways (Wang et al., 2015). 

Two markers for seed width are found close to a protein kinase with adenine nucleotide 

alpha hydrolases-like domain (Pv02_47262606, Pv02_47273758). OsAGSW1 is a protein kinase 

that has been ligated to grain size and weight in rice. Overexpression of this protein leads to an 

increase on the size of the grain and therefore an increase in grain weight, via regulation of cell 

division and generation of vascular bundles (Li et al., 2015).  

A single significant marker associated with seed width (Pv02_47400959) could not be 

linked with any candidate gene because no genes were found in the 100kb interval determined 

for the search of gene models. In general, genes found to be associated with seed shape in other 

species are usually regulators or modifiers of other proteins. In our study, candidate genes for 

seed shape are associated with cell size, cell expansion or cell proliferation.  
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Flower color, cotyledon color and stem color 

 In common bean, a large set of genes have been described that control color in seed coats, 

flowers, stems, and pods. Most of these genes are related to the biosynthesis of flavonols and 

anthocyanins. Final colors depend on the level of anthocyanins accumulated in the tissue 

(McClean et al., 2002). Within these genes, the P gene is the most important because it defines 

colored or not colored (white) seed coats and flowers (Bassett 1996). Other genes described for 

color include C, R, J, D, G, B, V and Rk genes (Bassett et al., 1990; McClean et al., 2002; Yuste-

Lisbona et al., 2014). The V gene, in presence of a dominant P gene, determines the purple and 

pink color in flowers (Beninger et al., 1999). The V gene also interacts with the other genes to 

generate a broad range of seed colors known in common bean (Prakken, 1972). It has also been 

suggested that this gene can control pod, stem and leaf color (Bassett, 2005). The V gene was 

previously identified and located at the beginning of Pv06 (McClean et al., 2002). 21 

cosegregating indel markers for the V gene were identified in the pericentromeric region of Pv06, 

but no recombinants were found in this 14 Mb region (McClean and Lee, unpublished data).  

 In our study, a significant peak was found at the beginning of Pv06 for flower color, 

cotyledon color, and stem color. Significant SNPs Pv06_7000786, Pv06_7001628, 

Pv06_7001680 and Pv06_7006012 were found 46kb near the candidate gene Phvul.006G15400, 

which encodes a cytochrome P450 superfamily protein (CYP75B). The anthocyanin biosynthesis 

pathway is divided into three stages: the phenylpropanoind pathway, the flavonoid pathway, and 

the anthocyanin pathway (Lepiniec et al., 2006; Olsen et al., 2008). The flavonoid 3’5’-

hydroxylase (F3’5’H) is a protein that belongs to the CYP75B family and is related to the 

hydroxylation of the B-ring in the precursor of the anthocyanidins (Tanaka and Brugliera, 2013). 

The number of hydroxyl groups determines the intensity of the color in flowers and therefore the 
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F3’5’H determines the flower color. Plants lacking this protein are not able to produce purple 

flowers (Tanaka and Brugliera, 2013). We suggest that the signal found on Pv06 is associated 

with the V gene, and the CYP75B is a good candidate that needs to be studied in detail.   

 The significant marker found in Pv02 for cotyledon color (Pv02_9064264) is 20kb close 

to the gene model Phvul.002G065600, which encodes a SPFH/B and 7/PHB domain-containing 

membrane-associated protein family (HIR1). Jasmonic acid (JA) is a plant hormone that 

participates in many cell processes including biosynthesis of anthocyanins (Jeong et al., 2004). 

Recently, the hypersensitive induced reaction (HIR) protein was found to interact with the 

jasmonate ZIM-domain (JAZ) protein during anthocyanin biosynthesis (Chen et al., 2017). It is 

known that the JA pathway is related to the synthesis of anthocyanin because it upregulates the 

genes in charge of the synthesis of anthocyanins (Shan et al., 2009). In their study, Chen et al. 

(2017) found that the HIR protein interacts with the JAZ-HLH complex and acts as a negative 

regulator of the accumulation of anthocyanins in apple. 

 The other significant peaks in Pv06 for flower color and stem color were not linked to 

any candidate gene. It seems that all the peaks found for both traits explained the same 

phenotypic variation, with the exception of marker Pv06_11349339 that is 4Mb away from the 

other markers and explains 7% of the phenotypic variation. However, no candidate gene was 

linked to it. The low recombination region where the peak is located explains why no candidate 

genes can be found in an interval of 100kb. In the case of cotyledon color, peaks in Pv03 and 

Pv05 were 300Kb away from MYB domain protein 106 and a chalcone-flavanone isomerase 

family protein, respectively. Both genes have an important role in biosynthesis of anthocyanins 

(Qi et al., 2011a; Guo et al., 2015) but they were not analyzed because they are out of the 

physical range established for considering them as candidate genes.  
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Seed coat luster 

 Seed coat in common bean can be dull or shiny (Cichy et al., 2014). Over time, a few 

genes have been reported to control seed coat luster in common bean, including the Asper (Asp) 

and Joker (J) genes (Lamprecht, 1940; Basset, 1996). Bassett (1996) also found that the Asp 

gene controls the seed coat luster and is independent of the seed coat color genes. Seeds with a 

dull coat (asp/asp) have elevations in the epidermis palisade cells, the seed coat is thinner 

because the palisade cells are smaller, and they also have a lower amount of anthocyanins. In the 

other hand, when the Asp allele is present, the epidermis layer does not have elevations and the 

seed is shiny and smooth (Beninger et al., 2000). The J gene is not as common as the Asp gene 

but has been suggested that its recessive allele (jj) can reduce shininess even in presence of Asp 

(Konzen and Tsai, 2014). Seed coat luster has also been related to seed water uptake. Shiny 

seeds have a lower water absorption compared with dull seeds (Cichy et al., 2014; Konzen and 

Tsai, 2014). This is related to the thicker seed coat of the shiny seeds (Konzen and Tsai, 2014). 

Water absorption is important because processors prefer seeds with a quick water absorption, 

since it determines cooking time of the beans (Cichy et al., 2014). Interestingly, in an interview 

to 600 people in Guatemala, 18% had preference for shiny seeds (Diamant et al., 1989).  

 The Asp gene has been located in Pv07, while J  has been located in Pv10 (Miklas et al., 

2000; McClean et al., 2002). We found an important genomic region associated with seed luster 

on Pv07 (markers Pv07_17581536, Pv07_17581555, Pv07_17581604 and Pv07_17601477). 

Gene model Phvul007G119178, which encodes a bifunctional inhibitor/lipid-transfer 

protein/seed storage2S albumin superfamily protein was 88Kb away from these markers. This 

protein is related to lipid transfer. Shiny seeds have a thicker layer of wax, reducing their 

capacity for water absorption. It suggests that the transference of lipids may influence the width 
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of the wax layer in shiny seeds. Cichy et al., (2014) proposed a FAE1/Type III polyketide 

synthase-like protein as candidate for the Asp gene. However, the gene model is located 12Mb 

away from the significant region that we found in this study.  

 The second significant peak found in this study was located on Pv02 (markers 

Pv02_23321712, Pv02_23604335, and Pv02_23604337). No genes related to seed coat luster 

has been reported in Pv02 before. The B gene for seed coat color has been mapped in Pv02 

(Kelly and Vallejo, 2004). However, there is no evidence that it is related to seed coat luster. 

Interestingly, the significant marker Pv02_23321712 was close to a chalcone–flavanone 

isomerase family protein. As explained above, the synthesis of anthocyanins is divided into 

three stages. The second stage, the flavonoid pathway, needs the chalcone isomerases for the 

formation of dihydroflavonols (Shi and Xie, 2014). Interestingly, Beninger et al. (2000) 

suggested that the B gene functions similarly to chalcone isomerase in the production of 

flavonoids. It is necessary to evaluate if a gene related to seed color can also influence the 

luster of the seed in the Guatemalan climbing beans.  

Pod color 

 Pod color can vary from green to purple when pods are immature, and it is linked to the 

level of anthocyanins accumulated on the pod tissue (Yuste-Lisbona et al., 2014). The P gene, 

which controls flower color, also defines the purple color in pods (Bassett, 1996). The Prp locus 

in common bean was first described by Okonkwo and Clayberg (1984). It was also studied by 

Bassett (2005), and he suggested that this locus determines whether the purple color is solid or in 

stripes. The location of the Prp locus was first designated by Kelly and Vallejos (2004) in Pv08. 

Yuste-Lisbona et al., (2014) identified QTLs for pod shape and pod color and found significant 

QTLs for pod color in Pv02, Pv06, Pv07 and Pv08.  
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 In our study, we found a significant peak for pod color at the beginning of Pv08. All 

significant markers (Pv08_3153417, Pv08_3153521, Pv08_3153528, and Pv08_3153534) were 

located near the candidate gene Phvul.008G038000, which encodes a MYB domain protein 16 

(MYB16). In the plant model Arabidopsis thaliana, the biosynthesis of anthocyanin pathway has 

been widely studied. These studies have demonstrated that the pathway is controlled by a MYB 

domain transcription factor (Shi and Xie, 2014). The anthocyanin biosynthesis pathway is 

divided in three stages (Olsen et al., 2008; Lepiniec et al., 2006). MYB transcription factors are 

related to the flavonoid pathway (Stracke et al., 2010). In their study, Wang et al., (2016) 

established that when tissue of apple (Malus pumila Miller) was exposed to light and high 

temperature, expression of MYB16 was activated and the anthocyanin biosynthesis was 

repressed. We suggest that the significant peak found in Pv08 can correspond to the Prp locus, 

and we propose MYB16 as the candidate gene for controlling pod color in the Guatemalan 

climbing beans.  

Rust resistance 

 Bean rust is caused by the pathogen Uromyces apendiculatus and is one of the most 

important common bean diseases worldwide. It especially affects tropical areas (Stavely and 

Pastor-Corrales, 1989).  Rust resistance in bean is usually determined by a gene-by-gene 

interaction (Flor, 1955). Nowadays, 10 genes of resistance have been reported in common bean: 

Ur-3, Ur-4, Ur-5, Ur-6, Ur-7, Ur-9, Ur-11, Ur-12, Ur-13 and Ur-14 (Augustin et al., 1972; 

Ballantyne, 1978; Stavely, 1984, 1990; Grafton et al., 1985; Finke et al., 1986; Jung et al., 1998; 

Liebenberg and Pretorius, 2004; de Souza et al., 2011), where five belong to the Middle 

American gene pool and five belong to the Andean gene pool (Hurtado-Gonzales et al., 2017). 

Ur-13 has been reported to be located in Pv08, while no gene for rust resistance was reported in 
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Pv02 until recently. Montejo-Dominguez et al. (2017) reported a significant genomic region in 

Pv02 associated to rust resistance (races 20-3 and 31-1) evaluated in Guatemalan climbing beans.  

A significant SNP for rust resistance (Pv02_42933517) was located inside a candidate 

gene that encodes for a leucine-rich repeat transmembrane protein kinase (LRR-PK) family 

protein (Phvul.002G256600), while a second significant SNP (Pv02_42893682) was located 

close to the same gene (38Kb). Resistance in plants are usually divided into two levels. In the 

first level, pathogen recognizers (PRRs) are located in the surface of the plant tissues and once 

they recognize molecular patterns of the pathogens they trigger the defense response known as 

PTI (Nicaise et al., 2009). These pathogen recognizers are usually protein kinases. Many LRR-

RKs have been reported to recognize pathogen molecules. EFR is a LRR-RK that recognizes the 

bacterial elongation factor Tu in Arabidposis (Zipfel et al., 2009). In rice, Xa21 is the LRR-RK 

that confers resistance to Xanthomonas (Song et al., 1995). Thus, the LRR-PK found in this 

study can have an important role in the first level of defense against U. appendiculatus. 

The significant marker Pv02_42990094 was located 5kb near the gene model 

Phvul.002G257800, which encodes a RPM-interacting protein 4 (RIN4) family protein. RPM1 is 

a well-known resistance (R) gene in Arabidopsis that is associated with the “guard-guardee” 

hypothesis of pathogen recognition, where RPM1 acts as the guard of RIN4, which is usually the 

target of many pathogen effectors (Qi et al., 2011b). RIN4 is a protein required for seedling 

growth, meristem function and fertility, but has been also suggested that in Arabidopsis it 

represses PTI to activate the second level of resistance in plants (gene-for-gene interactions) and 

therefore it enhances the resistance to Pseudomonas syringae (Brown, 2003).     

The last significant marker found in Pv02 for rust resistance was 623bp from the gene 

model Phvul.002G256600, which encodes an ubiquitin-specific protease 3 protein. Ubiquitin-
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specific proteases have been suggested to take part in plant response to different stresses, 

including pathogen invasions (Zhou et al., 2017). They participate in protein deubiquitination in 

the Ubiquitin/26S proteasome pathway. PRRs are suggested to be degraded by the Ubiquitin/26S 

pathway. In tomato, AtUBP12 and AtUBP13 participate in immunity responses against P. 

syringae as a regulator of HR (Ewan et al., 2011). The region reported by Montejo-Dominguez et 

al. (2017) is 4Mb apart from the signal found in this study.  

Two significant markers were found in the Pv08 region (Pv08_2277889 and 

Pv08_2303436), they are located at the beginning of the chromosome while Ur-13 is located at 

the end of the chromosome. Interestingly, a significant SNP reported by Montejo-Dominguez et 

al. (2017) for rust resistance (race 20-3) in GUA_1966-82 is just 87bp away from Pv8_2303436. 

Both markers flank a cluster of candidate genes that encode Malectin/receptor-like protein kinase 

family proteins (Phvul.008G028200 and Phvul.008G028600). Similar to LRR-RKs, 

malectin/receptor-like protein kinases (known as FERONIA in Arabidopsis) have been ligated to 

the plant immune signaling cascade. FERONIA also participates in the gametophyte interactions 

during the pollen reception (Kessler et al., 2010) and controls the invasion of powdery mildew in 

Arabidopsis (Hückelhoven et al., 2013). In a recent study, Stegmann et al. (2017) described that 

FERONIA regulates the complex formed between EFR and FLAGELLIN-SENSING 2 to initiate 

the signaling cascade to activate immunity against P. syringae in Arabidopsis. In general, no R 

genes are proposed as candidates in our study, probably because in the phenotypic evaluation, no 

specific races of the pathogen were used. However, interesting links with protein kinases and 

proteins that may interact with R proteins were found.  
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Anthracnose resistance 

 Anthracnose is caused by the pathogen Colletotrichum lindemuthianum, and it represents 

one of the most important diseases in common bean (Ferreira et al., 2013). Similar to rust, the 

defense response mostly follows the gene-for-gene interaction (Flor, 1955). Many genes have 

been reported in common bean conferring resistance to the pathogen, including Co-1 in Pv01 

(Cardenas et al., 1964); Co-2 in Pv11 (Mastenbroek, 1960); Co-3 in Pv04 (Bannerot et al., 1971); 

Co-4 in Pv08 (Fouilloux, 1976); Co-5 in Pv07 (Fouilloux, 1976); Co-6 in Pv07 (Goncalves-

Vidigal et al., 1997); Co-9 in Pv04 (Geffroy et al., 1999); Co-10 in Pv04 (Alzate-Marin et al., 

2003); Co-13 in Pv03 (Concalves-Vidigal et al., 2008); Co-u in Pv02 (Geffroy et al., 2008); Co-y 

in Pv04 (Geffroy et al., 1999); and Co-z in Pv04 (Geffroy et al., 1999). Many of these reported 

genes have also reported alleles.  

 In our study, two significant markers (Pv01_3734105 and Pv01_3734112) were found 

within a gene model that encodes a protein kinase superfamily protein (Phvul.001G044900). As 

discussed above for rust resistance, protein kinases are involved in the first level of the plant 

defense response against pathogens. They start the signaling cascade needed to activate 

immunity. 

 A third significant SNP located in Pv01 (Pv01_4836007) was found near the candidate 

gene Phvul.001G046400, which encodes for a glycosyl hydrolase family protein with a chitinase 

insertion domain. Most of chitinases belong to the glycosyl hydrolases (Hjort et al., 2014). Chitin 

is one of the most important components of fungi cell wall (Chisholm et al., 2006). It is 

suggested that plants have evolved to recognize chitin as part of PTI to trigger defense responses. 

Even more interesting, plants do not produce chitin but have evolved to produce chitinases as a 

defense mechanism against fungi, to degrade the pathogens cell wall (Chisholm et al., 2006).  
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 The significant SNP found in Pv03 (Pv03_33052812) was not near to any important 

candidate gene in the interval that was established. However, 58 Kb from the marker, gene 

model Phvul.003G134100 that encodes a MAP kinase 2 was found. Interestingly, Maldonado-

Mota et al. (2017) found a significant region in Pv03 associated to anthracnose resistance for 

race 73 of the pathogen, this region includes the marker found in this study (Pv03_33052812). 

MAP kinases are involved in the signaling pathway that activates resistance against fungi and 

bacteria. MAP kinase 4 in Arabidopsis is required to activate the salicylic acid and jasmonate 

pathways for defense response (Andreasson et al., 2005). In their study, Asai et al. (2002) 

discovered that when flagellin of bacteria is detected by Arabidopsis, it started a complete MAP 

kinase signaling cascade that activates the immunity.  

 The significant marker found in Pv05 (Pv05_30232782) was 12kb near the candidate 

gene Phvul.005G097400 that encodes a GTP-binding protein, HflX.  GTP-binding proteins are  

GTPases involved in many cellular processes in plants (Urano et al., 2013). HflX family belongs 

to the translation factors (TRAFAC) group, which was one of the last groups of G-proteins that 

have been discovered (Verstraeten et al., 2011). The function of the TRAFAC family is mostly 

unknown. However, a recent study discovered that two GTP-binding proteins belonging to this 

family are involved in activating immunity against pathogens. When these genes were silenced, 

resistance of N. benthamiana to P. syringae was compromised (Lee et al., 2017).  Similar to rust 

resistance, no R genes are reported, but genes related to PTI were found in the genomic regions. 

Downy mildew resistance 

 Downey mildew in common bean is caused by Phytophthora nicotianae Breda de Haan 

var. parasitica (Dastur) G. M. Waterhouse or Phytophthora phaseoli Thaxt. P. phaseoli, which is 

mostly related to downy mildew in lima beans. P. nicotianae is mostly found in Latin America 
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and West Indies. No resistant genes for downy mildew have been reported (Schwartz et al., 

2005).  

In Pv04, significant markers Pv04_2305784 and Pv04_2305787 were located 12kb near 

to a gene model that encodes a cellulose-synthase-like C4 protein. Cell wall in plants is formed 

mostly by cellulose, it maintains the structure of the cell and constitute a barrier against 

pathogens, and it also communicates with the exterior using signaling proteins (Carpita and 

McCann, 2000). Cellulose synthases are in charge of the synthesis of cellulose for the primary 

and secondary cell walls (Hernandez-Blanco et al., 2007). Evidence suggests that mutations of 

the cellulose synthases can trigger the signaling pathways that enhance the resistance to 

pathogens in Arabidposis, such as powdery mildew (Erysiphe cichoracearum) (Ellis et al., 

2002). 

 In Pv06, two significant markers fell within the candidate gene Phvul.006G165300 that 

encodes a cullin 4 protein. Cullin 4, known as CUL4 is a subunit of the ubiquitin protein ligase 

complex (one of the enzymes needed by ubiquitin) involved in ubiquitination and degradation of 

proteins in the ubiquitin/26S pathway (Sullivan et al., 2003). As discussed above for seed shape 

and rust resistance, it has been demonstrated that ubiquitination is involved in many processes of 

the plant cell. Ligases needed for ubiquitination seems to have also a role in disease resistance 

mediated by R genes. It is suggested that the COP9 signalosome (CSN), another protein related 

to the ubiquitin/26S pathway, interacts with the cullin and therefore regulates the ubiquitin 

protein ligase. However, it is not clear yet which proteins are targeted by the pathway during the 

defense response activation (Liu et al., 2002). 

 The gene model found 5kb close to the significant markers Pv06_26759529 and 

Pv06_26760100 was Phvul.006G164700, which encodes a protein of unknown function 
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(DUF538). Proteins belonging to this family have not been studied in detail. However, they are 

suggested to be the homolog of the bactericidal/permeability increasing proteins in mammals 

(Gholizadeh and Kohnehrouz, 2013).  DUF538 was proposed as a candidate protein that 

activates the plant response to abiotic and biotic stresses (Gholizadeh 2011). However, 

significant markers found in this region were located less than 100kb from the gene encoding 

CUL4 that was already described.   

 A last significant SNP in Pv06 was located almost 6 Mb apart from the other SNPs found 

in this chromosome. The region surrounding the marker has no annotated gene models. 

However, the candidate gene Phvul.006G102300 located 28 Kb from the marker encodes a 

pathogenesis-related (PR) 4 protein.  PR proteins were first described in the 1970’s in Nicotiana 

tabacum when evaluated under pressure of the tobacco mosaic virus. Nowadays, PR proteins are 

known to be within the most abundant proteins found in plants during defense responses (Breen 

et al., 2017). PR4 protein has been identified in the plasma membrane in Capsicum annuum 

when HR is activated by the pathogen Xanthomonas campestris effector AvrBsT (Kim and 

Hwang, 2015). It is suggested that PR4 has a function similar to the R genes. However, how the 

protein activates the defense response downstream needs to be elucidated (Kim and Hwang, 

2015).  The Guatemalan climbing beans can be a good source to evaluate candidate genes for 

this disease. 
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CONCLUSIONS 

 The genetic diversity and population structure analysis of the Guatemalan climbing bean 

collections allowed the confirmation of race Guatemala in the Middle American gene pool and 

its differentiation from race Mesoamerica and race Durango-Jalisco. Therefore, it represents a 

new source of alleles for breeding programs. It is recommended that seeds of the Guatemala 

populations GUA_1966-82 and GUA_2015 should be retained in the germplasm bank both 

among and within accessions. Single seed descendant is recommended before starting the pre-

breeding process. 

 The lower population structure found within the Guatemalan climbing beans also makes 

this population ideal for the discovery of genetic factors and candidate genes for important traits 

such as altitudinal adaptation, seed shape, and factors affecting the color expression in beans. In 

this study, we demonstrate that the population was useful to provide candidate genes for previous 

reported genetic factors like the V gene for flower color, the Prp locus for pod color, and the Asp 

gene for seed coat luster. It was also useful to emphasize the important relationship between 

flowering time and altitudinal adaptation of common bean. This are the first steps for the 

identification of candidate genes. However, bi-parental crosses and fine mapping are necessary 

for the identification of the genes. 
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Table A1. InDel Markers used in the intra-accession analysis. 

InDel Name Orientation Chromosome Start position (bp) Primer Sequence (from left to right is 5' to 3') 

NDSU_IND_1_2.0489 F 1 2,048,852 CCAACACTTCGTTCAACAGCCTTTCT 

NDSU_IND_1_2.0489 R 1 - ATATGCGCAGCTCCAATTCTCACTTG 

NDSU_IND_1_4.1957 F 1 4,195,698 CACCAGAAAAGAAAAATGAGGTGCAAA 

NDSU_IND_1_4.1957 R 1 - CACCAGAAAAGAAAAATGAGGTGCAAA 

NDSU_IND_1_51.6677 F 1 51,667,736 CACAGGGTCATTTGGATCATAGTTCACA 

NDSU_IND_1_51.6677 R 1 - CAGCCTATTCCTCAGGTGGGTATTCA 

NDSU_IND_2_22.8464 F 2 22,846,375 TTCTCACTTGTTGGGAGTCATCATGC 

NDSU_IND_2_22.8464 R 2 - TTCTCACTTGTTGGGAGTCATCATGC 

NDSU_IND_2_47.6185 F 2 47,618,518 TGCAACAATTCGAAATTGGCAGAAA 

NDSU_IND_2_47.6185 R 2 - TTGAAACCTTTGACACAACCAAGGAAA 

NDSU_IND_02_03.5760 F 2 3,575,961 GGGTTCGTCCTCTAAATTTGGAGCAGG 

NDSU_IND_02_03.5760 R 2 - CCAAAACTAGGGATAAAGAACAGTGAAGACGG 

NDSU_IND_3_37.9231 F 3 37,923,131 GTTTGCCCCCTGGTGAAGTGGT 

NDSU_IND_3_37.9231 R 3 - TCTCTGAATCAACTCCAGCAATAAAAAGGA 

NDSU_IND_3_48.9580 F 3 48,957,952 TGATGTCTTCAGAGCTAAACATCCAGATAGG 

NDSU_IND_3_48.9580 R 3 - ATTTTGCGACCAACAGGTGTATGCTT 

NDSU_IND_03_01.2901 F 3 1,290,124 TGTGAGTTAGAGAGGGTTGTTCGGG 

NDSU_IND_03_01.2901 R 3 - TGGATAGAGTGGTTCATGCAAGTACCC 

NDSU_IND_4_18.2206 F 4 18,220,611 GCAAATGCAACATGAGTTGGAAGACA 

NDSU_IND_4_18.2206 R 4 - TCAGTTGCAAAAGACTGACTGAACACAA 

NDSU_IND_04_07.4908 F 4 7,490,819 TCCATGCTATTAAGGGAGAAGGTCACA 

NDSU_IND_04_07.4908 R 4 - TCATTGTCCTTCATCCGTTATCGAATTATCCA 

NDSU_IND_04_39.7789 F 4 39,778,927 GAAGCATAACAGGGAGTGCGAACG 

NDSU_IND_04_39.7789 R 4 - ATTGCTCCTGCTCCTGTATCCGG 

NDSU_IND_5_23.8496 F 5 23,849,590 ATCCTGAGTGAGACGAAAGCGACATC 

NDSU_IND_5_23.8496 R 5 - GCAAGTCAACTGGCAAGAACAGAACA 

F = forward, R = reverse.   
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Table A1. InDel Markers used in the intra-accession analysis (continued). 

InDel Name Orientation Chromosome Start position (bp) Primer Sequence (from left to right is 5' to 3') 

NDSU_IND_5_40.4088 F 5 40,408,851 AAGATGGCCACAAGTGCAATGTCATA 

NDSU_IND_5_40.4088 R 5 - CTCCACGCGTCAGGCTATGCTTATTA 

NDSU_IND_05_02.7232 F 5 2,723,185 TCAAAAGTCACTTGCACATAAGCTTGTCCA 

NDSU_IND_05_02.7232 R 5 - TGCTGATTTGTTGGGTTCCTTAACATAGCA 

NDSU_IND_06_15.1145 F 6 15,114,540 AGCAAGCATTGGAAAAGTGGGGAG 

NDSU_IND_06_15.1145 R 6 - TGAACCACCACCAACACATGCTAC 

NDSU_IND_06_21.5662 F 6 21,566,226 CATAAATCTCTCGTCCTCCACCACCA 

NDSU_IND_06_21.5662 R 6 - TGCTGTGGTGAAGATGTTTTGAGTGGA 

NDSU_IND_06_25.5149 F 6 25,514,894 TGACGTGATTCCTTGGATCATCAACTCC 

NDSU_IND_06_25.5149 R 6 - ACTCATGGCTAAGAGAAAGTGAACAGTGT 

NDSU_IND_7_2.5749 F 7 2,574,873 ATTACAAGAGTGGATCCGGGTTGACA 

NDSU_IND_7_2.5749 R 7 - TGAATTAATTTTATTGCAGAAGGTGGGAAGG 

NDSU_IND_7_50.8876 F 7 50,887,583 TGAGATTTTTAAGGGGGAAATGTGCAA 

NDSU_IND_7_50.8876 R 7 - CACGTGTCGCATGTGTATAATTTCCAA 

NDSU_IND_07_35.8798 F 7 35,879,759 ACATGCATCACATATCATGCTCTACCAATTCA 

NDSU_IND_07_35.8798 R 7 - TGTGAAAGGCTAGACTTACGGACTCTGA 

NDSU_IND_08_02.0421 F 8 2,042,109 GGCAAGAGTGTGTGAAATTGTGGTTGG 

NDSU_IND_08_02.0421 R 8 - GCTGTTGATGTTGATGATGTTGCTGCTC 

NDSU_IND_08_08.6895 F 8 8,689,541 AGTCGATATGTGATCTTCAGCACATCCCT 

NDSU_IND_08_08.6895 R 8 - TGTTGTCTCACGCACGAGTTGTGA 

NDSU_IND_08_50.8645 F 8 50,864,515 AGTGAATGATGAGGCCGGAGAAGG 

NDSU_IND_08_50.8645 R 8 - CTCCATTCCTGTACCTCTTCATCCCTG 

NDSU_IND_09_35.0297 F 9 35,029,736 GCCCGCAAAATTGATGATTCCTGGT 

NDSU_IND_09_35.0297 R 9 - GATAGCAGCAATTGTTTACTAGAAGCACTGCA 

NDSU_IND_09_09.0870 F 9 9,087,048 TCCGCAAGTTTGATACTCCCATTGAGT 

NDSU_IND_09_09.0870 R 9 - CCACCGCCCAACCTATCCTACA 

NDSU_IND_09_17.6034 F 9 17,603,411 TGATACAACTTGTGATCCGTGGTTCAA 

F = forward, R = reverse. 
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Table A1. InDel Markers used in the intra-accession analysis (continued). 

InDel Name Orientation Chromosome Start position (bp) Primer Sequence (from left to right is 5' to 3') 

NDSU_IND_09_17.6034 R 9 - TGCTACTAGCAATCGTGTTACCAACG 

NDSU_IND_10_02.1311 F 10 2,131,117 TGGGTTTCGCAGTGTATTAAGGTTGTGT 

NDSU_IND_10_02.1311 R 10 - TTATGGACGCGCCTTCTTACCTGAG 

NDSU_IND_10_35.7718 F 10 35,771,849 CTGGAGAGAAGTAAGAAAGGGGAATGGTGA 

NDSU_IND_10_35.7718 R 10 - CACCCACGCTAAATTCTCCTCCTTTTCT 

NDSU_IND_10_42.1355 F 10 42,135,511 TGTCCTATAATTTATGGACTCGGACGTGTCA 

NDSU_IND_10_42.1355 R 10 - CCTGATTGGTCCAAGTGCTCCATTTCT 

NDSU_IND_11_04.8923 F 11 4,892,319 TGTGGTTAACTTGATTTGAGTACACAGCAGA 

NDSU_IND_11_04.8923 R 11 - GGATTTTTATCCCAGCACCAACTCACCA 

NDSU_IND_11_44.9602 F 11 44,960,210 GTGATGACGAGTCTTCTTTGTAGATTCTGCA 

NDSU_IND_11_44.9602 R 11 - TGGTTAGCATGTGCTTTCTCCTATCACAT 

NDSU_IND_11_49.2077 F 11 49,207,665 ACCTGCACAACACCTGAAGAGACTC 

NDSU_IND_11_49.2077 R 11 - TCTGCTGGATCAACCTCTCTCATATCTCA 

F = forward, R = reverse. 
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Table A2. Significant markers at 0.01 percentile and candidate genes for each trait evaluated by GWAS.  

Negative sign in column six indicates that the marker is upstream of the candidate gene and no sign indicates that the marker is downstream of the candidate 

gene. R-square is calculated for each significant peak, rows in gray facilitate the identification of peaks. Chr = Chromosome. NA = No candidate gene found for 

the marker. 

 

SNP Chr 

SNP 

position 

(bp) 

P-value 
Bean candidate 

gene 

Marker 

distance from 

candidate gene 

(bp) 

Arabidopsis gene 

symbol 
Arabidopsis annotation 

R2 for 

significant 

peaks 

Elevation 

Pv02_38216242 2 38,216,242 2.71E-06 Phvul.002G213600  0 HEN4 
RNA-binding KH domain-

containing protein 0.12 

Pv02_38337312 2 38,337,312 4.87E-05 Phvul.002G215500 82,676 AGL21 AGAMOUS-like 21 

Pv02_46664311 2 46,664,311 9.30E-06 Phvul.002G298300 0  - 
RING/U-box superfamily 

protein 
0.09 Pv02_46736576 2 46,736,576 1.32E-05 Phvul.002G299400 2,834 

CBL8 Calcineurin B-like protein 8 
Pv02_46740440 2 46,740,440 5.64E-06 Phvul.002G299400 6,698 

Pv03_39752668 3 39,752,668 1.38E-05 Phvul.003G175700 -35,140 ATDCL4,DCL4 Dicer-like 4 0.08 

Pv05_32602302 5 32,602,302 2.36E-05 Phvul.005G106100 -2,961  - 
Protein phosphatase 2C family 

protein 
0.07 

Pv05_39204798 5 39,204,798 3.36E-05 Phvul.005G164300 3,241  - 
Leucine-rich repeat protein 

kinase family protein 
0.07 

Pv11_12737204 11 12,737,204 5.33E-06 NA NA NA NA 

0.09 
Pv11_13054356 11 13,054,356 1.43E-06 Phvul.011G105600 52,664 CPC 

Homeodomain-like 

superfamily protein 

Seed length 

Pv02_47021193 2 47,021,193 1.05E-05 Phvul.002G302000 0 - SH3 domain-containing protein 

0.11 

Pv02_47294046 2 47,294,046 8.90E-06 Phvul.002G304600 6,346 - 
Pyridoxal phosphate 

phosphatase-related protein 

Pv02_47352798 2 47,352,798 2.74E-05 Phvul.002G305400 0 
- 

F-box/RNI-like superfamily 

protein Pv02_47352799 2 47,352,799 2.87E-05 Phvul.002G305400 0 

Pv02_47400959 2 47,400,959 1.75E-05 NA NA NA NA 

Pv02_47556089 2 47,556,089 8.81E-07 Phvul.002G307600 0 PFN2,PRF2,PRO2 Profilin 2 

Pv04_46263698 4 46,263,698 2.27E-05         0.05 
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Table A2. Significant markers at 0.01 percentile and candidate genes for each trait evaluated by GWAS (continued). 

SNP Chr 

SNP 

position 

(bp) 

P-value 
Bean candidate 

gene 

Marker distance 

from candidate 

gene (bp) 

Arabidopsis gene 

symbol 
Arabidopsis annotation 

R2 for 

significant 

peaks 

Seed width 

Pv02_47234713 2 47,234,713 2.79E-07 Phvul.002G304100 0 

TET2 Tetraspanin 2 

0.11 

Pv02_47234716 2 47,234,716 2.07E-07 Phvul.002G304100 0 

Pv02_47234824 2 47,234,824 1.65E-07 Phvul.002G304100 0 

Pv02_47262606 2 47,262,606 4.44E-08 Phvul.002G304500 13,630 
 - 

Protein kinase protein with 

adenine nucleotide alpha 

hydrolases-like domain Pv02_47273758 2 47,273,758 5.80E-07 Phvul.002G304500 2,478 

Pv02_47516312 2 47,516,312 6.13E-07 Phvul.002G307100 8,159  - 

Phosphotyrosine protein 

phosphatases superfamily 

protein 

Seed width/length ratio 

Pv02_47234716 2 47,234,716 1.01E-10 Phvul.002G304100 0 
TET2 Tetraspanin 2 

0.25 

Pv02_47234824 2 47,234,824 3.48E-11 Phvul.002G304100 0 

Pv02_47262606 2 47,262,606 3.45E-11 Phvul.002G304500 13,630 - 

Protein kinase protein with 

adenine nucleotide alpha 

hydrolases-like domain 

Pv02_47400959 2 47,400,959 4.56E-11 NA NA NA NA 

Pv02_47556089 2 47,556,089 1.23E-11 Phvul.002G307600 0 PFN2,PRF2,PRO2 Profilin 2 

Seed coat luster  

Pv02_23321712 2 23,321,712 3.97E-06 Phvul.002G108800 47,394 -  
Chalcone-flavanone isomerase 

family protein 
0.06 

Pv02_23604335 2 23,604,335 1.20E-06 NA NA NA NA 

Pv02_23604337 2 23,604,337 1.40E-06 NA NA NA NA 

Pv07_17581536 7 17,581,536 8.90E-06 Phvul.007G119178 87,993 

- 

Bifunctional inhibitor/lipid-

transfer protein/seed storage 

2S albumin superfamily 

protein 

0.08 
Pv07_17581555 7 17,581,555 7.23E-06 Phvul.007G119178 88,012 

Pv07_17581604 7 17,581,604 7.23E-06 Phvul.007G119178 88,061 

Pv07_17601477 7 17,601,477 4.13E-06 Phvul.007G119178 107,934 

No sign in column six indicates that the marker is downstream of the candidate gene R-square is calculated for each significant peak, rows in gray facilitate the 

identification of peaks. Chr = Chromosome. NA = No candidate gene found for the marker. 
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Table A2. Significant markers at 0.01 percentile and candidate genes for each trait evaluated by GWAS (continued). 

SNP Chr 

SNP 

position 

(bp) 

P-value 
Bean candidate 

gene 

Marker 

distance from 

candidate gene 

(bp) 

Arabidopsis 

gene symbol 
Arabidopsis annotation 

R2 for 

significant 

peaks 

Flower color 

Pv06_2490072 6 2,490,072 8.75E-06 NA NA NA NA 
0.07 

Pv06_2502906 6 2,502,906 1.83E-05 NA NA NA NA 

Pv06_7000786 6 7,000,786 5.06E-06 Phvul.006G015400 -46,614 

CYP75B1, 

D501,TT7 

Cytochrome P450 superfamily 

protein 
0.09 

Pv06_7001628 6 7,001,628 9.12E-08 Phvul.006G015400 -45,772 

Pv06_7001680 6 7,001,680 9.83E-07 Phvul.006G015400 -45,720 

Pv06_7006012 6 7,006,012 1.06E-05 Phvul.006G015400 -41,388 

Pv06_11349339 6 11,349,339 1.78E-06 NA NA NA NA 0.07 

Cotyledon color 

Pv02_9064264 2 9,064,264 1.38E-04 Phvul.002G065600 -20,144 
ATHIR1,HI

R1 

SPFH/Band 7/PHB domain-

containing membrane-associated 

protein family 

0.05 

Pv03_5281445 3 5,281,445 1.53E-04 NA NA NA NA 0.03 

Pv04_6146304 4 6,146,304 7.59E-05 NA NA NA NA 0.04 

Pv05_10309053 5 10,309,053 1.95E-04 NA NA NA NA 0.04 

Pv06_7001628 6 7,001,628 1.24E-05 Phvul.006G015400 -45,772 CYP75B1, 

D501,TT7 

Cytochrome P450 superfamily 

protein 
0.06 

Pv06_7001680 6 7,001,680 2.37E-05 Phvul.006G015400 -45,720 

Pv08_3852507 8 3,852,507 1.73E-04 NA NA NA NA 0.04 

Stem color 

Pv06_2490072 6 2,490,072 1.01E-06 NA NA NA NA 
0.09 

Pv06_2502906 6 2,502,906 1.66E-06 NA NA NA NA 

Pv06_5163863 6 5,163,863 2.58E-05 NA NA NA NA 
0.08 

Pv06_5253572 6 5,253,572 1.15E-05 NA NA NA NA 

Pv06_7001628 6 7,001,628 1.33E-05 Phvul.006G015400 -45,772 CYP75B1, 

D501,TT7 

Cytochrome P450 superfamily 

protein 
0.06 

Pv06_7001680 6 7,001,680 2.47E-05 Phvul.006G015400 -45,720 

Negative sign in column six indicates that the marker is upstream of the candidate gene. Chr = Chromosome. NA = No candidate gene found for the marker. 
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Table A2. Significant markers at 0.01 percentile and candidate genes for each trait evaluated by GWAS (continued). 

SNP Chr 

SNP 

position 

(bp) 

P-value 
Bean candidate 

gene 

Marker 

distance from 

candidate 

gene (bp) 

Arabidopsis 

gene symbol 
Arabidopsis annotation 

R2 for 

significant 

peaks 

Pod color 

Pv08_3153417 8 3,153,417 7.30E-06 Phvul.008G038000 10,411 

ATMIXTA,AT

MYB16,MYB16 
myb domain protein 16 0.06 

Pv08_3153521 8 3,153,521 7.30E-06 Phvul.008G038000 10,515 

Pv08_3153528 8 3,153,528 7.30E-06 Phvul.008G038000 10,522 

Pv08_3153534 8 3,153,534 7.30E-06 Phvul.008G038000 10,528 

Rust resistance 

Pv02_42867003 2 42,867,003 1.05E-04 Phvul.002G256600 -631 ATUBP3,UBP3 Ubiquitin-specific protease 3 

0.06 

Pv02_42893682 2 42,893,682 9.07E-05 Phvul.002G257000  -38,435 
 - 

Leucine-rich repeat transmembrane 

protein kinase family protein Pv02_42933517 2 42,933,517 5.16E-05 Phvul.002G257000  0 

Pv02_42990094 2 42,990,094 1.02E-04 Phvul.002G257800 5,414  - 
RPM1-interacting protein 4 (RIN4) 

family protein 

Pv08_2277889 8 2,277,889 1.09E-04 Phvul.008G028200  0 
FER 

Malectin/receptor-like protein 

kinase family protein 
0.04 

Pv08_2303436 8 2,303,436 4.97E-05 Phvul.008G028600 1,202 

Anthracnose resistance 

Pv01_3734105 1 3,734,105 3.26E-04 Phvul.001G044900  0   

 - 
Protein kinase superfamily protein 

0.09 

Pv01_3734112 1 3,734,112 1.87E-04 Phvul.001G044900  0 

Pv01_4836007 1 4,836,007 1.32E-04 Phvul.001G046400 16,048  - 
Glycosyl hydrolase family protein 

with chitinase insertion domain 

Pv01_6220257 1 6,220,257 6.15E-05 NA NA NA NA 

Pv01_30004721 1 30,004,721 2.92E-04 NA NA NA NA 0.05 

Pv03_33052812 3 33,052,812 3.15E-04 Phvul.003G134100 -57,787 
ATMKK2,MK1,

MKK2 
MAP kinase kinase 2 0.05 

Pv05_30232782 5 30,232,782 2.38E-04 Phvul.005G097400 12,350  - GTP-binding protein, HflX 0.05 

Negative sign in column six indicates that the marker is upstream of the candidate gene and no sign indicates that the marker is downstream of the candidate 

gene. R-square is calculated for each significant peak, rows in gray facilitate the identification of peaks. Chr = Chromosome. NA = No candidate gene found for 

the marker. 
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Table A 2. Significant markers at 0.01 percentile and candidate genes for each trait evaluated by GWAS (continued). 

SNP Chr 

SNP 

position 

(bp) 

P-value 
Bean candidate 

gene 

Marker 

distance from 

candidate gene 

(bp) 

Arabidopsis gene 

symbol 
Arabidopsis annotation 

R2 for 

significant 

peaks 

Phytophthora resistance 

Pv04_2305784 4 2,305,784 1.92E-05 Phvul.004G019600 -12,324 
ATCSLC04,CSLC04 Cellulose-synthase-like C4 0.05 

Pv04_2305787 4 2,305,787 1.92E-05 Phvul.004G019600 -12,321 

Pv06_21241445 6 21,241,445 2.89E-06 Phvul.006G102300 -28,172 HEL,PR-4,PR4 Pathogenesis-related 4 

0.13 

Pv06_26759529 6 26,759,529 3.77E-06 Phvul.006G164700 -5,137 
- 

Protein of unknown 

function, DUF538 Pv06_26760100 6 26,760,100 2.83E-06 Phvul.006G164700 -4,566 

Pv06_26845459 6 26,845,459 7.27E-06 Phvul.006G165300 0 
ATCUL4,CUL4 Cullin4 

Pv06_26853505 6 26,853,505 7.99E-09 Phvul.006G165300 0 

Negative sign in column six indicates that the marker is upstream of the candidate gene and no sign indicates that the marker is downstream of the candidate 

gene. R-square is calculated for each significant peak, rows in gray facilitate the identification of peaks. Chr = Chromosome. NA = No candidate gene found for 

the marker. 
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Mesoamerica 

Guatemalan wilds 

Figure A1. Results of the maximum likelihood tree including all the populations analyzed.  
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Figure A2. Manhattan plots and QQ plots for the best models of the eight agronomic traits that 

were not analyzed in the discussion. a) Pod distribution in the plant; b) Pod profile; c) Growth 

habit. Green lines represent the cutoff values for 0.1 and 0.01 percentiles. Markers significant for 

the 0.01 and 0.1 percentiles are colored in red and blue, respectively. Best model is indicated in 

parenthesis. 
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Figure A2. Manhattan plots and QQ plots for the best models of the eight agronomic traits 

that were not analyzed in the discussion (continued). d) Seed color; e) Hypocotyl color; f) 

Pod shape. Green lines represent the cutoff values for 0.1 and 0.01 percentiles. Markers 

significant for the 0.01 and 0.1 percentiles are colored in red and blue, respectively. Best 

model is indicated in parenthesis. 
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Figure A2. Manhattan plots and QQ plots for the best models of the eight agronomic traits that 

were not analyzed in the discussion (continued). g) Ascochyta resistance; h) Angular leaf spot 

resistance. Green lines represent the cutoff values for 0.1 and 0.01 percentiles. Markers 

significant for the 0.01 and 0.1 percentiles are colored in red and blue, respectively. Best model 

is indicated in parenthesis. 
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