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ABSTRACT 

 Septoria nodorum blotch is a wheat foliar and glume disease caused by 

Parastagonospora nodorum, a necrotrophic fungal pathogen. Snn1-SnTox1, Snn3-B1-SnTox3, 

and Tsn1-SnToxA are three important interactions between wheat necrotrophic effector 

sensitivity genes and P. nodorum effectors. I evaluated a recombinant inbred population that 

segregated for these three necrotrophic effector sensitivity genes with P. nodorum isolates 

containing various combinations of the three corresponding necrotrophic effectors. The Tsn1-

SnToxA and Snn3-B1-SnTox3 interactions explained up to 32.7 and 21.2% of the disease 

variation, respectively, when present. For most isolates the Snn1-SnTox1 interaction did not 

show a significant effect, however for some isolates, the interaction explained up to 30.2% of the 

disease variation. Necrotic flecking was observed on leaves of lines containing Snn1 and 

corresponded to the Snn1-SnTox1 interaction. The results from this study suggest that the 

amount of disease explained by each interaction varies by isolate and may be due to differential 

gene expression. 
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GENERAL INTRODUCTION 

By 2050, the world population is expected to increase to about nine billion people. This 

will lead to an increase in worldwide demand for wheat, which is currently at 730 million tons 

annually and is predicted to increase to greater than 900 million tons annually (Marcussen et al. 

2014; Singh and Upadhyaya 2016). To meet this demand, wheat yields will need to increase by 

approximately 60% and less arable land will be available (International Wheat Yield 

Partnership). Some major factors that influence yield are abiotic stresses (drought, soil 

degradation, floods, temperature increases, increased CO2), biotic stresses, and agronomic 

practices (Singh et al. 2016; Singh and Upadhyaya 2016; International Wheat Yield Partnership).  

A major biotic stress on bread wheat (Triticum aestivum) and durum wheat (T. durum) is 

necrotrophic pathogens. One such pathogen is Parastagonospora nodorum, the causal agent of 

Septoria nodorum blotch (SNB). P. nodorum affects wheat leaves and glumes, decreasing quality 

and yield by up to 50% (Eyal et al. 1987). Disease is observable on infected leaves as chlorotic 

and necrotic lens-shaped lesions. SNB is prevalent worldwide, especially in large wheat-growing 

regions such as North America, Australia, and Europe. 

Wheat and P. nodorum interact in an inverse gene-for-gene manner (reviewed by Friesen 

and Faris 2010). Necrotrophic effectors produced by P. nodorum interact with host sensitivity 

genes, with a compatible interaction resulting in a host defense response, programmed cell death, 

and disease. To date, a total of nine interactions have been characterized in this pathosystem: 

Tsn1-SnToxA (Friesen et al .2006, 2009; Liu et al. 2006; Zhang et al. 2009; Faris et al. 

2010,2011; Faris and Friesen 2009), Snn1-SnTox1 (Liu et al. 2004a, b, 2012; Reddy et al. 2008; 

Shi et al. 2016b), Snn2-SnTox2 (Friesen et al. 2007,2009; Zhang et al. 2009), Snn3-B1-SnTox3 

(Friesen et al. 2008; Liu et al. 2009; Shi et al. 2016a), Snn3-D1-SnTox3 (Zhang et al. 2011), 
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Snn4-SnTox4 (Abeysekara et al. 2009, 2012), Snn5-SnTox5 (Friesen et al. 2012), Snn6-SnTox6 

(Gao et al. 2015), and Snn7-SnTox7 (Shi et al. 2015). Thus far, two host sensitivity genes, Tsn1 

(Faris et al. 2010) and Snn1 (Shi et al. 2016b), along with three necrotrophic effector genes, 

SnToxA (Friesen et al. 2006), SnTox3 (Liu et al. 2009), and SnTox1 (Liu et al. 2012), have been 

cloned. These interactions have been studied intensely over the last 10 years, however much 

remains unknown. Most of the previous research has focused on single interactions, with the 

studies involving multiple interactions occurring on relatively few host populations (Phan et al. 

2016; Liu et al. 2006; Friesen et al. 2007, 2008; Faris et al. 2011). The purpose of this study was 

to evaluate the Snn1-SnTox1, Snn3-B1-SnTox3, and Tsn1-SnToxA interactions in the wheat-P. 

nodorum pathosystem to determine the role of each in causing disease in plants infected with 

various North American and global isolates.   
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LITERATURE REVIEW 

Wheat genetics and domestication 

 One of the first domesticated crops was wheat, which occurred approximately 10,000 

years ago in the Fertile Crescent of the Middle East (reviewed by Faris 2014, Marcussen et al. 

2014). Domesticated wheat has gone through two allopolyploidization events, resulting in 

tetraploid (Triticum turgidum) and hexaploid (Triticum aestivum) wheat species, which are most 

widely grown today. A basic seven-chromosome ancestor branched into two different diploid 

lineages, the Triticum progenitor and the Aegilops progenitor, about 3 million years ago (MYA). 

Triticum urartu Tumanian ex Gandylian (2n=2x=14, AA), a wild wheat species, hybridized 

approximately 0.5 MYA with an unknown Aegilops species hypothesized to be a close relative 

of Aegilops speltoides Tausch (2n=2x=14, SS) to form the tetraploid wild emmer wheat species 

T. turgidum ssp. dicoccoides (2n=4x=28, AABB) (Dvorak and Zhang 1990; Chalupska et al. 

2008). Modern durum wheat (T. turgidum ssp. durum) arose from the domestication of this wild 

species. A T. turgidum subspecies underwent another hybridization event approximately 8,000 

years ago with the diploid goat grass Ae. tauschii Coss. (2n=2x=14, DD) to form T. aestivum L. 

(2n=6x=42, AABBDD). Knowing the domestication history of wheat is an important tool for 

genetic studies. Due to the close relationship of the A, B, and D genomes, many genes are 

present on more than one chromosome and often retain a similar function. Homoeologs of a gene 

underlying a trait of interest may be present on an additional genome, allowing researchers to use 

knowledge of one gene to study the homoeologs (Dubcovsky and Dvorak 2007; Krasileva et al. 

2017).  

Since the domestication of wheat, it has been one of the dominant food crops globally, 

providing twenty percent of calories consumed by humans. The two main types of wheat grown 
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today are durum and common wheat. Durum (macaroni) wheat (T. turgidum ssp. durum L., 

2n=4x=28, AABB) is grown for making pasta and other semolina products and accounts for ~5% 

of the global wheat crop. Common (bread) wheat (T. aestivum L., 2n=6x=42, AABBDD) is 

grown for making flour used in bread, cookies, and other products and accounts for ~95% of the 

global wheat crop (reviewed by Faris 2014).  

Breeding efforts and genetic studies for many economically important plant species have 

benefited from having reference genome sequences. The completion of a fully sequenced 

reference genome for wheat species at all three ploidy levels has been hindered by the high 

percentage of repetitive elements found in each wheat subgenome and the large size of the 

genome (Marcussen et al. 2014), which is 17,300 Mb/1C for hexaploid wheat (Bennett and 

Leitch 1995). The genomes of the A (Triticum urartu) and D (Aegilops tauschii) genome donors 

have been sequenced (Ling et al. 2013; Luo et al. 2013; Jia et al. 2013) and these are currently 

publically available for research use. Recently, the genomes of ‘Chinese Spring’ (T. aestivum), 

‘Cappelli’ (T. durum), and ‘Strongfield’ (T. durum) have been completed as well. The annotation 

and building of gene models is currently underway and should be completed in the summer of 

2017 (seminar-PAG2017 conference). These resources, along with new genetic tools, will aid in 

the discovery of genes underlying yield traits, disease resistance genes, and quality traits to 

improve wheat yield and to feed the future world population. 

Parastagonospora nodorum 

Parastagonospora [teleomorph: Phaeosphaeria (Hedjar.) syn. Leptosphaeria nodorum 

(Müll.), syn. Septoria nodorum (Berk.), syn. Stagonospora nodorum (Berk.)] nodorum (Berk.) 

Quaedvleig, Verkley & Crous is a necrotrophic pathogen belonging to the Pleosporales class of 

fungi in the Dothideomycetes order (as reviewed by Oliver et al. 2012; Friesen and Faris 2010). 
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As a necrotroph, P. nodorum obtains energy and completes its life cycle on dying host tissue 

(reviewed by Friesen and Faris 2010). P. nodorum is the causal agent of Septoria nodorum 

blotch (SNB), formerly named Stagonospora nodorum blotch, affecting wheat leaves and glumes 

resulting in decreased quality and yield, often with losses reaching 50% (Eyal et al. 1987).  

The P. nodorum genome was first sequenced in 2005 using the Australian isolate SN15 

(Hane et al. 2007) and was the first Dothideomycete genome to be published (Oliver et al. 2012). 

Two additional isolates, Sn4 and Sn79-1087, were sequenced in 2013 to aid in the discovery of 

effector genes since they are virulent on different wheat lines than SN15 (Syme et al. 2013). 

SN15 was re-sequenced and annotated in order to improve the reference genome with the 

improvements in sequencing and assembly methods (Syme et al. 2016). This current reference 

genome contains 13,569 predicted genes. Out of these predicted genes, 866 annotated proteins 

share characteristics with known effector genes, such as being positioned close to repeats, having 

a high cysteine content, and not sharing similarity to known proteins (Syme et al. 2016). 

Comparison of the three genomes revealed that many genes differed between them, even though 

the number of genes was relatively similar (Syme et al. 2012).  

P. nodorum can undergo an asexual and/or a sexual life cycle. When a P. nodorum 

ascospore lands on a leaf surface, germination occurs and necrotrphic effectors (NEs), which aid 

in infection, are released from the hyphae into the host leaf. Intracellular vegetative growth 

occurs through hyphopodia, which enter the leaf through the stomata or direct penetration 

(reviewed by Han et al. 2007; Liu et al. 2012). If a compatible interaction between occurs, 

pycnidia are produced at 7 to 10 days post infection. To complete the asexual life cycle, 

pycnidiospores are splash-dispersed from the pycnidia to re-infect the plant or surrounding 

plants. To complete a sexual life cycle, the pycnidia produce pseudothecia on infected stubble 



 

 6 

during the non-growing season and the ascospores are released and wind-dispersed to infect new 

wheat leaves (reviewed by Han et al. 2007; reviewed by Oliver et al. 2012). Three metabolic 

phases in total encompass the infection cycle: penetration of the host epidermis, which the 

conidium uses stored lipids to fuel (Solomon et al. 2004); proliferation throughout the leaf 

apoplast in which NE release occurs and simple carbohydrates from the host are used to fuel this 

process (Liu et al. 2006, Solomon et al. 2004); and finally the production and release of new 

conidium (Hane et al. 2007). 

The center of origin of P. nodorum is the same as its main target host, which is the Fertile 

Crescent in the Middle East (Oliver et al. 2012). As wheat cultivation moved outward from the 

Fertile Crescent into Europe and China approximately 8,000 years ago, P. nodorum migrated 

with it in a similar pattern. The genetic structure of P. nodorum populations in these areas had a 

higher level of variation and genetic diversity. When wheat was introduced into the New World 

and Australia, P. nodorum was also introduced along with it from infected seeds and plants 

(Stukenbrock et al. 2006). Wheat trade today occurs on a global scale, allowing for easier global 

distribution of P. nodorum isolates, increasing the gene pool of this fungal pathogen in wheat-

growing regions and potentially increasing pathogen virulence.  

The wheat-Parastagonospora nodorum pathosystem 

Septoria nodorum blotch 

 Septoria nodorum blotch (SNB) is part of the leaf spotting disease complex, which also 

includes Septoria tritici blotch (STB), tan spot (TS), and spot blotch (SB) (as reviewed by Singh 

et al. 2016). Parastagonospora nodorum is not closely related to the causal agent of STB, which 

is Zymoseptoria tritici (syn. Anamorph Septoria tritici; teleomorph Mycosphaerella graminicola) 

despite infection by the two pathogens causing similar symptoms (reviewed by Solomon et al. 
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2006; reviewed by Oliver et al. 2012). SNB symptoms begin as small chlorotic lesions, then 

eventually turn a brownish tan and eventually into lens shaped lesions that are ashen gray/brown 

in the center. A key indicator that the lesions are from P. nodorum and not P. tritici-repentis is 

the presence of pycnidia in the lesions (Tim Friesen personal communication). Current control 

methods for SNB include fungicide applications and genetic resistance in the host (reviewed by 

Oliver et al. 2012). Wheat and P. nodorum interact in an inverse gene-for-gene manner (Friesen 

and Faris 2010, Oliver et al. 2012) and multiple interactions are quantitative in their effect on 

disease expression (Friesen et al. 2007). 

Plant defense systems 

 Plants recognize pathogens through the detection of pathogen-associated molecular 

patterns (PAMPs) and effectors. PAMPs are often something involving pathogen structure, such 

as the flagella of bacteria, or plant molecules associated with damage from the attack. Plants 

have evolved pattern recognition receptor (PRR) proteins to detect PAMPs. PRRs are often 

transmembrane, and contain an extracellular binding domain and an intracellular signaling 

domain (Jones and Dangl 2006). Recognition of PAMPs leads to a PAMP-triggered immunity 

(PTI) response, which involves an increase in the production of reactive oxygen species (ROS), 

secretion of chitinases and other pathogen cell wall degrading enzymes, and an increase in plant 

cell wall callose (van Schie and Takken 2014; Jones and Dangl 2006; Day et al. 2011). To 

overcome this host defense response, pathogens have evolved to secrete effectors, which often 

function in inhibiting the PTI response (Jones and Dangl 2006). 

 Traditionally, researchers have studied the interaction between pathogen effectors and 

plants involving fungal pathogens that are biotrophic in nature, completing their life cycle on a 

living host. Interactions in these types of pathosystems follow the classical gene-for-gene model, 
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first described by Flor (1955, 1956). In the gene-for-gene model, a compatible interaction occurs 

when a receptor in the host directly or indirectly recognizes an effector produced by the 

pathogen. This recognition of a foreign invader results in an effector triggered immunity (ETI) 

response, involving an increase in ROS, cell-to-cell signaling, DNA laddering, electrolyte 

leakage, up-regulation of defense response genes and ultimately programmed cell death (PCD) 

(hypersensitive response (HR)) (reviewed by Jones and Dangl 2006; Day et al. 2011; van Schie 

and Takken 2014). Biotrophic pathogens require living tissue in order to survive, thus PCD 

results in pathogen death. Recognition of P. nodorum by compatible wheat genotypes leads to 

the same cascade of events as in ETI, however, because the pathogen is a necrotroph and feeds 

on dying tissue, the response is termed necrotrophic effector triggered susceptibility (NETS) 

(Friesen and Faris 2010; Oliver et al. 2012; Shi et al. 2016b). 

  The effectors produced by P. nodorum and other necrotrophic pathogens are similar in 

structure and function as biotrophic effectors, however, they are coined necrotrophic effectors 

(NEs) (formerly host-selective toxins (HSTs)) because their main function is to induce necrosis 

(Oliver et al. 2012; Friesen and Faris 2010). The interaction between host receptors and NEs has 

been termed inverse gene-for-gene, because one dominant host sensitivity gene interacts with 

one pathogen gene, however a compatible interaction leads to susceptibility rather than host 

resistance (Friesen and Faris 2010). Many recognition receptors in both gene-for-gene and 

inverse gene-for-gene systems are nucleotide-binding leucine-rich-repeat (NB-LRR) proteins and 

have recently been shown to sometimes contain integrated domains that act as baits for detecting 

pathogen effectors (Sarris et al. 2016). PTI, ETI, and NETS signaling pathways involve a MAP 

kinase cascade, actin cytoskeleton rearrangement, increased salicylic and jasmonic acid, and 
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upregulation of additional defense response pathways (reviewed by Day et al. 2011; Winterberg 

et al. 2014; van Schie and Takken 2014; Shi et al. 2016b).  

 Because both ETI and NETS result in the same pathways being upregulated and the same 

response by the host, it has been hypothesized that the susceptibility genes that recognize NEs 

may retain their ability to recognize effectors produced by biotrophs as well. The Pc-2 gene in 

oats (Avena sativa) confers resistance to Puccinia coronata, a rust fungus, and susceptibility to 

Victoria blight caused by Cochliobolus victoriae (Lorang et al. 2007). Using Arabidopsis 

thaliana, Lorang et al. (2007) cloned a gene homologous to Pc-2, named LOV1, which is a 

coiled-coil NB-LRR and confers susceptibility to C. victoriae. LOV1 was the first host 

susceptibility gene to be cloned and Pc-2 is the only gene to be shown to still be involved in both 

resistance and susceptibility to pathogens (Lorang et al. 2007). The NE sensitivity genes in wheat 

to P. nodorum may have once recognized effectors produced by pathogens with this recognition 

leading to a resistance response, however, no pathogen has been found to interact with these 

receptors in this manner to date. It has been proposed that if a biotrophic pathogen and a 

necrotrophic pathogen are interacting with the same R genes at the same spatial and temporal 

point, then this could affect the evolution of the host or may give clues into the abundance of 

each pathogen type (reviewed by Stukenbrock and McDonald 2009). 

The wheat-P. nodorum pathosystem has been studied as a model system for host and 

necrotrophic pathogens that interact in an inverse gene-for-gene manner due to the large number 

of resources available on the pathogen side and the economic importance of the host (reviewed 

by Oliver et al. 2012). Insight into this system will aid in breeding efforts for genetic resistance 

and provide valuable tools for pathologist and breeders alike studying other inverse gene-for-

gene pathosystems. To date, nine host sensitivity gene-P. nodorum NE interactions have been 
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characterized: Tsn1-SnToxA (Friesen et al. 2006, 2009; Liu et al. 2006; Zhang et al. 2009; Faris 

et al. 2010, 2011, Faris and Friesen 2009), Snn1-SnTox1 (Liu et al. 2004a, b, 2012; Reddy et al. 

2008; Shi et al. 2016b), Snn2-SnTox2 (Friesen et al. 2007, 2009; Zhang et al. 2009), Snn3-B1-

SnTox3 (Friesen et al. 2008; Liu et al. 2009, Shi et al. 2016a), Snn3-D1-SnTox3 (Zhang et al. 

2011), Snn4-SnTox4 (Abeysekara et al. 2009, 2012), Snn5-SnTox5 (Friesen et al. 2012), Snn6-

SnTox6 (Gao et al. 2015), and Snn7-SnTox7 (Shi et al. 2015). Additional interactions have been 

reported (Liu et al. 2012; Friesen et al. 2007; Abeysekara et al. 2009; Abeysekara et al. 2012; 

Oliver et al. 2012), but have yet to be characterized. On the host side, the NE sensitivity genes 

Snn1 and Tsn1 have been cloned (Shi et al. 2016b; Faris et al. 2010) and on the pathogen side the 

NE genes SnToxA, SnTox1, and SnTox3 have been cloned (Friesen et al. 2006; Liu et al. 2012; 

Liu et al. 2009).  

Snn1-SnTox1 

 The first host sensitivity gene-NE interaction identified in the wheat-P. nodorum 

pathosystem was Snn1-SnTox1 (Liu et al. 2004a). Liu et al. (2004a) used the International 

Triticeae Mapping Initiative (ITMI) population and the P. nodorum isolate Sn2000 to first 

characterize this interaction. This work led to the conclusion that one gene in the host was 

responsible for susceptibility to a NE produced by the pathogen. This dominant susceptibility 

gene was mapped to the short arm of chromosome 1B and was designated Snn1. SnTox1 was 

found to be proteinaceous and between 10 and 30 kDa in size. The interaction between Snn1-

SnTox1 has been shown to account for 0% to 58% of the disease variation depending on the 

isolate and host genetic background (Liu et al. 2004a; Friesen et al. 2007; Chu et al. 2010; Phan 

et al. 2016). Both Snn1 and SnTox1 have been cloned and characterized (Liu et al. 2009; Shi et 
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al. 2016a), which has contributed to the understanding of this interaction and will continue to be 

useful tools in understanding this interaction at the molecular level.  

 SnTox1 was the third P. nodorum NE sensitivity gene cloned, which was accomplished 

by using the P. nodorum reference genome to find candidate genes that matched previously 

known characteristics of SnTox1, along with similarity to SnToxA and SnTox3 (Liu et al. 2012). 

SNOG_20078 was found to fit the criteria and through yeast expression studies on different plant 

lines with and without Snn1, it was found to encode for SnTox1 and was renamed SnTox1 (Liu et 

al 2012). Early characterization work on SnTox1 had shown that this NE was a protein between 

10 and 30 kDa in size (Liu et al. 2004a). Liu et al. (2012) found that SnTox1 was a highly stable 

protein that contained 117 amino acids and the mature protein was approximately 10.33 kDa in 

size. The mature protein has a signal peptide domain and is cysteine-rich. SnTox1 also contains a 

chitin-binding domain with a C-terminal conserved chitin-binding (CB) motif (Liu et al. 2012; 

Liu et al. 2016). The CB motif is more similar to those found in plants than those found in other 

fungal pathogens. This domain plays an important role in protecting the fungus during the initial 

penetration of the host leaf (Liu et al. 2016). SnTox1 was shown to bind chitin and not only 

protect P. nodorum, but additional fungal species from multiple wheat chitinases, which are 

upregulated during defense (Liu et al. 2016). 

In planta transcription analysis of SnTox1 revealed that expression was high at 3 hours 

post inoculation (hpi) then decreased at 6 hpi (Liu et al. 2012). Expression increases and peaks at 

72hpi, which corresponds to the onset of necrotic lesion development. After 72hpi, expression of 

SnTox1 decreased until levels similar to 6 hpi at 7 days post inoculation. The high levels of 

SnTox1 transcripts at early time points post inoculation suggest that SnTox1 is important in the 

early stages of infection (Liu et al. 2012). The Snn1-SnTox1 differs phenotypically from the 
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other interactions in this system in that small white flecks appear on leaves around 2 days post 

inoculation (Liu et al. 2004a; Liu et al. 2012). It was hypothesized that the necrotic and chlorotic 

lesions develop from these flecks and are related to the early expression of SnTox1 (Liu et al. 

2012).  

 SnTox1 differs from the other cloned P. nodorum NEs, SnTox3 and SnToxA, in that 

direct application of the NE to the leaf surface in the absence of the fungus induces necrosis (Liu 

et al. 2016). When SnTox1 was co-inoculated with an avirulent isolate, disease symptoms were 

observed in lines containing Snn1. From this, it was concluded that SnTox1 is important in 

fungal penetration of the host leaf tissue and that the presence of SnTox1 transforms an avirulent 

isolate into a virulent isolate.  

 SnTox1 was fluorescently labeled in planta during infection and was found to remain on 

the leaf surface and was not internalized into the mesophyll or epidermal cells. This indicated 

that the wheat receptor it most likely interacts with is located on the cell surface, which was 

proposed by Shi et al. (2016b). During infection and penetration, SnTox1 is localized to the outer 

surface of the mycelium; implicating that SnTox1 protects the fungal cell wall during penetration 

and allows P. nodorum to successfully penetrate and colonize (Liu et al. 2016). Liu et al. (2016) 

concluded that not only does SnTox1 protect fungal cells from wheat defense responses, but also 

elicits cell death to produce nutrients. The group also hypothesized that this recognition of 

SnTox1 by compatible wheat lines occurs on the epidermal cell and triggers cell-to-cell signaling 

throughout the leaf, with PCD occurring in both epidermal and mesophyll cells within 48 h of 

infection. 

 A compatible Snn1-SnTox1 interaction induces the production of H2O2, an oxidative 

burst, which is a plant cell biochemical response associated with defense (Liu et al. 2012). This 
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interaction has been shown to trigger the upregulation of multiple pathogenesis-related (PR) 

genes, which are associated with plant defense (Liu et al. 2012). Liu et al. (2012) looked at the 

expression of 28 wheat genes in lines containing Snn1 post infection and found that PR-1-A1, a 

thaumatin-like protein gene, and a chitinase gene are all up-regulated with maximum expression 

at 36 hpi. DNA laddering has also been observed post infection when a compatible Snn1-SnTox1 

interaction occurs, which has been associated with an ETI response and PCD (Liu et al. 2012).  

 The presence of SnTox1 in a worldwide collection of 1000 P. nodorum isolates was 84%, 

(McDonald et al. 2013) which is higher than the percent presence of Snn1 in global wheat 

populations (J. D. Faris & T. L. Friesen, unpublished). The dual function of SnTox1 in both 

eliciting PCD and binding chitin may be the driving factor behind the unequal presence of 

SnTox1 and Snn1 in global populations of P. nodorum and wheat, respectively (Liu et al. 2016). 

Further support that SnTox1 is an important NE is that many of the isolates which are virulent on 

cultivated wheat have SnTox1 (Liu et al. 2012). Liu et al. (2012) sequenced SnTox1 in 159 global 

P. nodorum isolates and found 11 haplotypes present. Remaining unchanged in all the isoforms 

of SnTox1 was the cysteine residues, providing evidence that this is an important feature of the 

protein.  

 Snn1 was cloned using positional cloning and validated by mutagenesis and transgenesis 

by Shi et al (2016b). To clone Snn1, a population was developed from crossing Chinese Spring, 

which is sensitive to SnTox1, with Chinese Spring chromosome 1B substituted with the wheat 

variety ‘Hope’ 1B chromosomes, which is insensitive to SnTox1. Reddy et al. (2008) had 

previously developed high-density genetic linkage maps and saturation maps of this region. 

However, initial cloning efforts struggled to find a candidate gene since the region in which Snn1 

is located is gene rich and contains multiple NB-LRR genes (Reddy et al. 2008). Shi et al. 
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(2016b) found that Snn1 is a member of the wall-associated kinase (WAK) class of plant 

receptor kinases, which differs from the previous NE sensitivity gene cloned (Faris et al. 2010) 

and is not commonly a class of R genes. Snn1 is 3045bp in length, and contains three exons with 

a coding sequence length of 2145-bp. The mature protein contains a 5’ signal sequence, and a 

conserved wall-associated receptor kinase galacturonan binding domain (GUB_WAK) and 

epidermal growth factor-calcium binding domain (EGF_CA) are predicted to be extracellular. A 

transmembrane domain spans the cellular membrane, and a serine/threonine protein kinase 

(S/TPK) domain is located intracellularly. Snn1 belongs to a group of WAK genes that are 

specific to monocots. Through mutagenesis, it was found that all three of the domains, 

GUB_WAK, EGF_CA, and S/TPK, are essential for a compatible Snn1-SnTox1 interaction.  

 Snn1 is specifically expressed in wheat leaves, with transcription levels highest at dawn 

and then decrease throughout the day and then increase again during the night. The rhythmic 

expression oscillations are not present when plants are placed in the dark, meaning Snn1 

expression is regulated by light signals but not the circadian clock (Shi et al. 2016b). 

Interestingly, Snn1 is down regulated after exposure to SnTox1, which differs from the 

expression pattern of SnTox1 in the pathogen (Shi et al. 2016b, Liu et al. 2012). The reasons 

behind this remain unknown, because in plant defense the host receptor is more likely to be 

upregulated, especially in surrounding cells.  

Shi et al. (2016b) found that once an interaction occurs between Snn1 and SnTox1, 

TaMAPK3 is activated within 15 minutes of initial recognition. Receptor kinases, such as PRRs, 

and the activation of MAPK genes is usually associated with the PTI pathway (Jones and Dangl 

2006; Couto and Zipfel 2016; Shi et al. 2016b). The Snn1-SnTox1 interaction is the only 

characterized inverse gene-for-gene interaction that involves the sensitivity gene resembling a 
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PRR protein and the upregulation of the PTI post NE recognition (Shi et al. 2016b). These 

findings shed light that necrotrophic pathogens have overcome multiple types of plant defense 

pathways to induce disease.  

Tsn1-SnToxA 

The second interaction in the wheat-P. nodorum pathosystem to be characterized and 

studied the most in depth thus far is the Tsn1-SnToxA interaction. The Tsn1-ToxA interaction 

differs from others characterized in this pathosystem in that ToxA has been discovered in three 

different fungal species thus far (Tomás and Bockus 1987; Freisen et al. 2006; McDonald et al. 

2017). ToxA was first discovered in Pyrenophora tritici-repentis, the causal agent of tan spot in 

wheat, and was designated Ptr ToxA (Tomás and Bockus 1987; Ballance et al. 1989). P. tritici-

repentis is a member of the Pleosporales order, closely related to P. nodorum, and is a 

necrotrophic fungal pathogen. After the P. nodorum genome was sequenced, a homologous gene 

to Ptr ToxA was found to be present that had 99.7% similarity (Friesen et al. 2006). When 

Friesen et al. (2006) evaluated the diversity of ToxA in the two pathogens; they found that only 

one haplotype was present for P. tritici-repentis whereas P. nodorum had 11 haplotypes and 

therefore a higher level of nucleotide diversity. From this, it was concluded that ToxA originated 

in P. nodorum and was horizontally transferred to P. tritici-repentis prior to 1940, making this 

fungus a major disease factor on wheat. 

 Liu et al. (2006) found that Ptr ToxA and SnToxA are functionally identical and both 

interact with the same host gene, Tsn1, and both elicit necrosis in susceptible genotypes. 

Recently, ToxA was found to be present in Bipolaris sorokiniana (McDonald et al. 2017), the 

causal agent of spot blotch, Helminthosporium leaf blight, and common root rot in wheat and 

barley. The ToxA gene present in B. sorokiniana has 98.1% nucleotide identity to SnToxA in the 
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P. nodorum isolate SN15, with the NE encoded by each interacting with the same wheat receptor 

in lines containing Tsn1 (McDonald et al. 2017). Comparison of the nucleotide sequences of 

ToxA in the three species suggest that ToxA was horizontally transferred from one of the other 

two fungal species; however, whether P. nodorum or P. tritici-repentis is the actual donor still 

remains unclear (McDonald et al. 2017).   

 In wheat, susceptibility to the NE ToxA produced by all three pathogens is controlled by 

a single dominant gene, Tsn1 (Faris et al. 1996; Liu et al. 2006; McDonald et al. 2017). The 

Tsn1-ToxA interaction follows the inverse gene-for-gene model (Friesen and Faris 2010). QTL 

mapping studies have revealed that the Tsn1-SnToxA interaction accounts for 25- 95% of the 

disease variation to SNB in both tetraploid and hexaploid wheat (Friesen et al. 2006; Liu et al. 

2006; Faris and Friesen 2009; Virdi et al. 2016; Faris et al. 2011; Friesen et al. 2008; Chu et al. 

2010). It has been shown that in populations infected with SnToxA, the Tsn1-SnToxA 

interaction plays a significant role in disease development. In the absence of this interaction, the 

average disease score decreases, even in the presence of other wheat-P. nodorum interactions 

(Virdi et al. 2016; Faris and Friesen 2009; Friesen et al. 2012). The Tsn1-ToxA interaction was 

the first interaction in this system to be shown to be light dependent, suggesting that ToxA may 

target the photosynthesis pathway (Manning and Ciuffetti 2005). 

 Expression of ToxA produces a mature protein product that is 13.2 kDa (as reviewed by 

Ciufetti and Touri 1999). The pre-pro-protein is 19.7 kDa, 178 amino acids, and contains a signal 

peptide that is required for secretion (Ballance et al. 1996; reviewed by Manning and Ciuffetti 

2005, Friesen and Faris 2010, Oliver et al. 2012). Ptr ToxA was cloned by Ballance et al. (1996), 

with SnToxA additionally being cloned by Friesen et al. (2006). The mature ToxA protein 

contains multiple domains and structural motifs, such as N-terminal pyroglutamate, C domain, 
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two myristoylation sites, six phosphorylation sites, and an RGD cell attachment motif (reviewed 

by Manning et al. 2004). Mutation of one of these motifs/domains has been shown to decrease or 

halt ToxA activity in wheat lines containing Tsn1 (Manning et al. 2004).  

Tsn1 was mapped to the long arm of chromosome 5B using Pyrenophora tritici-repentis 

culture filtrates (Faris et al. 1996). Using saturation mapping and positional cloning methods, 

Tsn1 was cloned by Faris et al. (2010). Compared to many R genes, which are typically 

associated with biotrophic resistance, Tsn1 has a C-terminal NB and LRR domains. However, it 

also has an additional N-terminal S/TPK domain (Faris et al. 2010). This structure is similar to 

the barley Rpg5 stem rust gene (Brueggeman et al. 2008), except for the S/TPK domains being 

positioned at opposite terminals (Brueggeman et al. 2008; Faris et al. 2010); however, the two 

genes do not share a recent ancestry despite the similar domains. Tsn1 is 10,581 bp in length 

from start to stop codon, contains eight exons, and the coding sequence is 4,473 bp in length. 

The predicted protein product is 1,490 amino acids and all three domains are required for ToxA 

sensitivity. As previously mentioned, the Tsn1-ToxA interaction has been previously shown to 

be light dependent (Manning and Ciuffetti 2005). Transcriptional analysis of Tsn1 under 

different light conditions revealed that expression increases under light conditions and is 

therefore likely an important regulatory factor (Faris et al. 2010).  

Unlike the Snn1-SnTox1 interaction, which was shown to be a direct interaction, Tsn1 

does not directly interact with ToxA in yeast two-hybrid assays (Faris et al. 2010). This type of 

interaction, coupled with the lack of a transmembrane domain on Tsn1, led Faris et al. (2010) to 

hypothesize that although Tsn1 is essential for ToxA recognition and sensitivity, Tsn1 is unlikely 

the ToxA target receptor and may be a guard in a guard-guardee model for ToxA recognition. 

Early work into un-raveling this interaction at the molecular level indicated that ToxA is 
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internalized into the chloroplast within wheat cells in lines that contain Tsn1; but not in lines that 

lack Tsn1. However, if ToxA is expressed in planta in lines lacking Tsn1, necrosis occurs 

(Manning and Ciuffetti 2005). Post secretion into the host apoplast, ToxA is internalized into the 

leaf cells in sensitive wheat lines, it was detected using immunolocalization in the chloroplast 

indicating that ToxA is internalized into the cell and then into the chloroplast (Manning and 

Ciuffetti 2005). Manning et al. (2007) screened a yeast two-hybrid library of chloroplast specific 

proteins to find the potential target of ToxA, which is ToxA binding protein I (ToxABP1). The 

amino acid threonine 137 of the vitronectin-like sequence of ToxA is required for binding with 

ToxABP1, which is a conserved plant chloroplast protein (Manning et al. 2007).  

Successful recognition of ToxA in lines harboring Tsn1 leads to photosystem changes 

and an accumulation of ROS, associated with ETI and PCD (Manning et al. 2009). The presence 

of ROS decreases in the absence of light, providing further evidence towards this being a light 

dependent interaction. The concentration of ROS present in chloroplast cells corresponded with 

the amount of necrosis visible on the leaf, which suggests that ROS accumulation leads to cell 

death and therefore an increase in disease (Manning et al. 2009). This accumulation of ROS 

cascades to disruption of the thylakoids, decreased photosystem II activity (Manning et al. 2004), 

and chlorophyll lose (Manning et al. 2007), which contribute to eventual cell death and necrosis.  

Tai et al. (2007) used a similar yeast two-hybrid analysis technique and found another 

host target of ToxA, a wheat plastocyanin which is a part of the electron transport chain of 

photosynthesis. During this study, they discovered that G141, located in the RGD motif, is 

required for plastocyanin interaction. Mutations at E145 and D149 also result in a loss of ToxA-

ToxA oligomerization, resulting in a loss of ToxA activity and necrosis (Tai et al. 2007).  
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A third potential target of ToxA is a PR-1-type pathogenesis-related (PR) protein, PR-1-

5, which are often involved in HR/defense pathways ending in cell death (Lu et al. 2014). Using 

similar methods as the two other groups, PR-1-5 physically interacted with ToxA and was 

further validated using co-immunoprecipitation assays (Lu et al. 2014). N102 and N141, both 

surface-exposed asparagine residues on turning loops, are essential for ToxA-PR-1-5 binding (Lu 

et al. 2014). Differing from ToxABP1 and the plastocyanin interactions, PR-1-5 is upregulated in 

wheat lines post ToxA infiltration, however the expression is not significantly different between 

sensitive and insensitive lines and may not contribute to necrosis (Lu et al. 2014).  

Snn2-SnTox2 

 The third interaction in the wheat-P. nodorum system to be identified was the Snn2-

SnTox2 interaction (Friesen et al. 2007). Snn2 was mapped to the distal short arm of 

chromosome 2D using the BG recombinant inbred population developed from crossing ‘BR34’ 

and ‘Grandin’, two hard red spring wheat cultivars. The BG population segregated in a 3:1 ratio 

(sensitive: insensitive) when infiltrated with P. nodorum isolate Sn6 culture filtrates, indicating 

two genes in the host were interacting with NEs in the culture filtrate. Further analysis 

determined that one of the NEs was SnToxA and the other was a novel NE that was designated 

SnTox2. After further purification of Sn6 culture filtrate to eliminate SnToxA, it was found that 

a single dominant host gene interacts with SnTox2 and a compatible interaction results in 

necrosis.  

Partial characterization of SnTox2 led to the conclusion that it is most likely a protein 

between 3 and 10 kDa in size. The Snn2-SnTox2 interaction was shown to be light dependent. 

The BG population was phenotyped using the isolate Sn6 with the Snn2-SnTox2 interaction 

explaining 47% of the disease variation, with the Tsn1-SnToxA interaction explaining 20% of 
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the disease variation, with additional minor QTL on 1B and 5A. The multiple interactions were 

found to be additive in nature, with plants containing both Snn2 and Tsn1 having higher disease 

severity than those with one NE sensitivity gene. This was the first study to show that the inverse 

gene-for-gene model differs from the classical gene-for-gene model in that multiple interactions 

lead to a higher amount of disease in affected plants. In pathosystems that fit the classical gene-

for-gene model, one compatible interaction results in the same level of resistance as multiple 

interactions (Friesen and Faris 2010). A high-density genetic linkage map was developed for the 

region of chromosome 2D harboring Snn2, which narrowed the Snn2 gene to a 4-cM region and 

was useful in discovering markers for marker-assisted selection and to begin the positional 

cloning process of the Snn2 gene (Zhang et al. 2009). 

Snn3-B1-SnTox3 & Snn3-D1-SnTox3 

The Snn3-B1-SnTox3 interaction was the fourth to be identified in the wheat-P. nodorum 

pathosystem (Friesen et al. 2008). This interaction is unique from the others characterized thus 

far in that SnTox3 interacts with two genes, Snn3-B1 and Snn3-D1, which are homoeologous to 

one another (Zhang et al. 2011). Initial characterization employed a population containing the 

Snn3-B1 gene, which is located distally on the short arm of chromosome 5B (Friesen et al. 

2008). SnTox3 was found to be most likely a protein and between 10 to 30 kDa in size (Friesen 

et al. 2008). Infiltrations with purified cultures containing only SnTox3 indicated that a dominant 

Snn3 gene confers sensitivity to SnTox3 and that this interaction fits the inverse gene-for-gene 

model. Using multiple isolates, the Snn3-B1-SnTox3 interaction explained 13-35% of the disease 

variation (Friesen et al. 2008).  

The other NE sensitivity gene that interacts with SnTox3 is Snn3-D1, which mapped to 

the distal region of the short arm of chromosome 5D in Aegilops tauschii accession TA2377 
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(Zhang et al. 2011). Zhang et al. (2011) compared the two interactions in the same background 

using an F2 population which segregated for both genes by crossing a synthetic hexaploid wheat 

line (LDN-TA2377) with BG220, a SnTox3 differential. From infiltrations and inoculations, they 

concluded that the Snn3-D1-SnTox3 interaction is more sensitive and has a greater disease 

severity than the Snn3-B1-SnTox3 interaction.  The authors speculated that Snn3-B1 and Snn3-

D1were highly conserved and derived from a common ancestor before the divergence of the 

diploid progenitors, meaning the two genes are homoeologous. Zhang et al. (2011) found that 

38.7% of tested common wheat varieties were sensitive to SnTox3. When evaluating hexaploid 

wheat populations that segregated for SnTox3 sensitivity, it was discovered that all had Snn3-B1 

and not Snn3-D1. According to Zhang et al. (2011), this may suggest that the D-genome donor of 

hexaploid wheat did not have Snn3-D1.  

High-resolution maps have been developed for both Snn3-B1 (Shi et al. 2016a) and Snn3-

D1 (Zhang et al. 2011). The areas around both genes have also been saturated with markers, 

beginning the map-based cloning process of each. Successful cloning of these genes will give 

insight into how the two proteins differ from one another, along with confirming the hypothesis 

that there may be different Snn3-B1 alleles that confer different levels of SnTox3 sensitivity (Shi 

et al. 2016a). The cloning of Snn3-D1 is currently at the stage of screening and sequencing of 

BAC clones (Faris et al. unpublished).  

To clone SnTox3, Liu et al. (2009) analyzed protein studies of avirulent and virulent 

isolates containing SnTox3, and the gene SNOG_08981 from the P. nodorum reference genome 

was found to encode for SnTox3. SNOG_08981, now renamed as SnTox3, is located at the end of 

supercontig14, contains one exon that is 693 nucleotides in length, and encodes a pre-pro protein 

that is 230 amino acids in size. SnTox3 is 25.85 kDa, contains a 20 amino acid signal peptide, 
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and six cysteine residues which are predicted to form disulfide bonds and help stabilize the 

mature protein and in protein activity. SnTox3 expression is highest during the first few days post 

infection and then decrease once the host tissue has been colonized, consistent with the model 

that NEs induce necrosis before colonization and then are no longer needed once the fungus 

sporulates (Liu et al. 2009).  

The frequency of SnTox3 in global P. nodorum populations varies among regions (Liu et 

al. 2009; McDonald et al. 2013). It has been proposed that unless a NE has a dual function, like 

SnTox1, they are under positive selection and frequency of the NE corresponds with frequency 

of the corresponding NE sensitivity gene in that region (Liu et al. 2009, Liu et al. 2012). Liu et 

al. (2012) found that SnTox3 was present in 60% of the 923 worldwide isolates screened and is 

an important virulence NE.  

Winterberg et al. (2014) found that plant cell death occurs around 72 hpi with SnTox3. At 

24 to 48 hpi before cell death occurs, there is an upregulation of plant defense genes such as PR 

proteins, jasmonic acid pathway proteins and phenylpropanoid pathway proteins. There is also an 

observed increase in expression of receptor-like kinase genes, suggesting an increased cell-to-

cell signaling that is associated with an ETI response (Day et al. 2011; Winterberg et al.). Several 

MAP kinases were induced in plants post SnTox3 infiltration. One of the kinases, TaMPK3, is 

upregulated by both SnTox3 and SnToxA infiltrations (Winterberg et al. 2014). Multiple 

microarray and proteomic studies have been performed on wheat leaves post infection with NEs, 

such as SnTox3, SnToxA and Ptr ToxA, and offer insight into the possible cellular mechanisms 

that lead to PCD and NETS (Pandelova et al. 2009; Vincent et al. 2012; Winterberg et al. 2014).  

The Snn3-B1/D1-SnTox3 interaction is hypothesized to not be a direct interaction (Breen 

et al. 2016); however, Snn3-B1/D1 will need to be cloned before this can be confirmed. Breen et 
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al. (2016) found using a yeast-two-hybrid approach that SnTox3 directly interacts with TaPR-1-1 

and interacts with additional wheat PR-1 proteins; however, these are not as strong of 

interactions as the SnTox3-TaPR-1-1 interaction. SnToxA also interacts with a PR-1 protein (Lu 

et al. 2014), and PR proteins may be common targets for NE effectors for upregulating defense 

and causing an NETS response (Breen et al. 2016). 

Snn4-SnTox4 

The fifth interaction described in the wheat-P. nodorum pathosystem was the Snn4-

SnTox4 interaction by Abeysekara et al. (2009). A recombinant inbred population called AF, 

developed from crossing ‘Arina’ and ‘Forno’ which are both Swiss winter wheat cultivars, was 

used to map Snn4 using culture filtrates of the Swiss P. nodorum isolate Sn99CH 1A7a (Sn99). 

When differential wheat lines were infiltrated with Sn99 culture filtrate, it was discovered that 

this filtrate contained a novel NE designated SnTox4. Similar to the other interactions in this 

system, a 1:1 ratio (sensitive:insensitive) is observed since one host gene product is interacting 

with one pathogen gene product. The F2 plants segregated in a 3:1 ratio (sensitive: insensitive), 

which is congruent with the previous interactions in this system of one dominant sensitivity gene 

conferring sensitivity to one NE and fits the inverse gene-for-gene model.  

The gene, designated Snn4, was located on the short arm of chromosome 1A and 

delineated to a 2.5 cM interval. The NE SnTox4 is most likely a small protein, approximately 10 

to 30 kDa in size. The Snn4-SnTox4 interaction was found to be light dependent, similar to many 

of the other interactions in this system. Phenotyping in the Abeysekara et al. (2009) study using 

Sn99 found that the Snn4-SnTox4 interaction explained 41% of the disease variation. Two other 

minor QTL, one found on the short arm of chromosome 3A and the other on the long arm of 

chromosome 2A, were additive in their contribution to disease with the Snn4-SnTox4 interaction.  
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Another population, developed from crossing the cultivars ‘Katepwa’ with ‘Salamouni’, 

was evaluated using the same P. nodorum isolate, Sn99 (Abeysekara et al. 2012). In this 

population, the Snn4-SnTox4 interaction explained 23% of the disease variation. Another QTL 

was located on the short arm of chromosome 7A, which explained 16% of the disease variation; 

however, no wheat NE sensitivity gene-P. nodorum NE interaction has been characterized in this 

location. These two interactions were additive and accounted for 35.7% of the total disease 

variation. The difference in disease explained may be due to the background or the presence of 

the minor genes.  

In conclusion, depending on the wheat background and the NE sensitivity genes present, 

the Snn4-SnTox4 interaction explained 23-41% of the disease variation when plants were 

infected with the P. nodorum isolate Sn99. In both populations, the phenotype associated with 

this interaction was unique in that it is a mottled necrotic reaction and is not as severe in 

appearance as the necrosis seen with many of the other interactions (Abeysekara et al. 2009). 

One possible explanation for this is that the Snn4 protein product, which remains unknown, may 

not have as high of an affinity for SnTox4 as the other receptor-NE interactions in this system. A 

compatible Snn4-SnTox4 interaction may also upregulate different plant defense pathways than 

many of the other interactions in this system, which may result in a more mottled phenotype.   

Snn5-SnTox5 

The sixth interaction characterized in the wheat-P. nodorum pathosystem was the Snn5-

SnTox5 interaction by Friesen et al. (2012). Previously, it was observed that Sn2000 produces 

multiple NEs and a QTL was observed on chromosome 4B in the ITMI population of hexaploid 

wheat (Liu et al. 2004a; Liu et al. 2012). Culture filtrates of P. nodorum isolate Sn2000KO6-1, 

which does not produce SnToxA, were used to screen the doubled haploid (DH) population 
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LP749 developed from crossing ‘Lebsock’, a North Dakota durum wheat variety, with T. 

turgidum ssp. carthlicum accession PI 94749. The host NE sensitivity gene, Snn5, was mapped 

to the long arm of chromosome 4B. 

 Initial characterization of SnTox5 led to the conclusion that it is between 10 and 30 kDa 

in size and is most likely a protein. Similar to many of the other interactions in this pathosystem, 

the Snn5-SnTox5 interaction was found to be light dependent. The LP749 population was 

inoculated with multiple P. nodorum isolates to characterize the role the Snn5-SnTox5 

interaction plays in disease development and severity. This population segregates for the NE 

sensitivity genes Snn5, Tsn1, and Snn3-B1. When the isolate Sn2000, which produces both 

SnTox5 and SnToxA, was inoculated onto the population, the Snn5-SnTox5 interaction 

explained 37% of the disease variation and Tsn1-SnToxA explained 31%. When the population 

was inoculated with Sn2000KO6-1, which lacks SnToxA, the Snn5-SnTox5 interaction 

explained 63% of the disease variation; however, the average disease scores for the population as 

a whole and for each genotype class decreased. These phenotyping experiments showed that 

when both the Snn5-SnTox5 and Tsn1-SnToxA interactions are present, the disease level is 

greater than when only one is present and is additive in nature.  

The next isolate set used was Sn1501, which produces SnTox5 and SnTox3, and 

Sn1501∆Tox3, which lacks SnTox3 but still produces SnTox5. The Snn5-SnTox5 interaction 

explained 53% of the disease variation caused by Sn1501, with the Snn3-B1-SnTox3 interaction 

only explaining 3% of the variation. When inoculated with Sn1501∆Tox3, the Snn5-SnTox5 

interaction explained 51% of the disease variation. The disease scores for each genotype class 

between Sn1501 and Sn1501∆Tox3 were not significantly different, suggesting that the Snn3-

B1-SnTox3 interaction is not a major virulence factor in this isolate and population. 
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Snn6-SnTox6 

The Snn6-SnTox6 interaction was characterized by Gao et al. (2015) using the ITMI 

population, which was also used to initially characterize Snn1-SnTox1 (Liu et al. 2004a). Culture 

filtrates of P. nodorum isolate Sn6 and Sn6KOTox3 were used to initially characterize this 

interaction and to map the wheat sensitivity gene, Snn6, to the distal region of the long arm of 

chromosome 6A. 

 Characterization of SnTox6 led to the conclusion that the molecular mass is at, or 

slightly less than, that of cytochrome C (approximately 12 kDa) and is most likely a protein. 

When the protein sequence was used to search the P. nodorum protein database, three hits were 

obtained: SNOG_16063, SNOG_06667, and a small peptide sequence had a hit to a genomic 

region with no previously annotated genes. All three of these genes are potentially candidates; 

however, the P. nodorum isolate has yet to have its genome sequenced. The Snn6-SnTox6 

interaction was shown to be light dependent, suggesting the same defense and PCD pathway is 

utilized as many of the other interactions in this pathosystem.  

When the ITMI population was inoculated using Sn6, the Snn6-SnTox6 interaction 

explained 27% of the disease variation. The ITMI population segregates not only for Snn6, but 

the NEs sensitivity genes Snn1 and Snn3-B1 which the corresponding NE, SnTox1 and SnTox3 

respectively, are produced by P. nodorum isolate Sn6 used in this study. The Snn1-SnTox1 

interaction did not significantly contribute to disease and SnTox1 was found to not be expressed 

during infection in Sn6 through qPCR analysis. SnTox3 was found to be highly expressed in Sn6 

in qPCR analysis; however, the Snn3-B1-SnTox3 did not significantly contribute to disease (Gao 

et al. 2015).  
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Snn7-SnTox7 

The ninth and latest interaction to be characterized in the wheat-P. nodorum system is the 

Snn7-SnTox7 interaction (Shi et al. 2015). Snn7 was mapped to the long arm of chromosome 2D 

through the use of the complete set of 21 ‘Chinese Spring’ (CS)-Timstein (CS-Tm) disomic 

chromosome substitution lines and further crosses of CS with CS-Tm 2D. Culture filtrates of P. 

nodorum isolate Sn6 were used to screen the population and map the gene conferring sensitivity 

to the new NE, later designated as SnTox7.  

Partial characterization of SnTox7 indicated that it is a protein, proper folding is required 

for the disulfide bonds to be active, and it is relatively stable. SnTox7 is most likely between 10 

and 30 kDa in size. Compared to most of the interactions in this system except Snn3-D1-SnTox3, 

the Snn7-SnTox7 interaction differs in that it is not completely light dependent. When the 

population was inoculated with Sn6, the Snn7-SnTox7 interaction explained 33% of the disease 

variation. Sn6 had been previously shown to produce SnToxA (Friesen et al. 2007), SnTox3 

(Friesen et al. 2007), SnTox2 (Friesen et al. 2007), and SnTox6 (Gao et al. 2015). The effects of 

these interactions were not observed in this population because neither parent contained 

sensitivity genes other than Snn7 (Shi et al. 2015). Evaluation of 52 diverse hexaploid wheat 

lines found that the Snn7 allele is rare and the only identified cultivar containing it is ‘Timstein’; 

however, studying this interaction is important for understanding this system as a whole (Shi et 

al. 2015).  

Studies on multiple interactions and NE expression 

 In classical gene-for-gene pathosystems, one compatible interaction (recognition) 

between the host and pathogen results in the same phenotype as multiple interactions, which are 

both host resistance and pathogen death (Flor et al. 1956). Inverse gene-for-gene pathosystems 
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differ from gene-for-gene in that multiple interactions have been shown to be additive in nature 

and result is in greater disease severity (as reviewed by Friesen and Faris 2010). Multiple studies 

have been performed evaluating disease using isolates that produce multiple NEs and 

populations that segregate for two or more NE sensitivity genes (Liu et al. 2004a; Liu et al. 2012; 

Liu et al. 2009; Zhang et al. 2011; Friesen et al. 2008; Virdi et al. 2016; Liu et al. 2006; Friesen 

et al. 2007; Abeysekara et al. 2009; Abeysekara et al. 2012; Friesen et al. 2012; Gao et al. 2015; 

Faris et al. 2011; Phan et al. 2016). In many of these studies, multiple compatible interactions 

were found to be additive in nature, with wheat genotypes containing multiple NE sensitivity 

genes having a greater level of disease than those with only one and therefore is quantitative in 

nature (as explained by Friesen et al. 2008). 

 Although past research has determined which NEs are produced in culture for many 

isolates, few studies have examined the expression of these NEs in planta and how this 

corresponds to the interactions observed and the amount of disease on infected plants. Gao et al. 

(2015) observed that although P. nodorum isolate Sn6 had previously been shown to produce 

SnTox1 and SnTox3, the Snn1-SnTox1 and Snn3-B1-SnTox3 interactions were not significantly 

associated with disease on the studied population. Expression levels were tested at 3 days post 

infection in sensitive wheat lines. No transcripts of SnTox1 were observed, providing an 

explanation for the lack of significance of the Snn1-SnTox1 interaction, but high levels of 

SnTox3 transcripts were observed. One possible reason for this may be that the Snn3-B1-SnTox3 

interaction is relatively weak compared to other wheat-P. nodorum interactions and may be 

masked in some backgrounds by these other interactions (Gao et al. 2015).  

 Faris et al. (2011) examined the Tsn1-SnToxA and Snn2-SnTox2 interactions in a 

segregating recombinant inbred population to determine the effects of each interaction on disease 
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using multiple P. nodorum isolates. For isolate Sn4, Snn2-SnTox2 explained 26% of disease and 

Tsn1-SnToxA explained 25%. When the same population was inoculated with Sn5, Snn2-

SnTox2 explained 6% of the disease variation and Tsn1-SnToxA explained 56%. Expression of 

SnToxA in parental lines was studied using relative quantitative (RQ)-PCR with samples 

collected at multiple time points post infection. Expression of SnToxA was highest in both Sn4 

and Sn5 at 26 h post infection, with greater expression in both the resistant and susceptible line 

inoculated with Sn5 compared to the same lines inoculated with Sn4. This corresponded to the 

disease level difference observed for the Tsn1-SnToxA interaction between the two isolates. 

Because the same host population was used for both isolates, Faris et al. (2011) suggested that 

the difference was not due to host background differences but pathogen genetic factors that 

influence NE gene expression.  

 Recently, a study was published evaluating the expression of SnTox1 and SnTox3 in P. 

nodorum isolate SN15 on a wheat population that segregated for Snn1 and Snn3-B1 (Phan et al. 

2016). In seedlings inoculated with SN15, the Snn1-SnTox1 interaction explained 18% of the 

disease variation and the Snn3-B1-SnTox3 interaction was not significant. Expression of SnTox1 

and SnTox3 was studied in planta at 48h post infection in all four genotypic combinations 

(snn1/snn3-B1; snn1/Snn3-B1; Snn1/snn3-B1; Snn1/Snn3-B1). No significant difference was 

observed in expression of SnTox1 and SnTox3 between all four genotypic classes, indicating that 

the presence of the corresponding NE sensitivity gene does not influence NE expression. The 

researchers in this study also examined how SnTox3 expression changes between SN15 and 

SN15tox1-6, which lacks SnTox1 under the same experimental conditions. Expression of SnTox3 

significantly increased in the SN15tox1-6 isolate compared to the wildtype, SN15. Phan et al. 

(2016) therefore concluded from this study that SnTox3 expression is suppressed by SnTox1; 
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however, additional evidence is needed before this conclusion can be made along with 

transcriptional analysis at multiple time points post infection. 

 Further research into how multiple wheat-P. nodorum interactions interact with one 

another to confer disease is needed to fill the knowledge gap. As previously stated, the difference 

in disease variation due to each isolate may be determined by the expression levels of the NE 

gene by the pathogen and not the host genetic background. Studies examining not only pathogen 

expression but also host expression are needed to confirm this hypothesis. Additional studies are 

also required to determine if epistasis occurs between NE genes and how these genes are 

regulated in the pathogen and post infection. When wheat and P. nodorum interact in the wild or 

in cultivated fields, many host genes are interacting with many pathogen NEs. Most research has 

broken down these interactions into just a few to study at a time, but to combat this disease at a 

genetic level a broader understanding of this system as a whole is needed. The goal of my 

research project was to characterize the effects of multiple interactions in a single genetic host 

background, focusing on the Snn1-SnTox1, Snn3-B1-SnTox3, and Tsn1-SnToxA interactions, to 

determine the relative importance of each in causing disease.  

Materials and Methods 

The RIL mapping population 

A recombinant inbred line (RIL) population composed of 190 lines was developed from a 

cross between the hexaploid Triticum aestivum L. line Sumai 3 and the Chinese Spring-T. 

turgidum ssp. dicoccoides chromosome 5B disomic substitution line (CS-DIC 5B). Sumai 3 

contains the Tsn1 and Snn3-B1 genes, which confer sensitivity to SnToxA and SnTox3, 

respectively, and CS-DIC 5B has the Snn1 gene and is therefore sensitive to SnTox1. The RILs 

were developed using the single seed descent method and were bulked at the F7 generation with 
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the lines designated as CDS. Because this population segregates for the three sensitivity genes 

Tsn1, Snn1, and Snn3-B1, it allowed for the study of the relative effects and magnitude of the 

three host-NE interactions in causing SNB.  

Infiltrations 

The P. nodorum genes SnTox1, SnToxA and SnTox3 have previously been cloned (Liu et 

al. 2012; Friesen et al. 2006; Liu et al. 2009). Cultures, containing the different NE-encoding 

genes cloned and expressed separately in the yeast Pichia pastoris were obtained from Tim 

Friesen at the USDA-ARS Cereal Crops Unit in Fargo, ND. The tip of a toothpick was inserted 

into the frozen culture, then dropped into 2 ml YPD (10 g yeast extract, 20 g peptone, 900 mL 

distilled H2O, autoclaved, then 100 mL 10X dextrose) and incubated at 30°C with vigorous 

shaking for 48 hours.  Samples were diluted to 1:1000 in a new tube with YPD, varying by 

amount of inoculum needed. Another incubation period of 30°C for 48 hours with vigorous 

shaking followed. Culture filtrate were harvested by centrifuging at 1250 rpm/rcf for 10 minutes, 

and then filtered through a 0.45 uM bottle top filter. The harvested culture filtrate were stored at 

-20°C until plants were infiltrated.   

For infiltrations, the CDS population was planted in small cones, three plants per cone, 

with the two parental lines planted as controls. When the second leaf was fully expanded, two 

plants per cone were infiltrated with approximately 25 µL of each NE culture filtrate using a 1-

ml needleless syringe. The infiltration boundaries were marked using different colored 

markers/number of lines for each NE. Plants were placed in a growth chamber at 21°C with a 12-

h photoperiod. The reactions were scored at 3 and 5 days post infiltration for reaction to each 

NE. The scoring system was as follows: 0=no visible necrosis or chlorosis, 1 = mottled chlorosis 

or necrosis extending to boundaries of the infiltrated area, 2 = highly visible necrosis or chlorosis 
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with little mottling extending to the boundaries of the infiltrated area without complete tissue 

collapse and little or no shriveling or narrowing of the leaf within the infiltrated region, 3 = 

necrosis throughout the entire infiltrated area with complete tissue collapse and shriveling or 

narrowing of the leaf within the infiltrated region (Zhang et al. 2011). Reaction types of 2 and 3 

were considered sensitive and 0 and 1 were insensitive. The experiment was replicated at least 

twice and analyzed using a χ2-test. 

SSR and SNP analysis 

DNA was extracted from young leaf tissue samples as outlined by Faris et al. (2000) with 

the following exceptions: a Scienceware green pestle was used instead of a mortar, and post 

chloroform:isoamyl addition samples are spun at 7000 x g for 12 minutes. A NanoDrop 

Spectrophotometer ND-1000 and EcoRI restriction digestion were used for DNA quantification 

and qualification respectively. DNA samples were then diluted to approximately 200 ng/µL 

using distilled water. 

A primer survey using parental DNA (CS-DIC 5B and Sumai3) was used to identify 

markers that reveal polymorphism between the parents. Markers for the survey were chosen 

based on previously published locations, which were obtained from the Graingenes database 

(http://wheat.pw.usda.gov/GG2/index.shtml). SSR markers located on chromosome arms 1BS, 

5BL, and 5BS, within the known vicinity of the Snn1, Tsn1, and Snn3-B1 genes, respectively, 

(Liu et al. 2004a; Faris et al. 1996; Friesen et al. 2008) were considered the highest priority. 

Approximately 3-6 additional SSR markers that detect loci on the other wheat chromosomes 

were selected to be used as anchors for linkage groups containing the SNP chip data. The 

polymorphic SSR markers were selected from the following libraries: WMC (Somers et al. 

2004), WMS (marker designation = ‘gwm’) (Röder et al. 1998), MAG (Xue et al. 2008), HBG 
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(Torada et al. 2006), CFD (Sourdille et al. 2004), BARC (Song et al. 2005), GDM (Pestsova et 

al. 2000), HBE (Torada et al. 2006). HBD (Torada et al. 2006), PSP (Byran et al. 1997), FCP 

(Liu et al. 2005), CFA (Sourdille et al. 2004), CFB (Sourdille et al. 2004). 

DNA fragments were amplified using polymerase chain reaction (PCR) and the markers 

chosen above. PCR reactions consisted of 200 ng of template DNA, 1X PCR buffer, 2 mM 

MgCl2, 0.2 mM dNTPs, 4 pmol of each primer, and 0.5 unit of Taq DNA polymerase, with 

diluted water added to a final volume of 10 µL. PCR was performed using a GeneAmpTM PCR 

system 9700 machine. The PCR cycle was as follows: 94°C for 5 minutes, cycle 35 times 

through: 30 sec 94°C, 30 sec 65-56°C, 90 sec 72°C; finishing with one cycle for 7 min at 72°C 

and cooling to 4°C. PCR products were separated on 6% polyacrylamide gels, stained with 

GelRed nucleic acid gel stain, and scanned on a Typhoon FLA 9500 variable mode laser scanner 

(GE Healthcare Life Sciences, Piscataway, NJ). 

The CDS population was also genotyped using a 9K iSelect Assay BeadChip (Cavanagh 

et al. 2013). A BeadStation and iScan instrument from Illumina were used for the assay, which 

was performed by Dr. Shiaoman Chao at the small grains genotyping laboratory in Fargo, ND, 

USA. Clustering data was analyzed using GenomeStudio Polyploid Clustering Module from 

Illumina, Inc. (2013).   

The SSR marker, phenotypic infiltration, and SNP data were combined to develop 

genetic linkage maps of all 21 chromosomes. The computer software MapDisto version 1.7 was 

used to assemble the linkage maps (Lorieux 2012). Linkage of markers was verified using the 

‘find groups’ command, with a LOD > 3.0 and 0.30 maximum theta. An initial marker order was 

established using the ‘order sequence’ command. The best map was determined using the 
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commands ‘check inversions’, ‘ripple order’, and ‘drop locus’. The Kosambi mapping function 

was used to calculate the map distances (Kosambi 1944). 

Inoculations with P. nodorum isolates 

Methods for plant inoculation were as described by Friesen et al. (2007). Conidia of P. 

nodorum isolates LDN03Sn4 (Sn4), BBC03Sn5 (Sn5), Sn6, SnOH1501 (SN1501), 

SnOH1501∆8981 (SN1501∆8981), Sn2000, Sn2000KO6-1 (Sn2000KO6), and AuSN15 (SN15) 

were used to phenotype the population. Sn4, Sn5, Sn6, and SN15 were previously found to 

contain SnToxA, SnTox1, and SnTox3 (Friesen et al. 2007, unpublished; Faris et al. 2011; Gao et 

al. 2015; Hane et al. 2007). Sn2000 contains SnToxA and SnTox1 (Liu et al. 20004a), 

Sn2000KO6-1 contains SnTox1 (Liu et al. 2012), Sn1501 contains SnTox1 and SnTox3 (Friesen 

et al. 2008), and Sn1501∆8981  contains SnTox1 (Liu et al. 2008) (Table 1). 

Table 1. Parastagonospora nodorum isolates used in this study along with origin and source of 
the NE each isolate contains. 
Isolate Abbreviation Origin NE detectable in culture References 

SnToxA SnTox1 SnTox3 
LDN03-Sn4 Sn4 ND, USA + + + Faris et al. 2011 
BBC03-Sn5 Sn5 MN, USA + + + Friesen personal 

communication 
Sn6 Sn6 OH, USA + + + Faris et al. 2011, 

Gao et al. 2015 
AuSN15 SN15 Australia + + + Hane et al. 2007 
Sn2000 Sn2000 ND, USA + + - Liu et al. 2004a, 

Liu et al. 2012 
Sn2000KO6-1 Sn2000KO6  - + - Liu et al. 2012 
SnOH1501 Sn1501 OH, USA - + + Friesen et al. 2008 
SnOH1501∆8981 Sn1501∆8981  - + - Liu et al. 2009 

 

Three plants per line were grown in plastic cones that were 3.8 cm in diameter and 21 cm 

deep (Stuewe and Sons, Inc., Corvallis, OR, USA). Only 118 lines of the CDS population, along 

with parental lines, were inoculated. The wheat cultivar Alsen was grown on the outside borders 
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of the racks to reduce any edge effect. P. nodorum fungal dried plugs were grown on V8-potato 

dextrose agar (150 ml V8 juice, 10 g difco PDA, 3g CaCO3, 10 g agar, 850 ml distilled H2O) for 

7-10 days until the pycnidium released spores. The agar plate was rinsed with sterile-distilled 

water, after which 200 µL of spore suspension was streaked onto a new V8 plate. Spores were 

collected after 7 days and diluted to a concentration of 106 spores/ml. When the second leaf was 

fully expanded, plants were inoculated until runoff was observed. After inoculation, plants were 

placed in a 100% relative humidity growth chamber at 4°C for 24 hours then moved to a 

controlled growth chamber at 21°C with a 12 h photoperiod. Plants were scored at 7 days post 

inoculation using the scale described by Liu et al. (2004b) (Table 2, Figure 1). 

Table 2. Inoculation scoring scale to be used on wheat leaves inoculated with P. nodorum 
isolates. 
Scale Phenotype Disease Level 

0 Absence of visible lesions Highly resistant 
1 Few penetration points with lesions consisting of flecking or small 

dark spots 
Resistant 

2 Lesions consisting of dark spots with surrounding necrosis or 
chlorosis 

Moderately 
resistant 

3 Dark lesions completely surrounded by necrosis or chlorosis, 
lesions 2-3 mm 

Moderately 
susceptible 

4 Larger necrotic or chlorotic lesions 4 mm or greater, little 
coalescence 

Susceptible 

5 Large coalescent lesions with very little green tissue remaining Highly susceptible 
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Figure 1. Scoring scale of wheat leaves infiltrated with P. nodorum.  Lesion type is indicated by 
numbers at the bottom, with 0 = resistant to 5 = susceptible. Taken from Liu et al. (2004b). 

Each experiment was replicated at least three times. The homogeneity of variances 

among the replicates was determined by Barlett’s Chi-Squared test using PROC GLM in SAS 

(SAS Institute Inc. 2003). The mean separation of the phenotypic means was determined using 

Fischer’s protected LSD at an α level of 0.05. Phenotypic scores from each replicate were 

combined to calculate an overall mean if the error of variance was homogenous between 

replicates. 

QTL Analysis 

Quantitative trait loci (QTL) analysis was conducted using the computer software 

program QGene v 4.3.10 (Joehanes and Nelson 2008). Composite interval mapping (CIM) and 

single-trait multiple IM were used to quantify the effects of the Tsn1, Snn1, and Snn3-B1 loci in 

conferring susceptibility to the various isolates, and also to identify putative novel QTLs 

associated with resistance. The coefficient of determination (R2) was used to indicate the amount 

of variation explained by the QTLs and therefore provide an estimate of the contribution of each 
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compatible host-NE interaction in the development of SNB. Critical LOD thresholds at the 0.05 

and 0.01 levels of probability were determined using a permutation test with 1000 iterations. 

Results 

Marker analysis and linkage map construction 

 The two parents of the CDS population, CS-DIC 5B and Sumai 3, were screened with 

452 SSR markers, of which 263 (58.2%) were polymorphic. Of these, 116 were selected to 

genotype the CDS population. In addition, a 9k iSelect Affinity Beadchip Assay was used to 

genotype the CDS population, which yielded 2,363 (26.3%) polymorphic markers. The initial 

marker dataset included these 2,479 SSR and SNP markers along with the three phenotypic 

markers, Snn1, Snn3-B1, and Tsn1. After initial linkage group analysis and genetic map 

compilation, 283 markers (18 SSR and 265 SNP) were eliminated from the dataset and not used 

in the final linkage map construction process. The final linkage maps consisted of 98 SSR, 2,098 

SNP, and three phenotypic markers totaling 2,199 markers (Table 3). 

 The whole-genome linkage map consisted of 26 linkage groups, of which 18 

corresponded to individual chromosomes (Appendix S1). Chromosomes 2D and 3D were 

comprised of three genetic linkage groups each, and chromosome 4D was comprised of two 

genetic linkage groups. The maps spanned a total of 3,099.80 cM and had an average density of 

one marker per 1.41 cM (Table 3). The A-genome chromosomes spanned 1,112.45 cM, 

consisting of 937 markers with an average density of one marker per 1.19 cM. The B-genome 

chromosomes spanned 945.27 cM, consisting of 1,068 markers and an average density of one 

marker per 0.89 cM. The D-genome chromosomes spanned 1,042.08 cM, consisting of 194 

markers with an average density of one marker per 5.37 cM. Chromosome 6D was the longest 

linkage group (367.27 cM) and chromosome 3D was the shortest (40.60 cM). The number of 
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markers per chromosome ranged from 5 on chromosome 7D to 247 on chromosome 5B.  Marker 

density ranged from one marker per 19.45 cM on chromosome 7D to one marker per 0.52 cM on 

chromosome 5B. Of the 2,199 markers used in the linkage map construction, 339 (15.4%) had 

segregation ratios that deviated significantly (P < 0.05) from the expected 1:1 ratio. These 

distorted markers were located on 15 chromosomes (1A, 1B, 1D, 2A, 3A, 3B, 3D, 4A, 4B, 4D, 

5A, 5B, 6B, 6D, 7B), with chromosome 5B having the most with 120 distorted markers. For 

QTL analysis, the linkage groups for chromosomes with multiple groups (2D, 3D, and 4D) were 

ordered according to the maps published by Cavanagh et al. (2013) and combined to form one 

linkage group for each chromosome.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 39 

Table 3. Summary of the genetic linkage maps for each chromosome/genome in the CS-DIC 5B 
× Sumai 3 population 
Chromosome Markers Total Length 

(cMc) 
Marker Density 
(cMc/Marker) 

Markers with 
Distorted Ratios SSRa SNPb Morphological 

1A 4 141 - 145 132.50 0.91 4 
1B 11 109 1 121 157.27 1.30 1 
1D 5 33 - 38 114.81 3.02 17 
2A 3 222 - 225 188.64 0.84 3 
2B 5 141 - 146 135.94 0.93 0 
2Dd 3 31 - 34 73.40 2.16 0 
3A 6 162 - 168 186.75 1.11 3 
3B 5 188 - 193 174.27 0.90 97 
3Dd 3 33 - 36 40.60 1.13 1 
4A 6 61 - 67 76.45 1.14 21 
4B 5 107 - 112 91.53 0.82 32 
4Dd 2 12 - 14 125.3 8.95 1 
5A 3 68 - 71 191.44 2.70 32 
5B 9 236 2 247 128.11 0.52 120 
5D 6 16 - 22 223.45 10.16 0 
6A 2 98 - 100 87.16 0.87 0 
6B 4 121 - 125 122.16 0.98 1 
6D 4 41 - 45 367.27 8.16 1 
7A 5 156 - 161 249.51 1.55 0 
7B 3 121 - 124 135.99 1.10 5 
7D 4 1 - 5 97.25 19.45 0 
A genome 29 908 - 937 1112.45 1.19 63 
B genome 42 1023 3 1068 945.27 0.89 256 
D genome 27 167 - 194 1042.08 5.37 20 
Total 98 2098 3 2199 3099.80 1.41 339 
asimple sequence repeat 
bsingle nucleotide polymorphism 
ccentiMorgan 
dchromosomes 2D, 3D, and 4D are comprised of multiple linkage groups. The map data shown 
above is for all linkage groups combined. 
 

Genetic analysis of sensitivity to the NEs SnToxA, SnTox1, and SnTox3 in the CDS 

population 

 CS-DIC 5B was insensitive and Sumai 3 was sensitive to SnToxA (Figure 2). The CDS 

population segregated in a ratio of 100 insensitive:90 sensitive for reaction to SnToxA and fit the 

expected 1:1 ratio for a single host gene conferring sensitivity to SnToxA (χ2
df = 1 = 1.71, P = 
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0.47). The SnToxA reaction scores were converted into phenotypic scores and were used for 

mapping Tsn1, the corresponding host NE sensitivity gene. Tsn1 mapped to the long arm of 

chromosome 5B at genetic position 63.9 cM and was flanked by Xiwa8353 and Xiwa6895 at 

distances of 0.5 and 0.3 cM, respectively. 

 CS-DIC 5B was insensitive and Sumai 3 was sensitive to SnTox3 (Figure 2). The CDS 

population segregated in a ratio of 70 insensitive:120 sensitive for reaction to SnTox3 and did 

not fit the expected 1:1 ratio for a single host gene conferring sensitivity to SnTox3 (χ2
df = 1 = 

13.16, P = 0.0003). Snn3-B1, the host NE sensitivity gene conferring susceptibility to SnTox3, is 

located in a highly dense gene region of chromosome 5B and this region often displays 

segregation distortion (Kumar et al. 2007). Due to this, even though the phenotypic data 

significantly differed from the expected 1:1 ratio, the phenotypic scores were used for mapping. 

Snn3-B1 mapped to the distal region of the short arm of chromosome 5B at genetic position 1.2 

cM and was flanked by Xfcp654 and Xmag705 at distances of 1.2 and 4.2 cM, respectively. 

 CS-DIC 5B was sensitive and Sumai 3 was insensitive to SnTox1 (Figure 2). The CDS 

population segregated in a ratio of 90 insensitive:100 sensitive for reaction to SnTox1 and fit the 

expected 1:1 ratio for a single host gene conferring sensitivity to SnTox1 (χ2
df = 1 = 1.71, P = 

0.19). The SnTox1 reaction scores were converted into phenotypic scores and were used for 

mapping Snn1, the corresponding host NE sensitivity gene. Snn1 mapped to the distal region of 

the short arm of chromosome 1B at genetic position 1.4 cM and was flanked by Xfcp618 and 

Xhbe487 at distances of 1.4 and 3.3 cM, respectively.  
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Figure 2. Leaves of Sumai 3 and CS-DIC 5B infiltrated with SnTox3, SnTox1, and SnToxA. 
Sumai3 is sensitive to SnTox3 and SnToxA and insensitive to SnTox1, whereas CS-DIC 5B is 
sensitive to SnTox1 and insensitive to SnTox3 and SnToxA.  
 

Genetic analysis of the Snn1-SnTox1, Snn3-B1-SnTox3, and Tsn1-SnToxA interactions in 

Septoria nodorum blotch caused by the P. nodorum isolate Sn4   

From the CDS population, the first 118 lines with an ample amount of seed were grown 

along with CS-DIC 5B and Sumai 3 to evaluate the population for reaction to SNB caused by 

eight P. nodorum isolates containing different combinations of the NE genes SnTox1, SnTox3, 

and SnToxA. Sn4, a North Dakota isolate containing the NE genes SnTox1, SnTox3, and SnToxA 
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(Faris et al. 2011) was inoculated onto the population and disease was evaluated seven days post 

inoculation using a 0 to 5 scale (0 = resistant, 5 = susceptible). Bartlett’s Chi-squared test for 

homogeneity between replicates indicated that the variance among the five replicates was not 

significantly different (χ2
df = 4 = 2.1178, P = 0.7141) and the combined means were used for 

analysis. CS-DIC 5B had an average disease reaction score of 2.1 (moderately resistant) and 

Sumai 3 had an average lesion score of 3.8 (susceptible) (Figure 3, Figure 4, Table 4, Table 5). 

The average disease reaction score for the CDS population was 3.07 and the population ranged 

from 1.6 to 4.1 (Figure 3, Table 4), implying that the CDS population segregates for multiple NE 

sensitivity genes and multiple host sensitivity gene-NE interactions are responsible for 

susceptibility to Sn4. 
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Figure 3. Histograms of the average lesion-type reactions of the CS-DIC 5B × Sumai 3 
recombinant inbred population to various Parastagonospora nodorum isolates. The x-axis 
indicates the range the range for each lesion type and the y-axis is the number of RILs. The 
average lesion-type of each parent is indicated above the lesion type range. CS-DIC 5B has the 
genotype Snn1/snn3-B1/tsn1 and Sumai 3 has the genotype snn1/Snn3-B1/Tsn1. P. nodorum 
isolates Sn4, Sn5, Sn6, and SN15 all contain the known NE genes SnTox1, SnTox3, and SnToxA.  
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Figure 4. Leaves of CS-DIC 5B and Sumai 3 inoculated with different Parastagonospora 
nodorum isolates. CS-DIC 5B has the NE sensitivity gene Snn1, whereas Sumai 3 has Snn3-B1 
and Tsn1. P. nodorum isolates Sn4, Sn5, Sn6, and SN15 contain the NE genes SnTox1, SnTox3, 
and SnToxA.  
 

Table 4. Average lesion-type reactions of the parental lines CS-DIC 5B and Sumai 3, along with 
the CDS population average and range to P. nodorum isolates Sn4, Sn5, Sn6, SN15, Sn1501, 
Sn1501Δ8981, Sn2000, and Sn2000KO6.  
Isolate CS-DIC 5B Sumai3 Population 

average 
Population 
range 

Sn4 (SnTox1, SnTox3, SnToxA) 2.10 3.80 3.07 1.60-4.10 
Sn5 (SnTox1, SnTox3, SnToxA) 1.25 3.25 2.80 1.13-4.00 
Sn6 (SnTox1, SnTox3, SnToxA) 1.67 3.17 2.53 1.33-3.83 
SN15 (SnTox1, SnTox3, SnToxA) 2.00 2.67 2.32 0.50-4.50 
Sn1501 (SnTox1, SnTox3) 1.83 2.33 2.31 0.67-4.00 
Sn1501Δ8981 (SnTox1) 1.00 1.83 1.66 0.33-3.17 
Sn2000 (SnTox1, SnToxA) 2.00 2.56 2.24 0.06-4.07 
Sn2000KO6 (SnTox1) 2.10 0.60 2.02 0.00-4.00 
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Table 5. The different genotypic classes in the CS-DIC 5B × Sumai 3 recombinant inbred 
population and their average reaction score to the P. nodorum isolates Sn4, Sn5, Sn6, and 
SN15a.  

Genotype No. RI 
lines 

Sn4 average 
reaction type 

Sn5 average 
reaction type 

Sn6 average 
reaction type 

SN15 average 
reaction type 

CS-DIC 5B - 2.10±0.42 1.25±0.29 1.67±0.29 2.00±0.25 
Sumai 3 - 3.80±0.45 3.25±0.29 3.17±0.29 2.67±0.29 

Snn1/Snn3-B1/Tsn1 14 3.25a 3.04bcd 2.74a 2.53ab 
snn1/snn3-B1/tsn1 13 2.37c 2.09e 1.94b 1.08d 
Snn1/Snn3-B1/tsn1 18 3.19a 2.88cd 2.59ab 2.47bc 
Snn1/snn3-B1/Tsn1 9 3.38a 3.08bc 2.65ab 2.46bc 
Snn1/snn3-B1/tsn1 17 2.59bc 1.98e 2.17ab 2.12c 
snn1/Snn3-B1/tsn1 15 3.07ab 2.76d 2.67ab 2.24bc 
snn1/Snn3-B1/Tsn1 24 3.48a 3.39a 2.79a 2.92a 
snn1/snn3-B1/Tsn1 8 3.08a 3.20ab 2.56ab 2.20bc 

LSD0.05  0.48 0.29 0.76 0.40 
aNumbers followed by the same letter in the same column are not significantly different at the 
0.05 level of probability. 

The reaction type means for SnTox3 and/or SnToxA sensitive lines (lines with Snn3-B1 

and/or Tsn1) were not significantly different from each other at the 0.05 level of probability. 

Also, the reaction type mean for Snn1/snn3-B1/tsn1 lines was not significantly different from 

lines with no NE sensitivity genes (snn1/snn3-B1/tsn1), suggesting that the Snn1-SnTox1 

interaction does not significantly contribute to disease caused by Sn4 (Table 5). However, lines 

with only Tsn1 (snn1/snn3-B1/Tsn1) and lines with only Snn3-B1 (snn1/Snn3-B1/tsn1) were 

significantly more susceptible than lines containing no NE sensitivity genes (snn1/snn3-B1/tsn1). 

These results suggest that the Tsn1-SnToxA and Snn3-B1-SnTox3 interactions play a significant 

role in SNB disease development caused by Sn4, but their additive effects are not significant, i.e. 

the presence of both Snn3-B1 and Tsn1 did not make plants significantly more susceptible.  

For Sn4, QTL analysis using single-trait multiple IM indicated that the Snn3-B1-SnTox3 

and the Tsn1-SnToxA interactions were significantly associated with SNB (Figure 5, Table 6). 

The Snn3-B1 locus had a LOD of 5.57 and explained 18.1% of the disease variation for the 

combined means, and Tsn1 had a LOD of 5.234 and explained 17.9% of the disease variation. 
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The Snn1 locus was not significantly associated with reaction to Sn4 in the QTL analysis, which 

agreed with the average reaction type analysis of the different genotypic combinations (Table 5).  
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Figure 5. Single-trait multiple interval regression maps of chromosomes 1B and 5B in the CS-
DIC 5B × Sumai 3 recombinant inbred population containing QTL associated with P. nodorum 
isolates Sn4, Sn5, Sn6, and SN15. All four isolates contain the NE genes SnTox1, SnTox3, and 
SnToxA. The individual chromosomes are located beneath the QTL line, with the marker loci 
shown above each linkage group and the distance between loci shown below in centiMorgan 
(cM). The dashed lines represent the logarithm of odds (LOD) significant threshold of 3.25. A 
LOD scale is indicated on the right along the x-axis.  
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Table 6. Single-trait multiple interval mapping analysis of susceptibility to SNB caused by P. nodorum isolates Sn4, Sn5, Sn6, and 
SN15 in the CS-DIC 5B × Sumai 3 population. 
Gene Chr. 

arm 
Genetic 
position (cM) 

LODa  R2b Source 
Sn4 Sn5 Sn6 SN15  Sn4 Sn5 Sn6 SN15 

Snn3-B1 5BS 1.2 5.57 5.49 4.15 5.12  0.181 0.204 0.173 0.207 Sumai 3 
Tsn1 5BL 63.9 5.23 9.74 - 4.14  0.179 0.324 - 0.171 Sumai 3 
aLogarithm of odds, determined by the execution of 1000 permutations on marker and phenotypic datasets, cutoff value yielded was 
3.25 for detection of significant QTL 
bR2 = coefficient of determination 
- non-significant  
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Genetic analysis of the Snn1-SnTox1, Snn3-B1-SnTox3, and Tsn1-SnToxA interactions in 

Septoria nodorum blotch caused by the P. nodorum isolate Sn5  

 As with Sn4, the same lines in the CDS population were evaluated along with the parents 

for reaction to SNB caused by the Minnesota P. nodorum isolate Sn5, which has the NE genes 

SnTox1, SnTox3, and SnToxA (Friesen personal communication). A Bartlett’s Chi-squared test 

for homogeneity of variances among the four replicates was not significant (χ2
df = 3 = 3.9803, P = 

0.2636) and the averages of each line along with means within replicates was used for analysis. 

CS-DIC 5B and Sumai 3 had average disease reaction scores of 1.25 (resistant) and 3.25 

(susceptible) to Sn5, respectively (Figure 3, Figure 4, Table 4, Table 5). The CDS population had 

an average reaction score of 2.8 with the population ranging from 1.125 to 4 (Figure 3, Table 4), 

suggesting there are multiple NE sensitivity gene-NE interactions contributing to SNB caused by 

Sn5 in the CDS population.  

 Analysis of the reaction type means of the eight genotypic classes revealed the 

Snn1/snn3-B1/tsn1 lines were not significantly different in their reaction to Sn5 compared to the 

lines with none of the NE sensitivity genes (snn1/snn3-B1/tsn1) indicating that, as with Sn4, the 

Snn1-SnTox1 interaction did not play a significant role in the development of SNB (Table 5). 

However, lines with only Tsn1 (snn1/snn3-B1/tsn1) or only Snn3-B1 (snn1/Snn3-B1/tsn1) were 

more susceptible than the snn1/snn3-B1/tsn1 lines, and lines containing only Tsn1 were 

significantly more susceptible than lines with only Snn3-B1. But, in the presence of Snn1, lines 

with either Tsn1 or Snn3-B1 were not significantly different. In addition, lines with Snn3-B1 and 

Tsn1 but not Snn1 (snn1/Snn3-B1/Tsn1) were significantly more susceptible than lines with all 

three NE sensitivity genes. These results suggest that, like Sn4, the Snn3-B1-SnTox3 and Tsn1-

SnToxA interactions play significant roles in SNB development, and the Snn1-SnTox1 
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interaction does not. However, the role of Snn1-SnTox1 is more complicated in this isolate and 

could possibly even contribute to resistance in the presence of some other interactions.   

 QTL analysis of the CDS population infected with isolate Sn5 revealed two QTLs 

significantly associated with SNB susceptibility (Figure 5, Table 6). The QTL with the largest 

effect was the Tsn1 locus, which had an LOD of 9.735 and explained 32.4% of the disease 

variation. The other significant QTL was the Snn3-B1 locus, which had an LOD of 5.488 and 

explained 20.4% of the disease variation.  

Genetic analysis of the Snn1-SnTox1, Snn3-B1-SnTox3, and Tsn1-SnToxA interactions in 

Septoria nodorum blotch caused by the P. nodorum isolate Sn6  

The North Dakota P. nodorum isolate Sn6 has the NE genes SnTox1, SnTox3, and 

SnToxA (Faris et al. 2011; Gao et al. 2015). Plants were grown in a completely randomized 

design and three of the five replicates were combined for analysis because the variance among 

those three replicates was found to not be significantly different (χ2
df = 2 = 2.6059, P = 0.2717) 

determined by a Bartlett’s Chi-squared test for homogeneity. CS-DIC 5B and Sumai 3 had 

average disease reaction types of 1.67 (resistant) and 3.17 (susceptible) to Sn6, respectively 

(Figure 3, Figure 4, Table 4, Table 5). The CDS population had a range of 1.33 to 3.83 disease 

reaction score with a population average of 2.53 (Figure 3, Table 4). This wide population range 

suggests that multiple NE sensitivity genes-NE interactions contribute to SNB disease caused by 

Sn6 in the CDS population. 

Analysis of the reaction type means of the eight genotypic classes revealed that only lines 

containing both Snn3-B1 and Tsn1 (Snn1/Snn3-B1/Tsn1, snn1/Snn3-B1/Tsn1) were significantly 

more susceptible than lines with none of the NE sensitivity genes (snn1/snn3-B1/tsn1). Lines 

containing only one NE sensitivity gene (Snn1/snn3-B1/tsn1, snn1/Snn3-B1/tsn1, snn1/snn3-
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B1/Tsn1) or Snn1 with additional NE sensitivity genes (Snn1/Snn3-B1/tsn1, Snn1/snn3-B1/Tsn1) 

were not significantly different than lines with none of the NE sensitivity genes (snn1/snn3-

B1/tsn1). These results suggest that for Sn6, the additive effects of Snn3-B1-SnTox3 and Tsn1-

SnToxA were necessary to identify significance in SNB development.   

QTL analysis of the CDS population infected with Sn6 revealed one QTL significantly 

associated with SNB susceptibility (Figure 5, Table 6). This significant QTL was the Snn3-B1 

locus which had an LOD of 4.148 and explained 17.3% of the disease variation. A small QTL 

was present at the Tsn1 locus, which had an LOD of 2.629 and therefore was below the LOD 

significant threshold value of 3.319.  

Genetic analysis of the Snn1-SnTox1, Snn3-B1-SnTox3, and Tsn1-SnToxA interactions in 

Septoria nodorum blotch caused by the P. nodorum isolate SN15  

The Australian P. nodorum isolate SN15 has the NE genes SnTox1, SnTox3, and SnToxA 

(Hane et al. 2007). Plants were grown in a completely randomized design and three of the four 

replicates were combined for analysis because the variance among those replicates was found to 

not be significantly different (χ2
df = 2 = 3.1074, P = 0.2115) determined from a Bartlett’s Chi-

squared test for homogeneity. CS-DIC 5B and Sumai 3 had average disease reaction scores of 2 

(moderately resistant) and 2.67 (moderately susceptible) to SN15, respectively (Table 4, Table 5, 

Figure 3, Figure 4). The CDS population had an average disease score of 2.32 and disease scores 

ranged from 0.5-4.5 (Table 4, Figure 3). This large population range suggests that multiple host 

NE sensitivity gene-NE interactions are contributing to SNB caused by SN15.  

Analysis of the reaction type means of the eight genotypic classes revealed that classes 

containing at least one NE gene were significantly more susceptible in their reaction to SN15 

than lines with none of the NE sensitivity genes (snn1/snn3-B1/tsn1), indicating that all three 



 

 52 

interactions (Snn1-SnTox1, Snn3-B1-SnTox3, Tsn1-SnToxA) played significant roles in the 

development of SNB (Table 5). However, lines with both Snn3-B1 and Tsn1, but not Snn1 

(snn1/Snn3-B1/Tsn1), were as susceptible as lines with all three NE sensitivity genes, and lines 

with Snn1 in addition to one other NE sensitivity gene (Snn1/Snn3-B1/tsn1 and Snn1/snn3-

B1/Tsn1) were not significantly different from lines with only a single NE sensitivity gene. This 

indicated that the Tsn1-SnToxA and Snn3-B1-SnTox3 interactions played significant roles and 

their effects were additive, but the Snn1-SnTox1 interaction was associated with SNB 

development only in the absence of the other two interactions. 

QTL analysis of the CDS population infected with isolate SN15 revealed two QTLs 

significantly associated with SNB susceptibility (Figure 5, Table 6). The QTL with the largest 

effect was the Snn3-B1 locus, which had a LOD of 5.116 and explained 20.7% of the disease 

variation. The other significant QTL was the Tsn1 locus, which had an LOD of 4.139 and 

explained 17.1% of the disease variation.  

Genetic analysis of the Snn1-SnTox1 and Snn3-B1-SnTox3 interactions in Septoria 

nodorum blotch caused by the P. nodorum isolate Sn1501  

 The CDS population was evaluated for reaction to SNB caused by P. nodorum isolate 

Sn1501, which has the NE genes SnTox1 and SnTox3 (Friesen et al 2008). Plants were grown in 

a completely randomized design and three of the four replicates were combined for analysis 

since the variance among those replicates was not significant (χ2
df = 2 = 3.0274, P = 0.2201) 

determined from a Bartlett’s Chi-squared test for homogeneity. CS-DIC 5B and Sumai 3 had 

average disease scores of 1.83 (resistant) and 2.33(moderately resistant) to Sn1501, respectively 

(Table 4, Table 7, Figure 6, Figure 7). The CDS population had an average disease score of 2.31 
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and ranged from 0.67-4.00 (Table 4, Figure 7), suggesting multiple host NE sensitivity genes-NE 

interactions are occurring between the CDS population and Sn1501.  

 

Figure 6. Leaves of CS-DIC 5B and Sumai 3 inoculated with different Parastagonospora 
nodorum isolates. CS-DIC 5B has the NE sensitivity gene Snn1, whereas Sumai 3 has Snn3-B1 
and Tsn1. P. nodorum isolate Sn1501 contains the NE genes SnTox1 and SnTox3. Sn1501 
contains NE gene SnTox1.  
 

 

Figure 7. Histograms of the average lesion-type reaction of the CS-DIC 5B × Sumai 3 
recombinant inbred population to Parastagonospora nodorum isolates Sn1501 and 
Sn1501Δ8981. The x-axis indicates the range for each lesion type and the y-axis is the number of 
RILs. The average lesion-type of each parent is indicated above the lesion type range. CS-DIC 
5B has the genotype Snn1/snn3-B1/tsn1 and Sumai 3 has the genotype snn1/Snn3-B1/Tsn1. 
Sn1501 contains the NE genes SnTox3 and SnTox1; Sn1501Δ8981 contains the NE gene SnTox1.  
 

 Analysis of the reaction type means of the four genotypic classes revealed that lines 

containing Snn3-B1 (Snn1/Snn3-B1 and snn1/Snn3-B1) were significantly more susceptible to 
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Sn1501 than lines lacking Snn3-B1 (snn1/snn3-B1 and Snn1/snn3-B1), indicating that the Snn3-

B1-SnTox3 interaction plays a significant role in the development of SNB (Table 7). Lines with 

only Snn1 (Snn1/snn3-B1) were not significantly different in their reaction than the snn1/snn3-B1 

lines, indicating that the Snn1-SnTox1 interaction does not play a significant role in disease 

development.  

Table 7. The different genotypic classes in the CS-DIC 5B × Sumai 3 recombinant inbred 
population and their average reaction score to the P. nodorum isolates Sn1501. 

Genotype No. RI lines Sn1501 average 
reaction type 

 

CS-DIC 5B - 1.83±0.29  
Sumai 3 - 2.33±0.58  

Snn1/Snn3-B1 32 2.64a  
snn1/snn3-B1 21 1.87b  
snn1/Snn3-B1 39 2.50a  
Snn1/snn3-B1 26 2.01b  

LSD  0.35  
aNumbers followed by the same letter in the same column are not significantly different at the 
0.05 level of probability. 

 QTL analysis of the CDS population infected with isolate Sn1501 revealed three QTLs 

significantly associated with SNB susceptibility (Figure 8, Table 8). The QTL with the largest 

effect was the Snn3-B1 locus, which had an LOD of 6.315 and explained 21.2% of the disease 

variation. The QTL with the second largest effect was on chromosome 4B and designated 

QSnb.fcu-4B. This QTL had an LOD of 4.55 and explained 14.1% of the disease variation. The 

susceptibility effects of QSnb.fcu-4B were contributed by CS-DIC 5B. The third QTL was 

located on chromosome arm 5BL and had relatively minor effects. This QTL, designated 

QSnb.fcu-5B, had an LOD of 4.271 and explained 12.5% of the disease variation.  The 

susceptibility effects of QSnb.fcu-5B were contributed by Sumai 3.  
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Table 8. Single-trait multiple interval mapping analysis of susceptibility to SNB caused by P. nodorum isolates Sn1501 and 
Sn1501Δ8981 in the CS-DIC 5B × Sumai 3 population. 
Gene Chr. 

arm 
Genetic position 
(cM) 

LODa  R2b Source 
Sn1501 Sn1501∆8981  Sn1501 Sn1501∆8981 

Snn1 1BS 1.4 - 5.63  - 0.18 CS-DIC 5B 
QSnb.fcu-4B 4BL 55.7 4.55 2.86  0.141 0.13 CS-DIC 5B 
Snn3-B1 5BS 1.2 6.32 -  0.212 - Sumai 3 
QSnb.fcu-5B 5BL 93.1 4.27 -  0.125 - Sumai 3 
aLogarithm of odds, determined by the execution of 1000 permutations on marker and phenotypic datasets, cutoff value yielded was 
3.25 for detection of significant QTL 
bR2 = coefficient of determination 
- non-significant 
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Figure 8. Single-trait multiple interval regression maps of chromosomes 1B and 5B in the CS-
DIC 5B × Sumai 3 recombinant inbred population containing QTL associated with P. nodorum 
isolates Sn1501 and Sn1501∆8981. Sn1501 contains the NE genes SnTox1 and SnTox3 whereas 
Sn1501∆8981 contains SnTox1. The individual chromosomes are located beneath the QTL line, 
with the marker loci shown above each linkage group and the distance between loci shown 
below in centiMorgan (cM). The dashed lines represent the logarithm of odds (LOD) significant 
threshold of 3.25. A LOD scale is indicated on the right along the x-axis.  
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Genetic analysis of the Snn1-SnTox1 interaction in Septoria nodorum blotch caused by the 

P. nodorum isolate Sn1501Δ8981  

 The CDS population was evaluated for reaction to SNB caused by P. nodorum isolate 

Sn1501∆8981, which has the same genetic background as Sn1501 but lacks SnTox3 (Liu et al. 

2009). A Bartlett’s Chi-squared test for homogeneity was used to determine that three of the four 

replicates had variances which were not significantly different (χ2
df = 2 = 1.3480, P = 0.5097) and 

those means were combined for further analysis. CS-DIC 5B and Sumai 3 had average disease 

scores of 1.67 and 1.83 to Sn1501∆8981, respectively, which are both resistant reactions (Figure 

6, Figure 7, Table 4, Table 9). The CDS population had an average disease score of 1.66 and an 

observed disease range of 0.33 to 3.17 (Figure 7, Table 4), indicating that additional host NE 

sensitivity genes-NE interactions may contribute to SNB disease caused by Sn1501∆8981  along 

with the Snn1-SnTox1 interaction. 

 Analysis of reaction type means of the two genotypic classes revealed that lines with only 

Snn1 were significantly more susceptible in their reaction to Sn1501∆8981  than lines without 

(Table 9). This indicates that in the absence of the Snn3-B1-SnTox3 interaction, the Snn1-

SnTox1 interaction plays a significant role in the development of SNB. 

Table 9. The different genotypic classes in the CS-DIC 5B × Sumai 3 recombinant inbred 
population and their average reaction score to the P. nodorum isolate Sn1501Δ8981a. 

Genotype No. RI lines Sn1501KO8981 
average reaction type 

CS-DIC 5B - 1.00±1.00 
Sumai 3 - 1.83±0.41 

Snn1 58 1.81a 
snn1 60 1.52b 
LSD  0.24 

aNumbers followed by the same letter in the same column are not significantly different at the 
0.05 level of probability. 
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 QTL analysis of the CDS population infected with isolate Sn1501Δ8981 revealed one 

QTL significantly associated with SNB susceptibility (Figure 8, Table 8). This significant QTL 

was the Snn1 locus, which had an LOD of 5.628 and explained 15.1% of the disease variation. 

An additional, nonsignificant QTL observed was QSnb.fcu-4B, which had an LOD of 2.862 and 

explained 9.9% of the disease variation. 

Genetic analysis of the Snn1-SnTox1 and Tsn1-SnToxA interactions in Septoria nodorum 

blotch caused by the P. nodorum isolate Sn2000  

 The CDS population was evaluated for reaction to SNB caused by P. nodorum isolate 

Sn2000, which contains the NE genes SnTox1 and SnToxA (Liu et al. 2004a; Liu et al. 2012). A 

total of eight replicates were combined for analysis because the variance among replicated was 

found to be not significantly different (χ2
df = 7 = 12.4798, P = 0.0858) determined from a 

Bartlett’s Chi-squared test for homogeneity. CS-DIC 5B and Sumai 3 had average disease 

reaction types of 2 (moderately resistant) and 2.56 (moderately susceptible), respectively (Table 

4, Table 10, Figure 9, Figure 10). The CDS population had an average disease score of 2.24 and 

a population range of 0.06 to 4.07 (Table 4, Figure 10), suggesting multiple host NE sensitivity 

gene-NE interactions are occurring to the isolate Sn2000.  
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Figure 9. Leaves of CS-DIC 5B and Sumai 3 inoculated with different Parastagonospora 
nodorum isolates. CS-DIC 5B has the NE sensitivity gene Snn1, whereas Sumai 3 has Snn3-B1 
and Tsn1. P. nodorum isolate Sn2000 contains the NE genes SnTox1 and SnToxA whereas 
Sn2000KO6 contains the NE gene SnTox1.  
 
 
 

 

Figure 10. Histograms of the average lesion-type reaction of the CS-DIC 5B × Sumai 3 
recombinant inbred population to Parastagonospora nodorum isolates Sn2000 and Sn2000KO6. 
The x-axis indicates the range the range for each lesion type and the y-axis is the number of 
RILs. The average lesion-type of each parent is indicated above the lesion type range. CS-DIC 
5B has the genotype Snn1/snn3-B1/tsn1 and Sumai 3 has the genotype snn1/Snn3-B1/Tsn1. 
Sn2000 contains the NE genes SnToxA and SnTox1; Sn2000KO6 contains the NE gene SnTox1.  
  

Analysis of the reaction type means of the four genotypic classes revealed that lines 

containing at least one NE sensitivity gene were significantly more susceptible to Sn2000 than 

lines containing neither of the NE sensitivity genes (snn1/tsn1), indicating that both the Snn1-
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SnTox1 and Tsn1-SnToxA interactions play a significant role in the development of SNB (Table 

10). Lines with only Tsn1 (snn1/Tsn1) were significantly more susceptible than lines with only 

Snn1 (Snn1/tsn1), indicating that the Tsn1-SnToxA interaction plays a more significant role than 

the Snn1-SnTox1 interaction in SNB development. Lines with either Tsn1 or Snn1 were not 

significantly different than lines with both genes (Snn1/Tsn1) indicating that the additive effects 

of these two interactions are minimal in this particular host-pathogen system. 

Table 10. The different genotypic classes in the CS-DIC 5B × Sumai 3 recombinant inbred 
population and their average reaction score to the P. nodorum isolates Sn2000a. 

Genotype No. RI lines Sn2000 average 
reaction type 

CS-DIC 5B - 2.00±0.60 
Sumai 3 - 2.56±0.86 

Snn1/Tsn1 23 2.66ab 
snn1/tsn1 28 1.12c 
Snn1/tsn1 35 2.27b 
snn1/Tsn1 32 2.88a 

LSD  0.47 
aNumbers followed by the same letter in the same column are not significantly different at the 
0.05 level of probability. 

 QTL analysis of the CDS population infected with isolate Sn2000 revealed three QTLs 

significantly associated with SNB susceptibility (Figure 11, Table 11). The QTL with the largest 

effect was the Tsn1 locus, which had an LOD of 14.841 and explained a total of 32.7% of the 

disease variation. The QTL with the second largest effect was the Snn1 locus, which had an LOD 

of 4.724 and explained 7.1% of the disease variation. The third significant QTL was QSnb.fcu-

4B, which had an LOD of 4.173 and explained 10.1% of the disease variation.  



 

 

61 

Table 11. Single-trait multiple interval mapping analysis susceptibility to SNB caused by P. nodorum isolates Sn2000 and 
Sn2000KO6 in the CS-DIC 5B × Sumai 3 population. 
Gene Chr. 

arm 
Genetic 
position (cM) 

LODa  R2b Source 
Sn2000 Sn2000KO6  Sn2000 Sn2000KO6 

Snn1 1BS 1.4 4.73 14.24  0.071 0.302 CS-DIC 5B 
QSnb.fcu-4B 4BL 55.7 4.17 13.82  0.101 0.344 CS-DIC 5B 
Tsn1 5BL 63.9 14.84 -  0.327 - Sumai 3 
aLogarithm of odds, determined by the execution of 1000 permutations on marker and phenotypic datasets, cutoff value yielded was 
3.25 for detection of significant QTL 
bR2 = coefficient of determination 

- non-significant  
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Figure 11. Single-trait multiple interval regression maps of chromosomes 1B and 5B in the CS-
DIC 5B × Sumai 3 recombinant inbred population containing QTL associated with P. nodorum 
isolates Sn2000 and Sn2000KO6. Sn2000 contains the NE genes SnTox1 and SnToxA whereas 
Sn2000KO6 contains SnTox1. The individual chromosomes are located beneath the QTL line, 
with the marker loci shown above each linkage group and the distance between loci shown 
below in centiMorgan (cM). The dashed lines represent the logarithm of odds (LOD) significant 
threshold of 3.25. A LOD scale is indicated on the right along the x-axis.  
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Genetic analysis of the Snn1-SnTox1 interaction in Septoria nodorum blotch caused by the 

P. nodorum isolate Sn2000KO6-1  

The CDS population was evaluated for reaction to SNB caused by P. nodorum isolate 

Sn2000KO6-1, which is genetically similar to Sn2000 but lacks SnToxA (Liu et al. 2012). Five of 

the six replicates were combined for analysis because the variance among these replicates was 

not significantly different (χ2
df = 2 = 4.1448, P = 0.3868) as determined by a Bartlett’s Chi-square 

test for homogeneity. CS-DIC 5B and Sumai 3 had average reaction types of 2.1 (moderately 

resistant) and 0.6 (resistant), respectively (Table 4, Table 12, Figure 9, Figure 10). The CDS 

population had an average disease score of 2.02 and a population range of 0 to 4 (Table 4, Figure 

10), suggesting additional host-pathogen interactions are occurring along with the Snn1-SnTox1 

interaction. 

Analysis of the reaction type means of the two genotypic classes revealed that lines 

containing Snn1 were significantly more susceptible in their reaction to Sn2000KO6 compared to 

lines without (Table 12), indicating that the Snn1-SnTox1 interaction plays a significant role in 

the development of SNB.  

Table 12. The different genotypic classes in the CS-DIC 5B × Sumai 3 recombinant inbred 
population and their average reaction score to the P. nodorum isolate Sn2000KO6a. 

Genotype No. RI lines Sn2000KO6 average 
reaction type 

CS-DIC 5B - 2.10±0.42 
Sumai 3 - 0.60±1.08 

Snn1/Snn1 58 2.51a 
snn1/snn1 60 1.57b 

LSD  0.36 
aNumbers followed by the same letter in the same column are not significantly different at the 
0.05 level of probability. 

QTL analysis of the CDS population infected with isolate Sn2000KO6-1 revealed two 

QTLs significantly associated with SNB susceptibility (Table 11, Figure 11). The QTL with the 
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largest effect was the Snn1 locus, which had an LOD of 14.241 and explained 30.2% of the 

disease variation. The other significant QTL was QSnb.fcu-4B, which had an LOD of 13.816 and 

explained 34.4% of the disease variation.  

Necrotic flecking on wheat leaves post P. nodorum infection associated with a compatible 

Snn1-SnTox1 interaction 

 A necrotic flecking phenotype was observed on leaves of CS-DIC 5B and lines 

containing Snn1 when inoculated with multiple P. nodorum isolates (Figure 4, Figure 9). Plants 

inoculated with the P. nodorum isolates Sn2000, Sn2000KO6, and SN15 were given a score of 0 

(absence) or a 1 (presence) based on the flecking phenotype at 7 days post inoculation. Bartlett’s 

Chi-squared test for homogeneity indicated that the variance among replicates for each isolate 

was homogenous (Sn2000: χ2
df = 4 = 0.000043, P = 1.000; Sn2000KO6: χ2

df = 2 = 0.00653, P = 

0.9967; SN15: χ2
df = 3 = 0.0669, P = 0.9955) and the means scores were converted into genotypic 

markers and mapped onto chromosome 1B (data not shown). The Sn2000, SN15, and 

Sn2000KO6 necrotic flecking markers co-segregated with the Snn1 phenotypic marker when 

added to the chromosome 1B map. These mapping results suggest the necrotic flecking 

phenotype observed with some P. nodorum isolates is closely linked to Snn1 and is associated 

with the presence of a compatible Snn1-SnTox1 interaction. 

Discussion 

 The relationship between biotrophic pathogens and their hosts have been studied 

extensively, with the occurrence of multiple gene-for-gene interactions normally leading to the 

same level of resistance as a single interaction. Less research is available on how multiple 

inverse gene-for-gene interactions between necrotrophs and their hosts changes the disease level 

and severity. This is the first study evaluating the relative effects of the Snn1-SnTox1, Snn3-B1-
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SnTox3, and Tsn1-SnToxA interactions in a single biparental population. The goal of this 

experiment was to determine the individual and combined effects of these three interactions on 

the development of SNB. Previously, the hard red spring wheat BG population, derived from 

crossing BR34 and ‘Grandin’, was evaluated for SNB using many of the P. nodorum isolates 

used in this study. The BG population segregates for the NE sensitivity genes Snn2, Snn3, and 

Tsn1 (Friesen et al. 2007, 2008; Liu et al. 2006; Faris et al. 2011). The findings from this study, 

along with the BG studies, will provide breeders with insights into which NE sensitivity genes 

should be a priority to breed out of their programs.  

Role of the Tsn1-SnToxA and Snn3-B1-SnTox3 interactions in SNB susceptibility to P. 

nodorum isolates Sn4, Sn5, and Sn6 

 In this study, I found that the Tsn1-SnToxA and/or Snn3-B1-SnTox3 interactions were 

the only significant contributing factors in SNB disease caused by P. nodorum isolates Sn4, Sn5, 

and Sn6 from QTL analysis and genotype mean lesion scores. These three isolates all contain the 

NE genes SnTox1, SnTox3, and SnToxA and I expected them to produce all three NEs during the 

infection process. The genotypic class mean for snn1/Snn3-B1/Tsn1 for these three isolates was 

not significantly different than the average reaction type for the Snn1/Snn3-B1/Tsn1 genotype 

class, providing evidence that in the CDS population the Tsn1-SnToxA and Snn3-B1-SnTox3 

interactions, and not the Snn1-SnTox1 interaction, are important for SNB development to Sn4, 

Sn5, and Sn6.  

 For these three isolates, the Snn1/snn3-B1/tsn1 genotype was not significantly different 

than the snn1/snn3-b1/tsn1 genotype. This and the fact that the Snn1 locus was not significantly 

associated with SNB in QTL analysis indicated that the Snn1-SnTox1 interaction did not play a 

significant role in conferring disease in the CDS population to P. nodorum isolates Sn4, Sn5, and 
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Sn6. Gao et al. (2015) investigated SnTox1 expression in plants infected with Sn4 and Sn6 and 

found no SnTox1 transcripts at 72h post inoculation in the ITMI population. This data, along 

with the findings from our study, suggest that SnTox1 was possibly suppressed or down 

regulated during infection in these three isolates. However, this hypothesis and the potential 

underlying biological reason mechanisms require further study. 

 Previous research using these three isolates found that multiple sensitivity gene-NE 

interactions tend to have additive effects (Chu et al. 2010; Faris et al. 2011; Friesen et al. 2007). 

In this study, I did not observe additive effects of multiple interactions for Sn4, Sn5, and Sn6, 

with genotypic classes with either Snn3-B1 or Tsn1 having similar levels of SNB development as 

genotypic classes with both NE sensitivity genes. Faris et al. (2011) and Friesen et al. (2007) 

observed additive effects for multiple interactions to these isolates in the BG population. This 

suggests that epistasis is occurring between host genetic factors, such as host gene action or cross 

talk among defense pathways, because the only differences between those studies and this study 

was the host population.  

 Interestingly, for Sn5 I observed that Snn1/Snn3-B1/Tsn1 lines had significantly lower 

reaction type means than snn1/Snn3-B1/Tsn1 lines. This result suggests that for Sn5, the 

presence of Snn1 may decrease the type of lesion that forms. This could be due to multiple 

interactions occurring simultaneously having an antagonistic effect on one another. Another 

reason I may be observing a significant difference in these two genotypic classes is due to the 

scoring scale used, which reflects lesion type and size but not pathogen sporulation and 

virulence. Studies examining the difference in pycnidia formation on lines from these two 

genotypic classes are needed to determine if there is actually more disease on snn1/Snn3-

B1/Tsn1 plants compared to Snn1/Snn3-B1/Tsn1 plants.  
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Role of the Tsn1-SnToxA, Snn3-B1-SnTox3, and Snn1-SnTox1 interactions in SNB 

susceptibility to P. nodorum isolate SN15  

 I also did not observe a QTL at Snn1 for P. nodorum isolate SN15, which has the NE 

genes SnTox1, SnTox3, and SnToxA, however, the average reaction type for lines with only Snn1 

had significantly more disease than lines with no NE sensitivity genes, suggesting that the Snn1-

SnTox1 interaction plays a limited role. This differs from the results seen for the other three 

isolates that contain the NE genes SnTox1, SnTox3, and SnToxA. The difference in geographical 

origin, which is Australia for this isolate whereas the others are North America, may explain the 

difference in SnTox1 expression. Lines with Snn1 inoculated with SN15 had extensive necrotic 

flecking, but relatively little flecking was observed for Sn4, Sn5, and Sn6, providing further 

evidence that the Snn1-SnTox1 interaction plays a more significant role in SNB severity to 

SN15.  

 Interestingly, SN15 was the only isolate in which we observed additive effects for the 

Snn3-B1-SnTox3 and Tsn1-SnToxA interactions, albeit only in the absence of Snn1.  

As stated previously, the presence of too many host sensitivity gene-NE interactions may have 

antagonistic effects in some host backgrounds or it may be due to a shortcoming of our scoring 

method accounting for this decrease in average lesion type in the presence of Snn1. The finding 

of the additive role the Snn3-B1-SnTox3 and Tsn1-SnToxA interactions play is congruent with 

previous research done by Friesen et al. (2008), where genotypes with multiple interactions are 

significantly more susceptible than genotypes with a single interaction. 

 Recently, Phan et al. (2016) studied a population that segregated for Snn3-B1 and Snn1 

and inoculated the population with SN15. The Snn1 locus explained the largest proportion of the 

disease variation in seedling and adult plants, explaining 18% and 19% respectively. They 
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noticed the absence of Snn3-B1 effects on susceptibility, which led them to further investigate by 

infecting their population with the SnTox1 knockout isolate SN15tox1-6. In the absence of 

SnTox1, the Snn3-B1-SnTox3 interaction explained 9% of the disease variation. Differences 

between which interaction explained the most disease between their population and the one used 

in this study may be due to many possible reasons. The scoring scale used to quantify disease 

differs between our two research groups, with the Australian group scoring on a 1 to 9 scale 

whereas I used a 0 to 5 scale. If their scale takes into account percent leaf area damaged, the 

Snn1-SnTox1 interaction becomes a major contributing factor due to the abundance of necrotic 

flecking. Our scale differs in that it takes into account lesion type contributing to greater disease 

rather than percent leaf area. Another discrepancy between our two populations may be Snn3-B1 

allelic variation, which is discussed in further detail below.  

Role of NE expression in SNB 

 I observed heavy necrotic flecking on Snn1 leaves inoculated with Sn2000, Sn2000KO6, 

and SN15. When comparing Sn2000 and Sn2000KO6, the Snn1-SnTox1 interaction became a 

more significant disease determinant for Sn2000KO6 in the absence of the Tsn1-SnToxA 

interaction. This was observed in both the average reaction type scores and the QTL analysis. 

Supporting this conclusion is that when comparing Snn1/tsn1 lines for Sn2000 with Snn1 lines 

for Sn2000KO6, I observed a higher average reaction type. These findings suggest that the Snn1-

SnTox1 interaction actually contributes more to disease in Sn2000KO6, rather than the locus just 

explaining a higher percent of disease because the Tsn1-SnToxA interaction is absent. From this, 

I concluded that pathogen genetic factors influence the importance of each interaction in causing 

disease, rather than host factors. These genetic factors could be differential expression of NE 

genes.  
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Virdi et al. (2016) found that the Tsn1-ToxA interaction was not significant in its 

contribution to tan spot; however it was significant in the same population in its contribution to 

SNB. Expression analysis revealed that SnToxA in not highly expressed in some P. tritici-

repentis isolates, providing proof that NE gene expression plays a significant role in the amount 

of disease each NE sensitivity gene-NE interaction plays in disease development. A similar 

observation was observed by Faris et al. (2011), evaluating the BG population with P. nodorum 

isolates Sn4 and Sn5. In that study, an increase in the amount of disease explained by the Tsn1 

locus for an isolate was correlated with a higher level of SnToxA expression. From our 

inoculation experiments, I found that SnToxA may be epistatic or downregulating the expression 

of SnTox1 in planta during infection. Initial gene expression analysis in our lab shows that 

SnTox1 expression is greater in Sn2000KO6 compared to Sn2000. Additional replications are 

still needed in order to validate this hypothesis.  

Necrotic flecking and its relationship with the Snn1-SnTox1 interaction 

 This study was the first time in which the necrotic flecking phenotype was mapped as a 

phenotypic trait and was found to cosegregate with Snn1. This necrotic flecking type has 

previously been found to be associated with SnTox1 (Liu et al. 2004b, 2012, 2016) and is 

observable by 2 days post inoculation. Preliminary research in our lab has found that lesion 

formulation and therefore sporulation do not occur within every fleck, however it may originate 

from within select necrotic flecks. This phenotype is similar to that observed in the wheat-rust 

system post recognition, with common defense mechanisms such as electrolyte leakage, DNA 

laddering, and an increase in ROS being initiated post recognition of both rust and SnTox1 foliar 

application (Liu et al. 2012, 2016). Necrotic flecking may be a by-product of these host 

reactions. Recently, Snn1 was cloned and found to encode a WAK protein (Shi et al. 2016b). 
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This early recognition of SnTox1, along with this unique phenotype, may be due to this 

interaction hijacking the PTI pathway rather than the ETI defense pathway because many PRRs 

are WAKs (Shi et al. 2016b). SnTox1 is unique relative to other NEs in that it is a dual function 

protein, eliciting both disease and protecting the pathogen from host chitinases, along with 

causing necrosis on leafs post foliar application of the purified NE (Liu et al. 2016).  

Xu et al. (2004) screened seedlings of synthetic hexaploid wheat lines with Sn2000. They 

observed the necrotic flecking phenotype on some lines and found that this phenotype was 

associated with resistance in these lines rather than susceptibility through simple linear 

regression. I observed on wheat lines inoculated with Sn2000 that had flecking also had smaller 

lesions, which usually rated as a 1.5-2.5 on our scale, which is considered moderately resistant to 

the point between resistant and susceptible. However, I did not differentiate the lines with Snn1 

and CS-DIC 5B background at 4BL from one another, with the latter potentially increasing 

lesion size.  

From this initial research, I can recommend that breeders and pathologists can use this 

unique phenotype in the field to determine if an isolate present is producing SnTox1 and if the 

line they are working with contains Snn1. This also provides insight into some of the 

shortcomings of our scoring scale and its ability to detect the amount of disease contributed to 

Snn1-SnTox1 in the presence of other interactions.  

Liu et al. (2016) inoculated wheat lines containing Snn1 with SnTox1 followed by the 

avirulent P. nodorum isolate Sn79-1087. They found that in the presence of SnTox1, Sn79-1087 

was able to successfully penetrate, colonize, and sporulate, thus causing disease. Other 

experiments performed by this group found that SnTox1 plays an important role in penetration. 

From my research, along with the work done by Liu et al. (2012) and Liu et al. (2016), it seems 
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possible that P. nodorum uses the Snn1-SnTox1 interaction to form necrotic flecks in the early 

stage of infection. The resulting necrotic flecks are then used for penetration and pathogen 

growth, and in their absence this may prevent some isolates from successfully colonizing a host. 

The reason behind why not every necrotic fleck is used to lesion development remains unclear.  

Snn3-B1 allelic variation and its role in SNB 

 The Snn3-B1-SnTox3 interaction was a significant disease contributor, explaining 18.1-

21.2% for P. nodorum isolates Sn4, Sn5, Sn6, SN15, and Sn1501 on the CDS population. In the 

BG population, the Snn3-B1-SnTox3 interaction was only significant for Sn1501, explaining 

13% of the disease variation. This is the only isolate they studied which lacked SnToxA, which 

when SnToxA was present explained 20-56% of the disease variation (Friesen et al. 2007, 2008; 

Faris et al. 2011). The difference between the two populations in the amount of disease explained 

by Snn3-B1-SnTox3 is due to host genetic differences. The BG population contains Snn2, which 

has been suggested to be epistatic to Snn3-B1 (Friesen et al. 2008). Shi et al. (2015) found, 

through infiltration studies, that multiple alleles of Snn3-B1 may exist. When infiltrating the 

SnTox3 differential line BG220 and Sumai 3, a parent of the population used in this study, with 

purified SnTox3, different degrees of sensitivity were observed with Sumai 3 having a more 

severe necrotic reaction than BG220. The most probable explanation for the differences in the 

Snn3-B1-SnTox3 interactions between the populations is therefore most likely due to the Snn3-

B1 allele in Sumai 3 having a stronger affinity for SnTox3 than the allele found in the BG 

population and supports the hypothesis of multiple alleles made by Shi et al. (2015). In order to 

test this theory further and to validate it, Snn3-B1 will need to be cloned. If multiple alleles do 

exist, this will add another level of complexity to this pathosystem and may be useful for 
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breeders in determining how much of a role Snn3-B1 may play in their populations in 

determining SNB in the field. 

Role of Snn1-SnTox1 interaction in SNB to P. nodorum isolates Sn1501 and Sn1501∆8981 

When the CDS population was infected with Sn1501Δ8981, which has a disrupted 

SnTox3 gene, the Snn1-SnTox1 interaction explained 18% of the disease variation. This suggests 

that SnTox3 may be downregulating SnTox1 expression in Sn1501; however, expression studies 

in planta are needed to test this hypothesis. Recently, Phan et al. (2016) found that SnTox1 

downregulates SnTox3 in the P. nodorum isolate SN15, which was also used in this study. Using 

SN15tox1-6, which has SnTox1 deleted, they observed at 48 h post inoculation that SnTox3 

expression was greater compared to the wildtype, SN15. Different genetic backgrounds in P. 

nodorum isolates may control the expression of NE genes, along with different haplotypes 

having different expression levels. Another explanation for the absence of a QTL at Snn1 when 

the CDS population was inoculated with Sn1501 is that the small, brown necrotic lesions more 

characteristic of the Snn1-SnTox1 interaction are masked by the large, necrotic lesions caused by 

a compatible Snn3-B1-SnTox3 interaction. The later explanation is the most probable one 

because when comparing average reaction types between Sn1501 and Sn1501Δ8981, the lesion 

size for all four genotypic classes decreases in the knock out isolate, indicating that 

Sn1501Δ8981 causes less disease.  

Role of Snn1-SnTox1 interaction in SNB to P. nodorum isolates Sn2000 and Sn2000KO6 

 I observed a fourfold increase in the amount of disease explained by Snn1 for 

Sn2000KO6 compared to Sn2000. When comparing lines with Snn1 in average reaction type to 

Sn2000 and Sn2000KO6, I also observed an increase in lesion type, which provides further proof 

that the Snn1-SnTox1 interaction plays a more crucial role in SNB development to Sn2000KO6 
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compared to Sn2000. The reason for this is most likely due to increased SnTox1 expression in the 

absence of SnToxA, which may downregulate SnTox1. Currently, I am performing expression 

experiments with these two isolates on my parental lines and Snn1/Snn3-B1/Tsn1 and snn1/snn3-

B1/tsn1 lines at multiple time points to determine if this is true. A visual indicator of increased 

SnTox1 expression may be the amount of necrotic flecking observed on infected leaves. When 

comparing Snn1 lines infected with Sn2000 and Sn2000KO6, I observed a higher percent of leaf 

area covered in necrotic flecks for those infected with Sn2000KO6 compared to Sn2000. 

Interestingly, I also observed a high percentage of leaf area covered in necrotic flecks in lines 

inoculated with SN15, which was shown by Phan et al. (2016) to have a high level of SnTox1 

expression further supporting my theory.  

Novel QTL on chromosome 4B 

 The QSnb.fcu-4B QTL observed to P. nodorum isolates Sn2000, Sn2000KO6, Sn1501, 

and Sn1501Δ8981 has been observed in the ITMI population inoculated with Sn2000 and 

Sn2000KO6, along with a QTL in this region observed in the LP749 population inoculated with 

Sn2000, Sn2000KO6, Sn1501, and Sn1501Δ8981. The QTL in this region in the LP749 

population was due to a compatible interaction between Snn5 and SnTox5. To investigate 

whether I was observing the Snn5-SnTox5 in the CDS population, I used culture filtrates 

containing SnTox5 to screen our two parents, CS-DIC 5B and Sumai 3. Neither parent was 

sensitive to these cultures, indicating that Snn5 is not present in our population. The donor parent 

of this allele in the CDS population is CS-DIC 5B. A QTL has been observed in this same region 

in the ITMI population with Sn2000 and its knockout isolates. I am currently working on further 

dissection of this uncharacterized interaction in the wheat-P. nodorum pathosystem. Further 
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work with the CDS population, along with additional populations, will be able to give us insight 

into whether this is an allele of the Snn5 gene or a closely located sensitivity gene.  

 In the ITMI population, the QSnb.fcu-4B QTL explained up to 50% of the disease 

variation (Liu et al. 2004b, 2012). In this study, for P. nodorum isolates Sn1501 and 

Sn1501∆8981, QSnb.fcu-4B explained 14.1% and 13% of the disease variation, respectively. 

When the CDS population was inoculation with Sn2000 and Sn2000KO6, I observed a similar 

pattern for QSnb.fcu-4B as with the QTL above Snn1, with an increase in the amount of disease 

this interaction explained increasing from 10.1% for Sn2000 to 34.4% for Sn2000KO6. This 

increase in QTL magnitude, along with the percent of disease variation explained may be 

regulated by the same factors regulating SnTox1 gene expression in Sn2000. The phenotype 

associated with the presence of QSnb.fcu-4B is large necrotic lesions, similar to that observed for 

many other compatible interactions in the wheat-P. nodorum pathosystem.  

Novel QTL on 5B distal to Tsn1 

To further investigate the absence of a Snn1-SnTox1 interaction with some isolates, I 

inoculated the CDS population with Sn1501, an isolate containing the NE genes SnTox1 and 

SnTox3. No QTL at the Snn1 locus was observed and only very light flecking was seen on lines 

with Snn1. The Snn3-B1-SnTox3 interaction was the most significant factor in SNB explaining 

21.2% of the disease variation, followed by an uncharacterized QTL located on chromosome 

5BL distal to Tsn1. This QTL, QSnb.fcu-5BL.2, explained 12.5% of the disease variation. A QTL 

was seen in this same region of chromosome 5BL in the BG population when inoculated with 

Sn2000 (Liu et al. 2006). More recently, a minor QTL located in the same region was reported in 

a hexaploid wheat population infected with P. tritici-repentis (Liu et al. 2017). When present in 
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QTL analysis with both P. nodorum and P. tritici-repentis isolates, this QTL was very minor in 

its contribution to leaf spot diseases.  

Importance of the Snn1-SnTox1, Snn3-SnTox3, and Tsn1-SnToxA interactions in the field 

Previous studies in addition to the current one are important for understanding disease 

under a controlled environment at the seedling stage. However, infection in the field under 

natural conditions gives a more realistic view of how wheat and P. nodorum are interacting in 

farmers’ fields. Friesen et al. (2009) evaluated the BG population in the field with Sn5. They 

found that the Tsn1-SnToxA interaction was a major disease determinant in the field, along with 

the Snn2-SnTox2 interaction, each explaining approximately 18% and 13% of the disease 

variation, respectively. Phan et al. (2016) evaluated the Calingiri × Wyalkatchem population, 

which segregates for Snn1 and Snn3-B1, in the field in Australia with SN15. The Snn1-SnTox1 

interaction under these conditions accounted for approximately 19% of the disease variation and 

was the major disease determinant in their experiment. Recently, Ruud et al. (2017) showed that 

the Snn3-SnTox3 interaction was a major disease determinant in the field in Norway on the 

SHA3/CBRD × Naxos population. Snn3-B1 explained upwards of 51.8% of the disease variation 

for the Norwegian isolates used in this study. These previous research findings indicate that all 

three of NE sensitivity genes present in our study may play important roles in determining 

disease under certain conditions. 

Conclusion 

Overall, the findings from the CDS population indicate that there is still knowledge gaps 

in our understanding of the wheat-P. nodorum pathosystem. I have shown that in some host 

genetic backgrounds, the Snn3-B1-SnTox3 interaction is a significant contributor to disease 

along with the host genetic background influencing whether additive effects are observed for 
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multiple interactions. The Tsn1-SnToxA interaction was significant for all isolates in which 

SnToxA was present, which is congruent with QTL analysis performed on other populations with 

the same isolates used in our study. However, we observed that the amount of disease variation 

explained by this interaction and the Snn3-B1-SnTox3 interaction varied between isolates, 

pointing to pathogen NE expression controlling the amount of SNB. This research also points to 

NE genes downregulating other NE gene expression, such as in the case of SnToxA 

downregulating SnTox1 in Sn2000. The relationship between host genes, pathogen genes, and 

their relationships with one another are complex and can be affected by multiple factors. For a 

more in depth study these factors, additional populations will be needed to be studied which 

contain the NE sensitivity genes seen in the CDS population, along with the same and additional 

P. nodorum isolates.  

Finally, this is the first time the necrotic flecking phenotype has been mapped as a 

qualitative trait, which co-segregates with Snn1. Further studies are needed to determine the 

biological reason behind the reduction of SnTox1 expression in some isolates and how this 

changes pathogen virulence. Overall, from this research I can recommend to breeders that the 

Snn1-SnTox1, Snn3-B1-SnTox3, and Tsn1-SnToxA interactions are important in their 

contribution to disease. From our analysis of North Dakota and Minnesota isolates (Sn4, Sn5, 

Sn6, Sn2000), the Snn1-SnTox1 interaction was only a major disease factor in Sn2000, so 

therefore breeders in this wheat growing region should focus on breeding out the other two NE 

sensitivity genes initially.  Perfect markers are available for Snn1 and Tsn1 because both have 

been cloned (Shi et al. 2016b; Faris et al. 2010), with co-segregating markers available for Snn3-

B1 (Shi et al. 2016a). This will allow breeders to more efficiently breed these NE sensitivity 
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genes out of their material, along with providing the infrastructure to switch off these genes 

using gene-editing technologies such as CRISPR/Cas9. 
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