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ABSTRACT 

Biofouling, the attachment and growth of microorganisms and aquatic animals on submerged 

surfaces, poses many economic and environmental challenges like increase in frictional drag, fuel 

consumption, and cost of maintenance of ships. Coatings containing harmful biocides, called anti-fouling 

(AF) coatings, are used to combat fouling. But, the biocides proved toxic to the aquatic environment, 

which led to replacement of AF coatings by non-toxic fouling-release (FR) coatings. FR coatings do not 

contain toxic biocides and allow formation of a weak bond between the surface and the organisms, which 

can be easily broken through light grooming or hydrodynamic forces. Current research is aimed at 

developing robust coatings that can exhibit similar or superior FR performance as compared to 

commercial FR coatings.  

 Previously, self-stratified FR coating systems were developed using siloxane and polyurethane 

(SiPU) in the Webster research group. Although the SiPU coatings exhibited comparable FR performance 

to the commercial standards, previous experiments did not show effect of surface grooming or cleaning 

on the FR performance. In the first part of the work, an SiPU formulation was abraded using two different 

Scotch Brite pads with varying roughness. Surface analysis experiments showed retention of 

hydrophobicity even after abrasions. The abraded coatings were characterized for FR performance 

against common fouling organisms. Improvement in FR performance of the abraded coatings compared 

to the smooth SiPU coating and the commercial standards against macrofoulants, like barnacles, was 

attributed to dimensions of the features formed on the coatings after abrasions.  

 Recent concerns regarding hazards associated with using isocyanates to make polyurethanes 

necessitated the need to find “safer” alternatives in FR marine applications. Therefore, novel isocyanate-

free glycidyl carbamate (GC) technologies were explored as potential substitutes for regular 

polyurethanes to make FR marine coatings. GC resins were modified using siloxanes and polyethylene 

glycols to make hydrophobic and amphiphilic coatings with varying surface chemistries. The resultant 

coatings were characterized for mechanical properties, thermal behavior, and finally, FR performance 

against common fouling organisms. Although GC coatings showed subpar overall FR performance as 

compared to the commercial standards, GC technologies show potential for use in marine applications.  
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CHAPTER 1. INTRODUCTION TO MARINE BIOFOULING 

Marine Biofouling— Process and Impact  

Marine biofouling, or simply biofouling, is the dynamic process of settlement, attachment, growth, 

and eventual metamorphosis of aquatic organisms like algae, barnacles, and tubeworms on surfaces 

submerged in natural water bodies.1 Biofouling is an inevitable, typically fast, and extremely complex 

phenomenon.2 Over 4000 different marine organisms have been identified as fouling organisms, all 

exhibiting different attachment mechanisms.3 As soon as a material surface is immersed in water, a 

conditioning layer is formed on the surface due to adsorption of organic molecules like proteins and 

polysaccharides.1 The extent of formation of the conditioning layer depends on the type and colonization, 

adhesion mechanism, availability of nutrients, and ability of the species to explore the underlying surface.2 

Unicellular organisms like bacteria attach onto the surface through electrostatic and then covalent 

interactions.4 Then, soft foulants like diatoms and microalgae settle onto the surface forming biofilms.3 

Finally, the biofilm provides nutrients that attract macrofoulants like barnacles and mussels, leading to 

their attachment and growth onto the substrates.1, 3, 5 Although biofouling can be explained in four main 

stages, the dynamic nature of the process allows attachment of hard foulants onto the surfaces as soon 

as the substrate is immersed in water.2, 3  

Biofouling is extremely disadvantageous for marine ships and vessels. Attachment of marine 

organisms on ship hulls increases the roughness of the surface.2 Roughening of the hulls in turn 

increases the frictional drag, while making movement of the ships difficult.6 Damage to the underlying hull 

surfaces increases the rate of corrosion of the ship hulls.4 More fuel is required to increase or maintain 

top speed and range of the vessels.2 Higher fuel consumption may increase emission of greenhouse 

gases, increasing pollution.2 Moreover, the aquatic species attached to the surface move to a non-native 

environment with the moving vessel.2 This transfer of aquatic animals to unfamiliar and unsuitable zones 

leads to an imbalance in the biodiversity of the aquatic culture.1, 2 Not just structurally and 

environmentally, economic impact of biofouling cannot be ignored either. For example, based on the type 

of marine coatings, the current hull cleaning practices and the level of fouling, the estimated overall cost 

of cleaning ship hulls of the Arleigh Burke DDG-51 destroyers (30% of the ships in the US Navy fleet) is 

~$56 million US dollars annually.2, 7 For the entire naval fleet, the costs can increase up to ~$220 million 
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per year.7 Complexity of the biofouling phenomenon makes it difficult to identify a single practical solution 

to combat attachment of aquatic species.  

Combating Biofouling  

Historically, lead, tar, wax, asphalt and copper were used to prevent fouling on ship hulls, which 

were typically made of wood.1, 3 Eventually, the wood substrates were replaced with iron. Iron surfaces 

were covered in copper or lead sheathing as antifouling layers.1 Accelerated deterioration of the ship hulls 

due to corrosion necessitated a requirement for more practical technologies.1 The efforts to find 

replacements for lead sheathings led to the introduction of antifouling (AF) coatings. 

Initially, AF coatings contained toxins, called biocides, dispersed in binders such as linseed oil or 

rosin.1, 8 Since the 1960s, more sophisticated AF coating systems have been developed. Tributyltin (TBT) 

was determined to be an effective biocide, which was widely used self-polishing AF paints. TBT was 

bound to polymeric binders via ester linkages.3, 8 Upon immersion in water, hydrolysis of esters led to 

release of the biocide into water.9 As the organisms approached the substrate, the toxic TBT completely 

stopped the attachment of the organisms by killing them, which in turn proved the TBT based AF coatings 

to be highly effective in combating biofouling.3, 9 Although effective in preventing biofouling, the biocidal 

leachates posed a threat to non-target organisms like oysters, fishes, and ducks.1, 10 High fat solubility of 

TBT leads to penetration of toxins into cell membranes, causing accumulation of toxins, disruption of 

cellular functions and mutation.10 Therefore, use of TBT was banned in 2003 and the use of TBT AF 

paints was completely stopped by 2008.2, 10 Apart from TBT, research was conducted to explore AF 

coatings containing copper oxide biocides.8, 10 Accumulation of copper oxide may not be as detrimental as 

TBT, but the long-term effects of copper cannot be overlooked.3 In general, leaching of biocides have 

detrimental effects on ecosystems. Extensive testing and research is required to find biocides that can be 

used to make AF coatings. Therefore, newer non-toxic fouling-release coatings have been introduced as 

replacement for the toxic AF coatings.  

Non-Toxic Fouling-Release Marine Coatings   

Fouling-release (FR) coatings were first introduced in the 1970s.1, 8 But, initial results with FR 

coatings indicated subpar performance of the coatings as compared to the TBT AF coatings.1, 5, 8 Since 

the 2000s, research to develop novel FR coatings, that reduce interactions between the surface and the 
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organism, has gained momentum.8 FR coatings are made using low surface energy, “slippery” materials 

and do not contain toxic biocides.3, 5 “Slippery” nature of the coatings causes the fouling organism to slip 

from the surface.1, 3 FR coatings may also allow the organism to attach to the coating, but hydrodynamic 

forces can easily overcome the weak interactions between the organisms and the surface.2 Generally, FR 

coatings are made using low surface energy and low modulus materials.11 Fracture mechanics showed 

that the combination of low surface energy and low modulus facilitated release of the foulants from the 

surface.12 Low surface energy of the coatings will minimize interfacial bond between the foulants and the 

surface.13 Further, materials with low modulus values contain “mobile” chains in the bulk, that disallow 

bioadhesives from sticking onto the surface, thereby, reducing attachment.11-13 Baier showed that 

materials with surface energy values between 20-30 mN/m are recommended for minimal bioadhesion.13, 

14   

(a)                                                                                    (b)                                                                                       

                

Figure 1.1. (a) The Baier curve, which shows the relationship between surface free energy and 
attachment of fouling (reproduced from Baier, 2006).14 (b) Relationship between surface free energy and 
elastic modulus of the surface (reproduced from Brady, 1999).13 
 

Commercially available FR coatings are typically based on polydimethylsiloxane (PDMS), which 

possesses surface tension of ~22 mN/m and modulus of ~5 MPa.12, 13 One of the biggest advantages of 

PDMS is its non-toxic nature. Moreover, flexibility of Si-O bonds in PDMS, familiar curing chemistry, and 

stability makes it favorable for use in marine applications.13 However, PDMS elastomers are more 

expensive compared to the previously developed marine paints. PDMS is susceptible to damage due to 
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its low modulus and low strength. Although useful for removal of foulants, non-wetting nature of PDMS 

makes adhesion of PDMS onto substrates difficult. Even if a tie coat is applied prior to application of 

PDMS, adhesion of PDMS to the tie coat may not be ideal for practical applications. The disadvantages 

of elastomeric PDMS based coatings led to further research to make tougher, more viable coatings for 

long term use in marine applications.  

Self-Stratified Siloxane-Polyurethane FR Coatings  

In an attempt to overcome the shortcomings of the commercial FR coatings, a novel one-pot 

siloxane-polyurethane (SiPU) coating system was developed at NDSU.15-18 The hybrid SiPU system 

comprised of an acrylic polyol, polyisocyanate, amine terminated PDMS, catalyst, and a pot-life extender 

into a single coating system.17-20 Incompatibility of PDMS with PU and surface energy minimization leads 

to stratification of PDMS to form the outer surface layer.17, 20 The outer PDMS layer imparts FR properties 

to the coatings, while the underlying PU matrix provides the required strength and adhesion to substrates. 

Moreover, the crosslinking of functional PDMS into the PU matrix increases the stability and the durability 

of PDMS in marine environment.  

 Over the years, the self-stratified SiPU system has been optimized using combinatorial methods, 

involving different isocyanates, polyols, and siloxanes.16, 19, 21-25 Previous laboratory experiments and field 

tests have shown the SiPU systems show comparable performance to the commercial standards.16 

Versatility of the SiPU coating system allows tuning of coating formulations as per requirements.16, 18, 21, 26 

The formulation flexibility of the SiPU system also facilitates modification of FR coatings to further 

enhance their FR performance. Over the years, focus has shifted towards developing methods to improve 

performance of FR coatings by tuning their surface chemistries. Among them, zwitterionic, amphiphilic, 

and bio-inspired FR coatings show promise to be used as viable FR coatings. 

Surface Wetting  

Difference in interfacial energies of a wetting liquid and a surface determines the extent of 

“wetting” of the surface by the liquid.27 Upon contact with the surface, the liquid contact angle can be 

greater than or less than 90°. The extent of wetting is dependent on the chemical composition and the 

topography of the surface.  A hydrophobic surface is characterized by a water contact angle > 90°, while 

angle < 90° indicates presence of a hydrophilic surface.27 Increasing concentrations of hydrophobic 
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(hydrophilic) components on the surface increases hydrophobicity (hydrophilicity) of the surface. Apart 

from changing composition of the surfaces, increasing surfaces roughness enhances hydrophobic or 

hydrophilic character of the surfaces.27 Introducing “textures” or features on the surfaces increases 

surface area, potentially increasing points of contact between the surface and the liquid.27 Upon contact 

with a rough surface, the wetting liquid can show either Cassie Baxter or Wenzel wetting state (Figure 

1.2).28-32 In Cassie Baxter wetting state, liquid droplets remain suspended on top of the surface features 

due to presence of air pockets between the surface features.28, 31 When the surface is tilted, the droplet 

rolls off of the surface, collecting dirt and surface impurities in the direction of flow.27 On the other hand, in 

Wenzel state, the droplet penetrates the grooves, increasing contact between the liquid and the 

underlying substrate.30, 32 Upon tilting, the droplet can either remain stationary or pass through the 

grooves.27 In the direction of flow, each liquid droplet shows advancing contact angle and receding 

contact angle.27 The difference between the two contact angles is called contact angle hysteresis (CAH). 

Rough hydrophobic surfaces, like Lotus leaf, typically show Cassie Baxter wetting state upon contact with 

water. CAH is extremely low due to similar advancing and receding water contact angles.27 On the other 

hand, higher interactions between water droplets and hydrophobic surfaces during Wenzel wetting state 

result in higher CAH.27 Wetting states of surfaces can be tuned per requirement. Yoshimitsu et al. showed 

that surfaces with higher actual surface roughness as compared to apparent surface area tended to show 

Wenzel wetting state.27, 33 With increasing apparent area of the surfaces, the substrate transitioned from 

Wenzel to Cassie Baxter state.33 Quéré et al. showed that area of substrate exposed to the wetting liquid 

also affects the wetting state of the surface— above a critical minimum area of exposure, Wenzel state 

was found to be thermodynamically stable.34-36 Wetting states of substrates are believed to be 

reversible— slight increase in pressure with Cassie Baxter state causes transition to Wenzel state, while 

evaporation of liquid in Wenzel state increases tendency to form Cassie Baxter wetting state.34, 35 In terms 

of bioadhesive attachment, Baier showed that more than the wetting state, CAH played an important role 

understanding FR behavior of surfaces; coatings with low CAH showed better FR properties.27, 37, 38 

Presence of air pockets on microtextured hydrophobic coating surface in Cassie Baxter wetting state 

imparts non-wetting character to the coating.27 The non-wetting surface is believed to disallow spreading 

and adhesion of bioadhesives on the coatings, reducing attachment of foulants.27 But, synthetic coatings 

https://www.nature.com/articles/nmat924#auth-2
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cannot retain or replenish air pockets over lifetime of the coating. Therefore, maintenance of the 

metastable Cassie Baxter wetting state is a big challenge in developing non-wetting surfaces in practical 

applications.  

 

Figure 1.2. Left— Wenzel and Cassie Baxter wetting states (reproduced from Erbil et al., 2009).29 Right— 
Rolling of droplets in Wenzel and Cassie Baxter states when the surfaces are tilted (reproduced from 
Genzer et al., 2006).27  
 
Biomimetic Approaches for FR coatings   

One of the biggest challenges in designing the optimum FR coating is the different attachment 

mechanism of the different fouling organisms.2 Therefore, studying the surface chemistry alone is not 

sufficient to accurately identify coatings that can provide protection from all foulants. The phenomenon of 

biofouling is evident not only on submerged artificial surfaces, but also natural bodies of aquatic plants 

and animals.39 Aquatic organisms have defense mechanisms that provide protection against attachment 

of fouling organisms.39 For example, aquatic organisms like lotus leaves, corals, whales, and sharks 

exhibit inherent resistance to fouling due to the presence of hierarchical features on the outer layers of 

their skins, secretion of oils and self-replenishing skin layers.39, 40 For naturally occurring surfaces, FR 

properties of the surfaces are a combination of physical, chemical, and mechanical attributes of the 

organisms. With such natural surfaces as inspiration, attempts have been made to incorporate these 

natural defense mechanisms into synthetic systems.  

Biomimetic coatings with hierarchical microtopographies, similar to Lotus leaves and shark skin, 

have been widely studied to promote FR behavior of synthetic surfaces. Lotus leaves are made of waxy, 

slippery outer surface with nano-sized surface gradients.39, 41 Water contact angle value of greater than 
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150° indicates superhydrophobic nature of the surfaces. Lotus leaves maintain Cassie Baxter wetting 

state due to presence of hierarchically arranged microtopographies on waxy surfaces.27, 39, 42, 43 In nature, 

a Lotus leaf can self-replenish its waxy surface and self-heal whenever the surface is damaged.42 This 

natural mechanism also allows air pockets on the leaf to be naturally regenerated.39 Similar to the Lotus 

leaf, biomimetic/bioinspired coatings can be based on rice leaves and butterfly wings— surfaces of rice 

leaves are made of sinusoidal grooves and hierarchically arranged waxy fibrils and bumps that impart 

non-wetting character to the leaves.44, 45 Similarly, wings made of roof shingle like scales with 

microgrooves impart water repellency and FR behavior to butterflies.44, 45 Apart from Lotus leaves and 

butterflies, periostracum of blue mussels shows presence of regular, parallel 1-1.5 mm wide ripples, 

placed ~1-2 mm apart, significantly reduces settlement of barnacle larvae.46 But the mussel-like 

topography did not show any particular effect on attachment of other foulants.46 Efficiency of the surface 

disappears when the ripple-like microtopography is destroyed by damage or erosion.46, 47 Therefore, the 

scale of this microtopography is substantially smaller than the artificial microtopographies tested so far.. 

Evenly distributed 200 mm diameter circular elevations on the carapace of crabs possess small, 2-2.5 

mm long spicule-like structures between the elevations.46, 48 Further, egg cases show presence of 

longitudinal ridges, with varying sizes and irregular spacing between 15-115 mm.39, 46 Surface 

topographies on crabs and egg cases can successfully deter hard foulants like barnacles and 

microorganisms respectively.46 Apart from ridges and ripples, surface of brittle star shows evenly 

distributed knob-like structures, 10 mm in diameter.46  

Shark skin is another natural surface that shows excellent FR properties. FR behavior of the skin 

is attributed to presence of rib-like microstructures (~4 mm high, 4-16 mm in length, and ~2 mm wide).39 

Potential of making effective biomimetic FR surfaces inspired development of the Sharklet AFTM coatings 

by Hoipkemeier-Wilson et al. in 2005.39, 49-51 Hierarchically arranged micro-sized ribs with different 

dimensions were introduced onto PDMS substrates.50-53 FR performance of the Sharklet AFTM samples 

against U.linza spores showed that coatings with 3 µm high ribs spaced 2 µm apart reduced settlement of 

algal spores by 63%, while rib height of 40 µm spaced 20 µm apart resulted in 97% reduction in barnacle 

cyprid attachment.52, 54 Apart from ribs, topographies such as pillars, channels, ridges, pits, and 

“honeycomb” textures have also been studied to develop potential “textured” FR surfaces. As compared 
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to rib-like Sharklet AFTM coatings, surfaces with ridges showed significant increase in spore settlement as 

compared to smooth surfaces.39, 52 Schumacher et al. superimposed the optimum FR surface patterns for 

different organisms (barnacle cyprids— 40 µm high, 20 µm wide and microalgae— 3 µm high, 2 µm wide) 

on the same substrate.53 Results obtained from the study showed that the barnacle cyprid attachment 

was successfully reduced due to presence of barnacle resistant topography.39 But, the barnacle-specific 

pattern provided a conducive growth environment to the Ulva spores, despite the presence of the algal-

specific pattern on the same surface.54, 55 The results thus obtained showed that laboratory experiments 

are not sufficient to correctly identify the optimum FR topography. Performance of “textured” coatings in 

field applications is a synergistic effect of multiple “texture” patterns with different sizes and shapes, along 

with colonization of the organisms in the aquatic environment.56, 57 Efimenko et al. attempted to study the 

durability and the efficiency of hierarchically textured coatings in field applications. Uniaxial strain was 

applied to PDMS substrates to create patterned surfaces.58, 59 Field immersion studies with the uniaxially 

strained coatings showed that the strained coatings remained clean even after 1 year of immersion.58 Any 

settlement that did occur could be easily removed from the surface of the coatings. The patterned 

surfaces successfully deterred barnacle attachment for 1 year after immersion.58 But, the coatings were 

unsuccessful in reducing attachment of U.linza spores.58 Settlement of algal spores was also studied on 

“honeycomb” textured surfaces made by hot embossing honeycomb structure onto poly(methyl 

methacrylate) surfaces.60 Honeycomb with sizes less 2 µm showed significantly lower settlement of 

U.linza spores.60 Barnacles of have shown tendency to preferentially settle in grooves of 1-10 mm in 

complex substrata and at the base of surface topographies of 3 mm height.61, 62  Hills et al. showed that 

some barnacle cyprids responded to fine surface textures with 0.5–2 mm scale.56, 63 Preferential 

settlement of organisms has been attributed to the need for refuge from shear forces that may be 

encountered during flow.46 Mesh structures in the range 1–100 mm and riblets (30-45 mm high) 

significantly deter barnacle settlement.64-66 Le Tourneux et al. proposed that roughness elements below 

35 mm may interfere with the size of the barnacle antennules (40 mm), thereby preventing attachment of 

the antennular disc.67 Unstable attachment of the barnacle causes the barnacle to avoid such textured 

surfaces.67 Laboratory experiments showed that attachment of marine organisms was dependent on the 

size of the surface “textures”. Since then, engineering models have been developed to better understand 
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the attachment behavior of the organisms on “textured” surfaces. Attachment point theory was developed 

to understand the effect of number of contact points between the organism and the surface on the FR 

performance.54, 68-70 According to this theory, FR organisms can be easily deterred from attaching onto the 

surfaces if non-equilibrium is created in the organism by reducing the number of attachment points 

between the organism and the substrate. 68, 71 FR performance against U.linza spores showed that the 

spores did not attach onto surfaces with gradients less than the size of the organism.68 Stresses 

generated within the organism due to lack of sufficient contact points on biomimetic surfaces forces the 

organism to explore other surfaces for attachment.68 Engineered Roughness Index (ERI) was introduced 

to determine the effect of feature size, geometry, and wetting behavior of coatings on FR performance of 

the substrate.51, 53, 72, 73 ERI is a dimensionless quantity that correlates Wenzel’s roughness factor with the 

degrees of freedom of movement and fraction of depressed surface.53 According to ERI theory, 

continuous recessed grooves or channels tend to foul faster than isolated ridges, since degree of freedom 

is comparatively higher in case of a continuous network.53, 74 Furthermore, similar to Wenzel wetting state, 

if the foulant can penetrate the microtextures, FR performance of the surface is significantly reduced.52 As 

an improvement to ERI, a second generation ERI model, ERIII model, was introduced, which correlated 

the attachment behavior of foulants with the ERI and the Reynolds number of the foulant.75 The ERIII 

model showed that attachment of microfoulants was a function of ERI (as determined from surface 

energy) x the Reynolds number of the organism.75 Another theory, the surface energetic attachment 

(SEA) model, combines concepts of both the attachment point theory and the ERI. SEA model provides a 

good estimation of fouling attachment with respect to the number of attachment points, size, geometry 

and wetting state of the surface topography.2, 72, 76 If the size of the feature is larger than the organism, the 

organism can insert itself between the features, exhibiting Wenzel wetting state.76 But, topographies 

smaller than the organism create a non-wetting Cassie Baxter surface, reducing interactions between the 

surface and the organism and facilitating FR behavior. Brennan et al. showed that not only in the settling 

stage, but even in the larval stage of the organism, if the size of the features is less than the size of 

antennules that explore the surface, the coatings can successfully deter biofouling.50, 51  

Further inspiration was drawn from whales, corals, and butterflies to make bioinspired FR 

systems. Whale skin-inspired coatings were made using polyelectrolytes, polyacrylic acid and 
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polyethylenimine through layer-by-layer assembly.77 Changes in pH resulted in formation of textures, 

similar to whale skin, on the polyelectrolytes rich surfaces. FR performance against U.linza spores 

showed that feature size of 2 µm successfully reduced settlement of the spores. This study also further 

supported the hypothesis that FR performance is indeed dependent on size, roughness, and arrangement 

of surface features. FR behavior of aquatic organisms like corals and molluscs is attributed to presence of 

elastic and mobile hair-like fibrils called cilia.39, 78, 79 Mobility of cilia also allows repulsion of the particles 

from the surfaces, reducing adhesion of organisms on the surface.80, 81 Simulations have been made 

based on cilia to understand the possibility of using cilia-like surfaces in FR applications. Effectiveness of 

cilia is dependent on stimuli responsive nature of cilia and the movement of the fibrils.82 So, for practical 

applications, developing surfaces that not only respond to stimulus, but also remain durable during use 

poses a big challenge.39, 40 Epstein et al. developed pitcher plant-inspired slippery liquid infused surfaces 

(SLIPS) as non-toxic FR surfaces.83  

Biomimetic and bioinspired surfaces provide promising strategies in development of non-toxic FR 

surfaces. Although lucrative, it is difficult to accurately predict FR performance of biomimetic/bioinspired 

coatings in practical applications due to different attachment behavior of target organisms and inability of 

the coatings to maintain their biomimetic characteristics.27, 76, 84 For example, regeneration of slippery 

synthetic surfaces or maintenance of superhydrophobic character like Lotus leaf on synthetic coatings 

poses a big challenge. Wetting behavior of the surfaces is also extremely susceptible to environmental 

changes; slight increase in pressure can cause easy transition from non-wetting Cassie Baxter to Wenzel 

wetting state. Furthermore, complications in fabricating low cost, “textured” surfaces for large scale 

commercial use may not always possible.  

Amphiphilic Coatings  

Till date, thousands of fouling organisms have been identified that show different attachment 

behavior.2, 3 For example, barnacles and mussels show affinity to hydrophilic surfaces, but can be easily 

removed from PDMS rich surfaces.17, 85, 86 Conversely, diatoms N.incerta attach strongly onto hydrophobic 

coatings, but show weak adhesion to hydrophilic surfaces like polyethylene glycol (PEG).87-89 Therefore, 

complex nature of adhesion processes of the different marine organisms has led to further research into 

developing viable “ambiguous” coatings containing hydrophobic and hydrophilic phases in the same 
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system.2 The process of adhesion begins with release and spreading of proteinaceous adhesives on the 

surfaces.1 Hydrophilic PEG chains have shown tendency to repel proteins and adhesives through 

hydrophilic interactions.87 PEG chains bind water molecules to the chains through hydrogen bonding.90 

The bound water molecules form a hydration layer, which cannot be displaced by the incoming protein 

molecules.90 Apart from that, presence of hydrophobic component in such amphiphilic coatings provides 

slippery character to the surfaces, reducing attachment of the organisms. Repulsion of proteins and 

release of foulants occur due to thermodynamic and kinetic instability caused due to surface ambiguity in 

the amphiphilic coatings.2, 90 Combination of PDMS or fluoropolymers with PEG in an amphiphilic coating 

system is expected to reduce hydrogen bonding of organisms and increase repulsion of proteins and 

adhesives.2, 91  

Previously, efforts have been made to design heterogeneous FR marine coatings through phase 

separation of polymer chains during or after crosslinking of the coatings.2 Such heterogeneous coatings 

typically contain immiscible block polymers of opposite polarities in the coatings.2 The first amphiphilic 

marine coating, based on self-assembly of hyperbranched fluoropolymers (HBFP) and PEG, was 

developed by Gudipati et al.2, 88, 91 Gudipati et al. showed that adsorption of proteins and polysaccharides 

was reduced with 45-55% by weight PEG chains in the formulations.88 Exposure of the HBFP-PEG 

coatings to aqueous environment caused swelling of PEG, leading to formation of heterogenous 

surfaces.91 Furthermore, tunability of these coatings allowed convenient alteration of coating 

compositions with HBFP-PEG to successfully lower barnacle cyprid attachment and increase diatom 

removal compared to regular PDMS substrates.92 Since then, different approaches involving amphiphilic 

prepolymers, amphiphilic additives, surface grafting, self-assembled layers, and nanocomposites have 

been explored to make amphiphilic coatings.4, 24, 93-99 Martinelli et al. developed amphiphilic acrylic 

copolymers-PDMS systems by blending PEG-fluoroalkyl acrylate (PEGFA) and polysiloxane methacrylate 

(SMA) copolymer in PDMS coatings.100 FR performance of the heterogeneous coating system was 

dependent on composition and concentration of the copolymer in coating formulations. Copolymer 

composition with 9:1 PEGFA: SMA ratio successfully lowered attachment and increased removal of 

U.linza spores; formulations with 1% and 4% by weight copolymer required low force of removal for 

barnacles.100 In another study, amphiphilic formulations containing PDMS, silanol terminated 
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fluoropolymer (CF3-PDMS), PEG modified trimethylsiloxane (TMS-PEG), and silica treated using 

hexamethyldisilazane were analyzed for FR performance.24 This multicomponent system showed good 

FR performance against bacteria and barnacles due to presence of both CF3-PDMS and TMS-PEG, but 

diatom removal remained unaffected by compositional variations in coating formulations.24 Another 

approach to develop amphiphilic surfaces is by using surface active block copolymers (SABC).89, 93, 97, 101, 

102 In one attempt, SABC were modified by grafting fluoroalkyl side chains, which showed weak adhesion 

of diatoms N.incerta and microalgae U.linza as compared to regular SABC.97 Similarly, SABC modified 

using PEG drastically reduced settlement of microalgae.97 Surfaces that combined fluoroalkyl and PEG 

side chains on SABC in varying proportions showed that increasing amount of PEG chains reduced 

attachment and increased removal of microalgae and diatoms.89 Studies conducted by making FR 

coatings by spraying or blending SABC with low and high modulus base coatings showed improvement in 

FR performance with decrease in modulus, supporting use of materials with low modulus in FR 

applications.93 Studies have also been conducted to understand the effect of PDMS on efficiency of 

PDMS modified SABC, to replace fluorinated SABC due to environmental concerns and relative high cost 

of fluorinated compounds.98, 103 Combination of SABC with PDMS showed similar FR performance to 

fluorinated SABC.103, 104 Not just PEG-PDMS components, modifications with non-natural amino acids 

have also been explored for FR coatings, that showed opportunities for optimization of FR properties with 

components with different polarities and functionalities.105 FR performance of a number of SABC modified 

using non-natural peptides through convenient thiol-ene click chemistry was evaluated.105 SABC with 

peptides that hampered hydrogen bonding showed reduction in algal attachment.105 Past research with 

SABC provided insights into development of cost effective technologies with convenient tunability of FR 

properties. Similar to SABC, amphiphilic additives containing blocks of hydrophobic and hydrophilic 

chains with different molecular weights, have been used to make amphiphilic coatings.106-109 The additives 

can then be easily incorporated into coating formulations. Over time, the additives diffuse through the 

coating layer to impart heterogeneity to the outer surface of the coatings.106 Grunlan et al. developed 

amphiphiles through hydrosilation reaction between oligodimethylsiloxanes and vinyl-terminated PEG and 

PDMS.110 The MW of the oligodimethylsiloxanes and PEG were varied to make different additives.110 The 

additives were then added to PDMS coatings and their FR performance was evaluated. FR results 
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obtained for the coatings showed that higher chain length of oligodimethylsiloxanes (13 repeating units) is 

anticipated to have increased mobilization of the PEG chains within the PDMS matrix, thereby increasing 

protein resistance of the coatings.110 PEG chains with 8-16 repeating units showed the best FR 

performance.111 Incorporation of 5-10% by weight additives showed drastic improvement of FR 

performance against biofilm, bacteria, and diatoms.108 Among the different approaches, coatings made 

using hydrophobic and hydrophilic oligomers as resin modifiers, amphiphilic prepolymers, and amphiphilic 

additives appear to show potential for large scale marine applications. Galhenage et al. made several 

amphiphilic prepolymers by functionalizing isocyanurate of isophorone diisocyanate (IPDI trimer) with 

PEG and PDMS of varying MW, in varying amounts.4 Then, formulations were made using additional IPDI 

trimer, the amphiphilic prepolymers and acrylic polyol to form self-stratified amphiphilic coatings.4 Surface 

analysis experiments showed surface segregation of the polar and the non-polar phases.4 Results 

obtained from FR experiments showed that FR performance of several amphiphilic formulations was 

comparable to or better than the commercially available marine coatings.4 The prepolymer based 

amphiphilic coatings facilitated easy removal of microfoulants, like bacteria and algae, and macrofoulants, 

like barnacles and mussels.4 Ability of amphiphilic systems to deter fouling by a variety of marine 

organisms with different attachment mechanisms has led to their popularity, not only in laboratory 

experiments, but also in practical applications. Commercially available Intersleek 1100SR and Hempasil 

X3 are two such popular amphiphilic marine coating.112, 113 

Zwitterionic Coatings 

Zwitterionic molecules possess both positive and negative moieties on the same molecule such 

that the overall charge of the molecule remains neutral.2 Zwitterionic chains in the coatings are expected 

to electrostatically bind water molecules on the surface.114 The tightly bound water molecules cannot be 

displaced by proteins and polysaccharides from bioadhesives secreted by the organisms.115, 116 

Therefore, the hydrophilic layer “camouflages” the substrates and does not allow bioadhesives to form 

strong bonds with the coating surface.116  Polyphosphorylcholine, sulfobetaines (SB) and carboxybetaines 

(CB) are the most widely researched zwitterionic materials for FR applications.117-122 Not just for good FR 

performance, SB and CB are also attractive candidates due to their low cost, superhydrophilicity, pH 

stability, high chemical stability, and resistance to protein adsorption.2, 115 Zhang et al. showed that very 
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few algae U.linza spores attached to surfaces made by grafting poly(sulfobetaine methacrylate) 

(polySBMA) chains on glass surfaces.2, 123 Another study, conducted to compare FR performances of 

polySBMA and poly(carboxybetaine methacrylate) (polyCBMA), showed successful inhibition of barnacle 

cyprid attachment.119 The barnacle cyprids seemed to “explore” polySBMA rich surfaces for attachment, 

but interestingly, the cyprids left the polyCBMA coating soon after contact with the surface, without 

“exploring” potential sites for attachment.119 The polyCBMA rich surfaces were believed to have provided 

an unfavorable surface for growth of the cyprids compared to the polySBMA rich surfaces, causing 

behavioral changes in the cyprids.119 Bodkhe et al. synthesized ABA-type amine terminated amphiphilic 

block copolymers using PDMS and poly(SBMA), with varying chain lengths, using Atom Transfer Radical 

Polymerization (ATRP) technique.114 The functional block copolymers were incorporated into self-

stratified SiPU FR coating formulations. Pseudobarnacle adhesion experiments showed that the barnacle 

studs for coatings with PDMS MW = 5k g/mol and polySBMA MW between 2.5k-10k g/mol required force 

of < 10 N for detachment. Evaluation of FR performance of the coatings showed that the zwitterionic 

coatings successfully deterred fouling by bacterium H.pacifica and diatom N.incerta. But, the coatings 

showed higher attachment of bacteria C.lytica and microalgae U.linza. Biomimetic zwitterionic coatings 

have also been attempted for application as FR coatings.124-126 Coatings modified using catechol 

functional groups, like 3,4-dihydroxyphenyl-L-alanine (DOPA), and SB have shown potential to reduce 

attachment of proteins and fibrogens.127  

Antimicrobial Coatings for Biomedical Applications 

Not just ships, biofilm formation on biomedical devices and implants poses big challenges. Biofilm 

growth on biomedical catheters, tubes, and implants begins with irreversible attachment of bacterial cells 

onto the substrates.128 The cells, then, that colonize the substrates by producing extracellular polymers 

(EPS).128 The highly hydrated EPS remains bound to the underlying surface even during flow.128 

Presence of “water channels” within the EPS allows transportation of essential nutrients and oxygen to 

the growing cells in the biofilm.128 Further growth and cell division in the biofilm causes the cells to detach 

from the biofilm, resulting in systemic infection.128 Therefore, surfaces of biomedical devices are 

physically or chemically altered to prevent or reduce attachment of the bacteria through functionalization 

derivatization, and surface modifications.  
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Antibacterial surfaces or coatings for biomedical applications are typically divided into two main 

types— 1. Bactericidal surfaces and 2. Antibiofouling surfaces.129 Bactericidal coatings disrupt or rupture 

bacterial cells upon contact with the surface, causing cell death.129 On the other hand, antibiofouling 

surfaces resist or prevent attachment of microorganisms through formation of unfavorable surface 

topographies or chemistries that repel and decrease proliferation of the bacteria.129 Incorporation of silver 

ions on biomedical surfaces has shown tendency to damage the bacterial membranes and disrupt the 

function of the bacterial enzymes and nucleic acids, due to reaction of the silver ions with the negatively 

charged nitrogen, oxygen, and sulfur atoms from the proteins and DNA of the bacteria.129, 130 The 

interaction of silver ions with thiol groups in the membranes is expected to provide bactericidal activity to 

the surfaces.129, 131 Formation of hydroxyl radicals in the bacteria causes damage to the cellular DNA, 

thereby preventing the formation of the bacterial biofilm.131 Bactericidal surfaces, incorporating covalently 

bonded antimicrobial agents, is another strategy used to reduce bacterial attachment onto biomedical 

devices. Requirements for successful use of antibacterial agents in coatings include presence of cationic 

groups, immobilized using PEG or oxazoline spacers, and apolar alkyl chains.132 Cationic polymers are 

believed to disrupt net negative charge of the bacterial membranes, causing cell lysis and death.129, 132 

Antimicrobial peptides (AMPs) are extremely effective against bacterial adhesion.129, 133, 134 Cationic 

nature of the AMPs allows electrostatic interactions with the negatively charged membranes.129 Even at 

low concentration, AMPs disrupt the bilayer of the bacterial membranes by formation of pores, 

disintegration of the membranes, and damage to the metabolic functions of the cells.133 Not just natural 

AMPs, synthetic mimics of AMPs (SMAPs) are amphiphilic polymers that cause disruption of cell 

membranes. SMAPs, polynorbornenes or poly(phenylene ethylene), derived from antimicrobial magainin 

or defensin peptides, exhibit antibacterial activity and low cytotoxicity.129, 135 For non-natural peptide 

mimics, called peptoids, hydrophilic side chains (e.g. methoxyethyl) are desirable due to their similarity to 

PEG, absence of proton donors in the chains, and ability to make water soluble peptoids.136, 137 Statz et 

al. synthesized a chimeric peptidomimetic polymer (PMP1) consisting of an N-substituted glycine 

(peptoid) oligomer coupled to a short functional peptide domain for surface adhesion.137 This combination 

of the peptoid with the peptide resulted in excellent protein resistance of the polymer over extended 

periods of time.137 Additionally, materials like polyethylene, polypropylene, nylon, poly(ethylene 
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terephthalate), and N-alkylated poly(ethyleneimines) (PEIs) are covalently immobilized onto cotton, wool, 

nylon, and polyester surfaces for antibacterial purposes; high molecular weight N-alkylated PEI chains 

exhibited higher antibacterial activity compared to low molecular weight PEI chains.129, 138 Not just 

antibacterial polymers, enzymes such as subtilins, amylases, and lysozymes, exhibit antibacterial 

behavior by hydrolyzing bacterial proteins or degrading polysaccharide layers.129, 139 Combination of the 

antibacterial N, N-dimethyldodecylammonium bromide (DDA) with hydrophilic cationic satellite, 

ethylenediamine (EDA), showed attraction of bacteria to the substrates and subsequent damage to the 

cells upon contact.140 The positively charged nitrogen atom from DDA interacts with the negatively 

charged head groups of acidic phospholipids from the bacterial membranes, causing perturbations in the 

cellular bilayers.140, 141 To combat these changes, the cells release potassium ions, which hampers 

physiological functions in the cells.140 Quaternary ammonium cations (QACs) have also shown potential 

for use in antimicrobial coatings.129, 142, 143 Effectiveness of the QACs is dependent on the length of the 

alkyl chains. For example, 14–16 carbons in the alkyl chains showed resistance to Gram-positive 

bacteria, whereas chain lengths of 12–14 carbons are more effective against Gram-negative bacterial 

cells.144 Alkyl chains above and below 18 carbons and 4 carbons respectively are shown to be ineffective 

against bacterial adhesion.129 In one attempt, well-defined PEGylated polymers with amines 

functionalities were synthesized using 2-(dimethylamino) ethyl methacrylate and oligo(ethylene glycol) 

methyl ether methacrylate monomers by reversible addition–fragmentation chain transfer polymerization 

(RAFT) technique.132, 145 The tertiary amines in the polymers were converted to quaternary amines, using 

alkyl, primary alcohol, primary amine, and carboxylic acid, to introduce cationic character to the chains.145 

The length of the alkyl spacer and the chemical functionality present in the chains dictate antimicrobial 

activity of such polymers.145 Brizzolara et al. compared performance of QACs on planar surfaces and 

particles.132, 146 Results showed that QACs attached onto silica particles showed antibacterial character 

but QACs could not facilitate repulsion of bacteria.146 This difference in performance was attributed to 

insufficient contact between the bacteria and the QAC on planar surfaces.146 Biocides have incorporated 

into surface coatings to make bactericidal surfaces. N, N-dimethyldodecylammonium (DDA) combined 

with poly(2-methyl-2-oxazoline) acrylate (PMOXA) spacer showed tendency to kill incoming bacteria 

immediately upon contact due to long PMOXA chains and DDA biocide on the surfaces.132, 147 The 
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PMOXA-DDA surfaces exhibited good bactericidal activity without leaching out, unlike low MW biocidal 

additives that must leach out of the coating matrix to become active.147 Apart from DDA, bacterial tests 

conducted using cationic polyhexamethylene biguanides (PHMBs), with varying chain lengths, against 

E.coli showed inhibition of bacterial growth and bactericidal activity which increased with increasing chain 

length.132, 148 Further, analysis of antimicrobial activity of polymethacrylate chains with guanide pendant 

groups indicated requirement of an optimal MW of 5 x 104-105 g/mol to allow diffusion of the chains 

through bacterial cell walls.149 Although very effective as side chains or pendants, experiments with 

crosslinked polycations showed reduction in antibacterial character of the crosslinked polymers.150 Long 

chain N-alkylated poly(4-vinylpyridine) attached onto glass substrates could kill more than 90% of 

deposited S.aureus, S.epidermis, P.aeruginosa, and E.coli bacterial cells in a dry state.151 Contact active 

copolymeric emulsifiers, made using hydrophobic polystyrene block (PS) and hydrophilic block of 

antimicrobial polymer poly(4-vinyl-N-methylpyridinium iodide) (P4VMP), was designed by Fuchs et al.152 

Antimicrobial effect of the coatings was found to be dependent on the emulsifier loading in the 

formulations and PS content in the emulsifiers.152  

“Textured” surfaces have also been explored as antibacterial surfaces. Inspiration was drawn 

from cicada wings that exhibit bactericidal effect due to presence of surface nanostructures instead of 

chemical composition of the surface.129, 153 Bacterial cells can easily attach onto the wings, but the 

nanostructures cause cell membranes to stretch while suspended on the features.154, 155 After a period of 

time after attachment, sufficient stretching of the suspended membranes causes the cells to rupture, 

decreasing bacterial cell growth.154 The bactericidal insect wing nanostructures are believed to 

consistently rupture cell walls without encountering bacterial resistance, in contrast to the chemical based 

antibacterial mechanisms.129 In one experiment, a “super surface” with nano-roughness gradients was 

created using a silicon wafer.156 The surface exhibited superhydrophobicity and self-cleaning 

properties.156 The surface also showed antibacterial character against both bacterial and mammalian 

cells.156 Although useful in making antibacterial surfaces for biomedical instruments, packaging, and 

diagnostic tools, such surfaces are not useful for biomedical implants that require intimate contact with 

mammalian cells in vivo.156 In-depth analysis of the bactericidal effect of “textured” surfaces showed that 

as weight of the bacterial cells on the “textures” increases, maximum membrane stretching of the bacteria 
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increases.157 Comparison of different geometries on bactericidal performance of the surfaces showed that 

nanoridges cause most pronounced membrane stretching on Gram-positive bacteria.157 Bacteria 

adsorbed onto nanopillars are much larger in size than those adsorbed onto nanoridges.157 Surfaces with 

nanopillars of radius = 60 nm, height = 200 nm, and spacing = 170 nm imitate the surface of cicada 

wings, which make the surfaces immune to Gram-positive bacteria.157 But, surfaces with nanopillars can 

successfully kill most Gram-negative bacteria.157 The antibacterial properties of the nanopillars can be 

enhanced by sharpening the tips of the pillars or increasing the distance between the pillars.157  

Antibiofouling or biopassive coatings do not actively kill bacterial cells, but resist adsorption and 

facilitate removal of bacterial proteins.129, 132 Generally, hydrophilic polymers are used to make 

antibiofouling surfaces, used in different applications like medical implants, and diagnostic sensors.132 

The bioinert passive polymers increase resistance of biomedical devices to protein adsorption and 

thereby, reduce blood clot formation (thrombosis) or colonization of surfaces by bacteria.128, 158 Formation 

of highly hydrated surfaces formed due to presence of the hydrophilic polymers and electrically neutral 

nature of the polymers are some of the advantages of the hydrophilic polymers.132 For successful use as 

biopassive coatings, the polymers are required to possess sites for H-bond acceptors and no donors.159 

Presence of H-bond acceptor sites combined with the hydration layer are expected to prevent protein 

adsorption and ensuing biological events through excluded volume effects, steric hindrance, and entropic 

repulsion.159, 160 The hydrophilic polymers can either be covalently immobilized or physisorbed on the 

surfaces. To this end, a variety of polymers, PEG, poly(2-methyl-2-oxazoline), zwitterionic 

phosphobetaine (PB), SB, and CB, phospholipid polymers containing a phosphorylcholine group and 

polysaccharides have been explored as potential biopassive coatings for application in biomedical 

devices, tools, and implants.117, 132, 161-163 One of the most popular materials to reduce bacterial adhesion 

on biomedical surfaces is PEG.164, 165 Unlike polymers with quaternary ammonium compounds, guanides, 

phosphonium salts, and antibiotics that kill bacteria upon contact, immobilization of PEG on the surfaces 

forms an interface between the bacteria and the substrate.162, 163 Reducing contact between the substrate 

and the bacteria decreases protein adsorption on the biomaterials.162 Studies have been conducted to 

understand the effect of PEG chain lengths, grafting density, and architecture on PEG-protein 

interactions.93, 97, 101 Sofia et al. showed that grafting of PEG chains to form linear or star architectures 



 

19 
 

completely covers the underlying substrate, thereby preventing adsorption of proteins.163 Such comb-like 

architectures can be made with high MW PEG side chains, PEG brushes, and dendritic structures.163 But, 

low MW proteins and peptides can easily penetrate the hydrophilic brushes, thus reducing antibacterial 

efficiency of the surfaces.132 Kingshott et al. demonstrated that higher stability and high surface coverage 

of grafted PEG chains can reduce the bacterial adhesion at least two orders magnitude better than 

physioadsorbed PEG chains.166 Harbers et al. developed a crosslinked PEG-rich coating system, that 

combined both covalent bonding with the substrates and crosslinking chemistries, successfully inhibited 

protein, bacterial, and mammalian cell adsorption on the surface.167 Although effective in lowering 

bacterial adhesion, PEG chains undergo oxidative degradation and chain cleavage in the long term, 

lowering its efficiency in practical applications.132, 168 Studies conducted using poly(ethylene glycol) methyl 

ether methacrylate (POEGMEMA) brush-type graft polymers, synthesized using PEG and methyl 

methacrylate (MMA) using ATRP, showed more than 90% decrease in cell adhesion with brush 

thicknesses of greater than or equal to ~50 nm.160 PMOXA has also shown potential for use as a bioinert 

polymer to decrease protein adsorption on surfaces.169-171 Versatile nature of oxazolines allows 

exploration of different functional co-monomers, initiators, and controlled sequences in the chain for easy 

fabrication of protein resistant surfaces for biomedical applications.170 Konradi et al. developed 

antibiofouling surface using PMOXA chains, grafted onto a poly(L-lysine) (PLL) backbone.170 The comb-

like PLL-PMOXA copolymer was allowed to self-assemble onto negatively charged niobium oxide (Nb2O5) 

surfaces.170 Presence of PLL-PMOXA copolymers successfully deterred attachment of proteins and 

bacterial adhesion by E.coli on the surfaces, similar to PEG-rich surfaces.170 Zwitterionic polymers, CB, 

SB, and PB, have shown potential for use in biomedical applications due to their long-term stability and 

biocompatibility.120, 172-174 Polymer brushes of poly(CBMA) and poly(SBMA) reduced fibrinogen adsorption 

and deterred formation of E.coli, S.epidermis, and P.aeruginosa biofilms in short-term and long-term 

laboratory experiments.120, 173, 175 Other monomers that have been used in antibiofouling biomedical 

applications include oligo(ethylene glycol) methacrylate, 2-hydroxyethyl methacrylate (HEMA), and 

acrylamide (AAm).176-182 Chain orientation of grafted polyHEMA chains on silicon substrates successfully 

repelled bacterial proteins and prevented proteins from entering the brushes.181 PolyAAm brushes with 

20-80 nm thickness and grafting density between 0.6-0.8 nm2 reduce adhesion of bacteria, S. aureus, 
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Streptococcus salivarius, and Candida albicans.182 Not just hydrophilic, hydrophobic slippery liquid-

infused porous surfaces (SLIPS), fabricated on a silicon substrates, prevented 99.6% of P.aeruginosa, 

S.aureus, and E.coli biofilm attachment in flow conditions.83  

Hybrid surfaces, exhibiting simultaneous or reversible bactericidal and biopassive behavior, have 

also been studied for application in biomedical applications. Cheng et al. developed a reversible coating 

that could be easily converted from a bioactive cationic poly(N, N-dimethyl-N-(ethoxycarbonylmethyl)-N-

(2’-(methacryloyloxy) ethyl)-ammoniumbromide) in dry state to a biopassive zwitterionic surface upon 

exposure to aqueous environment.132, 183 In the cationic form, the coatings showed ability to kill bacteria 

after 1 hour of contact with the surface in air, while nonfouling zwitterionic character of the surface 

allowed the release of the dead bacterial cells from the coating surfaces.183 Copolymerization of 2-(2-

methoxyethoxy) ethyl methacrylate and hydroxyl-terminated oligo(ethylene glycol) methacrylate resulted 

in formation of coatings with simultaneous bactericidal-biopassive coatings.132, 134 Reactive hydroxyl 

groups in the copolymers allowed immobilization of naturally occurring magainin I antimicrobial peptide.134 

Analysis of antibacterial performance showed that cell death occurred after 3 hours of contact with the 

dual performance surfaces.134 Another dual performance coating, involving attachment of vancomycin 

biocide to anachelin chromophore through a PEG spacer, provided antibacterial character to the surfaces 

and exhibited retention of its dual performance in long-term bacterial adhesion and rinsing tests.184  

 

Figure 1.3. Representation of the reversible bactericidal-biopassive coating (reproduced from Cheng et 
al., 2008).183 
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Non-Toxic Isocyanate-Free Polyurethane Technologies  

As mentioned above, the self-stratified SiPU coatings show great potential for application as 

marine FR coatings. A typical SiPU formulation comprises of a polyisocyanate, acrylic polyol, and high 

molecular weight aminopropyl terminated PDMS (APT-PDMS).17, 18, 20 In practical applications, coating 

formulations are sprayed onto the primed ship hulls using paint spray guns. SiPU formulations cure on 

the ship hulls, forming self-stratified FR coatings.17 Reaction of the polyisocyanates with the polyols 

results in formation of urethane (-COO-NH-) linkages, which provides strength and adhesion to an 

otherwise soft PDMS layer.20 Polyurethanes are one of the most widely used specialty polymers, with 

application areas like foams, adhesives, sealants and in biomedical applications.185 The high mechanical 

strength, toughness, chemical and abrasion resistance of polyurethanes can be attributed to the presence 

of intermolecular bonds within the matrix.185 In spite of the useful properties of urethanes, detrimental 

effects of prolonged exposure to unreacted isocyanates on the factory workers and personnel cannot be 

ignored. Depending of exposure to common isocyanate crosslinkers, like toluene diisocyanate (TDI) and 

methylene diisocyanate (MDI), factory workers have shown tendency to suffer from asthma within 5 

years.186-189 Moreover, previous studies have shown that long term effects of inhalation of isocyanate 

vapors and aerosols include inflammation, conjunctivitis, acute bronchitis, lung and breathing ailments.186 

Although the SiPU formulations are based on more stable polymeric cycloaliphatic isocyanates, concerns 

associated with spraying unreacted isocyanates has led to further research into finding suitable 

alternatives for conventional polyurethanes. As non-isocyanate routes to making polyurethanes, 

polycondensation, polyaddition, and ring-opening polymerization techniques have been explored that 

utilize carbamate and carbonate chemistries for polyurethanes synthesis.190 Among all synthesis 

techniques, reaction of cyclic carbonates, which contain cyclo-carbonate and epoxy reactive groups, and 

diamines has been the most explored method of synthesizing urethanes (poly(hydroxyurethane)s).190 The 

bulk of the poly(hydroxyurethane)s comprises of unreacted pendant hydroxyl groups, that form intra- and 

intermolecular hydrogen bonds. The hydroxyl groups are expected shield urethane linkages from 

hydrolysis, thereby increasing hydrolytic stability of polyurethanes as compared to conventional 

isocyanate based polyurethanes.190 A drawback of this system is sluggish curing under ambient 

conditions.  
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In the past, glycidyl carbamate (GC) based coating technologies were introduced in the Webster 

group to make polyurethanes through an isocyanate-free approach.191-199 GC resins can be easily 

synthesized using isocyanates and glycidol. The reaction between -NCO and -OH groups from 

isocyanates and glycidol respectively results in the formation of carbamate (urethane) linkages (-CO-NH-

).191 By the end of the synthesis reaction, all isocyanate functional groups are converted to epoxies, which 

are then available for crosslinking with a variety of diamine hardeners. Therefore, the synthesized GC 

resins combine properties of polyurethanes with convenience of epoxy-amine crosslinking chemistry.  

 

Figure 1.4. Reaction of isocyanate with glycidol to form carbamate linkages (reproduced from Edwards et 
al., 2005).191 
 

GC resins are extremely versatile in nature; the resins can be modified using a variety of 

functional compounds to develop coatings depending on the application. GC resins can undergo 

crosslinking with diamines or self-crosslinking at elevated temperatures.192 Crosslinking with amine 

crosslinkers leads to formation of denser coating networks as compared to self-crosslinked GC 

coatings.196 The type and stoichiometric ratio of amine crosslinkers, temperature of curing reactions, and 

structure of isocyanates directly affect the properties of the final coatings.191 In decreasing order of 

reactions of diamines with GC resins— aliphatic > cycloaliphatic > aromatic.191 GC coatings exhibit 

excellent corrosion protection; coatings containing H12MDI show better corrosion resistance than HDI.200 

Hard, flexible, and thermally stable hybrid GC coatings have been made using amine functional 

silanes.193-195 Inherent high viscosity of GC resins can be attributed to the presence of strong 

intermolecular hydrogen bonds between the polar carbamate groups.196 High viscosity makes application 

of GC formulations difficult. But, highly functional nature of GC resins allows easy modification of the 

resins with different alcohols.196 Past results have shown that viscosity of GC resins can be reduced 

significantly using ether alcohols as modifiers.196 Further, water dispersible coatings can be easily made 

using PEG chains as modifiers.197 Reaction of GC resins with acrylic acid introduces acrylate functional 

groups in the resins; the resultant acrylated resin can be easily cured using UV irradiation to give hard, 
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flexible and chemically resistant coatings.198 High functionality, high reactivity, ease of synthesis, and 

versatility of GC resins makes the GC coatings viable for marine applications. A typical formulation with 

GC resin comprises of the modified GC resin and an amine crosslinker (Figure 1.5). Although isocyanates 

are used to synthesize the resin, lack of free isocyanate groups in the final coating formulation is 

expected to reduce health concerns associated with spraying unreacted isocyanates.  

 

Figure 1.5. Comparison between SiPU and GC coating formulations.   
 
Purpose of the Study  

This study involves evaluation of FR performance of marine coating formulations made by 

changing topography of a previously introduced SiPU coating formulation and development of modified 

GC technologies with varying surface chemistries as potential FR surfaces. The objective of the first part 

of the project is to understand the effect of surface damage or “abrasions” on the FR performance of 

SiPU coatings. Over the course of development of self-stratified SiPU FR coatings, different formulations 

have been studied previously using different isocyanates, polyols, and APT-PDMS. Results from the 

extensive decade long research showed that the smooth SiPU coating systems exhibited FR 

performance comparable to the commercially available silicone elastomer based FR coatings. But, one 

important aspect of SiPU coatings that wasn’t evaluated was effect of surface damage, encountered 

during use, on the FR performance of these SiPU coatings. FR marine coatings are cleaned periodically 

to remove fouling organisms attached to ship hulls. The coating layer can be damaged even when the 

ship is held stationary in the docks. In this project, one SiPU formulation, with the best FR performance, 

was abraded to simulate surface damage. As previously mentioned, although forming engineered 

topographies is theoretically desirable, the process of introducing such topographies is not easy in 
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practical large scale applications. Therefore, this project hopes to demonstrate an effective and practical 

way to introduce surface “features” on the SiPU coating, using regular Scotch Brite pads, with varying 

roughness. Evaluation of FR performance of the abraded surfaces indicated dependence of the FR 

performance on the size of the features formed on the surface after abrasions. The results were also 

consistent with the basics of the previously introduced engineered surface models.   

Recently, concerns have been raised about spraying SiPU formulations, containing free 

isocyanate groups, directly onto ship hulls. The second part of the study attempts to address these 

concerns by developing novel two-component isocyanate-free modified glycidyl carbamate (GC) systems 

as “safer” alternatives for isocyanate based polyurethanes to make self-stratified FR marine coatings. In 

this project, different hydrophobic and amphiphilic GC resins were synthesized by incorporating PDMS 

and PEG as modifiers. Consequently, GC coatings with different surface chemistries were made using 

the modified resins and different amine crosslinkers. Evaluation of mechanical and thermal properties of 

the coatings showed formation of hard, flexible and glossy coatings after curing. Preliminary results 

showed that the GC coatings exhibited subpar FR performance against hard foulants, like barnacles and 

mussels, as compared to the commercial standards. But, the GC coatings facilitated higher removal of 

diatoms from the surface as compared to the commercial standards. In spite of the poor FR performance 

of the GC coatings, it is anticipated that with future research into modification of GC resins, solvent 

selection and selection of curing agents, GC coatings can be successfully used in marine applications, as 

isocyanate-free replacements for both the commercial coatings and the previously developed SiPU FR 

coatings.  
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Saalwächter, K.; Tiller, J. C., Insights in the antibacterial action of poly (methyloxazoline) s with a biocidal 

end group and varying satellite groups. Biomacromolecules 2008, 9 (7), 1764-1771. 

142. Murata, H.; Koepsel, R. R.; Matyjaszewski, K.; Russell, A. J., Permanent, non-leaching antibacterial 

surfaces—2: How high density cationic surfaces kill bacterial cells. Biomaterials 2007, 28 (32), 4870-

4879. 

143. Buffet-Bataillon, S.; Tattevin, P.; Bonnaure-Mallet, M.; Jolivet-Gougeon, A., Emergence of resistance 

to antibacterial agents: the role of quaternary ammonium compounds—a critical review. International 

Journal of Antimicrobial Agents 2012, 39 (5), 381-389. 

144. Gilbert, P.; Moore, L. E., Cationic antiseptics: diversity of action under a common epithet. Journal of 

Applied Microbiology 2005, 99 (4), 703-715. 

145. Venkataraman, S.; Zhang, Y.; Liu, L.; Yang, Y.-Y., Design, syntheses and evaluation of 

hemocompatible pegylated-antimicrobial polymers with well-controlled molecular structures. Biomaterials 

2010, 31 (7), 1751-1756. 

146. Brizzolara, R. A.; Stamper, D. M., The effect of covalent surface immobilization on the bactericidal 

efficacy of a quaternary ammonium compound. Surface and Interface Analysis 2007, 39 (7), 559-566. 

147. Waschinski, C. J.; Zimmermann, J.; Salz, U.; Hutzler, R.; Sadowski, G.; Tiller, J. C., Design of 

Contact‐Active Antimicrobial Acrylate‐Based Materials Using Biocidal Macromers. Advanced Materials 

2008, 20 (1), 104-108. 



 

39 
 

148. Broxton, P.; Woodcock, P. M.; Gilbert, P., A study of the antibacterial activity of some 

polyhexamethylene biguanides towards Escherichia coli ATCC 8739. Journal of Applied Microbiology 

1983, 54 (3), 345-353. 

149. Ikeda, T.; Yamaguchi, H.; Tazuke, S., New polymeric biocides: synthesis and antibacterial activities 

of polycations with pendant biguanide groups. Antimicrobial Agents and Chemotherapy 1984, 26 (2), 139-

144. 

150. Kawabata, N.; Nishiguchi, M., Antibacterial activity of soluble pyridinium-type polymers. Applied and 

Environmental Microbiology 1988, 54 (10), 2532-2535. 

151. Tiller, J. C.; Liao, C.-J.; Lewis, K.; Klibanov, A. M., Designing surfaces that kill bacteria on contact. 

Proceedings of the National Academy of Sciences 2001, 98 (11), 5981-5985. 

152. Fuchs, A. D.; Tiller, J. C., Contact‐Active Antimicrobial Coatings Derived from Aqueous 

Suspensions. Angewandte Chemie International Edition 2006, 45 (40), 6759-6762. 

153. Liu, K.; Jiang, L., Bio-inspired design of multiscale structures for function integration. Nano Today 

2011, 6 (2), 155-175. 

154. Ivanova, E. P.; Hasan, J.; Webb, H. K.; Truong, V. K.; Watson, G. S.; Watson, J. A.; Baulin, V. A.; 

Pogodin, S.; Wang, J. Y.; Tobin, M. J., Natural bactericidal surfaces: mechanical rupture of Pseudomonas 

aeruginosa cells by cicada wings. Small 2012, 8 (16), 2489-2494. 

155. Pogodin, S.; Hasan, J.; Baulin, V. A.; Webb, H. K.; Truong, V. K.; Nguyen, T. H. P.; Boshkovikj, V.; 

Fluke, C. J.; Watson, G. S.; Watson, J. A., Biophysical model of bacterial cell interactions with 

nanopatterned cicada wing surfaces. Biophysical Journal 2013, 104 (4), 835-840. 

156. Hasan, J.; Raj, S.; Yadav, L.; Chatterjee, K., Engineering a nanostructured “super surface” with 

superhydrophobic and superkilling properties. RSC Advances 2015, 5 (56), 44953-44959. 

157. Xue, F.; Liu, J.; Guo, L.; Zhang, L.; Li, Q., Theoretical study on the bactericidal nature of 

nanopatterned surfaces. Journal of Theoretical Biology 2015, 385, 1-7. 

158. Leslie, D. C.; Waterhouse, A.; Berthet, J. B.; Valentin, T. M.; Watters, A. L.; Jain, A.; Kim, P.; Hatton, 

B. D.; Nedder, A.; Donovan, K., A bioinspired omniphobic surface coating on medical devices prevents 

thrombosis and biofouling. Nature Biotechnology 2014, 32 (11), 1134-1140. 



 

40 
 

159. Banerjee, I.; Pangule, R. C.; Kane, R. S., Antifouling coatings: recent developments in the design of 

surfaces that prevent fouling by proteins, bacteria, and marine organisms. Advanced Materials 2011, 23 

(6), 690-718. 

160. Dalsin, J. L.; Messersmith, P. B., Bioinspired antifouling polymers. Materials Today 2005, 8 (9), 38-

46. 

161. Krishnan, S.; Weinman, C. J.; Ober, C. K., Advances in polymers for anti-biofouling surfaces. 

Journal of Materials Chemistry 2008, 18 (29), 3405-3413. 

162. Yoshimoto, K.; Nishio, M.; Sugasawa, H.; Nagasaki, Y., Direct observation of adsorption-induced 

inactivation of antibody fragments surrounded by mixed-PEG layer on a gold surface. Journal of the 

American Chemical Society 2010, 132 (23), 7982-7989. 

163. Sofia, S. J.; Premnath, V.; Merrill, E. W., Poly (ethylene oxide) grafted to silicon surfaces: grafting 

density and protein adsorption. Macromolecules 1998, 31 (15), 5059-5070. 

164. Harder, P.; Grunze, M.; Dahint, R.; Whitesides, G. M.; Laibinis, P. E., Molecular conformation in 

oligo (ethylene glycol)-terminated self-assembled monolayers on gold and silver surfaces determines 

their ability to resist protein adsorption. The Journal of Physical Chemistry B 1998, 102 (2), 426-436. 

165. Zheng, J.; Li, L.; Chen, S.; Jiang, S., Molecular simulation study of water interactions with oligo 

(ethylene glycol)-terminated alkanethiol self-assembled monolayers. Langmuir 2004, 20 (20), 8931-8938. 

166. Kingshott, P.; Wei, J.; Bagge-Ravn, D.; Gadegaard, N.; Gram, L., Covalent attachment of poly 

(ethylene glycol) to surfaces, critical for reducing bacterial adhesion. Langmuir 2003, 19 (17), 6912-6921. 

167. Harbers, G. M.; Emoto, K.; Greef, C.; Metzger, S. W.; Woodward, H. N.; Mascali, J. J.; Grainger, D. 

W.; Lochhead, M. J., Functionalized poly (ethylene glycol)-based bioassay surface chemistry that 

facilitates bio-immobilization and inhibits nonspecific protein, bacterial, and mammalian cell adhesion. 

Chemistry of Materials 2007, 19 (18), 4405-4414. 

168. Branch, D. W.; Wheeler, B. C.; Brewer, G. J.; Leckband, D. E., Long-term stability of grafted 

polyethylene glycol surfaces for use with microstamped substrates in neuronal cell culture. Biomaterials 

2001, 22 (10), 1035-1047. 

169. Victor, R., Poly (2-oxazoline) s as materials for biomedical applications. Journal of Materials 

Science: Materials in Medicine 2014, 25 (5), 1211-1225. 



 

41 
 

170. Konradi, R.; Pidhatika, B.; Mühlebach, A.; Textor, M., Poly-2-methyl-2-oxazoline: a peptide-like 

polymer for protein-repellent surfaces. Langmuir 2008, 24 (3), 613-616. 

171. Pidhatika, B.; Möller, J.; Vogel, V.; Konradi, R., Nonfouling surface coatings based on poly (2-

methyl-2-oxazoline). CHIMIA International Journal for Chemistry 2008, 62 (4), 264-269. 

172. Cho, W. K.; Kong, B.; Choi, I. S., Highly efficient non-biofouling coating of zwitterionic polymers: poly 

((3-(methacryloylamino) propyl)-dimethyl (3-sulfopropyl) ammonium hydroxide). Langmuir 2007, 23 (10), 

5678-5682. 

173. Chang, Y.; Liao, S.-C.; Higuchi, A.; Ruaan, R.-C.; Chu, C.-W.; Chen, W.-Y., A highly stable 

nonbiofouling surface with well-packed grafted zwitterionic polysulfobetaine for plasma protein repulsion. 

Langmuir 2008, 24 (10), 5453-5458. 

174. Yoshimoto, K.; Hirase, T.; Madsen, J.; Armes, S. P.; Nagasaki, Y., Non‐fouling character of poly[2‐

(methacryloyloxy) ethyl phosphorylcholine]‐modified gold surfaces fabricated by the ‘grafting to’ method: 

comparison of its protein resistance with poly(ethylene glycol)‐modified gold surfaces. Macromolecular 

Rapid Communications 2009, 30 (24), 2136-2140. 

175. Cheng, G.; Zhang, Z.; Chen, S.; Bryers, J. D.; Jiang, S., Inhibition of bacterial adhesion and biofilm 

formation on zwitterionic surfaces. Biomaterials 2007, 28 (29), 4192-4199. 

176. Nath, N.; Hyun, J.; Ma, H.; Chilkoti, A., Surface engineering strategies for control of protein and cell 

interactions. Surface Science 2004, 570 (1), 98-110. 

177. Stadler, V.; Kirmse, R.; Beyer, M.; Breitling, F.; Ludwig, T.; Bischoff, F. R., PEGMA/MMA copolymer 

graftings: generation, protein resistance, and a hydrophobic domain. Langmuir 2008, 24 (15), 8151-8157. 

178. Tugulu, S.; Klok, H.-A., Stability and nonfouling properties of poly (poly (ethylene glycol) 

methacrylate) brushes under cell culture conditions. Biomacromolecules 2008, 9 (3), 906-912. 

179. Yoshikawa, C.; Goto, A.; Tsujii, Y.; Fukuda, T.; Kimura, T.; Yamamoto, K.; Kishida, A., Protein 

repellency of well-defined, concentrated poly (2-hydroxyethyl methacrylate) brushes by the size-exclusion 

effect. Macromolecules 2006, 39 (6), 2284-2290. 

180. Yoshikawa, C.; Goto, A.; Ishizuka, N.; Nakanishi, K.; Kishida, A.; Tsujii, Y.; Fukuda, T. Size‐

exclusion effect and protein repellency of concentrated polymer brushes prepared by surface‐initiated 

living radical polymerization. Macromolecular Symposia 2007, 248 (1), 189-198. 



 

42 
 

181. Yoshikawa, C.; Goto, A.; Tsujii, Y.; Ishizuka, N.; Nakanishi, K.; Fukuda, T., Surface interaction of 

well‐defined, concentrated poly (2‐hydroxyethyl methacrylate) brushes with proteins. Journal of Polymer 

Science Part A: Polymer Chemistry 2007, 45 (21), 4795-4803. 

182. Cringus-Fundeanu, I.; Luijten, J.; van der Mei, H. C.; Busscher, H. J.; Schouten, A. J., Synthesis and 

characterization of surface-grafted polyacrylamide brushes and their inhibition of microbial adhesion. 

Langmuir 2007, 23 (9), 5120-5126. 

183. Cheng, G.; Xue, H.; Zhang, Z.; Chen, S.; Jiang, S., A switchable biocompatible polymer surface with 

self‐sterilizing and nonfouling capabilities. Angewandte Chemie International Edition 2008, 47 (46), 8831-

8834. 

184. Wach, J. Y.; Bonazzi, S.; Gademann, K., Antimicrobial surfaces through natural product hybrids. 

Angewandte Chemie International Edition 2008, 47 (37), 7123-7126. 

185. Guan, J.; Song, Y.; Lin, Y.; Yin, X.; Zuo, M.; Zhao, Y.; Tao, X.; Zheng, Q., Progress in study of non-

isocyanate polyurethane. Industrial & Engineering Chemistry Research 2011, 50 (11), 6517-6527. 

186. Baur, X.; Marek, W.; Ammon, J.; Czuppon, A. B.; Marczynski, B.; Raulf-Heimsoth, M.; Roemmelt, H.; 

Fruhmann, G., Respiratory and other hazards of isocyanates. International Archives of Occupational and 

Environmental Health 1994, 66 (3), 141-152. 

187. Zapp Jr, J. A., Hazards of isocyanates in polyurethane foam plastic production. Arch. Indust. Health 

1957, 15 (4), 324-30. 

188. O'Brien, I. M.; Harries, M. G.; Burge, P. S.; Pepys, J., Toluene di‐isocyanate‐induced asthma I. 

Reactions to TDI, MDI, HDI and histamine. Clinical & Experimental Allergy 1979, 9 (1), 1-6. 

189. Tanser, A. R.; Bourke, M. P.; Blandford, A. G., Isocyanate asthma: respiratory symptoms caused by 

diphenyl-methane di-isocyanate. Thorax 1973, 28 (5), 596-600. 

190. Rokicki, G.; Parzuchowski, P. G.; Mazurek, M., Non‐isocyanate polyurethanes: synthesis, properties, 

and applications. Polymers for Advanced Technologies 2015, 26 (7), 707-761. 

191. Edwards, P. A.; Striemer, G.; Webster, D. C., Novel polyurethane coating technology through 

glycidyl carbamate chemistry. JCT Research 2005, 2 (7), 517-527. 

192. Edwards, P. A.; Striemer, G.; Webster, D. C., Synthesis, characterization and self-crosslinking of 

glycidyl carbamate functional resins. Progress in Organic Coatings 2006, 57 (2), 128-139. 



 

43 
 

193. Chattopadhyay, D. K.; Muehlberg, A. J.; Webster, D. C., Organic–inorganic hybrid coatings prepared 

from glycidyl carbamate resins and amino-functional silanes. Progress in Organic Coatings 2008, 63 (4), 

405-415. 

194. Chattopadhyay, D. K.; Zakula, A. D.; Webster, D. C., Organic–inorganic hybrid coatings prepared 

from glycidyl carbamate resin, 3-aminopropyl trimethoxy silane and tetraethoxyorthosilicate. Progress in 

Organic Coatings 2009, 64 (2), 128-137. 

195. Chattopadhyay, D. K.; Webster, D. C., Hybrid coatings from novel silane-modified glycidyl 

carbamate resins and amine crosslinkers. Progress in Organic Coatings 2009, 66 (1), 73-85. 

196. Harkal, U. D.; Muehlberg, A. J.; Li, J.; Garrett, J. T.; Webster, D. C., The influence of structural 

modification and composition of glycidyl carbamate resins on their viscosity and coating performance. 

Journal of Coatings Technology and Research 2010, 7 (5), 531-546. 

197. Harkal, U. D.; Muehlberg, A. J.; Edwards, P. A.; Webster, D. C., Novel water-dispersible glycidyl 

carbamate (GC) resins and waterborne amine-cured coatings. Journal of Coatings Technology and 

Research 2011, 8 (6), 735-747. 

198. Harkal, U. D.; Muehlberg, A. J.; Webster, D. C., UV curable glycidyl carbamate based resins. 

Progress in Organic Coatings 2012, 73 (1), 19-25. 

199. Ravindran, N.; Chattopadhyay, D. K.; Zakula, A.; Battocchi, D.; Webster, D. C.; Bierwagen, G. P., 

Thermal stability of magnesium-rich primers based on glycidyl carbamate resins. Polymer Degradation 

and Stability 2010, 95 (7), 1160-1166. 

200. Harkal, U. D.; Muehlberg, A. J.; Webster, D. C., Linear glycidyl carbamate (GC) resins for highly 

flexible coatings. Journal of Coatings Technology and Research 2013, 10 (2), 141-151. 

 

 

  



 

44 
 

CHAPTER 2. EFFECT OF SURFACE ABRASIONS ON FOULING-RELEASE 

PERFORMANCE OF SELF-STRATIFIED SILOXANE-POLYURETHANE FOULING-

RELEASE MARINE COATINGS 

Introduction 

Marine biofouling is the unwanted accumulation, attachment, and growth of microorganisms, 

plants, and animals on surfaces submerged in natural bodies of water.1 In general, there are four stages 

of biofouling: accumulation of a layer of organic molecules (called conditioning layer) like proteins and 

polysaccharides,1 accumulation of microorganisms like diatoms and bacteria, settlement of algal species 

and finally, attachment of macrofoulants like barnacles and mussels.2 Biofouling results in approximately 

2% reduction in the speed of the ship, up to 45% increase in fuel consumption,2 and combating biofouling 

can cost as high as one billion dollars annually.3 Traditionally, antifouling coatings containing tin, copper 

or organic biocides have been used to combat biofouling.2 The biocides from the anti-fouling coatings 

leach out to prevent the accumulation of the marine organisms on the ship hulls.4 The potential hazards 

associated with the toxic leachates have necessitated the need to replace these anti-fouling coatings.3 

Fouling release (FR) coatings have been developed as alternate environment-friendly marine coatings.4 

FR coatings allow weak attachment of the organism on the surface, which can be easily broken by the 

hydrodynamic forces, experienced during the movement of the ship.5 Commercial FR coatings are based 

exclusively on silicone elastomers. Lack of mechanical strength, poor adhesion to metal substrates, and 

low durability of the commercial coatings make them less viable for marine applications.4 In one such 

attempt, the siloxane (Si)-polyurethane (PU) FR coating system has been developed as a potential 

substitute to the anti-fouling and the commercial FR coatings. The polyurethane matrix provides the 

necessary adhesion and mechanical strength. The siloxane self-stratifies due to surface energy 

minimization, forming the outer low surface energy layer of the coating.4, 6 In general, low surface energy 

materials have been shown to disallow attachment of organisms to the surface, out of which PDMS is the 

most preferred material.  

 Chemical composition of the surface determines the extent of “wetting”. Wettability is also a 

function of the surface topography, which can be tailored as per requirement.7 Water contact angle 

greater than 90° indicates a hydrophobic surface, while values lower than 90° indicate a hydrophilic 
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surface. Abrading a hydrophobic or hydrophilic surface increases the surface area, thereby enhancing the 

hydrophobicity or hydrophilicity of the surface.7 But the different attachment mechanisms of the different 

marine organisms make it difficult to base the FR properties of the coatings on hydrophobicity or 

hydrophilicity alone.   

 Another approach to improve the FR performance of the coatings involves tailoring the surface 

topography by the formation of nano- and micro-gradients on the surface. Biomimetic approaches have 

shown potential as novel and futuristic FR systems. One such biomimetic surface, based on the Lotus 

leaf, exhibits an inherent tendency to repel water because of its waxy nature with nanoscopic surface 

gradients, rendering the surface superhydrophobic (water contact angle greater than 150°).7 But the 

biggest challenge with synthetic Lotus leaf- like surfaces is maintaining the characteristic 

superhydrophobicity of the surface for longer duration. Similar to the Lotus leaf, another interesting 

approach is mimicking shark skin on synthetic surfaces. Sharklet AFTM coatings with shark skin 

topography have shown significant improvement in FR performance of coatings as compared to regular 

smooth coatings. Further analysis of the biomimetic Sharklet AFTM AF coating indicated the dependence 

of the FR performance on the size and shape of the surface features. For example, the Sharklet AFTM 

topography with 3 µm feature height reduced the algal settlement by 63%. Similarly, a feature height of 40 

µm showed 97% reduction in barnacle attachment on barnacle specific Sharklet AFTM AF coatings.8 

Marine organisms adhere to ship hulls by secreting proteinaceous adhesives.9 But, proteins conform 

irreversibly onto hydrophobic surfaces.7 Factors such as “wetting” of the surface and interlocking of the 

organism adhesive play an important role in determining the strength of attachment between the 

organism and the surface.10 The surface features provide contact points, which support growth and 

metamorphosis of the organism, with higher number of contact points resulting in higher attachment of 

the organism. Marine organisms show less tendency to attach onto surfaces with features less than the 

size of the organism.10, 11 To further understand the attachment behavior of the organism, engineering 

models have been devised to study the surfaces with distinct localized textures that provide insights into 

techniques to deter the marine foulants.12 Generation of stresses in the bulk of the organism due to 

variations in the size and shape of the features renders the surface less conducive to the growth and 

metamorphosis of the organism.13 Attachment point theory deals with the creation of such non-equilibrium 
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in the organism.13, 14 Later, Engineered Roughness Index (ERI) was developed to understand the effect of 

the feature size and geometry on the attachment behavior of the organism.15 ERI is a dimensionless 

quantity that correlates Wenzel’s roughness factor with the degrees of freedom of movement and the 

amount of depressed surface.9 According to ERI theory, continuous recessed grooves show greater 

tendency of settlement than isolated ones, since degree of freedom is comparatively higher in case of a 

continuous network.15 ERI theory also predicts critical sizes of the features for optimum performance of 

the surface to be 2 µm for algal spores and 20 µm for barnacle cyprids. For instance, cyprids did not 

settle on PDMS with gradient size 256 µm, because the groove hampers metamorphosis and interferes 

with the growth of the cyprids.10 Furthermore, the surface energetic attachment (SEA) model, which 

serves as a combination of both the attachment point theory and the ERI, predicts the settlement of the 

organisms with respect to the number, the size, and the geometry of the surface topography.16 In spite of 

theoretical development of an optimized surface to deter most of the organisms, it is difficult to accurately 

predict the practical performance of the textured coatings because of the variations in the different 

attachment behavior of the target organisms.7, 9, 16    

 Although the self-stratified SiPU coatings exhibit FR performance on par with commercial silicone 

elastomer coatings, one question that remains unanswered is the performance of the coatings upon 

damage, that can be encountered in use such as damage due to suspended dirt or sand or use of 

cleaning tools. To understand the effect of surface damage on the FR performance of the SiPU coatings, 

the coatings were abraded using two different Scotch Brite pads. The number of abrasions were varied. 

Additional weights were applied depending on the roughness of the Scotch Brite pads. The smooth and 

the abraded coatings were characterized using contact angle experiment, SEM and XPS to analyze the 

surface topography and the surface composition of the SiPU coatings. Lastly, FR performance of the 

coatings with respect to micro- and macrofoulants was evaluated. The results obtained led to the 

hypothesis that the FR performance of the SiPU coatings is a function of the size of the features formed 

after abrasions relative to the size of the fouling organism. Detailed analysis of the surface features 

further supported this hypothesis.  
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Experimental Section 

Materials  

Trimer of isophorone diisocyanate (IPDI trimer; Desmodur Z 4470BA) was provided by Covestro 

(Bayer MaterialScience). Catalyst dibutyltin diacetate (DBTDAc), pot-life extender acetylacetone and 

solvents, 2-heptanone and toluene, were purchased from Sigma Aldrich.  

Hydroxy terminated acrylic polyol was synthesized using butyl acrylate and hydroxyethyl acrylate 

by free radical polymerization, according to a previously published procedure.5 Hydroxyethyl acrylate and 

butyl acrylate were purchased from Sigma Aldrich. Initiator Vazo 67 was provided by The Chemours 

Company (Dupont). Briefly, a monomer mixture of butyl acrylate, hydroxyethyl acrylate, and initiator Vazo 

67 was added dropwise to a round bottom flask that was charged with toluene. Temperature was 

maintained between 85-95°C. After completion of monomer addition, the reaction was allowed to continue 

for 2 hours. A chaser solution of Vazo 67 and toluene was then added to the reaction mixture. The 

reaction is allowed to proceed for another 3 hours. Finally, the mixture was cooled to room temperature. 

Concentration of the synthesized polyol was determined to be 50% solids in toluene according to ASTM 

D2369.  

Aminopropyl terminated polydimethylsiloxane (APT-PDMS) was synthesized in a fashion similar 

to the one described in prior publication.4 Chemicals for the synthesis of APT-PDMS, siloxane monomer 

(D4), benzyltrimethylammonium hydroxide and blocker bis(3-aminopropyl)-tetramethyldisiloxane 

(BAPTDMS) were purchased from Dow Chemical, Sigma Aldrich, and Gelest respectively. D4, 

(BAPTDMS), and benzyltrimethylammonium hydroxide solution (40% in methanol) were equilibrated at 

80°C for 24 hours in a round bottom flask, equipped with a nitrogen inlet, condenser, heating mantle, and 

temperature controller. After 24 hours, temperature was increased to 170°C for 2 hours to decompose the 

catalyst. The product was cooled to room temperature and stored. MW of the synthesized APT-PDMS 

was between 18-22k g/mol, as determined from GPC.  

Coating Formulation and Application   

Based on the results obtained from the previous studies, “A4” coating formulation was selected 

for the abrasion study.5 20% by weight APT-PDMS was mixed with the synthesized acrylic polyol and 

10% by weight acetylacetone (pot-life extender). The solution was stirred overnight to compatibilize APT-
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PDMS with the polyol.5 The next day, IPDI trimer and 0.05% by weight DBTDAc (1% solution in 2-

heptanone) was added to the formulation. The formulation was allowed to stir for another 60 minutes. 

Prior to application of the formulation, aluminum substrates (4 in. x 8 in. x 0.6 mm, type A, alloy 3003 H14 

from Q-Lab) were coated with Intergard 264 epoxy primer. The final formulation was applied using a 

Mayer wire wound rod (RDS 80) on the primed aluminum panels. The coatings were allowed to cure 

under ambient conditions overnight. After 24 hours, the coatings were oven-cured at 80°C for 45 min to 

remove any residual solvent. Same formulation was used to make all samples for the study.  

Abrasion Experiment  

Two different Scotch Brite pads, the scouring pad (SP) and the general purpose pad (GP), were 

used to abrade the cured A4 coatings. The roughness of SP is significantly lower than that of GP. 

Therefore, 5 lb (2.25 kg) and 7 lb (3.15 kg) additional weights were applied while using SP. GP was used 

without (0 lb) any additional weight and 1 lb (0.45 kg) additional weight. A laboratory experimental set up, 

comprising of a long plastic plank, with a handle on one end and a sponge attached to the plank on the 

opposite end, was used to abrade the SiPU coatings (Figure 2.1). Abrasion pads were attached to the 

sponge with the help of Velcro. The level of the plank was maintained parallel to the ground at all times 

using an adjustable screw attached below the handle. One at a time, the coating panels were taped to the 

bottom of a plastic tray using an electrical tape to prevent the panels from slipping. 10-15 mL distilled 

water was poured onto the panels before abrasions to wet the coatings. Additional weights were applied 

when required, depending on the roughness of the Scotch Brite pads. The plank was moved back and 

forth manually, with the abrasion pad in contact with the coating. One forward movement of the plank was 

counted as one abrasion. Combinations of the different Scotch Brite pads, additional weights, and the 

number of abrasions are tabulated in Table 2.1. In this study, the coatings labels are of the format: 

abrasion pad_additional weight applied_number of abrasions. For example, SP_5lb_300 stands for a 

coating abraded with SP under 5 lb additional weight and 300 abrasions.  

Table 2.1. Combinations of abrasion pads, additional weights, and number of abrasions. 

Abrasion pad Additional load (lb.) Number of abrasions 

Scouring pad (SP) 5, 7 0, 20, 60, 100, 150, 200, 250, 300 

General purpose pad 
(GP) 

0, 1 0, 20, 40, 60, 80, 100, 120, 140, 160, 180, 
200, 220 
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Figure 2.1. Schematic representation of the experimental set up. 
 
Laboratory Biofouling Assays  

Preleaching and Leachate Toxicity Analysis 

In order to remove toxic leachates, impurities, and catalyst from the smooth and the abraded 

SiPU coatings, the coatings were placed in a recirculating water tank for four weeks.5 The coatings were 

then tested for leachate toxicity by introducing algae in artificial sea water (ASW) with nutrients. The 

growth of algae on the coatings was observed using fluorescence by obtaining extracts from each coating 

after 48 hours. The growth of the organisms on the coatings was reported as a fluorescence ratio to a 

positive growth control. A negative growth control (medium + bacteria + triclosan) was also included in the 

experiment. The coatings were compared to the negative control to confirm the absence of toxic 

leachates.4       

Biofilm Cellulophaga lytica (C.lytica) Adhesion and Removal 

Attachment and removal of biofilm C.lytica was conducted according to a previous publication.4, 

17-19 Briefly, circular discs were carefully punched from the smooth and the abraded SiPU coating panels. 

The discs were then glued to 24-well plates using a silicone adhesive from Dow Corning, such that the 

glue covered the circular basal area of the disc completely. 5% suspension of C.lytica in ASW (107 

cells/mL) with nutrients was prepared. 1 mL suspension was added to each well of the 24-well plates. The 

well plates were incubated for 24 hours at 28°C to allow colonization of the biofilm on the coating 

surfaces. The plates were rinsed three times with deionized water to remove any unattached biofilm. 

Crystal violet was used to stain the samples. Extractions of crystal violet in acetic acid (33%) were 

observed under 600 nm absorbance to determine the amount of biofilm retained on the coatings. To 

determine the fouling release performance of the coatings, the plates were subjected to water jets at 10 



 

50 
 

psi and 20 psi, after 24 hours of the biofilm growth.20 The first column in each 24-well plates served as 

bacterial growth before water jetting and was not exposed to the water jet. The second and the third 

columns were exposed to 10 psi and 20 psi water jet respectively for 5 seconds. The results show the 

amount of biofilm attached to the coatings before exposure to water jet and percent removal from the 

coating at 10 psi and 20 psi water jet pressures.  

Diatom Navicula incerta (N.incerta) Attachment and Removal 

Diatom N.incerta adhesion was carried out in a fashion similar to C.lytica adhesion explained 

earlier.4, 21-24  24-well plates were prepared by carefully punching out discs from the smooth control and 

abraded coatings. The plates with the glued discs were treated with 1 mL solution of diatoms in ASW. 

The plates were incubated for 2 hours to allow diatom adhesion. Fluorescence was used to quantify the 

algal settlement on the coatings. FR performance of the coatings was determined by exposing the well 

plates to 10 psi and 20 psi water jet after 2 hours of cell settlement. The first column was used as a 

reference for the initial cell settlement and was not treated with the water jet. The second and the third 

columns were exposed to water jet at 10 psi and 20 psi for 10 seconds. This chapter includes results for 

the amount of diatoms attached to the coatings and percent removal at 20 psi water jet pressure. 

Removal at 10 psi water jet pressure are not reported since 10 psi pressure could not facilitate sufficient 

removal of the diatoms from the commercial standards.     

Microalgae Ulva linza (U.linza) Removal 

Similar to diatoms and biofilm, 24-well assay plates were prepared by carefully punching out 

discs and gluing the discs from the smooth and select preleached abraded coatings. The coatings chosen 

for this experiment are the smooth SiPU coating, SP_5lb_300, SP_7lb_300, GP_0lb_220, and 

GP_1lb_160. The plates were then shipped to Newcastle University (United Kingdom) to determine the 

FR performance of the coatings against microalgae U.linza. Before the bioassay experiment, the assay 

plates were equilibrated in 0.22 µm ASW for 2 hours. Then, 1 mL U.linza sporelings suspension (3.3 x 105 

spores/mL) in enriched sea water was dispensed into each of the wells. The spores were grown in an 

illuminated incubator at 18°C for 6 days. After 6 days, the biomass from a single row of wells (6 wells) 

was assessed by extracting chlorophyll. Chlorophyll was extracted in 1 mL dimethyl sulfoxide (DMSO). 

Fluorescence was then determined using excitation of 360 nm and wavelength of 670 nm. To determine 
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the release performance of the coatings, single rows of wells from each plate was sprayed using a spinjet 

apparatus at 18, 67 and 111 kPa water pressure. Chlorophyll was again extracted, as explained earlier. 

Microalgae removal at each pressure was determined by comparing the sprayed and the unsprayed 

wells. The results were reported as the percent removal of the algal sporelings after exposure to water 

pressure.  

Adult Barnacle Amphibalanus amphitrite (A.amphitrite) Adhesion 

Adult barnacle adhesion experiment was conducted to determine the FR performance of the 

smooth and the abraded coatings against hard foulants.4, 25, 26 4 or 5 adult A.amphitrite barnacles, with 

basal diameter of approximately 5 mm, were allowed to grow and attach to the coating panels in ASW for 

2 weeks with daily supply of brine shrimp nauplii. After 2 weeks, a hand held digital gauge was used to 

measure the force required to detach the barnacles from the coatings. Adhesion strength (MPa) of the 

barnacles was then calculated as the shear force required for barnacle removal to the basal area of the 

barnacle.  

Mussel  Geukensia demissa Adhesion 

Not just barnacles, the smooth and the abraded coatings were also evaluated for marine mussels 

Geukensia demissa adhesion according to a previously published procedure.27-29 Marine mussels were 

received from Duke University Marine Laboratory, North Carolina, USA. Prior to the experiment, each 

mussel was fitted with an acetal rod (4 cm in length) using a 3M acrylic adhesive. The rods were attached 

perpendicular to the ventral edge of the mussel. Six mussels were immobilized on the surface of the 

smooth and abraded SiPU coatings, using a custom designed PVC template. The coatings were placed 

in ASW and the mussels were fed live marine phytoplankton for 3 days. After 3 days, the number of 

mussels showing attachment of byssus threads was recorded for each coating. The acetal rods on the 

mussels were attached to a tensile force gauge, such that all the mussels were pulled from the coating at 

the same time.  

Over the course of the experiment, none of the mussels attached to the smooth or the abraded 

coatings, irrespective of the abrasion treatment. Therefore, quantitative assessment of mussel adhesion 

strengths was not possible. Qualitatively, the SiPU coatings successfully deterred attachment of mussels, 

even after abrasions. 
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Surface Characterization 

A Symyx First Ten Angstrom Coating Surface Energy Measurement System was used to 

measure water contact angles (WCA) and methylene iodide contact angles (MICA) of the pre-leached 

smooth and the abraded coatings by the sessile drop method. For each coating, three WCA and MICA 

were measured at three different spots and analyzed using FTA software. The averages of the three 

WCA and MICA values were used to calculate the surface energy (SE) values by Owens-Wendt 

method.30 WCA and MICA of the coatings were measured once a week for a month for each abraded 

coating. Statistical analysis was conducted using Minitab 17 software. One-way ANOVA was used to 

determine statistically significant variations in WCA values with changing surface abrasion treatments. 

Tukey-Kramer test was used to compare individual values with constant 95% confidence limit. In this 

study, select coatings, chosen based on FR performance against barnacles, were compared to the 

smooth SiPU coating. The coatings selected for analysis were the smooth coating, GP_0lb_200, 

GP_0lb_220, GP_1lb_100, GP_1lb_120, GP_1lb_160, GP_1lb_180, GP_1lb_200, and GP_1lb_220.  

A JEOL JSM-6490LV High-Performance Variable Pressure Scanning Electron Microscope (SEM) 

was used to analyze the surface of the smooth and select abraded coatings. Samples of the smooth SiPU 

coating, SP_5lb_300, SP_7lb-300, GP_0lb_220, and GP_1lb_160 coatings were coated with a thin layer 

of gold before imaging. The gold coated samples were then observed under 250, 1000 and 3000 

magnifications. The images obtained for the abraded coatings were compared to the images of the 

smooth SiPU coating. 

In order to determine the surface composition of the coatings after abrasions, select coatings 

were analyzed using a Thermo Scientific KAlpha X-Ray Photoelectron Spectroscopy (XPS) instrument 

with Al Kα X-ray source (1468.68 eV) and Ar+ ion source gun (up to 8000 eV) source. Survey spectra and 

high resolution spectra were taken from surfaces of the smooth SiPU coating, SP_7lb_300, and 

GP_1lb_160 coatings. High resolution scans were collected at an angle perpendicular to the coating 

surfaces. The results show a survey scan and atom percent for C1s, O1s, and Si2p elements. The scans 

were taken at chamber pressure below 1.5 x 10-7 Torr under ambient conditions.  
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Analysis of Surface Features  

In this study, the term “features” represents the valleys or the recessed zones formed on the 

SiPU surfaces after abrasions. The surfaces of the smooth and select abraded coatings (SP_5lb_300, 

SP_7lb_300, GP_0lb_220, and GP_1lb_160) were analyzed using a Wyko NT Series Optical Profiler 

(OP) from Veeco. Magnification was maintained at 10X for all the coatings. Feature depth was considered 

to be the maximum distance between the highest point and the lowest valley of the feature. Mean 

roughness depth, Rz, is the average of five deepest features on the area scanned using OP. In this study, 

the average of five such Rz values for each coating was recorded. Further, Fourier Transform analysis 

from ImageJ software (Java- based program developed at National Institute of Health) was used to 

determine the peak to peak distance or width of the features formed on the surface of the select abraded 

coatings. The results were reported as the average of five feature widths for the select coatings.           

Results and Discussion  

Self-stratified SiPU FR coatings were synthesized using IPDI trimer, acrylic polyol, and APT-

PDMS. Due to the lower surface energy of PDMS and incompatibility between the polar PU and non-polar 

APT-PDMS phases in the coating system, APT-PDMS stratifies to form the outer layer of the coating.31 

Presence of amine functional groups in APT-PDMS chains keeps the siloxane chains bound to the 

underlying urethane matrix. The highly crosslinked PU coating matrix provides mechanical strength and 

high adhesion to the substrate. In the past, extensive research in developing this novel one-pot system 

showed that the SiPU coatings showed comparable FR performance compared to the commercially 

available silicone elastomer based FR coatings. In practical applications, ship hulls are cleaned 

periodically to remove foulants attached to the ship’s surface. The elastomeric commercial coatings are 

extremely susceptible to damage during such cleaning activities. Although past results showed potentially 

successful use of the SiPU formulations in practical applications, this study aims at showing effect of 

abrasions or surface damage on FR performance of SiPU formulations.  

After comparing FR performance of previously developed SiPU formulations, formulation with 

polyisocyanate, acrylic polyol, and 20% APT-PDMS (A4 formulation) was identified as the optimum FR 

formulation. Therefore, all coatings were made using the A4 formulation. The SiPU coatings were 

abraded using a laboratory abrasion set up shown in Figure 2.1. Two Scotch Brite pads— scouring pad 
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(SP) and general purpose pad (GP)— were used to abrade the coatings with varying number of 

abrasions. Roughness of GP is significantly higher than SP. Therefore, no additional weight (0lb) or 1 lb 

additional weight was applied during abrasions with GP, but 5 lb and 7 lb additional weight were applied 

with SP to obtain minimum surface abrasions. The smooth and the abraded SiPU coatings were placed in 

a pre-leaching water tank to remove catalyst, impurities, and unreacted monomers from the coating films 

for 28 days. After 28 days, the coatings were analyzed for surface chemistry and topography. Figure 2.2 

shows data for WCA and SE for the smooth and the abraded SiPU coatings. WCA for the smooth and the 

abraded SiPU coatings was greater than 90°. The coatings, thus, retained their hydrophobicity, even after 

abrasions. Among all the coatings, GP_0lb_80 showed highest WCA of 116° (Figure 2.2(c)). The SE of 

the coatings ranged from 15 mN/m to 25 mN/m. Statistical analysis was conducted using select WCA 

values to observe any significant differences in WCA values with changing abrasion treatments over a 

one month period. For coatings abraded with GP with no additional weight and 200 abrasions (Figure 

2.2(c)), WCA values for week 2 to week 4 were significantly different from WCA for week 1; with 220 

abrasions, value in week 3 was significantly different from the other three measurements. Similarly, when 

coatings were abraded using GP under 1 lb additional weight, 3 out of 4 WCA values appeared to show 

no significant difference. Variations in WCA values of the SiPU coatings (“0” abrasions) can be attributed 

to rearrangement of PDMS chains on the surface of the smooth and the abraded coatings.5, 32  

(a)  

 

Figure 2.2. WCA and SE values for coatings abraded with SP (a) under 5 lb, and (b) under 7 lb additional 
loads, and with GP (c) under no additional load, and (d) under 1 lb additional load. Legends W1 to W4 
indicate the weeks over which WCA values were measured. Error bars represent standard deviation. 
Same alphabets on select data points in (c) and (d) indicate values that are not statistically different from 
one another (p < 0.001 for both (c) and (d)).   
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(b) 

 

(c) 

 

(d) 

 

Figure 2.2. WCA and SE values for coatings abraded with SP (a) under 5 lb, and (b) under 7 lb additional 
loads, and with GP (c) under no additional load, and (d) under 1 lb additional load (continued). Legends 
W1 to W4 indicate the weeks over which WCA values were measured. Error bars represent standard 
deviation. Same alphabets on select data points in (c) and (d) indicate values that are not statistically 
different from one another (p < 0.001 for both (c) and (d)).  
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 SEM was used to observe the surface of the smooth and the abraded coatings. Figure 2.3 shows 

SEM images for the smooth and the abraded SiPU coatings. As expected, the smooth SiPU coating was 

devoid of any surface abrasions or “features”. Minor defects present on the smooth surface may have 

been from impurities on the coating substrate. Coatings abraded using SP showed formation of small, 

randomly distributed “scratches” on the coating surface. More “scratches” were formed from abrading the 

SiPU coatings with GP, a pad with significantly higher roughness. Roughness of the coatings abraded 

using GP was significantly higher than the coatings abraded using SP. Since all the coatings were 

abraded along the length of the coating, the abrasions formed continuous parallel “channels” along the 

length of the coating.  

 

Figure 2.3. Comparison of SEM scans of the smooth and the abraded SiPU coatings. All surfaces 
abraded with the same abrasion pad (SP or GP), irrespective of the number of abrasions, looked similar. 
 
  The pre-leached SiPU coatings were analyzed for their FR behavior against micro- and 

macrofoulants like biofilm, diatoms, microalgae, barnacles, and mussels. The FR performance of the 

SiPU coatings were compared to the performance of the commercial FR coatings like Silastic T2, 

Intersleek 700, Intersleek 900, and a regular polyurethane coating (no siloxane). Figure 2.4 shows 

attachment and removal of biofilm C.lytica from all the SiPU coatings. In general, the amount of biofilm 

attached to the coating increased with increasing roughness of the coatings. Most of the abraded 

coatings showed lower biofilm attachment as compared to the commercial standards and regular PU. 

GP_1lb_160 showed the highest biofilm attachment among all the treatments. Percent biofilm removal 

from the abraded coatings was similar to or higher than the commercial coatings at 10 psi and 20 psi 

water jet pressure. 20 psi water jet pressure facilitated higher biofilm removal as compared to 10 psi. 

Almost 98-100% removal was obtained for some abrasion treatments at 20 psi water jet pressure.   
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(a) 

 

(b) 

 

Figure 2.4. Biofilm C.lytica (a) attachment and (b) removal at 10 psi and 20 psi water jet pressure for the 
smooth and the abraded SiPU coatings.  
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Figure 2.5 shows data for diatom attachment and removal at 20 psi water jet pressure from the 

smooth and the abraded coatings. The smooth and the abraded coatings showed diatom attachment 

similar to T2 and regular PU and significantly higher than I-900 coating. At 20 psi, diatom removal from 

the SiPU coatings (smooth and abraded) was lower than T2, I-900, and PU. Percent removal of diatoms 

decreased with increasing roughness of the coatings. Lowest removal was obtained with GP_1lb_160 

abrasion treatment.  

(a)              

 

Figure 2.5. Diatom N.incerta (a) attachment and (b) removal at 20 psi for all the SiPU treatments. 
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(b) 

 

Figure 2.5. Diatom N.incerta (a) attachment and (b) removal at 20 psi for all the SiPU treatments 
(continued). 
 
 Figure 2.6 shows barnacle adhesion for the smooth and the abraded SiPU coatings. Ratios 

above each data point indicate the number of barnacles that attached to the coatings during the 

experiment to the number of barnacle bases that broke during experimentation. As compared to the 

commercial standards, significantly higher force of removal was required for the coatings abraded using 

SP (Figure 2.6). Barnacle removal from the coatings abraded using SP reduced with increasing number 

of abrasions. Under 7 lb additional weight (Figure 2.6(b)), several barnacle bases broke at 200-300 

abrasions, indicating strong attachment of barnacles onto the SP-abraded coatings.  

 In contrast to the SP-abraded coatings, abrading coatings with GP resulted in a decrease in 

attachment strength of barnacles onto the abraded surface. The number of barnacles that adhered to the 

coatings reduced significantly with increase in roughness of the coatings (Figure 2.7). Moreover, adding 1 

lb. additional weight and increasing the number of abrasions with GP successfully deterred barnacle 

attachment onto the abraded coating surfaces. For example, for coating with GP_1lb_160 treatment, 3 

out of 4 barnacles did not attach to the coating over the course of the experiment. The force of removal 
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required to detach the only barnacle that attached to GP_1lb_160 was lower than 0.10 MPa, which is 

significantly lower than removal force from the commercial standards. 

(a)                                                                      (b) 

 

Figure 2.6. Barnacle removal for coatings abraded using SP under (a) 5 lb and (b) 7 lb additional 
weights. Ratios above individual data points indicate the number of barnacles that were successfully 
removed from the coating to the number of barnacle bases that broke during the experiment.  
 
(a)                                                                             (b) 

 

Figure 2.7. Barnacle removal for coatings abraded with GP (a) without additional weight and (b) under 1 
lb. additional weights. Ratios above individual data points indicate the number of barnacles that were 
successfully removed from the coating to the number of barnacle bases that broke during the experiment. 
The number above select data points indicates the number of barnacles that did not attach to the coatings 
during experimentation.  
 

Figure 2.8 shows microalgae U.linza removal from the smooth and select abraded SiPU after 

exposure to water jets at 18, 67 and 111 kPa.  Selection of the abraded coatings was based on the FR 
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performance of the coatings against barnacles. Therefore, abraded coatings included in the experiment 

were the smooth SiPU coating (control) coatings with abrasions treatments SP_5lb_300 and SP_7lb_300 

(worst performance) and GP_0lb_220 and GP_1lb_160 (best performance). For this experiment, 

polystyrene (PS) coating was added as a standard instead of the commercially available coatings. 

Removal of microalgae decreased as the roughness of the coatings increased. 111 kPa water pressure 

facilitated maximum removal of the microalgae. Among the SiPU coatings, coating with GP_1lb_160 

treatment showed lowest microalgae removal of 40%. PS surface showed lowest removal of the 

microalgae, due to the absence of a PDMS rich coating on the surface of PS. 

 

Figure 2.8. Percent removal of microalgae U.linza from the smooth and the select abraded coatings after 
exposure to 18, 67, and 111 kPa water pressure. Control indicates the smooth SiPU coating. Polystyrene 
was used as the standard for this experiment.  
 

Past research with SiPU coatings has showed that hydrophobic surfaces successfully deter 

attachment of mussels. In this study, mussel adhesion experiment showed that even after abrasions, the 

SiPU coatings also did not allow mussels to attach onto the rough coatings, probably due to enhanced 

hydrophobic character of the coatings upon abrasions. This study also showed that as long as 

hydrophobic nature of surfaces remained intact, attachment of mussels was potentially independent of 

surface topography of the coatings.  
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Select abraded coatings were analyzed using XPS to determine the effect of abrasions on the 

surface composition of SiPU coatings. Table 2.2 shows the results obtained from XPS for the smooth 

SiPU coating, coating with SP_7lb_300 treatment (worst barnacle removal) and coating with GP_1lb_160 

treatment (best barnacle removal). The results show that concentrations of individual elements Si, C and 

O detected on the coating surfaces were approximately 25%, 50% and 25% respectively (Si:C:O ratio of 

1:2:1). The binding energies from Figure 2.9, combined with the ratio of the individual elements, indicated 

the presence of PDMS on the surface even after abrasions. 

Table 2.2. Elemental composition of the select coatings obtained using XPS.  

Abrasion treatments Atom % 

Si C O 

Smooth PU-PDMS coatings 25.19 48.93 25.88 

SP_7lb_300 25.00 50.33 24.68 

GP_1lb_160 24.59 50.66 24.76 

 

 

Figure 2.9. Survey scan for the smooth and the select abraded SiPU coatings.  
 
 Based on the unusual FR performance of the abraded coatings against barnacles, it was 

hypothesized that the FR performance of the coatings was dependent on the size of the surface features 

formed upon abrading the coatings with different abrasion treatments, relative to the size of barnacles. To 

understand the interesting behavior of the abraded coatings, the smooth and select abraded coatings 

were analyzed for surface roughness using optical profilometry. Roughness analysis showed that Rz 

values (average feature depth) of the abraded coatings increased with the number of abrasions, 
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additional weights, and roughness of the Scotch Brite pad. The smooth SiPU coating and the SP-abraded 

coatings exhibited similar surface topography as shown in Figure 2.10. Coatings abraded using GP 

exhibited significantly higher roughness.   

  

Figure 2.10. Images of the smooth and the abraded SiPU coatings from optical profilometer. 
  

Determination of dimensions of the surface features showed that abrading the coatings with SP 

resulted in formation of shallower features, with depth ranging from 3.5 µm to 4.5 µm (Table 2.3). The 

depth of the features increased to 9-12 µm upon abrading the SiPU coatings with GP. Width of the 

features was determined as the peak to peak distance between the highest surface features (Table 2.3). 

Abrading the coatings with SP resulted in formation of non-uniform (high standard deviation) wide surface 

features (40-55 µm). On the other hand, the width of the features significantly reduced upon abrasions 

with GP (10-12 µm), with low standard deviation values indicating uniformity of the surface features. The 

data points at 0 abrasions in Figure 2.11 indicate Rz for the smooth SiPU coating. Variations in the Rz 

values for the smooth coatings may be attributed to movement of PDMS chains on the coating surface or 

presence of surface defects. Although complexity and non-uniformity of the shape of the protruding peaks 

made the analysis of the width of the individual peaks extremely difficult, results obtained from analysis of 

the surface features provides a good estimation of the topography of the abraded coatings.  
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Table 2.3. Height and distance between the features for different abrasion treatments determined using 
optical profilometry.   

 Coating treatments Depth (avg. Rz) 
(microns) 

Width 
(microns) 

Smooth SiPU 4 ± 2 46.49 ± 8.63 

SP_5lb_300 3.5 ± 0.25 40.70 ± 13.38 

SP_7lb_300 4.42 ± 0.96 57.02 ± 11.99 

GP_0lb_220 9.28 ± 2.32 12.27 ± 1.54  

GP_1lb_160 11.21 ± 1.43 10.69  1.00 

 

(a)                                                                                  (b) 

       

Figure 2.11. Depth of the surface features (Rz) in microns after abrasions with (a) SP and (b) GP. Error 
bars represent standard deviation.  
 

Past attempts at understanding FR performance of coatings have shown that the FR performance 

of the coatings is dependent on the size of the organism relative to the dimensions of the surface 

features. Abrading the coatings caused an increase in the roughness of the SiPU coating surface, which 

resulted in an increase in surface area and number of contact points between the fouling organism and 

the abraded surfaces. Diatoms show tendency to attach strongly onto hydrophobic siloxane rich 

surfaces.33 Presence of APT-PDMS on the surface even after abrasions combined with an increase in the 

number of contact points upon abrasions resulted in stronger attachment of the diatoms on the abraded 

surfaces (Figure 2.5). The diatoms may have been able to occupy the space between the features, 

shielding the diatoms from the impact of water jet. Microalgae (size— 5 to 7 µm) removal from the GP-

abraded coatings decreased with increasing roughness (Figure 2.8). Determination of the size of the 

surface features formed using GP showed that the features formed were significantly bigger than the size 

of the microalgae (Table 2.3). Moreover, comparatively deeper “grooves” with GP provided a “cozy” 
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environment for potential growth of the microalgae, protecting the spores from incoming water. Therefore, 

even though hydrophobic surfaces generally reduce attachment of algal spores, FR performance against 

microalgae deteriorated with increasing roughness of the coatings. Availability of extra points of contact 

between biofilm and the abraded coatings allowed more bacterial biofilm to attach onto the surface of the 

abraded coatings as compared to the smooth SiPU coatings (Figure 2.4). Due to smaller size (width and 

depth) of the surface features as compared to the size of the bacterial biofilm, the biofilm may have 

remained suspended between the features. Exposure to water pressure may have easily removed the 

suspended biofilm. FR performance against barnacles (cyprids— 200 to 500 µm; adult barnacles in this 

study— ~5mm) showed that the adult barnacles attached strongly onto the SP-abraded coatings, but the 

GP-abraded surfaces successfully deterred barnacle attachment (Figures 2.6 and 2.7). The shallower 

and wider grooves on the SP-abraded coatings may have increased the mechanical interlocking between 

the barnacle adhesive and the abraded coating by increasing the number of contact points available for 

attachment. On the other hand, the narrower and deeper features on the GP-abraded coatings appeared 

to make it difficult for the barnacles to attach to the coatings, requiring the barnacles to “balance” on the 

protruded peaks on the abraded coatings. Strain developed in the barnacles to maintain their balance 

made the coatings less conducive for growth.13 Among all the SiPU coatings (smooth and abraded) and 

the commercial standards, coating with GP_1lb_160 abrasion treatment showed best FR performance 

against barnacles and bacterial biofilm (and mussels), but, the abrasion treatment allowed highest diatom 

and microalgal attachment. Correlation between FR performance of the abraded coatings and dimensions 

of the surface features supported the initial hypothesis that FR behavior is a function of the feature size 

relative to size of the foulant.   

Conclusions 

Self-stratified SiPU FR coatings were successfully made using polyisocyanate, acrylic polyol, and 

20% APT-PDMS (20k g/mol). The coatings were abraded using two different Scotch Brite pads. The 

roughness of the coatings increased with the number of abrasions, additional weight used during the 

experiment, and the roughness of the Scotch Brite pad. Contact angle experiment showed that the 

coatings maintained their hydrophobicity even after abrasions. Although C.lytica biofilm attachment on the 

abraded coatings was higher than the commercial I-900, percent removal of the biofilm from the abraded 
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coatings was greater than the commercial standards, with some abrasions treatments like GP_1lb_160 

facilitating 98-100% removal at 20 psi water jet pressure. The abraded coatings showed higher 

attachment of diatom N.incerta and increasing roughness of the coatings could not facilitate removal of 

the diatoms, with abrasion treatment GP_1lb_160 showing the lowest diatom removal. Similarly, 

microalgae U.linza removal decreased with increasing roughness of the abraded coatings. The smooth 

and the abraded SiPU coatings successfully deterred attachment of mussels, showing independence of 

mussel adhesion on coating topographies. The abraded coatings exhibited unusual FR performance 

against barnacles. The number of barnacles that attached to the abraded coatings reduced significantly 

with increasing roughness of the coatings. Coating with abrasion treatment GP_1lb_160 showed the best 

performance against barnacles, with 3 out of 4 barnacles not attaching to the coating at all and 1 barnacle 

requiring ~0.05 N removal force.  

To understand this interesting behavior of the abraded coatings, attempts were made to quantify 

the dimensions of the surface features, depth (Rz) and width. Results showed that abrasions with SP 

resulted in formation of shallower and wider features, while abrading the surfaces with GP resulted in the 

formation of deeper and narrower features. Wide surface features with SP could not shield 

microorganisms from the impact of water jets. Availability of more points of contact may have allowed 

interlocking of barnacle adhesive with the SP-abraded surface. Conversely, the coatings abraded using 

GP may have provided a “secure” environment for the growth of microalgae. Further, trying to balance on 

top of the narrow and deep features on the GP-abraded coatings caused internal strains in the barnacles, 

making the GP-abraded coatings less attractive for attachment. Therefore, although suitable to 

microalgae and diatoms, the surfaces abraded using GP successfully deterred barnacle and biofilm 

attachment. The above study shows potential to use regular Scotch Brite pads to form “textured” surfaces 

to deter macrofoulants in practical marine applications.  
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CHAPTER 3. NOVEL NON-ISOCYANATE SILOXANE MODIFIED GLYCIDYL 

CARBAMATE COATINGS FOR FOULING-RELEASE MARINE APPLICATIONS 

Introduction 

Biofouling is the undesirable attachment and colonization of aquatic organisms, like microalgae 

and barnacles, on submerged surfaces.1, 2 The process of biofouling can be commonly explained as the 

initial formation of an organic conditioning layer, followed by accumulation of microorganisms like bacteria 

and algal species and finally attachment and growth of macrofoulants like barnacles and mussels.2, 3 

Common disadvantages of biofouling include increase in drag and therefore, increase in fuel 

consumption, reduction in the speed of the vessel, and migration of aquatic species to non-native 

environments.1, 4, 5 Furthermore, the economic impact of biofouling also cannot be ignored; combating 

biofouling can cost as high as one billion dollars annually.5 Two main technologies have been introduced 

to combat biofouling. Traditional anti-fouling (AF) coatings contained tin, copper or organic biocides, 

which would leach out over time and completely prevent the attachment of organisms.5 Although highly 

effective, potentially toxic nature of the leachates has led to the replacement of AF coatings with “safer” 

fouling-release (FR) coatings.1, 5 FR coatings allow attachment of organisms, but the weak bond can be 

easily broken by hydrodynamic forces.6, 7 Commercial FR coatings are typically based on soft silicone 

elastomers. These commercial FR coatings lack mechanical strength and adhesion, making them less 

viable in long term applications.6, 7 As an improvement over the commercial FR coatings, a self-stratified 

siloxane-polyurethane (SiPU) system was developed in the Webster research group.6-10 A typical coating 

formulation with the SiPU system comprises of an isocyanate, a polyol, and difunctional high MW 

siloxane (APT-PDMS). Upon curing, the siloxane component stratifies to form the outer low surface 

energy layer, while the PU matrix provides mechanical strength and improved adhesion to the substrate. 

But, concerns have been raised about using isocyanate hardeners in 2K coating formulations. Factory 

workers exposed to isocyanates are prone to ailments like asthma, inflammation, and acute bronchitis. 

Long term hazards of using isocyanates have necessitated further research into finding potentially “safer” 

alternatives to the PU matrix. In an attempt to find a practical, “safer” alternatives for polyurethanes to 

make self-stratified FR marine coatings, a novel non-isocyanate coating system based on glycidyl 

carbamate (GC) technology was explored. GC resins can be easily synthesized by reacting an isocyanate 
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with glycidol to form carbamate linkages (-CO-NH-).11-18 The resultant resin combines the strength and 

abrasion resistance of polyurethanes with convenient epoxy-amine crosslinking chemistry. A typical 

formulation with GC resin consists of the carbamate resin and a diamine crosslinker. Properties of the 

thermoset formed after curing can be easily altered depending on the application by changing the type 

and amount of amine crosslinkers. Although isocyanate is used to synthesize GC resins, absence of free 

isocyanates in the final coating formulation is expected to greatly reduce hazards associated with 

spraying unreacted isocyanates.  

In this study, “safer” low surface energy, hydrophobic coatings were explored as viable FR 

surfaces. To this end, a novel self-stratified isocyanate-free siloxane modified GC resin (IGC_PDMS) was 

synthesized using an isocyanate trimer, glycidol, and dicarbinol terminated PDMS. The resin was 

characterized using FTIR, 13C-NMR, and GPC. The synthesized resin was crosslinked using PACM, 

polyamines, Ancamine 2143 and Ancamine 2432, and polyamides, Ancamide 2634 and Ancamide 2767 

crosslinkers. Ratios of epoxy: AHEW were also varied as 1:1, 1:2, and 2:1. Additionally, varying amounts 

of 20k g/mol aminopropyl terminated PDMS (APT-PDMS) were incorporated into the formulations to 

identify the formulation(s) that show optimum FR performance. Formulations with PACM were cured at 

80°C for 45 minutes; the polyamine cured and the polyamide cured formulations were cured at RT for 3 

weeks. The cured coatings were analyzed for their mechanical properties such as hardness, flexibility, 

and impact strength. Thermal analysis experiments were used to determine glass transition temperature, 

degradation behavior, and crosslink density of the cured coatings. Surface analysis of the coatings was 

conducted using contact angle measurements, ATR-FTIR, AFM, and XPS. Lastly, select IGC_PDMS 

coatings were characterized for their FR performance against common fouling organisms: diatoms, 

biofilm, microalgae, mussels, and barnacles.  

Experimental Section  

Materials  

Trimer of hexamethylene diisocyanate (HDI trimer; Desmodur N 3300A) was provided by 

Covestro (Bayer MaterialScience). Dicarbinol terminated PDMS (DMS-C21) with molecular weight (MW) 

5k g/mol was purchased from Gelest. Glycidol, supplied by Dixie Chemicals, was refrigerated to reduce 

the formation of impurities.19 Catalyst dibutyltin diacetate (DBTDAc), ethyl-3-ethoxy propionate (EEP) and 
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toluene were purchased from Sigma Aldrich. Diamines, PACM (AHEW = 52.5 g/eq.), Ancamine 2143 

(AHEW = 115 g/eq.), Ancamine 2432 (AHEW = 88 g/eq.), Ancamide 2634 (AHEW = 90 g/eq.), and 

Ancamide 2767 (AHEW = 114 g/eq.), were provided by Air Products. Intergard 264 primer and hardener 

(products of International Paint) were purchased from Interbay Coatings.  

Aminopropyl terminated polydimethylsiloxane (APT-PDMS) was synthesized in a fashion similar 

to the one described in prior publication.6 Chemicals for the synthesis of APT-PDMS, siloxane monomer 

(D4), benzyltrimethylammonium hydroxide, and blocker bis(3-aminopropyl)-tetramethyldisiloxane 

(BAPTDMS) were purchased from Dow Chemical, Sigma Aldrich, and Gelest respectively. D4, 

BAPTDMS, and 40% benzyltrimethylammonium hydroxide solution in methanol were equilibrated at 80°C 

for 24 hours in a round bottom flask, equipped with a nitrogen inlet, condenser, heating mantle, and 

temperature controller. After 24 hours, temperature was increased to 170°C for 2 hours to decompose the 

catalyst. The product was cooled to room temperature and stored. MW of the synthesized APT-PDMS 

was between 18-20k g/mol, as determined from GPC.  

Synthesis of Siloxane Modified Glycidyl Carbamate Resin (IGC_PDMS Resin) 

A four-necked round bottom flask was fitted with a condenser, a nitrogen inlet, a thermocouple, 

and a mechanical stirrer. Equivalents of dicarbinol terminated PDMS modifier were maintained at 5% of 

equivalents of isocyanurate (HDI trimer). Amounts of solvents, EEP and toluene, were calculated such 

that the final resin contained target 50% resin solids in 1:1 w/w solvent blend of EEP and toluene. In the 

first stage of synthesis, the flask was charged with HDI trimer and the required amount of EEP solvent. 

Once HDI trimer and EEP were homogeneously mixed, PDMS modifier and catalyst DBTDAc (0.020-

0.025% by weight of total solids) were added to the flask. Temperature was maintained at 80°C for 1-1.5 

hours. In the next step, temperature was reduced to ~40°C before the addition of glycidol. A solution of 

glycidol in required amount of toluene was then added to the flask at ~40°C. The reaction of glycidol with 

isocyanate is highly exothermic; glycidol solution in toluene provides better temperature control. The 

reaction was allowed to proceed at 45-50°C for another 1-1.5 hours. Completion of the reaction was 

determined from the disappearance of the isocyanate peak at 2272 cm-1 as observed using Fourier 

Transformed Infrared Spectroscopy (FTIR). 
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Resin Characterization 

The synthesized resin was analyzed using FTIR, Nuclear Magnetic Resonance Spectroscopy 

(13C-NMR), and Gel Permeation Chromatography (GPC). A Thermo Scientific Nicolet 8700 instrument 

was used to conduct FTIR experiments. A small amount of the IGC_PDMS resin was coated onto a 

potassium bromide plate and 32 scans were taken for the sample. For 13C-NMR, dilute resin solution in 

CDCl3 was analyzed using Bruker 400 NMR instrument. Further, the resin was also analyzed using an 

EcoSEC HLC-8320 GPC system from Tosoh Bioscience, Japan, fitted with a differential refractometer 

(DRI) detector. Two TSKgel SuperH3000 6.00 mm ID × 15 cm were used as separation columns. The 

columns and detectors were maintained at 40⁰C. A flow rate of 0.35 mL/min was maintained for 

tetrahydrofuran (THF), which was used as the eluent. Prior to testing the sample, the equipment was 

calibrated using Agilent EasiVial PS-H 4mL polystyrene standard. A 20 µL dilute solution (1 mg/mL) of the 

IGC_PDMS resin in THF then analyzed using GPC. A dilute sample of HDI trimer in THF was also 

separately analyzed. Elution time of 20 min was maintained for the resin and HDI trimer. GPC result for 

the IGC_PDMS resin was compared to HDI trimer to confirm absence of polymerization reactions during 

synthesis of the resin.  

To determine experimental percent solids, ~1 g resin, measured accurately, was added to 

aluminum pans. The pans were heated in an oven at 120°C for 1 hour. Three replicates were measured 

with the IGC_PDMS resin. Weights of the pans with the resin before and after heating were measured. 

The average of the three replicates was recorded as the experimental value of percent solids. Epoxy 

equivalent weight (EEW) was determined experimentally according to ASTM D 1652. ~1 g of the resin, 

accurately measured up to the fourth decimal place, was added to an Erlenmeyer flask. 10-15 mL 

chloroform was added to the flask to completely dissolve the resin sample. 3-5 drops of crystal violet 

solution (0.1% solution in glacial acetic acid) were used as the indicator. The resin solution was titrated 

against standardized 0.1 N HBr solution. Color change from violet to blue-green was considered to be the 

end point of titration. EEW titrations were conducted three times. The average of the three values was 

reported as the experimental EEW of the synthesized resin.   
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Coating Formulations 

The IGC_PDMS resin was crosslinked using amine crosslinkers, PACM, polyamines, Ancamine 

2143 and Ancamine 2432, and polyamides, Ancamide 2634 and Ancamide 2767. Epoxy: AHEW ratio 

was varied as 1:1, 1:2 and 2:1. Additionally, varying amounts of high MW APT-PDMS (20k g/mol), as a 

33% solution in toluene, were added to make different formulations. The formulations were first stirred 

using a magnetic stirrer for 20 min and then, sonicated for another 10 min to remove bubbles. Coatings 

used for mechanical tests and thermal analysis were applied onto degreased (using isopropanol) bare 3” 

x 6” aluminum (purchased from Q-Lab, specifications— smooth mill finish, type A, alloy 3003 H14), bare 

3” x 6” steel (purchased from Q-Lab, specifications— smooth mill finish, type QD, alloy 1008/1010) and 

glass substrates, using a drawdown bar with 8 mils wet film thickness. Coatings used for FR experiments 

were applied onto primed (Intergard 264) 4” x 8” aluminum panels (purchased from Q-Lab, 

specifications— smooth mill finish, type A, alloy 3003 H14), using a Mayer rod (RDS 80). Formulations 

containing PACM crosslinker were cured at 80°C for 45 min. Formulations containing the polyamines and 

the polyamides were cured under ambient conditions for 3 weeks. In this study, coatings labels are of the 

format: amine crosslinker_epoxy: AHEW ratio_F%APT-PDMS.  

Mechanical Characterization  

Upon curing, all the IGC_PDMS coatings were characterized for their solvent resistance, 

mechanical properties and impact resistance. Chemical resistance and extent of crosslinking of the 

coating network was analyzed by methyl ethyl ketone (MEK) double rubs test (ASTM D 5402). A 26-oz 

hammer with three layers of cheesecloth was soaked in MEK solvent. The cheesecloth was rewet with 

MEK after every 100 double rubs. The number of double rubs that resulted in surface mar or discoloration 

of the surface were recorded. Hardness of the coatings was measured using König pendulum hardness 

(ASTM 4366). The hardness values were reported in seconds (s). Pencil hardness values (ASTM 3363) 

were determined using pencils of different hardness from 9B (softest) to 9H (hardest). The results were 

reported as the hardest pencil that does not leave surface mar. Reverse impact strength of the coatings 

was determined according to ASTM D 2794 using a Gardener impact tester, with maximum drop height of 

43 in. and a drop weight of 4 lb. The results were reported as the impact value that causes crazing or loss 

of adhesion or film failure in inch–pounds (in.-lb), with > 160 in.-lb indicating coatings that showed no 
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failure during experimentation. Flexibility of coatings was determined conical mandrel bend (ASTM D 

522). The results were reported as no failure (NF) or “tear” in the film. Crosshatch adhesion test was 

conducted on the coatings per ASTM D 3359, using a Gardco crosshatch adhesion instrument and tape. 

The results were reported as 5B (best) to 0B (worst), depending on the amount of film removed after the 

tape was ripped off. 60° gloss was measured using a BYK Gardner gloss meter. Three measurements at 

different spots on each coating with a glass substrate were taken. The average of the three 

measurements was recorded as the 60° gloss value for the formulation. Instron 5542 was used to test 

tensile strength of the PACM and Ancamine 2432 cured coatings. Free coating films were prepared 

according to ASTM 882. Young’s modulus and elongation were measured at room temperature at a rate 

of 5 mm/min.  

Thermal Analysis  

Based on the results obtained from the mechanical tests, only PACM_1:1_Fx, 2143_1:1_Fx and 

2432_1:1_Fx were analyzed using DSC, DMA, and TGA. A TA Instruments Q1000 Differential Scanning 

Calorimetry (DSC) instrument was used to determine glass transition temperature of the select 

IGC_PDMS coatings. 7-8 mg samples were subjected to heat-cool-heat cycle at heating and cooling 

rates of 10°C/min and 5°C/min respectively. Temperature was between -20°C to 250°C for all the 

samples. Glass transition temperature (Tg °C) was determined as the temperature at the midpoint of the 

inflection in the second heating cycle. Degradation behavior of the cured coatings was determined using 

a TA Instruments Q500 Thermogravimetric Analysis (TGA) instrument. The coatings were heated up to 

800°C at a heating rate of 10°C/min. Temperature of onset of degradation (Td 5% °C) was determined for 

all the coatings. A TA Instruments Q800 Dynamic Mechanical Analysis (DMA) system was used to 

determine crosslink density (νe mol/L), tan delta and storage modulus (E’ MPa) of the cured coatings. 

Poisson’s ratio of 0.44 was used for all the coatings. Temperature was between -20 to 200°C, with 

heating rate of 5°C/min and 1 Hz frequency. νe was calculated using E’ values in the rubbery plateau 

region, 60°C above the Tg, using the equation, E’ = 3νeRT, where, E’= storage modulus (Pa); νe = 

crosslink density (mol/L); R= gas constant (8.314 J/K/mol); T= (Tg + 60°C + 273) K.  
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Laboratory Biofouling Assays  

Preleaching and Leachate Toxicity Analysis 

Laboratory FR experiments were conducted only on IGC_PDMS formulations cured using PACM, 

Ancamine 2143, and Ancamine 2432 at 1:1 epoxy: AHEW ratio. Before FR tests, the coatings were 

placed in a recirculating water tank for six weeks (42 days) to remove toxic leachates, impurities, and 

catalyst before analysis with biological organisms.20 After six weeks, algal solution in artificial sea water 

(ASW) with nutrients was introduced onto the coatings to test leachate toxicity. Fluorescence was used to 

observe the growth of algae on the coatings after 48 hours. The growth of the organisms on the coatings 

was reported as a fluorescence ratio to a positive growth control. A negative growth control (medium+ 

bacteria+ triclosan) was also included in the experiment. The coatings were compared to the negative 

control to confirm the absence of toxic leachates.6 Leachate toxicity experiment showed that the 

Ancamine 2143 cured coatings exhibited severe toxicity against biological organisms. Therefore, FR 

analysis and surface characterization experiments with the Ancamine 2143 cured coatings were 

discontinued.       

Diatom Navicula incerta (N.incerta) Attachment and Removal 

Diatom N.incerta adhesion was carried out as explained in earlier publications.6, 9, 21-23  24-well 

plates were prepared by carefully punching out discs from PACM_1:1_Fx and 2432_1:1_Fx coatings. The 

discs were then glued to the well plates using a silicone adhesive from Dow Corning, such that the glue 

covered the circular basal area completely. The plates were then treated with 1 mL solution of algae in 

ASW and incubated for 2 hours to allow diatom adhesion. The settlement of the diatoms on the coatings 

was quantified using fluorescence. After 2 hours, the well plates were subjected to water jet at 10 psi and 

20 psi for 10 seconds to determine release of diatoms from the coatings. The first column in each well 

plate was used as a reference for the initial cell settlement and was not subjected to water jet. The result 

obtained from the test was reported as the number of diatoms attached to the coatings and diatom 

removal at 10 psi and 20 psi water jet pressure.  

Biofilm Cellulophaga lytica (C.lytica) Adhesion and Removal  

Bacterial biofilm C.lytica adhesion test was carried out in a fashion similar to diatom attachment.6, 

24-26 Briefly, circular discs were carefully punched from PACM_1:1_Fx and 2432_1:1_Fx coatings. The 
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discs were glued to the plates using a silicone adhesive from Dow Corning. 5% suspension of C.lytica in 

ASW (107 cells/mL) with nutrients was prepared. 1 mL suspension was dispensed in each well. The 

plates were incubated for 24 hours at 28°C to allow colonization of the biofilm on the coatings. The plates 

were rinsed three times with deionized water to remove unattached biofilm. Crystal violet was used to 

stain the samples. Extractions of crystal violet in acetic acid (33%) were observed under 600 nm 

absorbance, to determine amount of biofilm retained on the coatings. After 24 hours, the wells were 

subjected to water jets at 10 psi and 20 psi for 5 seconds.27 The first column in each 24-well plate served 

as a reference for bacterial growth before water jetting and was not exposed to water jet. The final result 

was reported as the amount of biofilm attached to the coatings and the percent removal of the biofilm 

from the coatings at 10 psi and 20 psi water jet pressures.  

Microalgae Ulva linza (U.linza) Attachment and Removal  

Similar to diatoms and biofilm, 24-well assay plates were prepared by carefully punching out 

discs from the preleached IGC_PDMS coatings. The discs were glued to the 24-well plates using a 

silicone adhesive from Dow Corning. The plates were then shipped to Newcastle University (United 

Kingdom) to determine the FR performance of the coatings toward microalgae U.linza. Before the 

bioassay experiment, the assay plates were equilibrated in 0.22 µm ASW for 2 hours. Then, 1 mL U.linza 

sporelings suspension (3.3 x 105 spores/mL) in enriched ASW was dispensed into each of the wells. The 

spores were grown in an illuminated incubator at 18°C for 6 days. After 6 days, the biomass from a single 

row of wells (6 wells) was assessed by extracting chlorophyll. Chlorophyll was extracted in 1 mL DMSO. 

Fluorescence was then determined using excitation of 360 nm and wavelength of 670 nm. To determine 

the release performance of the coatings, single rows of wells from each plate was sprayed using the 

spinjet apparatus at 18, 67, 110 kPa water pressure. Chlorophyll was again extracted, as explained 

earlier. The removal at each pressure was determined by comparing the sprayed and the unsprayed 

wells. The results were reported as the percent removal of the sporelings after exposure to water jet. In 

this paper, only microalgae removal at 110 kPa is shown. 18 and 67 kPa water pressure resulted less 

than or equal to 5% removal of the microalgae.  
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Mussel  Geukensia demissa Adhesion 

Select PACM_1:1_Fx and 2432_1:1_Fx coatings were evaluated for adhesion of marine mussels 

Geukensia demissa, according to a previously published procedure.28-30 Before the start of the 

experiment, individual marine mussels (received from Duke University Marine Laboratory, North Carolina, 

USA) were fitted with a 4 cm long acetal rod, using a 3M acrylic adhesive. The rods were attached 

perpendicular to the ventral edge of each mussel. Six mussels were immobilized on the select 

PACM_1:1_Fx and 2432_1:1_Fx coatings using a custom designed polyvinyl chloride (PVC) template. 

The select coatings were placed in ASW so that the mussels can be fed live marine phytoplankton for 3 

days. After 3 days, the number of mussels showing attachment of byssus threads was recorded for each 

coating. The acetal rods on the mussels were attached to a tensile force gauge, such that all the mussels 

were pulled from the coating at the same time. The result was reported as the average force in Newtons 

required to completely detach all byssus threads of the mussel from the surface.   

Adult Barnacle Amphibalanus amphitrite (A.amphitrite) Adhesion 

Select PACM_1:1_Fx and 2432_1:1_Fx coatings were also analyzed for barnacle adhesion to 

determine their FR performance against barnacles.6, 31, 32 Six adult A.amphitrite barnacles, with basal 

diameter of approximately 5 mm, were allowed to grow and attach to the select coatings for 2 weeks. The 

barnacles were fed brine shrimp nauplii in ASW for 2 weeks. After 2 weeks, a hand held digital gauge 

was used to measure the force required to detach the barnacles in shear from the coatings. Adhesion 

strength (MPa) of the barnacles was then calculated as the shear force required for barnacle removal to 

the basal area of the barnacle. The result was reported as the adhesion strength of the barnacles.  

Surface Characterization  

Surface chemistry and topography of the pre-leached PACM_1:1_Fx and 2432_1:1_Fx coatings 

were studied using characterization techniques such as contact angle, Attenuated Total Reflectance 

Fourier Transformed Infrared Spectroscopy (ATR-FTIR), Atomic Force Microscopy (AFM), and X-Ray 

Photoelectron Spectroscopy (XPS). A First Ten Angstroms (FTA 125) system was used to measure water 

contact angles (WCA) and methylene iodide contact angles (MICA) of PACM_1:1_Fx and 2432_1:1_Fx 

coatings by the sessile drop method. Three WCA and MICA for each coating were measured at three 

different spots on the coating panel. The contact angles were analyzed using FTA software. The 
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averages of the three WCA and MICA values for each formulation were used to calculate the surface 

energy (SE) of the coatings by Owens-Wendt method.33  

A Thermo Scientific Nicolet 8700 instrument, with iTR diamond crystal plate attachment, was 

used to conduct ATR-FTIR on select PACM_1:1_Fx and 2432_1:1_Fx coatings. 32 scans were taken for 

each coating sample. The spectra shown in this chapter are an average of the 32 scans.  

Surface topography of select samples was analyzed using AFM. 20 µm x 20 µm and 100 µm x 

100 µm areas of the select pre-leached coatings were scanned using a Dimension 3100 Microscope 

system with Nanoscope controller. A silicon probe with a spring constant of 0.3-0.8 N/m and resonant 

frequency of 20-40 kHz was used to scan the surfaces in tapping mode in air under ambient conditions.  

A Thermo Scientific K-Alpha XPS system with monochromatic Al Kα X-ray source (1468.68 eV) 

and Ar+ ion source gun (up to 8000 eV) was used to conduct XPS analysis for investigation of chemical 

composition of select IGC_PDMS coatings. Chamber pressure was maintained below 1.5 x 10-7 Torr at all 

times. Prior to analysis of the coatings, the surfaces were cleaned for 60 seconds to remove impurities 

using an Ar+ ion MAGCIS cluster gun with 8000 eV power. Survey spectra were collected at a low 

resolution with constant pass energy of 200 eV. Three scans were collected at energy increment of 1.000 

eV/step for 10 microseconds. High resolution scans were collected at an angle perpendicular to the 

coating surfaces. Pass energy was maintained at 50 eV. Ten scans were collected for each sample with 

energy increment of 0.100 eV/step for 50 microseconds. Atomic concentrations of individual elements, 

C1s, O1s, and N1s, were determined by integrating area under the peaks. Both surface etching and high 

resolution experiments were conducted at ambient temperature.  

Results and Discussion   

In an attempt to find a “safer” alternative for conventional isocyanate based polyurethane for use 

in FR marine applications, a novel siloxane modified isocyanate-free glycidyl carbamate (IGC_PDMS) 

resin was synthesized using HDI trimer, glycidol, and dicarbinol terminated PDMS as modifier (MW = 5k 

g/mol). The amount of the PDMS modifier was maintained at 5% of equivalents of isocyanurate. High 

viscosity of GC resins can be attributed to presence of strong intermolecular hydrogen bonds, 

necessitating incorporation of a modifier to reduce the viscosity. Similar to the previously developed 

siloxane-polyurethane (SiPU) coatings, it was anticipated that upon curing, self-stratification of the 
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hydrophobic siloxane chains in the IGC_PDMS formulations will lead to formation of low surface energy 

coatings. The resultant slippery surface will then reduce attachment strength of fouling organisms. 20k 

MW APT-PDMS was incorporated into coating formulations with the IGC_PDMS resin to study effect of 

increasing hydrophobicity on FR performance of the coatings. One of the biggest challenges in the project 

involved compatibilization of the highly polar GC resin with the non-polar siloxane components to form 

smooth, glossy, uniform, and preferably transparent coatings. Curing reactions, mechanical properties, 

appearance, and FR performance are dependent on compatibility between the different components of 

the coating formulation. Therefore, dicarbinol PDMS was specifically used as the modifier not only to 

reduce the viscosity of the GC resin, but also as a medium to compatibilize the high MW APT-PDMS with 

the GC matrix. Not just the PDMS modifier, initial stages of the project involved an extensive study with a 

number of different solvents and solvent blends to identify the best solvent or solvent combination that 

formed smooth and uniform modified GC films. A 1:1 w/w solvent blend of EEP and toluene was identified 

as the best combination. Further, 50% solvent blend in the resin provided sufficient viscosity for 

completion of synthesis reaction and convenient coating application, without causing thickness variations 

or surface sag.  

Before identifying dicarbinol terminated PDMS as the best potential resin modifier, ethylene glycol 

butyl ether (EB) and 1-butanol (B) were explored as potential resin modifiers. To make hydrophobic FR 

coatings, APT-PDMS was incorporated into formulations with the modified GC resins. PACM was used as 

the crosslinker for all initial formulations. The resultant coatings showed good mechanical properties and 

uniform, glossy appearance. Preliminary FR performance with the EB modified resin showed potential 

use of GC resins in FR applications. But, incompatibility of non-polar siloxanes in polar GC resin resulted 

in formation of hazy, opaque coatings. To increase compatibility of APT-PDMS with the GC matrix, the 

alcohol modifiers were replaced with monocarbinol terminated PDMS (PDMS-OH; 1k g/mol). PDMS-OH 

appeared to drastically increase compatibility between APT-PDMS and the PDMS-OH modified GC resin, 

resulting in formation of clear, uniform, and glossy coatings. But, the monofunctional PDMS severely 

hampered epoxy-amine curing reactions. Curing behavior of the coatings was similar to lacquers, instead 

of cured thermoset coatings. Temperatures greater than 120°C, which facilitated self-crosslinking of 

epoxy rings, were required to obtain sufficient crosslinking in the PDMS-OH modified formulations.  
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The proposed structure of the synthesized IGC_PDMS resin is shown in Figure 3.1. The reaction 

of HDI trimer with glycidol and difunctional PDMS resulted in the formation of -CO-NH- linkages. Due to 

excess of isocyanate groups as compared to hydroxyl groups from the PDMS modifier, probability of 

reaction between hydroxyl groups and isocyanate groups from two different HDI trimer molecules is 

higher than formation of PDMS “loops” by reaction with isocyanates from the same trimer molecule. 

Glycidol provides reactive epoxy functional groups that can be crosslinked using a variety of amine 

crosslinkers. Absence of the isocyanate peak at 2272 cm-1 as observed from FTIR (Figure 3.2(a)) 

indicated formation of an isocyanate-free resin at the end of the synthesis reaction. Comparison of GPC 

spectra of unreacted HDI trimer and IGC_PDMS resin (Figure 3.2(b)) showed absence of polymerization 

reactions during synthesis. Further, analysis using 13C-NMR indicated (Figure 3.3) formation of carbamate 

linkages with chemical shift at 149 ppm. Similarly, shifts at 1 ppm, 26-29 ppm, 44-49 ppm and 148 ppm 

represented C atoms from dicarbinol PDMS, alkyl groups from the HDI trimer and epoxy rings in the 

synthesized resin. The synthesized resin was also characterized for experimental percent solids and 

EEW. Experimental value of resin solids was calculated to be 48-50% (theoretical target— 50%). EEW 

values for the resin was found to be 400 ± 20 g/eq.  

 

Figure 3.1. Reaction scheme for synthesis of IGC_PDMS resin.   
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(a)                                                                             (b) 

 

Figure 3.2. (a) FTIR spectrum and (b) GPC chromatogram for the IGC_PDMS resin. 
 

 

Figure 3.3.  13C-NMR spectrum for the IGC_PDMS resin.  
 

Formulations were made using the synthesized IGC_PDMS resin and amine crosslinkers, PACM, 

Ancamine 2143, Ancamine 2432, Ancamide 2634, and Ancamide 2767. Epoxy: AHEW ratios were varied 

as 1:1, 1:2, and 2:1. Different diamines were used as curing agents to study effect of the structure, the 

functionality, and the amount of the crosslinker on coating properties and FR performance of the coatings. 



 

84 
 

Varying amounts of APT-PDMS were incorporated into the different formulations to increase 

hydrophobicity of the coatings. Formulations with PACM were cured at 80°C for 45 minutes, while 

formulations with the other four diamines were allowed to cure under ambient laboratory conditions. 

Although very reactive, PACM (AHEW = 52.5 g/eq.) failed to provide sufficient crosslinking of the resin 

under ambient conditions; severe amine blush caused formation of hazy, non-glossy coatings. On the 

other hand, force curing the polyamine or the polyamide cured coatings imparted slight discoloration and 

foul odor to the coatings. 

Upon curing, all coatings were characterized for their solvent resistance, hardness, flexibility, and 

impact strength. Results from mechanical tests showed that coatings with 1:1 epoxy: AHEW ratio 

exhibited the best overall (properties and appearance) performance. Stoichiometric equivalents of epoxy 

and amine groups in the formulation allows reaction of primary and secondary amines with oxirane rings. 

Therefore, theoretically, the coatings with 1:1 ratio are devoid of any unreacted epoxy or amine groups. 

Changing the stoichiometry results in higher concentration of either one of the unreacted functional 

groups. The unreacted groups, therefore, affect crosslink density of the coatings, in turn affecting overall 

properties of the cured coatings. The different curing schedules used are shown in Table 3.1.  

Table 3.1. List of formulations made using the IGC_PDMS resin.  

Amines  Coating labelsa % resin solids APT-PDMS  Curing schedules 

PACM PACM_x: y_Fx 0, 1, 2, 3, 4, 5, 10, 15, 20, 30 80°C, 45 minutes  

Ancamine 2143 2143_ x: y_Fx  
0, 1, 2, 3, 4 

 
RT, 3 weeks  Ancamine 2432 2432_ x: y_Fx 

Ancamide 2634 2634_x: y_Fx 

Ancamide 2767 2767_x: y_Fx 
aAll coating labels are of the format amine crosslinker_epoxy: AHEW_F%APT-PDMS. 
 

Overall, PACM_1:1_Fx coatings appeared uniform and glossy and exhibited good hardness, 

flexibility, and impact strength. On the other hand, the polyamine and the polyamide cured coatings 

exhibited higher hardness as compared to the PACM cured coatings, but the coatings appeared non-

uniform and exhibited lower surface gloss. This difference in appearance of coatings with the different 

crosslinkers may be attributed to the different curing schedules. Curing at elevated temperature for the 

PACM cured coatings allowed better compatibilization of the components in the coatings, leading to 

formation of smooth, glossy coatings. The IGC_PDMS coatings, irrespective of the crosslinker, exhibited 

excellent adhesion to the substrates (4B-5B) as determined from crosshatch adhesion. Table 3.2 shows 
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results for hardness, impact strength, solvent resistance, and gloss for the IGC_PDMS coatings with 

epoxy: AHEW = 1:1. MEK double rubs exceeded 400 for all the PACM_1:1_Fx formulations, indicating 

high solvent resistance of the coatings. PACM_1:1_F4 coatings showed the highest König pendulum 

hardness of 95 s and pencil hardness of 6H. Above and below 4% APT-PDMS content, addition of APT-

PDMS did not have a significant effect on pendulum hardness or pencil hardness of the PACM cured 

coatings. Most of the coatings exhibited high reverse impact strength > 160 in.-lb. APT-PDMS content of 

the PACM cured coatings between 10-20% may have interfered with curing reactions in the coating film, 

resulting in drop in impact strength values.  

Similar to the PACM cured coatings, the polyamine cured coatings exhibited high solvent 

resistance, with MEK double rubs > 400. Pendulum hardness values were in the range between 64-98 s. 

2143_1:1_F4 and 2432_1:1_F4 showed pendulum hardness values of 98 s and 87 s respectively, 

indicating reinforcement of the coatings with addition of 4% APT-PDMS. 2143_1:1_Fx coatings exhibited 

the highest pencil hardness values among all the IGC_PDMS coatings. Reverse impact strength values 

for 2143_1:1_Fx coatings lied in the range between 70-80 in.-lb. Limited chain movement in the hard 

2143_1:1_Fx coatings may have increased susceptibility of the coatings to impact. But, addition of 4% 

APT-PDMS resulted in slight softening of 2432_1:1_F4 coating, causing increase in impact strength. 

2143_1:1_F4 showed highest gloss of 95 among all the IGC_PDMS coatings. Addition of APT-PDMS 

resulted in decrease in surface gloss for the Ancamine 2432 cured coatings. Among all the IGC_PDMS 

formulations, the polyamide cured formulations showed the worst overall performance. Only 5 out of 10 

total formulations with the polyamides showed MEK double rubs > 400. The polyamide cured coatings 

showed highest hardness among the IGC_PDMS coatings, but poor impact strength. The polyamide 

formulations also showed lowest surface gloss among all the IGC_PDMS formulations, due to non-

uniform separation of PDMS domains on the surfaces. Above 4% APT-PDMS content, the polyamine 

cured and the polyamide cured coatings could not withstand above 100 MEK double rubs, indicating 

higher concentration of unreacted functional groups. Upon contact with MEK solvent, the unreacted 

components may have dissolved, damaging the coating networks. Further, above 4% APT-PDMS content 

may have increased softness of the coatings by reducing network density in the coatings. Based on the 

overall performance (mechanical properties and appearance) of the IGC_PDMS coatings, the 
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formulations cured using PACM and the two polyamines at epoxy: AHEW = 1:1 were used for further 

experimentation.  

Table 3.2. Results from ASTM tests for the IGC_PDMS coatings with epoxy: AHEW = 1:1.  

 
Amine_ratio 

F%APT-
PDMS 

MEK 
double 
rubs 

König 
pendulum 
hardness 

(s) 

Pencil 
hardness  

Reverse 
impact  
(in.-lb) 

aMandrel 
bend 

60° 
gloss  

 
 
 
 
 

PACM_1:1 

F0 >400 78 2H >160 NF 82.37  

F1 >400 74 HB >160 NF 87.30 

F2 >400 68 B >160 NF 85.70 

F3 >400 62 2B >160 NF 85.27 

F4 >400 95 6H >160 NF 89.86 

F5 >400 79 HB >160 NF 92.03 

F10 >400 67 B 47 NF 82.87 

F15 >400 74 HB 74 NF 86.20 

F20 >400 77 3B 67 NF 82.90 

F30 >400 73 2B >160 NF 77.60 

        

 
 

2143_1:1 

F0 >400 68 6H 78 NF 57.13 

F1 >400 76 7H 70 NF 57.67 

F2 >400 78 5H 70 NF 60.63 

F3 >400 75 6H 70 NF 54.43 

F4 >400 98 4H >160 NF 95.83 

        

 
 

2432_1:1 

F0 >400 64 3B 118 NF 85.77 

F1 >400 64 3B 94 NF 75.87 

F2 >400 67 2B 110 NF 71.13 

F3 >400 67 3B 125 NF 67.07 

F4 >400 87 2B 141 NF 67.33 

        

 
 

2634_1:1 

F0 220 88 B 86 NF 13.67 

F1 >400 83 B 118 NF 17.47 

F2 >400 82 HB 141 NF 45.13 

F3 175 82 HB b- NF 41.77 

F4 >400 93 B >160 NF 92.90 

        

 
 

2767_1:1 

F0 >400 104 6H 39 NF 45.30 

F1 300 99 6H 39 NF 35.70 

F2 200 100 5H 20 Tear 60.53 

F3 75 101 5H 35 Tear  73.13 

F4 >400 100 2B >160 NF 40.43 
aNF indicates no failure occurred in the film during experimentation. bNon-uniformity of the coatings 
resulted in large variation in the reverse impact strength values.  
 

Evaluation of tensile tests showed that the coatings cured using PACM showed lower Young’s 

modulus compared to the Ancamine 2432 cured coatings (Figure 3.4). For the PACM cured coatings, 

modulus dropped from 150 MPa for no additional APT-PDMS (F0) to 50 MPa for F10 and 100 MPa for 

F30. 2432_1:1_F0 showed highest modulus of 375 MPa. Increasing APT-PDMS content to 4% resulted in 
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decrease in modulus to 310 MPa. The Ancamine 2432 cured coatings showed lower elongation as 

compared to the PACM cured coatings, indicating coatings with higher stiffness. Elongation dropped 

drastically with addition of 10% APT-PDMS, but increased when APT-PDMS content was increased to 

30%. With Ancamine 2432, a slight drop in elongation was observed when APT-PDMS content was 

increased to 4%. Overall, the IGC_PDMS formulations exhibited significantly higher modulus than the 

commercial silicone elastomer coatings (~5 MPa).  

 

Figure 3.4. Young’s modulus and elongation of select IGC_PDMS coatings.   
 

PACM_1:1_Fx, 2143_1:1_Fx, and 2432_1:1_Fx coatings were characterized using DSC, DMA, 

and TGA to analyze their glass transition temperature (Tg °C), crosslink density, and degradation 

behavior. Figure 3.5 shows DSC scans for coatings cured using PACM, Ancamine 2143, and Ancamine 

2432. Tg values for PACM_1:1_Fx coatings were between 83°C for 30% APT-PDMS to 103°C for 2% 

APT-PDMS. For the PACM cured coatings, increasing APT-PDMS content resulted in reduction in Tg 

values (Figures 3.5(a)). Among all the IGC_PDMS formulations analyzed using DSC, 2143_1:1_Fx 

coatings exhibited highest Tg values, ranging from 100°C to 107°C, while 2432_1:1_Fx coatings exhibited 

lowest Tg values in the range from 78°C to103°C. For the polyamine cured coatings (Figures 3.5(b)), the 

Tg values increased until 2% additional APT-PDMS content and then dropped drastically with further 

increase in APT-PDMS content. Increasing APT-PDMS content to 2% may have reinforced the matrix by 
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formation of tighter crosslinks, but increasing APT-PDMS content above 2% resulted in plasticization of 

the networks.  

(a)                                                                     

 

(b) 

 

Figure 3.5. DSC scans for (a) PACM_1:1_Fx and (b) 2143_1:1_Fx and 2432_1:1_Fx coatings.  
 

Figure 3.6 shows results for thermal degradation behavior of the IGC_PDMS coatings cured 

using PACM, Ancamine 2143, and Ancamine 2432. All the coatings showed similar degradation behavior. 

For all the coatings, 5% weight loss (Td 5%) occurred at temperatures between 250-265°C. Coatings cured 
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with PACM showed highest Td 5% of 265°C, while 2432_1:1_Fx coatings showed lowest Td 5% of 252°C. 1-

3% initial weight loss for the PACM cured coatings may be attributed to the presence of residual solvent 

in the coatings after curing. 2143_1:1_Fx and 2432_1:1_Fx coatings showed higher initial weight loss (2-

5%). Since the polyamine cured coatings crosslinked at RT, higher amount of residual solvent may have 

been present in the coating films after curing. 

 Figure 3.7 shows results for tan delta and storage modulus obtained from DMA for the PACM 

cured and the polyamine cured coatings. In general, the PACM_1:1_Fx showed higher Tg values 

compared to the polyamine cured coatings. Tan delta curves for most of the IGC_PDMS coatings 

appeared narrow and uniform. PACM_1:1_F0 coating exhibited the highest Tg of 120°C among all the 

IGC_PDMS coatings. Addition of APT-PDMS decreased Tg to 107°C for PACM_1:1_F5. Above 10% APT-

PDMS, the coatings failed above Tg due to softening of the coating films. For PACM_1:1_F0, 

PACM_1:1_F5 and PACM_1:1_F10 coatings, storage modulus values increased in temperature range 

between 150-200°C. At higher temperatures, the coatings may have undergone residual crosslinking 

reactions, which in turn caused a spike in tan delta peaks.  

(a)         

 

Figure 3.6. Thermal degradation behavior and initial weight loss in percentage for (a) the PACM cured 

and (b) the polyamine cured coatings.  
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(b)       

 

Figure 3.6. Thermal degradation behavior and initial weight loss in percentage for (a) the PACM cured 
and (b) the polyamine cured coatings (continued). 
 
 Formulations with the polyamines showed similar Tg values in the range from 77-82°C, 

irrespective of the polyamine. For 2143_1:1_Fx and 2432_1:1_Fx formulations, above 4% and 2% APT-

PDMS respectively, the films yielded above Tg. In the high temperature region, softening of the coating 

film with increasing APT-PDMS content may have caused slipping of the film between the equipment 

clamps, resulting in noise. Similar to the PACM cured coatings, 2432_1:1_F0 coating showed a sudden 

rise in tan delta peak in the high temperature zone. 2432_1;1_F2 and 2432_1:1_F4 coatings failed above 

Tg, indicating significant plasticization of the coatings with addition of APT-PDMS. Presence of a possible 

secondary phase in 2432_1:1_F0 coating was indicated by presence of a minor peak at ~85°C.  

 Crosslink density (νₑ mol/L) of the coatings was calculated using Tg and storage modulus (E’ 

MPa) values in the rubbery plateau region. Table 3.3 shows crosslink density values for the select 

IGC_PDMS coatings. For the PACM cured coatings, increasing APT-PDMS content increased νₑ from 

0.29 mol/L for PACM_1:1_F0 to 0.79 mol/L for PACM_1:1_F10. Up to 10% APT-PDMS, E’ at 25°C 

increased drastically from 96 MPa for PACM_1:1_F0 to 825 MPa for PACM_1:1_F10. Conversely, for the 

polyamine cured coatings, increasing APT-PDMS content to 2% caused decrease in E’ at 25°C, but E’ at 

25°C increased with addition of APT-PDMS above 2%. Addition of APT-PDMS also caused decrease in 
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νₑ values of the polyamine cured coatings. With PACM, a tighter coating network, with higher modulus 

and νₑ, was formed upon curing. But, APT-PDMS provided more freedom of movement to the chains, 

thereby decreasing Tg of the PACM cured coatings. For the polyamine cured coatings, addition of APT-

PDMS may have reinforced the coating network at first, but above 2%, the high MW siloxane chains 

appeared to “insert” themselves, within the network. Therefore, density of network junctions in the 

coatings decreased, decreasing the crosslink density of the coatings.  

(a)  

 

(b)           

 

Figure 3.7. Tan delta peaks and storage modulus curves for (a) the PACM cured and (b) the polyamine 

cured coatings. Asterisk (*) indicates coatings that failed above Tg temperatures.  
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Table 3.3. Crosslink density and glass transition values for the select IGC_PDMS coatings.  

Amines_ E: AHEW   Formulations E' at 25°C (MPa) Tg (°C) νₑ (mol/L) 

 
 
 

PACM_1:1 

F0 96.95 120.35 0.29 

F5 623.90 107.32 0.66 

F10 825.40 105.00 0.79 

F15* 60.34 114.09 0.43 

F20* 161.00 108.64 0.77 

F30* 40.00 110.51 0.15 

 
2143_1:1 

F0 842.72 77.14 0.57 

F2 426.20 77.64 0.61 

F4* 836.20 78.38 0.29 

 
2432_1:1 

F0 532.50 77.14 0.23 

F2* 271.50 82.43 0.41 

F4* 752.50 80.67 0.39 

*indicates coatings that failed beyond Tg. 

Prior to conducting biological tests and surface characterization experiments, PACM_1:1_Fx, 

2143_1:1_Fx, and 2432_1:1_Fx coatings were immersed in a circulating water tank to remove catalyst, 

impurities, and any unreacted monomers for 42 days. After 42 days, leachate toxicity test was conducted 

on the IGC_PDMS coatings. From the toxicity tests, it was concluded that the Ancamine 2143 cured 

coatings showed severe toxicity against all fouling organisms even after 42 days of water leaching. 

Therefore, further FR tests with the 2143_1:1_Fx coatings were discontinued. High toxicity of the 

Ancamine 2143 cured coatings may be attributed to the glassy nature of the coatings; tightly bound 

hydrophobic matrix may have disallowed water to penetrate the coating matrices to remove tin catalyst 

(DBTDAc) used during synthesis of the IGC_PDMS resin. The biological organisms were killed upon 

contact with the tin moieties in the coatings. Inherent chemical composition of Ancamine 2143 crosslinker 

may have been another factor responsible for toxicity of the coatings.  

PACM_1:1_Fx and 2432_1:1_Fx coatings were analyzed using contact angle experiment to 

determine formation of hydrophobic coatings. Figure 3.8 shows contact angles and surface energies for 

PACM_1:1_Fx and 2432_1:1_Fx coatings. For PACM_1:1_Fx and 2432_1:1_Fx coatings, WCA values 

were greater than 90°, indicating self-stratification of APT-PDMS to form hydrophobic surfaces. Highest 

WCA value of 118° was obtained for PACM_1:1_F20 and PACM_1:1_F30. SE of PACM_1:1_Fx lied in 

the range from 10.5-21 mN/m, with PACM_1:1_F30 exhibiting lowest SE of 10.5 mN/m. Among the 

Ancamine 2432 coatings, 2432_1:1_F4 showed highest WCA of 110° and 2432_1:1_F3 exhibited lowest 

SE of 16.3 mN/m. Poor compatibility of PDMS with the polar GC matrix and surface energy minimization 
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are the two main causes of stratification of APT-PDMS. A uniform tightly bound coating network with 

PACM crosslinker may have forced APT-PDMS chains towards coating-air interface, forming a low 

surface energy outer layer. On the other hand, a comparatively loose coating network with Ancamine 

2432 may have caused APT-PDMS to remain “bound” within the coating network, thereby limiting 

stratification of the PDMS chains.  

(a)                                                                            (b)  

 

Figure 3.8. (a) Water contact angles and (b) surface energy values for PACM_1:1_Fx and 2432_1:1_Fx 
coatings. Error bars indicate standard deviation. 
 

To investigate FR performance of PACM_1:1_Fx and 2432_1:1_Fx coatings, biological tests with 

diatoms N.incerta, biofilm C.lytica, microalgae U.linza, mussels Geukensia demissa, and barnacles 

A.amphitrite were conducted on the pre-leached IGC_PDMS coatings. FR performance of the 

IGC_PDMS coatings was compared to the commercially available standards, Silastic T2 (T2), Intersleek 

700 (I-700), Intersleek 900 (I-900) and Intersleek 1100SR (1100SR) and regular polyurethanes (PU; no 

siloxane) coatings. Figure 3.9 shows results for diatom N.incerta attachment and removal for 

PACM_1:1_Fx and 2432_1:1_Fx coatings. In general, the IGC_PDMS coatings showed significantly 

higher attachment of N.incerta as compared to I-900 and 1100SR coatings, but similar attachment as 

regular PU, T2, and I-700 coatings. For the PACM cured coatings, diatom N.incerta attachment was 

slightly lower with 10-30% APT-PDMS compared to other formulations. The Ancamine 2432 cured 

coatings showed slightly higher attachment of the diatoms compared to the PACM cured coatings; for 

2432_1:1_Fx coatings, the number of attached diatoms increased slightly with increasing APT-PDMS 
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content. N.incerta removal at 20 psi was significantly higher than 10 psi water jet pressure. The PACM 

cured coatings with 10-30% APT-PDMS facilitated 70-90% removal of N.incerta, similar to regular 

polyurethane coatings. Conversely, APT-PDMS content between 0-2% for 2432_1:1_Fx coatings was 

required to facilitate 75-92% removal of the diatoms, with 2432_1:1_F0 showing highest removal of the 

diatoms among all the formulations. Increasing APT-PDMS content with the Ancamine 2432 cured 

coatings decreased the diatom release from the coatings. The commercial standards showed only 30-

60% removal of N.incerta at 20 psi water jet pressure.  

(a)                                                                            (b) 

 

Figure 3.9. Diatom N.incerta (a) attachment and (b) removal at 10 psi and 20 psi water jet pressures from 
the PACM and Ancamine 2432 cured coatings. Error bars indicate standard deviation.  
 

Figure 3.10 shows results for bacterial biofilm C.lytica attachment and removal for PACM_1:1_Fx 

and 2432_1:1_Fx coatings. From Figure 3.10(a), it can be seen that the amount of C.lytica attached to 

the IGC_PDMS coatings was significantly lower than I-700. Further, 2432_1:1_Fx coatings showed lower 

biofilm attachment compared to PACM_1:1_Fx coatings. Similar to the diatoms, 20 psi water jet pressure 

facilitated slightly higher removal of C.lytica compared to 10 psi water jet. At 20 psi, 65-70% biofilm was 

removed from the surface of the IGC_PDMS coatings, similar to regular PU coatings. Among the 

commercial standards, I-900 and 1100SR, facilitated ~98% removal of biofilm from the surface, while I-

700 showed only 55% removal.  
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(a)                                                                            (b)  

  

Figure 3.10. Bacterial biofilm C.lytica (a) attachment and (b) removal at 10 psi and 20 psi water jet 
pressures. Error bars indicate standard deviation.  
 

Figure 3.11 shows results for attachment and removal of microalgae U.linza at 110 kPa water jet 

pressure. I-700 and I-900 showed severe toxicity against the microalgae; the two commercial standards 

were, therefore, excluded from the experiment. Polystyrene (PS) coating was added as a control for this 

experiment. The IGC_PDMS coatings showed lower attachment of U.linza as compared to the 

commercial standards, PU, and PS. But, while T2 and 1100SR facilitated 75-90% removal of U.linza, the 

IGC_PDMS coatings could not facilitate more than 25% microalgae removal even at 110 kPa. 

PACM_1:1_Fx coatings showed higher removal of the microalgae compared to 2432_1:1_Fx coatings. 

PACM_1:1_F10 showed highest percent removal (25%) of U.linza, while 2432_1:1_F4 showed the worst 

FR performance against U.linza (~5% removal). At water jet pressures of 18 and 67 kPa, the IGC_PDMS 

coatings showed negligible (< 5%) microalgae removal.  

Figure 3.12 shows mussel adhesion data for PACM_1:1_Fx and 2432_1:1_Fx coatings. For the 

IGC_PDMS coatings, 1-2 mussels out of 6 did not attach to most of the coatings during experimentation. 

PACM_1:1_Fx coatings showed lower attachment strength of the mussels as compared to 2432_1:1_Fx 

coatings. Higher APT-PDMS content in the PACM cured coatings facilitated removal of the mussels, while 

the force of removal of the mussels increased with increase in APT-PDMS content for the Ancamine 2432 

cured coatings. Formulations PACM_1:1_F5, PACM_1:1_F10 and PACM_1:1_F15 showed mussel 

adhesion strength slightly lower than I-700 and PU. Among all the formulations, PACM_1:1_F10 showed 

the best FR performance against mussels, with ~10 N force of removal required for 4 out 6 mussels that 

attached to the coating. No mussels attached to I-900 and 1100SR coatings.  
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(a)                                                                            (b)  

 

Figure 3.11. Microalgae U.linza (a) attachment and (b) removal at 110 kPa water pressure. Error bars 
indicate standard deviation.  
 

 

Figure 3.12. Mussel Geukensia demissa adhesion for select PACM_1:1_Fx coatings. Numbers above 
data points indicate the number of mussels out of six that attached to the coatings during 
experimentation. None of the mussels attached to I-900 or 1100SR coatings. Error bars indicate standard 
deviation.  
 

Based on the FR results of the IGC_PDMS coatings against microfoulants and mussels, select 

formulations were chosen for barnacle attachment experiment (Figure 3.13). Ratios above each data 

point indicate the number of barnacles that attached to the coatings to the number of barnacles that broke 

during the experiment. In general, the IGC_PDMS coatings showed significantly higher attachment of 

barnacles as compared to I-900 and 1100SR. 2432_1:1_Fx coatings showed the worst barnacle removal 

performance among all the coatings. PACM_1:1_Fx coatings required slightly lower removal force as 
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compared to I-700. Increasing APT-PDMS content in PACM_1:1_Fx coatings resulted in decrease in 

barnacle attachment strength, while the inverse was true for 2432_1:1_Fx coatings. Among all the select 

IGC_PDMS formulations, PACM_1:1_F30 required lowest average force of removal of ~0.12 MPa for 5 

(out of 6) barnacles that attached to the coating. Conversely, 2432_1:1_F0 exhibited the worst FR 

performance among all IGC_PDMS formulations; all 6 barnacles attached onto the coating, with 2 

barnacles breaking during experimentation.  

 

 

Figure 3.13. Barnacle reattachment data for select IGC_PDMS coatings. Ratios above each data point 
indicate the number of barnacles attached to the coatings to the number of barnacles that broke during 
experimentation. Numbers above some data points indicate the number of barnacles that did not attach to 
the coatings during the experiment. Error bars indicate standard deviation. 
  

Subpar FR performance of the IGC_PDMS coatings, in spite of formation of highly hydrophobic 

surfaces, necessitated extensive surface characterization of the coatings to better understand their 

surface chemistry. As observed from the contact angle experiment (Figure 3.8), the IGC_PDMS coatings 

exhibited high hydrophobicity, with SE decreasing with increasing APT-PDMS content. But, an interesting 

observation was made for PACM_1:1_F20 and PACM_1:1_F30 coatings, where WCA appeared to 

change with time, in spite of the purely hydrophobic nature of the coatings. WCA dropped from ~118° for 

PACM_1:1_F20 and PACM_1:1_F30 to ~80° in 10 minutes. Surfaces of PACM_1:1_F20 and 

PACM_1:1_F30 coatings were extremely “oily” to touch. The “oil” was believed to be unreacted APT-

PDMS from the coatings. To identify its chemical composition, the “oil” was characterized using FTIR. The 
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oil was transferred onto a KBr plate by carefully rubbing the KBr plate on the surfaces of PACM_1:1_F20 

and PACM_1:1_F30 formulations. The spectrum of the “oil” was compared to FTIR spectrum of APT-

PDMS (analyzed separately). Comparison of the two spectra (Figure 3.14) showed that the “oil” on the 

coating films was excess APT-PDMS from the coatings. The PACM cured coating films may have 

become saturated with APT-PDMS at 15%. Above 15%, APT-PDMS could not remain bound to the 

underlying coating matrix, in spite of the presence of reactive amine terminated chain ends. The unbound, 

free APT-PDMS chains accumulated to the surface due to self-stratification of APT-PDMS during 

crosslinking. Dynamic WCA changes were probably caused by the motion of the free APT-PDMS chains 

on the coating surface.  

 

Figure 3.14. Comparison of FTIR spectra of APT-PDMS and “oil” from surfaces of PACM_1:1_F20 and 
PACM_1:1_F30.  
 

PACM_1:1_Fx and 2432_1:1_Fx coatings were also characterized using ATR-FTIR (Figure 3.15). 

ATR-FTIR spectra for the coatings showed absence of reactive epoxy groups at ~915 cm-1, indicating 

potentially complete epoxy-amine crosslinking reactions with PACM and Ancamine 2432 diamines. 

Further, peaks at 1018-1089 cm-1 indicated Si-O-Si linkages on the surface of the coatings, indicating 

self-stratification of APT-PDMS on the surface. Secondary amine (-NH-) peak and carbonyl (-C=O) peak 

on the surface indicated that the underlying cured GC matrix was partially present on the coating surface. 

For PACM_1:1_Fx coatings, with increasing APT-PDMS content, a slight decrease in intensity of the -NH- 

peak and increase in intensity of Si-O-Si peak may be due to rise in concentration of the coating surfaces 

with siloxane chains. Among the IGC_PDMS coatings, the intensity of -NH- and -C=O peaks was higher 
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for coatings with Ancamine 2432 as compared to the PACM cured coatings, due to lower APT-PDMS 

content of the Ancamine 2432 cured coatings. Moreover, WCA values (Figure 3.8) showed that the 

Ancamine 2432 cured coatings were not as hydrophobic as PACM_1:1_Fx at similar APT-PDMS loading. 

Therefore, the surfaces of 2432_1:1_Fx showed comparatively higher carbamate concentration.  

(a)                                                                            (b)  

  

Figure 3.15. ATR-FTIR spectra for IGC_PDMS coatings cured using (a) PACM and (b) Ancamine 2432 
diamines.  
 
 Visually, the PACM cured coatings appeared smooth and uniform. Conversely, visual analysis of 

the Ancamine 2432 showed presence of discolored domains on the surface of the coatings, probably due 

to oxidation of amine rich domains on the coating surfaces. Figure 3.16 shows AFM scans for select 

IGC_PDMS coatings. With both PACM and Ancamine 2432, coatings with 0% additional APT-PDMS 

exhibited a rough outer surface. The surfaces appeared to be smoother with the addition of APT-PDMS. 

But, addition of APT-PDMS also resulted in formation of “pores” on the coating surfaces. Concentration of 

“pores” increased with increase in APT-PDMS content.   
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Figure 3.16. AFM scans for 20 µm x 20 µm and 100 µm x 100 µm area of select PACM and Ancamine 

2432 cured coatings.  

 

 Figure 3.17 shows high resolution XPS spectra for individual O1s, C1s, and N1s elements on the 

surfaces of PACM_1:1_F30 and 2432_1:1_F4 coatings. Curve fitting was conducted on the individual 

elements to determine the concentration of PDMS components on the surface of the coatings. Results 

from XPS were anticipated to provide insights into the surface composition of the hydrophobic GC 

formulations at the highest permissible loading of APT-PDMS. Both the coatings showed characteristic 

Si2p peak at 102.25-102.28 eV, indicating presence of siloxane on the coating surfaces. Table 3.4 shows 

atomic percent of the individual C1s, O1s, and N1s elements as determined from peak fitting. The two 

formulations also showed presence of N1s peaks, with higher N content on PACM_1:1_F30 (5.57%) as 

compared to 0.87% on 2432_1:1_F4. Three different chemical states for O1s and C1s were observed for 

both the coatings. Peaks at ~532, 531.48, and 533.27 eV were indicative of O from siloxane, C-O-C/C-O-

H linkages and carbamate (urethane) linkages. Similarly, peaks at ~284.20, 285.90-286.18, and 288.83-

289.14 indicated C atoms from the C-C/C-H, C-O/C-N and carbamate/urethane linkages respectively. 

Presence of higher concentrations of O and C atoms from carbamate linkages and C-O-C/C-O-H bonds 

on the surface of PACM_1:1_F30 as compared to 2432_1:1_F4 may be attributed to movement of the 

excess APT-PDMS in the vacuum chamber of the XPS instrument, which may have exposed the 

carbamate matrix to the incident X-ray beam.  
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Table 3.4. Chemical composition of the coatings determined after peak fitting.  

Formulations Chemical states Binding energies 
(eV) 

Atom % 

 
 
 

PACM_1:1_F30 

 
O1s 

Si-O-Si  532.00 12.57 

C-O 531.48 11.99 

C=O 533.27 3.18 

 
C1s 

C-C/C-H 284.29 49.87 

C-O/C-N 285.90 13.16 

C=O 289.14 3.66 

N1s Total 399.91 5.57 

     

 
 
 

2432_1:1_F4 

 
O1s 

Si-O-Si  531.79 18.81 

C-O 531.48 6.63 

C=O 533.27 2.09 

 
C1s 

C-C/C-H 284.20 65.69 

C-O/C-N 286.16 4.98 

C=O 288.83 0.94 

N1s Total 399.30 0.87 

 
(a)                                                         

 

(b) 

 

Figure 3.17. High resolution XPS spectra for O1s and C1s with peak fitting for (a) PACM_1:1_F30 and 
(b) 2432_1:1_F4 coatings. 
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The above results showed that versatile nature of the IGC_PDMS resin allows formation of hard 

and flexible coatings using a variety of amine crosslinkers, with different chemical compositions and 

functionalities. Cycloaliphatic nature of PACM and Ancamine 2143 imparted hardness and rigidity to the 

coatings, resulting in high Tg values. Conversely, the aliphatic Ancamine 2432 provided a softer core to 

the coatings, allowing higher chain movement in the coating matrix. Soft nature of the coatings combined 

with potential hydrophobic chain interactions between APT-PDMS chains and alkyl chains from the GC 

resin and the amine crosslinker may have hampered self-stratification of APT-PDMS chains, causing 

comparatively lower hydrophobicity of the Ancamine 2432 cured coatings than the PACM cured coatings. 

Further evidence of a softer matrix with Ancamine 2432 was observed from the comparatively shorter tan 

delta peaks for the 2432_1:1_Fx coatings, indicating presence of high concentration of elastomeric 

components in the matrix. AFM and ATR-FTIR for the Ancamine 2432 cured coatings showed higher 

intensities of -NH and -C=O as compared to the PACM cured coatings, indicating more carbamate on the 

surface compared to the PACM cured coatings. Further, siloxane content of 12-18% on PACM_1:1_F30 

and 2432_1:1_F4 and presence of significant amount of C-O-C/C-O-H on the two coatings may have 

reduced FR efficiency of PDMS, thereby hampering FR performance of the coatings. In spite of presence 

of 30% APT-PDMS on the PACM cured formulation, movement of unreacted PDMS chains resulted in 

exposure of the underlying GC coating.  

Results obtained from FR experiments showed interesting behavior of the coatings. Past 

research shows that hydrophobic PDMS-rich surfaces tend to allow stronger attachment of diatoms 

compared to hydrophilic surfaces.34 Therefore, among the Ancamine 2432 cured formulations, 

2432_1:1_F0 showed highest diatom removal and increasing APT-PDMS content in the Ancamine 2432 

formulations decreased diatom removal. But, the PACM cured formulations showed the opposite trend, 

where diatom removal increased with increasing APT-PDMS content. For the PACM cured coatings, the 

coatings were completely saturated with APT-PDMS by 15%. Above 15%, the coatings showed presence 

of unreacted APT-PDMS chains on the surfaces. Although no unreacted APT-PDMS was observed on 

formulations with 10 or 15% APT-PDMS, movement of the long APT-PDMS chains on the formulations 

with 10-30% APT-PDMS may have exposed the underlying polar GC matrix to the diatoms. The polar 

carbamate rich coatings may have disallowed the diatoms from attaching strongly onto the surfaces. 
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When the coatings were exposed to water jet, the loosely attached diatoms were easily removed. Unlike 

diatoms, microalgae, barnacles and mussels tend to attach weakly to hydrophobic surfaces.7, 23 

Therefore, barnacle attachment strength decreased for the PACM cured coatings with increasing APT-

PDMS content. For the Ancamine 2432 coatings, although barnacle attachment strength increased with 

increasing APT-PDMS content, only 1 barnacle base broke from 2432_1:1_F4 coating as against 2 

barnacle bases breaking from 2432_1:1_F0 coating. Higher attachment of the fouling organisms onto the 

Ancamine 2432 cured coatings may be attributed to limited stratification of APT-PDMS. In spite of the 

highly hydrophobic nature of the PACM cured coatings, the fouling organisms may have been able to 

detect the underlying polar GC coatings due to movement of the loosely held PDMS chains, resulting in 

stronger attachment of microalgae, barnacles and mussels. Furthermore, nanoscale roughness of the 

IGC_PDMS coatings at 0% APT-PDMS and formation of “pores” with addition of APT-PDMS may be 

responsible for providing surface “textures” for stronger attachment of the fouling organisms.  

Conclusions  

A novel isocyanate-free IGC_PDMS resin was synthesized using HDI trimer, glycidol, and 

dicarbinol terminated PDMS (5k g/mol). EEP and toluene were used as solvents to give ~50% solids resin 

with 1:1 w/w solvent blend of EEP and toluene. Absence of the isocyanate peak as observed using FTIR 

showed that isocyanate had completely reacted over the course of the reaction. Diamine crosslinkers, 

PACM, Ancamine 2143, Ancamine 2432, Ancamide 2634, and Ancamide 2767, were used to cure the 

synthesized IGC_PDMS resin in 1:1, 1:2, and 2:1 epoxy: AHEW ratios. Additionally, 20k g/mol APT-

PDMS (33% in toluene) was added in varying amounts to make different formulations to understand the 

effect of changing APT-PDMS content on FR performance of the IGC_PDMS coatings. Although all the 

IGC_PDMS coatings exhibited high hardness, the coatings cured using PACM and the polyamines 

showed better overall performance (hardness, flexibility, and appearance) as compared to the polyamide 

cured coatings. Force curing of the PACM cured formulations at 80°C for 45 min resulted in formation of 

glossy, and uniform coatings, while ambient curing of the polyamine cure coatings caused formation of 

non-glossy, hazy coatings. WCA > 90° and SE between 10-25 mN/m for all the IGC_PDMS formulations 

indicated self-stratification of APT-PDMS to form low surface energy, hydrophobic surfaces. 

PACM_1:1_F30 coating showed highest WCA value of 118° and lowest SE value of 10.5 mN/m among 
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all the IGC_PDMS coating formulations. With Ancamine 2432, highest WCA of 110° for 2432_1:1_F3 and 

lowest SE of ~17 mN/m for 2432_1:1_F4 was achieved. Comparatively lower WCA and higher SE with 

Ancamine 2432 may be attributed to formation of a looser coating network, which disallowed complete 

stratification of the PDMS chains to the surface of the coatings. Analysis of the coatings with AFM 

showed formation of rough coatings at 0% APT-PDMS and formation of “pores” with addition of APT-

PDMS. ATR-FTIR showed higher concentration of APT-PDMS on surfaces of the PACM cured coatings 

compared to the Ancamine 2432 cured coatings. But, XPS showed lower percentage of PDMS chains on 

PACM_1:1_F30 due to possible exposure of GC layer upon movement of the excess siloxane chains on 

the coating surface.  

Laboratory FR experiments with micro- and macrofoulants showed that the IGC_PDMS coatings 

showed higher attachment of diatom N.incerta as compared to the commercial I-900 and 1100SR 

standards. PACM_1:1_Fx with 10-30% APT-PDMS and 2432_1:1_Fx with 0-2% APT-PDMS facilitated 

highest diatom removal of 75-90% at 20 psi water jet pressure. 2432_1:1_Fx coatings showed lower 

attachment of bacterial biofilm C.lytica as compared to PACM_1:1_Fx. At 20 psi water jet pressure, only 

65-70% C.lytica was removed from the surface of the IGC_PDMS coatings, which was significantly lower 

than ~98% removal from I-900 and 1100SR coatings. Additionally, lower amount of microalgae U.linza 

attached to the IGC_PDMS coatings, but the coatings could not facilitate more than 25% removal of the 

microalgae. Against the macrofoulants, like barnacles and mussels, all the IGC_PDMS coatings showed 

subpar FR performance as compared to I-900 and 1100SR. Attachment strength of mussels and 

barnacles on 2432_1:1_Fx coatings was higher compared to the PACM cured coatings. PACM_1:1_F10 

required lowest force of ~10 N for the removal of 4 (out of 6) mussels that attached to the coating. While 

attachment of barnacles reduced with increasing APT-PDMS content for the PACM cured coatings, the 

barnacle attachment strength increased with increasing APT-PDMS content for the Ancamine 2432 cured 

coatings. PACM_1:1_F30 showed lowest barnacle adhesion strength of ~0.11 MPa for 5 out of 6 

barnacles that attached to the coating during experimentation. Unusual performance of the hydrophobic 

PACM cured coatings against diatoms and barnacles may be attributed to presence of nanopores and 

free mobile PDMS chains on the surfaces of coatings with 20-30% APT-PDMS. Although the 

performance of the IGC_PDMS coatings was subpar compared to the commercial standards, the results 
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obtained from this preliminary study show that with proper selection of amine crosslinkers and solvents or 

solvent blends, isocyanate-free GC based coatings can be successfully used in FR marine applications.  
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CHAPTER 4. FOULING-RELEASE PERFORMANCE OF POLYETHYLENE GLYCOL 

MODIFIED SILOXANE-GLYCIDYL CARBAMATE MARINE COATINGS  

Introduction  

The inevitable and undesirable attachment and growth of aquatic organisms, like algae, 

barnacles, and mussels, on surfaces submerged in natural bodies of water is called marine biofouling or 

simply biofouling.1, 2 In spite of its dynamic nature, the mechanism of biofouling can be typically explained 

in four main stages— formation of a polysaccharides-rich conditioning layer, accumulation of bacteria, 

settlement of algal spores and diatoms and finally attachment of barnacles and mussels.1, 3 Biofouling 

poses many disadvantages, like increase in drag, increase in fuel consumption, reduction in the speed of 

the vessel, difficulty in maneuvering marine vessels and migration of aquatic species to non-native 

environments.1, 2, 4, 5 Combating biofouling costs millions of dollars to the US Navy annually, the costs 

reaching a billion dollars over 15 years.2, 5, 6 Historically, lead sheathing was used to combat biofouling, 

which was later replaced with more sophisticated anti-fouling (AF) coatings.1 AF coatings contained toxic 

biocides based on tin or copper, which would prevent the attachment of aquatic organisms by leaching 

out and killing them.1, 7 But, the undesired toxic effects of the biocides on organisms like oysters and 

ducks, led to the proposed replacement of the AF coatings with non-toxic elastomeric fouling-release (FR) 

coatings.2, 5 FR coatings allow formation of a weak bond between the organism and the substrate, which 

can then be easily broken by hydrodynamic forces.8-10 Hydrophobic siloxane-rich coatings cause slippage 

of hard foulants on the surface, thereby reducing attachment.8, 9, 11-13 

Commercially available FR coatings are made using silicone elastomers, which lack mechanical 

strength and adhesion to substrates, making them less viable in long term marine applications.8, 9 A novel 

self-stratified siloxane-polyurethane (SiPU) system was developed previously to overcome the 

shortcomings of the commercial FR coatings.8, 9, 14-16 In a typical SiPU formulation, curing reactions of an 

isocyanate between a polyol and high MW aminopropyl terminated siloxane (APT-PDMS) causes 

siloxane chains to stratify to form a slippery outer layer, while the underlying PU matrix provides the 

required mechanical strength and adhesion.8, 9 Concerns pertaining to exposure of factory workers and 

personnel to unreacted isocyanates in 2K coating formulations has led to further research into finding 

“safer” alternatives for polyurethanes.17, 18 To this end, glycidyl carbamate (GC) technologies are explored 
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in this study. GC can be easily synthesized using an isocyanate, glycidol, and a modifier to reduce 

viscosity.19-24 Reaction of isocyanate with glycidol leads to formation of -CO-NH- carbamate linkages.19 

GC coatings combine properties of polyurethanes with convenient epoxy-amine curing chemistry.20 A 

typical coating formulation with GC resin comprises of the modified GC resin and diamine crosslinker. 

Lack of unreacted isocyanate is expected to reduce hazards associated with using free isocyanate 

groups. 

Till date, over 4000 different marine organisms with different attachment mechanisms have been 

identified.2 For example, macrofoulants like barnacles and mussels show affinity toward hydrophilic 

surfaces, but can be easily removed from silicone rich surfaces.9, 11, 25 Conversely, diatoms N.incerta 

attach strongly to siloxane rich hydrophobic coatings, but show weak adhesion to hydrophilic coatings.26-28 

Complex nature of adhesion processes of the different marine organisms has led to further research into 

developing viable “ambiguous” coatings, containing hydrophobic and hydrophilic phases.2 Aquatic 

organisms adhere onto substrates by secreting proteinaceous adhesives.29 One approach to reduce 

biofouling can be developing coatings that disallow spreading of the protein-rich adhesives. Polyethylene 

glycols (PEG) have shown great potential to resist protein adsorption.30 PEG chains form a hydration 

layer by binding water molecules to the surfaces.31, 32 Proteins from the adhesives cannot displace the 

hydration layer to reach the underlying coating. Previous research has shown that PEG-rich surfaces can 

reduce biofouling by diatoms, although macrofoulants, like barnacles and mussels, attach strongly to 

hydrophilic surfaces.25-28 Combination of hydrophobic and hydrophilic moieties in the same coating 

formulation is expected to reduce fouling by most of the common fouling organisms.2, 33 Several 

amphiphilic surfaces have been developed, involving different polymer architectures, surface active block 

copolymers, amphiphiles with varying PDMS/PEG chain lengths, that show potential for use in practical 

applications.27, 34-40 SiPU formulations have also been modified to incorporate hydrophilic moieties, like 

PEG chains, acid functional groups, and isocyanate based hydrophilic prepolymers, to make amphiphilic 

coatings.  

In this study, novel isocyanate-free glycidyl carbamate based amphiphilic coatings were explored 

by incorporating two amine terminated PEGs, Jeffamines, as co-crosslinkers in coating formulations with 

siloxane modified glycidyl carbamate resin (IGC_PDMS resin). Stratification of PEG and PDMS chains is 
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expected to form separate hydrophobic and hydrophilic domains on the surfaces, forming “ambiguous” 

coatings. The MW and the amounts of the Jeffamines co-crosslinkers was varied to make different 

formulations. Diamines, PACM, Ancamine 2143, and Ancamine 2432, were used as primary crosslinkers 

to cure the formulations. Ratio of epoxy: AHEW was maintained at 1:1 for all the formulations. FTIR and 

NMR were used characterize the synthesized IGC_PDMS resin. The cured amphiphilic coatings were 

characterized for their hardness, flexibility, impact strength, tensile strength, and thermal behavior using 

ASTM standard tests, DSC, DMA, and TGA. Further, FR performance of the Jeffamine coatings against 

biofilm (C.lytica), diatoms (N.incerta), mussels (Geukensia demissa), and barnacles (A.amphitrite) was 

evaluated. Lastly, the coatings were characterized using contact angle, ATR-FTIR, AFM, and XPS to 

understand FR behavior of the coatings with changing surface composition and topography.  

Experimental Section 

Materials  

Trimer of hexamethylene diisocyanate (HDI trimer; Desmodur N 3300A) was provided by 

Covestro (Bayer MaterialScience). Dicarbinol terminated PDMS (DMS-C21; MW = 5k g/mol) was 

purchased from Gelest. Diamines, PACM (AHEW = 52.5 g/eq.), Ancamine 2143 (AHEW = 115 g/eq.), and 

Ancamine 2432 (AHEW = 88 g/eq.), were provided by Air Products. Catalyst dibutyltin diacetate 

(DBTDAc), ethyl-3-ethoxy propionate (EEP), and toluene were purchased from Sigma Aldrich. Glycidol 

was supplied by Dixie Chemicals. Glycidol was refrigerated immediately to reduce formation of 

impurities.41 Jeffamines, with MW 900 g/mol— ED-900 (J900) and 2003 g/mol— ED-2003 (J2003), were 

provided by Huntsman. Intergard 264 primer and crosslinker, products of International Paint, were 

purchased from Interbay Coatings.  

Aminopropyl terminated polydimethylsiloxane (APT-PDMS; target MW = 20k g/mol) was 

synthesized according to previously published process.8 Siloxane monomer (D4), 

benzyltrimethylammonium hydroxide, and blocker bis(3-aminopropyl)-tetramethyldisiloxane (BAPTDMS) 

were purchased from Dow Chemical, Sigma Aldrich, and Gelest respectively. In a round bottom flask, 

fitted with a nitrogen inlet, a condenser, a heating mantle, and a temperature controller, D4, BAPTDMS, 

and benzyltrimethylammonium hydroxide solution (in methanol) were equilibrated at 80°C for 24 hours. 

After 24 hours, temperature was increased to 170°C for 2 hours to decompose the catalyst. The 
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synthesized APT-PDMS was cooled to room temperature and stored in a thick-walled glass jar. APT-

PDMS was characterized using GPC to confirm MW between 18-20k g/mol.   

Synthesis of Siloxane Modified Glycidyl Carbamate Resin (IGC_PDMS Resin)  

PDMS modified resin (IGC_PDMS) was synthesized using HDI trimer, glycidol, and dicarbinol 

terminated PDMS (MW = 5000 g/mol). Amount of PDMS were maintained at 5% of equivalents of 

isocyanurate. A four-neck round bottom flask was fitted with a mechanical stirrer, a nitrogen inlet, a 

heating mantle, and a thermocouple. In the first step, the flask was charged with HDI trimer, 25% by 

weight of resin solids EEP solvent, PDMS, and catalyst DBTDAc (0.020-0.025% resin solids). The charge 

was allowed to react at 80°C for 1-1.5 hours. After 1.5 hours, temperature was reduced to ~45°C. In the 

next step, glycidol and 25% by weight of resin solids in toluene was added to the flask at 45-50°C. The 

reaction was allowed to proceed for another 1-1.5 hours, until the disappearance of the -NCO peak as 

observed using Fourier Transform Infrared Spectroscopy (FTIR). Amounts of solvents EEP and toluene 

were determined such that the final resin contained a 1:1 w/w solvent blend of EEP and toluene and 

target 50% percent solids.   

Resin Characterization  

The synthesized resin was characterized using FTIR and Nuclear Magnetic Resonance 

Spectroscopy (13C-NMR). FTIR experiment was conducted using a Thermo Scientific Nicolet 8700 

system. A small amount of the IGC_PDMS resin was coated onto a potassium bromide plate and 32 

scans were taken for the sample. The FTIR spectrum shown in this chapter is the average of the 32 

scans. A dilute solution of the resin in CDCl3 was analyzed using Bruker 400 NMR 13C-NMR instrument. 

Further, the synthesized resin was characterized for experimental percent solids and epoxy equivalent 

weight (EEW). Accurately measured ~1 g resin was added to three aluminum pans. The aluminum pans 

with the resin were heated in an oven at 120°C for 1 hour. Percent solids of the resin was calculated 

using the weight of the pans before and after heating. The average of the three replicates was recorded 

as the experimental value of percent solids of the synthesized resin. Epoxy equivalent weight (EEW) of 

the resin was determined per ASTM D 1652. ~1 g resin, accurately measured up to the fourth decimal 

place, was added to an Erlenmeyer flask. 10-15 mL chloroform was added to the flask to completely 

dissolve the resin. 3-5 drops of crystal violet solution (0.1% solution in glacial acetic acid) were added as 
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the indicator. The resin solution was titrated against standardized 0.1 N HBr solution. Change in color of 

the solution from violet to blue-green was considered to be the end point of titration. The resin was titrated 

three times and the average of the three titrations was recorded as the experimental value of EEW of the 

resin.  

Coating Formulations 

PACM, Ancamine 2143, and Ancamine 2432, were used as primary crosslinkers to cure the 

IGC_PDMS resin. Ratio of epoxy: AHEW of the primary amines was maintained at 1:1 for all formulations. 

Difunctional amine terminated PEGs (Jeffamines)— ED-900 (J900) and ED-2003 (J2003)— were added 

as co-crosslinkers to impart hydrophilicity to hydrophobic IGC_PDMS coatings. The amounts of the 

Jeffamine co-crosslinkers were varied as 5, 10, 15, and 20% by weight of resin solids. The Jeffamine co-

crosslinkers were added as 33% solution in EEP solvent. Additionally, 2.5% by weight of resin solids 

APT-PDMS (MW = 20k g/mol; 33% solution in toluene) was incorporated into formulations with 15 and 

20% Jeffamines. Table 4.1 shows list of formulations made in this study. Formulation labels are of the 

format: primary crosslinker_Jeffamine crosslinker_F%Jeffamine crosslinker/%APT-PDMS. 

Table 4.1. List of formulations included in the study.  

Primary amine 
crosslinker  

Curing schedule % Jeffamine co-
crosslinker 

% APT-PDMS 

Ancamine 2143 RT, 2 weeks  5, 10, 15, 20% 
resin solids 

2.5% resin solids for 
Jeffamines >10% Ancamine 2432 

PACM  80°C, 45 min  

All formulations were stirred for 20 min using magnetic stir bars. The formulations were the 

sonicated for another 10 min to remove bubbles. Steel (purchased from Q-Lab, specifications— 3” x 6”, 

smooth mill finish, type QD, alloy 1008/1010), aluminum (purchased from Q-Lab, specifications— 3” x 6”, 

smooth mill finish, type A, alloy 3003 H14) and glass panels were used as substrates to make coatings 

for mechanical tests. The substrates were degreased using isopropanol before coating application. 

Coatings for mechanical and thermal experiments were made using a drawdown bar with 8 mils wet film 

thickness. Free films for thermal analysis were carefully removed from the glass panels using a blade. 

Coatings for FR experiments were made by applying formulations on primed (Intergard 264 primer) 

aluminum panels, using a Mayer rod (RDS 80). Formulations containing Ancamine 2143 and Ancamine 

2432 as the primary crosslinkers were cured at RT for 2 weeks; formulations with PACM were cured at 
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80°C for 45 minutes. Figure 4.1 shows a schematic representation of the different formulations made 

during the study.  

 

Figure 4.1. Schematic representation of coating formulations made using IGC_PDMS resin and 

Jeffamine co-crosslinkers.  

 

Coating Characterization   

The cured coatings were characterized for their solvent resistance, hardness, flexibility, and 

impact strength. Methyl ethyl ketone (MEK) double rubs test was conducted per ASTM D 5402 to assess 

the chemical resistance and extent of crosslinking in the coatings. A 26-oz hammer with cheesecloth was 

soaked in MEK solvent. Coatings were rubbed using the soaked cheesecloth, until mar or changes in 

appearance of the coatings were observed. The number of double rubs that caused surface mar or loss 

of surface gloss or delamination were noted. König pendulum hardness (ASTM 4366) was measured and 

reported in seconds. Pencils, with softest 9B to hardest 9H hardness values, were used to determine 

pencil hardness of the coatings (ASTM D3363). The results from the pencil hardness test were reported 

as the hardest pencil that does not leave a scratch the coating surface. A Gardener impact tester was 

used to determine reverse impact strength of the coatings (ASTM D 2794). The maximum drop height 

was 43 in. and drop weight was 4 lb. The results were reported as crazing or loss of adhesion or film 

failure in inch-pounds (in.-lb). Coatings that did not show any failure were reported as having impact 

strength > 160 in.-lb. Flexibility of coatings was determined conical mandrel bend according to ASTM D 

522. The results were reported as ‘no failure’ or ‘tear’ caused during experimentation. Crosshatch 

adhesion test was conducted on the coatings according to ASTM D 3359, using a Gardco crosshatch 
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adhesion instrument and tape. The results were reported as 5B (best) to 0B (worst), depending on the 

amount of film removed after the tape was ripped off. For select coatings, Young’s modulus and 

elongation at break at ambient temperature was determined using Instron tensile testing equipment, at a 

rate of 5 mm/min. The samples were prepared according to ASTM D 882.  

A TA Instruments Q1000 Differential Scanning Calorimeter (DSC) system was used to determine 

glass transition temperature (Tg °C) of the cured Jeffamine coatings. 5-10 mg samples of each formulation 

were subjected to heat-cool-heat cycle for temperature range between -20°C to 250°C. Heating and 

cooling rates were maintained at 10°C/min and 5°C/min respectively. Tg was determined as the 

temperature of the inflection at the mid-point of the transition in the second heating cycle. Thermal 

degradation temperature of the coatings was determined using a TA Instruments Q500 

Thermogravimetric Analysis (TGA) instrument. Samples were heated up to 800°C at a heating rate of 

10°C/min. Onset of degradation of the coatings (Td 5% °C) was reported. A TA Instruments Q800 Dynamic 

Mechanical Analysis (DMA) instrument was used to determine crosslink density (νe mol/L), tan delta, and 

storage modulus (E’ MPa) at 25°C of the cured coatings. Poisson’s ratio value of 0.44 was used for all the 

coatings. Temperature was between -20°C to 200°C, with heating rate of 5°C/min and 1 Hz frequency. νe 

was calculated using E’ values in the rubbery plateau region 60°C above Tg °C, using the equation, E’ = 

3νeRT, where, E’= storage modulus (Pa); νe = crosslink density (mol/L); R= gas constant (8.314 J/K/mol); 

T= (Tg + 60°C + 273) K.  

Laboratory Biofouling Assays  

Preleaching and Leachate Toxicity Analysis 

The Jeffamine coatings were placed in a recirculating water tank for six weeks to remove toxic 

leachates, impurities, and catalyst before analysis with biological organisms.42 After six weeks, algal 

solution in artificial sea water (ASW) with nutrients was introduced onto the coatings to test leachate 

toxicity. Fluorescence was used to observe the growth of algae on the coatings after 48 hours. The 

growth of the organisms on the coatings was reported as a fluorescence ratio to a positive growth control. 

A negative growth control (medium+ bacteria+ triclosan) was also included in the experiment. The 

coatings were compared to the negative control to confirm the absence of toxic leachates.8 Due to severe 
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toxicity of the Ancamine 2143 cured coatings against most fouling organisms, except biofilm C.lytica, FR 

experiments with the Ancamine 2143 coatings were not conducted with other organisms.  

Diatom Navicula incerta (N.incerta) Attachment and Removal 

Diatom N.incerta adhesion was carried as explained in earlier publications.8, 15, 43-45  Circular discs 

were carefully punched out from Jeffamine coatings cured using PACM and Ancamine 2432. The discs 

were then glued to 24-well plates using a silicone adhesive from Dow Corning, such that the glue covered 

the circular basal area completely. The plates were then treated with 1 mL solution of algae in ASW and 

incubated for 2 hours to allow diatom adhesion. Fluorescence was used to quantify the number of 

attached diatoms on the coatings. After 2 hours, the well plates were subjected to water jet at 10 psi and 

20 psi for 10 seconds to determine release of the diatoms from the coatings. The first column in each well 

plate was used as a reference for the initial cell settlement and was not subjected to water jet. This study 

shows diatom attachment and removal at 20 psi water jet pressure only. 10 psi water pressure did not 

facilitate sufficient diatom removal from the commercial standards.  

Biofilm Cellulophaga lytica (C.lytica) Adhesion and Removal  

Bacterial biofilm C.lytica adhesion test was carried out in a fashion similar to diatom attachment.8, 

46-48 Briefly, circular discs, punched out of the PACM cured and the Ancamine 2432 cured coatings,  were 

glued to 24-well plates using a Dow Corning silicone adhesive. 5% suspension of C.lytica in ASW (107 

cells/mL) with nutrients was prepared. 1 mL suspension was dispensed in each well. The plates were 

incubated for 24 hours at 28°C to allow colonization of the biofilm on the coatings. The plates were rinsed 

three times with deionized water to remove unattached biofilm. Crystal violet was used to stain the 

samples. Extractions of crystal violet in acetic acid (33%) were observed under 600 nm absorbance, to 

determine amount of biofilm retained on the coatings. After 24 hours, the wells were subjected to water 

jets at 10 psi and 20 psi for 5 seconds.49 The first column in each 24-well plate served as a reference for 

bacterial growth before water jetting and was not exposed to water jet. The final results were reported as 

the amount of biofilm attached to the coatings and the percent removal of the biofilm from the coating 

surface at 10 psi and 20 psi water jet pressures. 
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Microalgae Ulva linza (U.linza) Attachment and Removal  

Similar to diatoms and biofilm, 24-well assay plates were prepared by carefully punching out and 

gluing discs (using Dow Corning silicone adhesive) from select PACM cured and select Ancamine 2432 

cured preleached coatings. The plates were then shipped to Newcastle University to determine the FR 

performance of the coatings toward microalgae U.linza. Before the bioassay experiment, the assay plates 

were equilibrated in 0.22 µm filtered ASW for 2 hours. Then, 1 mL U.linza sporelings suspension (3.3 x 

105 spores/mL) in enriched sea water was dispensed into each of the wells. The spores were grown in an 

illuminated incubator at 18°C for 6 days. After 6 days, the biomass from a single row of wells (6 wells) 

was assessed by extracting chlorophyll. Chlorophyll was extracted in 1 mL DMSO. Fluorescence was 

then determined using excitation of 360 nm and wavelength of 670 nm. To determine the release 

performance of the coatings, single rows of wells from each plate was sprayed using the spinjet 

apparatus at 18, 67, 110 kPa water pressure. Chlorophyll was again extracted, as explained earlier. The 

removal at each pressure was determined by comparing the sprayed and the unsprayed wells. The 

results were reported as the percent removal of the sporelings after exposure to water jet. In this chapter, 

only microalgae removal at 110 kPa is shown. 18 and 67 kPa water pressures could not facilitate greater 

than 5% removal of the microalgae.  

Mussel  Geukensia demissa Adhesion 

Select Jeffamine coatings were evaluated for adhesion of marine mussels Geukensia demissa, 

according to a previously published procedure.11, 50, 51 Before the experiment, each marine mussel 

(received from Duke University Marine Laboratory, North Carolina, USA) was fitted with a 4 cm long 

acetal rod, using a 3M acrylic adhesive. The rods were attached perpendicular to the ventral edge of the 

mussel. Six mussels (five for PACM_J900_F10/0 and PACM_J900_F20/2.5 coatings) were immobilized 

on the select coatings, using a custom designed PVC template. The select coatings were placed in ASW 

so that the mussels can be fed live marine phytoplankton for 3 days. After 3 days, the number of mussels 

showing attachment of byssus threads was recorded for each coating. The acetal rods on the mussels 

were attached to a tensile force gauge, such that all the mussels were pulled from the coating at the 

same time. The results were reported as the average force in Newtons required to completely detach all 

byssus threads of the mussel from the coating surfaces.  



 

118 
 

Adult Barnacle Amphibalanus amphitrite (A.amphitrite) Adhesion  

Select Jeffamine coatings were also analyzed for barnacle adhesion to determine their FR 

performance against barnacles.8, 52, 53 Six adult A.amphitrite barnacles, with basal diameter of 

approximately 5 mm, were allowed to grow and attach onto the select coatings for 2 weeks. The 

barnacles were fed brine shrimp nauplii in ASW for 2 weeks. After 2 weeks, a hand held digital gauge 

was used to measure the force required to detach the barnacles in shear from the coatings. Adhesion 

strength (MPa) of the barnacles was then calculated as the shear force required for barnacle removal to 

the basal area of the barnacle. 

Surface Analysis  

Surface chemistry and topography of the water leached coatings was studied using 

characterization techniques such as contact angle, Attenuated Total Reflectance Fourier Transformed 

Infrared Spectroscopy (ATR-FTIR), Atomic Force Microscopy (AFM), and X-Ray Photoelectron 

Spectroscopy (XPS). A First Ten Angstroms (FTA 125) system was used to measure dynamic changes in 

water contact angles (WCA) by the sessile drop method. A single droplet was carefully dispensed onto 

each coating panel. WCA was measured immediately after the droplet was dispensed and at 10-min 

intervals for 30 min. The contact angles were analyzed using FTA software. A Thermo Scientific Nicolet 

8700 system, with iTR diamond crystal plate attachment, was used to conduct ATR-FTIR. 32 scans were 

taken for each Jeffamine coating. The spectra shown in this chapter are the average of the 32 scans. 

Surface topography of select samples was analyzed using a Dimension 3100 Microscope AFM system 

with Nanoscope controller. 20 µm x 20 µm area of the select pre-leached coatings were scanned using a 

silicon probe (spring constant = 0.3-0.8 N/m, resonant frequency = 20-40 kHz) in tapping mode in air 

under ambient laboratory conditions. Lastly, a Thermo Scientific K-Alpha XPS instrument with 

monochromatic 1468.68 eV Al Kα X-ray source and Ar+ ion source gun (up to 8000 eV) was used to 

conduct XPS experiments to investigate chemical composition of select Jeffamine coatings. Prior to 

analyzing the coatings, Ar+ ion MAGCIS cluster gun (8000 eV power) was used to clean coating surfaces 

for 60 seconds to remove impurities. Three survey spectra were collected at a low resolution with 

constant pass energy of 200 eV at energy increment of 1.000 eV/step for 10 microseconds. High 

resolution scans were collected at 90° (perpendicular) to the coating surfaces. Ten scans were collected 
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for each sample with energy increment of 0.100 eV/step for 50 microseconds and pass energy of 50 eV. 

Atomic concentrations of individual elements, C1s, O1s, and N1s were determined by integrating area 

under the peaks. Both surface etching and high resolution experiments were conducted at ambient 

laboratory temperature. Chamber pressure was maintained below 1.5 x 10-7 Torr at all times. 

Results and Discussion  

In this study, a different approach was explored to develop amphiphilic coatings using 

hydrophobic isocyanate-free siloxane-glycidyl carbamate (IGC_PDMS) resin and amine terminated PEG 

with varying MWs. The IGC_PDMS resin was synthesized using HDI trimer, glycidol, and dicarbinol 

terminated PDMS (MW = 5000 g/mol) as shown in Figure 4.2. The amount of PDMS was maintained at 

5% equivalents of isocyanurate. The synthesized resin was analyzed using FTIR and 13C-NMR. FTIR 

spectrum of the synthesized resin showed absence of the -NCO peak at 2272 cm-1, indicating formation 

of isocyanate-free resin (Figure 4.3). Peaks at 860-910 cm-1, 1050-1150 cm-1, and 3300 cm-1 indicated 

presence of epoxy rings, Si-O-Si chains, and -NH peak in the synthesized resin. Furthermore, 13C-NMR 

spectrum for the IGC_PDMS resin showed chemical shifts at 148 ppm, 1 ppm, 26-29 ppm, and 44-49 

ppm, indicative of C atoms from carbamate linkages, dicarbinol PDMS modifier, HDI trimer, and epoxy 

rings respectively (Figure 4.4). Experimental percent solids and EEW values of the resin were determined 

to lie between 48-50% (target— 50%) and 400 ± 20 g/eq. respectively. 

Presence of the PDMS modifier in the resin allowed formation of hydrophobic coatings. Upon 

curing, self-stratification of the siloxane chains results in the formation of a low surface energy coating. To 

increase “ambiguity” of the coating surface, amine terminated PEGs, Jeffamine ED-900 (J900) and 

Jeffamine ED-2003 (J2003), were added to coating formulations as co-reactants. The amounts of the two 

Jeffamine co-reactants was varied as 5, 10, 15, and 20% by weight of resin solids. Amine functional 

groups from the co-reactants react with the epoxy rings in the IGC_PDMS resin. The hydrophilic PEG 

chains, therefore, remain tethered to the IGC_PDMS coating. Upon exposure to an aqueous 

environment, the PEG chains are anticipated to saturate the coating surface, increasing hydrophilicity of 

the coatings. Since PDMS and PEG chains were incorporated as separate components, the amphiphilic 

surfaces are expected to show presence of the PDMS and PEG rich surface domains. Hydration of the 

PEG domains would deter attachment of diatoms and camouflage the underlying surface to reduce 
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attachment of hard foulants like barnacles, while the PDMS domains would provide slippery character to 

the coating.  

 

Figure 4.2. Reaction scheme for synthesis of IGC_PDMS resin.       
                                                           

 

Figure 4.3. FTIR spectrum of the synthesized IGC_PDMS resin.  
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Figure 4.4. 13C-NMR spectrum for the synthesized IGC_PDMS resin.  
 
 Diamines, PACM, Ancamine 2143, and Ancamine 2432, were used as primary crosslinkers to 

cure coating formulations with the IGC_PDMS resin and the Jeffamine co-reactants. The ratio of epoxy: 

AHEW of the primary crosslinker was maintained at 1:1. In general, GC resins are extremely hydrophilic 

(surface energy ~43 mN/m). Addition of PEG will further increase hydrophilicity of the coatings. Hard 

foulants like barnacles attach strongly to high surface energy coatings. Therefore, to increase 

effectiveness of the Jeffamine coatings against hard foulants, 2.5% by weight of resin solids 20k g/mol 

MW APT-PDMS was incorporated into formulations with 15% and 20% Jeffamine crosslinkers. Additional 

APT-PDMS was added to the formulations with higher Jeffamine content in an attempt to balance 

concentrations of the two phases to make coatings slippery enough for the hard foulants, while 

maintaining hydrophilicity to deter diatoms. To increase compatibility between the polar PEG and the non-

polar PDMS components in the coatings, the Jeffamine co-crosslinkers and APT-PDMS were added as 

33% solutions in EEP and toluene respectively (Figure 4.1). PACM cured formulations were cured at 

80°C for 45 minutes; formulations with the two polyamines were cured at room temperature for 2 weeks.  
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  After completion of curing, the coatings were analyzed for their mechanical properties, impact 

strength, tensile strength, and thermal properties. In general, all the coatings appeared smooth and 

uniform and exhibited good hardness, flexibility, and gloss values. Crosshatch adhesion results of 4B-5B 

(best) for all the coatings indicated that the coatings exhibited excellent adhesion to the substrates. 

Mandrel bend test showed that none of the coatings failed during experimentation, except 

2143_J900_F5/0 which showed a ~1 cm tear in the coating film. Table 4.2 shows results obtained from 

mechanical tests for the Jeffamine coatings. Most of the PACM cured formulations showed higher 

resistance to MEK solvent as compared to the polyamine cured formulations, with MEK double rub values 

> 400. Increasing the Jeffamine content resulted in a drastic drop (~50% reduction) in pendulum 

hardness values of the PACM cured coatings. Coatings with 5% and 10% J900 and J2003 exhibited 

König pendulum hardness values of > 110 seconds, but lower impact strength. Conversely, the pendulum 

hardness dropped to 40-65 seconds for coatings with 15% and 20% Jeffamines, while the reverse impact 

strength of the PACM cured coatings improved with 15% and 20% J900 and J2003. For formulations with 

15% and 20% Jeffamines co-crosslinkers, addition of 2.5% APT-PDMS may have caused softening of the 

coatings, resulting in drop in hardness of the coatings. But, plasticization of the coatings due to addition of 

APT-PDMS allowed higher mobility of the chains, thereby increasing ability of the coatings to withstand 

impact. Pencil hardness values for the PACM cured coatings lied in the range between 2B and HB.  

  Compared to the PACM cured coatings, coatings cured using Ancamine 2143 and Ancamine 

2432 showed lower solvent resistance, with only 5 out of 16 total formulations exhibiting MEK double rubs 

> 400. Similar to the PACM cured coatings, pendulum hardness of the polyamine cured coatings dropped 

with increasing Jeffamine content. Compared to the PACM cured coatings, the polyamine cured coatings 

exhibited higher pencil hardness values in the range from H-4H. The Ancamine 2143 cured coatings 

exhibited poorest reverse impact strength as compared to other primary crosslinkers, with 

2143_J900_Fa/b coatings showing lowest impact strength = 47 in.-lb. Reverse impact strength of the 

Ancamine 2143 cured coatings increased at 5-10% J2003 and then reduced again at 15-20% J2003. 

Among all formulations, Ancamine 2432 resulted in coatings with lowest König pendulum hardness 

values between 40-70 s, but all the Ancamine 2432 cured coatings showed high impact strength in the 

range from 145 in.-lb to > 160 in.-lb.  
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Figure 4.5 shows tensile test results for select Jeffamine coatings. For the PACM cured coatings, 

increase in J900 content decreased modulus, while increase J2003 content increased the modulus. 

Among the select formulations, PACM_J900_F5/0 showed the highest modulus value of 678 MPa, while 

PACM_J2003_F5/0 showed lowest modulus of < 10 MPa. Conversely, increasing J900 content to 20% 

drastically reduced modulus to < 50 MPa, while increasing J2003 content to 20% increased the modulus 

of the coating to 150 MPa. For the Ancamine 2432 cured coatings, modulus of coatings with 5% 

Jeffamines was higher than coatings with 20% Jeffamines. 2432_J2003_F5/0 exhibited highest stiffness 

with modulus of 470 MPa; 2432_J900_F20/2.5 showed lowest modulus of ~50 MPa. The Jeffamine 

coatings, except PACM_J900_F20/2.5 and PACM_J2003_F5/0 coatings, exhibited significantly higher 

modulus than the commercial silicone elastomer coatings (~5 MPa).  

 

Figure 4.5. Young’s modulus and elongation at break for select Jeffamine coatings.  
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Table 4.2. Mechanical test results for the Jeffamine coatings with epoxy: AHEW = 1:1. 

Primary 
amines 

Co- 
amines 

% Co-
amines 

% APT-
PDMS 

MEK 
double 
rubs 

KPH (s) Pencil 
hardness 

Reverse 
impact 

strength 
(in.-lb) 

60° 
Gloss  

 
 
 

PACM 

 
J900 

5 - 250 110 2B 71 73.10 

10 - > 400 117 B 78 94.50 

15 2.5 > 400 63 2B > 160  80.60 

20 2.5 > 400 41 2B > 160 78.30  

 
J2003 

5 - > 400 139 HB 71 75.87 

10 - > 400 130 HB 125 93.87 

15 2.5 350 46 B 133 80.20 

20 2.5 300 59 2B > 160  78.13 

         

 
 
 

Anc. 
2143  

 
J900 

5 - > 400 98 H 47 79.44 

10 - 380 86 2H 47 72.93 

15 2.5 > 400 76 3H 47 74.20 

20 2.5 340 83 H 47 65.13 

 
J2003 

5 - 300 105 3H 133 41.40 

10 - 250 93 H 149 61.36 

15 2.5 380 73 H 94 72.10 

20 2.5 220 65 H 78 64.10 

         

 
 
 

Anc. 
2432 

 
J900 

5 - > 400 70 3H  149 79.53 

10 - > 400 71 4H > 160 68.43 

15 2.5 350 51 2H 153 63.47 

20 2.5 280 41 H > 160 69.96  

 
J2003 

5 - 150 74 H 133 35.87  

10 - 270 56 2H > 160 39.43 

15 2.5 > 400 43 H > 160 48.87 

20 2.5 240 49 F > 160 65.00 
aKPH indicates König pendulum hardness.  
 
  Figure 4.6 shows DSC scans for all the Jeffamine coatings. Among all formulations, Ancamine 

2143 resulted in coatings with the highest Tg between 50-92°C, while coatings with Ancamine 2432 

exhibited lowest Tg values between 40-75°C. A broad range of Tg values between 36-80°C was observed 

for formulations cured using PACM. Formulations containing J2003 exhibited higher Tg as compared to 

J900, with 2143_J2003_F20/2.5 exhibiting highest Tg of 91.74°C. Tg values decreased with increasing 

Jeffamine co-crosslinker, probably due to presence of APT-PDMS chains. 
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(a)                                                                              

 

 (b) 

 

Figure 4.6. DSC scans of the coatings cured using (a) PACM, (b) Ancamine 2143, and (c) Ancamine 

2432.  
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(c) 

 

Figure 4.6. DSC scans of the coatings cured using (a) PACM, (b) Ancamine 2143, and (c) Ancamine 

2432 (continued).  

 

Figure 4.7 shows degradation behavior of the Jeffamine coatings. All the formulations cured using 

PACM showed similar degradation behavior, with 5% weight loss (Td 5%) occurring at ~265°C. For the 

formulations cured using the polyamines, 5-10% of J900 and J2003 co-crosslinkers in the formulations 

resulted in Td 5% = 135-140°C. As the Jeffamine content was increased to 15-20%, Td 5% increased to 250-

252°C. Formulations with 5-10% Jeffamines also showed higher initial weight loss and weight loss 

reduced with increasing amount of Jeffamine crosslinkers in the formulations.   
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(a)                                                                              

 

(b)  

 

Figure 4.7. TGA thermograms of the coatings cured using (a) PACM, (b) Ancamine 2143, and (c) 

Ancamine 2432.  
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(c)  

 

Figure 4.7. TGA thermograms of the coatings cured using (a) PACM, (b) Ancamine 2143, and (c) 

Ancamine 2432 (continued).  

 

  Figure 4.8 shows tan delta peaks and storage modulus for the amphiphilic coatings. Tan delta 

peaks for the PACM cured formulations appeared narrow and uniform as compared to peaks for the 

polyamine cured coatings. With PACM, Tg values of the coatings decreased with increasing amount of 

either Jeffamine co-crosslinker. For the polyamine cured coatings, Tg values decreased for coatings with 

J900 and increased for coatings with J2003. Coatings with J2003 exhibited higher Tg as compared to 

coatings with J900. PACM_J2003_Fa/b coatings showed highest Tg in the range from 82-102°C. 

Secondary peaks in higher temperature zones were visible for PACM_J2003_Fa/b coatings, indicating 

presence of a second harder phase in the coatings. For the polyamine coatings, the peaks appeared 

broader for coatings with J2003. Coatings cured using Ancamine 2432 showed lowest Tg values, in the 

range from 67-76°C for J900 and 80-90°C for J2003. Step change in tan delta peaks was observed for a 

few formulations cured using PACM and Ancamine 2432 between 110-160°C. At high temperatures, 

melting of the coatings may have provided mobility to the chains, leading to sharp increase in tan delta 

and drop in storage modulus. Any unreacted functional groups in the films could have reacted at higher 

temperatures. Eventual drop in tan delta and therefore, storage modulus may be due to melting of the film 

as temperature increased. 2143_J2003_F5/0 coating failed at ~160°C.  
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(a)                                                                            

                             

(b)  

 

(c)  

 

Figure 4.8. Tan delta plots and storage modulus curves for the coatings cured using (a) PACM, (b) 
Ancamine 2143, and (c) Ancamine 2432. 2143_J2003_F5/0 failed at 162°C.  
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 Table 4.3 shows crosslink density (νe) and storage modulus at 25°C (E’25°C) for the Jeffamine 

coatings. A range of E’25°C values was obtained for coatings cured using PACM. PACM_J2003_F10/0 

exhibited highest E’25°C value of 13 x 102 MPa; PACM_J900_F15/2.5 coatings showed lowest modulus 

value of 0.61 x 102 MPa. Most of the Ancamine 2143 cured coatings showed E’25°C in the range between 

5-10 x 102 MPa, while Ancamine 2432 resulted in coatings with E’25°C = 1-5 x 102 MPa. νe values were 

calculated using E’ values in the rubbery plateau region (60°C above Tg) and Tg values of the coatings. 

Coatings cured using the polyamines showed higher νe values compared to PACM cured coatings, 

indicating the formation of a tighter network in the films. For all coatings, except 2432_J900_Fa/b, νe 

increased from 5% to 15% of the co-crosslinker and then dropped drastically when Jeffamine content was 

increased to 20%. For 2432_J900_Fa/b, νe decreased with increasing Jeffamine content. Formulations 

with Ancamine 2143 showed highest change in νe values; νe increased from 0.26-0.39 mol/L for 5% 

Jeffamines to 0.96 mol/L-0.81 mol/L for 15% Jeffamines respectively. Above 15% Jeffamines, νe values 

showed significant drop to 0.24 mol/L-0.45 mol/L. For all the coatings, except 2432_J900_Fa/b, Jeffamine 

content up to 15% allowed formation of tighter crosslinked networks. But, above 15%, formation of 

crosslinks may have been hampered due to incompatibility of the longer PEG and APT-PDMS chains in 

the coatings.  

Overall, smooth, uniform, and glossy amphiphilic coatings were made using hydrophobic 

IGC_PDMS resin and Jeffamine crosslinkers. Lower MEK resistance of the polyamine cured coatings 

may indicate presence of unreacted functional groups in the coatings. Drastic drop in pendulum hardness 

values with of coatings with15-20% Jeffamines may be attributed due to the addition of 2.5% APT-PDMS. 

Although hardness of the coatings decreased with addition of APT-PDMS, plasticization of the coatings 

resulted in increase in their resistance to impact. Softening of the coatings was also evident from 

decreasing Tg values with increasing Jeffamine content as observed from DSC and DMA. For 

formulations with PACM and Ancamine 2143, coating networks appeared to tighten with increasing 

Jeffamine content from 5% to 15%. But, at 20% Jeffamines, νe decreased drastically probably due to 

interference in curing reactions by long chain APT-PDMS and PEG chains. But, formulations with 

Ancamine 2432 showed hampered network formation with increasing Jeffamine content, indicating 

inefficiency of Ancamine 2432 diamine in presence of PEG and PDMS reactants.  
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Table 4.3. Crosslink density and modulus of the Jeffamine coatings.  

Primary 
amine 

Co-
crosslinker 

% 
Jeffamine 

% APT-PDMS E’25°C (MPa) Tg (°C) νe (mol/L) 

 
 
 

PACM  

 
J900 

5 - 5.38 x 102 98.29°C 0.45 

10 - 1.37 x 102 89.23°C 0.46 

15 2.5 0.61 x 102 81.42°C 0.65 

20 2.5 2.02 x 102 67.57°C 0.17 

 
J2003 

5 - 4.63 x 102 102.08°C 0.31 

10 - 13.55 x 102 97.03°C 0.62 

15 2.5 4.48 x 102 90.24°C 0.80 

20 2.5 4.76 x 102 82.68°C 0.66 

       

 
 
 

Anc. 2143 

 
J900 

5 - 9.50 x 102 73.87°C 0.26 

10 - 6.67 x 102 77.64°C 0.88 

15 2.5 7.63 x 102 74.12°C 0.96 

20 2.5 6.77 x 102 68.33°C 0.24 

 
J2003 

5 - 5.76 x 102 80.92°C 0.39 

10 - 6.93 x 102 81.42°C 0.78 

15 2.5 7.86 x 102 80.92°C 0.81 

20 2.5 2.54 x 102 85.70°C 0.45 

       

 
 
 
Anc. 2432 

 
J900 

5 - 3.41 x 102 76.13°C  0.55 

10 - 2.97 x 102 72.16°C 0.56 

15 2.5 1.65 x 102 69.59°C 0.47 

20 2.5 2.86 x 102 67.82°C 0.37 

 
J2003 

5 - 2.53 x 102 81.42°C 0.34 

10 - 5.32 x 102 89.73°C 0.94 

15 2.5 2.03 x 102 88.22°C 0.98 

20 2.5 3.03 x 102 82.86°C 0.19 

  
After 42 days of water leaching, the Jeffamine coatings were analyzed using contact angle 

experiment. Figure 4.9 shows water contact angles (WCA) data for the Jeffamine formulations. Most of 

the coatings, except PACM_J900_F5/0, 2143_J2003_F5/0, and 2432_J2003_F5/0, showed WCA > 90° 

when water droplet was first dispensed on the surface of the coatings, indicating formation of a 

hydrophobic surface. Over time, WCA values dropped below 90°, showing rearrangement of chains to 

form hydrophilic PEG rich surfaces. Coatings containing J900 co-crosslinker showed slower change in 

WCA values; after 40 minutes, the contact angle had dropped from ~97° to 54°. On the other hand, 

coatings containing J2003 co-crosslinker showed faster rearrangement; WCA changes from ~100° or 

higher to ~35° after 40 minutes. Initial WCA of 95-100° was observed for all the PACM cured coatings. 

For the polyamine cured coatings, initial WCA lied between 105-122°, with 2432_J2003_F10/0 showing 

the highest initial WCA of 122° among all the Jeffamine formulations.  
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(a)                                                                            

 

(b) 

 

Figure 4.9. WCA changes for Jeffamine coatings cured using (a) PACM, (b) Ancamine 2143, and (c) 
Ancamine 2432 crosslinkers. 
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(c) 

 

Figure 4.9. WCA changes for Jeffamine coatings cured using (a) PACM, (b) Ancamine 2143, and (c) 
Ancamine 2432 crosslinkers (continued).   
 

FR performance of the Jeffamine coatings against common foulants: diatoms, biofilm, and hard 

foulants, barnacles and mussels, was evaluated. The FR performance of the amphiphilic coatings was 

compared to the commercial standards, Silastic T2 (T2), Intersleek 700 (I-700), Intersleek 900 (I-900), 

Intersleek 1100SR (1100SR) and regular polyurethanes (PU; no siloxanes). Figure 4.10 shows 

attachment and removal of diatom N.incerta at 20 psi water pressure from coatings cured using PACM 

and Ancamine 2432. Leachate toxicity tests with the Jeffamine coatings showed that formulations with 

Ancamine 2143 exhibited severe toxicity against diatoms. Therefore, the Ancamine 2143 cured 

formulations were excluded from the FR experiment. Significantly higher attachment of diatoms was 

observed on the formulations cured using PACM and Ancamine 2432 as compared to the commercial 

standards, I-900 and 1100SR (Figure 4.10(a)). Coatings with J900 and J2003 did not show any difference 

in diatom attachment. The amphiphilic coatings showed between 40-90% removal of N.incerta at 20 psi 

pressure, as opposed to ~90% removal from I-900 and 1100SR. Coatings containing J2003 co-

crosslinker facilitated higher removal of the diatoms compared to J900. Ancamine 2432 cured coatings 

showed higher removal as compared to the PACM cured coatings. Among the Jeffamine formulations, 

PACM_J2003_F5/0, PACM_J2003_F10/0, 2432_J2003_F5/0, and 2432_J2003_F10/0 coatings showed 

the highest removal between 80-90%. 10 psi water jet pressure could not facilitate sufficient removal of 

diatoms from the commercial standards.  
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(a)                                                                            

 

(b) 

 

Figure 4.10. Diatom N.incerta (a) attachment and (b) removal at 20 psi waterjet pressure.  
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Figure 4.11 shows biofilm C.lytica attachment and removal at 10 psi and 20 psi water jet 

pressure. Unlike diatoms, the Ancamine 2143 cured coatings did not show toxicity against biofilm C.lytica. 

From Figure 4.11(a), it can be seen that the Jeffamine coatings showed significantly lower attachment of 

the biofilm as compared to I-700, I-900, and 1100SR. Among the Jeffamine formulations, coatings with 

Ancamine 2432 showed slightly higher C.lytica attachment. But, the amphiphilic Jeffamine coatings 

showed lower removal of the biofilm, even at 20 psi pressure, as compared to I-900 and 1100SR (~90% 

removal). 2143_J2003_F5/0 coatings showed highest removal of ~80% at 20 psi, while 

PACM_J2003_F20/2.5 showed the lowest biofilm removal of ~5% at 20 psi. For coatings with Ancamine 

2432 as the primary crosslinkers, C.lytica removal increased slightly with increasing J900 and J2003 

content.  

(a)                                                                            

 

Figure 4.11. Biofilm C.lytica (a) attachment and (b) removal at 10 psi and 20 psi waterjet pressure.  
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(b) 

 

Figure 4.11. Biofilm C.lytica (a) attachment and (b) removal at 10 psi and 20 psi waterjet pressure 
(continued).  
 
 Select coatings were chosen for evaluation of FR performance against microalgae U.linza and 

mussels. Selection of coatings was based on prior research that showed lower attachment of microalgae 

and mussels onto hydrophobic surfaces. Therefore, coatings included in the two experiments were 

PACM_J900_F10/0, PACM_J900_F20/2.5, PACM_J2003_F5/0, PACM_J2003_F15/2.5, 

2432_J900_F10/0, 2432_J900_F20/2.5, 2432_J2003_F5/0, and 2432_J2003_F15/2.5. 10% or 20% J900 

(low MW) and 5% or 15% J2003 (high MW) were anticipated to provide a good balance between the 

hydrophobic and hydrophilic moieties on the coating surfaces. Figure 4.12 shows results for attachment 

and removal of microalgae U.linza from the Jeffamine coatings. Overall, the Jeffamine formulations 

showed extremely poor FR performance against microalgae. All the select Jeffamine coatings, except 

PACM_J900_10/0, showed higher attachment of the microalgae as compared to T2, 1100SR, PU, and 

PS coatings. But, none of the Jeffamine coatings could facilitate more than 25% removal of the 

microalgae, even at 111 kPa water pressure; on the other hand, T2 and 1100SR showed 85-90% 
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microalgae removal. PACM_J900_F10/0 showed highest microalgae removal of 25% among all the 

Jeffamine formulations. Among the Ancamine 2432 cured formulations, 2432_J2003_F5/0 facilitated 

highest removal of 15%.  

(a)                                                                            (b)  

  

Figure 4.12. Microalgae Ulva linza (a) attachment and (b) removal at 111 kPa water pressure.  
 

Figure 4.13 shows mussel adhesion on the select Jeffamine coatings. The Jeffamine coatings 

allowed stronger attachment of mussels as compared to I-700, I-900, and 1100SR (none of the mussels 

attached onto I-900 and 1100SR coatings). Coatings cured using Ancamine 2432 showed lower adhesion 

force as compared to the PACM cured coatings. Among the Jeffamine coatings, PACM_J2003_F5/0 and 

2432_J2003_F15/2.5 showed lowest adhesion strength of ~20 N for 5 out 6 mussels attached onto the 

coatings.  

Based on the slightly better FR performance of the Ancamine 2432 cured coatings against most 

of the common foulants as compared to PACM, four formulations were selected for reattached barnacle 

adhesion experiment. Figure 4.14 shows results from barnacle adhesion test on the select Ancamine 

2432 cured coatings. The Jeffamine coatings showed significantly higher barnacle adhesion as compared 

to I-700, I-900, and 1100SR. Among the Jeffamine coatings, 2432_J900_F5/0 showed highest adhesion 

strength of 0.31 MPa for 5 out of 6 barnacles that attached to the coatings. 1 barnacle base broke from 

2432_J900_F5/0 formulation during experimentation. 2432_J900_F15/2.5 showed the poorest FR 

performance against barnacles, with adhesion force of 0.22 MPa required for removal of 6 barnacles, out 

of which 5 barnacles broke, indicating very strong adhesion of the barnacles. Although lower force of 
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removal was required for coatings with J2003, 2-3 barnacles bases still broke during experimentation. 

Conversely, 1100SR and I-700 required only 0.02-0.06 MPa for removal of 3 out of 6 barnacles; I-900 

required removal force of 0.06 MPa for 6 attached barnacles.  

  

Figure 4.13. Mussel adhesion on select Jeffamine coatings. Ratios above the data points indicate the 
number of mussels that were immobilized on the coatings during the experiment/ the number of mussels 
that did not attach to the coatings. Numbers with asterisk (*) above select data points indicate the number 
of mussels that died during experimentation. None of the mussels attached to I-900 and 1100SR 
coatings.  
 

 

Figure 4.14. Barnacle adhesion on select Jeffamine coatings. Ratios above the data points indicate the 
number of barnacles out of 6 that attached to the coatings during the experiment/the number of barnacles 
that broke during experimentation.  
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To investigate effect of surface chemistry and topography of the Jeffamine coatings on their FR 

performance, coatings cured using PACM and Ancamine 2432 were analyzed using surface analysis 

techniques, ATR-FTIR, AFM, and XPS. Due to toxicity of the Ancamine 2143 coatings against most 

common foulants, further experimentation with these coatings was discontinued. Figure 4.15 shows ATR-

FTIR spectra for select Jeffamine coatings. Peaks at ~1330 cm-1 and 1050 cm-1 indicated presence of 

PEG and PDMS moieties respectively on the surface of the Jeffamine coatings. Potential minor peak at 

~1350 cm-1 indicated presence of unreacted amine groups in the Ancamine 2432 cured coatings. Some 

unreacted epoxy groups may be present in some Jeffamine formulations as observed from visibility of 

minor peaks at ~913 cm-1.   

(a)                                                                            (b) 

   

Figure 4.15. ATR-FTIR spectra of Jeffamine coatings cured using (a) PACM and (b) Ancamine 2432 
primary amine crosslinkers. 
 

The cured coatings were characterized using AFM to understand effect of MW and loading of the 

Jeffamine co-reactants on surface topography. Figure 4.16 shows AFM scans obtained for the select 

coatings. Coatings with 5-10% Jeffamines showed similar surface topographies; coatings with similar 

topographies were formed with 15-20% Jeffamines. As observed from AFM, the PACM cured 

formulations appeared smooth with domains scattered across the coating surfaces. At 15-20% Jeffamine 

content, the domains formed deep valleys or “cracks” on the coating surfaces. Roughness of the 

Ancamine cured coatings was higher than the PACM cured coatings. Rough “craters” were observed on 

the surfaces of most of the Ancamine 2432 cured formulations. In the absence of craters, the coatings 

showed formation of roughness gradients.  
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Figure 4.16. AFM scans for the PACM cured and the Ancamine 2432 cured Jeffamine coatings. 

 

 XPS was used to determine chemical composition of select Jeffamine coatings with varying 

Jeffamines content and effect of addition of APT-PDMS on surface chemistry. Figure 4.17 shows high 

resolution XPS spectra for individual O1s and C1s elements on the surfaces of the Jeffamine coatings. 

Curve fitting was conducted on O, C, and N elements to determine the concentration of PDMS and PEG 

components on the coating surfaces. All the Jeffamine coatings showed Si2p peak at 102.08-102.34 eV, 

indicating presence of PDMS on the coating surfaces. Table 4.4 shows atom percent of O1s, C1s, and 

N1s elements as determined from peak fitting. N1s peak at ~399 eV was observed on all the coatings. 

The PACM cured coatings showed higher N content on the surfaces than the Ancamine 2432 cured 

coatings. N content also appeared to decrease from 9.31% to 8.15% and 8.69% to 3.94% for the coatings 

cured using PACM and Ancamine 2432 respectively with addition of 2.5% APT-PDMS. Peak fitting for O 

and C showed presence of three different chemical states for O and C. O1s peaks at ~532, 531.48, and 

533.27 eV indicated of O from Si-O-Si, C-O-C, and -NH-C=O (carbamate/urethane) linkages respectively. 

Similarly, C1s peaks at ~284.20, 285.90-286.18, and 288.83-289.14 indicated C-C/C-H, C-O-C/C-N, and 

the carbamate linkages respectively. For the PACM cured coatings, amount of PEG moieties (C-O-C = 

19-23%) was significantly higher than PDMS component (Si-O-Si = 11-16%). Concentration of PDMS 

increased from 11% to 16% with the addition of APT-PDMS, which resulted in slight drop in PEG 

concentration from 23% to 19%. Conversely, with Ancamine 2432, PDMS content (~19.20%) was higher 
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than PEG (10-13%). Although addition of APT-PDMS did not affect concentration of PDMS on the 

coatings, concentration of PEG on the surfaces decreased from 13% to 10%. 

Table 4.4. Surface composition of the Jeffamine coatings determined from XPS.  

Formulations Chemical states Binding energies 
(eV) 

Atom % 

 
 
 

PACM_J900_F5/0 

 
O1s 

Si-O-Si  532.00 11.71 

C-O 531.23 5.97 

C=O 533.27 3.59 

 
C1s 

C-C/C-H 284.49 37.48 

C-O/C-N 285.94 23.21 

C=O 289.11 6.99 

N1s Total 400.01 9.31 

     

 
 
 

PACM_J2003_F20/2.5 

 
O1s 

Si-O-Si  531.89 16.45 

C-O 531.23 5.35 

C=O 533.27 3.72 

 
C1s 

C-C/C-H 284.36 40.54 

C-O/C-N 286.00 19.57 

C=O 289.11 5.81 

N1s Total 399.95 8.15 

     

 
 
 

2432_J900_F5/0 

 
O1s 

Si-O-Si  531.90 19.12 

C-O 531.23 4.51 

C=O 533.27 3.24 

 
C1s 

C-C/C-H 284.33 47.58 

C-O/C-N 286.02 13.08 

C=O 288.97 3.79 

N1s Total 399.96 8.69 

     

 
 
 

2432_J2003_F20/2.5 

 
O1s 

Si-O-Si  531.90 19.33 

C-O 531.23 5.62 

C=O 533.27 2.23 

 
C1s 

C-C/C-H 284.31 53.30 

C-O/C-N 286.23 10.48 

C=O 288.83 2.66 

N1s Total 399.55 3.94 
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(a) 

 

(b) 

 

(c) 

 

Figure 4.17. High resolution XPS spectra with peak fitting for O1s and C1s peaks for (a) 

PACM_J900_F5/0, (b) PACM_J2003_F20/2.5, (c) 2432_J900_F5/0, and (d) 2432_J2003_F20/2.5 

coatings.  
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(d)  

 

Figure 4.17. High resolution XPS spectra with peak fitting for O1s and C1s peaks for (a) 
PACM_J900_F5/0, (b) PACM_J2003_F20/2.5, (c) 2432_J900_F5/0, and (d) 2432_J2003_F20/2.5 
coatings (continued). 
 
 Amphiphilic nature of the Jeffamine coatings was observed from dynamic change in WCA values, 

indicating alteration of surface chemistries with changing environment (air to water). Slightly higher WCA 

values for formulations with J2003 as compared to J900 may be due to higher incompatibility between 

non-polar PDMS chains and polar GC matrix and PEG chains, causing potentially higher self-stratification 

of PDMS chains onto the coating surfaces. Another reason for the higher WCA with J2003 may have 

been due to delay in separation of longer PEG chains from the coating matrix. ATR-FTIR and XPS also 

showed presence of both PDMS and PEG on the coating surfaces. XPS analysis showed that the PACM 

higher concentration of PEG was observed on the PACM cured coatings as compared to the Ancamine 

2432 cured coatings. This behavior may be attributed to the nature of coating network formed during 

crosslinking. Curing formulations comprising of Jeffamine co-reactants, PDMS, and PACM at elevated 

temperature may not have allowed sufficient time for self-stratification of the PDMS chains. On the other 

hand, curing under ambient conditions with Ancamine 2432 caused the PDMS chains to exude to the 

surface, increasing concentration of PDMS on the coatings. Comparatively higher hydrophilicity of 

coatings with 5-10% J2003 was beneficial for removal of diatoms. The hydrophilicity of the coatings 

decreased at 15-20% Jeffamines due to presence of 2.5% 20k APT-PDMS, thereby reducing diatom 

removal. But, presence of PEG rich domains allowed strong attachment of microalgae, mussels, and 

barnacles. In spite of addition of high MW APT-PDMS, the coating surfaces did not exhibit adequate 

balance between PDMS and PEG components.  



 

144 
 

Conclusions  

Amphiphilic coatings were made by incorporating amine terminated PEGs, with varying MW, into 

formulations with isocyanate-free hydrophobic siloxane modified GC (IGC_PDMS) resin. 5, 10, 15, and 

20% by weight resin solids Jeffamine ED-900 (J900) and Jeffamine ED-2003 (J2003) were added as co-

crosslinkers to impart hydrophilicity to the IGC_PDMS coatings. PACM, Ancamine 2143, and Ancamine 

2432, at epoxy: AHEW = 1:1, were used as primary crosslinkers. Additional 2.5% by weight resin solids 

APT-PDMS (20k g/mol) was added to the formulations with Jeffamine content = 15% and 20% to balance 

potentially high hydrophilicity of the coatings. The cured coatings appeared smooth, uniform, and glossy. 

The coatings exhibited good hardness, flexibility, and impact strength. Most of the coatings with PACM 

showed MEK double rub values > 400. The PACM cured coatings showed higher König pendulum 

hardness values, while the polyamine cured coatings showed better pencil hardness. Impact resistance of 

the coatings improved with addition of J2003 into the formulations. Thermal analysis using DSC and DMA 

showed that coatings with J2003 co-crosslinker exhibited higher Tg than coatings with J900. Further, 

increasing Jeffamine content = 15-20% in the coatings resulted in decrease in Tg of the coatings due to 

presence of APT-PDMS in the formulations. TGA showed that degradation temperatures of most of the 

coatings lied between 250-265°C. Tighter networks appeared to have formed in coatings with 5-15% 

Jeffamines with PACM and Ancamine 2143, while the networks loosened with 20% Jeffamines and 

Ancamine 2432. The cured coatings showed dynamic changes in WCA. Coatings with J2003 showed 

faster rate of change of WCA. Amphiphilic nature of the coatings was also evident from presence of PEG 

and PDMS on the surface of the cured coatings as observed using ATR-FTIR and XPS. Concentration of 

PEG was higher on coatings cured using PACM, while inverse was true for the Ancamine 2432 cured 

formulations. AFM showed formation of domains on the Jeffamine coatings. Coatings cured using 

Ancamine 2432 exhibited higher surface roughness as compared to the PACM cured formulations. 

Evaluation of FR performance against diatoms showed that the Jeffamine coatings facilitated 40-90% 

diatom N.incerta removal at 20 psi water jet pressure. Diatom removal was higher at 5-10% Jeffamine co-

crosslinkers as compared to 15-20% Jeffamine due to presence of APT-PDMS in the latter formulations.  

As compared to the commercial standards, the Jeffamine coatings showed lower biofilm C.lytica 

attachment but lower biofilm removal even at 20 psi water pressure. Although microalgae attachment on 
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the Jeffamine coatings was similar to the commercial standards, the Jeffamine coatings could not 

facilitate more than 25% removal of the microalgae (~90% removal from 1100SR and T2). Mussel and 

barnacle adhesion on the amphiphilic coatings was significantly higher than I-700, I-900, and 1100SR. 

Mussel adhesion strength was higher for most of the PACM cured coatings as compared to the Ancamine 

2432 cured formulations. The Jeffamine coatings allowed stronger attachment of barnacles as compared 

to the commercial standards, with 20-80% barnacle bases breaking during experimentation. Poor FR 

performance of the Jeffamine coatings against most of the foulants can be attributed to the presence of 

10-23% PEG as against 11-19% PDMS components on coating surfaces as determined from XPS. 

Further tuning of surface chemistry is required for use of the Jeffamine coatings as successful amphiphilic 

coatings in practical applications.  
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CHAPTER 5. POLYETHYLENE GLYCOL AND SILOXANE MODIFIED GLYCIDYL 

CARBAMATE RESINS AND THEIR PERFROMANCE AS FOULING-RELEASE 

MARINE COATINGS  

Introduction  

Marine biofouling is the undesirable settlement, attachment, and metamorphosis of aquatic 

species, like algae, barnacles, and mussels, on surfaces submerged in water.1, 2 Biofouling is a time 

dependent process; hard foulants like barnacles and mussels will attach to the surfaces over time, 

irrespective of the availability of nutrients necessary for growth.3 But, the process of biofouling can be 

typically explained in four main stages— 1. Formation of a conditioning layer of polysaccharides, 2. 

Accumulation of unicellular bacteria, 3. Settlement of algal spores and diatoms and 4. eventual 

attachment and growth of barnacles and mussels.1, 4 For ships, biofouling poses many disadvantages, 

like an increase in drag and therefore, an increase in fuel consumption, reduction in the speed of the 

vessel, difficulty in maneuvering marine vessels, migration of aquatic species to non-native environments 

and corrosion of substrates.1, 2, 5, 6 Not just environmental problems, combating biofouling is also an 

expensive affair that costs millions of dollars annually.2, 6, 7 Historically, lead sheathing was used protect 

ship hulls from biofouling.1 The lead sheathing was then replaced with anti-fouling (AF) coatings, 

containing tin, copper or organic biocides.1, 8 The biocides would leach out and completely prevent the 

attachment of aquatic organism by killing them.6 AF coatings were highly effective in preventing 

biofouling. But, toxic nature of the biocides on organisms like oysters, led to the replacement of the AF 

coatings with “safer” non-toxic fouling-release (FR) coatings.2, 6 FR coatings allow formation of a weak 

bond between the organism and the substrate, which can then be easily broken by hydrodynamic forces.9, 

10 Commercially available FR coatings are typically made using slippery, low modulus silicone elastomers. 

Low mechanical strength and poor adhesion of the FR coatings make them less viable in long term 

marine applications.9, 10 To address the shortcomings of the commercial FR coatings, a self-stratified 

siloxane-polyurethane (SiPU) system was developed in the Webster research group.9-13 A typical coating 

formulation with SiPU system comprises of an isocyanate, a polyol and high MW aminopropyl terminated 

siloxane (APT-PDMS).9, 10 Upon curing, the siloxane chains stratify to form the outer slippery layer, while 

the PU matrix provides the required mechanical strength and adhesion to the underlying substrates.10  
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 Over 4000 different marine organisms have been identified, all showing different attachment 

mechanisms.2 Generally, aquatic organisms secrete proteinaceous adhesives on favorable surfaces.3 

Therefore, developing surfaces that can reduce spreading of protein-rich adhesives may be beneficial to 

combat biofouling. Surfaces rich in polyethylene glycol have shown tendency to repel proteins.14 PEG 

chains bind water molecules to the surfaces, forming a hydration layer.15, 16 The incoming proteins cannot 

displace the water molecules, thereby reducing adhesion to the substrates. Hydrophilic PEG surfaces can 

successfully deter fouling by diatoms, unlike macrofoulants that tend to attach strongly to the hydrophilic 

surfaces.17-20 Hydrophobic nature of the SiPU coatings causes slipping of the organisms from the surface 

of the coatings, thereby reducing the attachment of hard foulants like mussels and barnacles.10 But, 

diatoms attach strongly onto hydrophobic siloxane rich surfaces.17 Therefore, a combination of 

appropriate concentrations of hydrophobic and hydrophilic components is required to reduce fouling by 

most of the common aquatic species.  

As a replacement for conventional polyurethanes, novel isocyanate-free amphiphilic glycidyl 

carbamate (GC) technologies are explored for potential use in marine applications. Isocyanate-free 

systems are aimed at reducing concerns associated with the use of isocyanates to make 

polyurethanes.21, 22 GC resins can be easily synthesized using isocyanates and glycidol.23-30 GC resins, 

therefore, combine mechanical strength and adhesion of polyurethanes with convenient epoxy-amine 

crosslinking chemistry.23 The functional epoxy groups in GC resins can be easily crosslinked using a 

variety of diamine crosslinkers to form coatings with desired properties.31 A typical formulation with GC 

resin consists of the carbamate resin and a diamine crosslinker. Therefore, absence of free isocyanate 

groups in GC coating formulations is expected to reduce hazards associated with spraying unreacted 

isocyanates.  

In this study, attempts were made to develop amphiphilic coatings with hydrophobic or hydrophilic 

network chains with comb-like dangling chains of opposite polarity to the hydrophobic or hydrophilic 

network chains. Presence of modifiers with opposite polarities is expected to from amphiphilic surfaces 

that can deter most of the common fouling organisms. Over the course of this study, a number of GC 

resins were synthesized using isocyanate, glycidol, and mono- and difunctional PDMS and PEG 

modifiers. Amounts and MWs of the PDMS and the PEG modifiers were varied to alter amphiphilic nature 
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of the resins. Polyamine crosslinkers, Ancamine 2143 and Ancamine 2432, and polyamide crosslinkers, 

Ancamide 2634 and Ancamide 2767, were used to crosslink the synthesized amphiphilic resins under 

ambient laboratory conditions. Ratios of epoxy: AHEW (amine hydrogen equivalent weight) of the 

diamines was varied as 1:1 and 1:2. The resins were characterized using FTIR and NMR to confirm 

formation of isocyanate-free nature of the resins and determine structures of the synthesized resins. 

Cured amphiphilic coatings were characterized for mechanical properties, hardness, flexibility, impact 

strength and tensile strength. Thermal behavior of the coatings was analyzed using DSC, TGA, and DMA. 

Further, FR performance of the coatings against common foulants, biofilm (C.lytica), diatoms (N.incerta), 

microalgae (U.linza), mussels (Geukensia demissa), and barnacles (A.amphitrite), was evaluated. Lastly, 

the coatings were analyzed using contact angle experiments, ATR-FTIR, AFM, and XPS to understand 

topography and surface chemistries of the cured coatings.  

Experimental Section 

Materials  

Isocyanurate of hexamethylene diisocyanate (HDI trimer), Desmodur 3300A, was provided by 

Covestro (Bayer MaterialScience). Both mono- and difunctional PDMS (MCR-C12-1k, DMS-C15-1k, 

DBE-C25-4k, DMS-C21-5k, DMS-C23-10k g/mol) and PEG (MW = 550, 600, 750, 1k, 2k g/mol) were 

purchased from Gelest and Sigma Aldrich respectively. Glycidol was provided by Dixie Chemicals, which 

was immediately refrigerated to avoid formation of impurities.32 Catalyst dibutyltin diacetate (DBTDAc) 

was purchased from Sigma Aldrich. Solvents ethyl 3-ethoxypropionate (EEP), toluene, and acetone were 

purchased from Sigma Aldrich and VWR International. All chemicals were used as is, unless specified.  

Synthesis of Amphiphilic Resins (AMP_GC Resins) 

A variety of amphiphilic resins (AMP_GC) were synthesized using HDI trimer, glycidol, PDMS, 

and PEG. The amounts, functionality, and MWs of the PDMS and PEG components were varied as 

shown in Table 5.1. The amounts of PDMS and PEG were calculated based on equivalents of 

isocyanurate. Amounts of solvents EEP and acetone (or toluene, in the case of PDMS = 5k, 10k g/mol) 

were calculated such that the final resin contained a 1:1 solvent blend of EEP and acetone (toluene) and 

50% theoretical solids resin. The reaction was carried out in a four-necked round bottom flask, attached 

with a stirrer, a condenser, a thermocouple, a nitrogen inlet, and a heating mantle. HDI trimer and 
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required amount of EEP solvent were first charged into the reaction flask. The difunctional component 

(PDMS or PEG) was then added to the flask and allowed to react with HDI trimer at 80°C for ~1 hour. 

After 1 hour, the monofunctional PEG or PDMS component was added to the reaction mixture with 0.020-

0.025% resin solids of DBTDAc as the catalyst. The reaction was continued for another hour at 80°C. 

Then, temperature was reduced to 45-50°C before addition of glycidol. Lastly, glycidol solution in acetone 

(toluene) was added to the flask. The reaction was allowed to proceed for another 1-1.5 hours until the 

disappearance of NCO peak as observed using Fourier Transform Infrared Spectroscopy (FTIR). A 

schematic of the synthesis reaction is shown in Figure 5.1.  

Table 5.1. List of the synthesized AMP_GC resins.  

Resins  PDMS 
(g/mol) 

PEG 
(g/mol) 

% PDMS and % PEG Comments  

R1 1000 (d) 550 (m) 5, 10, 15 > 10%— resin did not crosslink 

R2 1000 (m) 600 (d) 5, 10, 15 

R3 5000 (m) 1000 (d) 5 Resin did not crosslink  

R4 1000 (d) 750 (m) 5, 10  

R5 4000 (d) 750 (m) 5 Resin may or may not have crosslinked  

R6 1000 (d) 2000 (m)  5, 10  

R7 1000 (m) 1000 (d) 5 Resin did not crosslink  

R8   
5000 (d)  

550 (m) 2.5, 5  
> 2.5%— resin did not crosslink  

  
R9 750 (m) 2.5 

R10 2000 (m) 2.5 

R11 10,000 (d)  550 (m) 2.5 

R12 10,000 (d) 750 (m) 2.5 Resin did not crosslink 

(m), (d)— indicate monofunctional and difunctional PDMS and PEG components in the resins 

respectively.   

 

 

Figure 5.1. Scheme for synthesis of AMP_GC resins. X and Y in the resin structure can be PDMS or 
PEG depending on the functionality of the two components.   
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Resin Characterization  

The synthesized resins were characterized using FTIR and Nuclear Magnetic Resonance 

spectroscopy (13C-NMR). FTIR experiments were conducted using a Thermo Scientific Nicolet 8700 

instrument. Small amounts of the resins were coated onto a potassium bromide (KBr) plate. 32 scans 

were taken for each resin sample. The result reported in this chapter is the average of 32 scans of each 

sample and represents FTIR spectra of all the resins. For 13C-NMR, dilute sample solutions in CDCl3 

were analyzed using Bruker 400 NMR. Similar to FTIR, the single NMR spectrum shown in this chapter 

represents all the synthesized resins. To determine experimental percent solids, ~1 g of resin samples, 

measured accurately, was added to aluminum pans, which were heated in an oven at 120°C for 1 hour. 

Weights of the resins before and after heating were used to calculate experimental percent solids. An 

average of three replicates of each resin sample was considered to be the experimental percent solids of 

the respective resin. Epoxy equivalent weight (EEW) was determined experimentally according to ASTM 

D 1652. Accurately measured ~1 g of resin samples was added to an Erlenmeyer flask. The samples 

were dissolved completely in 10-15 ml chloroform. 3-4 drops of 0.1% crystal violet solution in glacial 

acetic acid were added as the indicator. All the resin samples were titrated against standardized 0.1 N 

HBr solution. Color change from violet to blue-green was considered to be the end point of titration for all 

samples. Average value of three titrations for each resin was considered to be experimental EEW value 

for the respective resin.  

Coating Formulations   

The AMP_GC resins were crosslinked using diamine crosslinkers, polyamines (Ancamine 2143 

and Ancamine 2432) and polyamides (Ancamide 2634 and Ancamide 2767). Epoxy: AHEW ratios were 

varied as 1:1 and 1:2 with all the resins. All formulations were stirred using magnetic stirrers for 20 

minutes, followed by sonication for 10 minutes to remove bubbles. Coatings for mechanical and thermal 

experiments were made using a drawdown bar with 8 mils wet film thickness. Degreased (using 

isopropanol) steel (purchased from Q-Lab, specifications— 3” x 6”, smooth mill finish, type QD, alloy 

1008/1010), aluminum (purchased from Q-Lab, specifications— 3” x 6”, smooth mill finish, type A, alloy 

3003 H14) and glass panels were used as substrates to make coatings for mechanical tests and thermal 

analysis experiments. Coatings for FR experiments were made by applying formulations on primed 
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(Intergard 264 primer) aluminum panels (purchased from Q-Lab, specifications— 4” x 8”, smooth mill 

finish, type A, alloy 3003 H14), using a Mayer rod (RDS 80). All the AMP_GC formulations were cured 

under ambient conditions for 2 weeks. Table 5.2 shows a list of formulations made using the different 

AMP_GC resins.  

Table 5.2. List of AMP_GC resins, diamines, and curing schedules included in the study.  

Resins  Amine 
Crosslinkers 

Formulations Curing Schedule 

R1 (5,10%), R2 (5, 10%), 
R4, R6, R8, R9, R10, 

R11 

Ancamine 2143 F1  
RT, 2 weeks  Ancamine 2432 F2 

Ancamide 2634 F3 

Ancamide 2767 F4 

Coating Characterization 

Upon curing, all coatings (epoxy: AHEW = 1:1, 1:2) were characterized for their solvent 

resistance, hardness, flexibility, impact strength, and tensile properties. Methyl ethyl ketone (MEK) double 

rubs test (ASTM D 5402) was conducted to assess the chemical resistance and extent of crosslinking in 

the coatings. A 26-oz hammer with cheesecloth was soaked in MEK solvent. The number of double rubs 

that caused surface mar or loss of surface gloss or delamination were noted. König pendulum hardness 

(ASTM 4366) was measured and reported in seconds. Pencils with different hardness values, ranging 

from softest 9B to hardest 9H, were used to determine pencil hardness value of the coatings, according to 

ASTM D3363. The results from the test were reported as the hardest pencil that does not leave any 

scratch on the surface. A Gardener impact tester was used to determine reverse impact strength of the 

coatings (ASTM D 2794) with maximum drop height of 43 in. and a drop weight of 4 lb. The results were 

reported as crazing or loss of adhesion or film failure in inch–pounds (in.-lb). Coatings that did not show 

any failure were reported as having impact strength > 160 in.-lb. Flexibility of coatings was determined 

using conical mandrel bend (ASTM D 522). The results were reported as ‘no failure’ or ‘tear’ caused 

during experimentation. Crosshatch adhesion test (ASTM D 3359) was conducted on the coatings using a 

Gardco crosshatch adhesion instrument and tape. The results were reported as 5B (best) to 0B (worst), 

depending on the amount of film removed after the tape was ripped off. Coatings with epoxy: AHEW = 1:1 

were analyzed using Instron 5542 tensile test instrument. Samples were prepared according to ASTM D 

882 and rate was maintained at 5 mm/min at room temperature. Young’s Modulus and elongation at 

break for the coatings were recorded.   
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 For thermal analysis experiments, free coating films were carefully peeled from glass substrates. 

Due to their superior overall performance (mechanical properties and appearance), only formulations with 

epoxy: AHEW = 1:1 were analyzed using thermal analysis experiments. A TA Instruments Q1000 

Differential Scanning Calorimeter (DSC) system was used to determine glass transition temperature 

(Tg°C) of all the AMP_GC coatings. 5-8 mg samples were subjected to heat-cool-heat cycle at heating 

and cooling rates of 10°C/min and 5°C/min respectively. Temperature was maintained in the range 

between -20°C to 250°C for all the samples. The temperature of the inflection at the mid-point for each 

sample in the second heating cycle was recorded as Tg. Thermal degradation behavior of the cured 

coatings was determined using a TA Instruments Q500 Thermogravimetric Analysis (TGA) system. 

Samples were heated up to 800°C at a heating rate of 10°C/min. Onset of thermal degradation for each 

coating was recorded as the temperature at 5% weight loss (Td 5%°C). A TA Instruments Q800 Dynamic 

Mechanical Analysis (DMA) instrument was used to determine crosslink density (νe mol/L), tan delta, and 

storage modulus (E’ MPa) of the cured coatings. Poisson’s ratio was maintained at 0.44 for all the 

coatings. The experiment was conducted in the temperature range from -20°C to 200°C, with heating rate 

of 5°C/min and 1 Hz frequency. νe was calculated using E’ values in the rubbery plateau region, 60°C 

above the glass transition temperature (Tg), using the equation, E’ = 3νeRT, where, E’= storage modulus 

(Pa); νe = crosslink density (mol/L); R= gas constant (8.314 J/K/mol); T= (Tg + 60°C + 273) K.  

Laboratory Biofouling Assays   

Preleaching and Leachate Toxicity Analysis 

FR experiments were conducted on AMP_GC coatings with epoxy: AHEW = 1:1. Prior to the 

laboratory FR tests, all the coatings were placed in a recirculating water tank for six weeks to remove 

toxic leachates, impurities, unreacted monomers, and tin catalyst.33 After six weeks, algal solution in 

artificial sea water (ASW) with nutrients was introduced onto the coatings to test leachate toxicity. 

Fluorescence was used to observe the growth of algae on the coatings after 48 hours. The growth of the 

organisms on the coatings was reported as a fluorescence ratio to a positive growth control. A negative 

growth control (medium+ bacteria+ triclosan) was also included in the experiment. The algal growth on 

the AMP_GC coatings was compared to the negative control to confirm non-toxicity of the coatings.9 For 

all FR tests, except microalgae U.linza, FR performance of the AMP_GC coatings was compared to 
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commercial standards, Intersleek 700 (I-700), Intersleek 900 (I-900), Intersleek 1100SR (1100SR), 

Silastic T2 (T2), and a regular polyurethane (PU— no siloxane) coating. For FR test against microalgae, 

T2 and polystyrene coatings were used as standards and control.  

Diatom Navicula incerta (N.incerta) Attachment and Removal 

Diatom N.incerta adhesion was carried as explained in earlier publications.9, 12, 34-36  24-well plates 

were prepared by carefully punching out discs from all the coatings. The discs were then glued to the well 

plates using a silicone adhesive from Dow Corning, such that the glue covered the circular basal area 

completely. The plates were then treated with 1 ml solution of algae in ASW and incubated for 2 hours to 

allow diatom adhesion. The settlement of diatoms on the coatings was quantified using fluorescence. 

After 2 hours, the well plates were subjected to water jet at 10 psi and 20 psi for 10 seconds to determine 

release of diatoms from the coatings. The first column in each well plate was used as a reference for the 

initial cell settlement and was not subjected to water jet. In this study, the diatom attachment on the 

AMP_GC formulations and the percent removal at 20 psi are reported. Equipment anomaly at 10 psi 

water jet pressure resulted in insufficient removal of diatoms.  

Biofilm Cellulophaga lytica (C.lytica) Adhesion and Removal  

Bacterial biofilm C.lytica adhesion test was carried out in a fashion similar to diatom attachment.9, 

37-39 Briefly, crystal violet colorimetry was used to determine C.lytica retention on the cured coatings. 

Circular discs were carefully punched from all the amphiphilic coatings. The discs were glued to the 

plates using a silicone adhesive from Dow Corning. 5% suspension of C.lytica in ASW (107 cells/ml) with 

nutrients was prepared. 1 ml suspension was dispensed in each well. The plates were incubated for 24 

hours at 28°C to allow colonization of the biofilm on the coatings. The plates were rinsed three times with 

deionized water to remove unattached biofilm. Crystal violet was used to stain the samples. Extractions of 

crystal violet in acetic acid (33%) were observed under 600 nm absorbance to determine amount of 

biofilm retained on the coatings. After 24 hours, the wells were subjected to water jets at 10 psi and 20 psi 

for 5 seconds.40 The first column in each 24-well plate served as a reference for bacterial growth before 

water jetting and was not exposed to water jet. The final results were reported as amount of the biofilm 

adhesion on the coatings and the percent removal of the biofilm from the coating surface at 10 psi and 20 

psi water jet pressures.  
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Microalgae Ulva linza (U.linza) Attachment and Removal  

Similar to diatoms and biofilm, select AMP_GC coatings were analyzed for FR performance 

against microalgae. Circular discs were punched from the select coatings and glued to 24-well plates 

using a silicone adhesive from Dow Corning. The plates were then shipped to Newcastle University for 

laboratory microalgae U.linza attachment and release experiment. Prior to the experiment, the assay 

plates were equilibrated in 0.22 µm seawater for 2 hours. Then, 1 ml U.linza sporelings suspension (3.3 x 

105 spores/ml) in enriched sea water was dispensed into each of the wells. The spores were grown in an 

illuminated incubator at 18°C for 6 days. After 6 days, the biomass from a single row of wells (6 wells) 

was assessed by extracting chlorophyll. Chlorophyll was extracted in 1 ml DMSO. Fluorescence was then 

determined using excitation of 360 nm and wavelength of 670 nm. To determine the release performance 

of the coatings, individual row of wells from each plate was sprayed using a spinjet apparatus at 18, 67, 

110 kPa water pressure. Chlorophyll was again extracted, as explained earlier. The removal at each 

pressure was determined by comparing the sprayed and the unsprayed wells. The results were reported 

as the percent removal of the sporelings after exposure to water jet. In this paper, only microalgae 

removal at 110 kPa is shown. 18 and 67 kPa water pressure resulted in less than 5% removal of the 

microalgae.  

Mussel  Geukensia demissa Adhesion 

Select amphiphilic coatings were evaluated for adhesion of marine mussels Geukensia demissa, 

according to a previously published procedure.41-43 Before the experiment, each marine mussel (received 

from Duke University Marine Laboratory, North Carolina, USA) was fitted with a 4 cm long acetal rod, 

using a 3M acrylic adhesive. The rods were attached perpendicular to the ventral edge of the mussel. Six 

mussels were immobilized on the coatings, using a custom designed PVC template. The select coatings 

were placed in ASW so that the mussels can be fed live marine phytoplankton for 3 days. After 3 days, 

the number of mussels showing attachment of byssus threads was recorded for each coating. The acetal 

rods on the mussels were attached to a tensile force gauge, such that all the mussels were pulled from 

the coating at the same time. The results were reported as the average force (Newtons) required to 

completely detach all byssus threads of the mussels from the surface.  
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Adult Barnacle Amphibalanus amphitrite (A.amphitrite) Adhesion  

Select amphiphilic coatings were also analyzed for barnacle adhesion to determine their FR 

performance against barnacles.9, 44, 45 Six adult A.amphitrite barnacles, with basal diameter of 

approximately 5 mm, were allowed to grow and attach to the select coatings for 2 weeks. The barnacles 

were fed brine shrimp nauplii in ASW for 2 weeks. After 2 weeks, a hand held digital gauge was used to 

measure the force required to detach the barnacles in shear from the coatings. Adhesion strength (MPa) 

of the barnacles was then calculated as the shear force required for barnacle removal to the basal area of 

the barnacle.  

Surface Characterization 

Select pre-leached AMP_GC coatings were characterized using contact angle, Attenuated Total 

Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR), Atomic Force Microscopy (AFM), and 

X-Ray Photoelectron Spectroscopy (XPS) to study surface chemistry and topography of the coatings and 

understand their effect on FR performance. A First Ten Angstroms (FTA 125) system was used to 

measure dynamic changes in water contact angles (WCA) by sessile drop method. A single droplet was 

carefully dispensed onto each coating. WCA measured immediately after the droplet was dispensed was 

recorded as WCA at 0 minutes. Thereafter, WCAs for each coating were measured every 10 minutes for 

30 minutes. The contact angles were analyzed using FTA software.  

A Thermo Scientific Nicolet 8700 instrument, with iTR diamond crystal plate attachment, was 

used to conduct ATR-FTIR on the AMP_GC coatings. 32 scans were taken for each coating sample. The 

spectra shown in this chapter are the average of the 32 scans.  

Surface topography of select coatings was analyzed using AFM. 20 µm x 20 µm areas of the 

select coating surfaces were scanned using a Dimension 3100 Microscope system with Nanoscope 

controller and a silicon probe (spring constant = 0.3-0.8 N/m, resonant frequency = 20-40 kHz) in tapping 

mode in air under ambient laboratory conditions.  

Lastly, chemical composition of the select AMP_GC coatings were determined using a Thermo 

Scientific K-Alpha XPS with monochromatic Al Kα X-ray source (1468.68 eV) and 8000 eV Ar+ ion source 

gun. Prior to analysis, the coatings were exposed to 8000 eV MAGCIS Ar+ ion cluster gun for 60 seconds 

to remove impurities. Three survey spectra were collected at a low resolution with constant pass energy 
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of 200 eV at energy increment of 1.000 eV/step for 10 microseconds. Further, ten high resolution scans 

were collected per sample with energy increment of 0.100 eV/step for 50 microseconds and pass energy 

of 50 eV, such that the laser was perpendicular to the coating surfaces. Atomic concentrations of 

individual elements, C1s, O1s, and N1s were determined by integrating area under the peaks. Both 

surface etching and high resolution experiments were conducted at ambient laboratory temperature. 

Chamber pressure was maintained below 1.5 x 10-7 Torr at all times. 

Results and Discussion  

In an attempt to deter biofouling by common aquatic organisms, novel isocyanate-free 

amphiphilic resins (AMP_GC resins), synthesized using isocyanurate of HDI, glycidol, and hydrophobic 

PDMS and hydrophilic PEG modifiers, were explored to make viable FR surfaces. The amounts, MW, and 

functionality of PDMS and PEG were varied to make AMP_GC resins with varying amphiphilic character. 

During the first stage of synthesis, the difunctional component (PDMS or PEG) reacts with isocyanate 

groups from HDI trimer molecules. Since equivalents of isocyanurate are 10 to 20 times higher than 

equivalents of hydroxyl groups from PDMS or PEG components, the probability of reaction between 

hydroxyl groups from the same chain and isocyanate groups from the same isocyanurate molecule is low. 

Therefore, statistically, the synthesized resins contain higher concentration of PDMS or PEG “bridges” 

formed due to reaction between the difunctional components with isocyanate groups from two different 

HDI trimer molecules, rather than “loops”. Properties of the modified GC coatings will be affected by 

amount and MW of the difunctional components since the bridges form a part of the coating matrix. Self-

stratification of the difunctional component is expected to form polar or non-polar domains on the surface 

of the coatings, depending on the polarity of the bridges. Monofunctional PEG or PDMS components 

provide a comb-like architecture to the coatings. Since the monofunctional components are bound to the 

coating matrix on one end only, freedom of movement of the “combs” is higher than that of the bridges. 

Movement of the “combs” is expected to disallow organisms from bonding strongly with the coating 

surfaces. Combination of polar and non-polar components in the same resin necessitated incorporation of 

solvent blends of EEP and acetone or toluene to compatibilize all the components of the resin. Initial 

experiments to determine minimum amount of the solvent blend showed that 50% total solvent content 

provided the best viscosity for successful completion of synthesis and application of coating formulations. 
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All the resins were synthesized such that the final resins contained 1:1 w/w EEP: acetone (toluene) and 

experimental values of percent solids was found to lie in the range between 48-50%. The synthesized 

resins were characterized using FTIR to determine completion of the synthesis reaction. FTIR spectra of 

all the resins showed disappearance of the isocyanate peak at 2272 cm-1, confirming formation of 

isocyanate-free resins (Figure 5.2). Moreover, peaks at 910 cm-1,1050 cm-1, and 1280 cm-1 wavenumbers 

were indicative of epoxy rings, PDMS and PEG chains within the resins. Wavenumbers at 1680 cm-1 and 

1750 cm-1 indicated carbonyl bonds from the carbamate linkages (-C=O*) and isocyanurate of HDI (-

C=O**) respectively. All the synthesized resins were also characterized using 13C-NMR (Figure 5.3). Peak 

at 149 ppm was indicative of the formation of -NH-CO- linkages. Chemical shifts for C atoms at 1 ppm, 44 

and 49 ppm, and 60 ppm and 70 ppm indicated C atoms from PDMS modifier, epoxy rings, and PEG 

chains in the resins respectively. Table 5.3 shows the experimental values for EEW for all the synthesized 

AMP_GC resins. EEW of the AMP_GC resins lied in the range between 400 ± 100 g/eq. EEW values 

increased with increasing amounts and MW of PDMS and PEG components. Increasing PDMS and PEG 

content in the resins decreased the number of epoxy groups available for crosslinking.  

 

Figure 5.2. Representative FTIR spectrum for the AMP_GC resins.  
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Figure 5.3. Representative 13C-NMR spectrum for the AMP_GC resins. 

Table 5.3. Experimental EEW values for the different amphiphilic GC resins. 

Resins % PDMS and % PEG EEW (g/eq.) 

R1 
5 356.49 

10 460.65 

R2 
5 370.86 

10 471.63 

R4 5 365.98 

R6 5 435.70 

R8 2.5 335.74 

R9 2.5 354.00 

R10 2.5 401.35 

R11 2.5 425.92 

Four diamines— Ancamine 2143 and Ancamine 2432 (polyamines) and Ancamide 2634 and 

Ancamide 2767 (polyamides) were used to crosslink the synthesized AMP_GC resins. (Table 5.2). 

Formulations were made by changing epoxy: AHEW ratios as 1:1 and 1:2. All the formulations were 

cured under ambient conditions for 2 weeks. Formulations with R2_5% and R2_10% resins were 

extremely difficult to crosslink. Upon addition of the amine crosslinkers, formation of white agglomerates 

was observed in the formulation vials with the two R2 resins. But, continuously stirring the formulations 

resulted in breakdown of the agglomerates, eventually forming clear and translucent solutions in the 

formulation vials. Labels for the coatings are of the format: resin label from Table 5.1_formulation from 

Table 5.2.  
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Upon curing, the AMP_GC coatings (epoxy: AHEW = 1:1, 1:2) were characterized for their 

solvent resistance, hardness, flexibility, impact strength, and tensile strength. Dry film thicknesses of all 

the coatings lied in the range between 55 ± 15 µm. Crosshatch adhesion value of 4B-5B (best) for all the 

coatings showed that the AMP_GC coatings exhibited excellent adhesion to bare substrates. Table 5.4 

shows results obtained from mechanical characterization of the coatings. MEK double rubs > 400 were 

achieved for most of the coatings with R1, R2, R4, and R6 resins, indicating coatings with excellent 

solvent resistance. But, MEK double rub values dropped slightly for coatings with higher MW (5k-10k) 

PDMS modifier. For resins R8-R11 (PDMS = 5k-10k), coatings with Ancamine 2432 and Ancamide 2767 

showed MEK double rub between 300 to > 400. Among all the coatings, coatings with R10 resin showed 

the lowest average MEK double rub. Drop in solvent resistance of the coatings may be attributed to 

presence of comparatively higher unreacted groups within the coating matrix. Most of the cured exhibited 

good hardness, good flexibility, and impact resistance. Formulations cured using Ancamine 2143 and 

Ancamide 2634, irrespective of the resins, showed the highest König pendulum hardness, except R2 

resin. Cycloaliphatic nature of Ancamine 2143 and Ancamide 2767 provided rigidity to the formulations, 

imparting higher surface hardness (König pendulum). On the other hand, aliphatic chains of Ancamine 

2432 and Ancamide 2767 increased softness of the matrices in formulations cured using the aliphatic 

diamines. For R2_5% and R2_10% resins, Ancamide 2767 resulted in coatings with highest hardness. 

Coatings with resin R11 showed the highest average hardness of ~120 seconds, while coatings with R2 

showed lowest average hardness of ~65 seconds. R1_5%, R1_10%, and R4 coatings exhibited highest 

pencil hardness values between 6H-9H. With increasing MW of PDMS, the pencil hardness values 

dropped to 8B-4H. R2_10% showed lowest pencil hardness values of 8B with the polyamines to 4B with 

the polyamides. Unrestricted movement of monofunctional PDMS in the coating matrices may have 

allowed higher chain movement, thereby causing softening of the coatings. Elastomeric nature of the soft 

films made the films susceptible to damage by softer pencils. For coatings with R6 resin, formation of 

separate surface domains with high MW PEG-2k and PDMS-1k may be responsible for lower pencil 

hardness of the resultant coatings. Although the R6 coatings showed MEK double rubs > 400, separation 

of PEG and PDMS phases within the matrices may have made the R6 coatings susceptible to impact. 

Visually, all the coatings appeared smooth and glossy, except coatings with R6 coatings. Similarly, higher 
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EEW of R10 and R11 resins (lower reactive epoxy groups), lower MEK double rub values (more 

unreacted groups), but high König pendulum hardness depending on the amine crosslinker resulted in 

poor flexibility and poor impact strength of the cured coatings.  

Young’s modulus of coatings cured using Ancamine 2432 and Ancamide 2767 with 1:1 epoxy: 

AHEW was determined using Instron testing instrument (Figure 5.4). For resins R1_5% and R11, 

Ancamide 2767 resulted in coatings with higher modulus as compared to Ancamine 2432; for resins R4, 

R8, and R9, Ancamine 2432 coatings exhibited higher modulus compared to Ancamide 2767. R4_F2 

exhibited highest modulus of 678 MPa, while R2_10%_F2 appeared to show lowest stiffness. Stiffer 

coatings (higher modulus) showed lower elongation at break, with R11_F2 showing lowest elongation of 

0.12 mm. For coatings R1_10%_F4, R2_F2, R2_10%_F4, R6 coatings, and R10_F4, defect-free films of 

sufficient length could not be prepared. The AMP_GC formulations showed significantly higher modulus 

as compared to the commercially available silicone elastomer based FR coatings (~5 MPa).     

 

Figure 5.4. Young’s modulus and elongation at break of the AMP_GC coatings cured using Ancamine 

2432 and Ancamide 2767.  
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Table 5.4. Mechanical test results for AMP_GC coatings with epoxy: AHEW = 1:1.  

Resins Amines Labels MEK 
Double 
Rubs  

König 
Pendulum 
Hardness 

(s) 

Pencil 
Hardness 

Impact 
Strength 
(in.-lb) 

Mandrel 
Bend* 

60° 
Gloss  

 
 

R1_5% 

Anc.2143 F1 >400 115 9H >160 NF 126.33 

Anc.2432 F2 >400 84 8H >160 NF 114.00 

And.2634 F3 162 119 7H 149 NF 125.00 

And.2767 F4 >400 80 8H >160 NF 76.63  
                

 
 

R1_10% 

Anc.2143 F1 >400 118 6H >160 NF 134.33 

Anc.2432 F2 >400 104 8H >160 NF 159.00 

And.2634 F3 >400 82 7H >160 NF 149.33 

And.2767 F4 >400 109 7H >160 NF 137.33  
                

 
 

R2_5% 

Anc.2143 F1 >400 64 4H 31 Tear 142.00 

Anc.2432 F2 >400 103 3H >160 NF 134.67 

And.2634 F3 >400 93 2H >160 NF 131.33 

And.2767 F4 >400 101 2H >160 NF 107.03  
                

 
 

R2_10% 

Anc.2143 F1 60 45 8B 39 Tear 88.03 

Anc.2432 F2 48 39 8B 63 Tear 141.87 

And.2634 F3 >400 76 4B >160 NF 135.00 

And.2767 F4 >400 103 4B >160 NF 100.63  
                

 
 

R4_5% 

Anc.2143 F1 >400 118 9H 129 NF 108.33 

Anc.2432 F2 >400 84 8H >160 NF 99.90 

And.2634 F3 16 98 8H >160 NF 106.00 

And.2767 F4 >400 80 8H >160 NF 62.87  
                

 
 

R6_5% 

Anc.2143 F1 >400 91 B 70 NF 17.47 

Anc.2432 F2 >400 69 F 86 NF 25.60 

And.2634 F3 >400 74 B 12 NF 33.07 

And.2767 F4 >400 72 B >160 NF 15.63  
                

 
 

R8_2.5% 

Anc.2143 F1 300 106 F 157 NF 60.20 

Anc.2432 F2 >400 87 5H 157 NF 89.00 

And.2634 F3 300 131 4H >160 NF 93.50 

And.2767 F4 >400 91 5H >160 NF 93.60  
                

 
 

R9_2.5% 

Anc.2143 F1 >400 104 3H >160 NF 76.00 

Anc.2432 F2 >400 97 4H 149 NF 92.50 

And.2634 F3 350 115 4H >160 NF 95.50 

And.2767 F4 >400 86 4H >160 NF 90.70  
                

 
 

R10_2.5% 

Anc.2143 F1 200 95 4H 4 NF 66.50 

Anc.2432 F2 300 112 6H 98 NF 83.60 

And.2634 F3 50 97 2B 16 NF 35.70 

And.2767 F4 200 90 2B 4 NF 38.70  
                

 
 

R11_2.5% 

Anc.2143 F1 200 115 HB 12 Tear 82.50 

Anc.2432 F2 >400 110 F 31 NF 80.40 

And.2634 F3 300 133 HB 39 NF 82.70 

And.2767 F4 >400 127 B 39 NF 88.40 

*NF indicates no failure in the coating film.   
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Figure 5.5 shows DSC scans for the AMP_GC coatings with epoxy: AHEW = 1:1. Tg values for all 

the coatings was between 40-85°C. Average Tg of coatings cured using the polyamines was higher than 

the polyamide cured coatings. Among the polyamines, Ancamine 2143 resulted in coatings with higher Tg 

than Ancamine 2432; among the polyamides, Ancamide 2634 resulted in coatings with higher Tg than 

Ancamide 2767. For R1 and R2 resins, Tg values dropped by 15-20°C with increasing the amount of 

PDMS and PEG from 5% to 10%. Increasing the amount of the PDMS or PEG modifier may have allowed 

higher movement of chains within the matrix due to presence of higher concentration of soft network 

chains and dangling chain ends. 8-12°C increase in Tg for R2_5% compared to R1_5% coatings may be 

due to presence of monofunctional PDMS chains present in R2_5% coatings. DSC scans for coatings 

with resins R6 and R10, which contain difunctional PDMS = 1k and 5k respectively and monofunctional 

PEG = 2k, showed formation of crystalline phases in the bulk of the films. Melting peaks at ~50°C for all 

the coatings with R6 and R10 indicated formation of PEG rich crystalline zones after crosslinking. 

Crystallinity of the coatings was responsible for high hardness yet poor impact resistance and low gloss of 

the R6 and R10 coatings as seen from Table 5.4. Additionally, secondary transitions between 60-85°C 

were observed for R10 coatings, indicating a second transition or Tg of the R10 coatings. 

(a)                                                                             

 

Figure 5.5. Glass transition values from DSC for coatings with (a) R1_5%, R2_5%, and R4, (b) R1_10%, 

and R2_10%, (c) R8, R9, and R11, and (d) R6, and R10 resins with epoxy: AHEW = 1:1.  
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(b)                                                                            

 

(c)  

 

Figure 5.5. Glass transition values from DSC for coatings with (a) R1_5%, R2_5%, and R4, (b) R1_10%, 

and R2_10%, (c) R8, R9, and R11, and (d) R6, and R10 resins with epoxy: AHEW = 1:1 (continued).  
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(d) 

 

Figure 5.5. Glass transition values from DSC for coatings with (a) R1_5%, R2_5%, and R4, (b) R1_10%, 

and R2_10%, (c) R8, R9, and R11, and (d) R6, and R10 resins with epoxy: AHEW = 1:1 (continued).  

 

Figure 5.6 shows thermal degradation behavior of the AMP_GC coatings with epoxy: AHEW = 

1:1. For coatings with R1-R6 resins, onset of degradation (Td 5%°C) lied between 225-240°C. Increasing 

the amount of PDMS and PEG from 5% to 10% for R1 and R2 resins increased Td 5% slightly to 250°C 

(Figure 5.5(b)). But, increasing the MW of the PDMS modifier from 1k to 5k-10k resulted in drastic 

decrease in Td 5% (120-150°C) (Figure 5.5(c)). Coatings with R8, R9, and R11 also showed the highest 

initial weight loss among all the coatings, which may be attributed to presence of residual solvents in the 

coatings. A linear drop in weight with temperature between 400-475°C was observed for the R1-R6 

coatings.  
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(a)                                                                             

 

(b) 

 

Figure 5.6. TGA plots for coatings with (a) R1-R6, (b) R1_10%, and R2_10%, and (c) R8-R11 resins with 

epoxy: AHEW = 1:1.  
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(c) 

 

Figure 5.6. TGA plots for coatings with (a) R1-R6, (b) R1_10%, and R2_10%, and (c) R8-R11 resins with 

epoxy: AHEW = 1:1 (continued).  

 

Figure 5.7 shows tan delta curves for AMP_GC coatings with epoxy: AHEW = 1:1. Narrower tan 

delta peaks for most of the coatings, except R1_10% and R2_10%, indicated homogeneous nature of the 

crosslinked coatings. Minor broad peaks in the low or high temperature zones indicated presence of 

secondary softer PDMS/PEG rich phases or harder GC phases in the coatings respectively. Unlike DSC, 

for most of the resins, the polyamides resulted in coatings with slightly higher Tg values compared to the 

polyamines. Tg of the AMP_GC coatings lied in the range between 70-100°C, with coatings with R2_5% 

exhibiting highest average Tg of ~95°C, probably due to presence of PEG “bridges” in the coating 

networks. Table 5.5 shows storage modulus (E’ GPa) at 25°C and crosslink density (νe mol/L) for the 

AMP_GC coatings. Most of the coatings exhibited high E’ at 25°C and νe, except R2_10% coatings which 

showed average E’ = 0.10 GPa and average νe = ~0.47 mol/L. Monofunctional PDMS in R2 resin may 

have increased free volume in the coating networks, decreasing the density of network junctions within 

the matrix. Similarly, increase in MW of PDMS and PEG increased distance between network junctions, 

thereby increasing free volume of the crosslinked coatings and decreasing νe. Coatings with epoxy: 

AHEW = 1:2 were also analyzed using DMA (not shown here). The results showed that Tg values for 
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coatings with 1:2 ratio were 20-30°C lower than 1:1 ratio. Moreover, νe also dropped significantly with 

increasing amount of the amine crosslinkers, due to incomplete formation of coating networks. 

(a)                                                                           

 

(b)                                                                               

 

(c)   

 

Figure 5.7. Tan delta peaks and storage modulus curves for coatings with (a) R1-R4, (b) R1_10%, and 

R2_10%, (c) R8, and R9, and (d) R10, and R11 resins with epoxy: AHEW = 1:1.   

 



 

173 
 

(d)   

 

Figure 5.7. Tan delta peaks and storage modulus curves for coatings with (a) R1-R4, (b) R1_10%, and 

R2_10%, (c) R8, and R9, and (d) R10, and R11 resins with epoxy: AHEW = 1:1 (continued). 

 

Not just coatings with 1:1 ratio, coatings with 1:2 epoxy: AHEW ratio were also analyzed for 

mechanical properties and thermal behavior over the course of the study. The coatings with 1:2 ratio 

exhibited good hardness and flexibility. Theoretically, formulations with 1:2 epoxy: AHEW contain higher 

number of unreacted amines in the matrix due to presence of higher amine concentration. Significantly 

low gloss of the coatings with 1:2 ratio may be attributed to due to amine blush from unreacted amines. 

Analysis with DSC and DMA showed significant decrease (~15°C) in Tg values with increasing amine 

content for the coatings with 1:2 ratio. Theoretically, coatings with epoxy: AHEW = 1:1 are devoid of 

unreacted epoxy or amine functional groups. At 1:1 ratio, the coatings form a tightly crosslinked network 

of chains, which results in lowering of movement of the network chains. Therefore, higher temperature is 

required for movement of chains in 1:1 coatings as compared to coatings with 1:2. Due to superior overall 

performance (mechanical properties, thermal behavior, and appearance) of AMP_GC coatings with 

epoxy: AHEW = 1:1 as compared to 1:2, all further experiments were conducted on AMP_GC coatings 

with 1:1 ratio.  
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Table 5.5. Tg and crosslink density of AMP_GC coatings with epoxy: AHEW = 1:1 from DMA.  

Resins Amines Formulations E' at 25°C 
(GPa) 

Tg (°C) νₑ (mol/L) 

R1_5% 

Anc.2143 F1 1.38 74.34 1.73 

Anc.2432 F2 1.34 72.71 1.81 

And.2634 F3 1.01 83.85 1.05 

And.2767 F4 1.04 81.28 1.50       

R1_10% 

Anc.2143 F1 0.94 81.17 1.17 

Anc.2432 F2 0.70 58.25 0.54 

And.2634 F3 0.51 61.28 0.41 

And.2767 F4 0.41 62.03 0.31       

R2_5% 

Anc.2143 F1 0.55 94.01 1.08 

Anc.2432 F2 0.42 98.28 0.93 

And.2634 F3 0.80 92.70 0.77 

And.2767 F4 0.64 96.64 0.90       

R2_10% 

Anc.2143 F1 0.08 92.97 0.21 
Anc.2432 F2 0.12 91.29 0.45 
And.2634 F3 0.07 96.28 0.41 
And.2767 F4 0.08 94.01 0.57       

R4_5% 

Anc.2143 F1 1.07 74.67 1.37 

Anc.2432 F2 1.68 78.93 1.74 

And.2634 F3 1.76 81.56 1.13 

And.2767 F4 1.26 89.01 1.26       

R8_2.5% 

Anc.2143 F1 0.66 81.67 0.98 

Anc.2432 F2 0.83 78.90 1.40 

And.2634 F3 1.14 86.46 0.94 

And.2767 F4 1.10 86.21 0.50       

R9_2.5% 

Anc.2143 F1 0.59 82.68 0.30 

Anc.2432 F2* 1.33 81.67 0.60 

And.2634 F3 1.28 87.97 1.23 

And.2767 F4 0.86 89.23 0.48       

R10_2.5% 

Anc.2143 F1 1.30 88.98 0.75 

Anc.2432 F2 0.96 89.98 1.07 

And.2634 F3** - - - 

And.2767 F4 1.04 98.04 0.31       

R11_2.5% 

Anc.2143 F1 0.46 82.18 0.48 

Anc.2432 F2 0.71 80.37 0.19 

And.2634 F3 0.69 88.22 0.65 

And.2767 F4 0.59 92.25 0.45 

*R9_2.5%_F2 failed above Tg. **R10_2.5%_F3 and all formulations using R6 could not be analyzed using 

DMA due to crystalline nature of the coatings.  

 

Prior to biological FR tests and surface analysis experiments, the AMP_GC coatings were placed 

in circulating water tank for 42 days to remove impurities, catalyst, and unreacted monomers. After 42 

days, the AMP_GC coatings were analyzed using contact angle experiment. Figure 5.8 shows dynamic 

changes in WCA values for water leached AMP_GC coatings. Dynamic changes in WCA values were 

indicative of rearrangement of PEG chains on the surfaces upon contact with water. Coatings cured using 
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Ancamine 2143 and Ancamide 2634 (potentially similar cycloaliphatic structure) generally showed higher 

initial WCA values as compared to Ancamine 2432 and Ancamide 2767 (potentially similar aliphatic 

structure) coatings respectively, indicating dependence of WCA of the coatings on the structure of the 

amine crosslinker for the same amphiphilic resin. Although WCA > 90° at 0 minutes for most of the 

formulations, some formulations like R6_5%_F2 showed WCA < 90° at 0 minutes, indicating hydrophilic 

nature of the coatings even before contact with water. Formulations with R6, R8, and R9 showed fastest 

change in WCA, with 15-20° drop in values every 10 minutes. Among all the formulations, R10_F2 and 

R10_F3 showed highest initial WCA of 120°, while lowest initial WCA of 60° was observed for R6_F3 

coating. Absorption of water droplet was observed on R6 coatings due to presence of PEG-2k chains. 

Slow rearrangement of water on R11_F4 coatings resulted in evaporation of water, resulting in decrease 

in size of the droplet. WCA value for such formulations with absorption and evaporation were not 

measured.  

(a)                                                                              (d) 

   

Figure 5.8. Dynamic changes in WCA for coatings with (a) R1_5% and R2_5%, (b) R4 and R6, (c) R10 

and R11, (d) R1_10% and R2_10%, and (e) R8 and R9 resins. “x” indicates measurement of WCA was 

excluded due to significant change in droplet size (evaporation or absorption into the coatings). WCA 

measurements were not conducted on R2_5%_F1 and R2_10%_F1 coatings due to delamination and 

severe surface defects after water leaching.   
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(b)                                                           (e) 

  

(c) 

 

Figure 5.8. Dynamic changes in WCA for coatings with (a) R1_5% and R2_5%, (b) R4 and R6, (c) R10 

and R11, (d) R1_10% and R2_10%, and (e) R8 and R9 resins (continued). “x” indicates measurement of 

WCA was excluded due to significant change in droplet size (evaporation or absorption into the coatings). 

WCA measurements were not conducted on R2_5%_F1 and R2_10%_F1 coatings due to delamination 

and severe surface defects after water leaching.  

 

The pre-leached AMP_GC coatings were characterized for their FR performance against 

diatoms, biofilm, microalgae, mussels, and barnacles. FR performance of the AMP_GC coatings was 

compared to the commercial standards, I-700, I-900, 1100SR, T2, and PU (no siloxane). Figure 5.9 

shows biofilm C.lytica attachment and removal from the AMP_GC coatings. In general, attachment of 

biofilm C.lytica on the AMP_GC coatings, T2, and PU was lower than I-700, I-900, and 1100SR (Figure 

5.9(a)). Among the AMP_GC coatings, coatings with R8-R11 resins (PDMS= 5k-10k) showed ~40% lower 

attachment of C.lytica as compared to R1-R4 (PDMS-1k) coatings. Changing functionality of PDMS and 

PEG chains (R1 and R2 resins) did not show any significant change in biofilm attachment. Water 

pressure of 20 psi facilitated higher removal of the biofilm as compared to 10 psi (Figure 5.9(b)). Only 60-
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65% biofilm was removed from the surfaces of most of the AMP_GC coatings and the commercial 

standards, except 1100SR which showed ~98% removal at 20 psi. Coatings R1_5%_F4, R10_F4, and all 

coatings with resin R1_10% showed lowest removal of the biofilm of ~40%. Coatings R1_5%_F2 and 

R4_5%_F2 were severely cracked during the course of the experiment, while R6_5% coatings could not 

be analyzed due to severe cracking of the coatings and absorption of the crystal violet into the coatings.  

(a)                                                                     

 

(b) 

 

Figure 5.9. Bacterial biofilm C.lytica (a) attachment and (b) removal at 10 psi and 20 psi water jet 
pressures.  



 

178 
 

Figure 5.10 shows results for attachment and removal of diatom N.incerta from the AMP_GC 

coatings and the commercial standards at 20 psi waterjet pressure respectively. 10 psi water pressure 

could not facilitate sufficient removal of the diatoms from the commercial coatings. Diatom N.incerta 

attachment onto the AMP_GC coatings and most of the commercial coatings was significantly higher than 

1100SR coating. In increasing order of diatom attachment: 1100SR < R1_10%, R2_10% < R6-R11 < 

R1_5%, R2_5%, R4, I-700, I-900, T2, and PU. Increasing amounts of PDMS and PEG from 5% to 10% 

appeared to provide a good balance between hydrophobicity and hydrophilicity, thereby decreasing 

N.incerta attachment. Among all the AMP_GC formulations, R6_F4 coatings showed lowest attachment 

of the diatoms. Most of the AMP_GC coatings facilitated higher removal of N.incerta as compared to the 

commercial standards (Figure 5.9(b)). Most of the coatings, except formulations with R1_5% and R2_5% 

resins (55-98% removal), showed diatom removal between 85-~100%. Coatings with R11 showed 

comparatively lower removal probably due to presence of higher MW PDMS chains (10k). The 

commercial coatings facilitated between 45-85% removal of the diatoms, with I-900 showing highest 

removal of ~85%.  

(a)                                                                      

 

Figure 5.10. Diatom N.incerta (a) attachment and (b) removal at 20 psi water jet pressure.  
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(b) 

 

Figure 5.10. Diatom N.incerta (a) attachment and (b) removal at 20 psi water jet pressure (continued).  
 
 For FR tests with microalgae, mussels and barnacles, select AMP_GC formulations were chosen 

based on their performance against biofilm and diatoms, relative toxicity, and appearance. Figure 5.11 

shows microalgae U.linza attachment and removal from the select AMP_GC coatings. In this experiment, 

only T2 and polystyrene (PS) were used as standards. Although most of the AMP_GC formulations 

showed microalgae attachment similar to T2 and PS, formulations R4_F4, R6_F4, and R1_10%_F4 

showed 40-50% lower microalgae attachment, while attachment on R11_F2 coating was slightly higher 

than T2. Water pressure of 110 kPa facilitated highest microalgae removal for all the samples. But, the 

AMP_GC formulations could not facilitate more than 50% microalgae removal. Among the AMP_GC 

formulations, R6_F4 coating showed best FR performance against microalgae— lower attachment 

among all the samples and highest removal among AMP_GC formulations (~50%), while other 

formulations showed between 15-40% microalgae removal even at 110 kPa. PS showed ~30% removal, 

while the commercial T2 showed highest removal of 80% among all the coatings.  
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(a)                                                                            

 

(b) 

 

Figure 5.11. Microalgae U.linza (a) attachment and (b) removal at 18, 67, and 110 kPa water pressures.  
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Figure 5.12 shows mussel adhesion on select AMP_GC coatings and the commercial coatings. 

Mussel adhesion on the AMP_GC coatings varied from 15 N to 45 N. Among all the AMP_GC coatings, 

R1_10%_F2 showed the best performance, with average adhesion force of 15 N for 5 out of 6 mussels 

that attached to the coating during experimentation. The results also showed that mussel attachment 

strengths increased with increasing MW of PDMS from 1k for R1_F2 formulation to 5k for R10_F2 

formulation. Further increasing the MW of PDMS to 10k (R11_F2) resulted in a drop in adhesion strength. 

Increasing the amounts of PDMS and PEG from 5% to 10% for R1 and R2 resins resulted in decrease in 

mussel adhesion. I-700 and PU showed attachment strength in the range from 20-25 N. I-900 and 

1100SR coatings successfully deterred attachment of all mussels.  

 

Figure 5.12. Mussel Geukensia demissa attachment on the select AMP_GC coatings. Numbers above 

data points indicate the number of mussels out of 6 that attached to the coatings during the experiment. 

None of the mussels attached to I-900 and 1100SR standards.  

 

Figure 5.13 shows results for barnacle adhesion on select AMP_GC coatings as compared to the 

commercial standards. Overall, barnacles A.amphitrite attached strongly onto the select AMP_GC 

coatings as compared to the commercial standards. All 6 barnacles immobilized onto each coating during 

experimentation attached onto the select AMP_GC coatings. For the AMP_GC coatings, barnacle 

adhesion strength was in the range from 0.18-0.45 MPa, which was significantly higher than the 

commercial coatings (0.10-0.25 MPa). For R8_F2 formulation, adhesion force of the barnacles was the 
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lowest at 0.18 MPa, but 2 barnacle bases broke during experimentation. Coating R4_F2 showed the 

poorest barnacle release, with 5 out of 6 barnacles breaking during the experiment. Conversely, only 4-5 

barnacles attached onto the Intersleek coating samples and a low force of removal was required for 

removal of the attached barnacles. Increasing the MW of PDMS chains from 1k (R1-R6 resins) to 5k (R8 

resin) reduced the adhesion. But, attempts to increase the MW of PDMS to 10k (R11_F2) or increase 

PDMS and PEG content (R1_10% and R2_10%) further facilitated adhesion of the barnacles. 

 

Figure 5.13. Adult barnacle A.amphitrite adhesion on the select AMP_GC coatings. Ratios above each 

data point are of the format the number of barnacles that attached to the coatings to the number of 

barnacles that broke during experimentation.  

 

Surface analysis techniques— ATR-FTIR, AFM, and XPS— were used to correlate surface 

chemistry and FR behavior of the AMP_GC coatings. Figure 5.14 shows comparison between ATR-FTIR 

spectra of select AMP_GC coatings. The AMP_GC surfaces showed similar spectra, comprising of PDMS 

and PEG components. Minor peak at ~915 cm-1 indicated presence of some unreacted epoxy groups for 

coatings with R1_5%, R1_10%, R6_5%, and R10_2.5% resins. Further, intensity of -NH- peak at 3300 

cm-1 and -C=O peak at 1658 cm-1 was slightly higher for coatings with R2_5% and R2_10% resins as 

compared to the other formulations, indicating slightly higher concentration of carbamate groups on the 

coating surfaces.  
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Figure 5.14. ATR-FTIR spectra for the AMP_GC coatings.  

 

Figure 5.15 shows AFM scans for select AMP_GC coatings. Visually, the AMP_GC coatings 

appeared smooth and uniform, except formulations with R6 resin. But, analyzing the coatings using AFM 

showed different topographies present on the coating surfaces. R1 and R2 resins with 10% PDMS-1k and 

PEG components showed surfaces with roughness gradients. Increasing the MW of PDMS to 5k resulted 

in formation of “pores” for R8-R10 resins, which disappeared when MW of PDMS was increased to 10k 

(R11 resin). Coatings with R6 resin exhibited extremely high roughness, similar to surface of an 

unpolished quartz crystal, presumably due to presence of crystalline phases in the R6 coatings. High 

surface gradients combined with sticky PDMS components on the R6 coating surfaces complicated 

surface scans in tapping AFM mode. 

 

Figure 5.15. 20 µm x 20 µm AFM scans for select AMP_GC coatings.  
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 Table 5.6 and Figure 5.16 shows atom composition and individual peaks for O1s and C1s with 

curve fitting for select AMP_GC coating surfaces as determined using XPS. The results from XPS 

showed that the coating surfaces comprised of both PEG and PDMS components. 4-10% N1s peaks 

were also observed on the surfaces, with R6_F2 showing highest %N of 9.71%. Peaks at ~532, 531.48, 

and 533.27 eV were indicative of three different states of O1s— siloxane, C-O-C/C-O-H linkages, and 

carbamate (urethane) linkages respectively. Similarly, peaks at ~284.20, 285.90-286.18, and 288.83-

289.14 eV indicated three chemical states of C1s— C-C/C-H, C-O/C-N, and carbamate/urethane linkages 

respectively. Formulations R1_10%_F2 and R6_F2 showed ~24% PEG as observed from atom % of C-

O-C state, while concentration of PDMS on the two formulations lied between 13-15%. On the other 

hand, R2_10%_F2 comprised of higher PDMS content (14.57%) as compared to PEG (11.40%). This 

difference in surface chemistries was also observed from the difference in peaks of the individual 

elements as seen in Figure 5.15. Higher C-O peaks from C1s spectra for R1_10%_F2 and R6_F2 

indicated higher concentration of PEG on the coating surfaces. Even after surface cleaning, ~1% 

impurities were observed on the on the coating surfaces.  

Table 5.6. Chemical composition of the select AMP_GC coatings. 

Formulations Chemical states Binding energies 
(eV) 

Atom % 

 
 
 

R1_10%_F2 

 
O1s 

Si-O-Si  532.00 15.92 

C-O 531.23 8.07 

C=O 533.27 1.9 

 
C1s 

C-C/C-H 284.22 36.41 

C-O/C-N 285.92 24.96 

C=O 288.83 2.62 

N1s Total 399.20 5.68 

 
 
 

R2_10%_F2 

 
O1s 

Si-O-Si  532.00 14.57 

C-O 531.48 10.03 

C=O 533.27 2.70 

 
C1s 

C-C/C-H 284.29 51.18 

C-O/C-N 286.24 11.40 

C=O 288.83 1.93 

N1s Total 399.18 4.28 

 
 
 

R6_F2 

 
O1s 

Si-O-Si  532.00 13.84 

C-O 531.23 5.59 

C=O 533.27 3.55 

 
C1s 

C-C/C-H 284.45 35.94 

C-O/C-N 285.99 24.78 

C=O 289.08 6.59 

N1s Total 399.98 9.71 
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(a)  

 

(b) 

 

(c)  

 

Figure 5.16. High resolution with peak fitting from XPS for (a) R1_10%_F2, (b) R2_10%_F2, and (c) 

R6_5%_F2 coatings. O-Fx, M-O, and C-F indicate surface impurities.  
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In this study, amphiphilic surfaces showing a combination of different polymer architectures were 

explored as potential FR coatings. Presence of PDMS and PEG chains in the coatings was expected to 

create “ambiguous” surfaces, disallowing fouling organisms from attaching onto the coatings. Analysis of 

AMP_GC coatings using contact angle experiment showed dynamic changes in WCA, indicating 

rearrangement of PEG chains on the surface of the coatings. Results from XPS showed that freedom of 

movement of “combs”, irrespective of polarity, allowed them to saturate the coating surfaces, while 

minimal separation of “bridges” was possible due to restricted chain movements within the coating 

matrices. FR results showed that diatom attachment varied with change in both MW and amounts of 

PDMS or PEG components, but, generally PEG rich surfaces could easily facilitate removal of diatoms. 

For mussels, strength of mussel adhesion appeared to be a function of PDMS and PEG content rather 

than the MW, although the difference wasn’t significant. Against microalgae and barnacles, extent of 

hydrophobic character of the coatings determined their FR behavior. Therefore, R11_F2 coating with 10k 

MW PDMS showed best barnacle removal performance among all the AMP_GC coatings, with only 1 

barnacle base breaking during experimentation. But, presence of PEG chains allowed stronger binding of 

adhesives secreted by the foulants, increasing adhesion with the underlying substrates. In spite of that, 

interesting FR results against microalgae and barnacles for R6 and R10 formulations may be attributed to 

presence of crystalline zones present in the coatings. Reduction in entropy during crosslinking, long chain 

length of PEG-2k, inter- and intrachain interactions of PEG combs and hydrogen bonding are responsible 

for formation of PEG crystals in R6 and R10 coatings. PEG content on R6 coating surface was higher 

than PDMS concentration as observed using XPS. Adhesion of fouling organisms is believed to initiate 

with secretion of complex proteinaceous adhesives.2 In this case, PEG rich crystals may have stopped 

the adhesives from the microalgae and the barnacles from completely penetrating into the PEG rich 

zones. Moreover, crystallization may have slightly enhanced protein resistance of the surfaces, thereby 

decreasing stronger surface-organism interactions. Therefore, PEG crystals combined with 1k-5k MW 

PDMS may have been responsible for highest microalgae removal (40-50%) from R6 and R10 coatings 

among all the AMP_GC formulations and breaking of only 1 barnacle base from the R6 coating in spite of 

presence of high MW PEG. Dominant hydrophilic character of the AMP_GC coatings combined with 
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presence of nano roughness and nanopores on the coating surfaces (from AFM) resulted in subpar 

performance of the coatings as compared to the commercial standards. 

Conclusions 

Novel isocyanate-free amphiphilic glycidyl carbamate (AMP_GC) coatings were explored as 

viable FR surfaces for marine applications. A variety of AMP_GC resins were synthesized using 

isocyanurate of HDI, glycidol, PDMS, and PEG. The functionality, MW, and amounts of PDMS and PEG 

components were varied to make the different AMP_GC resins. Polyamines, Ancamine 2143 and 

Ancamine 2432, and polyamides, Ancamide 2634 and Ancamide 2767, were used to cure the resins at 

RT with epoxy: AHEW ratios of 1:1 and 1:2. In spite of the presence of polar (GC, PEG) and non-polar 

(PDMS) components within the resins, visually, most of the cured coatings, except coatings with R6 resin, 

appeared smooth, uniform, and glossy. Mechanical tests showed that most of the AMP_GC coatings 

exhibited good hardness, flexibility, impact strength, and solvent resistance. Analysis of the coatings with 

DSC showed that the AMP_GC coatings exhibited high Tg values— R2_5% coatings showing the highest 

average Tg value, while the R2_10% coatings exhibiting lowest average Tg values. Melting peaks in DSC 

scans for coatings with R6 and R10 resins indicated formation of PEG rich crystalline domains, due to 

thermodynamically and kinetically favorable crystallization conditions present during curing of the two 

resins. With DSC, the polyamines resulted in coatings with higher Tg as compared to coatings with the 

polyamides; coatings with Ancamine 2143 and Ancamide 2634 resulted in higher Tg than Ancamine 2432 

and Ancamide 2767 respectively. Conversely, DMA showed that Tg of the polyamide cured coatings (Tg 

with Ancamide 2767 > Ancamide 2634) was higher than the polyamine cured coatings (Tg with Ancamine 

2432 > Ancamine 2143). Average values of crosslink density decreased with increase in the MW and the 

amounts of PDMS and PEG modifiers, with coatings with R2_10% exhibiting lowest crosslink density. Td 

5% for all coatings with resins R1-R6, as observed from TGA, lied in the range from 225-250°C. But, 

further increasing the MW of PDMS to 5k-10k (resins R8-R11) resulted in drastic drop in Td 5% (130-

150°C). Characterization of the AMP_GC coatings using ATR-FTIR showed presence of PDMS and PEG 

on the surface of the coatings. Slightly higher intensities of -NH- and -C=O peaks for R2_5% and 

R2_10% coatings indicated possibly higher concentration of GC matrix on the surface of the coatings with 

R2 resin. Dynamic changes in WCA were observed indicating rearrangement of the surfaces with 
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changing environment. AFM showed formation of coatings with roughness gradients and nanopores. XPS 

analysis showed that the coating surfaces comprised of higher concentration of “combs” than “bridges”, 

irrespective of polarity, due to higher freedom of movement of the comb-like chains.  

Evaluation of FR performance showed that the AMP_GC coatings showed lower attachment of 

biofilm as compared to the commercial FR coatings. But, the AMP_GC coatings facilitated only 60-65% 

removal of the biofilm at 20 psi as opposed to ~98% removal from 1100SR coating. Diatom attachment 

on the AMP_GC coatings was higher than 1100SR coatings. Most of the AMP_GC coatings showed 

higher removal of diatoms (~98%) compared to the commercial standards. Against microalgae, coatings 

with R6 and R10 resins showed best FR performance— lower attachment than T2 and PS and 40-50% 

removal (highest among AMP_GC formulations). The AMP_GC coatings exhibited poor FR performance 

against barnacles and mussels as compared to the commercial standards. Mussel adhesion strength lied 

between 10-25 N for the AMP_GC coatings. R1_10%_F2 showed lowest average adhesion strength of 

~15 N for 5 out of 6 attached mussels. Against barnacles, force of barnacle removal was in the range 

from 0.25-0.65 MPa; R11_F2 showed the best barnacle removal among all the AMP_GC coatings, with 

removal force of 0.31 MPa and only 1 barnacle breaking during the experiment. In spite of presence of 

high MW PEG chains in the coatings with R6 and R10, comparatively decent FR performance of the 

coatings against microalgae and barnacles may be attributed to presence of crystalline zones in the 

coatings. The PEG crystals may have reduced penetration of adhesives into the coating surfaces, 

reducing adhesion strength of the fouling organism. The above study provided insights into correlation 

between biofouling and functionality/MW/amounts of PDMS and PEG components— biofilm attachment 

reduced with increasing MW of PDMS; diatom attachment reduced with increasing MW and amount of 

both PDMS and PEG chains; barnacle adhesion was higher for surfaces with monofunctional PDMS than 

difunctional PDMS.  
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CHAPTER 6. SUMMARY AND FUTURE WORK  

Previously developed, self-stratified siloxane-polyurethane coatings (SiPU) were made using 

isocyanate, 50% acrylic polyol in toluene, 20k MW aminopropyl terminated polydimethylsiloxane (APT-

PDMS), and catalyst. The amount of APT-PDMS was maintained at 20% by weight acrylic polyol. Two 

different Scotch Brite pads of varying roughness, SP and GP, were used to abrade the cured SiPU 

coatings. Number of abrasions with each pad was also varied. Evaluation of FR performance of the 

abraded coatings showed that FR performance against diatoms deteriorated with increasing roughness of 

the coatings. But interestingly, the FR performance of the coatings against biofilm, microalgae, barnacles, 

and mussels improved with increasing roughness. Determination of the dimensions of the abrasions or 

surface features showed that SiPU coatings abraded with SP resulted in formation of surface features 

with sizes significantly larger than the size of the fouling organisms. On the other hand, coatings abraded 

using GP resulted in features less than the size of the fouling organisms. Therefore, FR performance of 

the abraded coatings was enhanced by introduction of surface features that made the coatings potentially 

less conducive for growth and metamorphosis of the organisms. WCA value remained greater than 90°, 

indicating hydrophobic nature of the abraded coatings. XPS analysis of the abraded coatings indicated 

presence of APT-PDMS on the coating surfaces even after abrasions. Although smooth, unabraded 

standards were used to compare FR performance of the abraded SiPU coatings, future experiments can 

be conducted by abrading the commercial standards and studying the change in FR performance of the 

coatings. The commercial standards may not be able to withstand surface abrasions due to their soft, 

elastomeric nature. Another study involving multidirectional abrasions can be conducted to better 

simulate coating damage in practical applications.    

 In the second part, glycidyl carbamate (GC) technologies were explored as “safer” isocyanate-

free alternatives for conventional polyurethanes to make self-stratified FR coatings. In this project, GC 

coatings with different surface chemistries were made by modifying the resin with siloxanes and 

polyethylene glycols. The MW, the functionality, and the amount of modifiers, along with type and amount 

of amine crosslinkers and curing schedules were varied to understand effect of these variables on coating 

properties and FR performance.    
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 Hydrophobic GC coatings were made using dicarbinol terminated PDMS modified GC resin 

(IGC_PDMS), amine crosslinkers with varying structures and reactivities, and APT-PDMS. APT-PDMS 

content of the formulations was varied to increase hydrophobicity of the coatings. Diamines, PACM, 

Ancamine 2143, Ancamine 2432, Ancamide 2634, and Ancamide 2767, were used to crosslink the resin 

in 1:1, 1:2, and 2:1 epoxy: AHEW ratios. Results from mechanical tests showed that the coatings could 

be completely cured even at room temperature. Among the different amine crosslinkers, coatings cured 

using polyamides showed poorest overall performance and appearance. On the other hand, coatings 

cured at elevated temperature appeared smooth and uniform and showed the best overall performance. 

Results from DSC and DMA showed that Ancamine 2143 crosslinker resulted in coatings with highest Tg, 

while coatings cured using Ancamine 2432 exhibited the lowest Tg. Onset of degradation for all the 

coatings was observed between 250-265°C. Although tan delta peaks for most of the coatings appeared 

narrow and uniform, presence of secondary peaks in tan delta peaks of some formulations indicated 

formation of heterogeneous coating networks. Characterization techniques such as contact angle, ATR-

FTIR, AFM, and XPS were utilized to understand the surface chemistry of the coatings after curing. 

Hydrophobic nature of all the coatings was observed from WCA values > 90°. Increasing APT-PDMS 

content in the formulations resulted in increase in WCA and drop in surface energy of the coatings. 

Highest WCA of 118° and lowest SE of 10.5 mN/m was obtained for PACM_1:1_F20 and 

PACM_1:1_F30. ATR-FTIR showed presence of PDMS on the surface of all the coatings. FTIR analysis 

of “oil” from the surface of the PACM cured coatings with APT-PDMS content > 15% indicated presence 

of unreacted APT-PDMS chains in the coatings. AFM analysis showed that although the coating surfaces 

smoothened with addition of APT-PDMS, increasing APT-PDMS also resulted in formation of “pores” on 

the coating surfaces. Analysis of coatings using XPS showed higher concentration of PDMS on surfaces 

of Ancamine 2432 cured coatings as compared to PACM cured coatings, probably due to movement of 

the unbound APT-PDMS chains at higher APT-PDMS content.  

FR results for the IGC_PDMS coatings against diatoms showed that higher APT-PDMS content 

with PACM cured formulations facilitated diatom removal; the PACM cured coatings successfully deterred 

attachment of the diatoms and showed 75-90% removal with APT-PDMS content between 10-30%. But, 

Ancamine 2432 cured coatings showed lower removal of the diatoms with increasing APT-PDMS content. 
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This unusual behavior of the PACM cured coatings was attributed to presence of unbound APT-PDMS 

chains that may have exposed the GC matrix to the diatoms. The IGC_PDMS coatings showed poor 

removal of the biofilm as compared to the commercial standards. Among the IGC_PDMS coatings, 

Ancamine 2432 resulted in coatings with lower biofilm attachment as compared to the PACM cured 

coatings. In spite of the highly hydrophobic nature of the IGC_PDMS coatings, the formulations could not 

facilitate removal of the microalgae, with the IGC_PDMS coatings showing 5-20% removal as against 70-

80% removal from 1100SR and T2 standards. The IGC_PDMS coatings showed poor overall FR 

performance against mussels and barnacles. Among the IGC_PDMS coatings, PACM_1:1_Fx allowed 

lower attachment strength of the mussels compared to 2432_1:1_Fx coatings; PACM_1:1_F10 showed 

the best performance, with 4 out of 6 mussels requiring removal force of ~10 N. Similarly, PACM_1:1_Fx 

coatings showed lower barnacle adhesion force compared to 2432_1:1_Fx coatings. For PACM_1:1_Fx 

coatings, barnacle adhesion strength decreased with increasing APT-PDMS content, but the reverse was 

true for the coatings cured using Ancamine 2432.  

Isocyanate-free amphiphilic GC coatings with different molecular architectures were explored for 

use as FR coatings. In the first approach, amphiphilic coatings were made using difunctional PDMS and 

PEG components such that the resultant coatings formed ambiguous PDMS and PEG rich domains on 

the surfaces. Amine terminated PEGs (Jeffamines) with MW = 900 and 2003 g/mol, J900 and J2003 

respectively, were incorporated as co-crosslinkers in formulations with the hydrophobic IGC_PDMS resin 

to impart hydrophilicity to the coatings. Formulations were made by varying the amounts of the co-

crosslinkers as, 5, 10, 15, and 20% resin solids. For formulations with 15 and 20% hydrophilic co-

crosslinkers, additional APT-PDMS was added to the formulations to balance amphiphilicity of the 

coatings. Diamines, PACM, Ancamine 2143, and Ancamine 2432, were used as primary crosslinkers in 

1:1 epoxy: AHEW ratio. As compared to the hydrophobic IGC_PDMS coatings, lower solvent resistance 

of the Jeffamine formulations indicated interference of hydrophilic and hydrophobic components in the 

formulations in network formation. Among the Jeffamine formulations, coatings with PACM exhibited 

highest pendulum hardness, while the Ancamine 2432 cured coatings showed lowest pendulum 

hardness. Lower impact resistance of most of the coatings can be attributed to their high hardness. Onset 

of thermal degradation of all the coatings was observed between 250-265°C. Coatings with Ancamine 
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2143 exhibited highest Tg among all the formulations as observed from DSC. Formulations with J2003 co-

crosslinker showed higher Tg compared to J900. Heterogeneity of some Jeffamine coatings was observed 

from presence of secondary tan delta peaks as seen from DMA. Measurement of WCA showed dynamic 

changes in WCA, indicating rearrangement of surface chains. ATR-FTIR showed presence of both PDMS 

and PEG chains on the coating surfaces. Diatom attachment on the Jeffamine coatings was higher than 

the commercial standards. But, formulations cured using Ancamine 2432 facilitated diatom removal as 

compared to PACM cured coatings. Decrease in diatom removal with increasing J900 or J2003 content 

may be attributed to presence of APT-PDMS in formulations with higher J900 or J2003 content. Biofilm 

attachment onto the Jeffamine coatings was lower than the commercial standards, but the coatings could 

not facilitate removal of biofilm. Although some of the coatings successfully deterred attachment of 

mussels, the Jeffamine coatings showed stronger attachment of mussels and barnacles as compared to 

the commercial standards, like 1100SR. Analysis of the coatings with XPS showed that concentration of 

PEG was significantly higher than PDMS, which may have resulted in poor FR performance of the 

Jeffamine coatings.  

In the second approach, a number of amphiphilic resins were synthesized using HDI trimer, 

glycidol, and monofunctional and difunctional PDMS and PEG. The amount and MW of the PDMS and 

PEG modifiers was varied. It was anticipated that the monofunctional component will provide comb-like 

dangling chains, while the difunctional component will form surface domains in the final amphiphilic 

coatings. The resins were cured using different amine crosslinkers— Ancamine 2143, Ancamine 2432, 

Ancamide 2634, and Ancamide 2767— in 1:1 and 1:2 epoxy: AHEW ratios. Most of the cured coatings 

showed excellent solvent resistance, hardness, flexibility, and impact resistance. In spite of the presence 

of PDMS and PEG chains within the resins, the coatings appeared uniform and glossy even after curing 

under ambient conditions. All the coatings showed high Tg, as observed using DSC and DMA. Melting 

peaks at ~50°C were observed for coatings with 2k g/mol MW PEG, indicating formation of crystalline 

phases in the films during crosslinking. Similar to the other GC coatings, some of the amphiphilic coatings 

also showed presence of secondary phases in the matrix. Onset of thermal degradation for all coatings 

was observed between 120-250°C, with degradation temperature decreasing with increasing MW of 

PDMS chains. Similar to the Jeffamine coatings, the AMP_GC coatings also showed a dynamic change 
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in WCA, indicating rearrangement of PEG chains on the coating surfaces. ATR-FTIR showed presence of 

PEG and PDMS chains on the surface of the coatings. XPS analysis showed higher concentration of the 

monofunctional component (PEG or PDMS) as compared to the difunctional chains; since most 

formulations contained monofunctional PEG, the AMP_GC surfaces exhibited higher concentration of 

PEG than PDMS. FR test against biofilm showed that AMP_GC coatings with higher MW PDMS showed 

lowest biofilm attachment among all the coatings (the commercial standards and AMP_GC coatings). But, 

the AMP_GC formulations could not facilitate removal of the biofilm. AMP_GC coatings with higher MW 

PDMS showed lower attachment of diatoms as compared to the commercial standards and > 80% 

removal of diatoms. Most of the AMP_GC coatings allowed microalgae to attach strongly onto the 

surfaces and could facilitate more than 5-50% removal of the microalgae only. Interestingly, formulations 

with PDMS = 1k, 5k and PEG-2k showed lowest algal attachment among all the coatings (the commercial 

standards and AMP_GC coatings) and highest removal among all the coatings. Hard foulants, mussels 

and barnacles, attached strongly on the AMP_GC coatings as compared to the commercial standards. 

Coatings with 10k PDMS and 10% 1k MW PDMS showed lowest mussel attachment strength among the 

AMP_GC formulations. All the AMP_GC coatings caused breaking of barnacle bases, indicating strong 

attachment of barnacles to the coatings. Although force of barnacle removal was higher than the 

commercial standards, breaking of only one barnacle base and higher release of microalgae from 

formulations with PEG-2k as compared to other AMP_GC formulations provided insights into potentially 

incorporating crystalline phases in coating networks to reduce biofouling.  

In spite of the subpar FR performance of the IGC_PDMS coatings as compared to the 

commercial standards, the coatings showed potential for use in marine applications with proper tuning of 

formulation variables like, MW of PDMS and PEG chains, solvent selection, and amine crosslinkers. 

Versatility of GC systems allows convenient combination of GC with polymer additives. As the additives 

diffuse to the surface over time, the change in surface chemistry of the coatings will affect the FR 

performance of the coatings. Different additives with different components (PDMS, PEG, zwitterionic 

chains), MW, and architectures can be easily synthesized using controlled radical polymerization 

techniques like Reversible Addition-Fragmentation Chain Transfer (RAFT) and ATRP. FR performance of 

the coatings can be easily altered by varying concentration of such additives in the coating formulations. 


