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ABSTRACT 

Over the last two centuries >50% of North American wetlands have been drained for 

agricultural production. Consequently, wildlife that depend on wetlands are declining and are of 

high conservation concern. The Prairie Pothole Region (PPR) of North America is considered 

one of the most important wetland regions in the world. It has been estimated that approximately 

only 35% of the wetland area remains in the PPR, yet it is still a stronghold for many wetland 

organisms and provides habitat for >100 wetland-dependent birds. We investigated habitat 

selection and abundance of marshbirds across multiple scales during the 2016-2017 breeding 

seasons. We found multiple scales to affect marshbird species abundance, and densities estimates 

that were amongst the highest reported in the PPR. Overall, this information provides a baseline 

for species with previously unknown densities in this region that will improve our ability to 

conserve marshbirds in the Northern Great Plains.  
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CHAPTER 1. DENSITY AND ABUNDANCE OF SECRETIVE MARSHBIRDS IN 

NORTH DAKOTA 

Introduction 

Human land use change has led to losses in biodiversity worldwide (Foley et al. 2005, 

Butchart et al. 2010, Cardinale et al. 2012, Hooper et al. 2012). Many factors have contributed to 

these losses including direct habitat destruction, urban expansion (Kalnay and Cai 2003), 

overexploitation (Pimm and Raven 2000), and the degradation of soil and water from poor 

farming practices and pesticide use (Pimentel et al. 1992). Additionally, changes to the 

hydrologic cycle from agricultural intensification and irrigation (Donald 2004) have also 

contributed to the declines in biodiversity (WWF 2016). These factors in addition to the needs of 

a growing human population have led to drastic changes in freshwater ecosystems. For example, 

agriculture now accounts for ~85% of global water use (Gleick 2003). Moreover, according to a 

recent global review, 87% of wetland area has been lost during the last 300 years (Davidson 

2014), and in the United States, >50% of wetlands have been drained specifically for intensive 

agriculture (Tiner 1984). This loss of wetlands coupled with excessive nutrient inputs, increased 

sediment loads, and agriculture chemicals have all contributed to degrading and declining 

wetland ecosystems (Foley et al. 2005). As a result, preserving remaining wetland systems 

should be a high priority for the conservation of biodiversity and ecosystem services that these 

systems provide. 

 Wetland ecosystems provide numerous ecological services to society. At the global level, 

they aid in the stability of available levels of nitrogen, atmospheric sulfur, and carbon dioxide 

(Mitsch and Gosselink 2007). At more localized levels, wetlands provide water filtration and 

purification, raw material, food, recreation and aesthetic value, nutrient cycling, and flood water 
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retention, while also harboring multiple threatened and endangered species (Costanza et al. 1997, 

Hansson et al. 2005). Over the past two centuries, the United States has lost approximately 47.0 

million hectares of wetland ecosystems, with the majority comprised of inland freshwater 

wetlands that vary in degree of emergent vegetation and open water (Tiner 1984). These losses 

have disproportionate effects on biodiversity because freshwater wetlands are one of the most 

diverse and productive ecosystems relative to their size (Hansson et al. 2005). For instance, 

according to the Living Planet Index, between 1970 and 2012, freshwater wetland-dependent 

species experienced a 39% decrease in abundance (WWF 2016). These losses underscore the 

importance of monitoring wetland wildlife to create and execute proactive conservation actions. 

 Monitoring wetland flora and fauna is essential to effective conservation management by 

detecting plant invasions and identifying population declines prior to the risk of extinction 

(Hagan 1992). Wetlands are vulnerable systems and especially susceptible to invasions. For 

example, 24% of the world’s most invasive plants are wetland species (Zedler and Kercher 

2004). Several of these invaders (i.e., Typha x glauca exotic hybrid cattail) form monotypic 

stands, which lower wetland biodiversity, change hydrology, and alter vegetative structure 

(Zedler and Kercher 2004). Additionally, 9.5% (125,000) of all known animal species, and one-

third of all vertebrates, are freshwater species despite the fact inland freshwater covers <1% of 

the planet’s surface (Balian et al. 2008). Therefore, wetlands are biodiversity hotspots and with 

all of the anthropogenic pressures on remaining wetlands, they are highly susceptible to species 

losses (Dudgeon 2010).  

 The widespread loss and degradation of wetland systems have resulted in a high 

conservation priority status for many wetland wildlife species. Of particular concern, are wetland 

dependent birds (NABCI 2016). These species include all individuals that rely on wetland 



 

3 

systems for most or all of their reproductive activities. Within the broad group of wetland birds, a 

subset of these species that include rails (Rallidae), bitterns (Ardeidae), and grebes 

(Podicipedidae) are referred to as “secretive marshbirds” and are of great scientific interest 

because of our limited knowledge base of these species and their conservation concern status 

(Conway 2009). Limited information on these species is compounded by their cryptic coloring, 

infrequent vocalization, and generally inconspicuous behavior which is why they are referred to 

as secretive (Conway 2009). Recent research has tried to address many information gaps that 

could improve conservation for this suite of species. However, despite this increased focus on 

secretive marshbird research in recent years, there are still many distributional and ecological 

facets related to their conservation that are not well understood (Fournier et al. 2017). To date, 

no published studies have investigated the influence of vegetation components and landscape 

characteristics on secretive marshbirds in the Prairie Pothole Region (PPR) of North Dakota. 

Additionally, few studies have utilized distance sampling as a metric for estimating how these 

parameters influence secretive marshbird abundances while accounting for imperfect detection. 

 Of the states within the PPR, wetland surface area was highest in North Dakota (Dahl 

2014). As a result, this area should act as a stronghold for secretive marshbird populations, 

making it an ideal location for gaining information on their ecological and conservation needs. 

Therefore, we conducted a two year study at the Chase Lake Wetland Management District 

which is managed by the United States Fish and Wildlife Service and consists of approximately 

17,400 ha and is centrally located within the PPR of North Dakota. Our main objective was to 

examine local and landscape factors influencing secretive marshbird abundances. In order to 

accomplish this, we utilized distance sampling along with call-broadcast methodologies 

following the North American Marshbird Monitoring Protocol (Conway 2009). Based on limited 
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previous research, we hypothesized that at local scales, wetland emergent vegetation would be 

important in determining species’ abundances while at larger scales, the amount of wetlands or 

developed areas (e.g., agricultural fields) would be primary factors influencing abundance.  

Methods  

Site Description 

Our study was conducted on public lands managed by the Chase Lake Wetland 

Management District of North Dakota, USA (Figure1.1). The Chase Lake Management District 

is in the Prairie Pothole Region of North Dakota and is characterized by rolling hills and high 

wetland densities of up to 50 potholeskm2 (Dahl 2014). The region has a temperate climate with 

cold winters and warm, dry summers. The historical average temperatures for May, June, and 

July are 12.8, 18.1, and 21.2o C and rainfall totals average 6.7, 8.7, and 8.3 cm for May, June, 

and July, respectively (NDAWN 2017). The Chase Lake Wetland Management District consists 

of approximately 17,400 hectares (ha), with roughly 5,260 ha in native prairie, and over 4,600 ha 

of temporary, seasonal, semi-permanent and permanent wetlands. The predominant upland 

vegetation is a mixture of short and mid-grasses comprised of little bluestem (Schizachyrium 

scoparium), blue grama (Bouteloua gracilis), and western wheatgrass (Pascopyrum smithii). 

However, many of the uplands are heavily invaded by Kentucky blue grass (Poa pratensis) and 

smooth bromegrass (Bromus inermis). Common forbs include lead plant (Amorpha canescens), 

common milkweed (Asclepias syriaca), and Canada anemone (Anemone canadensis). Wetland 

vegetation is almost entirely dominated by cattail (Typha spp.), particularly the hybrid cattail 

(Typha x glauca) which can dominate wetlands and form monotypic stands (Mitchell et al. 

2011). Chase lake Wetland Management District was established in 1993, and was historically 

managed primarily for waterfowl production by establishing dense stands of vegetation achieved 
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by practicing idle management. Currently, portions of the refuge are grazed by cattle to try and 

reduce plant biomass build-up and promote biodiversity.   

Figure 1.1. Research sites within Chase Lake Wetland Management District.  Data was 

collected in 2016-2017 from 63 different wetlands (points) on public lands managed by the 

Chase Lake Wetland Management District within the Missouri Coteau (shaded area) region of 

North Dakota.  

Site Selection 

We used the National Wetland Inventory (NWI; USFWS 2016), which categorizes 

wetlands into systems, subsystems, and classes based on hydrology and vegetative characteristics 

(Cowardin et al. 1979) to select our wetlands. We standardized our wetland selection to sites that 

are classified as aquatic bed, emergent, and unconsolidated bottom in the Palustrine system 

within the NWI database. Wetlands within these classes fit one or more of the following habitat 

criteria required by our focal species: 1) shallow water (less than 1m deep), 2) surrounded by 
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little to no trees, and 3) the presence of emergent vegetation (Harms and Dinsmore 2012). 

Additionally, we only included seasonally flooded (C) and semi-permanently flooded (F) 

wetlands and excluded wetlands that were classified as temporarily flooded (A) according to the 

Cowardin System of Wetland Classification (Cowardin et al. 1979). Temporarily flooded 

wetlands were excluded because our focal species require water throughout the breeding season 

(Conway 2009). We stratified wetlands into five categories based on area (< 1 ha, 1-5 ha, 5-10 

ha, 10-20 ha, and > 20 ha) to reduce biasing our dataset to small wetlands that are 

disproportionately abundant within this landscape (Harms and Dinsmore 2012). We randomly 

selected 15 wetlands from each size class using Sampling Design Tool for ArcGIS (ver. 10.3; 

ESRI 2015), but because very few wetlands existed that were > 20 ha and fit our selection 

criteria, we sampled all wetlands within in this size class. We then randomly generated one 

survey point for all wetlands less than 10 ha in size, two survey points for wetlands in the 10 - 20 

ha size class, and three points for each wetland in the > 20 ha size class (Harms and Dinsmore 

2012). 

Bird Surveys 

We sampled from May 15 - July 15 in 2016 and 2017. We completed three sampling 

rounds each year during the expected peak of the marshbird breeding season and all sampling 

rounds were approximately 20 days long (Round 1: May 15-June 4, Round 2: June 5-June 24, 

Round 3: June 25-July 15). This framework increased the likelihood of detecting inconspicuous 

and infrequently vocalizing individuals, and those species that coexist in the same area but have 

different reproductive timing (Conway 2011). During each survey, we conducted 200 m point 

counts using call-broadcasts to elicit a response and increase bird detection. We followed the 

standardized North American Marshbird Monitoring Protocol (Conway 2009) and were provided 
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calls for nine focal species that included American bittern (Botaurus lentiginosus), least bittern 

(Ixobrychus exilis), king rail (Rallus elegans), sora (Porzana carolina), Virginia rail (Rallus 

limicola), yellow rail (Coturnicops noveboracensis), pied-billed grebe (Podilymbus podiceps), 

red-necked grebe (Podiceps grisegena) and American coot (Fulica americana). We projected 

calls with an MP3 player (JLab Audio Eclipse Fit Clip 4GB, Jlab Audio, Oceanside, CA, USA) 

attached to an amplified speaker (Braven Model BRV-1s, BRAVEN LC, Oak Canyon Irvine, 

CA, USA), which was placed 0.5 m above the substrate and broadcasted calls at 90 dB toward 

the center of the wetland (Conway 2009). The North American Marshbird Monitoring Program 

dictated that we have a five minute passive listening period, during which all avian species 

present were recorded, followed by nine minutes of call-broadcast vocalizations (Conway 2009). 

Each minute of the sequence corresponded to one species, and consisted of 30 seconds of 

vocalizations and 30 seconds of silence with calls ordered by species dominance to increase 

callbacks of subdominant species early in the repertoire (Conway 2009). We limited the 

maximum detection distance to 200 m to reduce the potential of double counting and birds were 

recorded by both visual and aural cues and each individual detection was given a radial distance 

estimate. Because distance sampling assumes that distances are unbiased (Buckland et al 2001), 

we only recorded the distance upon first detection of an individual, regardless of any successive 

detections. Prior to conducting the surveys, wind speed, temperature, and cloud cover were 

recorded. Surveys were not completed if wind speed exceeded 20 km/hr or in heavy rain or fog 

(Conway 2009).  

Vegetation Measurements 

We conducted vegetation surveys at each point count location and four points 25 m away 

in each cardinal direction during the middle of each breeding season (~3rd week of June). At 
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each sampling point, we measured water depth (cm) and vegetation height (cm) using a tape 

measure and summarized the vegetation community using a 1.0 m2 quadrats which have been 

shown to best quantify wetland vegetation in the PPR of North Dakota (DeKeyser et al. 2003) 

and categorized them based on modified Daubenmire cover classes, 0-5, 6-25, 26-50, 51-75, 76-

95, and 96-100 (Daubenmire 1959). We visually estimated percent coverage of the major types 

of emergent vegetation which included cattail (Typha spp.), sedge (Carex spp.), rushes 

(Schoenoplectus spp.), grasses, and other structural vegetation components such as open water, 

bare ground, and litter. Survey points that extended into open water allowed for no vegetation 

measurements and were thus recorded as open water.  

To gather wetland level characteristics, we placed four points evenly distributed along the 

perimeter of each wetland and recorded the width of the emergent zone. We also measured water 

depth at five equally spaced points along a transect placed through the emergent zone to quantify 

the slope of the wetland basin morphology. Additionally, we categorized wetlands based on 

percent vegetation cover and water (Stewart and Kantrud 1971). We then used the Landscape 

Development Intensity index (LDI), in combination with the 2011 National Land Cover Dataset 

(NLCD 2011) in ArcGIS v10.3 (Environmental Systems Research Institute 2014) and ground-

truthing during site visits, as a quantitative human disturbance gradient (Brown and Visas 2005). 

The LDI quantifies and weighs anthropogenic disturbance by assigning coefficients to land uses 

(Brown and Visas 2005). We included five land uses (Natural system, Natural open water, Row 

crops, Single family residential, and Highway) based on their relevance to land uses consistent of 

the PPR of North Dakota. Finally, similar to Gilbert et al. (2006) and Mita et al. (2007), in an 

attempt to assess the surround landscape further, we measured the total wetland area within 1 
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km, total perennial cover within 1 km, the distance to the nearest wetland, and recorded the land 

use of the adjacent uplands. 

Data Analysis 

We calculated density estimates for species with > 60 detections (Buckland et al 2001) 

using package “Unmarked” within the R statistical environment (R Development Core Team 

2016). Species that met this criterion were Virginia rail, sora, pied-billed grebe, American coot, 

and American bittern. Within “Unmarked” we used the “gdistsamp” function which fits models 

of animal abundance to data collected following Distance sampling protocols and accounts for 

imperfect detection probabilities (Fiske and Chandler 2011). This package expands on the 

sampling model of Royle et al. (2004), which effectively relaxes the assumption that individuals 

at a distance of 0 are assumed to be detected with certainty (R Development Core team 2016). 

The package “Unmarked” requires the user to set distance bins, therefore, we assigned raw 

distance bins to all species we included in our analysis. Virginia Rail, sora, and American coot 

received distance bins of 0 – 50 m, 50 – 100 m, 100 – 150 m, 150 – 200 m, American bittern 

received distance bins of 0 – 50 m, 50 – 100 m, 100 – 150 m, and we assigned distance bins of 0 

– 70 m, 70 – 140 m, and 140 – 190 m to pied-billed grebe. Because we followed strict weather 

protocols set forth by the North American Marshbird Monitoring Program, we did not include 

any weather covariates on detection probability in models. Additionally, observer was not 

included as a covariate because there was only one observer (JTO), and that individual was 

trained in bird identification and distance estimation prior to each field season. We assumed that 

detection of birds did not vary by year because we surveyed the same wetland type both years, 

and because the length our survey season accounted for seasonal variation on detectability, we 

pooled data from each year for analysis (Harms and Dismore 2012). The density estimates given 
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come from an integrated likelihood model and are assessed using parametric bootstrapping 

procedures (Royle et al. 2004). 

We used a hierarchical modeling scheme starting at the broadest, landscape scale and 

ending at the sampling point. We chose this method of organization because it likely reflects 

selection patterns used by migrating birds when returning to breeding grounds after migration 

(Brown and Dinsmore 1986, Lor and Malecki 2006, Hovick et al. 2012). At each step, we ranked 

the models using Akaike Information Criterion adjusted for small sample sizes (AICc) and used 

the model with the lowest AICc score from each step as a base model in the following step 

(Hovick et al. 2012). We considered models with a ΔAICc ≤ 2 to have strong support (Burnham 

and Anderson 2002). We tested for correlations amongst covariates by constructing a correlation 

matrix. If two variables were highly correlated (r ≥ 0.80), the variable that made the least 

biological sense in the model was removed (Lor and Malecki 2006). Only two variables, amount 

of surrounding cropland and LDI, were highly correlated, therefore, we removed cropland from 

our models. For each species, we first compared the available key functions half-normal, hazard 

rate, exponential, and uniform, which describes the shape of detection function based on 

observed distances. Next, we developed univariate models examining broad landscape effects, 

followed by incorporating measurements collected at the wetland scale, and finishing by 

including fine-scale local vegetative characteristics (Table 1.1.). 

Results 

We detected 734 individuals representing seven species of secretive marshbirds from 

2016 and 2017. Due to limited detections of two species (least bittern and red-necked grebe), we 

focused our analyses on five species with > 60 detections each. We detected slightly more 

secretive marshbirds in 2017 (n = 417) than in 2016 (n = 327). Virginia rail was the most 
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abundant species and accounted for over a quarter of our total detections (n = 190), while least 

bittern was detected the fewest times (n = 3) (Table 1.2.). Relative abundances of secretive 

marshbirds generally increased with wetland size class and ranged from 4.4 birds-point for 

wetlands <1 ha to 11.2 birds-point for wetlands >20 ha (Table 1.2.).  

Individual species density estimates 

Individual species densities estimates ranged from 0.67 individuals-point for American 

bittern (SE = 0.24) to 2.54 individuals-point for Virginia rail (SE = 0.53) (Table 1.3.). Modeling 

results indicated that factors across multiple scales influenced secretive marshbird densities. 

Three of the five best models explaining species’ densities included all three scales we 

examined, while four of the five best models included at least two scales (Table 1.4.). The only 

species’ density that could not be explained by multiple scales was Virginia rail, which had the 

null model as the best model for each of three scales examined. Of the variables we included in 

models, distance to the nearest wetland was influential at the landscape scale for two species, 

basin morphology was influential for two species at the wetland scale, and there were multiple 

vegetation characteristics that were important in explaining species’ densities at the point scale 

(Table 1.4.). 
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Table 1.1. Descriptions and summary statistics for variables used in models.  Statistics and descriptions of landscape, wetland, 

and point level variables used in models to examine environmental factors on secretive marshbirds at Chase Lake Management 

District, ND, USA 2016-2017. 

Level   Variable Mean (SE) Range Variable description                             

Landscape-

level            

  TREATMENT   Management practice utilized in the surrounded uplands   

  OPENWATER% 8.37 (6.23) 0-37.52 Percentage of open water in a 1 km buffer    

  PERENNIAL% 35.82 (27.81) 1.0-82.46 Percentage of perennial cover in a 1 km buffer    

  DISTANCETOWET 78.27 (44.67) 5.62-219.56 Distance to the nearest wetland (m)     

  
LDI 2.92 (0.66) 1.90-4.22 

Landscape Development Index score based on surrounding 

land use  

  TOTWET 53.23 (18.63) 

14.24-

150.58 Total area of all wetland habitat in a 1 km buffer    
Wetland-

level            

  
CC 2.71 (0.54) 1-3 

Wetland classification based on percent emergent vegetation and 

water 

  SIZE 3.04 (1.29) 1-5 Wetland classification based on size     

  TRANSITION 18.42 (6.23) 3.68-35.64 The slope of the wetland basin     

Point-level            

  CATTAIL% 36.17 (16.52) 0-86.0 Cattail cover averaged across 3 1.0-m2 quadrats   

  SEDGE% 0.01 (0.07) 0-1.0 Sedge cover averaged across 3 1.0-m2 quadrats   

  RUSH% 2.89 (6.27) 0-47.33 Rush cover averaged across 3 1.0-m2 quadrats   

  WATER% 13.99 (19.59) 0-70.67 Water cover averaged across 3 1.0-m2 quadrats   

  LITTER% 36.75 (20.93) 0-78.33 Litter cover averaged across 3 1.0-m2 quadrats   

  BG% 4.49 (9.27) 0-63.0 Bare ground cover averaged across 3 1.0-m2 quadrats  

  GRASS% 2.91 (5.63) 0-35.00 Grass cover averaged across 3 1.0-m2 quadrats    

  WD 4.40 (6.29) 0-34.33 Water depth averaged across 3 1.0-m2 quadrats    

    VEGHEIGHT 171.42 (21.83) 89-203.67 Tallest piece of vegetation averaged across 3 1.0-m2 quadrats  
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Table 1.2. Total detections and relative abundance by survey point for seven secretive 

marshbird species. Total detections of secretive marshbirds, and relative abundance per survey 

point by size class in North Dakota, 2016 and 2017.  

Species Wetland Size (ha)  Totals 

 <1 >1-5 >5-10 >10-20 >20  

 n=15 n=15 n=15 n=30 n=9 84 

American bittern 2 12 21 33 8 76 

American coot 10 20 28 51 16 125 

Least bittern 1 1 0 1 0 3 

Pied-billed grebe 8 26 38 54 20 146 

Red-necked grebe 0 4 1 7 14 26 

Sora 21 29 33 72 16 171 

Virginia rail 22 41 32 70 27 192 

Individuals per point 4.4 8.9 10.2 9.6 11.2  

 

Table 1.3. Secretive marshbird density estimates. Density estimates (standard error) from 

point count distance sampling surveys conducted from 2016-2017 within public lands managed 

by the Chase Lake Wetland Management District. Density estimates are presented for five 

species with met the 60 detection threshold. Scaled to individuals per ha and km2 for 

comparison.  

Species birds-point birds-ha birds-km2  

Sora 1.60 (0.35) 0.13 12.74 
 

Virginia rail 2.54 (0.53) 0.20 20.22  

American bittern 0.67 (0.45) 0.05 5.33  

American coot 1.03 (0.74) 0.08 8.20  

Pied-billed grebe 0.70 (0.84) 0.06 5.57  
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Table 1.4. Density model outputs for secretive marshbirds. Model outputs for five species of 

secretive marshbirds meeting the minimum detection threshold for density estimation. Models 

explaining the effects of variables on secretive marshbirds (see table 1.1 for variable 

description). 

Species Model ΔAICc
a Kb wi

c 

Sora Step 1     

     (OPENWATER%) 0 2 0.91 

     (LDI) 5.88 2 0.00 

 Step 2    

     (OPENWATER% + TRANSITION) 0 3 0.36 

     (OPENWATER% + SIZE) 0.12 3 0.33 

 Step 3    

     (OPENWATER% + TRANSITION + WATER%)d 0 4 0.99 

     (OPENWATER% + TRANSITION + WD) 9.73 4 0.00 

Virginia          

rail Step1        

     (Null) 0 1 1.00 

     (OPENWATER%) 26.3 2 0.00 

 Step 2    

     (Null) 0 1 1.00 

     (TRANSITION) 31.79 2 0.00 

 Step 3    

     (Null) e 0 1 1.00 

     (WD) 15.71 2 0.00 

American 

bittern 
Step 1       

    (Null) 0.00 1 0.34 

     (LDI) 0.67 2 0.24 

 Step 2    

     (SIZE) 0 2 0.34 

     (Null) 0.67 1 0.24 

 Step 3    

     (SIZE + WD)f 0 3 0.29 

     (SIZE + LITTER%) 0.62 3 0.21 

Pied-billed 

grebe 

Step 1       

    (DISTANCETOWET) 0 2 0.82 

     (LDI) 5.3 2 0.06 

 Step 2    

     (DISTANCETOWET + CC) 0 3 0.94 

     (DISTANCETOWET + TRANSITION) 5.69 3 0.05 

 Step 3    

     (DISTANCETOWET + CC + VEGHEIGHT)g 0 4 0.45 

     (DISTANCETOWET + CC + BG%) 1.58 4 0.20 
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Table 1.4. Density model outputs for secretive marshbirds (continued). Model outputs for 

five species of secretive marshbirds meeting the minimum detection threshold for density 

estimation. Models explaining the effects of variables on secretive marshbirds (see table 1.1 for 

variable description). 

Species Model ΔAICc
a Kb wi

c 

American 

coot 

Step 1       

    (DISTANCETOWET) 0 2 0.53 

     (PERENNIAL%) 0.53 2 0.41 

 Step 2    

     (DISTANCETOWET + TRANSITION) 0 3 0.72 

     (DISTANCETOWET + CC) 1.92 3 0.27 

 Step 3    

     (DISTANCETOWET + TRANSITION + CATTAIL%)h 0 4 0.57 

     (DISTANCETOWET + TRANSITION + VEGHEIGHT) 2.79   4  0.14 
a Akaike’s information criterion adjusted for small sample sizes, based on differences within each stage.  

b Number of parameters used in each model.  

c Model weight. 

d Best model has an AICc score of 1075.98. 

e Best model has an AICc score of 1195.81. 

f Best model has an AICc score of 490.37. 

g Best model has an AICc score of 818.63. 

h Best model has an AICc score of 815.01. 

 

Discussion 

Alteration and loss of natural ecosystems resulting from anthropogenic forces has 

resulted in declines in wetland biodiversity (Butchart et al. 2010). As a result, many wildlife 

species that depend on wetland ecosystems have lost the majority of their habitat and undergone 

precipitous population declines, resulting in conservation concern statutes for many wetland 

wildlife species (Conway 2009). To fill considerable knowledge gaps in secretive marshbird 

conservation, we examined the influence of variables affecting secretive marshbird abundance in 

the PPR of North Dakota and found that multiple scales were important when determining 

species abundances. Additionally, our data suggests that the PPR may be a significant stronghold 
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for secretive marshbird populations as our density estimates were as much as 14 times greater 

than published density estimates outside the PPR (Harms and Dinsmore 2012). Overall, our work 

highlights the importance of this region to secretive marshbird conservation.   

 Density estimates for four of the five species we examined were best explained by 

multiple scales. Similar to our findings, other studies have reported that multiple scales influence 

secretive marshbird abundance (Naugle et al. 1999, Mora et al. 2011, Glisson et al. 2015). We 

found that soras were significantly associated with variables at landscape, wetland, and point 

scales, while other studies have reported no influence of scale or that fine scale parameters alone 

are the most influential in explaining their abundance (Tozer et al. 2010, Glisson et al. 2015). 

Additionally, we found that pied-billed grebe abundances were associated with variables at all 

scales, a result well documented. Research in Missouri and Illinois found that pied-billed grebes 

were influenced by landscape variables and wetland variables (Darrah and Krementz 2010), 

while a study in South Dakota and another in New York found wetland variables and local 

vegetation components influenced pied-billed grebe occupancy (Naugle et al. 1999, Lor and 

Malecki 2006). Furthermore, an additional study in South Dakota found pied-billed grebes were 

influenced by local vegetation components (Naugle et al. 2001). Similar to our results, studies in 

Iowa and Ohio found American coots were influenced by multiple scales (Fairbairn and 

Dinsmore 2001, Mora et al. 2011) Finally, American bitterns were associated with variables at 

the wetland and point scale. However, because of their affinity to nest in surrounding upland 

grasses, we expected our results to show what other studies have suggested for American bittern 

association with surrounding landscape variables (Naugle et al. 2001).    

Our results indicated that the distance to the nearest wetland was the most influential 

landscape variable in predicting secretive marshbird abundance. Several studies have found that 
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marshbirds prefer wetland complexes as opposed to isolated wetlands (Brown and Dinsmore 

1986, Fairbairn and Dinsmore 2001, Smith and Chow-Fraser 2010). The PPR consists of wetland 

complexes, and has been labeled as one of the most important wetland regions in the world due 

to their productivity based on the number of wetlands and their surrounding vegetation (Mitsch 

and Gosselink 2007). While distance to the nearest wetland positively influence abundance of 

pied-billed grebes and American coots, sora density was negatively associated with the amount 

of surrounding open water within 1 km. Soras typically construct nests comprised of cattail, and 

inhabit wetlands dominated by emergent vegetation, with shallow, unbalanced water levels that 

produced a mosaic of emergent vegetation (Johnson and Dinsmore 1986, Gibbs and Melvin 

1990). Therefore, we speculate that vegetation structure is more important than open water in 

wetland selection for soras as we observed soras most commonly at wetlands with dense 

vegetation and limited open water.  

Many factors at the wetland scale were influential in explaining secretive marshbird 

densities. For instance, wetlands with a high ratio of open water to emergent vegetation had the 

greatest densities of pied-billed grebes. Previous research from New York suggest that pied-

billed grebes build nests over deeper water with more open water than emergent vegetation (Lor 

and Malecki 2006). Additionally, because pied-billed grebes forage by diving for prey, they tend 

to be associated with larger wetlands with more open water (Murkin et al. 1997). Transition of 

the wetland basin was another wetland scale covariate that influenced both sora and American 

coot densities. Sora density peaked in wetlands that were characterized by a basin with a low 

degree of slope, which allows for interspersion of water along with tall, robust stands of 

emergent vegetation. This likely creates maneuverable habitat that allows this species to remain 

unseen while still providing adequate nesting and brood rearing structure (Gibbs and Melvin 
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1990). American coot density peaked in wetlands with a high degree of slope, associating 

American coots with deeper wetlands in our study, which is a result that has also been reported 

in Saskatchewan, Iowa, and South Dakota (Sugden 1979, Brown and Dinsmore 1986, Naugle et 

al. 2001). Deep wetlands tend to be larger (Cowardin et al. 1979), providing deepwater zones for 

American coots to dive and escape predators (Alisauskas and Arnold 1994). Additionally, 

American coots require large open water runways to get airborne (Alisauskas and Arnold 1994), 

making them more dependent on larger bodies of water. Finally, wetland size was a wetland 

scale variable that helped explain American bittern density. Similar to what Brown and 

Dinsmore (1986) found in Iowa and Naugle et al. (2001) found in South Dakota, our results 

suggest American bitterns to be area-dependent, and associated with larger wetlands.  

We found that point scale variables influenced density estimates of four of our focal 

species. Similar to a study in New York, we found American bitterns were associated with 

shallow water depths (Lor and Malecki 2006). Similarly to what we found, research in New 

York found that pied-billed grebes are positively associated with vegetation height, opposed to 

sparse cover at the local point scale (Lor and Malecki 2006). At the point scale, American coots 

were negatively associated with percent of cattail coverage, this result further expands on 

American coots dependency of open water. Sora were associated with the percent water cover at 

the point scale, this supports what Johnson and Dinsmore (1986) found, in that sora breeding 

densities reached their peak in shallow sites where vigorous emergent vegetation occurs. 

Additionally, Walkinshaw (1940) and Glahn (1974) found sora nests often occur at changes in 

vegetation types and open water, supporting our finding of soras association with higher percent 

open water at the point scale.   
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 Based on our density estimates, the PPR is a stronghold for secretive marshbird 

populations. Few studies have reported density estimates using distance sampling methodologies, 

but for those that have, estimates from our study are much greater. For example, our estimate for 

Virginia rail of 0.2 individuals-ha was 14 times larger than estimates from portions of Iowa 

(Harms and Dinsmore 2012). Additionally, our estimate of 0.13 individuals-ha for sora was 2.4 

times larger, while our pied-billed grebe estimate of 0.06 individuals-ha was 1.4 times larger than 

estimates published from Iowa (Harms and Dinsmore 2012). Iowa has lost nearly 90% of their 

wetland habitat and 99% of their grasslands since European Settlement (Dahl 1990, Smith 1998), 

creating a fragmented landscape which may explain some of these large discrepancies. 

Conversely, wetland densities can reach over 50 basins-km2 in the PPR of North Dakota (Dahl 

2014). Within the PPR, wetlands comprised of small, shallow depressions and larger wetland 

basins surrounded by uplands can create a mosaic that is highly suitable for high densities of 

secretive marshbirds.  

 The number of spatial scales that influenced secretive marshbird abundance varied by 

species. This may mean that species-specific management is necessary in some cases. However, 

there are some broad generalization that can be drawn from our results. Overall, we suggest 

conserving wetland complexes, or managing areas with wetlands that include varying water 

depths and vegetation heights. By doing so, large, deep wetlands that American bittern, 

American coot, and the grebe species depend on are protected (Brown and Dinsmore 1986, 

Muller and Storer 1999, Darrah and Krementz 2010), while also preserving the small 

depressional wetlands that Virginia rail and soras use for breeding (Brown and Dinsmore 1986, 

Tozer et al. 2010, Glisson et al. 2015). Additionally, by concentrating our efforts on wetlands 
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complexes, we not only provide a broad range of suitable breeding habitat for secretive 

marshbirds, but also for a wide variety of wetland and grassland-dependent species.  
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CHAPTER 2. DENSITY ESTIMATES OF MARSHBIRDS IN THE PRAIRIE POTHOLE 

REGION OF NORTH DAKOTA 

Introduction 

The continued loss of biodiversity has negatively affected ecosystem function and the 

goods and services they provide to society (Cardinale et al. 2012), and these losses continue 

throughout the world primarily as a result of anthropogenic forces (Butchart et al. 2010, 

Cardinale et al 2012). Few systems have experienced as much alteration and degradation as 

freshwater wetland ecosystems (Dudgeon 2010). As a result, biodiversity declines have been 

greater in wetland ecosystems than in most terrestrial ecosystems (Sala et al. 2000). Specifically, 

the anthropogenic drivers of wetland biodiversity loss include factors such as overexploitation, 

water pollution, flow modification, invasion of exotic species, and destruction or degradation of 

native communities (Dudgeon et al. 2006). In part, wetland losses have occurred because they 

are arguably the most vulnerable ecosystem to human induced land use change due to the 

disproportionate richness of freshwater ecosystems provide as habitat for native flora and fauna 

(Dudgeon et al. 2006). Therefore, because of these continued losses, policy and management 

require research that can inform the conservation and management of wetland dependent 

organisms and wetland systems. 

 Wetlands provide a wide diversity of goods and services to society, including water 

supply, raw material, food, recreation opportunities and cultural inspiration (Williams and Dodd 

1978, Tiner 1984, Covich et al. 2004, Hansson et al. 2005). Land use and cover change has 

affected wetlands across the continent, reducing their ability to provide ecological services, while 

also limiting their capacity to sustain native biodiversity (Dudgeon et al. 2006). Due to an 

increasing human population, and demand for natural resources, aggressive farming practices 
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have led to draining and farming of many wetlands throughout North America (Wright and 

Wimberly 2012). While this trend has been common across all of North America, the northern 

Great Plains has experienced some of the most intensive drainage of wetlands (Dahl 1990, Dahl 

2014).   

 The Prairie Pothole Region (PPR) of North America is a large expanse of wetland 

potholes, which were carved out by glacial movements during the Pleistocene Epoch. This area 

encompasses approximately 780,000 km² (Kantrud et al. 1989) and covers portions of Iowa, 

Minnesota, North and South Dakota, Manitoba, Alberta and Saskatchewan. The core of the PPR 

occurs in North Dakota, and this area is considered one of the most important wetland regions in 

the world (Dahl 2014). Historically, the PPR was comprised of an upland/wetland mosaic, 

however, it is currently estimated that 60 - 65% of the original wetlands within the PPR have 

been lost (Dahl 2014). Portions of the PPR have endured an extensive change in their landscape, 

with places like Iowa losing 90% of their wetland area, while approximately 500 km² of 

wetlands were lost in North Dakota, South Dakota and Minnesota between 1964 and 1968 

almost entirely to agriculture development (Mitsch and Gosselink 2007). The PPR is known as 

the duck factory, producing approximately 50-75% of North American waterfowl annually (Klett 

et al. 1986). Therefore, while the importance of this area for sportsman and the hunting industry 

is obvious, the PPR also provides breeding and foraging opportunities for an additional 100 

species of non-game birds (Greenwood et al. 1995, Naugle et al. 2001). 

 Wetland dependent birds, or marshbirds, are wetland-obligate species that generally 

breed in wetlands, or wetland like plant communities (Naugle et al. 1999). Since the 1970s, 

marshbird populations have been declining throughout North America, and several species are of 

conservation concern status at the local and regional levels (Conway 2009).  Historically, 
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marshbirds of the PPR selected wetlands with native emergent vegetation, interspersed with 

water, but current effects of land cover and land use change on these species is unknown (Lor 

and Malecki 2006). Additionally, marshbirds are frequently under-sampled by large-scale 

monitoring programs such as the Breeding Bird Survey leading to a lack of information on 

population trends (Conway 2011). Therefore, there is a need to adequately survey marshbirds to 

fill the current knowledge gap. Few studies have utilized distance sampling as a metric for 

estimating these parameters in marshbird communities, furthermore, true density estimates are 

needed as a baseline for populations in the regions which will help inform future threatened and 

endangered species policies and conservation actions.    

We investigated marshbird abundance in the PPR of North Dakota following distance 

sampling methodologies and using the North American Marshbird Sampling Protocol on public 

lands managed by the Chase Lake Wetland Management District. Our main objectives was to 

quantify abundance of marshbirds in the PPR of North Dakota, while assessing factors 

influencing marshbird abundance across multiple scales (i.e., 1 km landscape, wetland, and 

point). Based on previous research, we predicted that fine-scale, local measurements, such as 

vegetation height and cattail coverage would be important in determining species’ abundances. 

Furthermore, we expected wetlands with a higher ratio of emergent vegetation to open water, and 

landscape variables, such as the amount of surrounding perennial cover, to be positively 

associated with all marshbird species. 

Methods  

Study Area 

The Chase Lake Management District is located in Stutsman and Wells counties which 

are positioned in the Prairie Pothole Region (PPR) of North Dakota. This area is characterized by 
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rolling hills and high wetland densities of up to 50 potholeskm2 (Dahl 2014). The Chase Lake 

Wetland Management District consists of approximately 17,400 ha, with roughly 5,260 ha in 

native prairie and over 4,600 ha of temporary, seasonal, semi-permanent and permanent 

wetlands. The predominant upland vegetation is a mixture of short and mid-grasses with little 

bluestem (Schizachyrium scoparium), blue grama (Bouteloua gracilis), and western wheatgrass 

(Pascopyrum smithii) comprising the majority of native grasses. Additionally, the uplands are 

heavily invaded by Kentucky blue grass (Poa pratensis) and smooth brome (Bromus inermis). 

Common forbs include lead plant (Amorpha canescens), common milkweed (Asclepias syriaca), 

and Canada anemone (Anemone canadensis). Wetland vegetation is dominated by cattail (Typha 

spp.), particularly the hybrid cattail (Typha x glauca) which often forms monotypic stands after 

establishment (Mitchell et al. 2011). Chase lake Wetland Management District was established in 

1993, and was historically managed for waterfowl production which focused on the creation 

dense nesting cover for waterfowl. Contemporary management has tried to re-introduce cattle 

herbivory and fire to promote biodiversity and reduce invasive plant species that took over 

during the decades of idle management. The region has a temperate climate with cold winters 

and warm, dry summers. Historical average temperatures for May, June, and July are 12.8, 18.1, 

and 21.2 o C and rainfall totals average 6.7, 8.7, and 8.3 cm for May, June and July, respectively 

(NDAWN 2017).  

Site Selection 

We used the National Wetland Inventory (NWI; USFWS 2016), which categorizes 

wetlands into systems, subsystems, and classes based on hydrology and vegetative characteristics 

(Cowardin et al. 1979), to select our wetlands. We standardized our wetland selection to sites 

that are classified as Aquatic Bed, Emergent, and Unconsolidated Bottom in the Palustrine 
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system within the NWI database. Wetlands within these classes fit one or more of the following 

habitat criteria required by our focal species: 1) shallow water (less than 1m deep), 2) surrounded 

by little to no trees, and 3) the presence of emergent vegetation (Harms and Dinsmore 2012). 

Additionally, we only included seasonally flooded (C) and semi-permanently flooded (F) 

wetlands, and excluded wetlands that were classified as temporarily flooded (A) according to the 

Cowardin System of Wetland Classification (Cowardin 1979). We stratified wetlands into five 

categories based on area (< 1 ha, 1-5 ha, 5-10 ha, 10-20 ha, and > 20 ha) to reduce biasing our 

dataset to small wetlands that are disproportionately abundant within this landscape (Harms and 

Dinsmore 2012). We randomly selected 15 wetlands from each size class using Sampling Design 

Tool for ArcGIS (ver. 10.3; ESRI 2015), but because very few wetlands existed that were > 20 

ha and fit our selection criteria, we sampled all wetlands within in this size class. After wetland 

selection from each size class, we randomly generated one survey point for all wetlands < 10 ha, 

two survey points for wetlands in the 10 - 20 ha size class, and three points for each wetland > 20 

ha (Harms and Dinsmore 2012). 

Bird Surveys 

We conducted 5-minute point counts for all marshbirds from May 15—July 15 in 2016 

and 2017 using a 200 m detection radius. We followed standardized protocols developed by the 

North American Marshbird Monitoring Program designed to survey secretive marshbirds 

(Conway 2009). To ensure we covered the entire breeding season, we surveyed all wetlands 

three times each year. Survey rounds were approximately 20 days apart (Round 1: May 15-June 

4, Round 2: June 5-June 24, Round 3: June 25-July 15), which should include the large range of 

reproductive periods of marshbirds. Each survey was performed either during the early morning 

(one-half hour before sunrise to three hours after), or late evening (two hours before sunset until 
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one-half hour after) survey period. We did not sample if wind speed exceeded 20 km/hr or in 

heavy rain or fog (Conway 2009). Because half of our passerine detections (i.e., 49.4%) occurred 

during our evening sampling period, we assumed there was no difference in detection probability 

between survey periods and used both in our analysis. Birds were recorded based on visual and 

aural cues, and to avoid double counting birds, we limited the maximum detection distance to 

200 m. For each individual detected we determined a radial distance estimate, and because 

distance sampling assumes that distances are unbiased (Buckland et al 2001), we only recorded 

the distance upon first detection of an individual, regardless of any successive detections. Prior to 

conducting the surveys, wind speed, temperature, and cloud cover were recorded. 

Vegetation Measurements 

We conducted vegetation surveys during middle of the each breeding season (~3rd week 

of June). At each avian sampling point, and four points 25 m away in each cardinal direction, we 

recorded water depth (cm) and vegetation height (cm) using a tape measure. Additionally, we 

used a 1.0 m2 quadrat based on the findings of DeKeyser et al. (2003) in the PPR of North 

Dakota, and modified Daubenmire cover classes, 0-5, 6-25, 26-50, 51-75, 76-95, and 96-100 

(Daubenmire 1959) to summarize the vegetation community. We visually assessed percent 

coverage of the dominate emergent vegetation which included cattail (Typha spp.), sedge (Carus 

spp.), rushes (Schoenoplectus spp.), grasses, and other structural vegetation components such as 

open water, bare ground, and litter. Survey points that extended into open water allowed for no 

vegetation measurements and were thus recorded as open water.  

In order to obtain wetland level characteristics, four points were evenly distributed along 

the perimeter of each wetland, where we recorded the width of the emergent zone. Additionally, 

we placed a transect through the emergent zone and measured water depth at five equally spaced 
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points along that line transect to quantify the basin morphology and slope. Furthermore, wetlands 

were categorized based on percent cover of water and vegetation (Stewart and Kantrud 1971). To 

assess the surrounding landscape within 1 km of each wetland, we used five land uses that were 

characteristic of land uses within the PPR of North Dakota within the Landscape Development 

Intensity Index (LDI) as a quantitative human disturbance gradient (Brown and Visas 2005), 

along with the 2011 National Land Cover Dataset (NLCD 2011) in ArcGIS v10.3 

(Environmental Systems Research Institute 2014) and were also ground-truthed during site visits. 

The LDI quantifies and weighs anthropogenic disturbance by assigning scores to land uses, the 

land uses we included were Natural systems, Natural open water, Row crops, Single family 

residential, and Highway (Brown and Vivas 2005). In order to further assess the surrounding 

landscape, similar to Gilbert et al. (2006) and Mita et al. (2007), we measured the distance to the 

nearest wetland, total perennial cover within one km, the total wetland area within a one km 

buffer, and documented the land use of the adjacent uplands.  

Data Analysis 

We calculated density estimates for species with > 60 detections, and were of 

conservation interest (Buckland et al 2001) using package “Unmarked” within the R statistical 

environment (R Development Core Team 2016). Species that met this criterion were marsh wren 

(Cistothorus palustris), common yellowthroat (Geothlypis trichas), sedge wren (Cistothorus 

platensis), song sparrow (Melospiza melodia), yellow-headed blackbird (Xanthocephalus 

xanthocephalus), and Wilson’s snipe (Gallinago delicata). This methods provides true, rather 

than relative density by incorporating detection probabilities that account for imperfect detection 

(Fiske and Chandler 2011). These density estimates are assessed using parametric bootstrapping 

procedures, and are generated from an integrated likelihood model. Expanding on the sampling 
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model of Royle et al. (2004), “Unmarked” loosens the assumption that individuals at a distance 

of 0 are assumed to be detected with certainty (R Development Core Team 2016). Implementing 

distance bins is a requirement of “Unmarked”, therefore marsh wren, sedge wren, song sparrow, 

and yellow-headed blackbird all received distance bins of 0 – 50 m, 50 – 100 m, 100 – 150 m, 

150 – 200 m, common yellowthroat received distance bins of 0 – 80 m, 80 – 120 m, 120 – 200 

m, and to Wilson’s snipe, we assigned distance bins of 0 – 70 m, 70 – 120 m, 120 – 170 m, 170 – 

200 m. The protocols we followed and set forth by the North American Marshbird Monitoring 

Program included strict weather protocols, therefore, we did not included any weather covariates 

on detection probability in models. Observer was also not included as a covariate because there 

was only one observer (JTO), and that individual was trained in bird identification and distance 

estimation prior to each field season. We assumed that detection of birds did not vary by year 

because the length of our survey season accounted for seasonal variation on detectability, and we 

surveyed the same habitat type both years. Therefore, we pooled data from each year for analysis 

(Harms and Dinsmore 2012).  

When building our models, we first incorporated variables at the broad, landscape scale, 

and ended with variables at the fine, point scale. We chose to use this hierarchical modeling 

scheme based on scale, because it likely mirrors selection of wetlands by migrating birds after 

migration (Brown and Dinsmore 1986, Lor and Malecki 2006, Hovick et al. 2012). After ranking 

the models using Akaike Information Criterion adjusted for small sample sizes (AICc), we 

selected the model with the lowest AICc score as a base model for the following scales (Hovick 

et al. 2012). We considered models with a ΔAICc ≤ 2 to have strong support (Burnham and 

Anderson 2002). We tested for correlation amongst covariates by constructing a correlation 

matrix. If two variables were highly correlated (r ≥ 0.80), the variable that made the least 
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biological sense in the model was removed (Lor and Malecki 2006). One pair of variables were 

highly correlated, LDI and the amount of surrounding croplands, therefore we removed cropland 

cover within 1 km of wetlands from our models. For each individual species, we compared the 

available key functions half-normal, hazard rate, exponential, and uniform for modeling 

detection curves. Broad landscape scale effects were used to develop univariate models, we then 

incorporated measurements collected at the wetland scale, and finished by adding fine-scale local 

variables, see Table 2.1. for variables by scale.   

Results 

We detected 5,012 individuals consisting of 44 species of wetland birds. We conducted 

analysis on six species that made up nearly 60% of our detections, and were of conservation 

interest. Of the species examined, Wilson’ snipe had the fewest detections (n=60), while marsh 

wren was the most abundant (n =979) (Table 2). Marshbird relative abundances were the greatest 

in the 5-10 ha wetland size class and ranged from 25.9 birds-point for wetlands <1 ha to 40.1 birds-

point for wetlands 5-10 ha (Table 2.2.).  

Individual species density estimates 

Species density estimates ranged from 0.53 individuals-point for Wilson’s snipe (SE = 

0.12) to 14.85 individuals-point for marsh wren (SE = 1.06) (Table 2.3.). Modeling results 

indicated that factors across multiple scales influenced one of the six species’ densities, while the 

null model was best for the remaining five. The best model explaining Wilson’s snipe density 

increased and were positively associated when larger amounts of perennial cover were within 1 

km, when the transition of the wetland basin was high, and when large amounts of bare ground 

was present at the point scale (Table 2.4.).  
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Table 2.1. Descriptions and summary statistics for variables used in model selection.  Statistics and descriptions of landscape, 

wetland, and point level variables used in models to examine environmental factors on marshbirds at Chase Lake Management 

District, ND, USA 2016-2017. 

Level   Variable Mean (SE) Range Variable description                         

Landscape-

level            

  TREATMENT   Management practice utilized in the surrounded uplands   

  OPENWATER% 8.37 (6.23) 0-37.52 Percentage of open water in a 1 km buffer    

  PERENNIAL% 35.82 (27.81) 1.0-82.46 Percentage of perennial cover in a 1 km buffer    

  DISTANCETOWET 78.27 (44.67) 5.62-219.56 Distance to the nearest wetland (m)     

  
LDI 2.92 (0.66) 1.90-4.22 

Landscape Development Index score based on surrounding 

land use  

  TOTWET 53.23 (18.63) 14.24-150.58 Total area of all wetland habitat in a 1 km buffer    
Wetland-

level            

  
CC 2.71 (0.54) 1-3 

Wetland classification based on percent emergent 

vegetation and water 

  SIZE 3.04 (1.29) 1-5 Wetland classification based on size     

  TRANSITION 18.42 (6.23) 3.68-35.64 The slope of the wetland basin     

Point-level            

  CATTAIL% 36.17 (16.52) 0-86.0 Cattail cover averaged across 3 1.0-m2 quadrats   

  SEDGE% 0.01 (0.07) 0-1.0 Sedge cover averaged across 3 1.0-m2 quadrats   

  RUSH% 2.89 (6.27) 0-47.33 Rush cover averaged across 3 1.0-m2 quadrats   

  WATER% 13.99 (19.59) 0-70.67 Water cover averaged across 3 1.0-m2 quadrats   

  LITTER% 36.75 (20.93) 0-78.33 Litter cover averaged across 3 1.0-m2 quadrats   

  BG% 4.49 (9.27) 0-63.0 Bare ground cover averaged across 3 1.0-m2 quadrats  

  GRASS% 2.91 (5.63) 0-35.00 Grass cover averaged across 3 1.0-m2 quadrats    

  WD 4.40 (6.29) 0-34.33 Water depth averaged across 3 1.0-m2 quadrats    

    
VEGHEIGHT 171.42 (21.83) 89-203.67 

Tallest piece of vegetation averaged across 3 1.0-m2 

quadrats  
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Table 2.2. Total detections and relative abundance by survey point for six species of 

marshbird. Total detections of marshbirds, and relative abundance per survey point by size class 

in North Dakota, 2016 and 2017.  

Species Wetland Size (ha)       Totals 

  <1 >1-5 >5-10 >10-20 >20-30  
 n=15 n=15 n=15 n=30 n=9 84 

Common Yellowthroat 83 114 125 237 73 632 

Marsh wren 125 163 188 365 138 979 

Sedge wren 14 19 23 33 15 104 

Song sparrow 70 116 142 220 56 604 

Wilson’s snipe 9 23 8 16 4 60 

Yellow-headed blackbird 87 89 115 214 49 554 

Individuals per point 25.9 34.9 40.1 36.2 37.2   

 

Table 2.3. Marshbird density estimates. Density estimates (SE) obtained from point count 

distance sampling surveys conducted within public lands managed by the Chase Lake Wetland 

Management District in 2016-2017. Density estimates are presented for five species with met the 

60 detection threshold. Scaled to individuals per ha and km2 for comparison.  

Species birds/point birds/ha birds/km2 

Common yellowthroat 9.39 (0.82) 0.75 74.76 

Marsh wren 14.85 (1.06) 1.18 118.23 

Sedge wren 2.22 (0.42) 0.18 17.68 

Song sparrow 14.37 (1.72) 1.14 114.41 

Wilson's snipe 0.53 (0.12) 0.04 4.22 

Yellow-headed blackbird 7.41 (0.76) 0.59 59.00 
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Table 2.4. Density model outputs for six species of marshbirds. Model outputs for six species 

of marshbirds meeting the minimum detection threshold for density estimation. Models 

explaining the effects of variables on marshbirds (see table 2.1 for variable description). 

Species Model ΔAICc
a Kb wi

c 

Marsh Wren Step 1     

     (Null) 0 1 1.00 

     (TREATMENT) 68.96 5 0.00 

 Step 2    

     (Null) 0 1 1.00 

     (TRANSITION) 53.0 2 0.00 

 Step 3    

     (Null)d 0 1 1.00 

     (WATER%) 64.34 2 0.00 

Common 

Yellowthroat Step1        

     (Null) 0 1 1.00 

     (OPENWATER%) 53.41 2 0.00 

 Step 2    

     (Null) 0 1 1.00 

     (SIZE) 51.32 2 0.00 

 Step 3    

     (Null) e 0 1 1.00 

     (GRASS%) 51.23 2 0.00 

Sedge Wren Step 1       

    (Null) 0.00 1 0.88 

     (TREATMENT) 3.41 2 0.15 

 Step 2    

     (Null) 0 1 0.99 

     (SIZE) 11.92 2 0.00 

 Step 3    

     (Null)f 0 1 0.87 

     (WATER%) 5.47 2 0.06 

Song 

Sparrow 

Step 1       

    (Null) 0 1 1.00 

     (TREATMENT) 123.92 5 0.00 

 Step 2    

     (Null) 0 1 1.00 

     (SIZE) 124.6 2 0.00 

 Step 3    

     (Null)g 0 1 1.00 

     (BG%) 118.3 2 0.00 
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Table 2.4. Density model outputs for six species of marshbirds (continued). Model outputs 

for six species of marshbirds meeting the minimum detection threshold for density estimation. 

Models explaining the effects of variables on marshbirds (see table 2.1 for variable description). 

Species Model ΔAICc
a Kb wi

c 

Yellow-

headed 

blackbird 

Step 1       

    (Null) 0 2 1.00 

     (LDI) 21.52 2 0.00 

 Step 2    

     (Null) 0 1 1.00 

     (TRANSITION) 59.97 2 0.00 

 Step 3    

     (Null)h 0 1 1.00 

     (VEGHEIGHT) 51.91   2  0.00 

Wilson’s 

snipe 

Step 1       

    (PERENNIAL%) 0 2 0.49 

     (LDI) 1.01 2 0.30 

 Step 2    

     (PERENNIAL% + TRANSITION) 0 3 0.74 

     (PERENNIAL% + SIZE) 3.72 3 0.16 

 Step 3    

     (PERENNIAL% + TRANSITION + BG%)i 0 4 0.25 

     (PERENNIAL% + TRANSITION + LITTER%) 1.06 4 0.14 
a Akaike’s information criterion adjusted for small sample sizes, based on differences within each stage.  

b Number of parameters used in each model.  

c Model weight. 

d Best model has an AICc score of 2806.69. 

e Best model has an AICc score of 1970.53. 

f Best model has an AICc score of 726.22. 

g Best model has an AICc score of 2246.39. 

i Best model has an AICc score of 504.03. 

 

Discussion 

Wetlands across the United States are one of the most heavily altered and degraded 

ecosystem types (Dudgeon 2010). These changes have led to declines in marshbird populations 

putting increasing pressure on existing wetlands to sustain remaining populations (State of the 

birds 2016). Although wetlands within the PPR have endured losses, it remains one of the most 
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intact wetland ecosystems in the United States and therefore should be a stronghold for 

marshbirds and other wetland-dependent wildlife. Our data supports this as our density estimates 

ranged from 4.22 Wilson’ snipe-km2 to 118 marsh wrens-km2. Furthermore, compared to studies in 

Mississippi and the Great Lakes Region, our density estimates were 8.8 times greater for 

common yellowthroat, 5.7 times greater for marsh wren, and only slightly greater for sedge wren 

(Twedt and Wilson 2017, Panci et al. 2017). We had hypothesized that surrounding landscape 

variables (i.e., agriculture fields and perennial cover) and wetland vegetation characteristics (i.e., 

cattail coverage and water depth) would generate differences in wetland use by marshbirds and 

influence their abundances. However, we found that the variables we measured generally did not 

influence marshbird abundance, or the variables were not able to have an effect because of the 

spatial scale at which we measured them. Conversely, the best model explaining Wilson’s snipe 

density supported our hypothesis. Surrounding land use, wetland, and fine-scale vegetation 

factors were all predictive of Wilson’s snipe density. By quantifying the density and assessing 

the influence of landscape and local vegetation components of marshbirds, our research provides 

managers some guidance for future conservation and provides policy makers with baseline 

estimates that can be important for future planning. Overall, our results emphasize how 

important this region is for marshbird conservation.  

 Density estimates for five of the six species we examined were not influenced by any of 

the covariates we included. Research in Iowa, Chesapeake Bay, and Ontario has shown that 

marshbirds are associated with landscape variables (Fairbairn and Dinsmore 2001, DeLuca et al. 

2004, Smith and Chow-Fraser 2010), and local vegetation variables in Iowa and the Great Lakes 

region (Harms and Dinsmore 2015, Panci et al. 2017). However, we attribute our findings to 

several species being abundant at nearly all wetlands we examined. Moreover, wetlands in the 
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PPR of North Dakota can reach densities over 50 potholeskm2 (Dahl 2014). As a result, there is 

limited variability in detections for five of our most abundant species. For example, common 

yellowthroat and song sparrow were present in 100% of the wetlands we surveyed, marsh wren 

was found in 92% of our sites, yellow-headed blackbird was present in 86%, and sedge wren was 

found in 62% of the wetlands we surveyed. However, Wilson’s snipe were present at 42% of our 

sites, and as a result, models were informative at predicting abundance. 

 Wilson’s snipe abundance was influenced by multiple scales. At the landscape level, our 

results indicate that Wilson’s snipe density was positively associated by the amount of perennial 

cover within 1 km. This result follows the trend of previous studies which shows that Wilson’s 

snipe are dependent on adjacent upland vegetation for breeding habitat, because they typically 

place nests in short grass or sedge-like grasses on moist but unflooded ground near wetlands 

(Tuck 1972, Johnson and Ryder 1977, McKibben and Hofmann 1985). At the wetland level, we 

found Wilson’s snipe density was higher in wetlands with a basin that consisted of a steep slope, 

associating them with deeper wetlands. However, research in Colorado found that Wilson’s snipe 

prefer to breed in shallow wetlands dominated by Carex spp., which allow for the presence of 

short and sparse vegetation (Johnson and Ryder 1977). Wetlands in the PPR of North Dakota, 

particularly shallow wetlands, are almost all entirely invaded by cattail, leaving little to no bare 

ground or open water. This likely leads to a lack of foraging ability in shallow wetlands of the 

PPR for Wilson’s snipe. Therefore, are dependent on wetlands deeper than 1.5 feet where cattail 

cannot establish and create a monoculture that covers the entire basin. At the point scale, 

Wilson’s snipe density was positively associated with the amount of bare ground. Wilson’s snipe 

are often associated with bare ground for forage areas (Arnold 1981). Additionally, Wilson’s 

snipe are in the family Scolopacidae, or shorebirds, therefore, they probe for insects with a long 
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bill, often in moist soil or mud (Arnold 1981). This result was unsurprising because Wilson’s 

snipe are associated with bare ground, as it is essential for foraging.  

To guide practical marshbird conservation, we need reliable density estimates and an 

understanding of how changing land uses affect them. We found no variables we measured to 

influence five of the six species, therefore further investigation should consider examining the 

influence of surrounding land use out to larger scales (i.e., 5-km) or by measuring more specific 

vegetation structure and composition at very fine scales. However, our study does provide some 

of the first density estimates that account for imperfect detection for marshbirds in the PPR of 

North Dakota. Furthermore, our density estimates unequivocally show evidence that marshbirds 

are extremely abundant in the PPR (Klett et al. 1986, Niemuth et al. 2006). Our estimates would 

suggest that the marshbirds we examined are not currently of conservation concern within this 

region. Finally, this research highlights the importance of the PPR for wetland-dependent, non-

game bird species in addition to its known importance for North America’s waterfowl 

populations.  
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