
 
 

IDENTIFICATION OF NEW SOURCES OF RESISTANCE TO ANTHRACNOSE IN 

CLIMBING BEAN GERMPLASM FROM GUATEMALA 

  

  

  

A Thesis 

Submitted to the Graduate Faculty 

of the 

North Dakota State University 

of Agriculture and Applied Science 

  

  

  

  

By 

  

Carlos Raúl Maldonado Mota 

  

  

  

  

In Partial Fulfillment of the Requirements 

for the Degree of 

MASTER OF SCIENCE 

  

  

  

  

Major Department 

Plant Sciences 

  

  

  

  

  

November 2017 

  

  

  

  

Fargo, North Dakota 



 
 

 North Dakota State University 

Graduate School 

 

Title 

 

 IDENTIFICATION OF NEW SOURCES OF RESISTANCE TO 

ANTHRACNOSE IN CLIMBING BEAN GERMPLASM FROM 

GUATEMALA 

  

  

  By   

  
Carlos Raúl Maldonado Mota 

  

     

    

  The Supervisory Committee certifies that this disquisition complies with 

North Dakota State University’s regulations and meets the accepted 

standards for the degree of 

 

  MASTER OF SCIENCE  

    

    

  SUPERVISORY COMMITTEE:  

    

  
Ph.D. Juan M. Osorno 

 

  Chair  

  
Ph.D. Phillip McClean 

 

  
Ph.D Julie Pasche  

 

  
Ph.D James Beaver 

 

    

    

  Approved:  

   

             12/12/17  Richard D. Horsley   

 Date  Department Chair  

    



 

iii 

 

ABSTRACT 

Anthracnose, caused by Colletotrichum lindemuthianum (Sacc. and Magnus) Briosi and 

Cavara is a fungal disease that affects common bean worldwide. Seed yield loses sometimes 

reach 100% when the seed is infected and environmental conditions favor the disease. Climbing 

beans in Guatemala represent the main source of protein for the habitants of this region (9.4 

kg/person/year). Unfortunately, anthracnose threatens climbing bean production in the region. 

Six races were found among samples collected in Guatemala Highlands using the standard 

common bean differential lines. Also, a germplasm collection from ICTA Guatemala was 

evaluated for resistance to C. lindemuthianum race 73, which is the predominant race in the U.S. 

Approximately 10% of 369 climbing bean accessions showed no symptoms (score of 1). GWAS 

results using 78754 SNP markers indicated that genomic regions for resistance to C. 

lindemuthianum exist in Pv04 and Pv07.  
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INTRODUCTION 

Common bean (Phaseolus vulgaris L.) is the most important food legume consumed in 

the world (Broughton et al., 2003; Miklas et al., 2006). Breeding programs use germplasm to 

improve disease resistance and other traits of economic importance. The disease, that affects the 

normal function of plants, are the result of an interaction among the host, the environment, and 

the organism causing the disease. 

Anthracnose, caused by the hemibiotrophic fungus Colletotrichum lindemuthianum 

(Sacc. and Magnus) Briosi and Cavara, is a disease that affects common bean in temperate, 

subtropical, and tropical zones. The pathogen affects several parts of the plant and the production 

of common bean is reduced by the damage on the foliage, stems, pods and seeds. Seed yield 

loses sometimes reach up to 100% when the seed is infected and environmental conditions favor 

disease development (Schwartz et al., 2005). C. lindemuthianum thrives in cool and humid 

conditions with temperatures between 18 to 26°C and relative humidity of 80% or higher (Del 

Rio and Bradley, 2002).   

In the Guatemalan highlands, climbing beans are relevant because they are an important 

component in the farmer’s diets. Common bean has socioeconomic importance and is considered 

a basic grain with an annual per capita consumption of 9.4kg (Legume Innovation Lab, 2015).  

 Unfortunately, anthracnose reduces yield and quality of seed of climbing beans produced 

in this developing country, and it is aggravated by the fact that growers cannot afford fungicides. 

Also, it is hard to have good chemical coverage when spraying within the maize (Zea mays L.)-

bean intercropping system (locally known as Milpa) commonly used to produce climbing beans 

because maize plants are much taller than dry bean (Burlakoti, 2008). Chemical use for 

controlling anthracnose is expensive and the generation and/or purchase of disease-free seed is 

often difficult in developing countries (Meziadi et al, 2016). The ICTA (Institute of Agricultural 
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Science and Technology) breeding program in Guatemala has a valuable climbing bean 

germplasm collection from the highland regions. This collection contains the following species: 

common bean (P. vulgaris L.), lima bean (P. lunatus L.), scarlet runner bean (P. coccineus L.) 

and year-bean (P. dumosus Macfady Syn. P. polyanthus Greenman) (Orellana et al., 2006). 

Climbing bean accessions from Guatemala belong to Race Guatemala and have type (IV) 

growth habits (Beebe et al., 2000; Chacon et al, 2005; Blair et al, 2006; Tobar-Pinon et al, 2017). 

Genetic variability of climbing bean in this region is like to other Middle American races (Blair 

et al., 2006).  

 Some field data related to anthracnose resistance based on natural pressure exist for the 

germplasm collection. In the past, a few studies have identified races of C. lindemuthianum in 

Guatemala. However, there has not been a systematic effort to categorize the predominant races 

in the highlands of the country and identify the potential sources of anthracnose resistance within 

the collection of the climbing bean germplasm from Guatemala.  

Therefore, new sources of resistance for climbing beans need to be identified to provide 

sources of resistance for bean breeding programs in Guatemala and other countries where 

anthracnose is a serious disease of beans. The objectives of this study were: 1) to identify the 

most predominant races of C. lindemuthianum in Guatemala; 2) use the climbing bean collection 

from Guatemala to identify germplasm with resistance to C. lindemuthianum races from 

Guatemala and North Dakota; and 3) to identify genomic regions associated with resistance to C. 

lindemuthianum using Genome Wide Association Study (GWAS) approach.  
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LITERATURE REVIEW 

Common bean 

Common beans are grain legumes that belong to family Fabaceae, which is the third-

largest family of flowering plants. This family represents the second most important family of 

crop plants after the grass family, (Poaceae) (Smýkal et al., 2015) and is vitally important to 

agriculture and the environment. Legumes provide a substantial portion of all nutritional protein 

to the human diet (Kumar et al., 2014). Grain legumes account for 27% of world crop production 

and provide 33% of the dietary protein consumed by humans, while pasture and forage legumes 

provide a significant part of animal diet (Smýkal et al., 2015). 

Legumes comprise several evolutionary lineages derived from a common ancestor 60 

million years ago. Papilionoids are the largest clade, dating nearly to the origin of legumes and 

containing most cultivated species (Lavin et al., 2005). When cultivated grain legumes, or pulses, 

are considered, the Papilionoideae can be divided into the following four clades: (1) Phaseoloids 

(Glycine spp. Willd., Phaseolus spp. L., Cajanus spp. L. and Vigna spp. Savi), (2) Galegoids 

(Pisum spp. L., Lens spp. Millp. Lathyrus spp. L., Vicia spp. L., Medicago spp. L. and Cicer spp. 

L.), (3) Genistoids (Lupinus spp. L.) and (4) Dalbergoids (Arachis spp. L. and Stylosanthes spp. 

Sw.) (Lewis et al., 2005).  

Common bean domestication 

The domestication of legumes includes: changes in plant architecture, increased seed 

size, transition from outcrossing to selfing, reduced seed dispersal, and loss of seed dormancy, 

among other traits (Hammer, 1984). An increase in the seed size of domesticated genotypes 

compared to their wild relatives is suggested to be related to greater planting depth in agricultural 

systems, with larger seeds producing more vigorous seedlings (Abbo et al., 2011). At the same 

time, increased seed size was selected by early farmers, which unintentionally may have selected 
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for a higher content of starch, oil and protein to obtain a better product. Seed shattering was 

avoided during the selection process to reduce the occurrence of the natural seed pod shattering 

mechanism of wild legumes (Abbo et al., 2014; Smykal et al., 2015). 

Common bean in the Americas has a long history of domestication, with two centers of 

domestication, the Andean mountains of South America, giving rise to the Andean gene pool, 

and the Central American highlands and lowlands, giving rise to the Mesoamerican (Middle 

American) gene pool (Blair et al., 2009). Moreover, these centers of domestication are 

subdivided into groups called races (Singh et al., 1991). The currently recognized races are, 

Nueva Granada, Peru and Chile (Andean gene pool), and Mesoamerica, Jalisco, Durango and 

Guatemala (Middle-American gene pool) (Beebe et al., 2000).  

A fourth race in the Middle American genepool named race Guatemala was proposed in a 

study that evaluated the structure of the Middle American races using RAPD markers. This 

research was the first in propose that race Mesoamerica be divided into two sub races, with 

having different plant growth habits. Race Guatemala contains materials originated in Guatemala 

and Chiapas (Mexico) (Beebe et al., 2000). Race Guatemala has been differentiated from 

Mesoamerican sub-races in other studies. This race contains climbing beans, usually with black 

and shiny seeds (Chacon et al., 2005; Blair et al., 2009; 2006; Blair et al., 2013; Tobar-Piñon et 

al., 2017). The study of Blair et al., 2009 utilized 604 accessions from CIAT (International 

Center of Tropical Agriculture), and 36 SSR markers to determine molecular diversity, in this 

study race Guatemala was grouped within the Mesoamerican genepool with 61 genotypes. 

Moreover, the study of Chacon et al., 2005 was performed using 165 accessions from Latin 

America and USA, 23 from weedy beans and 134 of wild beans. The existence of race 

Guatemala was suggested based on 10 restriction fragment length polymorphism (RFLP) 
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markers used, to determine chloroplast DNA polymorphism. Tobar-Piñon et al., 2017, using 

45,000 SNP markers, and 369 accessions of P. vulgaris climbing bean germplasm from 

Guatemala, accessions from race Mesoamerica, race Durango-Jalisco, and race Nueva Granada, 

concluded that race Guatemala grouped separately from the other races, but is part of the Middle 

American gene pool.   

Market classes of common bean 

 Common bean market classes are grouped by different physical characteristics including 

seed coat color, color pattern, and size. Market classes commonly grown in the Americas are: 

pinto, navy, black, dark red kidney, light red kidney, North American small red, Central 

American small red, great northern, carioca, red mottled, yellow, and alubia (MSU, 2017). In the 

US, market classes widely grown include pinto, navy, black, kidney, and snap beans (USDA-

NASS, 2017). In Guatemala, only a few market classes are grown: black beans, Central 

American small red (MAGA, 2014), and some white beans (Flores and Bernsten, 2008)  In 

Central America, the most produced market classes are black and small red bean. These market 

classes are also relevant in Mexico, Cuba, Haiti, and Dominican Republic (Rosas et al., 2014). 

The predominant market class consumed in Guatemala is the black bean (MAGA, 2014).   

Economic relevance of bean production 

Common bean is the most important food legume consumed in the world and production 

and area covers 46% of total grain legumes worldwide. An average of 26.6 million ha of dry 

beans were harvested between 2008 to 2010, producing an average of 18.8 million of tons 

(Akibode and Maredia, 2011). Common bean, according to FAOSTAT (2016), is cultivated in 

129 countries across five continents. Latin America is an important production region accounting 

for more than 45% of the worldwide production (IICA, 2014). In the US, production of common 
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bean by market classes are approximately: pinto (33%), navy (12%), black (15%), and red 

kidney (5%) (USDA-NASS, 2017). In 2016, the Census of Agriculture noted that 6,896 US 

farms produced common bean in 737,741 ha (excluding lima bean), and the average seed yield 

was 2064 kg- ha-1. Total production including all market classes was 1,458,636 MT (USDA-

NASS, 2017). Mexican and Canadian market import about 40% of US beans produced for 

exportation (USDA-ERS. 2017).  

In 2012, 340,000 ha of common bean grown in Guatemala by a total of 292,961 local 

farmers and an average seed yield of 843 kg.ha-1 (IICA, 2014). Most bean production in 

developing countries is small-scale agriculture (Miklas et al. 2006), with an average farm size of 

less than 2.2 ha (Fischer and Victor, 2014). Bush type beans (indeterminate Type II and III) are 

produced in the eastern lowlands of Guatemala (IICA, 2014) and while climbing beans are 

grown in the western highlands (Beebe et al, 2000). Climbing beans are usually grown in 

association with maize and others crops (known as milpa system), and in trellises as a 

monoculture (Moscoso, 2017). 

The milpa system and climbing beans in Guatemala 

The Mesoamerican region covers the south of Mexico and extends to the central valley of 

Costa Rica. In Mesoamerica, species of maize, beans, and squash (Cucurbita spp.) were 

domesticated and simultaneously incorporated in an intercropping system known in the region as 

Milpa (Zizumbo-Villarreal et al., 2012). According to molecular and genetic evidence, during the 

late pre-ceramic period (5,550-4,300 BP), Mesoamerican people (mostly Aztecs and Mayans) 

succeeded in domesticating maize by selecting genotypes with improved plant architecture. This 

step of domestication allowed the bean plants to climb on the stalk of maize. (Jaenicke–Després 

et al., 2003; Jaenicke–Després and Smith, 2006). 
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Common bean is classified based on its growth habit. To characterize the four major 

growth habits in common bean, it is necessary to consider the type of terminal bud, stem 

stiffness, twining ability, distribution of pod load or the fruit pattern. Common bean growth 

habits are: determinate upright (I); indeterminate upright (II); indeterminate, weak stemmed, 

prostrate nonclimbing or semiclimbing (III); and indeterminate weak stemmed, with long guides 

or leaders and strong climbing ability (IV) (Singh et al, 1991). Climbing beans have type (IV) 

growth habit. Race Guatemala also contains Guatemalan climbing beans. Most climbing beans of 

race Guatemala are locally called “Bolonillos” due the particular spherical seed shape. (Beebe et 

al., 2000). Worlwide most of the breeding efforts have been focused on developing new resistant 

(biotic and/or abiotic) and productive bush type varieties. Efforts for improving climbing bean in 

Guatemala started in 2004 at ICTA, where the main traits of study were climbing aggressiveness, 

earliness, seed yield and quality, and disease resistance. Recently in the Guatemalan highlands 

two varieties of climbing bean have been released “ICTA Labor Ovalle” and “ICTA Utatlan”, 

both with a potential seed yield  >700 kg ha-1 (Osorno et al, 2017).  

In Guatemala, there is a Phaseolus spp. germplasm collection located at the ICTA-

Chimaltenango Research Station with almost 600 climbing bean accessions including: common 

bean, scarlet runner bean, and year-bean. This germplasm represents beans of different locations 

from the highlands in Guatemala. Gentry (1966), Cojulun (1970), Freytag (1978), Rodriguez 

(1982), and Debouck (1986) collected the germplasm in this collection. Orellana et al. (2006) 

made a preliminary agro-morphological characterization of the 558 genotypes of P. vulgaris L. 

using varietal descriptors from Van Schoohoven and Pastor-Corrales (1987) for 34 variables (12 

quantitative and 24 qualitative). Some examples are: flowering time, flower color, pod color, and 

grain color. They found groups with 71% similarity. In this case, duplicated lines were not 
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identified, but the species and growth habit were characterized. Additionally, disease resistance 

to bean rust Uromyces appendiculatus (Pers) Unger, anthracnose caused by C. lindemuthianum 

and diseases were measured. The germplasm collection in average showed to be resistant to C. 

lindemuthianum in this study. Unfortunately, the results were based field on natural pressure of 

the diseases with possible mixture of pathogen races and conducted without repetitions across 

time.  

Ponciano-Samayoa et al. (2009) screened 558 lines of P. vulgaris from the climbing bean 

germplasm of Guatemala, with 6 microsatellite markers with the objective of identifying 

duplicated lines. Using cluster analysis, the collection was divided into 12 groups and 46% of the 

collection was classified as duplicates and consequently, the number of accessions could be 

reduced to 261 to maximize genetic diversity. However, the experiment also concluded that the 

research should include additional markers to have better resolution and find more differences 

among the lines.  

Recently, Tobar-Piñon et al. (2017), did a new characterization of the genetic diversity 

contained within the collection using ~75,000 single nucleotide polymorphism (SNP) markers 

and an improved resolution. The authors concluded that Guatemalan climbing beans are a 

distinct race of beans within the Mesoamerican gene pool that represents a new source of genetic 

diversity. The degree of genetic diversity of this race is similar when compared to other races.   

Anthracnose (Colletotrichum lindemuthianum (Sacc. and Magnus) Briosi and Cavara) 

Bean anthracnose is caused by the fungus Colletotrichum lindemuthianum (Sacc. and 

Magnus) Briosi and Cavara. This disease can cause significant reductions levels in seed yield (up 

to 100%) and quality in susceptible plants (Zuiderveen, 2015). C. lindemuthianum is a seed-

borne pathogen and when the environment is favorable for infection, the fungus can spread 
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quickly and can cause an epidemic (Markell et al, 2012). The quality of infected seed is reduced 

and the pathogen may be introduced to other areas or regions with infected seed. Anthracnose 

management is complex since the fungus can live up to 22 months in plant debris in northern 

latitudes (Chen et al, 2007). Anthracnose is one of the most serious diseases that affects common 

bean in the world due to its pathogenic variability and efficient seed to seedling transmission. 

Genetic resistance is recognized as the most effective disease management strategy for the 

control of bean anthracnose (Kelly and Vallejo, 2004) because it is economical and 

environmentally benign (Meziadi et al, 2016). Although the use of fungicides provides effective 

management of many crop diseases, their use, when available to small-scale farmer in 

developing countries, increases costs of production. Incorrect and/or inefficient application of 

fungicides can produce negative effects on beneficial organisms and the environment (Paparu et 

al, 2014). 

Anthracnose symptoms may appear on any part of the plant. The spread of the disease 

depends on weather conditions and inoculum source and susceptibility of the host. Infected seed 

is the principal inoculum source and initial symptoms usually appear on cotyledonary leaves as 

small, dark brown to black lesions. The infection also can produce minute flesh to rust-colored 

specks. These specks enlarge lengthwise and partially around hypocotyls and young stems to 

form a sunken lesion. The damage found in the pod is flesh to rust-colored lesions which develop 

in sunken cankers and are bordered by slightly raised black rings encircled by a reddish brown 

edge (Castellanos et al., 2015). Favorable conditions for the development of C. lindemuthianum 

include temperatures ranging between 13 and 25°C, and high relative humidity. The disease can 

be devastating for common bean growers, causing total crop loss when disease onset occurs at 

early stages (Castellanos et al. 2015).  
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Coevolution of common bean and the pathogen C. lindemuthianum has been 

demonstrated based on the genetic variability among the host and the pathogen populations. 

Coevolution of this host pathosystem has been studied in both Andean and Middle American 

gene pool (Balardin et al., 1998). Mutation, population gene flow, and recombination are 

mechanism for genetic diversity in the pathogen. The reciprocal selection pressure within the 

host and pathogen, and environmental conditions are responsible for the variability and 

frequency of resistance and virulence genes (Araya, 2003). Results from pathogen population 

studies consisting of isolates of C. lindemuthianum collected from the Andean and 

Mesoamerican regions showed that Mesoamerican pathogenic populations are more diverse. 

Most of the Mesoamerican races found in this geographical region were not found in the Andean 

region. This suggest that pathogenic races coevolved with cultivars from the same region 

(Pastor-Corrales et al, 1993). 

Pastor-Corrales (1991) proposed a set of differential lines to characterize anthracnose 

races. A binary value is assigned to each differential so that a unique number can be generated 

for each anthracnose race (Table 1). More than 100 races of C. Lindemuthianum have been 

reported worldwide using the 12 differential cultivars and the binary naming system (Ferreira et 

al., 2013; Gonzáles et al., 2015). In North America (Manitoba, Ontario, Michigan, and North 

Dakota), anthracnose races 7, 65, 73, and 89 were previously identified (del Rio and Bradley., 

2002; Yang Dongfang et al., 2007). In North Dakota, races 7, 9, 72, 73, 89, 1153 and 1161 were 

identified in two separate studies (del Rio et al., 2002; Halvorson et al, 2016). All these races are 

of Mesoamerican origin, however race 73 is the most frequent (Halvorson et al., 2016). In 

Guatemala, previous studies have identify several races of anthracnose: 9, 73, 520, 521, 648, 
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1024, 1025, 1097, 1544, 1545, 1549, and 1645. The most common races of anthracnose reported 

in these studies were 520, 1024, and 1545 (Mahuku et al., 2004, Awale et al., 2008)  

Table 1. Differential lines, Binary code, resistance genes and gene pool origin of differential 

cultivars used to characterize races of Colletotrichum lindemuthianum. 

Differential lines Binary Code Resistance Gene Gene Poola 

Michelite 1 Co-11 MA 

Michigan Dark Red Kidney 2 Co-1 A 

Perry Marrow 4 Co-13 A 

Cornell 49-242 8 Co-2 MA 

Widusa 16 Co-15 A 

Kaboon  32 Co-12 A 

Mexico 222 64 Co-3 MA 

PI 207262 128 Co-33, Co-43 MA 

TO 256 Co-4 MA 

TU 512 Co-5 MA 

AB 136 1024 Co-6, co-8 MA 

G2333 2048 Co-42, Co-35, Co-52 MA 

aMA= Middle American A= Andean. Modified from: 

http://bic.css.msu.edu/_pdf/Anthracnose.pdf  (accessed 29 October 2015). 

The most recent study of characterization of isolates of C. lindemuthianum in Guatemala 

to identify resistance genes was conducted by Awale et al., in 2008. In this study, samples were 

collected from infected common bean tissue (stem and pods). A total of 12 isolates of the 

pathogen were characterized based on the 12 differential cultivars, and a race number was 

assigned based on the binary code (Table 1). Pathogen isolates were virulent to differential 

cultivars containing Co-12, Co-2, Co-3, Co-4, Co-5 and Co-6, which are Mesoamerican genes. 

None of the races reported in Guatemala have shown any compatibility with the Andean resistant 

genes, suggesting that incorporating Andean genes of resistance could provide a broad range of 

http://bic.css.msu.edu/_pdf/Anthracnose.pdf
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resistance in Guatemalan cultivars. Awale et al, 2008 noted that the combination of Co-12 and 

Co-42 genes for resistance could provide resistance to most races, excluding races 1572 and 

1645. However, the authors also mentioned that a way to provide resistance for these races are 

the combination of Co-1 and Co-42.     

Anthracnose resistance genes generally follows a qualitative mode of inheritance. 

Resistant and susceptible reactions are well differentiated, because the plant pathogen interaction 

is specific and follows the gene for gene model (Flor 1955). Most of the genes reported show 

complete dominance and several ways of interaction can occur (complete dominance, partial 

dominance, additive effect or over dominance) due to the alleles involved (Ferreira et al., 2013). 

A total of 21 specific genes for resistance to C. lindemuthianum in common bean have 

been identified. Aside from the differential cultivars, breeding programs are continuously 

searching for new sources of resistance to the pathogen and other sources of resistance genes 

have been found in both Middle American and Andean gene pools (Table 2).  

Resistance genes commonly used for resistance to anthracnose are present in different 

bean genotypes. The resistance genes most commonly used for breeding programs are: Co-1 

locus and alleles, which are present in most of the Andean genotypes. This locus is relevant 

because it offers a broad spectrum of resistance for those races of C. lindemuthianum from 

Mesoamerican origin, since the pathogen interaction is very specific for genotypes of this gene 

pool (Kelly and Vallejo, 2004). A source of this type of resistance is the genotype AND 277, 

which belongs to the Andean gene pool, and has the Co-14 gene for anthracnose and Phg-1 gene 

for angular leaf spot resistance. This genotype has also shown resistance to 21 races of C. 

lindemuthianum including race 73 (Gonçalves-Vidigal et al, 2011). The effectiveness of Co-1 

locus also has been demonstrated against race 73 in the black bean cultivars (Jaguar, Phantom 
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and Raven), and Navy bean cultivars (Newport and Seafarer) (Kelly and Vallejo, 2004). Another 

important resistance gene is Co-4, although the most commonly used alleles in this locus are Co-

43 reported in PI 207262, which have been useful in Brazil; and Co-42, both located in linkage 

group Pv08. Co-42 is present in genotypes such as G2333, G2338 and SEL1308 (Kelly and 

Vallejo, 2004). Genotype G2333, has shown resistance under greenhouse conditions and field 

conditions to several races of C.lindemuthianum (Pastor-Corrales et al., 1994). G2333 has three 

anthracnose resistance genes pyramided including Co-42, which have been reported to be 

resistant to the highly virulent race 2047 (Kelly and Vallejo, 2004). In some countries of Africa, 

genotype G2333 was released as a commercial cultivar (Pastor-Corrales et al., 1994) and has 

been used for the introgression of resistance genes (Kanzimoto, 2016).   

Other sources of resistance such as Ouro Negro (Honduras 35), from the Mesoamerican 

gene pool. It has shown resistance to 19 races of the pathogen including race 73 and it is known 

to contain the Co-10 resistance gene. (Alzate-Marin et al, 2003). Cultivar Jalo Vermelho from 

the Andean gene pool is also a source of resistance, and contains the Co-12 resistance gene. This 

cultivar shows resistance to races 23, 55, 89, and 453 (Gonçalves-Vidigal et al, 2008). Another 

resistant cultivar from an Andean source is Jalo Listras Pretas, which contains the resistant gene 

Co-13, and has shown resistance to races 9, 64, 65, and 73 (Gonçalves-Vidigal et al, 2008b). The 

Andean cultivar Pitanga, has the Co-14 resistance gene and was evaluated for resistance using 

races 23, 64, 65, 73, and 2047 (Gonçalves-Vidigal et al, 2011). Recently, sources of resistance 

have been found in the Andean cultivar Paloma which has a designation of Co-Pa resistant gene 

and had shown resistance to races 2047 and 3481, which represent among the most virulents 

races of C. lindemuthianum (de Lima Castro et al, 2017). Another example of a new resistant 

cultivar from an Andean source is Amendoim Cavalo, this cultivar has resistance to different 
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races, including race 73. The symbol proposed for this resistance gene is Co-AC (Nanami et al, 

2017). 
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Table 2. Resistance genes, resources, gene pool, linked markers and map location for 

anthracnose in common bean. 

Gene Genetic Resource Gene Pool Linked Markers 
Map 

Location 

Co-1 MDRK Andean OF10530 Pv01 

Co-12 Kaboon Andean SEACT/MCCA  

Co-13 Perry Marrow Andean   

Co-14 AND 277 Andean CV542014450, TGA1.1570  

Co-15 Widusa Andean OA181500  

Co-2 Cornell 49242 MA 
OQ41440, OH20450, 

B3551000 
Pv11 

Co-3 Mexico 222 MA SSR PV-ctt001 Pv04 

Co-32 Mexico 227 MA   

Co-33 BAT 93, PI207262 MA   

Co-4 TO, G2333 MA SAS13, SH18  Pv08 

Co-42 SEL 1308 MA SBB14, OC8  

Co-43 PI 207262y MA OY20  

Co-5 TU, G2333 MA OAB3450 Pv07 

Co-52 SEL 1360, G2333  SAB3, g12333250  

Co-6 AB 136 MA OAH1780, OAK20890 Pv07 

Co-8 AB 136 MA OPAZ20 NA 

Co-9 BAT 93 MA SB12 Pv04 

Co-10 Ouro Negro MA F10 Pv04 

Co-11 Michellite MA NA Pv03 

Co-12 Jalo Vermelho Andean NA NA 

Co-13 Jalo Listas Pretas Andean OPV20 700 Pv03 

Co-14 Pitanga Andean NA Pv01 

Co-15 Corinthiano Andean  G2685 Pv04 

Co-16 Crioulo 159 MA NA  

Co-17 SEL 1308 MA G19833 Pv03 

Co-18 Jalo Pintado 2 Andean  NA 

Co-Pa Paloma Andean  Pv01 

Co-AC Amendoim Cavalo Andean  Pv01 

Co-Pe Perla Andean  NA 

NA None available; MDRK – Michigan Dark Red Kidney; MA – Middle American;  y PI 207262 

possesses 2-genes; G 2333 possesses 3-genes Modified from: 

http://bic.css.msu.edu/_pdf/Anthracnose.pdf 
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Genome wide association study (GWAS) 

GWAS has been used to identify Quantitative Trait Loci (QTL) in humans and animals 

(Begum et al, 2015). In recent years, GWAS is a widely used tool for dissecting complex traits in 

plants, by comparing between the genotype and the phenotype (Mammadov et al., 2012). This 

type of study helps to identify QTL in panels of diverse germplasm through linkage 

disequilibrium (LD). LD is a non-random association between markers, genes or QTL (Gupta et 

al., 2005). LD is also caused by population structure and, for this reason it is important that 

association mapping studies to be performed within genotypes of the same genepool or race 

(Blair et al., 2009). In addition, GWAS is revolutionary because candidate genes of larger and 

more diversified populations can be mapped (i.e. collections of germplasm) and compared with 

bi parental QTL analysis, where diversity is lower (contrasting parents for the trait of interest) 

(Stanton-Geddes et al., 2013; Huang and Han, 2014).  One application example is the use of 

marked assisted selection (MAS) in breeding programs, by using markers tightly linked to the 

trait of interest (QTL), identified with the GWAS approach (Biscarini et al, 2015). Also, due to 

the GWAS improvement in recent years i.e. Genotyping by sequencing (GBS) (Schröder et al, 

2016) and the use of more efficient software and new techniques to optimize the genome 

complexity to provide an appropriate level of marker density, is making of GWAS a widely used 

tool. 

Several studies in common bean have shown the effectiveness of GWAS to indentify 

genomic region associated with traits of economic importance, including disease resistance. In 

2016, K. Ghising identified a genomic region associated to resistance to Halo Blight 

[Pseudomonas syringae pv. phaseolicola (Burkholder)]. In the same year Vasquez-Guzman 

found genomic regions associated to Fusarium root rot (Fusarium oxysporum f. sp. dianthi), and 
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Perseguini et al., 2016 in angular leaf spot (Phaesoisariopsis griseola (Sacc.) Ferraris). An 

anthracnose resistance study in Andean beans was performed using GWAS to identify new 

sources of resistance using a panel of 230 P. vulgaris genotypes from different areas of the 

world. These genotypes were tested with eight races of C. lindemuthianum. The study detected 

significant QTLs for resistance in Pv01, Pv02 and Pv04, and minor QTL in Pv10 and Pv11 

(Zuiderveen et al., 2016). Recently, a GWAS was performed, and identified NBS-LRR genes 

related to anthracnose and common bean bacterial blight (CBB) caused by Xanthomonas 

axonopodis pv. phaseoli (Xap) (Wu et al., 2017). One of the objectives of this study was to 

develop SSR markers around these pathogen resistant genes. The study found not only previous 

reported associated regions but also new regions of resistance for both Anthracnose and CBB. 

Nine resistant loci for anthracnose and seven for CBB were detected. (Wu et al., 2017).  

For GWAS, multiple models are tested (Table 3). The Naive general linear model 

without correction of structure; principal component analysis (PCA), which is a general linear 

model with fixed effects to control population structure (Yu et al., 2006); family relatedness is 

controlled by the Efficient mixed model analysis (EMMA) algorithm; and the Mixed model 

(MM) that control both relatedness and population structure.  

Table 3. Statistical models used to test for trait-marker associations through genome association 

and prediction integrated tool (GAPIT) package in R (Mamidi et al., 2011). 

Model Linear regression equation Information captured in the model 
Naive y = Xα + ε† y is related to X, without correction for structure 

PCA y = Xα + Pβ + ε y is related to X, with correction for structure 

EMMA y = Xα + Ku + ε y is related to X, with correction for kinship 

MM y = Xα + Pβ + Ku + ε y is related to X, with correction structure and kinship 

†y is phenotype, X is the fixed effect of the SNP; P is the fixed effect of the structure (from PCA matrix); 

K is the random effect of kinship; and ε is the error term. 
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Since the germplasm from Guatemala could represent a potential source of resistance to 

C. lindemuthianum, the causal agent of anthracnose, which is one of the most devastating 

diseases for common bean worldwide, and is necessary to know the current diversity of the 

pathogen in Guatemala to the develop resistant cultivars against the disease.   

The objectives of this research were: 

1) To identify the most predominant races of C. lindemuthianum (Sacc. and Magnus) 

Briosi and Cavara present in the Guatemalan highlands.  

2) To evaluate the climbing bean collection from Guatemala for resistance to anthracnose 

races from both Guatemala and North Dakota.  

3) To identify genomic regions associated with anthracnose resistance using a GWAS 

approach. 
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MATERIAL AND METHODS 

Plant material 

To determine C. lindemuthianum races from Guatemala, the standard set of 12 race 

differentials was used (Table 1), (Pastor Corrales, 1991). Also, in order to rescue the pathogen 

from the samples with infected tissue, common bean seedlings from the Andean gene pool 

(Slenderette and Mountaineer snap beans) and Middle-American gene pool (black beans Zorro, 

Cornell 49242 and Black Knight, small red bean Merlot and navy bean Michelite) were used. 

Additionally, other sources of resistance were evaluated in the study: Amendoim Cavalo, AND 

277, Jalo Vermelho, Jalo Listras Pretas, Pitanga, Corinthiano, Paloma, Jalo Pintado 2, Perla and 

BGF20 (A. 5). 

The climbing bean collection from ICTA in Guatemala was used to identify potential 

accession with resistance to anthracnose (Orellana et al., 2006). From a total 604 accessions 

containing three different species P.vulgaris, P. dumosus, and P. coccineus, 369 accessions of 

P.vulgaris were used in this study. Accessions with differences in color and shape within the 

same accession were discarded to avoid inconsistency in the results, accessions utilized were 

bulked increased.  

Field sampling of C. lindemuthianum infected tissue in common bean in the highlands of 

Guatemala 

During the 2016 growing season from July to November, field sampling was conducted 

in the following departments of the highlands from Guatemala: Quetzaltenango, San Marcos, 

Huehuetenango, Quiche, and Totonicapán. These departments are considered the main areas of 

production and diversity for Guatemalan climbing beans (Beebe, 2007). Infected tissue with 

symptoms of the pathogen in leaves, stems, and pods of climbing beans and/or bush beans were 

collected in small farms or in the wild areas.  A total of 132 samples, were collected at 
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Chimaltenango (28), Huehuetenango (18), Quetzaltenango (57), Quiche (4), San Marcos (4), and 

Totonicapán (21) (Table A. 1). Each sample was wrapped in a paper towel and placed into a 

paper bag or envelope with the corresponding label. The label contained the date, name of 

farmer, type of bean, country, location, GPS coordinates, and name of collector (Table A. 2). 

Samples were dried using paper towels according to the protocol described by Castellanos et al., 

(2015).  

Pathogen isolation 

Anthracnose samples from Guatemala were sent to USDA-ARS Beltsville-MD (Dr. 

Pastor-Corrales) with previous approval of the Animal and Plant Health Inspection Service 

(APHIS). A Plant Protection and Quarantine (PPQ) form 599 was requested to authorize the 

shipment of the pathogen. The isolates were evaluated at USDA-ARS Beltsville because the 

laboratory is authorized to work with common bean biological materials (C. lindemuthianum, 

Phaeoisoriopsis griseola, Pseudomonas syringae pv phaseolicola, Uromyces appendiculatus var 

appendiculatus, Xanthomonas axonopodis pv. phaseoli, Xanthomonas axonopodis pv. phaseoli-

fuscans) that can be considered a risk of accidental release or misuse. 

A total of 88% of samples from leaves or pods either had weak anthracnose symptoms or 

showed contamination with other fungi. The samples were processed as follows: The tissue 

infected with the disease was crushed in a beaker and 10 ml of a solution of 1 ml Tween 20 and 

one liter of sterilized water was added; the solution was mixed for 2 min using a small and 

sterilized spatula. After this step, plants from different genotypes representing both gene pools 

(Slenderette, Merlot, Zorro, Cornell 49242, Michelite, Mountaineer White Half Runner, and 

Black Knight) were inoculated using a cotton swab by rubbing the primary leaves of the plant 

with the inoculum solution. Plants were incubated in a humidity chamber with 80% humidity at 
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24℃ for 2 days and then placed in a greenhouse bench. A week after the inoculation, susceptible 

plants showed the typical anthracnose symptoms in leaves and stems. Infected leaves from these 

plants were collected (Castellanos et al., 2015). 

Common bean tissue samples collected were surface sterilized by soaking the samples for 

one minute in a 10% bleach solution, using household bleach (5.25% NaOCl) to eliminate other 

undesirable microorganisms. The samples were rinsed three times in sterile distilled water 

(Castellanos et al., 2015). Tissue showing symptoms of C. lindemuthianum was crushed, and 

placed on potato dextrose agar (PDA, Merck ®); the PDA was prepared using 39g L-1 distilled 

water and 10% streptomycin; or in APDA (Acidified PDA) media (25.6g of PDA, and 14 drops 

of lactic acid 50%/ liter distilled water) (M. Romberg, Pers. Comm., 2017). The plates were 

incubated for 4 to 5 days in the dark at 22℃. Hyphal tip or single spore isolation methods were 

used to stablish a pure culture of the pathogen (Castellanos et al., 2015).  

Host inoculation  

After obtaining the mycelia and/or inoculum of C. lindemuthianum, the isolations were 

placed into APDA media. Sterilized bean leaves were placed onto the growth media. These 

leaves were collected from 15-day-old plants of any genotype of common bean, but without any 

previous fungicides application, in order to enhance the sporulation of the pathogen (Castellanos 

et al., 2015). Agar plugs that contained the C. lindemuthianum were placed into petri dishes. 

Sporulation was observed after 14 days of incubation at 22℃ in the dark. Twelve differential 

lines for race identification (Table 1) were planted, in trays (25 cm x 50 cm) containing 

Promix®, until they presented their first fully-expanded trifoliate leaf (growth stage V1). 

Inoculum was obtained by the following protocol: sterilized distilled water was added into the 

APDA petri dish containing the pathogen sporulation onto the sterilized bean leaves, media was 



 

22 

 

scraped on the surface with a spatula. The suspension was filtered through a sterilized gauze to 

separate unwanted particles (sterilized leaf and/or APDA residues) from the conidia; then, the 

suspension was collected in a sterilized beaker (Castellanos et al., 2015). A hemocytometer was 

used to count conidia according to a previous described protocol (Bastidas, 2017) and the 

concentration was adjusted to 1.2x106 conidia mL-1, and a portion of the suspension was poured 

into a 250-mL Erlenmeyer flask. The flask was connected to a DeVilbiss nebulizer (or airbrush) 

and to a compressor. Then plants were inoculated spraying a suspension of C. lindemuthianum 

onto the leaves and stems of seedling plants until the inoculum ran-off. The experiment was 

conducted as a completely randomized design where four plants (in the case of the Guatemalan 

climbing bean germplasm) per in three replicates cultivar were inoculated. For the differential 

cultivars, five plants per cultivar were used.  The plants were maintained under high humidity 

(>80%) in a humidity chamber for a minimum of 48hours, the range is 48 to 72 hours. Then the 

plants were moved to a greenhouse bench and grown at 24-30°C, and symptoms of anthracnose 

were observed on susceptible plants 8-10 days after inoculation. Ten days after of inoculation, 

disease severity was rated using the standard visual scale (1-9) for disease severity (Table 4) 

(Van Schoohoven A., and M.A. Pastor-Corrales. 1987).  After rating the disease severity, a race 

designation number was assigned for each race of the pathogen determined by adding the binary 

numbers of each differential that showed susceptibility score between 4 and 9, (Table 1). 

Additionally, different sources of resistance to anthracnose from the Andean gene pool 

were evaluated (Amendoim Cavalo, AND 277, Jalo Vermelho, Jalo Listras Pretas, Pitanga, 

Corinthiano, Paloma, Jalo Pintado 2, Perla and BGF20), using C.lindemuthianum races 556 and 

3981 found in this study. These races where selected for this evaluation since they also affected 

differential lines containing genes from the Andean pool, and because this evaluation shows an 



 

23 

 

example of how useful races found in this study could be used to find resistance in other 

common bean lines. Spores of C. lindemuthianum race 556 and 3981 were increased and host 

inoculation and score evaluation was performed using the same protocol explained above (table 

A. 5) 

Table 4. Evaluation scale for screening for anthracnose. 

Score Phenotype Symptoms 

1 Resistant No visible 

2 Resistant Only a few lesions in primary leaf and/or veins.  

3 Resistant Very small lesions in primary leaf and/or veins. 

4-5 Susceptible Presence of several small lesions on the primary leaf 

veins and stems.  

6-7 Susceptible Numerous lesions on the leaf, stems, and evident 

necrotic lesions  

8 Susceptible Severe necrosis on leaves and/or stems. 

9 Susceptible Severe necrosis and plant death 

Modified from: Van Schoohoven A., and M.A. Pastor-Corrales. 1987 

Identification of resistant lines in the climbing bean collection from Guatemala. 

C. lindemuthianum race 73 has been reported in North America, South America, and 

Guatemala. For this reason, it does not represent a danger of introducing a new exotic race of 

anthracnose into the region. Race 73 was used to evaluate the collection of climbing beans at the 

NDSU greenhouse complex, with the objective of find resistance to this race and to use the 

resistance not only in breeding programs from Guatemala but elsewhere. Since the most frequent 

race reported in North Dakota is race 73, resistance found could be used in the bean breeding 

program at NDSU. A completely randomized design with three repetitions per cultivar of the 

experiment were used for this evaluation. Five seedlings for each accession from Guatemala 

were planted in a tray (25 cm x 50 cm) containing Promix ®, the plants grown at 22°C with 
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light. Check used for susceptibility was Michelite, and the check for resistance were G2333 

(Pastor Corrales, 1991) and Montcalm (Michigan Crop, 2017). When plants presented their first 

fully expanded primary leaf (growth stage V1), the inoculum of race 73 was provided by the 

pulse pathology lab at NDSU with the required concentration of 1.2 x 106 conidia mL-1. Then the 

same protocol described above for inoculation of the pathogen and scoring for disease severity 

was used.  

Genotypic data 

SNPs were provided by the Dry Bean Genomics Lab at NDSU. A set of 102,000 SNPs 

were obtained using genotype by sequencing (GBS) (He et al. 2014), using the improved method 

developed and described by Schröder et al (2015). Sequences were aligned to the reference 

genome of common bean G19833 (Schmutz et al. 2014), and SNPs were called using GATK 

(McKenna et al. 2010). The total of accessions used for genotyping were 369. Markers were 

filtered for more than 50% missing data and then imputed using fastPHASE 1.3 (Scheet and 

Stephens, 2006). After filtering for more than 50% heterozygosity and 5% minor allele 

frequency, 78,754 SNPs remained (Tobar-Piñon et al, 2017).  

Statistical procedures and GWAS 

A statistical analysis was performed using SAS version 9.4 software, where the Least 

Square (LS) Means were calculated using the phenotypic data of the three replicates. The output 

data from the LS Means was used, continuous results used were the values that showed 

resistance (1-3 values) and susceptibility (4-9values).  Both the phenotypic and genotypic data 

were used in this study for GWAS, by using an R package called Genome Association and 

Prediction Integrated Tool (GAPIT) software (Zhang et al., 2010). R is an open source software 

used in statistical analysis, it provides extensive statistical analysis and graphical facilities 
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(http://www.r-project.org/). GAPIT uses mixed linear models (MLM) which incorporate fixed 

and random effects. The software uses several combinations of genotypic, phenotypic data, and 

external data obtained from kinship and PCA. For this study, genotypic data and matrices used 

were provided by Dry Bean Genomics Lab at NDSU. The hapmap used in this study, was also 

used for the study of Genetic Diversity of the Guatemalan Climbing Bean Collection performed 

by Tobar-Piñon, 2017. Multiple models were tested using R, structure fixed effect control model, 

relatedness random effect control model and also a mixed model to control both relatedness and 

population structure. Relatedness was calculated using EMMA and structure was calculated 

using principal components. The model with the lowest mean square deviation (MSD) was 

selected. The procedure for MSD is the following: first for each model all marker p-values were 

ranked from the smaller to the larger value, and then the calculations were done by using the 

formula, 𝑀𝑆𝐷 = {∑ [𝑝𝑖 − (𝑖/𝑛)2]𝑛
𝑖=𝑙 }/𝑛, where the rank number is designated as i, the 

probability of the ith ranked p-value is pi and n means the number of markers (Mamidi et al. 

2011). Significant SNP markers were defined using a permutation test and a cut-off p-value of 

0.1% in the normal distribution (Mamidi et al., 2014). A Manhattan plot was constructed and 

used to visualize the results. 

A logistic regression analysis to reconfirm significant associations using GenABEL 

software was performed. Logistic regression analysis is only based in two discrete values 

(dichotomous), binary values were used as follow: values with no symptoms (1 in the scale 

showed above) were scored as 0 and the other values (>1 that showed any symptom) were scored 

as 1. GenABEL software was used for this procedure, which is a fast tool for GWAS procedures 

and permits developing logistic regression analysis for qualitative traits. As other programs, 

GenABEL tests for association of single nucleotide polymorphisms (SNP) and phenotypes, and 

http://www.r-project.org/
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finally the software allows to visualize the results using graphical procedures (Zhang et al., 

2010).  

 The position of significant associations were compared with the common bean genome 

v2.1 (DOE-JGI and USDA-NIFA. 2017) to identify potential candidate genes. After comparing 

the significant SNPs with the genome annotation, candidate genes within 100 Kb (Moghadam et 

al., 2016) from the markers were selected, allowing insight into potential regions of interest. In 

addition, Jbrowse and Phtytozome were searched for information related to proteins involved in 

plant biological processes for the candidate genes selected (Goodstein et al. 2012).    

 Additionally, an effort to locate the physical position of the GWAS significant peak 

relative to the physical position of Co-5 and Co-6 genes, based on the sequence of markers 

linked to these genes was performed.  Markers previously reported (Table 2) linked to Co-5 and 

Co-6 genes were searched in PhaseolusGenes bean breeder’s molecular marker toolbox 

(http://phaseolusgenes.bioinformatics.ucdavis.edu/) and then marker’s  sequence (forward and 

reverse) was searched in Phtytozome (Goodstein et al. 2012; DOE-JGI and USDA-NIFA. 2017). 

The results allow to have an approximate physical position of genes, and then this position was 

compared with the position of the significant SNPs found in this study.     
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RESULTS 

Major objective of dry bean breeding programs around the world are to improve seed 

yield potential and the deployment of resistance genes to reduce yield loss due to diseases. 

During May, June and July of 2016, 369 climbing bean accessions were evaluated to identify 

resistant lines to different races of C. lindemuthianum, which is one of the most devastating 

pathogens affecting common bean worldwide.  

Furthermore, a race characterization of C. lindemuthianum in the Guatemalan highlands 

was conducted. The results of this study show the great degree of virulence diversity of the 

pathogen in Guatemala, and are a useful tool for developing resistant cultivars against the 

disease.   

Evaluation for resistance to race 73 of C. lindemuthianum in climbing bean germplasm 

from Guatemala 

Climbing bean accessions from Guatemala were evaluated for resistance using race 73 of 

C. lindemuthianum from North Dakota. Resistant checks for race 73, G2333 and Montcalm had 

an average score of 1 (no symptoms) and the susceptible check Michelite had the highest average 

value of 8 (susceptible). The LSM results (Table A. 3) indicate that 10% of 369 climbing bean 

accessions showed no symptoms and were classified as resistant. The mean was 3 (resistant), 

standard deviation was 1.48. The disease scores ranged from 1 and 8, and 56% of the population 

was rated between 2 and 3 (Table 4).  

GAPIT results using the quantitative scale were not different when compared to results 

obtained by using the binary scale in GenABEL (Table A. 4, Figure A. 1) software. Only the 

GAPIT results are described since continuous data also provided appropriate results. The 

genomic regions associated with anthracnose resistance were identified using a GWAS approach 

with GAPIT using four statistical models, PCA, EMMA, MM and Naïve (Mamidi et al., 2011). 
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Race 73 Anthracnose phenotypic data from 369 climbing bean accessions from Guatemala and 

the genotypic data with 78754 SNPs were used in the analysis. Four regression models were used 

to obtain QQ-plots generated by plotting observed –log10 P-value against expected –log10 P-

value (Lipka et al., 2012) (Figure 1). The model with the best mean square deviation (MSD) was 

selected according to Mamidi et al. (2011). The QQ-plots showed that MM and EMMA models 

are the closest to the regression line (Figure 1b, 1c), PC and Naïve models are separated of the 

regression line (Figure 1a, 1d). For all the QQ-plots, the model that fitted the best regression line 

for trait was EMMA and showed the lowest MSD value (Figure 1c).  

 

Figure 1. QQ-plots from 369 phenotypic data from climbing bean accession from Guatemala 

associated with 78754 SNP markers using anthracnose scores: a) PCA b) Mixed Model (MM) c) 

EMMA and d) Naïve.  

The results indicate that significant associations with resistance in the Guatemalan 

climbing bean panel to C. lindemuthianum race 73 exist on Pv07 (P≤0.001) (Table 5). In 

a) MSD=0.005577  b) MSD=7.11x10
-5

 

  

c) MSD=4.58x10
-5

 

  

d) MSD=0.009537 
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addition, another region is detected in Pv04 but at the 0.1 percentile (Figure 2). The Manhattan 

plots were graphed from the EMMA model, using –log10 of transformed P-values on the Y-axis 

against the X-axis which consisted in the physical position of the SNPs on the chromosome.  

Table 5. Top ten SNPs significantly associated, chromosome, position, significant P-values and 

R2 values per individual marker and grouped for the trait anthracnose on 369 climbing bean 

accessions from Guatemala, sorted by lowest P-value. 

SNP Chromosome Position P.value Individual R2 Grouped R2 

S07_8683756 7 8683756 6.28E-09 0.13  

S07_8726264 7 8726264 1.24E-08 0.12  

S07_8692719 7 8692719 1.42E-08 NA  

S07_8767491 7 8767491 1.69E-08 NA 0.16 

S07_8683594 7 8683594 2.38E-08 NA  

S07_8672434 7 8672434 2.54E-08 NA  

S07_9162644 7 9162644 5.64E-08 0.09  

S07_8874842 7 8874842 6.26E-08 0.11  

S07_8874881 7 8874881 7.80E-08 NA  

S07_8874790 7 8874790 8.42E-08 NA  

S04_527782 4 527782 2.37E-07 0.08  

S04_1022377 4 1022377 6.28E-06 0.06  

S04_1254784 4 1254784 1.57E-05 0.05 0.11 

S04_1327258 4 1327258 1.87E-05 0.05  

S04_1276626 4 1276626 2.88E-05 0.05  

S04_376239 4 376239 3.75E-05 NA  

S04_376230 4 376230 4.65E-05 NA  

S04_376249 4 376249 7.10E-05 NA  

S04_376227 4 376227 7.22E-05 NA  

S04_1327283 4 1327283 7.49E-05 NA  

NA: Not available 

Significant associations were found in the Manhattan plot on Pv07 (86.8 Mb) (Figure 2). 

Resistance genes and alleles Co-5 (Young et al, 1998; Vallejo and Kelly, 2009), Co-52 (Sousa et 

al, 2014), and Co-6 (Schwartz et al, 1982; Campa et al, 2007) were previously reported and were 

located in Pv07.  
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Figure 2. Manhattan plot using Efficient mixed model analysis (EMMA) for C. lindemuthianum 

resistance to race 73. The green line is the cut-off value to call a peak significant. SNPs above 

the 0.01 percentile are highlighted in red, while those above 0.1 are highlighted in blue above the 

yellow line. Numbers below the Manhattan plot represent chromosomes.  

 Using the position of the significant SNPs (Table5), and comparing the common bean 

genome in Jbrowse on Phytozome v 12 (Goodstein et al. 2012; DOE-JGI and USDA-NIFA. 

2017), potential candidate genes in the region were selected. Candidate genes found were 

Phvul.007G086400 for SNP S07_8726264, Phvul.007G087200 for S07_8874842 and 

Phvul.007G085900 for SNP S07_8692719.  

Phvul.007G086400 is a Laccase/Diphenol oxidase family protein ATLAC15, LAC15, 

TT10 (https://phytozome.jgi.doe.gov/pz/portal.html#), which is a gene involved in the 

lignification process of cell walls (Mayer, A.M. and Staples, R.C., 2002; Wang et al, 2015), a 

possible method of defense against C. lindemuthianum. In addition, this marker is located only 

7.3 Kb from a leucine-rich repeat (LRR) and nucleotide binding APAF-1 (apoptotic protease-

activating factor-1), R proteins and CED-4 (Caenorhabditis elegans death-4 protein) NB-ARC 

domain located in Phvul.007G086300 (https://phytozome.jgi.doe.gov/pz/portal.html#). 

Phvul.007G087200 is a disease resistance family protein/LRR family protein 

(https://phytozome.jgi.doe.gov/pz/portal.html#) and Phvul.007G085900 is a serine protease 

inhibitor, Kazal-type family protein, (https://phytozome.jgi.doe.gov/pz/portal.html#) which is a 
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gene involved in the Serine-protease inhibitor, known to be involved in defense process against 

pathogens (Tian et al, 2004) and is only ~26Kb away from Phvul.007G086300.  

 In Pv04 major resistant genes have been reported, Co-3, Co-33, and Co-35 (Young and 

Kelly, 1996; Kelly and Vallejo, 2004; Campa et al., 2017). For Pv04 (5.2Mb), in the SNP 

position 527,782, the candidate gene chosen based on the proximity of significant SNPs is gene 

Phvul.004G007750. This gene is ~40Kb apart from an LRR and NB-ARC cluster 

(https://phytozome.jgi.doe.gov/pz/portal.html#).  

Marker’s sequences found in PhaseolusGenes bean breeder’s molecular marker toolbox 

(http://phaseolusgenes.bioinformatics.ucdavis.edu/) used to locate the physical position were 

g1233 for Co-52 (7.8 Mb) and SCAR AZ20 for Co-6 (9.4Mb) genes. The significant association 

in this study on Pv07 is located approximately in 8.7 Mb, so the relative position of the 

significant peak is 0.9 Mb upstream from Co-52 and is 0.7Mb upstream from Co-6.     

Race characterization of C. lindemuthianum in the Guatemalan highlands 

From 132 samples with symptoms of anthracnose collected in the highlands of 

Guatemala during 2016, 88% could not be recovered, due the extent of the tissue infected with 

the pathogen. Only 16 samples produced viable mycelium to be characterized (Table 6), 

according the methodology explained previously. A total of 6 races of C. lindemuthianum were 

identified (Table 7). 
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Table 6. Recovered isolates used for race characterization  

Isolate ID Origin of isolate State Host plant in field 
*GH isolation 

from 

CLQ-1-2 ICTA  Quetzaltenango L-6 (ICTA) Zorro 

CLQ-7-1 ICTA  Quetzaltenango L-316 (ICTA) MHWR 

CLQ-8-1 ICTA  Quetzaltenango L-92 (ICTA) Zorro 

CLQ-11-1 ICTA  Quetzaltenango L-51 (ICTA) Zorro 

CLQ-30-4 Cajolá  Quetzaltenango Hunapu (ICTA) Black Knight 

CLC-4-1 Acatenango  Chimaltenango Climbing Bean (farmer) Zorro 

CLC-5-1 San Andres Itzapa  Chimaltenango Climbing Bean (farmer) Merlot 

CLC-6-2 San Andres Itzapa  Chimaltenango Climbing Bean (farmer) Merlot 

CLC-13-1 Chimaltenango  Chimaltenango Climbing Bean (farmer) Cornell  49242 

CLC-18-2 Patzicía  Chimaltenango Climbing Bean (farmer) Cornell  49242 

CLC-19-1 Patzcía  Chimaltenango Bush Bean (farmer) Slenderette 

CLC-20-3 Patzicía  Chimaltenango Bush Bean (farmer) Zorro 

CLC-26-2 Chimaltenango  Chimaltenango Climbing Bean (farmer) Slenderette 

CLC-28-1 Chimaltenango  Chimaltenango Climbing Bean (farmer) Slenderette 

CLH-3-1 Aguacatan  Huehuetenango Guate 1026 (ICTA) Zorro 

CLH-5-3 Aguacatan  Huehuetenango Guate 1026(ICTA) Zorro 

*GH=Greenhouse 

ICTA= Experimental station of ICTA (Institute of Agricultural Science and Technology) 
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Table 7. Reaction of common bean differential lines to 16 isolates of Colletotrichum lindemuthianum from Guatemala. 

     
 Reaction of common bean differentials to isolates of C. 

lindemuthianum 

Differentials 

Cultivars  

Gene 

Pool 

Anthracnose 

Resistant 

Gene 

Linkage 

Group of 

Phaseolus 

vulgaris 

Binary 

code** 

C
L

C
-1

3
-1

 

C
L

Q
-1

-2
 

C
L

Q
-7

-1
 

C
L

Q
-8

-1
 

C
L

Q
-1

1
-1

 

C
L

H
-3

-1
 

C
L

H
-5

-3
 

C
L

C
-1

8
-2

 

C
L

C
-2

6
-2

 

C
L

C
-2

0
-3

 

C
L

C
-2

8
-1

 

C
L

Q
-3

0
-4

 

C
L

C
-1

9
-1

 

C
L

C
-5

-1
 

C
L

C
-6

-2
 

C
L

C
-4

-1
 

Michelite MA Co-11 Pv03 1 1 9 9 9 9 9 9 9 9 9 9 9 9 9 9 5 

MDRK* A Co-1 Pv01 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Perry 

Marrow 
A Co-13 Pv01 4 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 6 

Cornell 

49242 
MA Co-2 Pv11 8 9 9 9 9 9 9 9 9 9 9 9 1 9 9 9 9 

Widusa A Co-15 Pv01 16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Kaboon A Co-12 Pv01 32 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Mexico 222 MA Co-3 Pv04 64 1 7 7 7 7 7 7 7 7 7 7 1 7 7 7 3 

PI  20762 MA Co-33, Co-43 Pv04, 08 128 1 1 1 1 1 1 1 1 1 1 1 7 1 8 8 9 

TO MA Co-4 Pv08 256 1 1 1 1 1 1 1 1 1 1 1 9 1 9 9 9 

TU MA Co-5 Pv07 512 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 

AB 136 MA Co-6, co-8 Pv07, NA 1024 1 1 1 1 1 1 1 1 1 1 1 1 8    8 8 7 

G2333 MA 
Co-42, Co-35, 

Co-52 

Pv04,08, 

07 
2048 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5 

 
Race  556 585 585 585 585 585 585 585 585 585 585 585 1609 1993 1993 3981 

 

*Differential Andean cultivar MDRK=Michigan Dark Red Kidney 

**Binary value: The designation of the race results from the addition of the binary value of each susceptible differential 

Rating (1-3) resistant reaction; rating (4-9) susceptible reaction 

NA: Not available 

MA: Mesoamerican gene pool; A: Andean gene pool 
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A total of six races were identified: 556, 585, 897, 1609, 1993, and 3981. Race 556 was 

virulent on differential lines Perry Marrow and Kaboon, which contains Co-12, Co-13, Co-2 and 

Co-5 resistance genes, from the Andean gene pool.  

Race 585 was virulent to the Co-2, Co-3, Co-5, and Co-11 resistance genes. Race 897 

was virulent on differential cultivars containing the Co-33, Co-4, Co-43, Co-5 and Co-11 genes 

and alleles. Race 1609 was virulent to Co-6 and Co-8 and the same Co genes overcome by race 

585. Resistant genes Co-35, Co-42, and Co-52, found in G2333 were effective against race 1993, 

this race overcome genes Co-2, Co-3, Co-33, Co-4, Co-43, Co-5, Co-6, co-8 and Co-11. Race 

3981 was the most virulent among all six races, overcoming almost all the Mesoamerican 

resistant genes. The difference between this race and the previous one was that race 3981 was 

also virulent to Perry Marrow, which contains Co-13, and G2333, which contains Co-35, Co-42, 

and Co-52. Additionally, race 3981 was virulent to newer sources of resistance recently reported: 

Amendoin Cavalo, Paloma and Perla (Table A. 5) (de Lima Castro et al, 2017; Nanami et al, 

2017). However, race 3981 was not virulent to Mexico 222, containing Co-3 (Table 7).  

 With 10 samples identified with the same race based on the reaction of the differential 

lines, the most common race among all isolates was race 585. This race was found at 

Quetzaltenango at the ICTA research station, Chimaltenango in Patzicia and Chimaltenango 

counties, and Huehuetenango in Aguacatan village. However, most of the diversity of C. 

lindemuthianum was found in Chimaltenango state. Five of six races were present just in this 

department.   
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DISCUSSION 

Evaluation for resistance to race 73 of C. lindemuthianum in climbing bean germplasm 

from Guatemala 

Race 73 is one of the most common races of C. lindemuthianum worldwide. Moreover, 

several exotic sources of resistance have been found in the nature, i.e. G2333, which was 

collected in the state of Chiapas in the south of Mexico, and was locally known as Colorado de 

Teopisca (Pastor-Corrales et al., 1994). Amendoim Cavalo, an Andean bean collected in State of 

Santa Catarina in Brazil (Nanami et al, 2017), has been used for introgression of resistance in 

common bean cultivars and used as a commercial cultivar. Moreover, the population of climbing 

beans from Guatemala had shown resistance to natural pressure of the disease (Orellana et al., 

2006). Our research suggests that climbing bean germplasm collected in highlands from 

Guatemala is a good potential source of resistance against race 73. Ten percent of the population 

is symptomless (score of 1) and 56% of the population is resistant (scored of 2-3).  

However, GWAS results for resistance of the climbing bean germplasm from Guatemala 

showed that the most significant chromosomal region involved in the resistance to C. 

lindemuthianum is located in Pv07. Genes Co-5, Co-52 and Co-6 (Table 7) on Pv07 have been 

previously reported to confer resistance to race 73 of C. lindemuthianum (Fouilloux, 1976; 

Trabanco et al., 2015; Campa et al, 2005; Gonçalves-Vidiga et al., 2003; Young and Kelly, 1996; 

Vallejo and Kelly, 2009; Alzate-Marin et al., 2009). This gene cluster has shown resistance to 

reported races of the pathogen including races 3, 6,7,31, 38, 39, 102 and 449 (Campa et al., 

2009). Molecular markers have been developed and linked to some of these genes. Moreover, 

markers already identified, could be used to screen the resistant accessions found in the climbing 

bean collection from Guatemala in order to compare genomic regions related with resistance to 

anthracnose of this research with any Co resistance genes previously reported. Some examples of 
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markers previously reported are, the SCAR marker SAB3400 (Vallejo and Kelly, 2001) which is 

linked to the Co-5 locus at a distance of 12.98 cM, on Pv07 (Campa et al., 2005).  g12333250, an 

STS marker, is in coupling phase at a distance of 1.2cM developed for the Co-52 gene, which has 

been reported in Pv07 (Sousa et al., 2014). For the Co-6 gene, a random amplified polymorphic 

DNA (RAPD) marker, OPAZ20940, linked in coupling phase at 7.1 cM, has also been reported 

(Alzate-Marin et al., 2000).  

Other significant markers for resistance to race 73 of C. lindemuthianum were found in 

Pv04. The Co-3 cluster of resistance genes and the recent genes Co-15 and Co-16 are located in 

Pv04 (Zuiderveen et al., 2016). Many molecular markers are linked to these genes, some 

examples are: gene Co-3 present in Mexico 222 has an SSR marker, PV-ctt001, at 11 cM 

(Rodriguez-Suarez et al., 2008; Boersma et al., 2013).  However, Co-33 has been associated with 

resistance to several races including race 73 and SCAR marker SAH181100, is 3.7 cM apart of 

Co-33 (Mendez-Vigo et al., 2005; Boersma et al., 2013); a sequence-tagged site (STS) marker, 

g2685, is linked in coupling phase at 5.6 cM from the Co-15 locus (Sousa et al., 2015); similarly, 

STS, g2467900/800, is in coupling phase at 4.8 cM from Co-16 (Coimbra-Gonçalves et al., 2016). 

 Furthermore, in this study an effort to locate the map physical position of GWAS 

significant peak relative to the physical position of Co-52 and Co-6 genes, based on the sequence 

of markers g1233, g2531 and SCAR AZ20  linked to these genes was performed. However, 

significant GWAS association (8.7Mb) was located between genes Co-52 (7.8 Mb) and Co-6 

(9.4Mb). Since there is no clear association between the significant peak and these genes 

previously reported, further study needs to be done to finely map the gene of interest and confirm 

if the region found is either Co-5 and/or Co-6 genes, or a new gene is conferring resistance in the 

climbing bean germplasm to C. lindemuthianum race 73.   
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Previous research has indicated that the resistance and susceptibility in the host, or 

virulence and avirulence of C. lindemuthianum are controlled by major genes (Beebe and Pastor-

Corrales, 1991). In this study, four candidate genes were chosen for the regions in Pv07 and 

Pv04, based on their proximity to the significant SNP markers. A Laccase/Diphenol oxidase 

family protein, involved in the lignification process of cell walls (Mayer, A.M. and Staples, R.C., 

2002; Wang et al, 2015). This protein activates the response of defense and increases the 

resistance against hemibiotrophic fungi, enhancing the cell wall resistance against the 

mechanical pressure of the specialized organ (appresoria) used to infect the host (Bellincampi et 

al, 2014). This type of resistance has been reported in alfalfa (Medicago sativa L.) as a defense 

response against Colletotrichum trifolii, the causal agent of alfalfa anthracnose (Gallego-Giraldo 

et al., 2011). Additionally, our candidate gene is 7.3 Kb from a plant disease resistance (R) gene, 

LRR and NB-ARC reported by Meziadi et al, 2015. The second candidate gene is located at 9 

Kb from the marker S07_8874842, it is a cluster of disease resistance family protein/LRR family 

protein containing R genes. R genes of this type have been identified in many plant species, and 

have been reported its effectiveness against pathogens (Meziadi et al., 2016). When NB-ARC 

proteins recognize pathogen effectors, a signal activates immunity systems in resistant genotypes 

(Elmore et al., 2011) 

The third candidate gene on Pv07, a serine protease inhibitor, Kazal-type family protein 

is involved in defense process against pathogens. This defense process has been reported in the 

oomycete Phytophthora infestans which cause late blight in potato and tomato (Tian et al, 2004).  

On Pv04, the significant SNP is ~40Kb apart from the candidate gene; the candidate gene 

based on the proximity of the marker belongs to a cluster of disease resistance family 

protein/LRR family protein containing R genes.  
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The use of recombinant inbreed lines (RIL) populations or a F2 population is suggested 

in order to develop markers useful for MAS. SNPs considered as significant markers should to 

be developed, and tested as potential diagnostic markers for the significant regions on Pv07 and 

Pv04. A fine mapping of genomic regions showing resistance is also suggested, by using 

flanking markers linked to the gene of interest. Also, it is recommended to screen this germplasm 

against different races of C.lindemuthianum, to identify additional resistant lines and genomic 

regions associated with anthracnose resistance. The results obtained in this work are of great 

importance, since resistant accessions could be used to introgress resistance into lines of interest. 

In addition, since race Guatemala is a new source of diversity (Tobar-Piñon et al., 2017), new 

genes conferring resistance to other races of the pathogen could be discovered.   

Race characterization 

In this study, 6 races were characterized based on the response of the differential set, the 

most frequent among the isolates was race 585. All the isolates were virulent to the 

Mesoamerican differential cultivar TU. Michelite, Cornell 49242 and Mexico 222 also were 

affected by almost all races. The races identified displayed more Mesoamerican virulence genes 

than Andean virulence genes. Races 556 and 3981 showed compatibility with Andean genes in 

locus Co-1 (Table 7). Previous studies have reported races 585 in Guatemala (Awale et al, 2007), 

1609 in Costa Rica (Mahuku et al, 2004), and 1993 in Costa Rica and Honduras (Mahuku et al, 

2004) (Balardin et al, 1997). However, races 556, 897 and 3981 have not been reported in 

Guatemala before. This could be probably because in previous studies the sampled area was 

different, the host or weather conditions were not appropriate for the disease to show enough 

symptoms at the sampling time, or because some races changed across time. These results 

respond to the geographic coevolution pattern where Middle American gene pool hosts are 
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mostly affected by C. lindemuthianum races that correspond to these genes, while Andean gene 

pool origin hosts are mainly affected by the pathogen that had coevolved in that specific region. 

It has been demonstrated that virulence of C. lindemuthianum is specific for each gene pool 

(Pastor-Corrales, 1996).  

A challenge in the bean-anthracnose patho-system are the existence of different races of 

the pathogen, which represent a threat for resistance breeding. Diversity of the pathogen is higher 

in Central America than in South and North America (Pastor-Corrales, 1996; Sicard et al., 1997; 

Balardin et al., 1997). This may result in the eventual breakdown of resistance in cultivars of the 

highlands of Guatemala.  

The identified races of the pathogen should be used to evaluate resistance in the climbing 

bean accessions from Guatemala or other accessions from dry bean breeding programs around 

the world, since the most effective and environmentally control approach for this disease is 

genetic resistance (Mohammed, 2013). Because, resistance genes for all known races of 

anthracnose exist and therefore gene pyramiding would help to obtain more durable resistance in 

dry bean cultivars against the pathogen (Mahuku et al, 2002).  Previous studies have evaluated 

the virulence patterns of the pathogen in Guatemala, and have suggested the pyramiding of Co-12 

and Co-42 genes from both gene pools (Awale et al, 2007). However, races 556 and 3981, found 

at one location in the highland represent a threat by overcoming the resistance of Co-12 and Co-

42. Race 3981, was also virulent to additional sources of resistance from the Andean gene pool 

that contain Co-13, Co-15, and the recent reported Co-Pa, Co-AC and Co-Pe genes. This virulent 

race could be used to search for new sources of resistance and test sources of resistance 

previously reported. 
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 Results suggest that cultivars and/or sources of resistance genes of Andean origin Co-1 

and Co-15, are needed to develop common bean cultivars with broad and durable resistance to C. 

lindemuthianum in the highlands of Guatemala or other regions. In addition, a confirmation of 

the virulence of each race reported is necessary and additional sampling is needed to evaluate 

possible changes and/ or new races, due the pathogen diversity in this region.  

This study contributes, knowledge regarding which resistance sources is needed to 

develop new climbing bean cultivars that will be resistant to C. lindemuthianum races found in 

Guatemala. Furthermore, the identification of races not previously reported are of great relevance 

to the common bean research community, since they could be used to detect new resistant genes 

in common bean lines of potential value to breeding programs.  
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Table A.1. Anthracnose sample identification code, location of sample, inoculation dates and monosporic culture information.  

Field ID 
Line (L) and/or 

name and/or specie 
State County/Locality  

Inoculation 

date/Status 

Screen 

through 

Date of 

isolated 

Monosporic 

culture 

CLC-1 Climbing CHIMALTENANGO Chimaltenango  6/09/17 Plant Failed   

CLC-2 Landrace CHIMALTENANGO Chimaltenango  Damaged       

CLC-3 Climbing CHIMALTENANGO Chimaltenango  Damaged       

CLC-4 Climbing CHIMALTENANGO Acatenango 5/19/17  Plant 6/01/17 Yes 

CLC-5 Climbing CHIMALTENANGO Sn Andrés Itzapa 5/22/17  Plant  60/1/17 Yes  

CLC-6 Climbing CHIMALTENANGO Sn Andrés Itzapa 5/22/17    Plant  6/01/17 Yes  

CLC-7 Climbing CHIMALTENANGO Chimaltenango  Damaged       

CLC-8 Landrace Climbing CHIMALTENANGO Chimaltenango 14/01/2017 Plant 25/01/2017 Failed 

CLC-9 Landrace Climbing CHIMALTENANGO Chimaltenango 14/01/2017 Plant Failed   

CLC-10 Climbing CHIMALTENANGO Chimaltenango 14/01/2017 Plant 25/01/2017 Failed  

CLC-11 Climbing CHIMALTENANGO Chimaltenango 14/01/2017 Plant Failed   

CLC-12 Landrace Climbing CHIMALTENANGO Chimaltenango 18/01/2017 Plant  Failed    

CLC-13 Landrace Climbing CHIMALTENANGO Chimaltenango 19/01/2017  Plate 6/01/17   Yes 

CLC-14 Climbing CHIMALTENANGO Chimaltenango 18/01/2017  Plant  Failed   

CLC-15 Climbing CHIMALTENANGO Chimaltenango 18/01/2017  Plant  Failed   

CLC-16 Climbing CHIMALTENANGO Chimaltenango 19/01/2017  Plate 6/01/17    

CLC-17 Landrace Climbing CHIMALTENANGO Chimaltenango 18/01/2017  Plant Failed    

CLC-18 Landrace Climbing CHIMALTENANGO Patzicia 18/01/2017  Plate 6/01/17 Yes 

CLC-19 Bushtype Landrace CHIMALTENANGO Patzicia 19/01/2017 Plate  6/01/17 Yes 

CLC-20 Bushtype Landrace CHIMALTENANGO Patzicia 18/01/2017 Plant 26/01/2017 Yes 

CLC-21 Climbing CHIMALTENANGO Chimaltenango 12/01/2017  Plant Failed    

CLC-22 Landrace Climbing CHIMALTENANGO Chimaltenango 12/01/2017  Plant Failed    

CLC-23 Climbing CHIMALTENANGO Chimaltenango 12/01/2017  Plant  Failed   

CLC-24 Climbing CHIMALTENANGO Chimaltenango 14/01/2017 Plant  Failed   

CLC-25 Climbing CHIMALTENANGO Chimaltenango 14/01/2017 Plant  Failed   
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Table A.1. Anthracnose sample identification code, location of sample, inoculation dates and monosporic culture information 

(continued) 

Field ID 
Line (L) and/or 

name and/or specie 
State County/Locality  

Inoculation 

date/Status 

Screen 

through 

Date of 

isolated 

Monosporic 

Culture  

CLC-26 Landrace Climbing CHIMALTENANGO Chimaltenango 14/01/2017 Plant 25/01/2007 Yes 

CLC-27 Climbing CHIMALTENANGO Chimaltenango 14/01/2017 Failed      

CLC-28 Landrace Climbing CHIMALTENANGO Chimaltenango  6/09/17 Plate 6/19/17 Yes 

CLH-1 Landrace HUEHUETENANGO Chiantla  Damaged       

CLH-2 hunapu HUEHUETENANGO Chiantla 6/19/17 Plant/plate Failed    

CLH-3 Guate 1026 HUEHUETENANGO aguacatan 12/01/2017 Plant 25/01/2017 Yes 

CLH-4 hunapu HUEHUETENANGO Chiantla 12/01/2017  Plant Failed   

CLH-5 Guate 1026 HUEHUETENANGO aguacatan 17/01/2017 Plate 6/19/17 Yes 

CLH-6 Guate 1026 HUEHUETENANGO aguacatan 17/01/2017 Plate  Failed   

CLH-7 Texel HUEHUETENANGO Quilinco, Chiantla 13/01/2017 Plate Failed    

CLH-8 Texel HUEHUETENANGO Quilinco, Chiantla 17/01/2017 Plate  Failed   

CLH-9 Landrace HUEHUETENANGO Chiantla  Damaged       

CLH-10 Landrace HUEHUETENANGO Quilinco, Chiantla Damaged        

CLH-11 coccineus HUEHUETENANGO Chiantla  Damaged       

CLH-12 coccineus HUEHUETENANGO Chiantla Damaged        

CLH-13 Landrace HUEHUETENANGO Chiantla Damaged        

CLH-14 Landrace HUEHUETENANGO Chiantla  Damaged       

CLH-15 Landrace HUEHUETENANGO Chiantla Damaged        

CLH-16 Labor Ovalle HUEHUETENANGO Chiantla Damaged        

CLH-17 hunapu HUEHUETENANGO Chiantla Damaged        

CLH-18 coccineus HUEHUETENANGO Chiantla 5/30/17  Plant/plate Failed   

CLQ-1 L-6 QUETZALTENANGO ICTA LOV 21/12/17 Plant 5/29/17 Yes 

CLQ-2 L-274 QUETZALTENANGO ICTA LOV 18/01/2017 Plant   Failed   

CLQ-3 L-223 QUETZALTENANGO ICTA LOV 18/01/2017 Plant  Failed   

CLQ-4 L-191 QUETZALTENANGO ICTA LOV 19/01/2017  Plant  Failed   

CLQ-5 L-116 QUETZALTENANGO ICTA LOV 19/01/2017  Plant  Failed   
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Table A.1. Anthracnose sample identification code, location of sample, inoculation dates and monosporic culture information 

(continued) 

Field ID 

Line (L) and/or 

name and/or specie State County/Locality  

Inoculation 

date/Status 

Screen 

through 

Date of 

isolated 

Monosporic 

culture 

CLQ-6 L-224 QUETZALTENANGO ICTA LOV Damaged        

CLQ-7 L-316 QUETZALTENANGO ICTA LOV 21/12/2016 Plant 21/12/2016 Yes 

CLQ-8 L-92   QUETZALTENANGO ICTA LOV 19/01/2017 Plate 26/01/2017 Yes  

CLQ-9 L-222 QUETZALTENANGO ICTA LOV 19/01/2017 Plant 26/01/2017 Failed  

CLQ-10 L-190  QUETZALTENANGO ICTA LOV 12/01/2017  Plant Failed   

CLQ-11 L-51  QUETZALTENANGO ICTA LOV 12/01/2017 Plant 25/01/2017 Yes  

CLQ-12 L-184  QUETZALTENANGO ICTA LOV 14/01/2017 Plant 25/01/2017  Failed  

CLQ-13 L-182  QUETZALTENANGO ICTA LOV 14/01/2017 Plant 25/01/2017  Failed  

CLQ-14 L-10  QUETZALTENANGO ICTA LOV 12/01/2017 Plant 25/01/2017 Failed   

CLQ-15 L-277  QUETZALTENANGO ICTA LOV 12/01/2017 Plant 25/01/2017 Failed   

CLQ-16 L-272  QUETZALTENANGO ICTA LOV 12/01/2017 Plant 25/01/2017 Failed   

CLQ-17 Martin QUETZALTENANGO Concepción 1/25/17   Plant Failed   

CLQ-18 Guate 1026 QUETZALTENANGO Concepción Damaged        

CLQ-19 Texel QUETZALTENANGO Concepción Damaged        

CLQ-20 Texel QUETZALTENANGO Concepción  Damaged       

CLQ-21 Valle Nuevo QUETZALTENANGO Concepción Damaged        

CLQ-22 Labor Ovalle QUETZALTENANGO Varsovia  6/12/17 Plant  Failed    

CLQ-23 Labor Ovalle QUETZALTENANGO Varsovia   6/12/17  Plant  Failed   

CLQ-24 Landrace QUETZALTENANGO Varsovia   6/12/17  Plant Failed    

CLQ-25 Landrace QUETZALTENANGO Concepción  5/17/17   Plant  Failed   

CLQ-26 Landrace QUETZALTENANGO Cajola 13/01/2017 Plate Failed    

CLQ-27 Landrace QUETZALTENANGO Cajola 17/01/2017 Plate  Failed   

CLQ-28 Landrace QUETZALTENANGO Cajola Damaged        

CLQ-29 Landrace QUETZALTENANGO Cajola Damaged        

CLQ-30 Hunapú QUETZALTENANGO Cajola 5/17/17  Plant 6/1/17 Yes  

CLQ-31 Landrace QUETZALTENANGO Cajola Damaged         
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Table A.1. Anthracnose sample identification code, location of sample, inoculation dates and monosporic culture information 

(continued) 

Field ID 

Line (L) and/or 

name and/or specie State County/Locality  

Inoculation 

date/Status 

Screen 

through 

Date of 

isolated 

Monosporic 

culture 

CLQ-32 Landrace QUETZALTENANGO Cajola  Damaged        

CLQ-33 Landrace QUETZALTENANGO Varsovia 6/7/17  Plant  Failed   

CLQ-34 Coccineus QUETZALTENANGO Varsovia Damaged         

CLQ-35 Coccineus QUETZALTENANGO Varsovia Damaged         

CLQ-36 Coccineus QUETZALTENANGO Varsovia 5/23/17  Plant/plate  Failed   

CLQ-37 Landrace QUETZALTENANGO Monrovia Damaged         

CLQ-38 Landrace QUETZALTENANGO Monrovia Damaged         

CLQ-39 Utatlán QUETZALTENANGO Monrovia Damaged         

CLQ-40 Valle Nuevo QUETZALTENANGO Monrovia Damaged         

CLQ-41 Texel QUETZALTENANGO Concepción Damaged         

CLQ-42 Texel QUETZALTENANGO Concepción Damaged         

CLQ-43 Utatlán QUETZALTENANGO Concepción Damaged         

CLQ-44 Labor Ovalle QUETZALTENANGO Concepción Damaged         

CLQ-45 Hunapú QUETZALTENANGO Concepción Damaged         

CLQ-46 Landrace QUETZALTENANGO Concepción Damaged         

CLQ-47 Landrace QUETZALTENANGO Concepción Damaged         

CLQ-48 Landrace QUETZALTENANGO Concepción Damaged         

CLQ-49 Landrace QUETZALTENANGO Concepción Damaged          

CLQ-50 Landrace QUETZALTENANGO Concepción Damaged          

CLQ-51 Labor Ovalle QUETZALTENANGO 

Barrio San 

Marcos, 

Concepción Damaged          

CLQ-52 Utatlán QUETZALTENANGO 

Barrio San 

Marcos, 

Concepción Damaged          
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Table A.1. Anthracnose sample identification code, location of sample, inoculation dates and monosporic culture information 

(continued) 

Field ID 

Line (L) and/or 

name and/or specie State County/Locality  

Inoculation 

date/Status 

Screen 

through 

Date of 

isolated 

Monosporic 

culture 

CLQ-53 Labor Ovalle QUETZALTENANGO 

Barrio San 

Marcos, 

Concepción Damaged          

CLQ-54 Labor Ovalle QUETZALTENANGO 

Barrio San 

Marcos, 

Concepción Damaged          

CLQ-55 Landrace QUETZALTENANGO 

Barrio San 

Marcos, 

Concepción 5/30/17   Plant  Failed   

CLQ-56 Landrace QUETZALTENANGO 

Barrio San 

Marcos, 

Concepción 6/9/17 Plant Failed   

CLQ-57 Labor Ovalle QUETZALTENANGO 

Barrio San 

Marcos, 

Concepción  Damaged         

CLQU-1 Landrace QUICHÉ Cunén 6/12/17  Plant/plate Failed   

CLQU-2 Landrace QUICHÉ Cunén 5/24/17  Plant/plate Failed   

CLQU-3 Landrace QUICHÉ Cunén 6/5/17  Plant/plate Failed   

CLQU-4 Landrace QUICHÉ Cunén  6/9/17 Plant/plate Failed   

CLSM-1 Hunapu SAN MARCOS comitancillo 5/17/17  Plant/plate Failed   

CLSM-2 Hunapu SAN MARCOS comitancillo Damaged        

CLSM-3 Hunapu SAN MARCOS comitancillo 6/12/17 Plant/plate Failed   

CLSM-4 Landrace SAN MARCOS 

Sn. Miguel 

Ixtahuacán  5/19/17 Plant/plate Failed   

CLT-1 Quiche TOTONICAPAN 

Sta. Maria 

chiquimula 19/01/2017 Plant/plate Failed   

CLT-2 Quiche TOTONICAPAN Momostenango Damaged        

CLT-3 Quiche TOTONICAPAN Momostenango 17/01/2017 plate x     
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Table A.1. Anthracnose sample identification code, location of sample, inoculation dates and monosporic culture information 

(continued) 

Field ID 

Line (L) and/or 

name and/or specie State County/Locality  

Inoculation 

date/Status 

Screen 

through 

Date of 

isolated 

Monosporic 

culture 

CLT-4 Quiche TOTONICAPAN 

Sta. Maria 

chiquimula 17/01/2017 Plant/plate Failed   

CLT-5 Altense TOTONICAPAN Momostenango  Damaged       

CLT-6 Landrace TOTONICAPAN Momostenango  5/24/17 Plant/plate Failed    

CLT-7 Landrace TOTONICAPAN Momostenango  Damaged       

CLT-8 utatlan TOTONICAPAN Momostenango Damaged        

CLT-9 utatlan TOTONICAPAN Momostenango Damaged        

CLT-10 Labor Ovalle TOTONICAPAN Momostenango Damaged        

CLT-11 Labor Ovalle TOTONICAPAN Momostenango  Damaged       

CLT-12 Labor Ovalle TOTONICAPAN Momostenango Damaged        

CLT-13 Landrace TOTONICAPAN Momostenango Damaged        

CLT-14 Landrace TOTONICAPAN Momostenango Damaged        

CLT-15 Quiche TOTONICAPAN Momostenango Damaged        

CLT-16 Landrace TOTONICAPAN 

Sta. Maria 

chiquimula 17/01/2017 Plant/plate Failed    

CLT-17 Guate 1026 TOTONICAPAN 

Sta. Maria 

chiquimula 13/01/2017 Plant/plate Failed   

CLT-18 Labor Ovalle TOTONICAPAN 

Sta. Maria 

chiquimula 5/31/17  Plant/plate Failed   

CLT-19 Labor Ovalle TOTONICAPAN 

Sta. Maria 

chiquimula  Damaged       

CLT-20 Labor Ovalle TOTONICAPAN 

Sta. Maria 

chiquimula 5/17/17  Plant Failed   

CLT-21 Guate 1026 TOTONICAPAN 

Sta. Maria 

chiquimula 6/5/17  Plant/plate Failed   
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Table A.2. Geographical position of Anthracnose samples collected at the western Guatemalan Highlands. 

Locality Producer Host plant N O MASL 

Santa María Chiquimula, Totonicapan. Placido Tzooy ICTA Quiché 15.02 -91.34 2,112 

Santa María Chiquimula, Totonicapan. Placido Tzooy ICTA Guate 1026 15.02 -91.34 2,112 

Chequemeyá, Sicalbé, Momostenango, Totonicapan. José Batén  ICTA Quiché 15.129117 -91.337145 1,891 

Panimachaj, Cunén, Quiche.   Landrace 15° 19' 41" 91° 02' 29.06" 2,185 

Chiantla, Huehuetenango. Isabel Lopéz Landrace 15° 23' 20.0" 91° 27' 11.6" 2,516 

ICTA Labor Ovalle, Quetzaltenango. Jessica Moscoso Landrace 14° 52' 12" 91° 30' 50"  2,380 

Taltimiche, Comitancillo, San Marcos. 

Leticia 

Crisostomo Hunapú  15° 05' 38.2" 91° 46' 48.1" 2,360 

Varsovia, Quetzaltenango. Alba Méndez Landrace 14° 53' 33.4" 91° 37' 51.9" 2,530 

Varsovia, Quetzaltenango. Alba Méndez Labor Ovalle 14° 53' 33.4" 91° 37' 51.9" 2,530 

Varsovia, Quetzaltenango. Alba Méndez Coccineus 14° 53' 33.4" 91° 37' 51.9" 2,530 

Zona 2 Cajola, Quetzaltenango. Micaela Landrace 14° 55' 32.8" 91° 36' 45.7" 2,398 

Cajola, Quetzaltenango. Abigail Barrios Landrace 14° 56' 08.3" 91° 36' 43.7" NA  

Cajola, Quetzaltenango. Aurelio Lopéz Landrace 14° 55' 47.7" 91° 35' 54.4" 2,560 

Cajola, Quetzaltenango. Aurelio Lopéz Hunapú  14° 55' 47.7" 91° 55' 47.7" 2,561 

Sicalbé, Momostenango, Totonicapan. Tomás Argueta Labor Ovalle 15° 09' 02" 91° 21' 03.7" 1,815 

Palca, Miomostenango, Totonicapan. José Utatlán 15° 07' 44.6" 91° 20' 15.0" 1,900 

Choacorral 1, Santa María Chiquimula, 

Totonicapan. Juan Lux Castro Labor Ovalle 15.030217 -91.283191 2,063 

Choacorral 1, Santa María Chiquimula, 

Totonicapan. Marcos Lux  Landrace Blanco 15.030217 -91.283191 2,063 

Monrrovia, Quetzaltenango. Gladys Landrace 14° 54' 44.2" 91° 37' 58.8" 2,535 

Monrrovia, Quetzaltenango. Gladys 

Landrace Valle 

nuevo 14° 54' 44.2" 91° 37' 58.8" 2,535 

Monrrovia, Quetzaltenango. Gladys Utatlán 14° 54' 44.2" 91° 37' 58.8" 2,535 

NA: Not available 
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Table A.2. Geographical position of Anthracnose samples collected at the western Guatemalan Highlands (continued) 

Locality Producer Host plant N O MASL 

Barrio San Marcos, Concepción Chiquirichapa, 

Quetgo. 

Santos A. 

Esteban Landrace 14° 51' 30.2" 91° 37' 18.6" NA  

Barrio San Marcos, Concepción Chiquirichapa, 

Quetgo. 

Santos A. 

Esteban Landrace 14° 51' 30.2" 91° 37' 18.6" NA  

Quetzaltenango. Carlos Sanchéz Texel  14° 51' 51.1" 91° 36' 51.6" 2,440 

Quetzaltenango. Carlos Sanchéz Texel  14° 51' 51.1" 91° 36' 51.6" 2,440 

Quetzaltenango. Carlos Sanchéz Hunapú  14° 51' 51.1" 91° 36' 51.6" 2,442 

Quetzaltenango. Carlos Sanchéz 

Landrace Valle 

nuevo 14° 51' 51.1" 91° 36' 51.6" 2,443 

Quetzaltenango. Carlos Sanchéz Guate 1026 14° 51' 51.1" 91° 36' 51.6" 2,444 

Quetzaltenango. Carlos Sanchéz Martín 14° 51' 51.1" 91° 36' 51.6" 2,445 

NA: Not available 
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Table A.3. Climbing bean accession from Guatemala reaction (score 1-9) to race 73 of C. 

lindemuthianum, in three repetitions and the Least Square Means 

Genotype  

ID 

Average 

R1 

Average 

R2 

Average 

R3 

LSM 

estimate 

AT18419cmcm 3.0 1.0 1.0 1.7 

AT18430cmcm 4.0 3.8 2.3 3.3 

AT18432cmcm 2.3 1.3 1.3 1.6 

AT18435cmcma 1.5 2.0 1.5 1.7 

AT18439cmcm 1.8 3.3 3.3 2.8 

AT188422cmcm 4.0 3.3 2.0 3.1 

c12311cmcm 3.0 2.0 3.3 2.8 

c12312cmcm 3.0 4.0 2.5 3.2 

c1231cmcmcm 1.3 2.5 1.8 1.8 

c12332cmcm 2.8 1.8 1.5 2.0 

c1235cmcmcm 3.0 1.5 2.8 2.4 

c1831cmcmcm 5.0 3.8 3.8 4.2 

c273cm2cm12cm6cm 4.0 4.5 3.5 4.0 

c274cm6cm9cma5cm 7.7 5.5 5.3 6.1 

c274cm6cm9cmb5cm 7.8 5.0 5.0 5.9 

c495cm6cma12cm6cm 5.0 3.0 4.8 4.3 

c495cm6cmb3cm2cm 3.0 1.0 2.3 2.1 

c616cm6cm15cm6cm 1.3 1.0 1.0 1.1 

C61cm8cm9cmcm5 6.0 3.0 4.0 4.3 

c6910cm6cm9cm7cm 4.3 1.5 1.3 2.4 

c6911cm6cm6cm6cm 5.3 4.0 3.8 4.3 

c695cm6cm9cm5cm 2.5 2.3 3.0 2.6 

c696cm4cm3cm3cm 6.8 2.5 4.0 4.4 

c697cm4cm9cm3cm 6.3 3.8 4.0 4.7 

c698cm4cm12cm6cm 2.5 1.0 2.0 1.8 

c8110cm4cm2cm2cm 4.8 2.3 1.7 2.9 

c8116cm6cm7cmb2cm 2.5 1.0 2.0 1.8 

c8116cm6cm7cmb2cm.2 3.5 2.8 3.0 3.1 

c811cm6cm6cm3cm 5.0 4.0 2.8 3.9 

c813cma4cm6cm6cm 6.3 6.5 9.0 7.3 

c815cm6cm9cm6cm 1.0 1.7 2.5 1.7 

c819cm6cm9cm5cm 3.0 3.0 3.5 3.2 

c8315cm6cma3cm3cm 4.5 2.0 3.0 3.2 

c8315cm6cmb5cm4cm 5.5 1.5 3.5 3.5 

c934cmb8cm3cm6cm 3.5 2.0 3.7 3.1 

chajmaquiaj40 6.0 6.3 5.3 5.9 
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Table A.3. Climbing bean accession from Guatemala reaction (score 1-9) to race 73 of C. 

lindemuthianum, in three repetitions and the Least Square Means (continued) 

Genotype  

ID 

Average 

R1 

Average 

R2 

Average 

R3 

LSM 

estimate 

frijolboloj 6.0 4.0 4.8 4.9 

frijolbonilla 3.8 3.5 5.3 4.2 

FrijolEnredo1 1.0 1.5 1.0 1.2 

G2333 1.0 1.0 1.0 1.0 

G6076 1.0 1.0 1.0 1.0 

guate1000 1.0 1.0 1.0 1.0 

guate1001 3.8 3.5 2.0 3.1 

guate1002 1.0 1.0 1.8 1.3 

guate1004 3.8 1.7 1.5 2.3 

guate1005 3.0 2.8 2.8 2.8 

guate1006 2.8 1.3 3.5 2.5 

guate1007 6.0 3.0 5.0 4.7 

guate10071 6.5 3.8 4.3 4.8 

guate1009 1.5 1.0 1.0 1.2 

guate1010 5.8 4.3 4.8 4.9 

guate1012 3.3 3.5 4.0 3.6 

guate1014 3.3 3.0 2.3 2.8 

guate1016 4.0 3.0 3.5 3.5 

guate1019 3.5 3.3 3.5 3.4 

guate1024 1.0 1.0 1.0 1.0 

guate1025 1.0 1.0 1.0 1.0 

guate1026 1.0 1.0 1.0 1.0 

guate10261 1.5 1.8 1.0 1.4 

guate1027 4.0 2.0 3.0 3.0 

guate1029 4.8 3.5 4.7 4.3 

guate1032 1.3 1.0 1.3 1.2 

guate1036 6.0 4.8 2.0 4.3 

guate1038 3.5 2.3 4.5 3.4 

guate1040 3.5 4.0 3.3 3.6 

guate1041 2.0 1.7 2.3 2.0 

guate1042 3.8 4.0 5.0 4.3 

guate1044 2.3 1.5 2.3 2.0 

guate1045 2.3 1.0 1.0 1.4 

guate1049 5.0 5.0 4.8 4.9 

guate1051 3.3 2.0 2.8 2.7 

guate1053 4.5 3.5 2.0 3.3 
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Table A.3. Climbing bean accession from Guatemala reaction (score 1-9) to race 73 of C. 

lindemuthianum, in three repetitions and the Least Square Means (continued) 

Genotype  

ID 

Average 

R1 

Average 

R2 

Average 

R3 

LSM 

estimate 

guate1055 4.8 3.3 3.0 3.7 

guate1059 1.0 1.0 1.0 1.0 

guate1063 1.0 1.0 1.0 1.0 

guate1064 2.5 2.5 1.8 2.3 

guate1066 5.0 2.5 1.5 3.0 

guate1067 1.3 1.0 1.0 1.1 

guate1068 1.0 1.0 1.0 1.0 

guate1069 3.8 6.0 2.5 4.1 

guate1071 1.5 1.0 1.0 1.2 

guate1073 4.5 3.8 3.8 4.0 

guate1074 4.8 3.0 3.5 3.8 

guate10764PM 2.0 1.5 1.5 1.7 

guate1077 2.3 2.3 2.0 2.2 

guate1078 4.0 2.3 3.8 3.3 

guate1079 1.5 1.0 1.0 1.2 

guate1080 2.3 3.0 2.8 2.7 

guate1081 2.7 3.5 3.5 3.2 

guate1082 1.8 1.0 2.3 1.7 

guate1084 5.0 4.0 4.3 4.4 

guate1088 2.5 1.3 2.5 2.1 

guate1089 1.0 1.0 1.0 1.0 

guate10903PM 1.0 1.5 2.0 1.5 

guate1091 4.5 2.0 2.0 2.8 

guate1098 4.8 3.7 4.0 4.1 

guate1100 5.3 5.5 4.8 5.2 

guate1104 1.0 1.8 1.5 1.4 

guate1105 4.0 2.8 4.0 3.6 

guate1106 1.3 1.0 1.0 1.1 

guate1107 3.8 2.8 5.0 3.8 

guate1109 1.3 1.0 1.0 1.1 

guate1112 1.0 1.0 1.0 1.0 

guate1115 1.0 1.0 1.0 1.0 

guate1117 4.0 6.0 2.0 4.0 

guate1118 1.8 2.0 4.0 2.6 

guate1121 4.3 2.0 3.5 3.3 

guate11242 3.8 4.5 3.0 3.8 

 



 

63 
 

Table A.3. Climbing bean accession from Guatemala reaction (score 1-9) to race 73 of C. 

lindemuthianum, in three repetitions and the Least Square Means (continued) 

Genotype  

ID 

Average 

R1 

Average 

R2 

Average 

R3 

LSM 

estimate 

guate1125 1.0 1.0 1.0 3.8 

guate1126 4.8 2.5 2.5 1.0 

guate1127 5.0 3.5 3.0 3.3 

guate1132 2.0 1.0 1.0 3.8 

guate1132PMB 2.0 1.0 1.0 1.3 

guate1134 1.0 1.8 1.8 1.3 

guate1135 1.3 1.3 1.0 1.5 

guate1135-1 6.0 5.0 5.3 1.2 

guate1136 1.3 1.5 1.0 5.4 

guate1137 4.5 6.5 3.5 1.3 

guate1142 3.8 1.0 2.3 4.8 

guate1143 3.8 1.0 2.3 2.3 

guate1147 2.8 2.0 3.0 2.3 

guate1148 3.3 2.3 1.3 2.6 

guate1149 4.3 4.0 4.8 2.3 

guate1150 3.0 2.3 3.8 4.3 

guate1151 3.3 3.5 2.8 3.0 

guate1152 3.0 2.3 2.0 3.2 

guate1154 3.5 4.3 2.0 2.4 

guate1159 3.0 2.8 1.8 3.3 

guate1161 4.0 3.5 4.0 2.5 

guate1161.3PMA 1.5 2.0 1.5 3.8 

guate1163 1.0 1.0 1.0 1.7 

guate1164 1.0 4.0 3.0 1.0 

guate1165 8.5 5.0 3.3 2.7 

guate1166 8.0 5.3 8.3 5.6 

guate1167 2.5 1.0 3.3 7.2 

guate1168 1.0 1.8 2.5 2.3 

guate1170 5.0 3.0 4.0 1.8 

guate1172 1.0 1.3 2.5 4.0 

guate1173 2.5 2.0 2.5 1.6 

guate1175 2.8 2.3 3.3 2.3 

guate1177 1.0 1.0 1.0 2.8 

guate1179 1.5 1.0 1.0 1.0 

guate1182 7.3 4.8 5.3 1.2 

guate1183 3.0 2.0 2.0 5.8 
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Table A.3. Climbing bean accession from Guatemala reaction (score 1-9) to race 73 of C. 

lindemuthianum, in three repetitions and the Least Square Means (continued) 

Genotype  

ID 

Average 

R1 

Average 

R2 

Average 

R3 

LSM 

estimate 

guate1190 2.0 1.0 1.0 2.3 

guate1191 3.3 2.8 3.0 3.0 

guate1192 4.0 1.5 3.0 2.8 

guate1198 5.5 3.0 6.0 4.8 

guate1199 3.3 3.0 1.8 2.7 

guate1200 8.0 7.7 5.5 7.1 

guate1201 2.3 1.5 2.5 2.1 

guate1211 1.8 1.0 2.0 1.6 

guate1212 1.0 1.0 1.0 1.0 

guate1213 5.5 4.0 3.5 4.3 

guate1214 5.5 5.0 4.5 5.0 

guate1216 5.0 3.3 2.0 3.4 

guate1217 3.5 1.7 2.0 2.4 

guate1218 2.3 2.0 1.3 1.8 

guate1221 6.8 4.0 3.8 4.8 

guate1222 3.8 1.3 2.0 2.4 

guate1223 7.0 5.0 4.0 5.3 

guate1224 5.0 4.0 4.0 4.3 

guate1226 1.5 1.5 1.0 1.3 

guate1231 4.0 3.0 3.5 3.5 

guate1232 1.0 1.0 1.0 1.0 

guate1233 7.8 2.8 5.5 5.3 

guate1234 5.8 3.0 4.8 4.5 

guate1236 1.3 1.0 1.0 1.1 

guate1237 1.5 2.0 2.0 1.8 

guate1238 6.0 4.5 4.8 5.1 

guate1241 6.5 5.0 4.8 5.4 

guate1242 5.3 5.0 2.0 4.1 

guate1244 5.3 6.0 4.5 5.3 

guate1245 4.5 2.5 3.5 3.5 

guate1246 6.8 2.0 2.3 3.7 

guate1248 2.3 1.0 1.8 1.7 

guate1253 4.3 3.0 3.0 3.4 

guate12564PM 2.5 3.0 3.3 2.9 

guate1257 4.0 4.8 3.3 4.0 

guate12803PM 5.0 4.3 4.5 4.6 
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Table A.3. Climbing bean accession from Guatemala reaction (score 1-9) to race 73 of C. 

lindemuthianum, in three repetitions and the Least Square Means (continued) 

Genotype  

ID 

Average 

R1 

Average 

R2 

Average 

R3 

LSM 

estimate 

guate1317 5.0 4.0 5.0 4.7 

guate135 1.0 1.7 1.0 1.2 

guate1375 1.0 1.0 1.0 1.0 

guate1376 1.3 1.3 1.8 1.4 

guate1378 5.0 1.8 1.0 2.6 

guate138 8.3 9.0 4.7 7.3 

guate13853PMB 6.0 2.0 3.5 3.8 

guate1386 2.0 1.0 1.0 1.3 

guate1387 3.3 1.8 2.5 2.5 

guate1390 5.0 3.5 5.0 4.5 

guate1394 2.8 1.7 3.5 2.6 

guate1396 1.5 2.0 2.5 2.0 

guate1407 2.5 1.3 2.0 1.9 

guate1418 5.8 2.7 3.3 3.9 

guate1420 1.3 1.0 1.0 1.1 

guate1422 2.5 1.7 2.5 2.2 

guate1424 3.0 2.0 3.3 2.8 

guate1428 4.0 5.8 4.5 4.8 

guate1429 1.0 1.0 2.0 1.3 

guate143 9.0 7.0 6.0 7.3 

guate1430 4.3 2.0 2.0 4.6 

guate1434 5.0 4.5 4.3 1.6 

guate147 1.8 2.0 1.0 3.7 

guate148 2.5 5.5 3.0 5.0 

guate1511 4.8 5.3 5.0 3.3 

guate1514 2.5 4.3 3.3 3.3 

guate1515 4.3 3.0 2.8 1.9 

guate1540 2.8 1.0 2.0 3.9 

guate1550 6.0 3.5 2.3 3.9 

guate156 2.3 1.8 3.0 2.3 

guate165 1.0 1.0 1.0 1.0 

guate173 2.3 2.5 3.8 2.8 

guate180 4.0 2.8 4.3 3.7 

guate182 3.3 3.8 3.0 3.3 

guate183 3.8 1.7 5.0 3.6 

guate186 7.0 5.0 5.0 5.7 
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Table A.3. Climbing bean accession from Guatemala reaction (score 1-9) to race 73 of C. 

lindemuthianum, in three repetitions and the Least Square Means (continued) 

Genotype  

ID 

Average 

R1 

Average 

R2 

Average 

R3 

LSM 

estimate 

guate188 2.5 1.0 1.0 1.5 

guate190 2.0 1.0 1.0 1.3 

guate192 4.0 4.0 2.5 3.5 

guate200 1.0 1.0 1.0 1.0 

guate204 4.0 3.5 4.0 3.8 

guate205 2.3 1.0 1.8 1.7 

guate217 1.0 1.0 1.3 1.1 

guate218 1.0 1.0 1.0 1.0 

guate219 1.0 1.0 1.0 1.0 

guate221 2.8 3.0 5.0 3.6 

guate223 4.8 2.5 4.0 3.8 

guate230 1.3 2.0 2.0 1.8 

guate233 1.5 2.0 2.5 2.0 

guate234 1.5 1.0 1.0 1.2 

guate237 2.0 1.3 4.3 2.5 

guate240 4.0 3.3 3.3 3.5 

guate242 5.0 4.0 3.3 4.1 

guate245 5.0 5.5 5.0 5.2 

guate247 1.0 1.8 1.0 1.3 

guate248 1.0 2.5 2.5 2.0 

guate251 1.0 1.0 1.0 1.0 

guate254 1.0 1.0 1.0 1.0 

guate257 4.0 1.7 3.3 3.0 

guate258 5.5 4.0 4.5 4.7 

guate262 1.0 1.0 1.0 1.0 

guate264 3.0 2.0 2.0 2.3 

guate266 3.8 2.5 1.0 2.4 

guate297 1.0 1.0 1.0 1.0 

guate381 2.5 2.0 1.3 1.9 

guate385 7.5 3.8 3.0 4.8 

guate418 2.5 2.3 1.0 1.9 

guate458 6.5 4.3 4.3 5.0 

guate578 2.5 1.0 1.0 1.5 

guate633 1.0 1.0 1.0 1.0 

guate639 1.0 1.0 1.3 1.1 

guate647 1.0 1.0 1.5 1.2 
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Table A.3. Climbing bean accession from Guatemala reaction (score 1-9) to race 73 of C. 

lindemuthianum, in three repetitions and the Least Square Means (continued) 

Genotype  

ID 

Average 

R1 

Average 

R2 

Average 

R3 

LSM 

estimate 

guate652 3.0 2.3 2.3 2.5 

guate660 8.3 4.3 3.8 5.4 

guate673 1.0 1.0 1.5 1.2 

guate674 4.5 2.5 3.8 3.6 

guate675 1.0 1.8 2.8 1.8 

guate678 8.5 2.3 3.8 4.8 

guate683 1.8 1.3 1.3 1.4 

guate684 8.5 6.5 5.5 6.8 

guate83 1.0 1.3 1.0 1.1 

guate884 5.3 2.3 3.5 3.7 

guate886 5.3 2.3 4.3 3.9 

guate887 4.0 3.0 3.5 3.5 

guate888 2.0 1.0 1.0 1.3 

guate891 1.0 1.0 1.0 1.0 

guate894 4.3 2.7 2.0 3.0 

guate896 1.0 1.0 1.0 1.0 

guate898 2.0 1.0 1.8 1.6 

guate899 1.8 1.0 1.0 1.3 

guate900 3.8 3.0 3.7 3.5 

guate902 3.3 2.8 2.8 2.9 

guate904 3.0 2.0 1.0 2.0 

guate905 4.3 4.0 4.0 4.1 

guate906 4.3 3.8 3.3 3.8 

guate907 5.3 1.0 5.0 3.8 

guate908 1.8 0.0 1.5 1.4 

guate908-1 1.5 1.0 1.0 1.2 

guate910 2.3 3.0 3.0 2.8 

guate911 4.0 1.3 2.0 2.4 

guate912 5.5 4.0 4.3 4.6 

guate913 6.0 4.0 4.0 4.7 

guate914 1.8 1.0 1.0 1.3 

guate915 4.3 2.0 3.0 3.1 

guate918 3.5 3.3 3.0 3.3 

guate919 5.5 3.3 2.5 3.8 

guate92 1.0 1.5 1.8 1.4 
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Table A.3. Climbing bean accession from Guatemala reaction (score 1-9) to race 73 of C. 

lindemuthianum, in three repetitions and the Least Square Means (continued) 

Genotype  

ID 

Average 

R1 

Average 

R2 

Average 

R3 

LSM 

estimate 

guate920 4.3 2.0 4.0 3.4 

guate923 1.3 1.0 1.0 1.1 

guate924 2.5 1.3 1.0 1.6 

guate926 6.0 5.0 4.8 5.3 

guate927 4.8 2.5 2.0 3.1 

guate9282PM 4.3 1.0 1.8 2.3 

guate930 4.0 2.7 2.0 2.9 

guate931 4.0 1.8 1.3 2.3 

guate932 1.0 1.0 1.0 1.0 

guate933 3.3 1.8 3.5 2.8 

guate935 1.0 1.0 1.0 1.0 

guate936 2.3 2.5 3.8 2.8 

guate937 3.8 2.8 4.0 3.5 

guate938 5.3 3.8 3.5 4.2 

guate940 3.0 1.0 1.3 1.8 

guate941.3 5.0 3.0 4.8 4.3 

guate943 1.0 1.0 1.0 1.0 

guate944 5.0 3.3 3.5 3.9 

guate945 1.0 1.0 1.0 1.0 

guate947 6.3 4.0 2.0 4.1 

guate949 2.3 2.3 1.5 2.0 

guate950 1.0 1.0 1.0 1.0 

guate951 2.5 1.0 1.0 1.5 

guate952 1.0 1.0 1.0 1.0 

guate953 1.3 1.0 1.0 1.1 

guate955 4.0 4.3 2.5 3.6 

guate956 4.3 2.8 2.5 3.2 

guate958 4.3 2.5 3.8 3.5 

guate959 3.0 3.3 2.3 3.5 

guate960 2.3 2.5 1.5 2.8 

guate961 1.0 1.0 1.0 2.1 

guate962 3.5 1.5 1.5 1.0 

guate963 4.0 4.0 3.8 2.2 

guate966 4.3 1.0 1.5 3.9 

guate967 4.8 1.7 3.3 2.3 

guate968 1.0 3.0 1.0 3.2 
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Table A.3. Climbing bean accession from Guatemala reaction (score 1-9) to race 73 of C. 

lindemuthianum, in three repetitions and the Least Square Means (continued) 

Genotype  

ID 

Average 

R1 

Average 

R2 

Average 

R3 

LSM 

estimate 

guate969 2.0 1.0 1.3 1.7 

guate970 1.0 1.3 1.0 1.4 

guate971 4.5 2.3 4.5 1.1 

guate972 2.8 2.0 1.5 3.8 

guate973 3.0 2.8 4.8 2.1 

guate974 3.3 3.8 4.0 3.5 

guate977 3.5 1.8 3.3 3.7 

guate978 1.5 1.0 1.0 2.8 

guate979 3.0 3.0 2.0 1.2 

guate980 1.0 1.0 1.0 2.7 

guate982 2.5 1.0 1.8 1.0 

guate984 6.8 3.0 4.3 1.8 

guate985 3.3 3.3 4.0 4.7 

guate986 2.3 1.8 2.0 3.5 

guate988 2.3 4.0 2.0 2.0 

guate992 1.3 1.0 1.8 2.8 

guate993 6.5 6.0 5.0 1.3 

guate995 2.0 1.5 1.0 5.8 

guate997 2.0 1.0 1.5 1.5 

jardinero 6.8 7.0 4.8 6.2 

LaborOvalle 4.0 2.3 4.0 3.4 

LaSonrisa 1.5 1.0 1.0 1.2 

LCH86V11 3.3 2.0 2.5 2.6 

LCH86V13 5.3 3.0 3.5 3.9 

LCH86V17 3.8 2.0 1.5 2.4 

LCH86V19 2.0 2.0 2.3 2.1 

LCH86V23 3.3 2.0 3.3 2.8 

LCH86V31 2.8 1.3 1.5 1.8 

LCH86V41 3.8 4.8 5.5 4.7 

LCH86V69 3.5 3.3 3.8 3.5 

LCH86V71 5.5 6.3 3.8 5.2 

LCH86V77 5.5 4.8 2.0 4.1 

LCH86V83 5.0 4.0 3.3 4.1 

LCH86V87 6.0 4.0 6.0 5.3 

LCH86V9 2.8 1.8 2.5 2.3 

lineach86B39 2.5 1.0 2.8 2.1 
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Table A.3. Climbing bean accession from Guatemala reaction (score 1-9) to race 73 of C. 

lindemuthianum, in three repetitions and the Least Square Means (continued) 

Genotype  

ID 

Average 

R1 

Average 

R2 

Average 

R3 

LSM 

estimate 

mediamilpa1 3.0 1.5 1.5 2.0 

mediamilpa2 3.3 3.0 1.8 2.7 

Michellite 8.0 9.0 8.7 8.6 

Montcalm 1.0 1.0 1.0 1.0 

Pascueno2 3.0 2.7 4.0 3.2 

V4609.318 6.3 3.5 4.8 4.8 

V4614315 4.0 0.0 6.8 4.5 

V4616320 4.5 2.0 2.3 2.9 

V4616324 7.0 3.0 3.8 4.6 

V461634 3.3 2.5 2.0 2.6 

V5746313 4.5 1.3 2.0 2.6 

V7966 4.5 2.5 3.0 3.3 

vainamorada1 3.0 2.8 2.5 2.8 

xenimajuyu 5.8 7.5 7.3 6.8 
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PCA 1.37E-01 

 

2PC –EMMA 0.167147 

 

EMMA 0.168639 

 

Figure A.1. Manhattan plots using different models for C. lindemuthianum resistance to race 73 

and QQ-plots using GenABEL software, the MSD value is on the top left. From bottom the first 

green line is for 0.1 percentile and the second is for 0.01. The green line is the cut-off value to 

call a peak significant. SNPs above the 0.01 percentile are highlighted in red, while those above 

0.1 are highlighted in blue. 
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Table A.4. SNPs significantly associated, chromosome, position, minor allele frequency (maf) 

and significant P-values for the trait anthracnose on 369 climbing bean accessions from 

Guatemala for PCA model, sorted by lowest P-value, using GenABEL software. 

SNP Chromosome Position P.value maf 

S07_8954263 7 8954263 1.44E-05 0.121951 

S07_8767491 7 8767491 1.79E-05 0.128726 

S07_8711204 7 8711204 2.02E-05 0.078591 

S07_8711208 7 8711208 2.23E-05 0.079946 

S07_8726264 7 8726264 2.49E-05 0.130081 

S07_8507679 7 8507679 2.95E-05 0.069106 

S07_8875287 7 8875287 3.58E-05 0.121951 

S07_8875263 7 8875263 4.21E-05 0.123306 

S07_8875341 7 8875341 4.21E-05 0.123306 

S07_8875373 7 8875373 4.21E-05 0.123306 

S07_8875375 7 8875375 4.21E-05 0.123306 

S07_8875274 7 8875274 4.96E-05 0.124661 

S07_8711251 7 8711251 5.01E-05 0.082656 

S07_8875249 7 8875249 5.03E-05 0.126016 

S07_8590734 7 8590734 6.71E-05 0.070461 

S07_8879902 7 8879902 7.13E-05 0.119241 

S07_9298239 7 9298239 7.48E-05 0.073171 

S07_9298287 7 9298287 7.48E-05 0.073171 

S04_527782 4 527782 0.000213 0.330623 

S04_47695582 4 47695582 0.001475 0.165312 

S04_47695850 4 47695850 0.004419 0.161247 

S04_1022377 4 1022377 0.004852 0.181572 

S04_47712717 4 47712717 0.005006 0.155827 

S04_47163814 4 47163814 0.005608 0.055556 

S04_47695703 4 47695703 0.005663 0.166667 

S04_47695774 4 47695774 0.005663 0.166667 

S04_47695809 4 47695809 0.005929 0.168022 

S04_47695831 4 47695831 0.006393 0.169377 

S04_47709078 4 47709078 0.007845 0.173442 

S04_8236887 4 8236887 0.008154 0.348238 

S04_47695783 4 47695783 0.0082 0.173442 

S04_47695868 4 47695868 0.008606 0.173442 

S04_1276626 4 1276626 0.009012 0.079946 

S04_1431968 4 1431968 0.009156 0.318428 

S04_467709 4 467709 0.010308 0.172087 

S04_8986235 4 8986235 0.01034 0.079946 
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Table A.5. Reaction of different Andean sources of resistance to race 556 and 3981 of C. 

lindemuthianum 

Cultivar/line Pool Gene 556 3981 

Amendoim Cavalo A Co-AC S S 

AND 277 A Co-14 R R 

Jalo Vermelho A Co-12 NA R 

Jalo Listras Pretas A Co-13 NA S 

Pitanga A Co-14 NA R 

Corinthiano A Co-15 NA S 

Paloma A Co-Pa S S 

Jalo Pintado 2 A Co-18 R R 

Perla A Co-Pe NA S 

BGF20 A Unknown R R 

   R: Resistant (score 1-3) S: Susceptible (score 4-9) NA: Not available 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

74 
 

Table A.6. Reaction of the differential cultivar of anthracnose to isolates of C.lindemuthianum  

  Race 556   Race 585   Race 897 

Michelite 1 1 1 1 1  9 9 9 9 9  9 9 9 9 9 

MDRK* 1 1 1 1 1  1 1 1 1 1  1 1 1 1 1 

Perry Marrow 7 7 7 7 7  1 1 1 1 1  1 1 1 1 1 

Cornell 49242 9 9 9 9 9  9 9 9 9 9  1 1 1 1 1 

Widusa 1 1 1 1 1  1 1 1 1 1  1 1 1 1 1 

Kaboon 9 9 9 9 9  1 1 1 1 1  1 1 1 1 1 

Mexico 222 1 1 1 1 1  7 7 7 7 7  1 1 1 1 1 

PI  20762 1 1 1 1 1  1 1 1 1 1  7 7 7 7 7 

TO 1 1 1 1 1  1 1 1 1 1  9 9 9 9 9 

TU 9 9 9 9 9  9 9 9 9 9  9 9 9 9 9 

AB 136 1 1 1 1 1  1 1 1 1 1  1 1 1 1 1 

G2333 1 1 1 1 1   1 1 1 1 1   1 1 1 1 1 

                  

  Race 1609   Race 1993   Race 3981 

Michelite 9 9 9 9 9  9 9 9 9 9  5 5 6 5 5 

MDRK* 1 1 1 1 1  1 1 1 1 1  1 1 1 1 1 

Perry Marrow 1 1 1 1 1  1 1 1 1 1  6 6 6 6 6 

Cornell 49242 9 9 9 9 9  9 9 9 9 9  9 9 9 9 9 

Widusa 1 1 1 1 1  1 1 1 1 1  1 1 1 1 1 

Kaboon 1 1 1 1 1  1 1 1 1 1  1 1 1 1 1 

Mexico 222 7 7 7 7 7  7 7 7 7 7  3 3 3 3 3 

PI  20762 1 1 1 1 1  8 8 8 8 8  9 9 9 9 9 

TO 1 1 1 1 1  9 9 9 9 9  9 9 9 9 9 

TU 9 9 9 9 9  9 9 9 9 9  9 9 9 9 9 

AB 136 8 8 8 8 8  8 8 8 8 8  7 7 7 7 7 

G2333 1 1 1 1 1   1 1 1 1 1   5 5 5 5 5 

MDRK: Michigan dark red kidney; Scale (1-3) resistant and (4-9) susceptible. 


