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ABSTRACT 

This study investigated housing prices by applying geostatistical regression techniques to 

identify the significant factors affecting residential housing sales prices in Fargo, North Dakota. 

The study used a subset of residential housing price sales data for the year 2015. The study found 

moderate spatial dependency among properties. Some of the statistically significant variables were 

found to be age, total area of property, number of parking spots, air conditioner and the status of 

basement finish. Finally, predictions on new locations were made based ordinary linear regression 

model and regression kriging technique used for the geostatistical models. 
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1. INTRODUCTION 

With a strong economy and labor force, Fargo has experienced economic growth in the last 

few years. This economic growth has led to increases in real estate transactional activities. An 

example of increase in transactional activities was reported by Bishop (2016) on a South Fargo 

property whose value increased by $63000 in one year. Housing prices are heavily reliant on the 

core structural characteristics and neighborhood characteristics of properties. Some structural 

characteristics would include age of a property and its area, total number of bedrooms as well as 

bathrooms, type of air conditioner, and other similar characteristics. Neighborhood characteristics 

would include proximity to a shopping mall and highway, closest school district, access to nearest 

recreational facilities, crime rates, and other similar characteristics. A combination of the above 

factors and potential external factors ultimately determine property values. 

All the housing sales transactions in Fargo are reported to the City of Fargo. The City of 

Fargo also has its own methods to assess property values. The City (n.d.) defines its appraisal 

technique “as …the systematic appraisal of groups of properties as of a given date using 

standardized procedures and statistical testing.” One common feature of mass appraisal technique 

involves the comparison of properties with similar characteristics in assessing the value of a 

property that shares similar characteristics with those properties that were compared. Besides 

sharing similarity in their structures, houses have their own geographical locations, which make 

spatial dependency an issue in determining property values. 

The question arises: does location matter? Ordinary linear regression modeling has 

traditionally disregarded the need to incorporate the location structure, but as Tobler’s Law states, 

“Everything is related to everything else, but near things are more related than distant things.” The 

issue of spatial proximity lends itself towards geostatistical modeling.  While the role of external 
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covariates in determining the prices of properties is apparent, it is also equally imperative to 

incorporate the role of locations by using them as a function of distance. Doing so takes into 

account the existence of spatial autocorrelation structure, thus making the task of regression 

modeling applicable in modeling housing prices as well as more effective.  

So the main objective of this thesis is to create a regression model that quantifies the impact 

of spatial proximity by detecting the existence of spatial autocorrelation structure. While 

accomplishing that, this thesis starts with the classical method of variogram modeling and furthers 

into the parametric method. The next aim of this thesis is to identify the significant factors that 

impact the residential housing prices in Fargo.  Finally, this thesis uses regression kriging 

technique to predict values for new houses at new locations. The application of geostatistical 

techniques in modeling housing prices, as demonstrated in this thesis, should help government 

officials, market research organizations and realtor groups in their approach to property valuations.  
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2. DATA DESCRIPTION 

The City of Fargo’s Accessor Office annually collects data on the houses that are sold in a 

given year. This thesis uses a subset of 2015 property sales data in Fargo. At first, geostatistical 

models with exponential and spherical covariance functions were trained on a dataset with 1352 

observations. Finally, predictions based on regression kriging technique were performed on a 

dataset with 341 observations. The split ratio has been approximately 80-20, with 80% of the data 

on the training data set and the remaining on the testing data sets. The dependent variable, price, 

was transformed to log scale. The property type variables had four levels: single family, duplex, 

three plex and twin houses. Duplex, three plex and twin houses were jointly considered as non-

single family dwellings, thereby creating only two groups, single and non-single, for property type. 

Style of the house, as denoted by story height on the data, had many different levels. Some story 

height levels were combined based on their similar attributes. For instance, story heights with 

levels of one story and one and half story were considered jointly as one story. Similarly, bi-level 

story height and bi-level with additional were jointly considered as a bi-level story height. The 

categories of story height included bi level, one story, split level and two story. Air conditioner 

variable had three groups: central, wall and none. The ‘none’ category in a given property implies 

that the property does not have built in air conditioner.  

 The data also had information on basement finish, which the city classifies by none, 25 %, 

50%, 75%, and full finished. These different levels were transformed so that none and 25% were 

considered as less or a quarter finished, 50% and 75% were recoded as half or more than half 

finished and full finished was left as it originally was. The types of garages were also included in 

the analysis. There were five types of garages, namely attached, built-in, combined, detached and 

none. Built-in, combined, detached and none garage types were jointly considered as non-attached 
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garages, due to which the garage type variable had two levels: attached and non-attached. 

Information on flood history, denoted by X_100YrFlood variable had two categories: yes and no. 

Properties that were deemed to experience flooding in a given year by the city had ‘yes’ entries, 

while the properties that were not deemed to experience flooding had ‘no’ entries.  

The city also recoded numerical entries in a categorical way, such as number of bathrooms 

was coded using “1” for 1 bathroom, “2” for 1 and half bathrooms. Instead of using bathrooms 

through dummy coding, houses with one and one and one half bathrooms were considered as one, 

houses with 1.75 ,2, 2.5 bathrooms were considered as two, three and three halves were considered 

as three, four and four halves were considered as four. Additionally, by calculating the difference 

in longitude of the intersection at Main Ave and 25th St S to the longitude of houses that were used 

for modeling and prediction, a new variable, denoted by difference, was created. The variable, 

garages, refers to the number of parking spots inside a garage. All of the numerical predictor 

variables were standardized. Furthermore, geographical coordinates latitude and longitude were 

transformed into UTM Northing and Easting. It has to be noted that the geographical coordinates 

were not used as predictor variables.  

A list of the variables used is given in table 1 and a sample of five raw data is shown in 

table 2. The map on figure 1 shows the concentration of properties that have been used for training 

the model. The map, as well as other maps used for analysis, was generated using ggmap function 

in R (Kahle and Wickham). Based on the figure, it seems that residential properties in Fargo are 

heavily concentrated in three major regions. The most heavily concentrated region lies around the 

area bounded by South University Drive, 32nd Avenue South and 45th Street South. Also the other 

heavy concentration of residential properties in Fargo is around the boundary of 13th Avenue S, 
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25th Street S, Main Avenue S. Finally, the other heavily concentrated area is the North Fargo 

region, including main Avenue N, N University Drive and towards 19th Avenue North.  

 

Table 1: Variable Description 

Variables Role 

Price (log transformed) Dependent variable  

Property Type  Categorical  

Story Height  Categorical  

Segment Square Feet Numerical 

Building Segment Feet  Numerical  

Air Condition  Categorical 

Basement Finish  Categorical 

Number of Bathrooms Numerical 

Garage Type Categorical 

Number of Garages  Numerical 

Flood region  Categorical  

Age  Numerical 

Number of Bedrooms  Numerical  

Difference  Numerical 
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Table 2: Sample Data 

Lon Lat lnprice age SegSqFt BldgTotSF bed baths garages proptype storyheight Aircond basementfinish garagetype Flood 

665482 5187860 12.4288 20 10471 1126 4 2 3 SF BL Central Fullfinished Attached Yes 

665667 5191529 12.3779 40 9600 1436 4 2 2 SF BL Central Fullfinished Attached No 

666747 5192497 11.8776 61 6600 864 3 1 2 SF OS Central Quarterorless Notattached No 

666655 5192285 11.9505 60 5964 1098 3 2 2 SF OS None halformore Attached No 

666992 5190876 12.0347 56 9375 1056 3 2 1 SF OS Central halformore Attached No 
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Figure 1: Plot of Houses with their Values 
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3. LITERATURE REVIEW  

Chica-Olmo (2007) cited earlier research while categorizing housing price regression 

modeling into two categories: hedonic regression modeling and spatial regression modeling. 

Econometricians have usually referred to housing price regression models as ‘hedonic regression 

models.’ Hedonic regression models emphasize the importance of structural characteristics of a 

property, as well as neighborhood characterstics of the property in determining property values...  

Koramaz and Dokmeci (2012, p.1235) found size of a property, “centrality, accessibility and 

distance to the coast are spatial determinants found to be statistically significant” in regards to 

housing price models in Istanbul, Turkey.   He et al. (2010, p.923) also concluded that the “distance 

between the housing and the downtown area, floor area ratio and land transaction price” to be 

statististically    significant and concluded them to be important factors for housing prices in 

Beijing.   While the variables considered in both of these models were not all the same, a heavy 

emphasis was placed on neighborhood characteristics of a property.  

Like the hedonic regression models, spatial regression models or geostatistical models 

place an equal importance on the core characteristics of a property, but unlike the former, the latter 

considers that the location of a house can be used to model the spatial dependence between houses. 

Laying out the need for a spatial regression model, Chica-Olmo (2007, p.91) referencing Dubin’s 

study, stated, “Usually housing sale price will be directly related to the sale price of other 

neighboring houses. Location is probably the most important variable used to explain house price. 

Spatial autocorrelation is present when location is very important to housing prices.” Bourassa’s 

et al. (2005) research on residential housing values in Auckland, New Zealand drew two significant 

conclusions regarding the impact of spatial autocorrelation. In terms of overall model predictor, 

geostatistical model performed better than the OLR model but when neighborhood dummy 
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characteristics were added to the OLR model, the OLR model performed better. Therefore, it 

cannot be said that geostatistical models always perform better than the OLR models. The choice 

of using one model over another may strictly depend on the availability of auxiliary variables and 

the degree of spatial dependency. But this thesis primarily aligns with Chica-Olmo’s assertion 

regarding the particular location of house and its usefulness in determining the underlying 

correlation structure among properties.  

While the hedonic and geostatistical modeling techniques have primarily relied on the core 

structural and neighborhood characteristics, Dubin’s (1998) work on real estate prices in Baltimore 

provides another interesting perspective. Dubin’s research had three different modeling 

components: an OLR model, an OLR model with the inclusion of location coordinates and a 

geostatistical model with the inclusion of location coordinates. Dubin found the geostatistical 

model performing better than the OLR models with and without location coordinates. Dubin also 

concluded size of the house, number of bathrooms, number of bedrooms to contribute positively 

towards increasing the property prices, while increase in the age of a house was found to impact 

negatively on the residential housing properties.  

Gelfand et al. (2004) studied on the two regions, Highland and Sherwood, in the City of 

Baton Rouge, Louisiana. Their study found age, living area and area encompassing patios, garages 

and carports to be statistically significant factors for determining prices in both regions. The 

number of bathrooms was found to be statistically significant only in the region of Sherwood. 

Their study relied on geostatistical technique. In terms of spatial autocorrelation, the value of range 

was found to be around 2 and 1 km for the respective regions, probably a clear indication of weak 

autocorrelation.  
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4. METHODOLOGY 

4.1. OLR Model 

Although geostatistical methodology is the key to regression model building in this thesis, 

at first, a multiple regression model was created with the following form: 

 
log(𝑦𝑆) = β0 + ∑ β𝑗x𝑠𝑗  

17

𝑗=1
+ ε𝑠, s=1 to 1352 (4.1) 

where log(yi) is the log-transformed dependent variable price, x′s are the independent predictor 

variables, and the regression coefficients were estimated in the following way:  

 β ̂=(XTX)-1XTY. (4.2) 

The model above can be classified into the deterministic trend and the random component. The 

random error component, εs is assumed to be normally distributed with the following two 

properties: 

 E(ε)=0 

 Var(ε)= σ2I 

, where I as an identity matrix. When similarities emerge in terms of spatial location, Abraham and 

Ledolter (2006, p.127) commented that “errors for measurements taken in close spatial proximity 

are correlated,” thereby indicating a need of a better modeling technique in place of OLR model. 

The discussion of the error component is important here due to some geostatistical assumptions 

that will be discussed in the next section. In the geostatistical process of detrending, residuals were 

first extracted from the OLR model discussed above.  

The interest in OLR model became apparent as Diggle and Ribeiro (2007, p.100) 

mentioned using “the residuals to identify a suitable parametric model for the covariance structure 
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and to obtain initial estimates of covariance parameters.”  The justification for getting residuals 

and its use in the geostatistical model building has two main reasons: 

 The location of a house is particularly important in model building process, but equally 

important is the fact that external covariates can influence the price of a house. The process 

of residual extraction is the process of detrending nonstationary components. 

 Residuals represent the stationary component for the spatial process under study. 

4.2. Geostatistical Model   

Let us assume that s represents spatial coordinates x and y, where x represents the UTM 

longitude and y represents the UTM latitude. Then the geostatistical model becomes 

 
log(ys)= β0 + ∑ β𝑗x𝑠𝑗  

17

𝑗=1
+vs+ ε𝑠 ,  s= (UTM Northing, UTM Easting) (4.3) 

, where the deterministic part is came as outlined in equation 4.1. The second term, vs, relates to 

the spatial error and is assumed to be stationary and isotopic with the following conditions: 

 E(vs)=0 

 C (vs, vs+h) = τ2 ρ (||h||; θ) 

 𝐶𝑣(h) = τ2 ρ( ||h ||; θ)         

, where h is a separation lag vectors between two phenomena under study, τ2 is the variance of the 

spatial process or partial sill, ρ (||h ||; θ) is the correlation function chosen from a family of isotropic 

covariance functions, ||h|| representing the Euclidean distance between two pairs and θ is the range 

parameter. The covariance between two pairs have been defined as a function of distance between 

them and not the location, thus covariance stationary condition holds. The final term in equation 

(4.3), ε𝑠 is related to the non-spatial error and that can be attributed to a number of factors such as 
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measurement errors or differences in properties that are located in closer proximity. The non-

spatial error term, ε𝑠, is normally distributed with a mean of zero and variance of nugget, i.e. ε𝑠~N 

(0, σ2). This thesis has used τ2  in place of σ2 to relate it to the OLR model outlined in equation 4.1. 

Therefore, τ2  relates to the spatial error part and σ2  relates to the non-spatial error. So τ2 is defined 

as partial sill variance, whereas σ2  as nugget variance. While geostatistical modeling techniques 

incorporate different covariance parameters based on the chosen covariance functions, the 

covariance functions used in this thesis, exponential and spherical, relies only on σ2, τ2 and θ. The 

last parameter, θ , is the range parameter and its use in the geostatistical modeling will be clear in 

the later sections.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      

4.3. Variogram  

Variogram plots are needed to quantify the underlying correlation structure. Experimental 

variograms are plotted from the raw data, while theoretical variogram provides the mathematical 

basis on covariance parameters that can be extracted from a plotted experimental variogram. 

Theoretical variogram can be defined as: 

 γ (h)= E[(Ys-Ys+h)] 
2 / 2. (4.4) 

Solving equation (4.4) allows to make the following conclusions: 

 γ (h)= 𝐶 (0)- 𝐶 (h) (4.5) 

, and as h tends to infinity, then  

 γ (h) = 𝐶 (0) = σ2 + τ2. (4.6) 

Based on the discussion above, it can be concluded that as distance tend to increase the variogram 

reaches the sill value, which is also the variance. Furthermore, at a smaller separation distance, the 

theoretical expectation is that the variogram value should be 0. But due to some measurement 
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errors or dissimilar feature among properties that are in closer proximity, the variogram value is 

greater than 0. When the variogram value is greater than 0, that value is defined as nugget variance.  

Above all, computation and visual exploration of the experimental variogram is the key to 

building a parametric model. The experimental variogram computation was based on the OLR 

model residuals and can be shown as:  

 γ (h) =𝑁ℎ ∑ ( 𝑒 ̂𝑠+ℎ  − 𝑒 ̂̂𝑠 𝑁
𝑖=1 )2/2, (4.7) 

where h represents the Euclidean distance between two pairs of observations. For n number of 

observations, then the total number of distance pairs is 
𝑛·(𝑛−1)

2
. Furthermore, steps in the 

computation of variogram can be explained in the following ways: 

 find Euclidean distance between each distance pairs 

 find the squared difference between 𝑒 ̂̂𝑠and 𝑒 ̂𝑠+ℎfor each s and s+h 

 calculate semi variance using the equation (4.7), where Nh represents number of pairs in 

each squared difference calculation 

 Based on the choice of lag, also find the average of semi variance values based on the 

distance pairs that are in between the lag distance 

 Then an empirical variogram can be fitted with average distance on the x-axis and semi 

variance values on the y-axis.  

Based on the completion of these five steps, an empirical variogram can be fitted. Thus, empirical 

variogram guides towards parametric modeling since it allows to explore possible covariance 

functions for the covariance parameters, namely σ2, θ and τ2. While σ2
 and τ2 have been already 

defined above, θ is the range parameter and it represents the value on the x-axis when the 

variogram nearly reaches the sill on the y-axis. The interest in geostatistical modeling is within the 
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origin to the value of θ. Beyond θ, autocorrelation seems to get weaker as separation distance 

increases. 

It should be mentioned that the computation of experimental variogram and its plot have 

been used to identify the initial estimates for the covariance parameters. The experimental 

variogram is heavily subjected to binning procedures, therefore the application of parametric 

method has been used in this thesis. The discussion of covariance parameters based on the 

experimental variogram as well as parametric method is in section 5.1. 

 4.4. Covariance Functions  

Once the experimental variogram was created, the next step was to use covariance 

functions to model the covariance parameters.  There are many types of covariance parameters 

that could be chosen, but this thesis used exponential and spherical covariance functions. They are 

the most commonly used covariance parameters. While some have selected covariance functions 

based on the shape of the experimental variogram, this thesis relies on parametric modeling of the 

chosen covariance functions.  

4.4.1. Exponential Covariance Function (ECF) 

One of the most widely used covariance function, its covariance can be listed as follows: 

𝐶 (h)= 

 

τ2𝑒
−ℎ

θ ,   for h>0 

σ2+ τ2,     for h=0 

 

and its corresponding variogram can be defined as: 

γ (h)= 𝐶 (0)- 𝐶 (h).  
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While developing the model in section 4.2, the covariance was defined in terms of its relationship 

with the correlation function. Thus, ρ (||h ||; θ) = 𝑒
−ℎ

θ .  In the case of exponential variogram, the 

variogram reaches the sill asymptotically. This indicates that the exponential function does not 

have a true range beyond which the autocorrelation of the observed phenomenon decays to zero. 

But its effective range has been defined as θ1=3θ, so beyond θ1 covariance starts to decay towards 

zero.  

4.4.2. Spherical Covariance Function (SCF) 

The spherical covariance function is given below: 

                 τ2 (1-
3

2
·

ℎ

θ
+

1

2
 ·(

ℎ3

θ3)), when 0<h< θ                                        

    0,   , when h> θ 

    σ2+ τ2 ,                    , when h=0  

 

 and it’s ρ (||h ||; θ) =  1-
3

2
·

ℎ

θ
+

1

2
 ·(

ℎ3

θ3). 

  Unlike the case of exponential, covariance between two pairs goes to 0 when the distance 

between them is greater than the range value. Thus, spherical covariance function has a true 

range, beyond which covariance between two properties goes to 0. 

4.5. Parameter Estimation   

Now that the variogram has been defined and its relation to the covariance function has 

been established, the other important task was to create a geostatistical regression model. Different 

methods have been proposed to fit spatial correlation in a regression model, most importantly 

weighted least squares method, maximum likelihood estimation and restricted maximum 

likelihood estimation. Nevertheless, estimation of a spatial regression model in itself is a daunting 

𝐶(h)= 
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task. This is, because, correlation estimates based on the experimental variogram are needed to 

estimate a spatial regression model. However, the correlation estimates based on an experimental 

variogram highly depend on the way binning process is done.  Therefore, the objective is to use 

parametric method to estimate the regression model and covariance parameters. 

The issue of geostatistical modeling is a statistical problem as well as a computational 

problem. Different authors have described different geostatistical parametric modeling techniques, 

but emphasis should be given to the fact that the computational complexity of spatial modeling 

techniques require an equal understanding of the statistical methodology as well as algorithmic 

design. Therefore, this thesis primarily considers the work of Diggle and Ribeiro (2010), as it 

relates to both statistical modeling and algorithmic design. Diggle and Ribeiro are authors of geoR 

package in R, which was used to generate the model. Therefore, their technique of parametric 

modeling will be discussed below.  

Let us first consider the following multivariate normal distribution: 

Y~MVN (Xβ, τ2 ρ θ+ σ2I),      ρ θ = {ρ(||𝑠𝑖-𝑠𝑗 ||; θ)}i,j=1 

Where X relates to the covariates matrix with all ones in its first column, β is the regression 

coefficients that need to be estimated, ρθis an isotropic correlation function and its relation of the 

covariance function can be described as, C(h)= τ2ρ θ. Given the distribution above, the log-

likelihood is: 

 L(y; β, τ2, σ2, θ) = -
𝑛

2
 log(2π) - 

1

2
 log(| τ2ρ θ + σ2 I|) - 

1

2
 (y- Xβ)T(τ2ρ θ+ σ2 I)-1(y- Xβ) (4.8) 

, where || is the determinant. After this, Diggle and Ribeiro (2010) discussed the computational 

side of maximizing the equation on (4.8). Per their parametrization technique, W = ρ θ+v2I, where  
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v2= 
σ2

τ2
 and I is the identity matrix. Then they found the maximization procedure yields the MLE 

estimates of the regression coefficients to be the generalized least squares (GLS) estimator. This 

can be written as: 

 β ̂GLS=(XTW-1X)-1XTW-1Y (4.9) 

where W is a n*n symmetric matrix and W=τ2ρθ+ σ2I, where I is the identity matrix.  Furthermore, 

to obtain the new covariance and regression parameters that maximizes the log-likelihood, they 

obtained a concentrated log-likelihood and it can be shown as: 

 L0 (v
2, θ )= -

1

2
{n log(2π)+nlog σ ̂2GLS

 (W)+log(W)+n} (4.10) 

, where σ ̂2GLS=
1

𝑛
{y-Xβ ̂GLS }T W-1{ y-Xβ ̂GLS}.                   

Once the regression and covariance parameters are determined by the model in equation (4.9) and 

(4.10), new estimates need to be given to the likfit function until the estimates given by the function 

and the estimates given to the function stayed the same. The likfit function uses numerical 

optimization algorithm based on minimizing negative log likelihood function to estimate the final 

parameters.  

4.6. Regression Kriging  

The steps mentioned above were used to create geostatistical regression models. Now the 

final goal in any geostatistical analysis is to perform interpolation. Once the covariance and/or 

variogram parameters have been established and a geostatistical regression model has been 

created, kriging procedures can be applied to predict data values at new location. Some of the most 

popular kriging techniques are simple kriging, ordinary kriging, universal kriging and kriging with 

external drift. While these techniques have their own merits, the application of RK in this thesis is 
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primarily due to the very reason that it allows deterministic model and residual kriging process to 

be modeled separately.  

According to Hengl et al. (2007), the RK prediction model is done in the following way: 

 𝑦̂(𝑠0) = β0 + ∑ β𝑖x𝑖(s0) 𝑝=13
𝑖=1 +  ∑ (λ𝑖)

𝑇e(s𝑖)
341 
𝑖=1 ,      (4.11) 

and the prediction variance is: 

 σ2(𝑦̂(𝑠0)) = (𝑥0 − 𝑥𝑇W−1𝑔0)𝑇(𝑥𝑇W−1𝑥)−1(𝑥0 − 𝑥𝑇W−1𝑔0) +  σ2 + τ2 − 𝑔0
𝑇 W−1𝑔0 (4.12) 

where   𝑦̂(𝑠0) is the value to be predicted at so location. The beta coefficients are derived based on 

the discussion on section 4.5, xi(so) is the value of predictor variables at a new location. This 

constitutes the deterministic part of RK. In terms of residual kriging, λi refers to the kriging weights 

that are estimated based on the covariance functions defined in section 4.4 and e(si) are residuals 

from the fitted GLS model. In terms of the prediction variance, 𝑥0
 represents the vector of predictor 

variables at new locations, 𝑥 is the design matrix of the original data locations,  W is already 

defined in the previous section,  𝑔0 is the covariance vector of residuals at new data locations, and 

σ2 + τ2 is the sill or variance.  

Kitadnis (2003, p.154) defined the method of SK by stating, “If z(x) is stationary, the mean 

is a known constant and the covariance is a function of the distance,” then the SK estimator 

becomes: 

 ŷ(s0) = 𝑚 + ∑ (λ𝑖)
𝑛
𝑠=1 𝑒𝑠 (4.13) 

 where es is a vector of residuals and m is a known mean.  SK procedure is also referred as Best 

Linear Unbiased Estimator as the derivation of its weights based on minimizing E[(y(s0)-ŷ(s0)]
2 

creates the following kriging weights, 
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 λ = W-1 𝑔, (4.14) 

where W is as defined above. For a new location to be predicted,  𝑔0, is developed as a covariance 

vector of residuals: 

 𝑔0 = {𝐶(𝑠0,𝑠1 ), 𝐶(𝑠0,𝑠2), … … … … . , 𝐶(𝑠0,𝑠1352 )} 

, where 𝑠0 represents the new location and the covariance as a function of distance is as defined 

in section 4.4.  Finally, the krig residuals are added back to the deterministic trend of the model 

as given in equation (4.11). 
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5. ANALYSIS  

5.1. Experimental Variogram  

Experimental variogram based on equation (4.7) was first plotted against the separation 

distance. In terms of formal statistical inference, experimental variogram has been used in the 

aspect of exploratory analysis, not in terms of parametric model fitting. Diggle (2007, p.104) 

mentioned, “Our view is that the sample variogram should be regarded primarily as a helpful initial 

display to identify broad features of the underlying covariance structure of the data, but not as a 

formal method of parametric inference.” Diggle’s assertions are applicable in this thesis because 

the binning process is very subjective and the covariance parameters estimated based on the 

experimental variogram may change if the binning process is altered. 

R package geoR was used to perform all of the analysis, including experimental variogram 

and model fitting. Before plotting an experimental variogram, outliers were detected and removed, 

new maximum distance was defined as the half of the maximum distance and the plotted variogram 

at least had 30 pairs in each bin. While using half of the maximum distance and having 30 number 

of pairs in each bin seem to be the rule of thumb in geostatistical literature, consideration was also 

given to the outliers. Residual outliers can affect the variogram plot and removal of them is 

strongly suggested if there is enough reason to do so. Kim’s (2015) study found that the model 

after deleting outliers performed much better than the model that included the outliers. Outliers 

were checked on a case by case basis and 10 of them were removed. 

After removing the outliers and setting up the new maximum distance, the next step was 

to determine the number of classes of distance that would be used for plotting the experimental 

variogram. The variogram was plotted using different numbers of pairs. When the classes for 

distance used was 50, 100,500 and 1000, then each class had more than 30 pairs in each bin. 
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However, when the classes for distance was increased to 2000, 2500 and 5000, some of the classes 

had less than 30 pairs in each bin. It is still imperative to remember that the process of variogram 

plotting was just to obtain some initial estimates for the parametric modeling through maximum 

likelihood estimation.  

The output in table 3 shows the value of initial estimates that was ‘fitted by eye’. Based on 

the table below, the value of range parameter is same in different number of classes that were used. 

The table below shows the changes in values of sill and nugget, though small, as classes increased. 

This clearly aligns with Diggle’s assertions that experimental variogram should be used for 

obtaining some initial estimates that can be used for parametric modeling. In terms of parametric 

modeling that will be discussed in the next section, initial values of covariance parameters for 100 

classes were used.  

Table 3: Comparison of Covariance Parameters for Different Classes 

 

 

 

 

 

 

 

5.2. Fitted Covariance Parameters 

In section 4.5, the method of parametric modeling for geostatistical models were discussed. 

Using the method of MLE, the generalized least squares estimator of the beta coefficients were 

found to be the GLS estimators.  

Parameter Classes          Value 

Sill 50 CLASSES 0.036 

Range 50 CLASSES 3000 

Nugget 50 CLASSES 0.005 

Sill 100 CLASSES 0.037 

Range 100 CLASSES 3000 

Nugget 100 CLASSES 0.005 

Sill 500 CLASSES 0.040 

Range 

Nugget 

500 CLASSES 

500 CLASSES 

3000 

0.005 

Sill 1000 CLASSES 0.044 

Range 

Nugget 

1000 CLASSES 

1000 CLASSES 

3000 

0.0055 



 

22 

 

But since the elements of W were not known ahead and were estimated using the initial estimates 

discussed in section 5.1, the generalized least squares estimators of the regression coefficients 

simply become estimated generalized least squares estimator: 

 β ̂EGLS=(XTW-1X)-1XTW-1Y (4.15) 

, where the final elements of W were estimated using initial values and reassigning new values 

until the assigned values and the new values returned by the likfit function stayed the same.  

Once the covariance parameters of W matrix were estimated and deemed to be final, the 

values in table 4 below were used to populate the W matrix using covariance functions discussed 

in section 4.4.1 and 4.4.2 and with partial sill=.014, range=481.8 meters, effective range=1445.4 

meters and nugget=.026 for exponential, and partial sill=.018, range=1961 meters and 

nugget=.028  for spherical function.  

                                  .014𝑒 
−||ℎ||

481.8 ,             when h>0       

        .04,   .04,                       when h=0 

                           .018(1-
3

2
·

||ℎ||

1961
+

1

2
 · (

||ℎ3||

1961
)),            when 0<h< 1961 

Wspherical= 𝐶 (h)=  0,                when h> 1961 

    .046,                                                  when h=0 

 

Table 4: Values for Exponential and Spherical Covariance Parameters 

Parameters Exponential                                                  Spherical 

Partial sill=τ2
 .014 .018 

Nugget=σ2
 0.026 .028 

Range=θ 481.8 1961 

Sill=τ2+ σ2
 .04 .046 

Nugget-to-sill ratio                       65%                                               60.87% 

 

Wexponential= 𝐶(h)= 
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Since the estimation of these covariance parameters was based on the parametric method, 

some inferences can be made. In the case of both models, autocorrelation does not seem to be very 

strong. This is because the range for the model with ECF is 481.8 meters, and 1961 meters for the 

model with SCF. In the case of spherical covariance range, covariance between two properties 

after 1961 meters is 0.   In the case of exponential covariance range, autocorrelation tends to decay 

towards zero after 1445.4 meters, which is the effective range. Since the sill exists in both 

functions, spatial dependence does exist. Non-spatial variance in both the models was very high. 

That could be inferred to the fact that the data collection procedure resulted in measurement errors 

or that differences in sales prices of houses in closer proximity were very high.  The nugget-to-sill 

ratio has been used primarily to quantify the issue of spatial dependency. Atkinson and Lloyd 

(2010) cited Wei’s (2007) work where she developed three categories in determining if the spatial 

process has high, moderate, and low spatial dependence. Based on Wei’s categorization, the 

nugget-to-sill ratio in both the models were in between 25% and 75%, thereby indicating a 

moderate spatial dependence among properties.  

While the sill value represents the total variability, including the nugget variance, partial 

sill represents the variability that can be alluded to spatial reasons. The value for partial sill in table 

4 is less than the nugget variance based on both functions, thereby a clear indication of less spatial 

variability but more variability in terms of non-spatial errors. When compared to the estimates in 

table 3 with that of the final estimates in table 4, the sill values are approximately similar. The 

range value has decreased and nugget variance has increased. The parametric modeling method 

suggested more non-spatial error and moderate spatial dependency, whereas the experimental 

variogram suggested more spatial error and relatively strong autocorrelation. 
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5.3. Model Selection 

After estimating the elements of the covariance parameters, regression models using 

exponential and spherical covariance functions were developed. In both models, bedrooms, 

bathrooms, flood region, and difference in the longitude were insignificant. Likelihood ratio test 

(LRT) on both models were conducted to assess if the four variables could be excluded from the 

model. At first, a linear regression model was created excluding those four variables, and initial 

values for its covariance parameters were extracted from the experimental variogram of its 

residuals. The process followed similar procedures as discussed in section 5.1 and 5.2. The reduced 

models were finally created and the likelihood ratio test was performed. 

The results of the LRT for both models are produced in table 5 and 6, respectively. In each 

of these tests, the results supported the reduced models, so the reduced models were used to make 

inference as well as perform regression kriging. The existence of small scale spatial variability 

showed the apparent need of geostatistical models, thereby OLR model was no longer considered, 

but the OLR model will later be discussed in the application of regression kriging techniques. 

Table 5: LRT Test for the Model with ECF  

Model LogLik  Df                                     Chisq                                Pr(>Chisq) 

  Full 369.794    

      Reduced    368.751 -4 2.086 0.72 

 

Table 6: LRT Test for the Model with SCF 

Model LogLik  Df                                      Chisq                                Pr(>Chisq) 

Full 363.569         

Reduced 361.924 -4 3.291 0.510 

 

The regression coefficient output for the model that used exponential covariance function 

(ECF) and the model that used spherical covariance function (SCF) is given below in table 7 and 

table 8, respectively. In terms of numerical variables, the negative sign on the estimates of age 
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clearly indicated that age negatively impacts the price, whereas total area of a building, segment 

square feet of a property and garages seemed to positively impact the price. Compared to houses 

that have full basement finish, houses with less than a quarter of basement finish or more than half 

of the basement finish, on average, resulted in negatively impacting the price of a house. Likewise, 

single family dwellings seem to positively impact the prices, compared to the non-single family 

dwellings. Similarly, inferences for all the other variables used can be made based on the 

coefficient estimates in table 7 and table 8. 

Table 7: Coefficient Output for the Model with ECF 

names         Estimates         Std.Error                Test Statistics     P 

(Intercept) 12.213 0.024 514.304 0 

age -0.101 0.014 -7.059 0 

SegSqFt 0.027 0.008 3.503 0 

BldgTotSF 0.221 0.01 21.706 0 

basementfinishhalformore -0.036 0.015 -2.47 0.014 

basementfinishQuarterorless -0.129 0.015 -8.805 0 

garagetypeAttached -0.082 0.018 -4.484 0 

proptypeSF 0.163 0.015 10.503 0 

storyheightOS 0.036 0.018 1.941 0.053 

storyheightSL -0.149 0.029 -5.227 0 

storyheightTS -0.031 0.025 -1.272 0.204 

AircondNone -0.072 0.017 -4.345 0 

AircondWall -0.072 0.019 -3.826 0 

garages 0.067 0.007 10.129 0 
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Table 8: Coefficient Output for the Model with SCF 

names1         Estimates       Std.Error                Test Statistics      P 

(Intercept) 12.214 0.028 437.446 0 

age -0.087 0.016 -5.522 0 

SegSqFt 0.025 0.008 3.257 0.001 

BldgTotSF 0.224 0.01 21.883 0 

basementfinishhalformore -0.036 0.015 -2.453 0.014 

basementfinishQuarterorless -0.131 0.015 -8.936 0 

garagetypeAttached -0.076 0.018 -4.155 0 

proptypeSF 0.163 0.015 10.651 0 

storyheightOS 0.038 0.018 2.066 0.039 

storyheightSL -0.153 0.028 -5.383 0 

storyheightTS -0.035 0.025 -1.435 0.152 

AircondNone -0.072 0.017 -4.292 0 

AircondWall -0.071 0.019 -3.802 0 

garages 0.068 0.007 10.144 0 

 

 

5.4. Model Diagnostics 

5.4.1. The Model with ECF 

Figure 2 shows the histogram of the residuals for the model that used exponential 

covariance function.  The histogram is approximately bell shaped, therefore, satisfaction of the 

normality of the error terms can be assumed.  Figures 3 and 4 were created to assess if the model 

residuals have a similar pattern throughout the entire region of Fargo. Based on both plots, it was 

noticed that the concentration of the residuals was random in every region in Fargo. Furthermore, 

the plot on figure 4 was created to assess if the model either over predicted or under predicted in 

some regions of Fargo. When the residuals were greater than 0, they were categorized into under 

predicted categories, whereas residuals less than 0 were grouped into over predicted categories. 

Based on figure 4, it was concluded that the pattern of over and under prediction was fairly random.  
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Figure 2: Histogram of the Residuals for the Model with ECF 

 

 

Figure 3: The Model with ECF Residuals Plot  
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Figure 4: Over vs Under Prediction Plot using ECF 

5.4.2. The Model with SCF 

Similarly, figure 5 shows the histogram of the residuals for the model that was fitted using 

spherical covariance function. Based on the approximately bell shaped shape of the histogram, the 

normality of the error terms was assumed. Likewise, figures 6 and 7 were created to assess any 

spatial patterns of the residuals. Based on both the figures, it was concluded that the concentration 

of the residuals was very random in every region of Fargo. The pattern of the residuals in the 

geostatistical models that employed exponential and spherical covariance functions seemed to be 

very similar. The plot on figure 7 was generated using the over versus under prediction technique 

discussed in previous section 
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Figure 5: Histogram of the Residuals  

 

 

Figure 6: The Model with SCF Residuals Plot 
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Figure 7: Over vs Under Prediction Plot using SCF 

5.5. Application of Regression Kriging 

As discussed in section 4.6, regression kriging technique was applied to predict new data 

values at new locations. The prediction was performed on a dataset with 341 observations.  Then 

the covariance vector of residuals at new prediction locations for exponential and spherical 

functions were developed as: 

𝑔0 = {. 014𝑒
−||ℎ||

481.8
} 

𝑔0 = {. 018(1 −
3

2
·

||ℎ||

1961
+

1

2
 ·

||ℎ3||

1961
) } 

, where ||h|| is the Euclidean distance between the original data locations and new location. Based 

on equation (4.11), new data values were predicted at new locations. The map of the predicted 

values is given in figures 8 and 9, respectively for the values predicted using ECF and SCF. Three 

important conclusions were derived from the map: 
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 The South Fargo region was predicted to have houses with high property values around the 

boundary of South University Drive, Interstate 94 and towards the border with West Fargo. 

Likewise, the North Fargo region up from 19th Ave North was found to be the second major 

region with a large concentration of high property values.  

 The concentration of high property values in those two main regions may be due to the fact 

that much of the development activities in Fargo is in its southern side, whereas later 

developments in residential activities in the North Fargo side may be attributed to the larger 

concentration of high residential properties.  

 As the coefficients’ output showed the impact of independent covariates on the prices, it 

could be that the recently built houses have higher values because of being recently built 

along with other core structural advantages such as increase in building size, which older 

houses may lack. 
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Figure 8: Regression Kriging Estimated Values Plot using ECF 
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Figure 9: Regression Kriging Estimated Values Plot using SCF 
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After predicting new data values, confidence interval on the new predicted values were 

calculated to assess how well the actual values would fall in between the 95% confidence limit of 

new predicted values. Thus, the OLR model and geostatistical models with ECF and SCF were 

used to predict prices of houses at new locations. A sample of ten new houses with their predicted 

values, along with the standard errors is given in table 9. Based on the table below, the standard 

errors for new predicted values using the OLR model was much smaller than the geostatistical 

models with ECF and SCF. The standard errors for the new predicted values based on the 

geostatistical techniques seemed to be very similar. 

          Table 9: A Sample of 10 new Houses with Predicted Prices  

Observed log price OLR  ECF  SCF  

13.305 13.049 

  (.017) 

12.945 

 (.189) 

12.925 

(.191) 

12.824 12.472 

  (.016) 

12.384 

(.178) 

12.375 

(.179) 

12.656 12.577 

  (.016) 

12.481 

(.181) 

12.473 

(.181) 

12.814 12.821 

  (.016) 

12.713 

(.188) 

17.707 

(.187) 

12.801 12.951 

 (.024) 

12.808 

(.176) 

12.799 

(.178) 

12.230 12.150 

 (.014) 

12.067 

(.176) 

12.057 

(.178) 

12.407 12.477 

(.016) 

12.381 

(.172) 

12.373 

(.175) 

12.268 12.424 

 (.021) 

12.310 

(.171) 

12.302 

(.174) 

12.186 12.285 

(.023) 

12.162 

(.175) 

12.156 

(.176) 

12.219 12.162 

(.015) 

12.069 

(.177) 

12.064 

(.178) 

 

Furthermore, if the actual prices were within the 95% confidence interval of the predicted 

values, then they were categorized as being “inside”, while those that were less than the lower 

limit of the confidence interval were categorized as “less” and those that were above the upper 
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limit of the confidence interval were categorized as “over”. Based on the output in table 10, the 

geostatistical models included approximately around 90% of the actual values inside the 95% 

confidence interval of the predicted values, whereas the OLR model was only able to include 

around 18% of the actual values within the 95% confidence interval of the values it predicted.  

 Table 10: Comparison of RK and OLR C.I. Prediction 

 

 

However, it was also noticed that the average width of the OLR model predicted values 

confidence interval was much smaller than the average width of the geostatistical models predicted 

values confidence interval.  However, emphasis should be given to the fact that, unlike the case of 

OLR prediction, the geostatistical modelling prediction error relies on the deterministic part as 

well as the residual kriging component. The output on table 11 shows the average width of the 

predicted values confidence limit.  

Table 11: Average Width 

 

 

 

The plots on figures 9, 10 and 11 show the locations where confidence interval on the 

predicted values were calculated. The plots on figures 9 and 10 relate to the prediction of new 

values based on regression kriging technique using exponential and spherical covariance functions, 

respectively. Likewise, the plot on figure 11 relates to the prediction of new values using OLR 

model. Based on figures 9 and 10, it was concluded that the geostatistical models included most 

of the actual values in different regions of Fargo in the predicted values confidence interval.  

Groups OLR ECF SCF 
Inside 61 306 302 
Less  158 27 30 
 Over 122 8 9 

OLR ECF SCF 

.074 .707 .708 
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Figure 10: Confidence Interval Plot of Predicted Values using ECF 

 

 



 

37 

 

 

Figure 11: Confidence Interval Plot of Predicted Values using SCF 
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Figure 12: Confidence Interval Plot of Predicted Values using OLR 
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6. CONCLUSION 

In this thesis, approach to modeling housing prices began with ordinary linear regression 

model. However, based on the parametric estimation of the covariance parameters, the existence 

of small-scale spatial variability was detected. Thus, the spatial covariance parameters were 

included in the modeling approach by using them as a function of distance. Age, area of the 

property, garage type, property type, style of the house, air conditioner type, status of basement 

finish and number of parking spots inside a garage were found to be statistically significant factors 

in determining housing prices in Fargo. Unlike past research in the field of real estate appraisal, 

this thesis did not find number of bathrooms, number of bedrooms and flooding history to be 

statistically significant. The non-spatial error variance amounted to most of the total variance, but 

using the small-scale spatial error in the modeling approach performed better when predictions on 

new locations were made. While moderate spatial dependency was detected, the application of 

regression kriging technique was implemented to perform new predictions.  

While the inclusion of geostatistical technique in the field of statistical research has been 

growing, improvement of some of these techniques is also necessary. Future work in the field of 

geostatistical research could include proper variogram binning technique. Furthermore, the 

government appraisal technique, if not already, should start incorporating the spatial elements into 

their appraisal methodologies. Such inclusion, as the findings of this thesis show, may yield better 

predictive modeling. 
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