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ABSTRACT 

High-throughput RNA Sequencing (RNA-Seq) has emerged as an innovative and 

powerful technology for detecting differentially expressed genes (DE) across different 

conditions. Unlike continuous microarray data, RNA-Seq data consist of discrete read counts 

mapped to a particular gene. Most proposed methods for detecting DE genes from RNA-Seq are 

based on statistics that compare normalized read counts between conditions. However, most of 

these methods do not take into account potential asymmetry in the distribution of effect sizes. In 

this dissertation, we propose methods to detect DE genes when the distribution of the effect sizes 

is observed to be asymmetric. These proposed methods improve detection of differential 

expression compared to existing methods. Chapter 3 proposes two new methods that modify an 

existing nonparametric method, Significance Analysis of Microarrays with emphasis on RNA-

Seq data (SAMseq), to account for the asymmetry in the distribution of the effect sizes. Results 

of the simulation studies indicates that the proposed methods, compared to the SAMseq method 

identifies more DE genes, while adequately controlling false discovery rate (FDR). Furthermore, 

the use of the proposed methods is illustrated by analyzing a real RNA-Seq data set containing 

two different mouse strain samples. In Chapter 4, additional simulation studies are performed to 

show that the one of the proposed method, compared with other existing methods, provides 

better power for identifying truly DE genes or more sufficiently controls FDR in most settings 

where asymmetry is present. Chapter 5 compares the performance of parametric methods, 

DESeq2, NBPSeq and edgeR when there exist asymmetric effect sizes and the analysis takes into 

account this asymmetry. Through simulation studies, the performance of these methods are 

compared to the traditional BH and q-value method in the identification of DE genes. This 

research proposes a new method that modifies these parametric methods to account for 
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asymmetry found in the distribution of effect sizes.  Likewise, illustration on the use of these 

parametric methods and the proposed method by analyzing a real RNA-Seq data set containing 

two different mouse strain samples. Lastly, overall conclusions are given in Chapter 6. 
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CHAPTER 1. INTRODUCTION 

1.1. Background 

Recent advances in technology have allowed the state of diseases and biological 

conditions to be characterized by distinct patterns of gene expression (Brown and Botstein, 1999; 

DeRisi et al., 1997; Eisen and Brown, 1999; Spellman et al., 1998). The development of DNA 

microarrays in the 1990s, has been the main technology for large-scale studies in measuring gene 

expression (i.e., quantifying the amount of messenger RNA transcripts for a gene) in 

experimental units (referred to as “experiments”) in the field of genetic, biological and medical 

research (Macgregor and Squire, 2002; Petricoin et al., 2002). This technology has the ability to 

simultaneously measure tens of thousands of transcripts to provide information in dealing with a 

wide range of biological problems, including the identification of genes that are differentially 

expressed between diseased and healthy tissues, new insights into developmental processes, and 

the evolution of gene regulation in different species (Baldi and Hatfield, 2002; Kerr et al., 2008; 

Passador-Gurgel et al., 2007). Although microarrays are still the most common and affordable 

technology used in transcript profiling, it has several limitations. For example, background 

hybridization limits the accuracy of gene expression measurements, particularly for transcripts 

present in low abundance. Also, probes differ significantly in their hybridization properties, and 

arrays are limited to measuring only genes for which probes are designed (Abdullah-Sayani et 

al., 2006; Russo et al., 2003). 

In recent years, a new approach known as RNA Sequencing (RNA-Seq), that is, the 

direct sequencing of transcripts by high-throughput sequencing technologies, has been developed 

(Nagalakshmi et al., 2008; Wilhelm and Landry, 2009) to measure the entire transcriptome. It 

has been shown to have the potential to become a replacement to microarrays for whole-genome 
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transcriptome profiling (Beyer et al., 2012; Montgomery et al., 2010; A. Mortazavi et al., 2008; 

Mutz et al., 2013; Nagalakshmi et al., 2001). RNA-Seq uses the capabilities of next-generation 

sequencing to reveal the presence and quantity of RNA expressions from a genome and is more 

preferable compared to microarray approaches because it provides more information such as 

alternative splicing and isoform-specific gene expression with low background signal (Chu and 

Corey, 2012; Wang et al., 2009). These sequencing methods also offer more accurate 

quantification of expression levels compared to other technologies. The development of 

sequencing technologies enables simultaneous sequencing of millions of molecules; leading to 

advanced approaches for measuring expression levels (Bennett et al., 2005; Margulies et al., 

2005) with high accuracy and reproducibility (Fu et al., 2009; Marioni et al., 2008b; Miller et al., 

2008; Ali Mortazavi et al., 2008). Researchers often use RNA-Seq to identify differentially 

expressed genes (DE) genes in many types of comparative studies. Also, RNA-Seq does not 

depend on genome annotation for prior probe selection and avoids the biases introduced during 

hybridization of microarrays. However, RNA-Seq poses algorithmic and logistical challenges for 

data analysis and storage. Although many computational methods have been developed for 

alignment of reads, quantification of genes and transcripts, and identification of differentially 

expressed genes (Garber et al., 2011), there is great variability in the development of these 

available computational tools. Further details on RNA-Seq technology and its challenges, 

benefits and applications are reviewed elsewhere (Bloom et al., 2009; Bradford et al., 2010; Hurd 

and Nelson, 2009; Malone and Oliver, 2011; Wang et al., 2009). 
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1.2. Research objectives 

This research is specific to analyzing gene expression data sets with two class 

experiments. An example includes an experiment comparing healthy patients to those with an 

illness or disease. The goals of this research are to: 

(1) Develop methods for analyzing RNA-Seq data that takes into account asymmetry 

in the distribution of the test statistic when analyzing RNA expression data that 

lead to an improvement over previously existing methods in the number of truly 

DE genes identified as differentially expressed, while still adequately controlling 

false discovery rate. A simulation study will be performed to determine under 

which experimental settings taking into account asymmetry in the distribution of 

the test statistics improves identification of DE genes compared to traditional 

methods and by reanalyzing data generated by real RNA-Seq experiments. 

(2) Compare the best-performing proposed method to other commonly-used existing 

methods for identifying DE genes from RNA-Seq experiments. These methods 

are NBPSeq (Yanming et al., 2011), edgeR (Robinson et al., 2010), and DESeq2 

(Love et al., 2014). Similar to goal (1), comparison of methods are accomplished 

through simulation studies and the use of these methods are illustrated by 

reanalyzing data generated from real RNA-Seq experiments. 

(3) Lastly, this research compares the performance of these commonly-used existing 

methods for identifying DE genes from RNA-Seq experiments when there exists 

asymmetry in the distribution of effect sizes, using BH method proposed by 

Benjamini and Hochberg (1995) and q-value method proposed by Storey (2002) 

to adequately control false discovery rate. Similar to goals (1) and (2), comparison 
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of these methods is accomplished through simulation studies and illustrated by 

reanalyzing data generated from real RNA-Seq experiments 

1.3. Organization 

The rest of the dissertation is organized as follows. In Chapter 2, RNA-Sequencing 

analysis and multiple hypothesis testing with emphasis on false discovery rate are reviewed. 

Chapter 3 describes the SAMseq method for two class experiments and two proposed methods 

that modify this procedure in estimating FDR are presented. A description and the results of 

simulation studies implemented to compare the performances of the proposed methods and 

traditional SAMseq method, in terms of identification of differential expressed genes and FDR 

control, are presented. Analysis of a real RNA-Seq experiment using all methods from the 

simulation studies, conclusions and recommendations are discussed. Chapter 4 describes and 

presents the results of simulation studies implemented to compare the performances of the best-

performing proposed method and the three existing methods in terms of identification of 

differential expressed genes and FDR control. Chapter 5 briefly describes the DESeq2, NBPSeq, 

edgeR methods and presents methods that modify the procedures used in adjusting the p-value 

when estimating FDR. A description and the results of simulation studies implemented to 

evaluate the performances of the proposed method and these parametric methods, in terms of 

identification of differential expressed genes and FDR control are presented. Analysis of a real 

RNA-Seq dataset using all methods from the simulation studies, conclusions and 

recommendations are discussed. All analyses are performed in R. Lastly, overall conclusions of 

this research are given Chapter 6. 
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CHAPTER 2. LITERATURE REVIEW 

2.1. Performance of RNA – sequencing analysis 

Several studies comparing RNA-Seq and hybridization-based arrays have been 

performed (Fu et al., 2009; Marioni et al., 2008a; Sirbu et al., 2012). Marioni et al. (2008a) and 

estimated the technical variance associated with Illumina RNA-Sequencing to identify DE genes 

with existing array technologies. The results indicated that, RNA-Seq data on the Illumina 

platform was highly reproducible, with relatively low technical variation. The DE genes 

identified from RNA-Seq experiments were similar to those identified using microarrays. Fu et 

al. (2009) designed a study that used protein expression measurements to evaluate the accuracy 

of microarrays and RNA-Seq for mRNA quantification. In that study, gene expression levels 

were measured using Shotgun Mass Spectroscopy. This allowed for assessment of the relative 

accuracy of the two transcriptome quantification approaches with respect to absolute transcript 

level measurements. The results from this study showed that RNA-Seq provided better estimates 

of the absolute transcript levels. Many recent studies have been performed to run RNA-Seq and 

microarray in parallel with a focus on finding the relationship between them (Bottomly et al., 

2011; Sirbu et al., 2012; Zhang et al., 2012). 

2.2. Multiple testing 

A major challenge faced by researchers in the analysis of large data sets is the problem of 

multiple testing. In RNA-sequencing analysis and other gene expression analysis, it is not 

unusual to test thousands of hypotheses simultaneously. For every hypothesis test, there is a risk 

of falsely rejecting a null hypothesis that is true, that is a Type I error, and of failing to reject a 

null hypothesis that is false, that is a Type II error. Traditionally, Type I errors are considered 
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more problematic than Type II errors. The key goal of multiple testing methods is to control the 

rate at which Type I errors occur when many hypothesis tests are performed simultaneously. 

The Family-Wise Error Rate (FWER) is often the preferred error rate to be controlled. 

Common procedures for identifying DE genes while controlling the FWER are the Bonferroni 

(Simes, 1986) and Holm (Holm, 1979) methods. However, for high-dimensional data in which 

thousands of hypotheses are being tested simultaneously, the FWER generally results in 

extremely low statistical power for identifying DE genes. In efforts to improve the power of 

detecting DE genes while still controlling multiple testing error, the False Discovery Rate (FDR) 

was developed (Benjamini and Hochberg, 1995). 

2.3. False discovery rate 

Many methods have been developed to overcome the problems that arise from multiple 

testing, and they all attempt to assign an adjusted p-value to each hypothesis test, or reduce the p-

value threshold. Several traditional methods such as the Bonferroni correction are too 

conservative, as it reduces the number of false positives but also considerably decreases the 

number of true discoveries in many cases. FDR methods also determine adjusted p-values for 

each hypothesis test. More specifically, the FDR controls the proportion of false discoveries 

among all tests that are significant and has a greater power to determine truly significant results. 

This approach was proposed by Benjamini and Hochberg (1995) as a multiple-hypothesis testing 

error measure to control the proportion of Type I errors among all rejected null hypotheses 

(Benjamini and Hochberg, 1995). Benjamin and Hochberg (BH) considered the case of testing m 

null hypothesis, of which are true. Table 1 provides notation for random variables associated 

with different scenarios in a multiple testing experiment. 
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Table 1. Random Variables Corresponding to the Number of Errors Committed when Testing m 
Hypothesis 

 Declared non-significant Declared Significant Total 

True null hypothesis U  V  0m  

Non - true null hypothesis T  S  0m m  

Total m R  R  m 

 

 BH defined the FDR as 

 max ,1

V
FDR E

R

 
   

 
,.     (2.1) 

and the following sequential p-value methods was provided to control the FDR. Let 

1 2 ... mp p p    be the ordered p-values and let iH  be the null hypothesis of the thi  gene with 

corresponding p-value ip . Also, let k be the largest i for which 

*
i

i
p q

m
 .      (2.2) 

If all iH , for 1,2,...,i k  are rejected, then the above formula controls the FDR at *q  for any 

genes with true null hypotheses and any configuration of false null hypotheses. Also, if the test 

statistics corresponding to true null hypotheses are statistically independent, equation (2.2) 

controls FDR when 

* *0m
FDR q q

m
   
 

.      (2.3) 

Figure 1 below shows the comparison between the controlling procedures used in FDR and 

FWER. 
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Figure 1. Comparison of the controlling procedures of FDR and FWER (Lazar, 2012)  
 
Figure 1 above is a plot of the first 20 ordered p-values for a gene expression experiment, 

with the order indicator on the x-axis and p-values on the y-axis (Lazar, 2012). The horizontal 

solid line represents the Bonferroni correction method (controlling procedure for FWER) and the 

dashed line represents the FDR-controlling procedure. Points that fall below the line for a given 

method are considered to be significant by that method. From this plot, it is clear that the FDR 

controlling procedures allows for more tests to be identified as significant compared to the 

Bonferroni correction method. Thus, FDR-controlling methods result in higher power for 

detecting DE genes but also allow for more type I errors or false discoveries than the FWER. 

Storey (2002) pointed out the weaknesses in controlling the FDR which was proposed by BH 

and suggested that the FDR should be calculated as 

0
V

pFDR E R
R

   
 

,     (2.4) 

where pFDR is the positive false discovery rate (Storey, 2002). 
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2.4. Q - value 

Storey (2002), later developed the q-value, a natural pFDR analogue of the p-value, as a 

hypothesis testing error measure for each of the observed statistics with respect to pFDR (Storey, 

2002). The q-value is the jth smallest p-value jp  and is defined as 

  
  0ˆ

min : ,...,
r

j

p m
q r j m

r

    
  

,  (2.5) 

where   0ˆ
rp m  is an estimate of the number of false discoveries and r  is the total number of genes 

declared to be DE if all genes with p-values less than or equal to rp  are declared DE. 0m̂  is the 

estimate of the number of EE genes in a data set, and calculated using a method proposed by 

(Storey et.al., 2003). This procedure involves first ordering all the p-values and estimating 

 0m̂   for a range of  between 0 and 1, where 

  
 
 

1
0ˆ

1

m

j
j

p

m













. (2.6) 

Then, a natural cubic spline is fit to the points   0ˆ, m  . Finally, this function is evaluated at 

1   to obtain the final estimate of 0m (Storey et.al., 2003). 

2.5. Asymmetric Q - value 

Recently, Orr et al. (2014) suggested that when asymmetry in the distribution of test 

statistics is observed in a two class gene expression experiments, the estimation of FDR using the 

q-value method might be improved if this asymmetry is taken into consideration. The following 

method for doing this was proposed. Consider performing m hypothesis tests in the two class 
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experiments (t = 1, 2). The null hypothesis for the jth gene is 1 2:j j jH   , where tj  is the 

population mean expression for gene j (j = 1, …, m) in experiment t. For each gene, an 

appropriate t-test statistic jt is computed with its corresponding two-sided p-value obtained. The 

number of EE genes is then estimated as 0m̂ using all m p-values using the methods described in 

Storey and Tibshirani (2003). Next, the p-values are then partitioned into two subsets based on 

the signs of the corresponding test statistics,   1 : 1,...,kp k m  and   2 : 1,...,kp k m . This 

represent the subsets of ordered p-values corresponding to the m- genes with negative statistics 

and the m+ genes positive test statistics, respectively (Orr et al., 2014). Then, the q-values for 

each subset are estimated separately as 

  
   

 1
01

ˆ 2
min : ,...,

r

k

p m
q r k m

r


    
  

  (2.7) 

and 

  
   

 1
02

ˆ 2
min : ,...,

r

k

p m
q r k m

r


    
  

.  (2.8) 

Simulation studies showed that this method improved the identification of DE genes over 

the traditional q-value method while adequately controlling FDR in when asymmetry was 

present in the distribution of the test statistics. Orr et al. (2014) also recommended the use of the 

proposed method in analyzing experiments with smaller sample sizes  10n  . 
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CHAPTER 3. MODIFYING SAMseq TO ACCOUNT FOR ASYMMETRY IN THE 

DISTRIBUTION OF EFFECT SIZES WHEN IDENTIFYING DIFFERENTIALLY 

EXPRESSED  

3.1.  Summary 

A common statistical method used to analyze RNA-Seq data is Significance Analysis of 

Microarray with emphasis on RNA-Seq data (SAMseq). SAMseq is a nonparametric method that 

uses a resampling technique to account for differences in sequencing depths when identifying 

DE genes. Modifications of this method are made to take into account asymmetry in the 

distribution of the effect sizes by taking into account the sign of the test statistics. Through 

simulation studies, the proposed methods, compared with the traditional SAMseq method, 

provide better power for identifying truly DE genes while sufficiently controlling FDR in most 

settings. Illustration on the use of the proposed methods are made by reanalyzing RNA-Seq data 

from C57BL/6J (B6) and DBA/2J (D2) mouse strains samples. 

3.2.  Introduction 

Sequencing approaches measure gene expressions as counts. The Poisson distribution has 

been the fundamental distribution used in modelling expression data (Audic and Claverie, 1997; 

Kal et al., 1999; Madden et al., 1997), and commonly applied to RNA-Seq data (Bullard et al., 

2010; Marioni et al., 2008b). As an extension to the original SAM method (Tusher et al., 2001), 

Li and Tibshirani (2013) proposed a non-parametric approach known as Significance Analysis of 

Microarrays with emphasis on RNA-Seq data (SAMseq) to identify DE genes in RNA-

Sequencing and other sequencing-based comparative genomic experiments. However, these tests 

are not free from error; thus, there is the risk of falsely identifying equivalently expressed (EE) 

genes as DE. In the Li and Tibshirani (2013) SAMseq procedure, they employ the use of a 
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permutation plug-in method (Storey, 2002; Storey and Tibshirani, 2003; Tusher et al., 2001) to 

estimate the false discovery rate (Benjamini and Hochberg, 1995). This procedure uses 

permutations to generate the null distribution of the test statistic and estimate the false discovery 

rate (FDR) at a given cutoff point (C) as 

 0

ˆ
ˆ ˆ

ˆC

V
FDR

R
 , (3.1) 

where 0̂  is the estimated proportion of null features in the population, V̂  is the estimated 

number of false discoveries (i.e., genes that are EE but declared to be DE) when C is used as the 

cutoff point, and R̂  is the estimated number of genes declared to be differentially expressed 

(DDE) when C is used as the cutoff point.  

Ideally, researchers desire to identify all DE genes and no equivalently expressed (EE) 

genes between conditions (or classes) in a gene expression experiment. This is infeasible, 

however, so researchers seek to use the method that identifies the most DE genes while 

minimizing the number of EE genes that are declared DE. Identifying more DE genes (and fewer 

EE genes) allows researchers to more easily make important biological discoveries based on 

gene expression experiments. Thus, this propose to modify a commonly-used method to improve 

identification of DE genes while still adequately controlling false discovery rate (FDR). 

In this chapter, our focus is on two class experiments. An example of a two class 

experiment data set is shown in Table 2. Suppose we obtain ni RNA-Seq experiments for class i 

(i = 1, 2), and each experiment measures the expression levels of the same m genes on a subject. 

The data can then be represented as a m × (n1 + n2) matrix G, whose element ijG is the measure 

of expression Gene j in Experiment i, where1 ii n  , and1 j m  . 
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Table 2. RNA-Seq data set for a two class experiment. 

 Class 1 Class 2 

Gene 1 2 … 1n  1 2 … 2n  

1 20 42 … 15 54 44 … 35 

2 444 450 … 200 230 540 … 320 

… … … … … … … … … 

m 151 167 … 101 182 617 … 210 

 

 The SAMseq procedure does not explicitly take into account asymmetry in the 

distribution of the test statistics. Orr et al. (2014) showed in a two class gene expression 

experiments that taking into account asymmetry in the distribution of the test statistics when 

calculating q-values, another common method used to estimate false discovery rates (Storey, 

2002), improved the identification of DE genes when asymmetry was apparent. 

Motivated by the results of Orr et al. (2014) discussed in chapter 2, this research proposes 

two new methods that modifies the FDR estimation used in SAMseq to take into account such 

asymmetry. The first goal is to determine if taking into account this asymmetry when analyzing 

RNA expression data leads to an improvement over the traditional SAMseq method in the 

number of truly DE genes identified as differentially expressed, while still adequately controlling 

false discovery rate. The second goal is to compare the performance of the suitable proposed 

method to other commonly-used existing methods for identifying DE genes from RNA-Seq 

experiments. This is addressed in Chapter 4. 
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The rest of this chapter is organized as follows. In section 3.3; review of the SAMseq 

method for two class experiments and propose two methods that modifies the procedure used in 

estimating FDR. Section 3.4 describes and presents the results of simulation studies implemented 

to compare the performances of the proposed methods and traditional SAMseq method in terms 

of identification of differential expressed genes and FDR control. Section 3.5 presents analysis of 

a real RNA-Seq dataset using all methods from the simulation studies. All analyses are 

performed in R. Code from the samr package is used and modified to implement the proposed 

methods. Lastly, conclusions and recommendations are discussed in section 3.6. 

3.3.  Methods 

Consider the problem of simultaneously testing multiple null hypotheses 1,..., mH H , 

where the jth hypothesis is 

 :jH  Gene j is EE between the two classes. (3.2) 

Thus, if Hj is false, then gene j is said to be differentially expressed (DE). Moreover, if jH is 

rejected, then gene j is declared to be differentially expressed. Ultimately, a researcher wants to 

determine which hypotheses should be rejected (i.e. determine which genes to declare to be DE) 

while controlling false discovery rate at a nominal level α. 

In this section, an overview of the SAMseq method for estimating the FDR associated 

with each hypothesis 1,..., mH H  using two independent samples of RNA-Seq data. Additionally, 

proposed methods that modifies the FDR estimation used in SAMseq to account for asymmetry 

in the distribution of effect sizes. 
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3.3.1.  Overview of SAMseq for two class unpaired comparison 

Li and Tibshirani (2013) outlined the following steps for estimating FDR for a given 

cutoff Δ using two independent samples of RNA-Seq data; 

(1) Using experiment 1 as the base level, estimate the sequencing depths for each 

experiment as  

 
 1

;       1 ,  1
ij

i

j

E G
d i n j m

E G
     ,    (3.3) 

where  ijE G is the mean expression count for all genes in Experiment i. Note that 

this implies d1 = 1. 

(2) Resample S  times from the data using the estimated depths 1,..., nd d . The following 

steps outline the Poisson sampling strategy used; 

a. Estimate the geometric mean d  of the sequencing depths as 

 

1

1

n n

i
i

d d


  
 
 
  (3.4) 

b. For each experiment i, the count is resampled as 

 ~ij ij

i

d
G Poisson G

d


 
 
 

, (3.5) 

where Gij is the read count for the jth gene in experiment i. 

c. A small random number is added to each count to account for ties between 

1 ...,j njG G  . Thus ij ij ijG G     where ij  are independent identically distributed 

random variables generated from  0,0.1Uniform . 

(3) Compute and order the test statistics on each resampled dataset. The Wilcoxon 

statistic for the jth gene is calculated as 
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  ; t = 1, 2.   (3.6) 

where Ct represents the subset of data from the tth sample, sG  represents the 

expression values for the sth resampled data set,  s

tjR G   is the rank of sG   in 

1 ,...,j njG G  and 1n  is the number of experiments in the first sample.  

(4) Permute the read counts from the n experiments B times to obtain B permuted data 

sets. For the bth permutation, compute test statistic * *

1 ,...,b b

mT T  based on the permuted 

data and order. 

(5) Estimate the expected order statistic    
* *

1 ,...,b b

mT T  as 

 
* *1b b

j jb
T T

B
        (3.7) 

(6) For a given  ; genes with positive test statistic * 0jT   are called significant positive if 

   
* *b

j jT T    and genes with negative test statistic * 0jT   are called significant 

negative if    
* *b

j jT T   . 

(7) Determine  upcut  , the minimum value of the test statistics *

jT  among all significant 

positive genes, and  lowcut  , the maximum value of the test statistic *

jT  among all 

significant negative genes. 

(8) Compute the number of falsely called (FC) genes, i.e. the number of EE genes that 

are called significant, among the b set of permutations as 

       * *

1

m
b b b

j up j low
j

FC I T cut I T cut


          (3.8) 

(9) Estimate the proportion of true null genes 0 , in the data set as 
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  *

0

25, 75
ˆ

0.5

jj
I T q q

m






     (3.9) 

where q25 and q75 are the 25th and 75th points of all permuted test statistics (among 

all B permutations). If the estimated proportion of true null genes is greater than one, 

set the proportion of true null genes to be equal to one. 

(10) Compute the false discovery rate as  

   
 

0
ˆ

   

medFC
FDR

Number of significant genes

 
 


    (3.10) 

where  medFC   is the median number of falsely called genes among the B 

permuted datasets. Starting in Chapter 3, we will refer to this method used to estimate 

FDR as the “traditional method”. 

3.3.2. Proposed methods for estimating FDR 

The method described in section 3.3.1 does not account for asymmetry in the distribution 

of the test statistics, if such asymmetry exists. Orr et al. (2014) showed that taking into account 

apparent asymmetry in the test statistics by modifying Storey’s q-value results in higher power 

for detecting DE genes when such asymmetry exists. Using this as motivation, this research 

proposes two methods that modify the FDR estimation of the SAMseq method by taking into 

account the asymmetry of the test statistics. 

3.3.2.1. Proposed method I 

For proposed method I, steps (1) through (7) of the SAMseq procedure outlined in 

section 3.3.1. is used. To estimate FDR, begin by dividing the test statistics into two groups 

based on sign. For genes with positive test statistics, estimate the number of falsely called 

positive genes for each permuted data set among the B set of permutations as 
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     *

1

m
b b

j up
j

FC I T cut


     ,  (3.11) 

and for genes with negative test statistics, estimate the number of falsely negatively called genes 

among the B set of permutations as 

     *

1

m
b b

j low
j

FC I T cut


     .  (3.12) 

Next, calculate the median number of falsely positively called genes as 

     bmedFC median FC       (3.13) 

and the median number of falsely negatively called genes as 

     bmedFC median FC     .  (3.14) 

The proportion of EE genes 0  is estimated exactly as in equation (3.9). Then estimate the 

proportion of EE genes among genes with positive test statistics, that is,  
* 0jT   as 

 0
0

ˆ 2
ˆ

m

m

 
 ,  (3.15) 

where m is the total number of genes in an experiment and, m   is the number of genes with

 
* 0jT  . Similarly, estimate the proportion of EE genes among genes with negative test statistics, 

that is,  
* 0jT   as 

 0
0

ˆ 2
ˆ

m

m

 
 ,  (3.16) 

where m   is the number of genes with  
* 0jT  .  

The estimates in (3.15) and (3.16) are based on the assumption that the asymmetry 

present in the distribution of the test statistics is due to asymmetry in the distribution of the effect 

sizes of DE genes and that EE genes have test statistics that are symmetric (or very close to 
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symmetric) around zero.  Thus, a researcher expect that the number of EE genes with positive 

test statistics is equal to the number of EE genes with negative test statistics, on average, and this 

number is estimated to be .2/ˆ0  

Lastly for a given, estimate FDR as  

      
 

0 0ˆ ˆ

   

medFC medFC
FDR

Number of significant genes

    
 


.  (3.17) 

The estimation of FDR in (3.17) modifies the numerator in (3.10) by taking into account the 

asymmetry in the test statistics but maintains the same cutoff (Δ) for both positive and negative 

test statistics. 

3.3.2.2. Proposed method II 

For the proposed method II, steps (1) through (5) of the SAMseq procedure in section 

3.3.1 and estimation of the proportion of equally expressed genes, 0̂ , in the data set as described 

in equation (3.9). Next, divide the test statistics into two groups based on the sign of the test 

statistics and estimate FDR separately for genes with positive test statistics and genes with 

negative test statistics. The FDR estimation for genes with positive test statistics, i.e.,  
* 0jT  ; for 

a given value  , a gene is significant positive if    
* *b

j jT T    . Next, estimate  upcut  , that is, 

the minimum value of the test statistics  
*

jT  among all significant positive genes. Given B sets of 

permuted and ordered test statistics; calculate the number of falsely positively called genes, i.e. 

the number of EE genes among significant positive genes, as 

     *

1

m
b b

j up
j

FC I T cut 



      (3.18) 

and estimate the median number of falsely positively called genes as 
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     bmedFC median FC    , i.e,   ;   1,2, ,bmedian FC b B   .  (3.19) 

The proportion of genes with positive test statistics  
* 0jT   that are EE is estimated as 

 0
0

ˆ 2
ˆ

m

m

 
 .  (3.20) 

where m is the total number of genes in an experiment and, m is the number of genes with 

 
* 0jT  . 

For a given  , estimate the FDR for genes with positive test statistics as 

   
 

0
ˆ

    

medFC
FDR

Number of significant positive genes

  






 


   (3.21) 

For genes with negative test statistics, i.e.,  
* 0jT  ; a gene is significant negative if    

* *b

j jT T    . 

Next,  lowcut   the maximum value of the test statistics  
*

jT  among all significant negative genes, 

is determined. For each of the B sets of permuted and ordered test statistics, calculate the number 

of falsely negatively called genes i.e. the number of EE genes among significant negative genes 

as 

    *

1

m
b b

j low
j

FC I T cut 



    ,    (3.22) 

and estimate the median number of falsely negatively called genes as 

    bmedFC median FC    , i.e.,   ;   1, 2, ,bmedian FC b B     (3.23) 

Then estimate the proportion of genes with  
* 0jT   that are EE as 

0
0

ˆ 2
ˆ

m

m


 


 ,      (3.24) 
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where m  is the number of genes with  
* 0jT  , and estimate the FDR for genes with negative 

test statistics as 

   
 

0
ˆ

    

medFC
FDR

Number of significant negaitive genes

  






 


.  (3.25) 

The estimates in (3.20) and (3.24) are based on the assumption that the asymmetry 

present in the distribution of the test statistics is due to asymmetry in the distribution of the effect 

sizes of DE genes and that EE genes have test statistics that are symmetric (or very close to 

symmetric) around zero. Thus, the expected the number of EE genes with positive test statistics 

is equal to the number of EE genes with negative test statistics, on average, and this number is 

estimated to be 0
ˆ / 2 . The estimation of FDR in (3.21) and (3.25) modifies the numerator in 

(3.10) by taking into account the asymmetry in the test statistics and uses different delta values 

for positive and negative test statistics. 

3.4.  Simulation studies 

In order to evaluate the performance of the proposed methods compared to the traditional 

method (Li andTibshirani, 2013) for estimating false discovery rate; data sets with Poisson 

distributed gene counts were randomly generated. For each data set, gene counts were randomly 

generated for m = 10,000 genes in two experiments. For gene j in experiment i, the gene count 

was generated as 

  ~ij ijG Poisson    (3.26) 

and 

  2
log log logij i j j i Cd I      ,  (3.27) 
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where id  is the sequencing depth of experiment i, j  is the expression level of gene j in the first 

group, and j  represents the difference in gene expression between the two experiments for gene 

j if it is differentially expressed. Using procedures implemented by Li et al. (2012),  

   ~ exp 4,6id uniform ,  (3.28) 

is simulated so that the total number of reads are similar to real RNA-seq experiments; 

 

1

1
j

j m

j

G

G
m

 


, (3.29) 

is simulated so that gene expression levels are similar to a real RNA-seq data set (Marioni et al., 

2008b);  

 ~ 0,1j N ,      (3.30) 

for upregulated genes, and for down regulated genes 

 ~ 0,1j N  ,     (3.31) 

are simulated so that the average fold change for differentially expressed genes is about 2.7.  For 

EE genes, 

0j         (3.32) 

To create difference simulation settings, simulated data sets with four different sample 

sizes,  4,6,10,12n   and four different values for the number of EE genes, 

 0 5000,7000,9000,9500m   are used. To simulate asymmetry, five set of values representing 

the proportion of DE genes that are upregulated and downregulated were used:  1 0.5,0.5  , 

 2 0.7,0.3  ,  3 0.8,0.2  ,  3 0.9,0.1  , and  5 0.95,0.05  . For instance, in settings 

where  3 0.8,0.2   is used, 0.8 represent the proportion of DE genes that are upregulated and 
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0.2 represent the proportion of DE genes that are downregulated in the data set. This results in 

eighty different simulation settings. 

3.4.1. Results 

For each simulation setting, 100 data sets were randomly generated. For each data set, all 

three methods (proposed method I, proposed method II and traditional method) were used to 

estimate the FDR for each gene to identify DE genes. For a given delta value, FDRs were 

calculated using all methods. Although delta values are usually user defined, a set of delta values 

was sequenced and the value of delta was chosen that corresponded to an estimated FDR closest 

to but less than 0.05 (or 5%).  

Controlling FDR at the 5% significance level, S (the number of DE genes DDE) was 

determined for each data set. To determine if each method controlled FDR at the 5% significance 

level, the observed FDR, V/R (the proportion of EE genes among all DDE genes) was calculated 

for each data set. If no genes were DDE for a particular data set, V/R was set to zero. For each 

simulation setting, paired t-tests were performed to test the difference in the mean S of proposed 

method I and the traditional method, proposed method II and the traditional method, proposed 

method I and proposed method II. If the test between these comparisons were significant at a 

type I error rate of 5%, then the higher mean S is shown in bolded font. If a test between 

proposed method I and proposed method II was significant at a type I error rate of 5% with the 

proposed method II outperforming the proposed method I, the higher mean S is underlined. Table 

3 and Table 4 below presents the mean S and mean V/R for each simulation setting, respectively. 

The corresponding standard errors for the mean S and mean V/R are reported in parentheses. 
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As expected, the power to detect DE genes increased as the number of EE genes 

decreased, that is, the number of DE genes (m0) increased. Also, the power to identify DE genes 

increased as the sample size increased. 

Pertaining to the initial goal of this research, the traditional method did not outperform the 

proposed method I and II in any of the simulation settings in terms of mean S, as seen in Table 3. 

Proposed method I performed better than the traditional method in 59 of the 80 simulation 

settings with regard to mean S (10 of 20 settings with n = 4, 16 of 20 settings with n = 6, 16 of 20 

settings with n = 10, and 17 of 20 settings with n = 12). The proposed method II performed better 

than the traditional method in 69 of the 80 simulations, including all settings with n = 6, 18 of 20 

settings with n = 10; 19 of 20 settings with n = 12, and 12 of 20 settings with n = 4. Furthermore, 

proposed method II performed better than proposed method I in 62 of 80 settings in terms of 

mean S (6 of 20 settings with n = 4, 20 of 20 settings with n = 6, 18 of 20 settings with n = 10, 

and 18 of 20 settings with n = 12). Although a higher value of mean S was observed in the 

traditional method compared to the proposed methods I and II in the setting where sample size n 

= 10, m0 = 9000, and 1 ; this difference was not significant. Also higher values of mean S was 

observed in proposed method II compared to proposed method I, but there were no significant 

differences between these two methods in 3 of 80 settings. Apart from these settings, a higher 

value of mean S was observed using the traditional method compared to proposed method I, but 

not proposed method II in 9 of 80 settings, but there was no significant difference in mean S at 

5% significance between the traditional method and proposed method I.  

As shown in Table 4, the observed FDR (mean V/R) was comparable among the 

proposed methods and traditional method for each simulation setting, with levels elevated above 
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5% for the simulation settings with the smallest sample size (n = 4). In the simulation settings 

with all other sample sizes, the observed FDR was controlled at, or close to, 5% for all methods. 

Table 3. The mean S for the proposed and traditional FDR methods with associated standard 
errors in parentheses for each simulation setting. 

 Mean S 

Traditional Proposed 

n m0
 DE  I II 

4 

 

5000 5000  603.770 (5.779) 584.030 (5.768) 665.040 (4.746) 

 519.010 (2.914) 569.940 (4.511) 671.570 (7.292) 

 558.070 (4.439) 610.600 (3.851) 613.570 (3.819) 

 728.700 (4.714) 801.540 (4.091) 802.560 (4.063) 

 700.850 (4.471) 792.640 (4.380) 792.640 (4.380) 

7000 3000  100.820 (4.425) 94.700 (4.584) 120.560 (6.076) 

 183.910 (4.296) 201.310 (2.423) 208.450 (2.867) 

 225.540 (2.825) 250.930 (3.117) 250.930 (3.117) 

 254.060 (2.961) 300.450 (2.617) 300.450 (2.617) 

 262.480 (3.231) 324.180 (3.857) 324.180 (3.857) 

9000 1000  0.770 (0.384) 0.330 (0.233) <0.001 (<0.001) 

 <0.001 (<0.001) 0.570 (0.412) 0.570 (0.412) 

 4.200 (0.993) 4.650 (1.072) 4.650 (1.072) 

For each setting, the significant higher mean S value at 5% significance level is shown in bolded 
fonts. If one method has a significant higher mean S compared to the other two methods, then the 
mean S is underlined. The ’s represent the proportion of DE genes that are upregulated and 
downregulated. 0.5, 0.5 , 0.7, 0.3 , 0.8, 0.2 , 0.9, 0.1  and 
0.95, 0.05 . 
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Table 3. The mean S for the proposed and traditional FDR methods with associated standard 
errors in parentheses for each simulation setting (continued). 

 Mean S 

Traditional Proposed 

n m0
 DE  I II 

4 9000 1000  10.050 (1.693) 23.180 (2.111) 23.180 (2.111) 

 26.450 (2.433) 31.660 (2.404) 31.660 (2.404) 

9500 500  <0.001 (<0.001) <0.001 (<0.001) <0.001 (<0.001) 

 <0.001 (<0.001) <0.001 (<0.001) <0.001 (<0.001) 

 <0.001 (<0.001) <0.001 (<0.001) <0.001 (<0.001) 

 <0.001 (<0.001) 0.330 (0.237) 0.330 (0.237) 

  <0.001 (<0.001) <0.001 (<0.001) <0.001 (<0.001) 

6 

 

5000 5000  3142.390 (2.816) 3145.260 (2.676) 3167.580 2.541) 

 2455.030 (4.608) 2543.140 (7.385) 3292.600 (2.541) 

 2643.070 (2.687) 2674.230 (2.613) 3210.310 (2.884) 

 3144.200 (2.161) 3186.670 (2.491) 3458.040 (2.710) 

 3281.200 (2.506) 3321.780 (2.244) 3439.340 (4.547) 

7000 3000  1278.380 19.220) 1281.960 (19.143) 1540.420 (2.121) 

 1399.460 (1.775) 1425.710 (2.871) 1860.730 (1.875) 

 1647.370 (1.580) 1662.400 (1.599) 1987.230 (1.716) 

For each setting, the significant higher mean S value at 5% significance level is shown in bolded 
fonts. If one method has a significant higher mean S compared to the other two methods, then the 
mean S is underlined. The ’s represent the proportion of DE genes that are upregulated and 
downregulated. 0.5, 0.5 , 0.7, 0.3 , 0.8, 0.2 , 0.9, 0.1  and 
0.95, 0.05 . 
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Table 3. The mean S for the proposed and traditional FDR methods with associated standard 
errors in parentheses for each simulation setting (continued). 

 Mean S 

Traditional Proposed 

n m0
 DE  I II 

6 7000 3000  1699.210 (1.857) 1728.290 (1.793) 1830.980 (4.729) 

 1919.720 (1.744) 1951.730 (1.741) 1976.980 (2.299) 

9000 1000  515.200 (7.394) 517.260 (7.208) 535.970 (5.080) 

 393.760 (7.155) 407.070 (4.239) 517.720 (6.150) 

 505.130 (0.777) 507.830 (0.753) 578.540 (3.576) 

 525.390 (3.935) 527.950 (3.962) 542.750 (4.241) 

 479.170 (0.955) 483.380 (0.965) 491.180 (1.252) 

9500 500  189.030 (1.222) 193.190 (2.239) 231.910 (6.203) 

 159.530 (8.129) 172.280 (7.593) 218.040 (8.390) 

 199.210 (7.111) 195.430 (7.370) 212.680 (7.584) 

 253.200 (3.600) 253.260 (3.600) 259.150 (3.650) 

 244.320 (6.124) 260.470 (3.373) 262.940 (3.350) 

10 

 

5000 5000  3333.470 (2.514) 3332.570 (2.516) 3338.570 (2.454) 

 3487.460 (2.623) 3511.980 (2.715) 3555.450 (2.499) 

 3566.390 (2.649) 3609.980 (2.604) 3668.730 (2.497) 

For each setting, the significant higher mean S value at 5% significance level is shown in bolded 
fonts. If one method has a significant higher mean S compared to the other two methods, then the 
mean S is underlined. The ’s represent the proportion of DE genes that are upregulated and 
downregulated. 0.5, 0.5 , 0.7, 0.3 , 0.8, 0.2 , 0.9, 0.1  and 
0.95, 0.05 . 
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Table 3. The mean S for the proposed and traditional FDR methods with associated standard 
errors in parentheses for each simulation setting (continued). 

 Mean S 

Traditional Proposed 

n m0
 DE  I II 

10 5000 5000  3476.510 (6.919) 3558.420 (4.318) 3621.910 (2.080) 

 3682.050 (4.375) 3758.830 (5.453) 3831.440 (2.445) 

7000 3000  2046.110 (1.600) 2045.460 (1.593) 2049.050 (1.542) 

 1915.780 (1.747) 1922.750 (1.706) 1944.820 (1.722) 

 1961.270 (1.615) 1979.750 (1.569) 2000.900 (1.406) 

 2195.010 (4.836) 2250.420 (1.377) 2276.420 (1.377) 

 2162.030 (1.841) 2198.260 (2.025) 2269.640 (1.555) 

9000 1000  625.040 (0.764) 624.390 (0.737) 624.620 (0.762) 

 600.960 (0.968) 600.170 (0.986) 608.800 (1.020) 

 653.700 (0.794) 656.220 (0.762) 662.280 (0.768) 

 588.770 (0.953) 589.820 (0.909) 621.650 (0.902) 

 681.500 (0.744) 685.670 (0.730) 707.460 (0.690) 

9500 500  293.450 (0.541) 293.690 (0.543) 293.430 (0.555) 

 286.600 (0.564) 287.770 (0.557) 289.400 (0.518) 

 307.240 (0.557) 307.890 (0.563) 309.700 (0.553) 

For each setting, the significant higher mean S value at 5% significance level is shown in bolded 
fonts. If one method has a significant higher mean S compared to the other two methods, then the 
mean S is underlined. The ’s represent the proportion of DE genes that are upregulated and 
downregulated. 0.5, 0.5 , 0.7, 0.3 , 0.8, 0.2 , 0.9, 0.1  and 
0.95, 0.05 . 
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Table 3. The mean S for the proposed and traditional FDR methods with associated standard 
errors in parentheses for each simulation setting (continued). 

 Mean S 

Traditional Proposed 

n m0
 DE  I II 

10 9500 500  315.450 (0.762) 317.470 (0.681) 319.260 (0.582) 

 317.030 (0.505) 317.130 (0.504) 326.800 (0.534) 

12 

 

5000 5000  3621.600 (3.078) 3628.480 (2.681) 3631.800 (2.681) 

 3408.150 (3.805) 3443.260 (3.507) 3484.980 (3.192) 

 3462.340 (3.433) 3500.930 (3.541) 3550.160 (3.049) 

 3597.780 (2.699) 3669.350 (3.075) 3699.720 (2.628) 

 3694.540 (3.381) 3748.770 (2.958) 3776.480 (2.807) 

7000 3000  2021.820 (1.691) 2022.220 (1.636) 2026.860 (1.689) 

 2084.570 (1.540) 2098.030 (1.507) 2113.840 (1.458) 

 2115.730 (1.570) 2131.110 (1.585) 2150.520 (1.482) 

 2211.550 (1.612) 2237.970 (1.733) 2254.140 (1.674) 

 2240.620 (1.916) 2279.460 (1.620) 2289.900 (1.632) 

9000 1000  655.090 (0.789) 655.010 (0.788) 655.110 (0.780) 

 679.660 (0.727) 680.190 (0.729) 684.700 (0.732) 

 646.790 (0.914) 648.140 (0.893) 653.430 (0.849) 

For each setting, the significant higher mean S value at 5% significance level is shown in bolded 
fonts. If one method has a significant higher mean S compared to the other two methods, then the 
mean S is underlined. The ’s represent the proportion of DE genes that are upregulated and 
downregulated. 0.5, 0.5 , 0.7, 0.3 , 0.8, 0.2 , 0.9, 0.1  and 
0.95, 0.05 . 
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Table 3. The mean S for the proposed and traditional FDR methods with associated standard 
errors in parentheses for each simulation setting (continued). 

 Mean S 

Traditional Proposed 

n m0
 DE  I II 

12 9000 1000  728.650 (0.622) 731.510 (0.624) 735.200 (0.609) 

 702.520 (0.745) 705.240 (0.781) 708.540 (0.778) 

9500 500  310.950 (0.493) 311.390 (0.488) 311.570 (0.511) 

 325.440 (0.437) 324.910 (0.445) 326.610 (0.422) 

 300.360 (0.475) 300.660 (0.484) 301.850 (0.436) 

 323.550 (0.493) 324.130 (0.490) 325.420 (0.493) 

 320.840 (0.472) 321.550 (0.472) 323.060 (0.498) 

For each setting, the significant higher mean S value at 5% significance level is shown in bolded 
fonts. If one method has a significant higher mean S compared to the other two methods, then the 
mean S is underlined. The ’s represent the proportion of DE genes that are upregulated and 
downregulated. 0.5, 0.5 , 0.7, 0.3 , 0.8, 0.2 , 0.9, 0.1  and 
0.95, 0.05 . 

Table 4. The mean V/R for the proposed and traditional FDR methods with associated 
standard errors in parentheses for each simulation setting. 

 Mean V/R 

Traditional Proposed 

n m0
 DE   I II 

4 

 

5000 5000  0.193 (0.002) 0.190 (0.002) 0.161 (0.002) 

 0.121 (0.002) 0.140 (0.002) 0.142 (0.002) 

The ’s represent the proportion of DE genes that are upregulated and downregulated. 
0.5, 0.5 , 0.7, 0.3 , 0.8, 0.2 , 0.9, 0.1  and 0.95, 0.05 . 
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Table 4. The mean V/R for the proposed and traditional FDR methods with associated 
standard errors in parentheses for each simulation setting (continued). 

 Mean V/R 

Traditional Proposed 

n m0
 DE   I II 

4 5000 5000  0.102 (0.002) 0.116 (0.001) 0.117 (0.001) 

 0.084 (0.001) 0.100 (0.001) 0.100 (0.001) 

 0.079 (0.001) 0.101 (0.001) 0.101 (0.001) 

7000 3000  0.176 (0.007) 0.166 (0.008) 0.154 (0.006) 

 0.143 (0.004) 0.157 (0.003) 0.158 (0.003) 

 0.150 (0.003) 0.173 (0.003) 0.173 (0.003) 

 0.145 (0.003) 0.177 (0.003) 0.177 (0.003) 

 0.122 (0.002) 0.159 (0.003) 0.159 (0.003) 

9000 1000  0.014 (0.007) 0.008 (0.006) <0.001 (<0.001) 

 <0.001 (<0.001) 0.005 (0.004) 0.005 (0.004) 

 0.044 (0.010) 0.046 (0.011) 0.046 (0.011) 

 0.089 (0.015) 0.178 (0.016) 0.178 (0.016) 

 0.165 (0.015) 0.195 (0.015) 0.195 (0.015) 

9500 500  <0.001 (<0.001) <0.001 (<0.001) <0.001 (<0.001) 

 <0.001 (<0.001) <0.001 (<0.001) <0.001 (<0.001) 

 <0.001 (<0.001) <0.001 (<0.001) <0.001 (<0.001) 

The ’s represent the proportion of DE genes that are upregulated and downregulated. 
0.5, 0.5 , 0.7, 0.3 , 0.8, 0.2 , 0.9, 0.1  and 0.95, 0.05 . 
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Table 4. The mean V/R for the proposed and traditional FDR methods with associated 
standard errors in parentheses for each simulation setting (continued). 

 Mean V/R 

Traditional Proposed 

n m0
 DE   I II 

4 9500 500  <0.001 (<0.001) 0.010 (0.007) 0.010 (0.007) 

 <0.001 (<0.001) <0.001 (<0.001) <0.001 (<0.001) 

6 

 

5000 5000  0.048 (<0.001) 0.048 (<0.001) 0.047 (<0.001) 

 0.062 (0.001) 0.73 (0.001) 0.069 (0.001) 

 0.024 (<0.001) 0.028 (<0.001) 0.034 (<0.001) 

 0.020 (<0.001) 0.025 (<0.001) 0.034 (<0.001) 

 0.017 (<0.001) 0.020 (<0.001) 0.036 (<0.001) 

7000 3000  0.046 (0.001) 0.045 (0.001) 0.038 (0.001) 

 0.043 (0.001) 0.054 (0.001) 0.044 (<0.001) 

 0.037 (<0.001) 0.043 (0.001) 0.043 (0.001) 

 0.043 (0.001) 0.052 (0.001) 0.051 (0.001) 

 0.038 (0.001) 0.047 (0.001) 0.047 (0.001) 

9000 1000  0.067 (0.002) 0.067 (0.002) 0.063 (0.001) 

 0.042 (0.002) 0.041 (0.001) 0.040 (0.001) 

 0.040 (0.001) 0.044 (0.001) 0.044 (0.001) 

 0.034 (0.001) 0.036 (0.001) 0.038 (0.001) 

The ’s represent the proportion of DE genes that are upregulated and downregulated. 
0.5, 0.5 , 0.7, 0.3 , 0.8, 0.2 , 0.9, 0.1  and 0.95, 0.05 . 
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Table 4. The mean V/R for the proposed and traditional FDR methods with associated 
standard errors in parentheses for each simulation setting (continued). 

 Mean V/R 

Traditional Proposed 

n m0
 DE   I II 

6 9000 1000  0.040 (0.001) 0.044 (0.001) 0.044 (0.001) 

9500 500  0.052 (0.002) 0.052 (0.002) 0.051 (0.003) 

 0.078 (0.006) 0.073 (0.005) 0.064 (0.004) 

 0.061 (0.005) 0.062 (0.005) 0.081 (0.005) 

 0.049 (0.003) 0.049 (0.003) 0.058 (0.003) 

 0.059 (0.004) 0.057 (0.003) 0.058 (0.002) 

10 

 

5000 5000  0.047 (<0.001) 0.047 (<0.001) 0.047 (<0.001) 

 0.040 (<0.001) 0.043 (<0.001) 0.047 (<0.001) 

 0.035 (<0.001) 0.040 (<0.001) 0.048 (<0.001) 

 0.027 (<0.001) 0.032 (<0.001) 0.046 (<0.001) 

 0.029 (<0.001) 0.035 (<0.001) 0.089 (0.001) 

7000 3000  0.048 (0.001) 0.048 (0.001) 0.049 (0.001) 

 0.044 (<0.001) 0.047 (0.001) 0.048 (0.001) 

 0.043 (0.001) 0.048 (0.001) 0.048 (0.001) 

 0.045 (<0.001) 0.053 (0.001) 0.052 (0.001) 

 0.045 (<0.001) 0.056 (0.001) 0.055 (0.001) 

The ’s represent the proportion of DE genes that are upregulated and downregulated. 
0.5, 0.5 , 0.7, 0.3 , 0.8, 0.2 , 0.9, 0.1  and 0.95, 0.05 . 
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Table 4. The mean V/R for the proposed and traditional FDR methods with associated 
standard errors in parentheses for each simulation setting (continued). 

 Mean V/R 

Traditional Proposed 

n m0
 DE   I II 

10 9000 1000  0.045 (0.001) 0.044 (0.001) 0.044 (0.001) 

 0.044 (0.001) 0.043 (0.001) 0.048 (0.001) 

 0.047 (0.001) 0.050 (0.001) 0.047 (0.001) 

 0.040 (0.001) 0.041 (0.001) 0.041 (0.001) 

 0.045 (0.001) 0.049 (0.001) 0.048 (0.001) 

9500 500  0.080 (0.002) 0.080 (0.002) 0.077 (0.002) 

 0.061 (0.001) 0.065 (0.001) 0.059 (0.001) 

 0.043 (0.001) 0.045 (0.001) 0.043 (0.001) 

 0.048 (0.001) 0.052 (0.001) 0.050 (0.001) 

 0.038 (0.001) 0.039 (0.001) 0.040 (0.001) 

12 

 

5000 5000  0.034 (0.001) 0.035 (<0.001) 0.035 (<0.001) 

 0.036 (0.001) 0.040 (0.001) 0.042 (0.001) 

 0.028 (<0.001) 0.033 (<0.001) 0.040 (<0.001) 

 0.035 (<0.001) 0.044 (<0.001) 0.053 (0.001) 

 0.025 (<0.001) 0.030 (<0.001) 0.053 (0.001) 

7000 3000  0.045 (<0.001) 0.045 (<0.001) 0.046 (<0.001) 

The ’s represent the proportion of DE genes that are upregulated and downregulated. 
0.5, 0.5 , 0.7, 0.3 , 0.8, 0.2 , 0.9, 0.1  and 0.95, 0.05 . 
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Table 4. The mean V/R for the proposed and traditional FDR methods with associated 
standard errors in parentheses for each simulation setting (continued). 

 Mean V/R 

Traditional Proposed 

n m0
 DE   I II 

12 7000 3000  0.050 (0.001) 0.055 (0.001) 0.053 (0.001) 

 0.039 (<0.001) 0.044 (0.001) 0.045 (0.001) 

 0.046 (<0.001) 0.057 (0.001) 0.056 (<0.001) 

 0.054 (0.001) 0.068 (0.001) 0.066 (0.001) 

9000 1000  0.049 (0.001) 0.049 (0.001) 0.049 (0.001) 

 0.044 (0.001) 0.044 (0.001) 0.045 (0.001) 

 0.044 (0.001) 0.046 (0.001) 0.045 (0.001) 

 0.049 (0.001) 0.054 (0.001) 0.053 (0.001) 

 0.045 (0.001) 0.049 (0.001) 0.049 (0.001) 

9500 500  0.060 (0.001) 0.061 (0.001) 0.060 (0.001) 

 0.048 (0.001) 0.046 (0.001) 0.053 (0.001) 

 0.042 (0.001) 0.043 (0.001) 0.042 (0.001) 

 0.041 (0.001) 0.043 (0.001) 0.043 (0.001) 

 0.046 (0.001) 0.048 (0.001) 0.048 (0.001) 

The ’s represent the proportion of DE genes that are upregulated and downregulated. 
0.5, 0.5 , 0.7, 0.3 , 0.8, 0.2 , 0.9, 0.1  and 0.95, 0.05 . 
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3.5.  Real data analysis 

In this section, RNA-Seq data from a real gene expression experiment described by 

Bottomly et al. (2011) using both the proposed methods and traditional (SAMseq) methods is 

analyzed. Using the Illumina GAIIx sequencing platform, the experiment was performed to 

evaluate gene expression in C57BL/6J (B6) and DBA/2J (D2) mouse striatum using RNA-Seq 

and microarrays. For the analysis, the focus is on the RNA-Seq data. There were two classes (B6 

and D2); with a total of n = 21 samples, n1 = 10 B6 samples and n2 = 11 D2 samples. The data 

set contains 36,536 genes, with many of the genes not having any reads. These genes were 

removed, and the remaining m = 13,932 were analyzed. The raw data set is named after the first 

author of the paper and is available from ReCount project (Frazee et al., 2011) with an identifier 

“bottomly”. Figure 2 below shows the distribution of the test statistic for the genes analyzed. 

 

Figure 2. Histogram of the test statistic from the experiment described by Bottomly et al. 
(2011) using SAMseq two class unpaired test statistics, to compare RNA expression levels 
between B6 and D2 samples. 
 

Although, the histogram of the test statistics from this experiment does not clearly 

indicate asymmetry in the distribution of test statistics; there are more genes with positive test 
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statistics than negative test statistics. Precisely, there are 7190m   genes with positive test 

statistics and 6742m   genes with negative test statistics. 

Using the method described in section 3.3.1 for estimating the proportion of EE genes , 

0ˆ 0.7182  . Thus, the estimated number of EE genes was
0

ˆ 10006m  . Since the expected EE 

genes should have an equal number of both positive and negative test statistics, then the estimate 

0
ˆ 2 5003m   EE genes with positive test statistics and 

0
ˆ 2 5003m   EE genes with negative test 

statistics. Using these estimates, estimate the number of DE genes with positive effect sizes as 

7190 – 5003 = 2187 genes, and the number of DE genes negative effect sizes as 6742 – 5003 = 

1739 genes. This results in an estimate of 56% of DE having positive effect sizes and 44% 

having negative effect sizes. 

The number of genes declared to be DE using proposed method I, proposed method II 

and the traditional method while controlling FDR at 5% are summarized in Figure 3. There were 

1868 genes that were DDE by all three methods. An additional 47 genes were DDE by the 

proposed method I and the traditional method, but not the proposed method II. Finally, there are 

70 additional genes DDE by only proposed method II and 8 genes DDE by only the traditional 

method. Therefore, proposed method II declared the most genes to be DE, followed by the 

traditional method and then proposed method I. This is not surprising based on the results from 

the simulation studies in section 3.4.  
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Figure 3. Venn diagram of genes declared to be DE for the proposed method I, proposed 
method II and traditional method. 
 

Because this analysis was performed on a real, not simulated, data set, it cannot be 

determined which genes are EE and which are DE. Thus, evaluating the true FDR associated 

with each method is impossible. However, because the sample size for each class is relatively 

large with a small degree of asymmetry, the FDR is being adequately controlled at 5% based on 

the results of the simulation study in section 3.4. 

3.6.  Discussion 

The proposed methods for estimating FDR, when there exists asymmetry in the 

distribution of the test statistics, has observed advantages over the traditional method. Proposed 

methods I and II were never outperformed by the traditional method in terms of identifying DE 

genes in the simulation studies and outperformed the traditional method in almost all settings 

where asymmetry was present. The proposed methods also adequately controlled FDR at 5% in 

most simulation settings with the exception of settings with n = 4. The power for detecting DE 
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genes was also low when n = 4. Thus, the use of the proposed methods or traditional method for 

estimating FDR when the sample size is very small is not recommended. This is consistent with 

recommendations made by Li and Tibshirani (2013). Additionally, proposed method II 

performed better than proposed method I and the traditional method in most settings. 

Using real RNA-Seq data, proposed method II declared more genes to be DE than 

proposed method I and the traditional method at 5% significance level, which is consistent with 

the simulation results. 

Based on the results from the simulation studies and real data analyses, the proposed 

methods should be used to analyze experiments with sample sizes of at least 6 when there exists 

asymmetry in the distribution of the test statistics. Proposed method II is more preferable than 

proposed method I. 

Lastly, because the proposed methods only alters the FDR estimation in the SAMseq 

procedure, the proposed methods can also be used to modify the original SAM method that uses 

different methods for calculating test statistics. 
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CHAPTER 4. COMPARISION OF PROPOSED METHOD II AND OTHER 

COMMONLY-USED EXISTING METHODS 

4.1.  Summary 

In this chapter, the performance of proposed method II, the best-performing method from 

Chapter 3, to other commonly-used existing methods for identifying DE genes from RNA-Seq 

experiments are compared. These methods are NBPSeq (Yanming et al., 2011), edgeR 

(Robinson et al., 2010), and DESeq2(Love et al., 2014). Proposed method II is a non-parametric 

procedure described in section 3.3.2.2., while the NBPSeq, edgeR and DESeq2 are parametric 

methods that assume a negative binomial distribution for the data. NBPSeq, edgeR and DESeq2 

first estimate the dispersion parameter and test statistics. The test statistics are then transformed 

into p-values and FDRs are estimated. DESeq2 and edgeR uses the Benjamini and Hochberg 

(1995) procedure to estimate the FDR for each gene, while the NBPSeq uses Storey’s 2002 q-

value approach. 

4.2.  Overview of DESeq2 NBPSep and edgeR methods 

4.2.1.  DESeq2 method 

DESeq2 is a successor of DESeq, which was proposed by Anders and Huber (2010). In 

their previous method, they proposed using a negative binomial distribution with variance and 

mean linked by local regression to estimate the data variability and a suitable error model. To 

improve on the stability and interpretability of estimates, Love et al. (2014) proposed using 

shrinkage estimation for dispersions and fold changes which allows for more quantitative 

analysis (such as experiments with small number of replicates) based on the strength rather than 

the presence of differential expression. 
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4.2.2.  NBPSeq method 

NBPSeq method was developed by Yanming et al., 2011 a statistical method used to 

assess differential gene expression using RNA-Seq data. Yanming et al., (2011) propose the use 

of NBP parameterization of the negative binomial distribution to test for DE genes. Their method 

extends the exact test proposed by Robinson and Smyth (2007, 2008) by adding an extra 

parameter to allow the dispersion parameter to depend on the mean. Robinson and Smyth (2007, 

2008) used a constant as a measure for the dispersion parameter, to model the count variability 

between biological replicates. To test for differentially expressed genes, log fold changes are 

estimated for each gene and the q-value method proposed by Storey (2002) is used to adjust the 

p-values control the false discovery rate. 

4.2.3.  edgeR method 

EdgeR method was developed by Robinson et al., (2010) to examine differential 

expression of replicated count data using over dispersed Poisson model to account for both 

biological and technical variability. Robinson et al., (2010) uses the empirical Bayes procedures 

to shrink the dispersions towards a suitable value to measure the degree of over dispersion across 

transcripts, thereby improving the number of genes that are identified as differentially expressed. 

Lastly, to test for differentially expressed genes, likelihood-ratio statistics are estimated to 

compare the null hypothesis that a gene is equivalently expressed against a two-sided alternative 

that the gene is not equivalently expressed. The BH method proposed by Benjamini and 

Hochberg (1995) is then used to adjust the p-values control the false discovery rate. Robinson et 

al., (2010) method assumes data can be summarized into a table of counts, with rows 

corresponding to genes and columns to experimental units. The data is modeled as a negative 

binomial (NB) distribution. 
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4.3.  Simulation studies 

To evaluate the performance of proposed method II compared to the three commonly-

used existing methods for estimating false discovery rate, data sets with Poisson distributed gene 

counts were randomly generated. For each data set, gene counts were randomly generated for m 

= 10,000 genes in two experiments. For gene j in experiment i, the gene count was generated 

using the procedures discussed in section 3.4. 

Using the same simulation settings described in section 3.4, four different sample sizes,

 4,6,10,12n   and four different values for the number of EE genes, 

 0 5000,7000,9000,9500m   are used for the simulated data sets. To simulate asymmetry, five 

set of values representing the proportion of DE genes that are upregulated and downregulated 

were used:  1 0.5,0.5  ,  2 0.7,0.3  ,  3 0.8,0.2  ,  3 0.9,0.1  , and  5 0.95,0.05  . 

For instance, in settings where  2 0.7,0.3   is used, 0.7 represent the proportion of DE genes 

that are upregulated and 0.3 represent the proportion of DE genes that are downregulated in the 

data set. This results in eighty different simulation settings. 

4.3.1.  Results 

For each simulation setting, 100 data sets were randomly generated. For each data set, all 

four methods (proposed method II, NBPSeq, edgeR, and DESeq2) were used to estimate the 

FDR for each gene to identify DE genes.  

Controlling FDR at the 5% significance level, S (the number of DE genes DDE) for each 

data set was determined. To determine if each method controlled FDR at 5% significance level, 

the observed FDR, V/R (proportion of EE genes among all DDE genes) was calculated for each 

data set. If no genes were DDE for a particular data set, V/R was set to zero. For each simulation 
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setting, paired t-tests were performed to test the difference in the mean S of proposed method II 

and NBPSeq, proposed method II and edgeR, and proposed method II and DESeq2 method. If a 

test between proposed method II and another existing method (NBPSeq, edgeR, or DESeq2) was 

significant at a type I error rate of 5% with the existing method outperforming proposed method, 

the higher mean S is underlined.  If proposed method II outperformed all three other existing 

methods, the mean S for proposed method II is bolded. Table 5 and Table 6 below presents the 

mean S and mean V/R for each simulation setting, respectively. The corresponding standard 

errors for the mean S and mean V/R are reported in parentheses. 

As expected, the power to detect DE genes increased as the number of EE genes 

decreased, that is, the number of DE genes (m0) increased. Also, the power to identify DE genes 

increased as the sample size increased.  

Proposed method II performed better than NBPSeq in 57 of 80 settings in terms of mean 

S (all settings with n = 10 and 12, and 17 of 20 settings with n = 6). Furthermore, proposed 

method II performed better than edgeR in 27 of 80 settings in terms of mean S (8 of 20 settings 

with n = 6, 10 of 20 settings with n = 10, and 9 of 20 settings with n = 12). Lastly, proposed 

method II performed better than DESeq2 in 52 of 80 settings in terms of mean S (15 of 20 

settings with n = 6, 19 of 20 settings with n = 10, and 18 of 20 settings with n = 12). Proposed 

method II was outperformed by the NBPSeq, edgeR, and DESeq2 methods in all simulation 

settings with n = 4.  

Again, looking at Table 6, NBPSeq, edgeR, and DESeq2 methods best controlled the 

observed FDR in settings where 50% (π1) or 70% (π2) of genes are upregulated or in settings 

where the number of EE genes is high (m0 = 9000 or 9500).  However, in settings where the level 

of asymmetry is high (π3, π4, and π5) and the number of EE genes is smaller (m0 = 5000 or 7000), 
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the observed FDRs of these methods tend to be elevated above 5%, in many cases over 20%.  In 

these simulation settings, the observed FDR for proposed method II exhibit much better control 

of the observed FDR, except for simulation settings with n = 4 as already noted. 

Table 5. The mean S for proposed method II, NBPSeq, edgeR and DESeq2 methods with 
associated standard errors in parentheses for each simulation setting. 

 Mean S 

n m0
 DE  Proposed 

method II 

NBPSeq edgeR DESeq2 

4 

 

5000 5000  665.040 

(4.746) 

2393.740 

(1.630) 

3004.790 

(1.870) 

2361.140 

(10.400) 

 671.570 

(7.292) 

2506.910 

(1.204) 

2751.190 

(2.134) 

2035.960 

(8.545) 

 613.570 

(3.819) 

2225.980 

(1.474) 

2576.720 

(1.726) 

1948.730 

(9.151) 

 802.560 

(4.063) 

2206.140 

(1.388) 

2512.640 

(2.437) 

1763.320 

(5.946) 

 792.640 

(4.38) 

2033.790 

(1.594) 

2597.510 

(3.802) 

1891.770 

(1.875) 

7000 3000  120.560 

(6.076) 

1297.790 

(1.019) 

1432.570 

(1.312) 

1159.780 

(3.647) 

For each setting, the significant higher mean S value at 5% significance level is shown in bolded 
fonts. If the existing methods have a significant higher mean S compared to the proposed method 
II, then the mean S is underlined. The ’s represent the proportion of DE genes that are 
upregulated and downregulated. 0.5, 0.5 , 0.7, 0.3 , 0.8, 0.2 , 0.9,
0.1  and 0.95, 0.05 . 
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Table 5. The mean S for proposed method II, NBPSeq, edgeR and DESeq2 methods with 
associated standard errors in parentheses for each simulation setting (continued). 

 Mean S 

n m0
 DE  Proposed 

method II 

NBPSeq edgeR DESeq2 

4 7000 3000  208.450 

(2.867) 

1420.370 

(1.186) 

1519.580 

(1.374) 

1169.160 

(1.472) 

 250.930 

(3.117) 

1634.860 

(1.084) 

1852.370 

(1.316) 

1464.750 

(3.526) 

 300.450 

(2.617) 

1544.470 

(1.091) 

1741.700 

(1.431) 

1369.650 

(4.226) 

 324.180 

(3.857) 

1405.500 

(1.080) 

1748.680 

(1.601) 

1327.950 

(5.149) 

9000 1000  <0.001 

(<0.001) 

462.250 

(0.531) 

510.120 

(0.839) 

372.800 

(0.809) 

 0.570 

(0.412) 

378.550 

(0.517) 

479.290 

(0.805) 

345.040 

(1.038) 

 4.650 

(1.072) 

595.450 

(0.436) 

614.120 

(0.632) 

504.430 

(0.776) 

 23.180 

(2.111) 

496.870 

(0.671) 

615.180 

(0.627) 

509.780 

(2.021) 

For each setting, the significant higher mean S value at 5% significance level is shown in bolded 
fonts. If the existing methods have a significant higher mean S compared to the proposed method 
II, then the mean S is underlined. The ’s represent the proportion of DE genes that are 
upregulated and downregulated. 0.5, 0.5 , 0.7, 0.3 , 0.8, 0.2 , 0.9,
0.1  and 0.95, 0.05 . 
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Table 5. The mean S for proposed method II, NBPSeq, edgeR and DESeq2 methods with 
associated standard errors in parentheses for each simulation setting (continued). 

 Mean S 

n m0
 DE  Proposed 

method II 

NBPSeq edgeR DESeq2 

4 9000 1000  31.660 

(2.404) 

385.340 

(0.627) 

492.820 

(0.784) 

409.620 

(2.510) 

9500 500  <0.001 

(<0.001) 

219.490 

(0.394) 

253.270 

(0.580) 

189.050 

(0.558) 

 <0.001 

(<0.001) 

196.620 

(0.425) 

264.890 

(0.456) 

208.370 

(0.630) 

 <0.001 

(<0.001) 

204.530 

(0.420) 

281.650 

(0.427) 

224.250 

(1.236) 

 0.330 

(0.237) 

217.160 

(0.408) 

267.780 

(0.452) 

220.880 

(0.607) 

 <0.001 

(<0.001) 

211.490 

(0.392) 

252.850 

(0.455) 

199.710 

(0.676) 

6 

 

5000 5000  3167.580 

(2.541) 

2512.510 

(1.788) 

3141.370 

(1.935) 

2881.370 

(7.140) 

 3292.600 

(2.541) 

2436.120 

(1.539) 

2924.670 

(1.696) 

2829.200 

(4.918) 

For each setting, the significant higher mean S value at 5% significance level is shown in bolded 
fonts. If the existing methods have a significant higher mean S compared to the proposed method 
II, then the mean S is underlined. The ’s represent the proportion of DE genes that are 
upregulated and downregulated. 0.5, 0.5 , 0.7, 0.3 , 0.8, 0.2 , 0.9,
0.1  and 0.95, 0.05 . 
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Table 5. The mean S for proposed method II, NBPSeq, edgeR and DESeq2 methods with 
associated standard errors in parentheses for each simulation setting (continued). 

 Mean S 

n m0
 DE  Proposed 

method II 

NBPSeq edgeR DESeq2 

6 5000 5000  3210.310 

(2.884) 

2427.720 

(1.684) 

3075.600 

(2.298) 

2655.170 

(1.580) 

 3458.040 

(2.710) 

2943.060 

(1.282) 

3079.110 

(1.751) 

2693.820 

(4.947) 

 3439.340 

(4.547) 

2728.340 

(1.419) 

2992.840 

(2.130) 

2598.970 

(2.283) 

7000 3000  1540.420 

(2.121) 

1329.570 

(1.068) 

1608.270 

(1.484) 

1398.550 

(3.817) 

 1860.730 

(1.875) 

1473.040 

(1.358) 

1893.590 

(1.519) 

1672.560 

(4.608) 

 1987.230 

(1.716) 

1679.790 

(1.306) 

1948.980 

(1.400) 

1733.900 

(3.426) 

 1830.980 

(4.729) 

1364.390 

(1.179) 

1710.980 

(1.560) 

1477.740 

(4.602) 

 1976.980 

(2.299) 

1581.580 

(1.124) 

1852.280 

(1.593) 

1570.240 

(2.857) 

For each setting, the significant higher mean S value at 5% significance level is shown in bolded 
fonts. If the existing methods have a significant higher mean S compared to the proposed method 
II, then the mean S is underlined. The ’s represent the proportion of DE genes that are 
upregulated and downregulated. 0.5, 0.5 , 0.7, 0.3 , 0.8, 0.2 , 0.9,
0.1  and 0.95, 0.05 . 
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Table 5. The mean S for proposed method II, NBPSeq, edgeR and DESeq2 methods with 
associated standard errors in parentheses for each simulation setting (continued). 

 Mean S 

n m0
 DE  Proposed 

method II 

NBPSeq edgeR DESeq2 

6 9000 1000  535.970 

(5.080) 

452.860 

(0.650) 

559.940 

(0.837) 

507.750 

(1.179) 

 517.720 

(6.150) 

475.560 

(0.565) 

588.800 

(0.784) 

513.550 

(1.684) 

 578.540 

(3.576) 

512.040 

(0.665) 

618.890 

(0.633) 

553.620 

(0.955) 

 542.750 

(4.241) 

498.480 

(0.611) 

580.510 

(0.808) 

521.350 

(1.414) 

 491.180 

(1.252) 

463.450 

(0.392) 

490.860 

(0.847) 

416.830 

(0.696) 

9500 500  231.910 

(6.203) 

241.410 

(0.436) 

301.270 

(0.526) 

264.240 

(0.757) 

 218.040 

(8.390) 

264.810 

(0.378) 

313.960 

(0.578) 

279.300 

(0.695) 

 212.680 

(7.584) 

228.270 

(0.440) 

280.430 

(0.532) 

258.580 

(0.948) 

For each setting, the significant higher mean S value at 5% significance level is shown in bolded 
fonts. If the existing methods have a significant higher mean S compared to the proposed method 
II, then the mean S is underlined. The ’s represent the proportion of DE genes that are 
upregulated and downregulated. 0.5, 0.5 , 0.7, 0.3 , 0.8, 0.2 , 0.9,
0.1  and 0.95, 0.05 . 



 

49 

Table 5. The mean S for proposed method II, NBPSeq, edgeR and DESeq2 methods with 
associated standard errors in parentheses for each simulation setting (continued). 

 Mean S 

n m0
 DE  Proposed 

method II 

NBPSeq edgeR DESeq2 

6 9500 500  259.150 

(3.650) 

251.460 

(0.401) 

281.560 

(0.509) 

260.610 

(0.837) 

 262.940 

(3.350) 

220.760 

(0.450) 

275.860 

(0.466) 

244.630 

(0.757) 

10 

 

5000 5000  3338.570 

(2.454) 

2737.820 

(1.628) 

3307.910 

(2.043) 

3135.040 

(4.275) 

 3555.450 

(2.499) 

2689.210 

(1.413) 

3417.290 

(1.857) 

3200.460 

(1.735) 

 3668.730 

(2.497) 

2701.920 

(1.725) 

3474.850 

(1.541) 

3270.890 

(1.721) 

 3621.910 

(2.080) 

2673.960 

(1.788) 

3199.810 

(2.144) 

3003.920 

(1.816) 

 3831.440 

(2.445) 

2862.120 

(1.533) 

3367.310 

(1.723) 

3170.710 

(1.636) 

7000 3000  2049.050 

(1.542) 

1668.250 

(1.178) 

2091.140 

(1.252) 

1989.180 

(2.639) 

For each setting, the significant higher mean S value at 5% significance level is shown in bolded 
fonts. If the existing methods have a significant higher mean S compared to the proposed method 
II, then the mean S is underlined. The ’s represent the proportion of DE genes that are 
upregulated and downregulated. 0.5, 0.5 , 0.7, 0.3 , 0.8, 0.2 , 0.9,
0.1  and 0.95, 0.05 . 
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Table 5. The mean S for proposed method II, NBPSeq, edgeR and DESeq2 methods with 
associated standard errors in parentheses for each simulation setting (continued). 

 Mean S 

n m0
 DE  Proposed 

method II 

NBPSeq edgeR DESeq2 

10 7000 3000  1944.820 

(1.722) 

1610.330 

(1.142) 

1911.210 

(1.458) 

1811.090 

(1.983) 

 2000.900 

(1.406) 

1646.71 

(1.120) 

1925.240 

(1.482) 

1791.640 

(1.653) 

  2276.420 

(1.377) 

1907.520 

(1.109) 

2157.350 

(1.263) 

2025.280 

(1.168) 

 2269.640 

(1.555) 

1789.000 

(1.184) 

2107.220 

(1.621) 

1972.130 

(1.100) 

9000 1000  624.620 

(0.762) 

558.040 

(0.588) 

641.090 

(0.709) 

605.600 

(1.046) 

 608.800 

(1.020) 

528.770 

(0.641) 

628.570 

(0.796) 

598.800 

(1.209) 

 662.280 

(0.768) 

546.760 

(0.659) 

675.060 

(0.685) 

639.120 

(1.019) 

 621.650 

(0.902) 

510.070 

(0.631) 

649.470 

(0.774) 

615.570 

(0.884) 

For each setting, the significant higher mean S value at 5% significance level is shown in bolded 
fonts. If the existing methods have a significant higher mean S compared to the proposed method 
II, then the mean S is underlined. The ’s represent the proportion of DE genes that are 
upregulated and downregulated. 0.5, 0.5 , 0.7, 0.3 , 0.8, 0.2 , 0.9,
0.1  and 0.95, 0.05 . 
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Table 5. The mean S for proposed method II, NBPSeq, edgeR and DESeq2 methods with 
associated standard errors in parentheses for each simulation setting (continued). 

 Mean S 

n m0
 DE  Proposed 

method II 

NBPSeq edgeR DESeq2 

10 9000 1000  707.460 

(0.690) 

619.170 

(0.520) 

693.660 

(0.636) 

656.990 

(0.906) 

9500 500  293.430 

(0.555) 

232.420 

(0.443) 

307.650 

(0.559) 

294.730 

(0.672) 

 289.400 

(0.518) 

250.130 

(0.333) 

299.640 

(0.464) 

281.490 

(0.571) 

 309.700 

(0.553) 

256.420 

(0.425) 

324.840 

(0.486) 

306.510 

(0.624) 

 319.260 

(0.582) 

265.580 

(0.360) 

323.050 

(0.516) 

303.960 

(0.682) 

  326.800 

(0.534) 

269.590 

(0.458) 

336.720 

(0.439) 

325.330 

(0.559) 

12 

 

5000 5000  3631.800 

(2.681) 

3044.920 

(1.488) 

3642.540 

(1.530) 

3503.160 

(3.213) 

 3484.980 

(3.192) 

2852.450 

(1.572) 

3388.700 

(1.649) 

3232.940 

(1.829) 

For each setting, the significant higher mean S value at 5% significance level is shown in bolded 
fonts. If the existing methods have a significant higher mean S compared to the proposed method 
II, then the mean S is underlined. The ’s represent the proportion of DE genes that are 
upregulated and downregulated. 0.5, 0.5 , 0.7, 0.3 , 0.8, 0.2 , 0.9,
0.1  and 0.95, 0.05 . 



 

52 

Table 5. The mean S for proposed method II, NBPSeq, edgeR and DESeq2 methods with 
associated standard errors in parentheses for each simulation setting (continued). 

 Mean S 

n m0
 DE  Proposed 

method II 

NBPSeq edgeR DESeq2 

12 5000 5000  3550.160 

(3.049) 

2819.240 

(1.581) 

3288.460 

(2.148) 

3113.280 

(1.787) 

 3699.720 

(2.628) 

2664.210 

(1.547) 

3231.800 

(1.804) 

3047.890 

(1.883) 

 3776.480 

(2.807) 

2687.840 

(1.711) 

3403.550 

(1.662) 

3282.990 

(1.609) 

7000 3000  2026.860 

(1.689) 

1677.590 

(1.287) 

2085.390 

(1.373) 

2000.710 

(2.131) 

 2113.840 

(1.458) 

1791.330 

(1.130) 

2075.040 

(1.407) 

1978.530 

(1.978) 

 2150.520 

(1.482) 

1773.460 

(1.177) 

2117.230 

(1.289) 

2026.720 

(1.266) 

 2254.140 

(1.674) 

1795.050 

(1.098) 

2148.180 

(1.352) 

2044.430 

(1.184) 

 2289.900 

(1.632) 

1711.590 

(1.273) 

2124.090 

(1.532) 

2019.690 

(1.126) 

For each setting, the significant higher mean S value at 5% significance level is shown in bolded 
fonts. If the existing methods have a significant higher mean S compared to the proposed method 
II, then the mean S is underlined. The ’s represent the proportion of DE genes that are 
upregulated and downregulated. 0.5, 0.5 , 0.7, 0.3 , 0.8, 0.2 , 0.9,
0.1  and 0.95, 0.05 . 
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Table 5. The mean S for proposed method II, NBPSeq, edgeR and DESeq2 methods with 
associated standard errors in parentheses for each simulation setting (continued). 

 Mean S 

n m0
 DE  Proposed 

method II 

NBPSeq edgeR DESeq2 

12 9000 1000  655.110 

(0.780) 

538.450 

(0.693) 

671.320 

(0.665) 

641.550 

(0.818) 

 684.700 

(0.732) 

542.900 

(0.673) 

706.380 

(0.638) 

678.890 

(0.829) 

 653.430 

(0.849) 

553.950 

(0.624) 

666.360 

(0.781) 

635.380 

(0.926) 

 735.200 

(0.609) 

601.220 

(0.650) 

738.550 

(0.675) 

709.430 

(0.696) 

 708.540 

(0.778) 

602.530 

(0.596) 

696.570 

(0.702) 

668.830 

(0.805) 

9500 500  311.570 

(0.511) 

253.510 

(0.391) 

327.320 

(0.459) 

316.630 

(0.498) 

 326.610 

(0.422) 

266.430 

(0.427) 

336.970 

(0.441) 

326.560 

(0.517) 

 301.850 

(0.436) 

265.480 

(0.397) 

312.910 

(0.506) 

297.680 

(0.602) 

For each setting, the significant higher mean S value at 5% significance level is shown in bolded 
fonts. If the existing methods have a significant higher mean S compared to the proposed method 
II, then the mean S is underlined. The ’s represent the proportion of DE genes that are 
upregulated and downregulated. 0.5, 0.5 , 0.7, 0.3 , 0.8, 0.2 , 0.9,
0.1  and 0.95, 0.05 . 
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Table 5. The mean S for proposed method II, NBPSeq, edgeR and DESeq2 methods with 
associated standard errors in parentheses for each simulation setting (continued). 

 Mean S 

n m0
 DE  Proposed 

method II 

NBPSeq edgeR DESeq2 

12 9500 500  325.420 

(0.493) 

276.110 

(0.394) 

331.330 

(0.394) 

319.910 

(0.511) 

 323.060 

(0.498) 

285.790 

(0.357) 

327.210 

(0.440) 

312.950 

(0.539) 

For each setting, the significant higher mean S value at 5% significance level is shown in bolded 
fonts. If the existing methods have a significant higher mean S compared to the proposed method 
II, then the mean S is underlined. The ’s represent the proportion of DE genes that are 
upregulated and downregulated. 0.5, 0.5 , 0.7, 0.3 , 0.8, 0.2 , 0.9,
0.1  and 0.95, 0.05 . 

Table 6. The mean V/R for proposed method II, NBPSeq, edgeR and DESeq2 methods with 
associated standard errors in parentheses for each simulation setting. 

The ’s represent the proportion of DE genes that are upregulated and downregulated. 
0.5, 0.5 , 0.7, 0.3 , 0.8, 0.2 , 0.9, 0.1  and 0.95, 0.05 . 

 

 Mean V/R 

n m0
 DE  Proposed 

method II 

NBPSeq edgeR DESeq2 

4 

 

5000 5000  0.161 (0.002) 0.015 (<0.001) 0.017 (<0.001) <0.001 (<0.001) 

 0.142 (0.002) 0.087 (<0.001) 0.071 (0.001) 0.026 (0.001) 

 0.117 (0.001) 0.123 (<0.001) 0.161 (0.001) 0.052 (0.001) 

 0.100 (0.001) 0.197 (<0.001) 0.233 (0.002) 0.094 (0.001) 
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Table 6. The mean V/R for proposed method II, NBPSeq, edgeR and DESeq2 methods with 
associated standard errors in parentheses for each simulation setting (continued). 

The ’s represent the proportion of DE genes that are upregulated and downregulated. 
0.5, 0.5 , 0.7, 0.3 , 0.8, 0.2 , 0.9, 0.1  and 0.95, 0.05 . 

 Mean V/R 

n m0
 DE  Proposed 

method II 

NBPSeq edgeR DESeq2 

4 5000 5000  0.101 (0.001) 0.232 (0.001) 0.307 (0.004) 0.140 (0.001) 

7000 3000  0.154 (0.006) 0.022 (<0.001) 0.021 (<0.001) 0.001 (<0.001) 

 0.158 (0.003) 0.046 (<0.001) 0.051 (0.001) 0.009 (<0.001) 

 0.173 (0.003) 0.083 (<0.001) 0.072 (0.001) 0.017 (<0.001) 

 0.177 (0.003) 0.114 (0.001) 0.116 (0.002) 0.035 (0.001) 

 0.159 (0.003) 0.106 (0.001) 0.123 (0.003) 0.042 (0.001) 

9000 1000  <0.001 (<0.001) 0.026 (0.001) 0.028 (0.001) <0.001 (<0.001) 

 0.005 (0.004) 0.027 (0.001) 0.025 (0.001) <0.001 (<0.001) 

 0.046 (0.011) 0.039 (0.001) 0.038 (0.001) 0.002 (<0.001) 

 0.178 (0.016) 0.038 (0.001) 0.036 (0.001) 0.004 (<0.001) 

 0.195 (0.015) 0.044 (0.001) 0.057 (0.001) 0.006 (0.001) 

9500 500  <0.001 (<0.001) 0.021 (0.001) 0.028 (0.001) <0.001 (<0.001) 

 <0.001 (<0.001) 0.021 (0.001) 0.028 (0.001) <0.001 (<0.001) 

 <0.001 (<0.001) 0.023 (0.001) 0.028 (0.001) <0.001 (<0.001) 

 0.010 (0.007) 0.029 (0.001) 0.026 (0.001) <0.001 (<0.001) 

 <0.001 (<0.001) 0.026 (0.001) 0.037 (0.001) <0.0001 <0.001) 
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Table 6. The mean V/R for proposed method II, NBPSeq, edgeR and DESeq2 methods with 
associated standard errors in parentheses for each simulation setting (continued). 

The ’s represent the proportion of DE genes that are upregulated and downregulated. 
0.5, 0.5 , 0.7, 0.3 , 0.8, 0.2 , 0.9, 0.1  and 0.95, 0.05 . 

 Mean V/R 

n m0
 DE  Proposed 

method II 

NBPSeq edgeR DESeq2 

6 

 

5000 5000  0.047 (<0.001) 0.014 (<0.001) 0.017 (<0.001) 0.003 (<0.001) 

 0.069 (0.001) 0.061 (<0.001) 0.043 (0.001) 0.077 (0.001) 

 0.034 (<0.001) 0.162 (<0.001) 0.249 (0.004) 0.143 (0.001) 

 0.034 (<0.001) 0.302 (<0.001) 0.296 (0.001) 0.236 (0.001) 

 0.036 (<0.001) 0.333 (<0.001) 0.364 (0.001) 0.288 (0.001) 

7000 3000  0.038 (0.001) 0.021 (<0.001) 0.022 (<0.001) 0.002 (<0.001) 

 0.044 (<0.001) 0.048 (0.001) 0.050 (0.001) 0.020 (<0.001) 

 0.043 (0.001) 0.096 (<0.001) 0.108 (0.002) 0.049 (0.001) 

 0.051 (0.001) 0.109 (0.001) 0.121 (0.002) 0.079 (0.002) 

 0.047 (0.001) 0.159 (0.001) 0.155 (0.001) 0.090 (0.001) 

9000 1000  0.063 (0.001) 0.027 (0.001) 0.027 (0.001) 0.002 (<0.001) 

 0.040 (0.001) 0.030 (0.001) 0.031 (0.001) 0.002 (<0.001) 

 0.044 (0.001) 0.030 (0.001) 0.036 (0.001) 0.004 (<0.001) 

 0.038 (0.001) 0.046 (0.001) 0.053 (0.001) 0.012 (0.001) 

 0.044 (0.001) 0.051 (0.001) 0.038 (0.001) 0.012 (<0.001) 

9500 500  0.051 (0.003) 0.027 (0.001) 0.032 (0.001) 0.001 (<0.001) 

 0.064 (0.004) 0.027 (0.001) 0.030 (0.001) 0.001 (<0.001) 
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Table 6. The mean V/R for proposed method II, NBPSeq, edgeR and DESeq2 methods with 
associated standard errors in parentheses for each simulation setting (continued). 

The ’s represent the proportion of DE genes that are upregulated and downregulated. 
0.5, 0.5 , 0.7, 0.3 , 0.8, 0.2 , 0.9, 0.1  and 0.95, 0.05 . 

 Mean V/R 

n m0
 DE  Proposed 

method II 

NBPSeq edgeR DESeq2 

6 9500 500  0.081 (0.005) 0.026 (0.001) 0.033 (0.001) 0.003 (<0.001) 

 0.058 (0.003) 0.041 (0.001) 0.040 (0.001) 0.003 (<0.001) 

 0.058 (0.002) 0.031 (0.001) 0.026 (0.001) 0.002 (<0.001) 

10 

 

5000 5000  0.047 (<0.001) 0.019 (<0.001) 0.018 (<0.001) 0.008 (<0.001) 

 0.047 (<0.001) 0.099 (<0.001) 0.141 (0.002) 0.119 (0.001) 

 0.048 (<0.001) 0.175 (<0.001) 0.255 (0.002) 0.231 (0.001) 

 0.046 (<0.001) 0.295 (<0.001) 0.361 (0.002) 0.325 (<0.001) 

 0.089 (0.001) 0.344 (<0.001) 0.387 (0.001) 0.384 (<0.001) 

7000 3000  0.049 (0.001) 0.028 (<0.001) 0.028 (<0.001) 0.008 (<0.001) 

 0.048 (0.001) 0.066 (<0.001) 0.094 (0.001) 0.048 (0.001) 

 0.048 (0.001) 0.116 (0.001) 0.141 (0.003) 0.087 (0.001) 

 0.052 (0.001) 0.198 (<0.001) 0.209 (0.003) 0.186 (0.001) 

 0.055 (0.001) 0.215 (0.001) 0.251 (0.004) 0.223 (0.001) 

9000 1000  0.044 (0.001) 0.035 (0.001) 0.029 (0.001) 0.006 (<0.001) 

 0.048 (0.001) 0.037 (0.001) 0.058 (0.001) 0.010 (<0.001) 

 0.047 (0.001) 0.041 (0.001) 0.052 (0.002) 0.022 (0.001) 
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Table 6. The mean V/R for proposed method II, NBPSeq, edgeR and DESeq2 methods with 
associated standard errors in parentheses for each simulation setting (continued). 

The ’s represent the proportion of DE genes that are upregulated and downregulated. 
0.5, 0.5 , 0.7, 0.3 , 0.8, 0.2 , 0.9, 0.1  and 0.95, 0.05 . 

 Mean V/R 

n m0
 DE  Proposed 

method II 

NBPSeq edgeR DESeq2 

10 9000 1000  0.041 (0.001) 0.051 (0.001) 0.099 (0.003) 0.027 (0.001) 

 0.048 (0.001) 0.069 (0.001)  0.084 (0.002) 0.040 (0.001) 

9500 500  0.077 (0.002) 0.032 (0.001) 0.028 (0.001) 0.007 (0.001) 

 0.059 (0.001) 0.029 (0.001) 0.029 ()0.001 0.006 (<0.001) 

 0.043 (0.001) 0.033 (0.001) 0.038 (0.001) 0.008 (0.001) 

 0.050 (0.001) 0.031 (0.001) 0.036 (0.001) 0.011 (0.001) 

 0.040 (0.001) 0.036 (0.001) 0.058 (0.002) 0.014 (0.001) 

12 

 

5000 5000  0.035 (<0.001) 0.024 (<0.001) 0.027 (0.001) 0.012 (<0.001) 

 0.042 (0.001) 0.130 (<0.001) 0.130 (0.002) 0.137 (0.001) 

 0.040 (<0.001) 0.228 (<0.001) 0.281 (0.002) 0.255 (<0.001) 

  0.053 (0.001) 0.289 (<0.001) 0.322 (0.001) 0.333 (<0.001) 

 0.053 (0.001) 0.327 (<0.001) 0.412 (0.001) 0.394 (<0.001) 

7000 3000  0.046 (<0.001) 0.027 (<0.001) 0.033 (0.001) 0.011 (<0.001) 

 0.053 (0.001) 0.080 (<0.001) 0.068 (0.001) 0.063 (0.001) 

 0.045 (0.001) 0.121 (0.001) 0.194 (0.004) 0.132 (0.001) 

 0.056 (<0.001) 0.171 (0.001) 0.220 (0.004) 0.206 (0.001) 
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Table 6. The mean V/R for proposed method II, NBPSeq, edgeR and DESeq2 methods with 
associated standard errors in parentheses for each simulation setting (continued). 

The ’s represent the proportion of DE genes that are upregulated and downregulated. 
0.5, 0.5 , 0.7, 0.3 , 0.8, 0.2 , 0.9, 0.1  and 0.95, 0.05 . 

4.4.  Real data analysis 

In this section, RNA-Seq data from a real gene expression experiment described by 

Bottomly et al. (2011) is reanalyzed using proposed method II, NBPSeq, edgeR and DESeq2 

methods. The description of the data was previously discussed in section 3.5. The data consist of 

two classes (B6 and D2); with a total of n = 21 samples, n1 = 10 B6 samples and n2 = 11 D2 

 Mean V/R 

n m0
 DE  Proposed 

method II 

NBPSeq edgeR DESeq2 

12 7000 3000  0.066 (0.001) 0.196 (0.001) 0.243 (0.004) 0.241 (0.001) 

9000 1000  0.049 (0.001) 0.030 (0.001) 0.032 (0.001) 0.007 (<0.001) 

 0.045 (0.001) 0.033 (0.001) 0.049 (0.001) 0.013 (0.001) 

 0.045 (0.001) 0.046 (0.001) 0.059 (0.001) 0.024 (0.001) 

 0.053 (0.001) 0.058 (0.001) 0.078 (0.002) 0.041 (0.001) 

 0.049 (0.001) 0.070 (0.001) 0.087 (0.001) 0.056 (0.001) 

9500 500  0.060 (0.001) 0.031 (0.001) 0.033 (0.001) 0.007 (0.001) 

 0.053 (0.001) 0.032 (0.001) 0.044 (0.001) 0.007 (<0.001) 

 0.042 (0.001) 0.034 (0.001) 0.038 (0.001) 0.008 (0.001) 

 0.043 (0.001) 0.037 (0.001) 0.041 (0.001) 0.012 (0.001) 

 0.048 (0.001) 0.033 (0.001) 0.041 (0.001) 0.014 (0.001) 
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samples. The data set contains 36,536 genes, the total number of genes m = 13,932 were 

analyzed after filtering to remove genes without any reads.  

The number of genes declared to be DE using proposed method II, NBPSeq, edgeR and 

DESeq2 methods while controlling FDR at 5% are summarized in Figure 4 below. 

 

Figure 4. Venn diagram of genes declared to be DE for proposed method II, NBPSeq, edgeR 
and DESeq2 methods. 

 

 The total number of genes declared to be DE using all methods are summarized n Table 7 

below. There were 732 genes that were DDE by all methods. An additional 570 genes were DDE 

by proposed method II. NBSeq method declared 86 more genes to be DE. 12 and 9 other genes 

were DDE using edgeR and DESeq2 method respectively. Hence, proposed method II declared 

the most genes to be DE, this is not surprising based on the results from the simulation studies in 

section 4.2. This analysis was performed on a real, not simulated, data set, therefore genes that 

are EE and DE are not known. Thus, evaluating the true FDR associated with each method 
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cannot be done. However, because the sample size for each class is relatively large with a small 

degree of asymmetry, the estimation of the FDR is being adequately controlled at 5% based on 

the results of the simulation study in section 4.2. 

Table 7. Total number of genes declared to be differentially expressed. 

Method Total number of genes DDE 

Proposed method II 1939 

DESeq2 1313 

edgeR 1165 

NBPSeq 896 

 

4.5.  Discussion 

Proposed method II for estimating FDR, when there exists asymmetry in the distribution 

of the test statistics, has observed advantages over the commonly-used methods. Except for 

settings where n = 4, proposed method II generally outperformed NBPSeq, edgeR, and DESeq2 

methods in terms of mean S in the settings where the number of EE genes was low (m0 = 5000 

and m0 = 7000) and the degree of asymmetry was high (80%, 90%, and 95% of genes 

upregulated). The observed FDRs for NBPSeq, edgeR, and DESeq2 were also elevated in most 

of these setting. Therefore, using proposed method II when asymmetry in the test statistics is 

apparent and the estimated percentage of EE genes is low (less than 80%, for example) is 

recommended. When the estimated percentage of EE genes is high, use of the other methods is 

recommended. Using real RNA-Seq data, proposed method II declared more genes to be DE than 

the other methods at 5% significance level, which is consistent with the simulation results. 
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CHAPTER 5. MODIFICATION AND PERFORMANCE OF COMMONLY-USED 

PARAMETRIC METHODS WHEN THERE EXISTS ASYMMETRY IN THE 

DISTRIBUTION OF EFFECT SIZES IN IDENTIFICATION OF DIFFERENTIALLY 

EXPRESSED GENES 

5.1. Introduction 

In chapters 3 and 4, the performance of SAMseq, its proposed modification, and three 

commonly-used methods were evaluated when there existed asymmetry in the distribution of the 

effect sizes in an RNA-Seq data set. In this chapter, performance of these three commonly-used 

parametric methods, DESeq2, NBPSeq and edgeR, when there exists asymmetry in the 

distribution of the effect sizes are evaluated. This research uses methods that modify the p-values 

of the commonly-used methods to account for asymmetry in the distribution of effect sizes when 

estimating false discovery rate (FDR). Additionally, through simulation studies and real data 

analysis, this research compares performance of these methods to that of the traditional BH 

proposed by Benjamini and Hochberg (1995), traditional q-value proposed by Storey (2002) and 

asymmetric q-value proposed by Orr et al. (2014). These methods were discussed in section 2.4. 

5.2. Overview of DESeq2 method 

DESeq2 is a successor of DESeq, which was proposed by Anders and Huber (2010). In 

their previous method, they proposed using a negative binomial distribution with variance and 

mean linked by local regression to estimate the data variability and a suitable error model. To 

improve the stability and interpretability of the estimates, Love et al. (2014) proposed using 

shrinkage estimation for dispersions and fold changes which allows for quantitative analysis (on 

experiments with small number of replicates, for example) based more on the strength rather 

than the presence of differential expression. 
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For the expression of gene i from experimental unit j  ijG  in each class, fit a generalized 

linear model using the negative binomial distribution with a logarithm link function, i.e., 

    ~ ,  ij ij iG NB mean dispersion   ,    (5.1) 

where the mean is estimated as 

                 1, 2,..., ,           1, 2,...ij ij ijs q i m j p    .   

 (5.2) 

ijs  is the normalization factor and considered constant within a sample, i.e., ij js s . js  is 

estimated as  
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where p is the total number of units and p
iG  is the geometric mean estimate for each gene. The 

logarithm of ijq  is estimated as 

  2log ij jr irr
q x    0,... 1r k  .     (5.5) 

jrx  is the design matrix element with coefficients ir  and r is the covariate index with intercept 

r = 0 and k is the number of parameters. In a two class experiment, j indicates whether sample j 

is from the controlled samples or treated samples. The empirical Bayes shrinkage for dispersion 

estimation is modeled by the dispersion parameter i , which describes the variance of each gene 

as 
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    2( )ij ij i ijVar G     ,      (5.6) 

i  follows a log normal prior distribution that is centered around a trend, and depends on the 

gene’s mean normalized read count. i  is estimated as 

      2log ~ log ,i tr i dN    ,     (5.7) 

where tr  is a function of the gene’s mean normalized read count. i  describes the mean-

dependent expectation of the prior and estimated as 

     
1 ij

i
j ij

G

p s
         (5.8) 

d  represents the width of the prior, which describes how much the individual genes’ true 

dispersions scatter around the trend. The trend function is estimated as 

       1
0tr

  


       (5.9) 

where 1  and 0  are estimated by iteratively fitting a gamma-family GLM (Generalized Linear 

Model). To estimate the fold-change (FC) using the empirical Bayes procedure, Love et al., 

(2014) outlined the following steps; 

(1) Estimate the maximum-likelihood (MLE) for the logarithm of the FCs using ordinary 

GLM. 

(2) Fit a zero-centered normal distribution to the observed distribution of the MLEs over 

all genes; thus assuming a normal prior for the coefficients ir (logarithm of the fold-

changes) of the log link function 

      2~ 0,ir rN       (5.10) 
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Testing whether each model coefficients differ significantly from zero, the following procedures 

are used; 

(1) Fit GLMs for each gene to obtain the shrunken logarithm of the FCs (LFCs) and 

estimate it corresponding standard errors. 

(2) Estimate the test statistic (Wald test) with it corresponding p-values for each gene. 

The test statistic is estimated as 

     
 
ˆ

ˆ
ir

i

ir

W
se




 ,      (5.11) 

this result in a z-statistic which is then compared to a standard normal distribution. 

(3) Estimate the filter statistic as the mean of the normalized counts for each gene. 

(4) Remove genes with mean normalized counts less than a filtering threshold. 

(5) Adjust for multiple hypothesis testing, the p-values corresponding to the subset of 

genes that passes the filtering procedure described in step 4 and 5, using the BH 

procedure. 

5.2.1.  Proposed modification for DESeq2 method p-values 

To account for asymmetry in the distribution of the test statistic, this research proposes 

modifying the estimation of the adjusted p-values used to estimate the FDRs in DESeq2 method. 

The following steps outlines the proposed method for a two class experiment;  

(1) Run the DESeq2 method to obtain the test statistic and the unadjusted p-values (raw 

p-values) that pass the filtering procedure for each gene. 

(2) Divide the test statistics (W) into two groups based on the sign of the test statistics 

with their corresponding raw p-values. Thus, genes with positive test statistics 

0W W    and genes with negative test statistics 0W W   . 
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(3) Apply the BH method and asymmetric q-value method proposed by Orr et al. (2014) 

used to adjust the raw p-values for multiple hypothesis testing to each group 

separately.  

These procedures will then be referred to as asymmetric BH method and asymmetric q-value 

method. All other procedures used in the DESeq2 method remain the same. 

5.3. Overview of edgeR method 

The edgeR method was developed by Robinson et al., (2010) to examine differential 

expression of replicated count data using an over dispersed Poisson model to account for both 

biological and technical variability. Robinson et al. (2010) uses an empirical Bayes procedure to 

shrink the dispersions towards a suitable value to measure the degree of over dispersion across 

transcripts, thereby improving the number of genes that are identified as differentially expressed. 

Lastly, to test for differentially expressed genes, likelihood-ratio statistics are estimated to 

compare the null hypothesis that a gene is equivalently expressed against a two-sided alternative 

that the gene is not equivalently expressed. The BH method proposed by Benjamini and 

Hochberg (1995) is then used to adjust the p-values to control the false discovery rate. 

An assumption of the edgeR method assumes data can be modeled using a negative 

binomial (NB) distribution. For the expression of gene i from experimental unit j  ijY  in each 

class, 

  ~ ,   ij j ic iY NB mean M p dispersion ; (5.12) 

where 
jM  is the library size, i.e., the total number of reads from a specific experimental unit, i  

is the dispersion parameter, and icp  is the relative abundance of gene i in the class (c) in which 

the experimental unit j belongs. 
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5.3.1.  Proposed method for edgeR method 

A similar procedure proposed for modifying the FDR estimation for DESeq2 is employed 

here. Unlike DESeq2 which uses the Wald test to determine the test statistic, edgeR uses the log 

fold change. Likewise, to account for asymmetry in the distribution of the log fold change, this 

research proposes modifying the BH method used to estimate the FDRs in edgeR method. The 

following steps outline the proposed method for a two-class experiment;  

(1) Run the edgeR method to obtain the log fold change and the p-value for each gene. 

(2) Divide the log fold changes (logFCedgeR) into two groups based on the sign of the 

logFCedgeR with their corresponding p-values. Thus, genes with positive logFCedgeR 

log log 0edgeR edgeRFC FC    and genes with negative logFCedgeR 

log log 0edgeR edgeRFC FC   . 

(3) Apply the BH method and asymmetric q-value proposed by Orr et al. (2014) used to 

adjust the p-values for multiple hypothesis testing to each group separately.  

All other procedures used in the edgeR method remains the same. 

5.4. Overview of NBPSeq method 

The NBPSeq method, by Yanming et al. (2011), is a statistical method used to assess 

differential gene expression using RNA-Seq data. Yanming et al. (2011) proposes the use of 

NBP parameterization of the negative binomial distribution to test for DE genes. Their method 

extends the exact test proposed by Robinson and Smyth (2007, 2008) by adding an extra 

parameter to allow the dispersion parameter to depend on the mean. Robinson and Smyth (2007, 

2008) used a constant as a measure for the dispersion parameter to model the count variability 

between biological replicates. To test for differentially expressed genes, log fold changes are 
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estimated for each gene and the q-value method proposed by Storey (2002) is used to adjust the 

p-values to control the false discovery rate. 

5.4.1.  Proposed method for NBPSeq method 

Similar to the procedures discussed in section 5.3.1 for modifying the estimation of the 

FDR, to account for asymmetry in the distribution of the log fold changes. This research 

proposes modifying the q-value method used to estimate the FDRs in NBPSeq method. The 

following steps outlines the proposed method for a two-class experiment.  

(1) Run the NBPSeq method to obtain the log fold change and the p-value for each gene. 

(2) Divide the log fold changes (logFCNBPSeq) into two groups based on the sign of the 

logFCNBPSeq with their corresponding p-values. Thus, genes with positive logFCNBPSeq 

log log 0NBPSeq NBPSeqFC FC    and genes with negative logFCNBPSeq 

log log 0NBPSeq NBPSeqFC FC   . 

(3) Apply the asymmetric q-value method proposed by Orr et al. (2014) and BH method 

used to adjust the p-values for multiple hypothesis testing to each group separately.  

All other procedures used in the NBPSeq method remains the same. 

5.5. Simulation studies  

Evaluating the performance of proposed BH and q-value methods compared to traditional 

BH method (Benjamini and Hochberg, 1995) and traditional q-value method (Storey, 2002) for 

estimating false discovery rate; data sets with Negative binomial distributed gene counts were 

randomly generated. For each data set, gene counts were randomly generated for m = 10,000 

genes in two experiments. For gene i in experiment j, the gene count was generated as 

  ~ ,ij ij iG NB    . (5.13) 
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Using procedures implemented by Bi and Liu (2016), the mean 
ij  and the dispersion parameter 

i  was estimated based on a real RNA-Seq data set “Hammer” (Hammer, P. et al., 2010). The 

experiment was performed to evaluate gene expression in the L4 dorsal root ganglion (DRG) of 

rats with chronic neuropathic pain induced by spinal nerve ligation (SNL) of the neighboring 

(L5) spinal nerve at two time points (2 weeks and 2 months after SNL). There were two classes 

(2 weeks and 2 months); with a total of 8 samples, 4 two weeks’ samples and 4 two months’ 

samples. A subset of the data consisting of samples after 2 weeks were used to estimate the mean 

and dispersion. The data set contains 29,516 genes, with many of the genes not having any reads. 

These genes were removed, and the remaining 18,463 were used. The raw data set is named after 

the first author of the paper and is available from ReCount project (Frazee et al., 2011) with an 

identifier “Hammer”. The estimation of the fold change is assumed to follow a log-normal 

distribution; 

     ~ log log 2 ,0.5log 2changefold normal  . (5.14) 

To create differences in simulation settings, simulated data sets with four different 

sample sizes,  4,6,10,12n   and four different values for the number of EE genes, 

 0 5000,7000,9000,9500m   were used. To simulate asymmetry, five set of values representing 

the proportion of DE genes that are upregulated and downregulated were used:  1 0.5,0.5  , 

 2 0.7,0.3  ,  3 0.8,0.2  ,  3 0.9,0.1  , and  5 0.95,0.05  . For instance, in settings 

where  3 0.9,0.1   is used, 0.9 represent the proportion of DE genes that are upregulated and 

0.1 represent the proportion of DE genes that are downregulated in the data set. This results in 

eighty different simulation settings. 
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5.5.1. Results 

For each simulation setting, 100 data sets were randomly generated. For each data set, all 

four methods (traditional BH method, asymmetric BH method, traditional q-value method and 

asymmetric q-value method) were used to estimate the FDR for each gene to identify DE genes, 

using the DESeq2, edgeR and NBPSeq methods. Controlling FDR at the 5% significance level, S 

(the number of DE genes DDE) was determined for each data set. To determine if each method 

controlled FDR at 5% significance level, the observed FDR, V/R (proportion of EE genes among 

all DDE genes) was calculated for each data set. If no genes were DDE for a particular data set, 

V/R was set to zero.  

Originally, Deseq2 and edgeR uses the traditional BH method to adjust p-values for 

multiple testing. For each simulation setting, paired t-tests were performed to test the difference 

in the mean S of the traditional BH and asymmetric BH methods, traditional BH and traditional 

q-values methods; traditional BH and asymmetric q-value methods, asymmetric BH and 

traditional q-value methods, asymmetric BH and traditional q-value methods, and traditional q-

value and asymmetric q-value methods. If the test between these comparisons were significant at 

a type I error rate of 5%, then the higher mean S is shown in bold font. If a test between the 

asymmetric BH and traditional q-value methods was significant at a type I error rate of 5% with 

the traditional q-value method outperforming the asymmetric BH method, the higher mean S is 

underlined. Also, if a test between the asymmetric BH and asymmetric q-value methods was 

significant at a type I error rate of 5% with the asymmetric q-value method outperforming the 

asymmetric BH method, the higher mean S is italicized. Lastly, if a test between the traditional 

q-value method and asymmetric q-value methods was significant at a type I error rate of 5% with 
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the asymmetric q-value method outperforming the traditional q-value method, the higher mean S 

is underlined. 

On the other hand, NBPSeq uses the traditional q-value method to adjust p-values for 

multiple testing. Again, for each simulation setting, paired t-tests were performed to test the 

difference in the mean S of the traditional q-value and asymmetric q-value methods, traditional 

q-value and traditional BH methods, traditional q-value and asymmetric BH methods, 

asymmetric q-value and traditional BH methods, asymmetric q-value and asymmetric BH 

methods and, traditional BH and asymmetric BH methods. If the test between these comparisons 

were significant at a type I error rate of 5%, then the higher mean S is shown in bolded font. 

Like, the previous comparisons of the mean S, if a test between the asymmetric q-value and 

traditional BH methods was significant at a type I error rate of 5% with the traditional BH 

method outperforming the asymmetric q-value method, the higher mean S is underlined. Also, if 

a test between the asymmetric q-value and asymmetric BH methods was significant at a type I 

error rate of 5% with the asymmetric BH method outperforming the asymmetric q-value method, 

the higher mean S is italicized. Lastly, if a test between the traditional BH method and 

asymmetric BH methods was significant at a type I error rate of 5% with the asymmetric BH 

method outperforming the traditional BH method, the higher mean S is underlined. 

Table 8 and Table 9 below presents the mean S and mean V/R for each simulation 

setting, respectively for DESeq2 method. Table 10 and Table 11 below presents the mean S and 

mean V/R for each simulation setting, respectively for NBPSeq. Table 12 and Table 13 below 

presents the mean S and mean V/R for each simulation setting, respectively for edgeR method. 

The corresponding standard errors for the mean S and mean V/R are reported in parentheses.  
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As expected, the power to detect DE genes increased as the number of EE genes 

decreased that is, the number of DE genes (m0) increased. Also, the power to identify DE genes 

increased as the sample size increased.  

The traditional BH method did not outperform the asymmetric BH, traditional q-value 

method and asymmetric q-value method in any of the simulation settings in terms of mean S, as 

seen in Table 8 (Deseq2 method). The asymmetric BH method performed better than the 

traditional BH method in 64 of the 80 simulation settings with regards to mean S (16 of 20 

settings with n = 4, 6, 10, and 12). The traditional q-value method performed better than the 

traditional BH method in all the simulation settings. Also, the asymmetric q-value method 

performed better than the traditional BH method in 76 of the 80 simulations, including all 

settings with n = 6, 10, 12, and 16 of 20 settings with n = 4. Furthermore, the traditional q-value 

method performed better than the asymmetric BH method in 45 of 80 settings in terms of mean S 

(10 of 20 settings with n = 4, 11 of 20 settings with n = 6, 12 of 20 settings with n = 10, and 12 

of 20 settings with n = 12). The asymmetric q-value method was outperformed by the 

asymmetric BH method in 17 of 20 simulation settings with n = 4 in terms of mean S. 

Comparing the performance of the traditional q-value method to the asymmetric q-value method, 

the asymmetric q-value method performed better than the traditional q-value method in 52 of the 

80 settings in terms of the mean S (6 of 20 settings with n = 4, 16 of 20 settings with n = 6, 16 of 

20 settings with n = 10, and 14 of 20 settings with n = 12). 

Although a higher value of mean S was observed in most traditional BH method 

compared to the asymmetric BH method, in the 6 of 80 settings (n = 4, m0 = {7000, 9000, 

9500}, and 1 , n =6, m0 = 9000, 1 , n =10, m0 = {7000, 9000} and 1 , and n =12, m0 = 5000 and 1 ); 

these differences were not significant. Apart from these settings, a higher value of mean S was 
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observed using the asymmetric BH method compared to traditional BH method in 7 of 80 

settings, but there were no significant difference in mean S at 5%. Lastly, in settings where n = 6, 

m0 = 7000, and 1  or n = 12, m0 = 9500 and 1 , the performance of traditional and asymmetric BH 

methods were the same in terms of the mean S. 

As shown in Table 9, the observed FDR (mean V/R) was comparable among all the 

methods, with levels elevated above 5%. Apart from simulation settings with 1 , the asymmetric 

q-value method better controlled the observed FDR than the traditional BH method. In most settings, the 

asymmetric BH method compared to the traditional BH method better controlled the observed FDR close 

to or slightly higher than 5%. 

Table 8. The mean S for proposed FDR methods using DESeq2 with associated standard 
errors in parentheses for each simulation setting.  

 DESeq2 

Mean S 

n m0 DE  Traditional 

BH 

Asymmetric 

BH 

Traditional 

QV 

Asymmetric 

QV 

4 

 

5000 5000  2174.280 

(4.701) 

2174.290 

(4.688) 

2460.440 

(5.467) 

2231.720 

(9.712) 

 1963.380 

(4.823) 

1991.810 

(4.877) 

2266.310 

(5.377) 

2044.540 

(10.610) 

For each setting, the significant higher mean S value at 5% significance level is shown in bolded 
fonts. If the traditional QV method has a significant higher mean S compared to the asymmetric 
BH method, then the mean S is underlined. If the asymmetric QV method has a significant higher 
mean S compared to the asymmetric BH method, then the mean S is italicized. Also, if the 
asymmetric QV method has a significant higher mean S compared to the traditional QV method, 
then the mean S is underlined. The ’s represent the proportion of DE genes that are upregulated 
and downregulated. 0.5, 0.5 , 0.7, 0.3 , 0.8, 0.2 , 0.9, 0.1  and 

0.95, 0.05 . 
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Table 8. The mean S for proposed FDR methods using DESeq2 with associated standard 
errors in parentheses for each simulation setting (continued). 

 DESeq2 

Mean S 

n m0 DE  Traditional 

BH 

Asymmetric 

BH 

Traditional 

QV 

Asymmetric 

QV 

4 5000 5000  1702.370 

(4.431) 

1762.690 

(4.484) 

2025.540 

(5.605) 

1811.050 

(9.696) 

 1337.320 

(3.968) 

1442.870 

(3.919) 

1675.200 

(5.257) 

1450.910 

(7.897) 

 1134.800 

(4.161) 

1269.500 

(4.750) 

1483.530 

(5.776) 

1248.420 

(6.269) 

7000 3000  1153.510 

(3.221) 

1153.490 

(3.236) 

1230.790 

(3.707) 

1150.570 

(3.804) 

 1105.340 

(3.745) 

1125.870 

(3.715) 

1188.240 

(3.972) 

1118.810 

(3.918) 

 1025.230 

(3.841) 

1072.740 

(3.584) 

1110.960 

(4.047) 

1059.010 

(3.906) 

For each setting, the significant higher mean S value at 5% significance level is shown in bolded 
fonts. If the traditional QV method has a significant higher mean S compared to the asymmetric 
BH method, then the mean S is underlined. If the asymmetric QV method has a significant higher 
mean S compared to the asymmetric BH method, then the mean S is italicized. Also, if the 
asymmetric QV method has a significant higher mean S compared to the traditional QV method, 
then the mean S is underlined. The ’s represent the proportion of DE genes that are upregulated 
and downregulated. 0.5, 0.5 , 0.7, 0.3 , 0.8, 0.2 , 0.9, 0.1  and 

0.95, 0.05 . 
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Table 8. The mean S for proposed FDR methods using DESeq2 with associated standard 
errors in parentheses for each simulation setting (continued). 

 DESeq2 

Mean S 

n m0 DE  Traditional 

BH 

Asymmetric 

BH 

Traditional 

QV 

Asymmetric 

QV 

4 7000 1000  905.500 

(3.154) 

999.390 

(3.191) 

998.770 

(3.739) 

978.750 

(3.684) 

 827.950 

(3.298) 

949.060 

(3.466) 

924.000 

(3.913) 

919.010 

(3.628) 

9000 1000  298.720 

(1.835) 

298.110 

(1.819) 

302.880 

(1.871) 

294.640 

(1.824) 

 293.990 

(1.873) 

299.560 

(1.859) 

298.330 

(1.947) 

295.230 

(1.899) 

 285.050 

(1.685) 

298.480 

(1.642) 

289.720 

(1.749) 

294.440 

(1.598) 

 278.090 

(1.899) 

305.830 

(1.913) 

283.170 

(1.972) 

300.400 

(1.919) 

For each setting, the significant higher mean S value at 5% significance level is shown in bolded 
fonts. If the traditional QV method has a significant higher mean S compared to the asymmetric 
BH method, then the mean S is underlined. If the asymmetric QV method has a significant higher 
mean S compared to the asymmetric BH method, then the mean S is italicized. Also, if the 
asymmetric QV method has a significant higher mean S compared to the traditional QV method, 
then the mean S is underlined. The ’s represent the proportion of DE genes that are upregulated 
and downregulated. 0.5, 0.5 , 0.7, 0.3 , 0.8, 0.2 , 0.9, 0.1  and 

0.95, 0.05 . 
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Table 8. The mean S for proposed FDR methods using DESeq2 with associated standard 
errors in parentheses for each simulation setting (continued). 

 DESeq2 

Mean S 

n m0 DE  Traditional 

BH 

Asymmetric 

BH 

Traditional 

QV 

Asymmetric 

QV 

4 9000 1000  277.430 

(1.810) 

314.380 

(1.803) 

281.930 

(1.839) 

308.460 

(1.819) 

9500 500  125.210 

(1.215) 

124.520 

(1.238) 

125.990 

(1.237) 

122.460 

(1.221) 

 130.050 

(1.226) 

132.140 

(1.262) 

130.730 

(1.218) 

129.690 

(1.276) 

 129.470 

(1.212) 

135.090 

(1.256) 

130.240 

(1.209) 

132.930 

(1.238) 

 125.310 

(1.301) 

138.330 

(1.386) 

126.290 

(1.320) 

135.150 

(1.349) 

 124.990 

(1.369) 

140.830 

(1.515) 

125.840 

(1.401) 

137.650 

(1.456) 

For each setting, the significant higher mean S value at 5% significance level is shown in bolded 
fonts. If the traditional QV method has a significant higher mean S compared to the asymmetric 
BH method, then the mean S is underlined. If the asymmetric QV method has a significant higher 
mean S compared to the asymmetric BH method, then the mean S is italicized. Also, if the 
asymmetric QV method has a significant higher mean S compared to the traditional QV method, 
then the mean S is underlined. The ’s represent the proportion of DE genes that are upregulated 
and downregulated. 0.5, 0.5 , 0.7, 0.3 , 0.8, 0.2 , 0.9, 0.1  and 

0.95, 0.05 . 
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Table 8. The mean S for proposed FDR methods using DESeq2 with associated standard 
errors in parentheses for each simulation setting (continued). 

 DESeq2 

Mean S 

n m0 DE  Traditional 

BH 

Asymmetric 

BH 

Traditional 

QV 

Asymmetric 

QV 

6 

 

5000 5000  2885.800 

(4.269) 

2885.930 

(4.275) 

3153.090 

(4.737) 

3151.710 

(4.775) 

 2650.820 

(4.310) 

2687.500 

(4.274) 

2964.230 

(5.197) 

2987.110 

(5.242) 

 2344.490 

(3.769) 

2419.520 

(3.730) 

2726.330 

(4.601) 

2774.560 

(4.642) 

 1940.650 

(4.642) 

2056.530 

(4.942) 

2397.020 

(6.083) 

2468.140 

(7.291) 

 1710.940 

(4.469) 

1852.350 

(4.191) 

2208.920 

(5.867) 

2271.590 

(10.943) 

7000 3000  1600.600 

(3.260) 

1600.600 

(3.251) 

1678.840 

(3.453) 

1677.990 

(3.476) 

For each setting, the significant higher mean S value at 5% significance level is shown in bolded 
fonts. If the traditional QV method has a significant higher mean S compared to the asymmetric 
BH method, then the mean S is underlined. If the asymmetric QV method has a significant higher 
mean S compared to the asymmetric BH method, then the mean S is italicized. Also, if the 
asymmetric QV method has a significant higher mean S compared to the traditional QV method, 
then the mean S is underlined. The ’s represent the proportion of DE genes that are upregulated 
and downregulated. 0.5, 0.5 , 0.7, 0.3 , 0.8, 0.2 , 0.9, 0.1  and 

0.95, 0.05 . 
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Table 8. The mean S for proposed FDR methods using DESeq2 with associated standard 
errors in parentheses for each simulation setting (continued). 

 DESeq2 

Mean S 

n m0 DE  Traditional 

BH 

Asymmetric 

BH 

Traditional 

QV 

Asymmetric 

QV 

6 7000 3000  1532.820 

(3.346) 

1555.820 

(3.418) 

1620.580 

(3.820) 

1635.380 

(3.686) 

 1432.360 

(2.947) 

1489.320 

(3.373) 

1534.750 

(3.215) 

1575.770 

(3.454) 

 1300.370 

(3.201) 

1400.000 

(3.031) 

1417.570 

(3.235) 

1489.160 

(3.497) 

 1219.550 

(3.364) 

1347.040 

(3.221) 

1344.800 

(3.548) 

1434.740 

(4.446) 

9000 1000  447.260 

(2.014) 

447.240 

(2.008) 

452.750 

(2.073) 

452.230 

(2.034) 

 443.100 

(1.975) 

448.810 

(1.957) 

449.530 

(1.975) 

453.630 

(2.001) 

For each setting, the significant higher mean S value at 5% significance level is shown in bolded 
fonts. If the traditional QV method has a significant higher mean S compared to the asymmetric 
BH method, then the mean S is underlined. If the asymmetric QV method has a significant higher 
mean S compared to the asymmetric BH method, then the mean S is italicized. Also, if the 
asymmetric QV method has a significant higher mean S compared to the traditional QV method, 
then the mean S is underlined. The ’s represent the proportion of DE genes that are upregulated 
and downregulated. 0.5, 0.5 , 0.7, 0.3 , 0.8, 0.2 , 0.9, 0.1  and 

0.95, 0.05 . 
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Table 8. The mean S for proposed FDR methods using DESeq2 with associated standard 
errors in parentheses for each simulation setting (continued). 

 DESeq2 

Mean S 

n m0 DE  Traditional 

BH 

Asymmetric 

BH 

Traditional 

QV 

Asymmetric 

QV 

6 9000 1000  431.580 

(1.822) 

446.800 

(1.893) 

437.950 

(1.867) 

450.500 

(1.883) 

 423.910 

(1.913) 

451.180 

(1.893) 

430.520 

(1.953) 

452.740 

(1.900) 

 417.790 

(1.890) 

454.880 

(1.832) 

424.820 

(1.869) 

456.490 

(1.848) 

9500 500  201.370 

(1.555) 

201.400 

(1.552) 

202.530 

(1.554) 

202.170 

(1.537) 

 199.530 

(1.281) 

202.310 

(1.319) 

200.620 

(1.306) 

202.910 

(1.332) 

 195.320 

(1.233) 

202.070 

(1.316) 

196.400 

(1.246) 

202.740 

(1.324) 

For each setting, the significant higher mean S value at 5% significance level is shown in bolded 
fonts. If the traditional QV method has a significant higher mean S compared to the asymmetric 
BH method, then the mean S is underlined. If the asymmetric QV method has a significant higher 
mean S compared to the asymmetric BH method, then the mean S is italicized. Also, if the 
asymmetric QV method has a significant higher mean S compared to the traditional QV method, 
then the mean S is underlined. The ’s represent the proportion of DE genes that are upregulated 
and downregulated. 0.5, 0.5 , 0.7, 0.3 , 0.8, 0.2 , 0.9, 0.1  and 

0.95, 0.05 . 
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Table 8. The mean S for proposed FDR methods using DESeq2 with associated standard 
errors in parentheses for each simulation setting (continued). 

 DESeq2 

Mean S 

n m0 DE  Traditional 

BH 

Asymmetric 

BH 

Traditional 

QV 

Asymmetric 

QV 

6 9500 500  195.650 

(1.282) 

208.510 

(1.198) 

196.730 

(1.293) 

208.790 

(1.213) 

 194.780 

(1.295) 

211.520 

(1.355) 

196.180 

(1.301) 

211.690 

(1.360) 

10 

 

5000 5000  3560.800 

(3.875) 

3561.000 

(3.880) 

3771.300 

(3.579) 

3770.270 

(3.608) 

 3307.740 

(3.983) 

3351.390 

(3.662) 

3615.770 

(4.308) 

3633.480 

(4.334) 

 3007.870 

(3.254) 

3086.580 

(3.463) 

3442.030 

(4.612) 

3469.460 

(4.535) 

  2629.850 

(3.273) 

2735.660 

(3.253) 

3231.620 

(4.957) 

3252.110 

(4.786) 

For each setting, the significant higher mean S value at 5% significance level is shown in bolded 
fonts. If the traditional QV method has a significant higher mean S compared to the asymmetric 
BH method, then the mean S is underlined. If the asymmetric QV method has a significant higher 
mean S compared to the asymmetric BH method, then the mean S is italicized. Also, if the 
asymmetric QV method has a significant higher mean S compared to the traditional QV method, 
then the mean S is underlined. The ’s represent the proportion of DE genes that are upregulated 
and downregulated. 0.5, 0.5 , 0.7, 0.3 , 0.8, 0.2 , 0.9, 0.1  and 

0.95, 0.05 . 
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Table 8. The mean S for proposed FDR methods using DESeq2 with associated standard 
errors in parentheses for each simulation setting (continued). 

 DESeq2 

Mean S 

n m0 DE  Traditional 

BH 

Asymmetric 

BH 

Traditional 

QV 

Asymmetric 

QV 

10 5000 5000  2404.710 

(3.405) 

2514.990 

(3.547) 

3107.660 

(4.968) 

3117.580 

(4.686) 

7000 3000  2030.620 

(2.772) 

2030.570 

(2.777) 

2096.580 

(2.963) 

2096.180 

(2.963) 

 1960.560 

(3.350) 

1985.190 

(3.352) 

2039.830 

(3.401) 

2053.590 

(3.428) 

 1866.050 

(2.881) 

1921.470 

(2.790) 

1967.220 

(2.911) 

1999.110 

(2.859) 

 1734.670 

(2.774) 

1828.880 

(2.950) 

1869.860 

(3.000) 

1922.200 

(2.968) 

 1653.050 

(3.162) 

1771.060 

(3.084) 

1810.730 

(3.410) 

1875.450 

(3.350) 

For each setting, the significant higher mean S value at 5% significance level is shown in bolded 
fonts. If the traditional QV method has a significant higher mean S compared to the asymmetric 
BH method, then the mean S is underlined. If the asymmetric QV method has a significant higher 
mean S compared to the asymmetric BH method, then the mean S is italicized. Also, if the 
asymmetric QV method has a significant higher mean S compared to the traditional QV method, 
then the mean S is underlined. The ’s represent the proportion of DE genes that are upregulated 
and downregulated. 0.5, 0.5 , 0.7, 0.3 , 0.8, 0.2 , 0.9, 0.1  and 

0.95, 0.05 . 
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Table 8. The mean S for proposed FDR methods using DESeq2 with associated standard 
errors in parentheses for each simulation setting (continued). 

 DESeq2 

Mean S 

n m0 DE  Traditional 

BH 

Asymmetric 

BH 

Traditional 

QV 

Asymmetric 

QV 

10 9000 1000  608.590 

(1.873) 

608.480 

(1.858) 

614.240 

(1.870) 

614.200 

(1.866) 

 599.490 

(1.884) 

605.140 

(1.842) 

605.560 

(1.907) 

610.630 

(1.878) 

 594.930 

(1.686) 

608.220 

(1.720) 

601.400 

(1.704) 

611.490 

(1.769) 

 580.640 

(1.932) 

604.640 

(1.804) 

587.880 

(1.914) 

607.020 

(1.848) 

 571.550 

(1.712) 

604.710 

(1.656) 

579.720 

(1.722) 

606.620 

(1.634) 

9500 500  283.630 

(1.118) 

283.780 

(1.124) 

285.120 

(1.125) 

285.190 

(1.125) 

For each setting, the significant higher mean S value at 5% significance level is shown in bolded 
fonts. If the traditional QV method has a significant higher mean S compared to the asymmetric 
BH method, then the mean S is underlined. If the asymmetric QV method has a significant higher 
mean S compared to the asymmetric BH method, then the mean S is italicized. Also, if the 
asymmetric QV method has a significant higher mean S compared to the traditional QV method, 
then the mean S is underlined. The ’s represent the proportion of DE genes that are upregulated 
and downregulated. 0.5, 0.5 , 0.7, 0.3 , 0.8, 0.2 , 0.9, 0.1  and 

0.95, 0.05 . 
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Table 8. The mean S for proposed FDR methods using DESeq2 with associated standard 
errors in parentheses for each simulation setting (continued). 

 DESeq2 

Mean S 

n m0 DE  Traditional 

BH 

Asymmetric 

BH 

Traditional 

QV 

Asymmetric 

QV 

10 9500 500  282.610 

(1.255) 

285.170 

(1.278) 

284.050 

(1.233) 

285.970 

(1.260) 

 279.240 

(1.183) 

285.940 

(1.172) 

280.500 

(1.173) 

286.440 

(1.162) 

 276.210 

(1.178) 

287.770 

(1.213) 

277.650 

(1.178) 

288.050 

(1.198) 

 275.670 

(1.104) 

290.140 

(1.140) 

277.090 

(1.113) 

290.250 

(1.140) 

12 

 

5000 5000  3746.020 

(3.372) 

3745.970 

(3.355) 

3934.540 

(3.237) 

3933.660 

(3.247) 

 3506.880 

(3.172) 

3549.850 

(3.148) 

3803.040 

(3.379) 

3818.430 

(3.357) 

For each setting, the significant higher mean S value at 5% significance level is shown in bolded 
fonts. If the traditional QV method has a significant higher mean S compared to the asymmetric 
BH method, then the mean S is underlined. If the asymmetric QV method has a significant higher 
mean S compared to the asymmetric BH method, then the mean S is italicized. Also, if the 
asymmetric QV method has a significant higher mean S compared to the traditional QV method, 
then the mean S is underlined. The ’s represent the proportion of DE genes that are upregulated 
and downregulated. 0.5, 0.5 , 0.7, 0.3 , 0.8, 0.2 , 0.9, 0.1  and 

0.95, 0.05 . 
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Table 8. The mean S for proposed FDR methods using DESeq2 with associated standard 
errors in parentheses for each simulation setting (continued). 

 DESeq2 

Mean S 

n m0 DE  Traditional 

BH 

Asymmetric 

BH 

Traditional 

QV 

Asymmetric 

QV 

12 5000 5000  3220.380 

(3.202) 

3297.980 

(3.164) 

3667.890 

(4.402) 

3684.800 

(4.342) 

 2848.750 

(3.607) 

2942.000 

(3.594) 

3507.860 

(5.665) 

3508.100 

(5.403) 

 2642.070 

(3.460) 

2736.700 

(3.362) 

3406.540 

(5.623) 

3395.900 

(5.366) 

7000 3000  2153.170 

(2.158) 

2153.300 

(2.510) 

2213.550 

(2.608) 

2213.100 

(2.612) 

 2085.230 

(2.464) 

2109.620 

(2.421) 

2160.510 

(2.763) 

2172.230 

(2.696) 

 2000.450 

(2.747) 

2053.010 

(2.668) 

2100.480 

(2.996) 

2127.340 

(2.783) 

For each setting, the significant higher mean S value at 5% significance level is shown in bolded 
fonts. If the traditional QV method has a significant higher mean S compared to the asymmetric 
BH method, then the mean S is underlined. If the asymmetric QV method has a significant higher 
mean S compared to the asymmetric BH method, then the mean S is italicized. Also, if the 
asymmetric QV method has a significant higher mean S compared to the traditional QV method, 
then the mean S is underlined. The ’s represent the proportion of DE genes that are upregulated 
and downregulated. 0.5, 0.5 , 0.7, 0.3 , 0.8, 0.2 , 0.9, 0.1  and 

0.95, 0.05 . 
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Table 8. The mean S for proposed FDR methods using DESeq2 with associated standard 
errors in parentheses for each simulation setting (continued). 

 DESeq2 

Mean S 

n m0 DE  Traditional 

BH 

Asymmetric 

BH 

Traditional 

QV 

Asymmetric 

QV 

12 7000 3000  1869.150 

(3.074) 

1961.240 

(2.844) 

2011.400 

(3.229) 

2054.430 

(3.128) 

 1794.300 

(2.791) 

1906.540 

(2.502) 

1964.480 

(2.743) 

2014.150 

(2.829) 

9000 1000  656.220 

(1.483) 

656.370 

(1.492) 

661.720 

(1.428) 

661.540 

(1.421) 

 648.890 

(1.622) 

654.430 

(1.689) 

655.020 

(1.615) 

658.850 

(1.676) 

 641.230 

(1.816) 

654.110 

(1.730) 

647.930 

(1.784) 

657.700 

(1.770) 

 628.450 

(1.678) 

652.520 

(1.643) 

635.600 

(1.715) 

654.310 

(1.659) 

For each setting, the significant higher mean S value at 5% significance level is shown in bolded 
fonts. If the traditional QV method has a significant higher mean S compared to the asymmetric 
BH method, then the mean S is underlined. If the asymmetric QV method has a significant higher 
mean S compared to the asymmetric BH method, then the mean S is italicized. Also, if the 
asymmetric QV method has a significant higher mean S compared to the traditional QV method, 
then the mean S is underlined. The ’s represent the proportion of DE genes that are upregulated 
and downregulated. 0.5, 0.5 , 0.7, 0.3 , 0.8, 0.2 , 0.9, 0.1  and 

0.95, 0.05 . 
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Table 8. The mean S for proposed FDR methods using DESeq2 with associated standard 
errors in parentheses for each simulation setting (continued). 

 DESeq2 

Mean S 

n m0 DE  Traditional 

BH 

Asymmetric 

BH 

Traditional 

QV 

Asymmetric 

QV 

12 9000 1000  619.410 

(1.639) 

651.370 

(1.648) 

627.490 

(1.676) 

652.460 

(1.667) 

9500 500  309.710 

(1.250) 

309.710 

(1.251) 

310.830 

(1.223) 

310.820 

(1.229) 

 307.800 

(1.188) 

310.090 

(1.268) 

309.250 

(1.207) 

311.050 

(1.279) 

 306.720 

(1.160) 

311.700 

(1.213) 

307.680 

(1.174) 

312.000 

(1.225) 

 300.150 

(1.298) 

310.350 

(1.287) 

301.580 

(1.287) 

310.670 

(1.301) 

 302.550 

(1.274) 

316.250 

(1.300) 

304.130 

(1.308) 

316.110 

(1.302) 

For each setting, the significant higher mean S value at 5% significance level is shown in bolded 
fonts. If the traditional QV method has a significant higher mean S compared to the asymmetric 
BH method, then the mean S is underlined. If the asymmetric QV method has a significant higher 
mean S compared to the asymmetric BH method, then the mean S is italicized. Also, if the 
asymmetric QV method has a significant higher mean S compared to the traditional QV method, 
then the mean S is underlined. The ’s represent the proportion of DE genes that are upregulated 
and downregulated. 0.5, 0.5 , 0.7, 0.3 , 0.8, 0.2 , 0.9, 0.1  and 

0.95, 0.05 . 
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Table 9. The mean V/R for proposed FDR methods using DESeq2 with associated standard 
errors in parentheses for each simulation setting.  

 DESeq2 

Mean V/R 

n m0 DE  Traditional 

BH 

Asymmetric 

BH 

Traditional 

QV 

Asymmetric 

QV 

4 

 

5000 5000  0.033 (<0.001) 0.033 (<0.001) 0.048 (<0.001) 0.035 (0.001) 

 0.051 (0.001) 0.044 (<0.001) 0.073 (0.001) 0.049 (0.001) 

 0.077 (0.001) 0.059 (0.001) 0.111 (0.001) 0.066 (0.001) 

 0.122 (0.001) 0.077 (0.001) 0.172 (0.001) 0.084 (0.001) 

 0.160 (0.001) 0.083 (0.001) 0.219 (0.001) 0.089 (0.001) 

7000 3000  0.053 (0.001) 0.053 (0.001) 0.063 (0.001) 0.053 (0.001) 

 0.062 (0.001) 0.054 (0.001) 0.074 (0.001) 0.054 (0.001) 

 0.073 (0.001) 0.052 (0.001) 0.089 (0.001) 0.053 (0.001) 

 0.093 (0.001) 0.049 (0.001) 0.114 (0.001) 0.050 (0.001) 

 0.104 (0.001) 0.040 (0.001) 0.127 (0.001) 0.040 (0.001) 

9000 1000  0.105 (0.002) 0.105 (0.002) 0.108 (0.002) 0.102 (0.002) 

 0.107 (0.002) 0.098 (0.002) 0.110 (0.002) 0.095 (0.002) 

 0.110 (0.002) 0.092 (0.002) 0.113 (0.002) 0.090 (0.002) 

 0.112 (0.002) 0.083 (0.001) 0.116 (0.002) 0.081 (0.001) 

 0.118 (0.002) 0.078 (0.002) 0.121 (0.002) 0.076 (0.002) 

The ’s represent the proportion of DE genes that are upregulated and downregulated. 
0.5, 0.5 , 0.7, 0.3 , 0.8, 0.2 , 0.9, 0.1  and 0.95, 0.05 . 
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Table 9. The mean V/R for proposed FDR methods using DESeq2 with associated standard 
errors in parentheses for each simulation setting (continued).  

 DESeq2 

Mean V/R 

n m0 DE  Traditional 

BH 

Asymmetric 

BH 

Traditional 

QV 

Asymmetric 

QV 

4 9500 500  0.154 (0.002) 0.154 (0.003) 0.156 (0.002) 0.150 (0.003) 

 0.152 (0.003) 0.143 (0.003) 0.153 (0.003) 0.140 (0.003) 

 0.151 (0.003) 0.135 (0.003) 0.152 (0.003) 0.132 (0.003) 

 0.153 (0.003) 0.125 (0.003) 0.154 (0.003) 0.120 (0.003) 

 0.155 (0.003) 0.116 (0.003) 0.156 (0.003) 0.112 (0.003) 

6 

 

5000 5000  0.034 (0.001) 0.034 (<0.001) 0.052 (0.001) 0.052 (<0.001) 

 0.060 (<0.001) 0.050 (<0.001) 0.092 (0.001) 0.081 (0.001) 

 0.100 (0.001) 0.076 (0.001) 0.153 (0.001) 0.128 (0.001) 

 0.166 (0.001) 0.110 (0.001) 0.241 (0.001) 0.193 (0.001) 

 0.211 (0.001) 0.129 (0.001) 0.269 (0.001) 0.231 (0.002) 

7000 3000  0.054 (0.001) 0.054 (0.001) 0.066 (0.001) 0.066 (0.001) 

 0.066 (0.001) 0.055 (0.001) 0.082 (0.001) 0.071 (0.001) 

 0.081 (0.001) 0.055 (0.001) 0.103 (0.001) 0.075 (0.001) 

 0.108 (0.001) 0.054 (0.001) 0.139 (0.001) 0.078 (0.001) 

 0.126 (0.001) 0.047 (0.001) 0.163 (0.001) 0.071 (0.001) 

The ’s represent the proportion of DE genes that are upregulated and downregulated. 
0.5, 0.5 , 0.7, 0.3 , 0.8, 0.2 , 0.9, 0.1  and 0.95, 0.05 . 
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Table 9. The mean V/R for proposed FDR methods using DESeq2 with associated standard 
errors in parentheses for each simulation setting (continued).  

 DESeq2 

Mean V/R 

n m0 DE  Traditional 

BH 

Asymmetric 

BH 

Traditional 

QV 

Asymmetric 

QV 

6 9000 1000  0.097 (0.001) 0.097 (0.001) 0.102 (0.001) 0.101 (0.001) 

 0.100 (0.001) 0.091 (0.001) 0.104 (0.001) 0.096 (0.001) 

 0.101 (0.001) 0.086 (0.001) 0.107 (0.001) 0.089 (0.001) 

 0.106 (0.002) 0.073 (0.001) 0.111 (0.002) 0.076 (0.001) 

 0.110 (0.001) 0.069 (0.001) 0.116 (0.002) 0.072 (0.001) 

9500 500  0.127 (0.002) 0.127 (0.002) 0.129 (0.002) 0.129 (0.002) 

 0.133 (0.003) 0.126 (0.002) 0.135 (0.003) 0.128 (0.002) 

 0.130 (0.003) 0.118 (0.002) 0.133 (0.003) 0.120 (0.002) 

 0.136 (0.002) 0.110 (0.002) 0.139 (0.002) 0.111 (0.002) 

 0.135 (0.002) 0.102 (0.002) 0.138 (0.002) 0.102 (0.002) 

10 

 

5000 5000  0.033 (<0.001) 0.033 (<0.001) 0.054 (<0.001) 0.054 (<0.001) 

 0.077 (<0.001) 0.063 (<0.001) 0.126 (0.001) 0.114 (0.001) 

 0.138 (0.001) 0.105 (0.001) 0.244 (0.001) 0.203 (0.001) 

 0.237 (0.001) 0.181 (0.001) 0.348 (0.001) 0.333 (0.001) 

 0.269 (0.001) 0.230 (0.001) 0.407 (0.001) 0.399 (0.001) 

The ’s represent the proportion of DE genes that are upregulated and downregulated. 
0.5, 0.5 , 0.7, 0.3 , 0.8, 0.2 , 0.9, 0.1  and 0.95, 0.05 . 
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Table 9. The mean V/R for proposed FDR methods using DESeq2 with associated standard 
errors in parentheses for each simulation setting (continued).  

 DESeq2 

Mean V/R 

n m0 DE  Traditional 

BH 

Asymmetric 

BH 

Traditional 

QV 

Asymmetric 

QV 

10 7000 3000  0.050 (<0.001) 0.050 (<0.001) 0.065 (0.001) 0.064 (0.001) 

 0.071 (0.001) 0.057 (0.001) 0.092 (0.001) 0.079 (0.001) 

 0.097 (0.001) 0.064 (0.001) 0.131 (0.001) 0.096 (0.001) 

 0.138 (0.001) 0.068 (0.001) 0.191 (0.001) 0.118 (0.001) 

 0.167 (0.001) 0.066 (0.001) 0.233 (0.001) 0.131 (0.001) 

9000 1000  0.084 (0.001) 0.084 (0.001) 0.090 (0.001) 0.090 (0.001) 

 0.088 (0.001) 0.082 (0.001) 0.094 (0.001) 0.087 (0.001) 

 0.092 (0.001) 0.075 (0.001) 0.099 (0.001) 0.080 (0.001) 

 0.099 (0.001) 0.066 (0.001) 0.106 (0.001) 0.071 (0.001) 

 0.103 (0.001) 0.059 (0.001) 0.112 (0.001) 0.063 (0.001) 

9500 500  0.110 (0.002) 0.110 (0.002) 0.113 (0.002) 0.113 (0.002) 

 0.109 (0.002) 0.104 (0.002) 0.112 (0.002) 0.106 (0.002) 

 0.114 (0.002) 0.102 (0.002) 0.114 (0.002) 0.104 (0.002) 

 0.117 (0.002) 0.092 (0.002) 0.121 (0.002) 0.093 (0.002) 

 0.113 (0.002) 0.081 (0.002) 0.117 (0.002) 0.082 (0.002) 

The ’s represent the proportion of DE genes that are upregulated and downregulated. 
0.5, 0.5 , 0.7, 0.3 , 0.8, 0.2 , 0.9, 0.1  and 0.95, 0.05 . 
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Table 9. The mean V/R for proposed FDR methods using DESeq2 with associated standard 
errors in parentheses for each simulation setting (continued). 

 DESeq2 

Mean V/R 

n m0 DE  Traditional 

BH 

Asymmetric 

BH 

Traditional 

QV 

Asymmetric 

QV 

12 

 

5000 5000  0.032 (<0.001) 0.032 (<0.001) 0.054 (<0.001) 0.054 (<0.001) 

 0.084 (<0.001) 0.068 (<0.001) 0.141 (0.001) 0.129 (0.001) 

 0.160 (0.001) 0.124 (0.001) 0.259 (0.001) 0.244 (0.001) 

 0.266 (0.001) 0.214 (0.001) 0.388 (0.001) 0.385 (0.001) 

 0.332 (0.001) 0.278 (0.001) 0.441 (0.001) 0.444 (0.001) 

7000 3000  0.050 (0.001) 0.050 (0.001) 0.064 (0.001) 0.064 (0.001) 

 0.072 (0.001) 0.057 (0.001) 0.096 (0.001) 0.081 (0.001) 

 0.107 (0.001) 0.069 (0.001) 0.145 (0.001) 0.109 (0.001) 

 0.155 (0.001) 0.078 (0.001) 0.220 (0.001) 0.145 (0.001) 

 0.187 (0.001) 0.079 (0.001) 0.267 (0.001) 0.170 (0.001) 

9000 1000  0.081 (0.001) 0.081 (0.001) 0.086 (0.001) 0.086 (0.001) 

 0.084 (0.001) 0.077 (0.001) 0.090 (0.001) 0.082 (0.001) 

 0.090 (0.001) 0.072 (0.001) 0.098 (0.001) 0.078 (0.001) 

 0.098 (0.001) 0.064 (0.001) 0.107 (0.001) 0.069 (0.001) 

 0.102 (0.001) 0.054 (0.001) 0.111 (0.001) 0.058 (0.001) 

The ’s represent the proportion of DE genes that are upregulated and downregulated. 
0.5, 0.5 , 0.7, 0.3 , 0.8, 0.2 , 0.9, 0.1  and 0.95, 0.05 . 
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Table 9. The mean V/R for proposed FDR methods using DESeq2 with associated standard 
errors in parentheses for each simulation setting (continued). 

 DESeq2 

Mean V/R 

n m0 DE  Traditional 

BH 

Asymmetric 

BH 

Traditional 

QV 

Asymmetric 

QV 

12 9500 500  0.104 (0.002) 0.104 (0.002) 0.107 (0.002) 0.107 (0.002) 

 0.102 (0.002) 0.096 (0.002) 0.105 (0.002) 0.100 (0.002) 

 0.107 (0.002) 0.094 (0.002) 0.109 (0.002) 0.096 (0.002) 

 0.108 (0.002) 0.086 (0.002) 0.112 (0.002) 0.088 (0.002) 

 0.112 (0.002) 0.079 (0.001) 0.116 (0.002) 0.080 (0.001) 

The ’s represent the proportion of DE genes that are upregulated and downregulated. 
0.5, 0.5 , 0.7, 0.3 , 0.8, 0.2 , 0.9, 0.1  and 0.95, 0.05 . 

The traditional q-value method did not outperform the asymmetric q-value method in 

most of the simulation settings in terms of mean S, as seen in Table 10 (NBPSeq method). The 

asymmetric q-value method performed better than the traditional q-value method in 65 of the 80 

simulation settings with regard to mean S (16 of 20 settings with n = 4, 6 and 10 and 17 of 20 

settings with n = 12). The traditional q-value method performed better than the traditional BH 

method in all the simulation settings. Also, the asymmetric q-value method performed better than 

the traditional and asymmetric BH methods in all settings. Furthermore, the traditional q-value 

method performed better than the asymmetric BH method in 37 of 80 settings in terms of mean S 

(10 of 20 settings with n = 4 and 6, 8 of 20 settings with n = 10, and 9 of 20 settings with n = 10). 

Comparing the performance of the traditional BH method to the asymmetric BH method, the 
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asymmetric BH method performed better than the traditional BH method in 65 of the 80 settings 

in terms of the mean S (16 of 20 settings with n = 4, 6 and 10, and 17 of 20 settings with n = 12).  

Although a higher value of mean S was observed for the traditional q-value method 

compared to the traditional BH method in most simulation settings, these differences were not 

significant. There were no significant difference in mean S at 5% between all methods in 9 of 80 

settings (n = 4, m0 = {5000, 9500} and 1 ,  n = 6, m0 = {5000, 7000,  9500} and 1 , n = 10, m0 

= {7000, 9000} and 1 , n = 12, m0 = {5000, 7000} and 1 ).  

As shown in Table 11, the observed FDR (mean V/R) was similar among all the methods, 

with levels elevated above 5%. Apart from simulation settings with 1 , the asymmetric q-value 

method better controlled the observed FDR than the traditional q-value method. In most settings, the 

asymmetric BH method compared to the traditional q-value and asymmetric q-value methods better 

controlled the observed FDR close to or slightly higher than 5%. 
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Table 10. The mean S for proposed FDR methods using NBPSeq with associated standard 
errors in parentheses for each simulation setting.  

 NBPSeq 

Mean S 

n m0 DE  Traditional 

BH 

Asymmetric 

BH 

Traditional 

QV 

Asymmetric 

QV 

4 

 

5000 5000  2091.990 

(4.809) 

2091.440 

(4.812) 

2350.050 

(5.713) 

2349.010 

(5.650) 

 1865.770 

(5.120) 

1898.470 

(5.279) 

2134.800 

(5.520) 

2158.050 

(5.666) 

 1595.030 

(4.731) 

1662.220 

(4.945) 

1879.190 

(5.671) 

1938.950 

(5.780) 

 1217.340 

(4.309) 

1331.980 

(4.467) 

1502.990 

(5.821) 

1612.020 

(5.853) 

 1002.590 

(3.902) 

1153.300 

(4.468) 

1293.160 

(5.914) 

1435.450 

(5.957) 

7000 3000  1087.310 

(3.459) 

1086.880 

(3.477) 

1145.890 

(3.932) 

1145.420 

(3.921) 

 1037.050 

(4.022) 

1060.280 

(4.049) 

1101.070 

(4.257) 

1118.920 

(4.138) 

For each setting, the significant higher mean S value at 5% significance level is shown in bolded 
fonts. If the asymmetric BH method has a significant higher mean S compared to the traditional 
BH method, then the mean S is underlined. The ’s represent the proportion of DE genes that 
are upregulated and downregulated. 0.5, 0.5 , 0.7, 0.3 , 0.8, 0.2 , 
0.9, 0.1  and 0.95, 0.05 . 
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Table 10. The mean S for proposed FDR methods using NBPSeq with associated standard 
errors in parentheses for each simulation setting (continued).  

 NBPSeq 

Mean S 

n m0 DE  Traditional 

BH 

Asymmetric 

BH 

Traditional 

QV 

Asymmetric 

QV 

4 7000 3000  951.320 

(3.959) 

1005.000 

(3.959) 

1017.290 

(4.113) 

1064.400 

(4.010) 

 828.880 

(3.635) 

930.410 

(3.667) 

897.230 

(3.932) 

988.090 

(4.013) 

 748.170 

(3.482) 

883.590 

(3.544) 

819.990 

(3.942) 

939.410 

(3.787) 

9000 1000  267.780 

(1.850) 

267.920 

(1.828) 

268.290 

(1.850) 

268.560 

(1.830) 

 263.930 

(2.041) 

269.520 

(1.885) 

264.410 

(2.052) 

269.470 

(1.913) 

 256.280 

(1.695) 

272.870 

(1.621) 

256.800 

(1.726) 

272.070 

(1.659) 

 248.670 

(1.885) 

280.940 

(1.895) 

249.300 

(1.918) 

279.420 

(1.942) 

For each setting, the significant higher mean S value at 5% significance level is shown in bolded 
fonts. If the asymmetric BH method has a significant higher mean S compared to the traditional 
BH method, then the mean S is underlined. The ’s represent the proportion of DE genes that 
are upregulated and downregulated. 0.5, 0.5 , 0.7, 0.3 , 0.8, 0.2 , 
0.9, 0.1  and 0.95, 0.05 . 
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Table 10. The mean S for proposed FDR methods using NBPSeq with associated standard 
errors in parentheses for each simulation setting (continued).  

 NBPSeq 

Mean S 

n m0 DE  Traditional 

BH 

Asymmetric 

BH 

Traditional 

QV 

Asymmetric 

QV 

4 9000 1000  247.630 

(1.732) 

288.190 

(1.883) 

248.300 

(1.745) 

286.120 

(1.908) 

9500 500  109.030 

(1.210) 

108.780 

(1.227) 

109.030 

(1.210) 

108.870 

(1.225) 

 112.950 

(1.309) 

116.500 

(1.334) 

112.950 

(1.309) 

116.360 

(1.326) 

 113.130 

(1.236) 

120.560 

(1.252) 

113.130 

(1.236) 

120.060 

(1.249) 

 109.880 

(1.378) 

123.960 

(1.459) 

109.880 

(1.378) 

123.580 

(1.449) 

 108.190 

(1.375) 

126.730 

(1.349) 

108.220 

(1.349) 

125.780 

(1.339) 

6 

 

5000 5000  2812.560 

(4.355) 

2812.520 

(4.336) 

3056.840 

(4.949) 

3055.910 

(4.891) 

For each setting, the significant higher mean S value at 5% significance level is shown in bolded 
fonts. If the asymmetric BH method has a significant higher mean S compared to the traditional 
BH method, then the mean S is underlined. The ’s represent the proportion of DE genes that 
are upregulated and downregulated. 0.5, 0.5 , 0.7, 0.3 , 0.8, 0.2 , 
0.9, 0.1  and 0.95, 0.05 . 
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Table 10. The mean S for proposed FDR methods using NBPSeq with associated standard 
errors in parentheses for each simulation setting (continued).  

 NBPSeq 

Mean S 

n m0 DE  Traditional 

BH 

Asymmetric 

BH 

Traditional 

QV 

Asymmetric 

QV 

6 5000 5000  2565.210 

(4.185) 

2604.030 

(4.095) 

2853.280 

(5.559) 

2880.140 

(5.560) 

 2248.480 

(3.963) 

2329.500 

(4.240) 

2600.520 

(4.727) 

2657.860 

(4.757) 

 1831.860 

(4.817) 

1965.700 

(5.063) 

2251.000 

(6.377) 

2344.580 

(6.153) 

 1593.450 

(4.450) 

1755.150 

(4.274) 

2042.880 

(5.916) 

2155.190 

(5.805) 

7000 3000  1544.050 

(3.276) 

1543.470 

(3.301) 

1601.510 

(3.437) 

1600.440 

(3.438) 

 1472.670 

(3.705) 

1497.330 

(3.757) 

1540.730 

(3.999) 

1559.470 

(4.013) 

 1371.180 

(3.210) 

1432.510 

(3.263) 

1452.890 

(3.370) 

1497.590 

(3.427) 

For each setting, the significant higher mean S value at 5% significance level is shown in bolded 
fonts. If the asymmetric BH method has a significant higher mean S compared to the traditional 
BH method, then the mean S is underlined. The ’s represent the proportion of DE genes that 
are upregulated and downregulated. 0.5, 0.5 , 0.7, 0.3 , 0.8, 0.2 , 
0.9, 0.1  and 0.95, 0.05 . 
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Table 10. The mean S for proposed FDR methods using NBPSeq with associated standard 
errors in parentheses for each simulation setting (continued).  

 NBPSeq 

Mean S 

n m0 DE  Traditional 

BH 

Asymmetric 

BH 

Traditional 

QV 

Asymmetric 

QV 

6 7000 3000  1235.090 

(3.181) 

1347.300 

(3.269) 

1333.260 

(3.611) 

1414.650 

(3.397) 

 1151.390 

(3.219) 

1294.590 

(3.113) 

1256.480 

(3.374) 

1368.340 

(3.392) 

9000 1000  417.710 

(1.985) 

417.740 

(1.966) 

418.370 

(1.990) 

418.350 

(2.001) 

 416.850 

(2.031) 

423.640 

(1.992) 

418.000 

(2.029) 

423.580 

(2.008) 

 406.570 

(1.834) 

423.500 

(1.936) 

407.480 

(1.858) 

422.210 

(1.944) 

 399.380 

(1.930) 

430.830 

(1.952) 

400.570 

(1.915) 

428.010 

(1.967) 

 394.720 

(1.765) 

436.860 

(1.829) 

396.620 

(1.777) 

433.910 

(1.835) 

For each setting, the significant higher mean S value at 5% significance level is shown in bolded 
fonts. If the asymmetric BH method has a significant higher mean S compared to the traditional 
BH method, then the mean S is underlined. The ’s represent the proportion of DE genes that 
are upregulated and downregulated. 0.5, 0.5 , 0.7, 0.3 , 0.8, 0.2 , 
0.9, 0.1  and 0.95, 0.05 . 
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Table 10. The mean S for proposed FDR methods using NBPSeq with associated standard 
errors in parentheses for each simulation setting (continued).  

 NBPSeq 

Mean S 

n m0 DE  Traditional 

BH 

Asymmetric 

BH 

Traditional 

QV 

Asymmetric 

QV 

6 9500 500  185.870 

(1.498) 

185.900 

(1.501) 

185.870 

(1.498) 

185.890 

(1.499) 

 185.360 

(1.367) 

188.140 

(1.373) 

185.390 

(1.366) 

187.850 

(1.382) 

 181.500 

(1.259) 

188.540 

(1.247) 

181.500 

(1.259) 

188.090 

(1.257) 

 182.810 

(1.227) 

195.910 

(1.214) 

182.870 

(1.228) 

195.210 

(1.206) 

 182.470 

(1.264) 

200.990 

(1.264) 

182.550 

(1.260) 

199.840 

(1.278) 

10 

 

5000 5000  3528.990 

(3.918) 

3528.740 

(3.935) 

3720.190 

(3.667) 

3720.320 

(3.684) 

 3268.830 

(3.860) 

3314.150 

(3.827) 

3552.550 

(4.385) 

3575.570 

(4.247) 

For each setting, the significant higher mean S value at 5% significance level is shown in bolded 
fonts. If the asymmetric BH method has a significant higher mean S compared to the traditional 
BH method, then the mean S is underlined. The ’s represent the proportion of DE genes that 
are upregulated and downregulated. 0.5, 0.5 , 0.7, 0.3 , 0.8, 0.2 , 
0.9, 0.1  and 0.95, 0.05 . 
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Table 10. The mean S for proposed FDR methods using NBPSeq with associated standard 
errors in parentheses for each simulation setting (continued).  

 NBPSeq 

Mean S 

n m0 DE  Traditional 

BH 

Asymmetric 

BH 

Traditional 

QV 

Asymmetric 

QV 

10 5000 5000  2957.440 

(3.616) 

3044.690 

(3.645) 

3363.750 

(4.480) 

3402.370 

(4.364) 

  2556.780 

(3.570) 

2679.950 

(3.392) 

3130.980 

(5.011) 

3170.250 

(4.912) 

 2319.730 

(3.301) 

2450.820 

(3.534) 

2991.400 

(4.616) 

3021.540 

(4.361) 

7000 3000  2003.400 

(2.951) 

2003.010 

(2.983) 

2055.020 

(3.024) 

2054.840 

(3.002) 

 1935.480 

(3.334) 

1961.800 

(3.365) 

2000.800 

(3.400) 

2015.290 

(3.441) 

 1836.870 

(2.704) 

1895.580 

(2.673) 

1922.360 

(2.759) 

1957.900 

(2.837) 

 1700.230 

(2.877) 

1801.760 

(2.848) 

1816.190 

(2.909) 

1877.320 

(3.060) 

For each setting, the significant higher mean S value at 5% significance level is shown in bolded 
fonts. If the asymmetric BH method has a significant higher mean S compared to the traditional 
BH method, then the mean S is underlined. The ’s represent the proportion of DE genes that 
are upregulated and downregulated. 0.5, 0.5 , 0.7, 0.3 , 0.8, 0.2 , 
0.9, 0.1  and 0.95, 0.05 . 
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Table 10. The mean S for proposed FDR methods using NBPSeq with associated standard 
errors in parentheses for each simulation setting (continued).  

 NBPSeq 

Mean S 

n m0 DE  Traditional 

BH 

Asymmetric 

BH 

Traditional 

QV 

Asymmetric 

QV 

10 7000 3000  1617.430 

(3.198) 

1746.590 

(3.231) 

1753.280 

(3.596) 

1830.940 

(3.597) 

9000 1000  594.700 

(1.962) 

594.550 

(1.964) 

596.130 

(1.999) 

595.940 

(1.993) 

 588.240 

(1.699) 

593.450 

(1.740 ) 

589.810 

(1.724) 

594.080 

(1.755) 

 583.540 

(1.751) 

598.080 

(1.807) 

585.370 

(1.803) 

596.910 

(1.829) 

 570.500 

(1.975) 

597.700 

(1.976) 

572.910 

(2.004) 

594.870 

(2.010) 

 562.880 

(1.682) 

597.970 

(1.644) 

565.610 

(1.689) 

594.940 

(1.668) 

9500 500  275.510 

(1.110) 

275.510 

(1.122) 

275.540 

(1.110) 

275.600 

(1.130) 

For each setting, the significant higher mean S value at 5% significance level is shown in bolded 
fonts. If the asymmetric BH method has a significant higher mean S compared to the traditional 
BH method, then the mean S is underlined. The ’s represent the proportion of DE genes that 
are upregulated and downregulated. 0.5, 0.5 , 0.7, 0.3 , 0.8, 0.2 , 
0.9, 0.1  and 0.95, 0.05 . 
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Table 10. The mean S for proposed FDR methods using NBPSeq with associated standard 
errors in parentheses for each simulation setting (continued).  

 NBPSeq 

Mean S 

n m0 DE  Traditional 

BH 

Asymmetric 

BH 

Traditional 

QV 

Asymmetric 

QV 

10 9500 500  275.400 

(1.310) 

277.830 

(1.296) 

275.470 

(1.311) 

277.650 

(1.290) 

 273.410 

(1.207) 

279.680 

(1.146) 

273.430 

(1.206) 

279.110 

(1.130) 

 272.210 

(1.237) 

283.250 

(1.226) 

272.230 

(1.237) 

281.870 

(1.212) 

 271.050 

(1.193) 

286.800 

(1.183) 

271.090 

(1.189) 

285.370 

(1.193) 

12 

 

5000 5000  3724.160 

(3.275) 

3724.060 

(3.321) 

3894.170 

(3.353) 

3894.140 

(3.356) 

 3480.230 

(3.374) 

3526.930 

(3.347) 

3751.650 

(3.691) 

3771.640 

(3.613) 

 3180.510 

(3.268) 

3264.240 

(3.139) 

3601.520 

(4.377) 

3628.800 

(4.302) 

For each setting, the significant higher mean S value at 5% significance level is shown in bolded 
fonts. If the asymmetric BH method has a significant higher mean S compared to the traditional 
BH method, then the mean S is underlined. The ’s represent the proportion of DE genes that 
are upregulated and downregulated. 0.5, 0.5 , 0.7, 0.3 , 0.8, 0.2 , 
0.9, 0.1  and 0.95, 0.05 . 
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Table 10. The mean S for proposed FDR methods using NBPSeq with associated standard 
errors in parentheses for each simulation setting (continued).  

 NBPSeq 

Mean S 

n m0 DE  Traditional 

BH 

Asymmetric 

BH 

Traditional 

QV 

Asymmetric 

QV 

12 5000 5000  2788.960 

(3.466) 

2897.990 

(3.705) 

3418.100 

(5.737) 

3432.790 

(5.526) 

 2573.970 

(3.471) 

2685.680 

(3.115) 

3308.950 

(5.685) 

3312.840 

(5.392) 

7000 3000  2135.850 

(2.533) 

2135.860 

(2.508) 

2183.390 

(2.663) 

2183.390 

(2.638) 

 2068.930 

(2.487) 

2092.990 

(2.569) 

2130.220 

(2.688) 

2143.780 

(2.699) 

 1982.130 

(2.744) 

2036.520 

(2.539) 

2066.420 

(2.816) 

2097.200 

(2.780) 

 1845.480 

(2.758) 

1944.980 

(2.946) 

1970.920 

(3.253) 

2023.190 

(3.132) 

 1766.510 

(2.884) 

1889.140 

(2.666) 

1916.740 

(3.101) 

1978.880 

(2.899) 

For each setting, the significant higher mean S value at 5% significance level is shown in bolded 
fonts. If the asymmetric BH method has a significant higher mean S compared to the traditional 
BH method, then the mean S is underlined. The ’s represent the proportion of DE genes that 
are upregulated and downregulated. 0.5, 0.5 , 0.7, 0.3 , 0.8, 0.2 , 
0.9, 0.1  and 0.95, 0.05 . 
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Table 10. The mean S for proposed FDR methods using NBPSeq with associated standard 
errors in parentheses for each simulation setting (continued).  

 NBPSeq 

Mean S 

n m0 DE  Traditional 

BH 

Asymmetric 

BH 

Traditional 

QV 

Asymmetric 

QV 

12 9000 1000  645.960 

(1.516) 

646.090 

(1.518) 

647.230 

(1.493) 

647.370 

(1.485) 

 641.600 

(1.756) 

646.880 

(1.757) 

643.470 

(1.765) 

647.350 

(1.752) 

 635.950 

(1.706) 

648.330 

(1.637) 

637.660 

(1.707) 

647.550 

(1.654) 

 622.020 

(1.699) 

648.680 

(1.853) 

624.680 

(1.747) 

645.720 

(1.882) 

 614.550 

(1.743) 

647.140 

(1.750) 

617.680 

(1.773) 

643.750 

(1.817) 

9500 500  303.170 

(1.248) 

303.520 

(1.224) 

303.200 

(1.249) 

303.580 

(1.220) 

 303.790 

(1.177) 

306.160 

(1.207) 

303.820 

(1.178) 

305.800 

(1.218) 

For each setting, the significant higher mean S value at 5% significance level is shown in bolded 
fonts. If the asymmetric BH method has a significant higher mean S compared to the traditional 
BH method, then the mean S is underlined. The ’s represent the proportion of DE genes that 
are upregulated and downregulated. 0.5, 0.5 , 0.7, 0.3 , 0.8, 0.2 , 
0.9, 0.1  and 0.95, 0.05 . 
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Table 10. The mean S for proposed FDR methods using NBPSeq with associated standard 
errors in parentheses for each simulation setting (continued).  

 NBPSeq 

Mean S 

n m0 DE  Traditional 

BH 

Asymmetric 

BH 

Traditional 

QV 

Asymmetric 

QV 

12 9500 500  304.070 

(1.231) 

309.150 

(1.324) 

304.100 

(1.233) 

308.530 

(1.301) 

 297.830 

(1.204) 

309.340 

(1.155) 

297.910 

(1.207) 

308.070 

(1.145) 

 299.710 

(1.325) 

314.280 

(1.355) 

299.780 

(1.325) 

312.430 

(1.361) 

For each setting, the significant higher mean S value at 5% significance level is shown in bolded 
fonts. If the asymmetric BH method has a significant higher mean S compared to the traditional 
BH method, then the mean S is underlined. The ’s represent the proportion of DE genes that 
are upregulated and downregulated. 0.5, 0.5 , 0.7, 0.3 , 0.8, 0.2 , 
0.9, 0.1  and 0.95, 0.05 . 

Table 11. The mean V/R for proposed FDR methods using NBPSeq with associated standard 
errors in parentheses for each simulation setting.  

 NBPSeq 

Mean V/R 

n m0 DE  Traditional 

BH 

Asymmetric 

BH 

Traditional 

QV 

Asymmetric 

QV 

4 5000 5000  0.030 (<0.001) 0.030 (<0.001) 0.041 (<0.001) 0.041 (<0.001) 

The ’s represent the proportion of DE genes that are upregulated and downregulated. 
0.5, 0.5 , 0.7, 0.3 , 0.8, 0.2 , 0.9, 0.1  and 0.95, 0.05 . 
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Table 11. The mean V/R for proposed FDR methods using NBPSeq with associated standard 
errors in parentheses for each simulation setting (continued).  

 NBPSeq 

Mean V/R 

n m0 DE  Traditional 

BH 

Asymmetric 

BH 

Traditional 

QV 

Asymmetric 

QV 

4 5000 5000  0.044 (0.001) 0.038 (0.001) 0.061 (0.001) 0.054 (0.001) 

 0.066 (0.001) 0.049 (0.001) 0.091 (0.001) 0.071 (0.001) 

 0.102 (0.001) 0.060 (0.001) 0.141 (0.001) 0.090 (0.001) 

 0.132 (0.001) 0.060 (0.001) 0.181 (0.001) 0.094 (0.001) 

7000 3000  0.048 (0.001) 0.048 (0.001) 0.055 (0.001) 0.055 (0.001) 

 0.056 (0.001) 0.049 (0.001) 0.063 (0.001) 0.056 (0.001) 

 0.063 (0.001) 0.046 (0.001) 0..073 (0.001) 0.053 (0.001) 

 0.078 (0.001) 0.041 (0.001) 0.091 (0.001) 0.049 (0.001) 

 0.086 (0.001) 0.033 (0.001) 0.102 (0.001) 0.040 (0.001) 

9000 1000  0.098 (0.002) 0.098 (0.002) 0.099 (0.002) 0.099 (0.002) 

 0.099 (0.002) 0.092 (0.002) 0.100 (0.002) 0.092 (0.092) 

 0.101 (0.002) 0.088 (0.002) 0.102 (0.002) 0.088 (0.002) 

 0.105 (0.002) 0.079 (0.002) 0.105 (0.002) 0.079 (0.002) 

 0.107 (0.002) 0.074 (0.002) 0.108 (0.002) 0.074 (0.002) 

The ’s represent the proportion of DE genes that are upregulated and downregulated. 
0.5, 0.5 , 0.7, 0.3 , 0.8, 0.2 , 0.9, 0.1  and 0.95, 0.05 . 
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Table 11. The mean V/R for proposed FDR methods using NBPSeq with associated standard 
errors in parentheses for each simulation setting (continued).  

 NBPSeq 

Mean V/R 

n m0 DE  Traditional 

BH 

Asymmetric 

BH 

Traditional 

QV 

Asymmetric 

QV 

4 9500 500  0.155 (0.003) 0.157 (0.003) 0.155 (0.003) 0.157 (0.003) 

 0.146 (0.003) 0.140 (0.003) 0.146 (0.003) 0.141 (0.003) 

 0.147 (0.003) 0.132 (0.003) 0.147 (0.003) 0.132 (0.003) 

 0.147 (0.003) 0.122 (0.003) 0.147 (0.003) 0.122 (0.003) 

 0.152 (0.003) 0.115 (0.003) 0.152 (0.003) 0.114 (0.003) 

6 

 

5000 5000  0.030 (<0.001) 0.030 (<0.001) 0.043 (<0.001) 0.043 (<0.001) 

 0.050 (<0.001) 0.041 (<0.001) 0.074 (0.001) 0.064 (0.001) 

 0.082 (0.001) 0.059 (0.001) 0.125 (0.001) 0.099 (0.001) 

 0.136 (0.001) 0.080 (0.001) 0.205 (0.001) 0.146 (0.001) 

 0.175 (0.001) 0.087 (0.001) 0.256 (0.001) 0.173 (0.002) 

7000 3000  0.046 (0.001) 0.046 (0.001) 0.053 (0.001) 0.054 (0.001) 

 0.055 (0.001) 0.046 (0.001) 0.065 (0.001) 0.055 (0.001) 

 0.066 (0.001) 0.045 (0.001) 0.080 (0.001) 0.057 (0.001) 

 0.087 (0.001) 0.041 (0.001) 0.107 (0.001) 0.055 (0.001) 

 0.100 (0.001) 0.034 (0.001) 0.125 (0.001) 0.048 (0.001) 

The ’s represent the proportion of DE genes that are upregulated and downregulated. 
0.5, 0.5 , 0.7, 0.3 , 0.8, 0.2 , 0.9, 0.1  and 0.95, 0.05 . 
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Table 11. The mean V/R for proposed FDR methods using NBPSeq with associated standard 
errors in parentheses for each simulation setting (continued).  

 NBPSeq 

Mean V/R 

n m0 DE  Traditional 

BH 

Asymmetric 

BH 

Traditional 

QV 

Asymmetric 

QV 

6 9000 1000  0.088 (0.001) 0.089 (0.001) 0.089 (0.001) 0.089 (0.001) 

 0.085 (0.001) 0.080 (0.001) 0.086 (0.001) 0.080 (0.001) 

 0.090 (0.001) 0.077 (0.001) 0.091 (0.001) 0.077 (0.001) 

 0.091 (0.001) 0.066 (0.001) 0.092 (0.001) 0.066 (0.001) 

 0.092 (0.001) 0.061 (0.001) 0.093 (0.001) 0.061 (0.001) 

9500 500  0.120 (0.002) 0.121 (0.002) 0.120 (0.002) 0.121 (0.002) 

 0.124 (0.002) 0.117 (0.002) 0.124 (0.002) 0.118 (0.002) 

 0.121 (0.002) 0.114 (0.002) 0.121 (0.002) 0.114 (0.002) 

 0.127 (0.002) 0.104 (0.002) 0.127 (0.002) 0.103 (0.002) 

 0.125 (0.002) 0.097 (0.002) 0.125 (0.002) 0.097 (0.002) 

10 

 

5000 5000  0.028 (<0.001) 0.028 (<0.001) 0.044 (<0.001) 0.044 (<0.001) 

 0.062 (<0.001) 0.049 (<0.001) 0.103 (0.001) 0.090 (0.001) 

 0.114 (0.001) 0.080 (0.001) 0.192 (0.001) 0.164 (0.001) 

 0.201 (0.001) 0.133 (0.001) 0.318 (0.001) 0.290 (0.001) 

 0.258 (0.001) 0.170 (0.001) 0.382 (0.001) 0.361 (0.001) 

The ’s represent the proportion of DE genes that are upregulated and downregulated. 
0.5, 0.5 , 0.7, 0.3 , 0.8, 0.2 , 0.9, 0.1  and 0.95, 0.05 . 



 

109 

Table 11. The mean V/R for proposed FDR methods using NBPSeq with associated standard 
errors in parentheses for each simulation setting (continued).  

 NBPSeq 

Mean V/R 

n m0 DE  Traditional 

BH 

Asymmetric 

BH 

Traditional 

QV 

Asymmetric 

QV 

10 7000 3000  0.044 (<0.001) 0.044 (<0.001) 0.053 (<0.001) 0.052 (<0.001) 

 0.057 (0.001) 0.046 (0.001) 0.071 (0.001) 0.059 (0.001) 

 0.077 (0.001) 0.048 (<0.001) 0.101 (0.001) 0.069 (0.001) 

 0.108 (0.001) 0.048 (0.001) 0.148 (0.001) 0.077 (0.001) 

 0.131 (0.001) 0.043 (0.001) 0.184 (0.001) 0.078 (0.001) 

9000 1000  0.074 (0.001) 0.074 (0.001) 0.075 (0.001) 0.075 (0.001) 

 0.078 (0.001) 0.073 (0.001) 0.079 (0.001) 0.074 (0.001) 

 0.081 (0.001) 0.068 (0.001) 0.082 (0.001) 0.068 (0.001) 

 0.086 (0.001) 0.061 (0.001) 0.087 (0.001) 0.061 (0.001) 

 0.089 (0.001) 0.055 (0.001) 0.092 (0.001) 0.055 (0.001) 

9500 500  0.107 (0.002) 0.108 (0.002) 0.107 (0.002) 0.108 (0.002) 

 0.104 (0.002) 0.098 (0.002) 0.104 (0.002) 0.098 (0.002) 

 0.107 (0.002) 0.097 (0.002) 0.107 (0.002) 0.097 (0.002) 

 0.111 (0.002) 0.090 (0.002) 0.111 (0.002) 0.089 (0.002) 

 0.104 (0.001) 0.080 (0.001) 0.104 (0.001) 0.078 (0.001) 

The ’s represent the proportion of DE genes that are upregulated and downregulated. 
0.5, 0.5 , 0.7, 0.3 , 0.8, 0.2 , 0.9, 0.1  and 0.95, 0.05 . 
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Table 11. The mean V/R for proposed FDR methods using NBPSeq with associated standard 
errors in parentheses for each simulation setting (continued).  

 NBPSeq 

Mean V/R 

n m0 DE  Traditional 

BH 

Asymmetric 

BH 

Traditional 

QV 

Asymmetric 

QV 

12 

 

5000 5000  0.028 (<0.001) 0.028 (<0.001) 0.044 (<0.001) 0.044 (<0.001) 

 0.069 (<0.001) 0.054 (<0.001) 0.117 (0.001) 0.103 (0.001) 

 0.133 (0.001) 0.095 (0.001) 0.229 (0.001) 0.206 (0.001) 

 0.232 (0.001) 0.165 (0.001) 0.363 (0.001) 0.353 (0.001) 

 0.296 (0.001) 0.219 (0.001) 0.423 (0.001) 0.421 (0.001) 

7000 3000  0.044 (0.001) 0.044 (0.001) 0.053 (0.001) 0.053 (<0.001) 

  0.059 (<0.001) 0.047 (<0.001) 0.075 (0.001) 0.062 (0.001) 

 0.085 (0.001) 0.052 (0.001) 0.113 (0.001) 0.078 (0.001) 

 0.122 (0.001) 0.054 (0.001) 0.174 (0.001) 0.096 (0.001) 

 0.148 (0.001) 0.049 (0.001) 0.215 (0.001) 0.103 (0.001) 

9000 1000  0.074 (0.001) 0.074 (0.001) 0.075 (0.001) 0.075 (0.001) 

 0.076 (0.001) 0.070 (0.001) 0.077 (0.001) 0.071 (0.001) 

 0.081 (0.001) 0.067 (0.001) 0.083 (0.001) 0.068 (0.001) 

 0.086 (0.001) 0.060 (0.001) 0.088 (0.001) 0.060 (0.001) 

 0.086 (0.001) 0.050 (0.001) 0.089 (0.001) 0.050 (0.001) 

The ’s represent the proportion of DE genes that are upregulated and downregulated. 
0.5, 0.5 , 0.7, 0.3 , 0.8, 0.2 , 0.9, 0.1  and 0.95, 0.05 . 
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Table 11. The mean V/R for proposed FDR methods using NBPSeq with associated standard 
errors in parentheses for each simulation setting (continued).  

 NBPSeq 

Mean V/R 

n m0 DE  Traditional 

BH 

Asymmetric 

BH 

Traditional 

QV 

Asymmetric 

QV 

12 9500 500  0.104 (0.002) 0.104 (0.002) 0.104 (0.002) 0.104 (0.002) 

 0.102 (0.002) 0.097 (0.002) 0.102 (0.002) 0.097 (0.002) 

 0.105 (0.001) 0.093 (0.001) 0.105 (0.002) 0.093 (0.001) 

 0.105 (0.002) 0.087 (0.002) 0.105 (0.002) 0.086 (0.002) 

 0.108 (0.002) 0.082 (0.001) 0.108 (0.002) 0.080 (0.001) 

The ’s represent the proportion of DE genes that are upregulated and downregulated. 
0.5, 0.5 , 0.7, 0.3 , 0.8, 0.2 , 0.9, 0.1  and 0.95, 0.05 . 

As seen in Table 12 (edgeR method), the traditional BH method did not outperform the 

asymmetric BH, traditional q-value or asymmetric q-value methods in any of the simulation 

settings in terms of mean S. The asymmetric BH method performed better than the traditional 

BH method in 64 of the 80 simulation settings with regard to mean S (16 of 20 settings with n = 

4, 6, 10, and 12). The traditional q-value method performed better than the traditional BH 

method in 72 of 80 settings in terms of mean S (15 of 20 settings with n = 4, 17 of 20 settings 

with n = 6, and 20 of 20 settings with n = 10 and 12). Also, the asymmetric q-value method 

performed better than the traditional BH method in 76 of the 80 simulations settings with regard 

to mean S (19 of 20 settings with n = 4, 6, 10, and 12). Furthermore, the traditional q-value 

method performed better than the asymmetric BH method in 41 of 80 settings in terms of mean S 

(14 of 20 settings with n = 4, 9 of 20 settings with n = 6, 10 and 12). The asymmetric q-value 
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method was never outperformed by the asymmetric BH method in 77 of 80 simulation settings in 

terms of mean S. Comparing the performance of the traditional q-value method to the 

asymmetric q-value method, the asymmetric q-value method performed better than the 

traditional q-value method in 68 of the 80 settings in terms of the mean S (16 of 20 settings with 

n = 4, 6, and 10, and 17 of 20 settings with n = 12). 

Although a higher value of mean S was observed in most traditional BH method 

compared to the asymmetric BH method, in the 9 of 80 settings (n = 4 m0 = {7000, 9000} and 1

, n = 6 and 1 , n =10 m0 = {5000, 9500} and 1 , and n =12, m0 = 7000 and 1 ); these differences were 

not significant. Also, higher values of mean S were observed in the asymmetric BH method 

compared to the traditional BH method, there were no significant differences between these two 

methods in 4 of 80 settings (n = 10 m0 = 700 and 1 , and n = 12 m0 = {5000, 9000, 9500} and 

1 ). On the other hand, there was no significant difference in mean S at 5% between all methods 

with n = 4, m0 = 9500 and 1 . 

As shown in Table 13, the observed FDR (mean V/R) was comparable among all the 

methods, with levels elevated above 5%. Apart from simulation settings with 1 , the asymmetric 

BH and asymmetric q-value methods better controlled the observed FDR than the traditional BH 

and traditional q-value methods. In most settings, the traditional BH method compared to the 

asymmetric BH method, the asymmetric BH method better controlled the observed FDR close to 

or slightly higher than 5%. 
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Table 12. The mean S for proposed FDR methods using edgeR with associated standard errors 
in parentheses for each simulation setting.  

 edgeR 

Mean S 

n m0 DE  Traditional 

BH 

Asymmetric 

BH 

Traditional 

QV 

Asymmetric 

QV 

4 

 

5000 5000  2100.580 

(4.658) 

2099.920 

(4.692) 

2358.420 

(5.437) 

2358.140 

(5.438) 

 1879.470 

(4.938)  

1909.010 

(5.292) 

2153.490 

(5.842) 

2179.340 

(5.815) 

 1620.000 

(4.759) 

1685.270 

(4.712) 

1909.510 

(5.601) 

1971.170 

(5.882) 

 1249.390 

(4.336) 

1362.290 

(4.190) 

1542.760 

(5.571) 

1651.560 

(5.413) 

 1042.500 

(4.421) 

1191.840 

(5.029) 

1342.330 

(5.959) 

1488.370 

(6.197) 

7000 3000  1095.360 

(3.243) 

1094.530 

(3.287) 

1154.360 

(3.604) 

1154.180 

(3.664) 

For each setting, the significant higher mean S value at 5% significance level is shown in bolded 
fonts. If the traditional QV method has a significant higher mean S compared to the asymmetric 
BH method, then the mean S is underlined. If the asymmetric QV method has a significant higher 
mean S compared to the asymmetric BH method, then the mean S is italicized. Also, if the 
asymmetric QV method has a significant higher mean S compared to the traditional QV method, 
then the mean S is underlined. The ’s represent the proportion of DE genes that are upregulated 
and downregulated. 0.5, 0.5 , 0.7, 0.3 , 0.8, 0.2 , 0.9, 0.1  and 

0.95, 0.05 . 
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Table 12. The mean S for proposed FDR methods using edgeR with associated standard errors 
in parentheses for each simulation setting (continued).  

 edgeR 

Mean S 

n m0 DE  Traditional 

BH 

Asymmetric 

BH 

Traditional 

QV 

Asymmetric 

QV 

4 7000 3000  1046.320 

(3.856) 

1069.200 

(3.917) 

1112.200 

(4.110) 

1131.210 

(4.103) 

 969.970 

(3.871) 

1019.400 

(3.950) 

1036.710 

(4.193) 

1083.080 

(3.891) 

 853.090 

(3.503) 

953.580 

(3.600) 

924.490 

(3.957) 

1016.600 

(3.910) 

 777.220 

(3.439) 

907.650 

(3.817) 

849.250 

(3.927) 

969.100 

(3.964) 

9000 1000  272.130 

(1.897) 

272.130 

(1.904) 

272.920 

(1.925) 

273.300 

(1.904) 

 267.940 

(2.009) 

274.450 

(1.948) 

268.620 

(2.024) 

274.720 

(1.980) 

For each setting, the significant higher mean S value at 5% significance level is shown in bolded 
fonts. If the traditional QV method has a significant higher mean S compared to the asymmetric 
BH method, then the mean S is underlined. If the asymmetric QV method has a significant higher 
mean S compared to the asymmetric BH method, then the mean S is italicized. Also, if the 
asymmetric QV method has a significant higher mean S compared to the traditional QV method, 
then the mean S is underlined. The ’s represent the proportion of DE genes that are upregulated 
and downregulated. 0.5, 0.5 , 0.7, 0.3 , 0.8, 0.2 , 0.9, 0.1  and 

0.95, 0.05 . 
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Table 12. The mean S for proposed FDR methods using edgeR with associated standard errors 
in parentheses for each simulation setting (continued).  

 edgeR 

Mean S 

n m0 DE  Traditional 

BH 

Asymmetric 

BH 

Traditional 

QV 

Asymmetric 

QV 

4 9000 1000  259.520 

(1.610) 

275.960 

(1.610) 

260.330 

(1.634) 

275.850 

(1.642) 

 252.260 

(1.861) 

283.780 

(1.968) 

253.180 

(1.888) 

283.100 

(2.001) 

 251.470 

(1.858) 

292.820 

(1.857) 

252.440 

(1.888) 

291.810 

(1.884) 

9500 500  110.680 

(1.172) 

110.990 

(1.186) 

110.730 

(1.176) 

110.850 

(1.171) 

 114.320 

(1.190) 

117.350 

(1.254) 

114.360 

(1.193) 

117.240 

(1.248) 

 113.970 

(1.207) 

121.390 

(1.221) 

113.980 

(1.206) 

121.200 

(1.23) 

For each setting, the significant higher mean S value at 5% significance level is shown in bolded 
fonts. If the traditional QV method has a significant higher mean S compared to the asymmetric 
BH method, then the mean S is underlined. If the asymmetric QV method has a significant higher 
mean S compared to the asymmetric BH method, then the mean S is italicized. Also, if the 
asymmetric QV method has a significant higher mean S compared to the traditional QV method, 
then the mean S is underlined. The ’s represent the proportion of DE genes that are upregulated 
and downregulated. 0.5, 0.5 , 0.7, 0.3 , 0.8, 0.2 , 0.9, 0.1  and 

0.95, 0.05 . 
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Table 12. The mean S for proposed FDR methods using edgeR with associated standard errors 
in parentheses for each simulation setting (continued).  

 edgeR 

Mean S 

n m0 DE  Traditional 

BH 

Asymmetric 

BH 

Traditional 

QV 

Asymmetric 

QV 

4 9500 500  110.440 

(1.383) 

124.000 

(1.396) 

110.470 

(1.383) 

123.590 

(1.396) 

 109.300 

(1.378) 

127.520 

(1.416) 

109.340 

(1.375) 

127.000 

(1.404) 

6 

 

5000 5000  2833.860 

(4.548) 

2833.360 

(4.565) 

3072.530 

(4.835) 

3072.470 

(4.835) 

 2595.670 

(4.276) 

2633.940 

(4.380) 

2883.080 

(5.307) 

2910.790 

(5.287) 

 2291.410 

(3.813) 

2370.960 

(4.014) 

2641.800 

(4.380) 

2697.600 

(4.592) 

 1887.380 

(4.767) 

2014.910 

(5.109) 

2299.340 

(5.945) 

2395.980 

(5.734) 

For each setting, the significant higher mean S value at 5% significance level is shown in bolded 
fonts. If the traditional QV method has a significant higher mean S compared to the asymmetric 
BH method, then the mean S is underlined. If the asymmetric QV method has a significant higher 
mean S compared to the asymmetric BH method, then the mean S is italicized. Also, if the 
asymmetric QV method has a significant higher mean S compared to the traditional QV method, 
then the mean S is underlined. The ’s represent the proportion of DE genes that are upregulated 
and downregulated. 0.5, 0.5 , 0.7, 0.3 , 0.8, 0.2 , 0.9, 0.1  and 

0.95, 0.05 . 
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Table 12. The mean S for proposed FDR methods using edgeR with associated standard errors 
in parentheses for each simulation setting (continued).  

 edgeR 

Mean S 

n m0 DE  Traditional 

BH 

Asymmetric 

BH 

Traditional 

QV 

Asymmetric 

QV 

6 5000 5000  1655.300 

(4.433) 

1813.270 

(4.592) 

2109.320 

(5.908) 

2220.380 

(5.689) 

7000 3000  1559.790 

(3.380) 

1559.720 

(3.432) 

1621.810 

(3.427) 

1621.480 

(3.442) 

 1496.170 

(3.596) 

1518.850 

(3.426) 

1566.060 

(3.801) 

1583.690 

(2.941) 

 1398.440 

(3.261) 

1456.750 

(3.262) 

1480.940 

(3.241) 

1527.280 

(3.649) 

 1274.760 

(3.250) 

1377.080 

(3.183) 

1367.020 

(3.404) 

1450.690 

(3.311) 

 1198.010 

(3.382) 

1333.240 

(3.264) 

1296.030 

(3.627) 

1408.980 

(3.482) 

For each setting, the significant higher mean S value at 5% significance level is shown in bolded 
fonts. If the traditional QV method has a significant higher mean S compared to the asymmetric 
BH method, then the mean S is underlined. If the asymmetric QV method has a significant higher 
mean S compared to the asymmetric BH method, then the mean S is italicized. Also, if the 
asymmetric QV method has a significant higher mean S compared to the traditional QV method, 
then the mean S is underlined. The ’s represent the proportion of DE genes that are upregulated 
and downregulated. 0.5, 0.5 , 0.7, 0.3 , 0.8, 0.2 , 0.9, 0.1  and 

0.95, 0.05 . 
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Table 12. The mean S for proposed FDR methods using edgeR with associated standard errors 
in parentheses for each simulation setting (continued).  

 edgeR 

Mean S 

n m0 DE  Traditional 

BH 

Asymmetric 

BH 

Traditional 

QV 

Asymmetric 

QV 

6 9000 1000  427.430 

(2.029) 

427.200 

(2.027) 

428.660 

(2.040) 

428.270 

(2.046) 

 423.990 

(1.975) 

430.410 

(1.940) 

425.520 

(1.996) 

431.520 

(1.966) 

 413.320 

(1.814) 

429.890 

(1.913) 

414.720 

(1.821) 

430.300 

(1.950) 

 407.440 

(1.909) 

437.120 

(1.952) 

409.220 

(1.907) 

436.200 

(1.960) 

 402.360 

(1.853) 

442.150 

(1.914) 

404.400 

(1.899) 

441.170 

(1.930) 

9500 500  190.350 

(1.526) 

190.210 

(1.543) 

190.400 

(1.521) 

190.370 

(1.533) 

For each setting, the significant higher mean S value at 5% significance level is shown in bolded 
fonts. If the traditional QV method has a significant higher mean S compared to the asymmetric 
BH method, then the mean S is underlined. If the asymmetric QV method has a significant higher 
mean S compared to the asymmetric BH method, then the mean S is italicized. Also, if the 
asymmetric QV method has a significant higher mean S compared to the traditional QV method, 
then the mean S is underlined. The ’s represent the proportion of DE genes that are upregulated 
and downregulated. 0.5, 0.5 , 0.7, 0.3 , 0.8, 0.2 , 0.9, 0.1  and 

0.95, 0.05 . 
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Table 12. The mean S for proposed FDR methods using edgeR with associated standard errors 
in parentheses for each simulation setting (continued).  

 edgeR 

Mean S 

n m0 DE  Traditional 

BH 

Asymmetric 

BH 

Traditional 

QV 

Asymmetric 

QV 

6 9500 500  189.170 

(1.350) 

192.080 

(1.338) 

189.170 

(1.350) 

192.060 

(1.340) 

 184.740 

(1.364) 

192.190 

(1.323) 

184.770 

(1.366) 

191.740 

(1.315) 

 185.200 

(1.252) 

198.790 

(1.212) 

185.260 

(1.255) 

198.430 

(1.210) 

 184.990 

(1.201) 

203.250 

(1.271) 

185.050 

(1.201) 

202.100 

(1.284) 

10 

 

5000 5000  3541.010 

(4.031) 

3540.830 

(4.009) 

3732.970 

(3.754) 

3732.940 

(3.764) 

 3292.040 

(3.948) 

3336.910 

(3.985) 

3575.120 

(4.396) 

3598.460 

(4.525) 

For each setting, the significant higher mean S value at 5% significance level is shown in bolded 
fonts. If the traditional QV method has a significant higher mean S compared to the asymmetric 
BH method, then the mean S is underlined. If the asymmetric QV method has a significant higher 
mean S compared to the asymmetric BH method, then the mean S is italicized. Also, if the 
asymmetric QV method has a significant higher mean S compared to the traditional QV method, 
then the mean S is underlined. The ’s represent the proportion of DE genes that are upregulated 
and downregulated. 0.5, 0.5 , 0.7, 0.3 , 0.8, 0.2 , 0.9, 0.1  and 

0.95, 0.05 . 
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Table 12. The mean S for proposed FDR methods using edgeR with associated standard errors 
in parentheses for each simulation setting (continued).  

 edgeR 

Mean S 

n m0 DE  Traditional 

BH 

Asymmetric 

BH 

Traditional 

QV 

Asymmetric 

QV 

10 5000 5000  3000.480 

(3.497) 

3082.070 

(3.724) 

3392.540 

(4.501) 

3432.650 

(4.630) 

 2622.760 

(3.209) 

2740.02 

(3.28) 

3178.550 

(4.934) 

3217.380 

(4.705) 

 2400.130 

(3.487) 

2523.180 

(3.574) 

3045.570 

(5.067) 

3080.840 

(4.817) 

7000 3000  2016.610 

(2.865) 

2016.730 

(2.853) 

2070.450 

(2.950) 

2070.210 

(2.931) 

 1950.220 

(3.381) 

1973.910 

(3.395) 

2016.210 

(3.475) 

2031.980 

(3.383) 

 1862.010 

(2.750) 

1917.520 

(2.799) 

1944.790 

(2.943) 

1980.600 

(2.980) 

For each setting, the significant higher mean S value at 5% significance level is shown in bolded 
fonts. If the traditional QV method has a significant higher mean S compared to the asymmetric 
BH method, then the mean S is underlined. If the asymmetric QV method has a significant higher 
mean S compared to the asymmetric BH method, then the mean S is italicized. Also, if the 
asymmetric QV method has a significant higher mean S compared to the traditional QV method, 
then the mean S is underlined. The ’s represent the proportion of DE genes that are upregulated 
and downregulated. 0.5, 0.5 , 0.7, 0.3 , 0.8, 0.2 , 0.9, 0.1  and 

0.95, 0.05 . 
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Table 12. The mean S for proposed FDR methods using edgeR with associated standard errors 
in parentheses for each simulation setting (continued).  

 edgeR 

Mean S 

n m0 DE  Traditional 

BH 

Asymmetric 

BH 

Traditional 

QV 

Asymmetric 

QV 

10 5000 5000  3000.480 

(3.497) 

3082.070 

(3.724) 

3392.540 

(4.501) 

3432.650 

(4.630) 

 2622.760 

(3.209) 

2740.02 

(3.28) 

3178.550 

(4.934) 

3217.380 

(4.705) 

 2400.130 

(3.487) 

2523.180 

(3.574) 

3045.570 

(5.067) 

3080.840 

(4.817) 

7000 3000  2016.610 

(2.865) 

2016.730 

(2.853) 

2070.450 

(2.950) 

2070.210 

(2.931) 

 1950.220 

(3.381) 

1973.910 

(3.395) 

2016.210 

(3.475) 

2031.980 

(3.383) 

 1862.010 

(2.750) 

1917.520 

(2.799) 

1944.790 

(2.943) 

1980.600 

(2.980) 

For each setting, the significant higher mean S value at 5% significance level is shown in bolded 
fonts. If the traditional QV method has a significant higher mean S compared to the asymmetric 
BH method, then the mean S is underlined. If the asymmetric QV method has a significant higher 
mean S compared to the asymmetric BH method, then the mean S is italicized. Also, if the 
asymmetric QV method has a significant higher mean S compared to the traditional QV method, 
then the mean S is underlined. The ’s represent the proportion of DE genes that are upregulated 
and downregulated. 0.5, 0.5 , 0.7, 0.3 , 0.8, 0.2 , 0.9, 0.1  and 

0.95, 0.05 . 
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Table 12. The mean S for proposed FDR methods using edgeR with associated standard errors 
in parentheses for each simulation setting (continued).  

 edgeR 

Mean S 

n m0 DE  Traditional 

BH 

Asymmetric 

BH 

Traditional 

QV 

Asymmetric 

QV 

10 7000 3000  1740.210 

(2.734) 

1835.260 

(2.929) 

1849.880 

(3.019) 

1909.720 

(2.988) 

 1662.770 

(3.226) 

1784.100 

(3.212) 

1788.810 

(3.395) 

1867.550 

(3.348) 

9000 1000  601.180 

(1.915) 

601.180 

(1.923) 

603.200 

(1.916) 

603.090 

(1.941) 

 593.500 

(1.860) 

598.110 

(1.825) 

595.690 

(1.880) 

599.360 

(1.866) 

 589.650 

(1.711) 

603.220 

(1.590) 

592.290 

(1.732) 

603.830 

(1.647) 

 576.600 

(1.908) 

600.760 

(1.835) 

579.590 

(1.939) 

599.890 

(1.894) 

For each setting, the significant higher mean S value at 5% significance level is shown in bolded 
fonts. If the traditional QV method has a significant higher mean S compared to the asymmetric 
BH method, then the mean S is underlined. If the asymmetric QV method has a significant higher 
mean S compared to the asymmetric BH method, then the mean S is italicized. Also, if the 
asymmetric QV method has a significant higher mean S compared to the traditional QV method, 
then the mean S is underlined. The ’s represent the proportion of DE genes that are upregulated 
and downregulated. 0.5, 0.5 , 0.7, 0.3 , 0.8, 0.2 , 0.9, 0.1  and 

0.95, 0.05 . 
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Table 12. The mean S for proposed FDR methods using edgeR with associated standard errors 
in parentheses for each simulation setting (continued).  

 edgeR 

Mean S 

n m0 DE  Traditional 

BH 

Asymmetric 

BH 

Traditional 

QV 

Asymmetric 

QV 

10 9000 1000  569.330 

(1.717) 

602.860 

(1.651) 

572.940 

(1.739) 

601.860 

(1.654) 

9500 500  278.460 

(1.157) 

278.400 

(1.154) 

278.500 

(1.158) 

278.560 

(1.162) 

 278.040 

(1.233) 

281.150 

(1.267) 

278.260 

(1.211) 

281.160 

(1.256) 

 275.600 

(1.174) 

281.110 

(1.173) 

275.720 

(1.174) 

280.730 

(1.164) 

 273.110 

(1.245) 

284.570 

(1.181) 

273.250 

(1.242) 

283.780 

(1.165) 

 272.200 

(1.148) 

287.730 

(1.157) 

272.310 

(1.149) 

287.630 

(1.177) 

For each setting, the significant higher mean S value at 5% significance level is shown in bolded 
fonts. If the traditional QV method has a significant higher mean S compared to the asymmetric 
BH method, then the mean S is underlined. If the asymmetric QV method has a significant higher 
mean S compared to the asymmetric BH method, then the mean S is italicized. Also, if the 
asymmetric QV method has a significant higher mean S compared to the traditional QV method, 
then the mean S is underlined. The ’s represent the proportion of DE genes that are upregulated 
and downregulated. 0.5, 0.5 , 0.7, 0.3 , 0.8, 0.2 , 0.9, 0.1  and 

0.95, 0.05 . 

 



 

124 

Table 12. The mean S for proposed FDR methods using edgeR with associated standard errors 
in parentheses for each simulation setting (continued).  

 edgeR 

Mean S 

n m0 DE  Traditional 

BH 

Asymmetric 

BH 

Traditional 

QV 

Asymmetric 

QV 

12 

 

5000 5000  3735.490 

(3.453) 

3735.550 

(3.477) 

3909.540 

(3.352) 

3909.540 

(3.354) 

 3503.510 

(3.244) 

3546.260 

(3.160) 

3771.940 

(3.224) 

3793.020 

(3.237) 

 3221.560 

(3.088) 

3302.500 

(3.213) 

3628.670 

(4.198) 

3656.110 

(4.184) 

 2850.340 

(3.701) 

2952.850 

(3.695) 

3456.240 

(5.184) 

3474.640 

(4.9212) 

 2649.000 

(3.521) 

2755.540 

(3.493) 

3358.700 

(5.945) 

3367.940 

(5.572) 

7000 3000  2145.130 

(2.580) 

2145.060 

(2.579) 

2193.500 

(2.698) 

2193.690 

(2.688) 

For each setting, the significant higher mean S value at 5% significance level is shown in bolded 
fonts. If the traditional QV method has a significant higher mean S compared to the asymmetric 
BH method, then the mean S is underlined. If the asymmetric QV method has a significant higher 
mean S compared to the asymmetric BH method, then the mean S is italicized. Also, if the 
asymmetric QV method has a significant higher mean S compared to the traditional QV method, 
then the mean S is underlined. The ’s represent the proportion of DE genes that are upregulated 
and downregulated. 0.5, 0.5 , 0.7, 0.3 , 0.8, 0.2 , 0.9, 0.1  and 

0.95, 0.05 . 
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Table 12. The mean S for proposed FDR methods using edgeR with associated standard errors 
in parentheses for each simulation setting (continued).  

 edgeR 

Mean S 

n m0 DE  Traditional 

BH 

Asymmetric 

BH 

Traditional 

QV 

Asymmetric 

QV 

12 7000 3000  2082.840 

(2.553) 

2106.650 

(2.428) 

2144.910 

(2.657) 

2159.300 

(2.595) 

 2006.030 

(2.701) 

2056.890 

(2.522) 

2088.100 

(2.830) 

2118.430 

(2.591) 

 1882.080 

(3.314) 

1973.600 

(2.852) 

1997.450 

(3.155) 

2050.680 

(2.925) 

 1812.500 

(2.934) 

1926.300 

(2.712) 

1948.750 

(2.957) 

2014.390 

(3.115) 

9000 1000  651.320 

(1.513) 

651.380 

(1.507) 

653.720 

(1.463) 

653.540 

(1.472) 

 645.090 

(1.652) 

651.160 

(1.664) 

647.700 

(1.678) 

652.370 

(1.638) 

For each setting, the significant higher mean S value at 5% significance level is shown in bolded 
fonts. If the traditional QV method has a significant higher mean S compared to the asymmetric 
BH method, then the mean S is underlined. If the asymmetric QV method has a significant higher 
mean S compared to the asymmetric BH method, then the mean S is italicized. Also, if the 
asymmetric QV method has a significant higher mean S compared to the traditional QV method, 
then the mean S is underlined. The ’s represent the proportion of DE genes that are upregulated 
and downregulated. 0.5, 0.5 , 0.7, 0.3 , 0.8, 0.2 , 0.9, 0.1  and 

0.95, 0.05 . 
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Table 12. The mean S for proposed FDR methods using edgeR with associated standard errors 
in parentheses for each simulation setting (continued).  

 edgeR 

Mean S 

n m0 DE  Traditional 

BH 

Asymmetric 

BH 

Traditional 

QV 

Asymmetric 

QV 

12 9000 1000  639.270 

(1.768) 

651.110 

(1.723) 

641.860 

(1.763) 

651.640 

(1.743) 

 627.890 

(1.675) 

651.950 

(1.670) 

631.420 

(1.707) 

651.370 

(1.698) 

 619.870 

(1.597) 

651.920 

(1.706) 

624.060 

(1.656) 

650.540 

(1.710) 

9500 500  307.110 

(1.256) 

307.150 

(1.253) 

307.280 

(1.254) 

307.310 

(1.260) 

 305.330 

(1.273) 

307.690 

(1.214) 

305.660 

(1.276) 

307.740 

(1.236) 

 304.630 

(1.203) 

309.670 

(1.214) 

304.700 

(1.208) 

309.350 

(1.207) 

For each setting, the significant higher mean S value at 5% significance level is shown in bolded 
fonts. If the traditional QV method has a significant higher mean S compared to the asymmetric 
BH method, then the mean S is underlined. If the asymmetric QV method has a significant higher 
mean S compared to the asymmetric BH method, then the mean S is italicized. Also, if the 
asymmetric QV method has a significant higher mean S compared to the traditional QV method, 
then the mean S is underlined. The ’s represent the proportion of DE genes that are upregulated 
and downregulated. 0.5, 0.5 , 0.7, 0.3 , 0.8, 0.2 , 0.9, 0.1  and 

0.95, 0.05 . 
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Table 12. The mean S for proposed FDR methods using edgeR with associated standard errors 
in parentheses for each simulation setting (continued).  

 edgeR 

Mean S 

n m0 DE  Traditional 

BH 

Asymmetric 

BH 

Traditional 

QV 

Asymmetric 

QV 

12 9500 500  299.080 

(1.264) 

309.450 

(1.263) 

299.380 

(1.261) 

308.810 

(1.261) 

 301.270 

(1.345) 

315.500 

(1.336) 

301.620 

(1.352) 

315.810 

(1.339) 

For each setting, the significant higher mean S value at 5% significance level is shown in bolded 
fonts. If the traditional QV method has a significant higher mean S compared to the asymmetric 
BH method, then the mean S is underlined. If the asymmetric QV method has a significant higher 
mean S compared to the asymmetric BH method, then the mean S is italicized. Also, if the 
asymmetric QV method has a significant higher mean S compared to the traditional QV method, 
then the mean S is underlined. The ’s represent the proportion of DE genes that are upregulated 
and downregulated. 0.5, 0.5 , 0.7, 0.3 , 0.8, 0.2 , 0.9, 0.1  and 

0.95, 0.05 . 

Table 13. The mean V/R proposed FDR methods using edgeR with associated standard errors in 
parentheses for each simulation setting.  

 edgeR 

Mean V/R 

n m0 DE  Traditional 

BH 

Asymmetric 

BH 

Traditional 

QV 

Asymmetric 

QV 

4 

 

5000 5000  0.029 (<0.001) 0.029 (<0.001) 0.041 (<0.001) 0.041 (<0.001) 

 0.043 (<0.001) 0.037 (<0.001) 0.062 (0.001) 0.055 (0.001) 

The ’s represent the proportion of DE genes that are upregulated and downregulated. 
0.5, 0.5 , 0.7, 0.3 , 0.8, 0.2 , 0.9, 0.1  and 0.95, 0.05 . 
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Table 13. The mean V/R proposed FDR methods using edgeR with associated standard errors in 
parentheses for each simulation setting (continued).  

 edgeR 

Mean V/R 

n m0 DE  Traditional 

BH 

Asymmetric 

BH 

Traditional 

QV 

Asymmetric 

QV 

4 5000 5000  0.065 (0.001) 0.049 (0.001) 0.092 (0.001) 0.071 (0.001) 

 0.102 (0.001) 0.060 (0.001) 0.142 (0.001) 0.090 (0.001) 

 0.133 (0.001) 0.059 (0.001) 0.182 (0.001) 0.094 (0.001) 

7000 3000  0.046 (0.001) 0.047 (0.001) 0.053 (0.001) 0.053 (0.001) 

 0.053 (0.001) 0.046 (0.001) 0.061 (0.001) 0.053 (0.001) 

 0.060 (0.001) 0.042 (0.001) 0.070 (0.001) 0.050 (0.001) 

 0.074 (0.001) 0.038 (0.001) 0.087 (0.001) 0.045 (0.001) 

 0.081 (0.001) 0.029 (0.001) 0.096 (0.001) 0.036 (0.001) 

9000 1000  0.088 (0.002) 0.088 (0.002) 0.088 (0.002) 0.089 (0.002) 

 0.088 (0.002) 0.082 (0.001) 0.089 (0.002) 0.082 (0.001) 

 0.091 (0.002) 0.077 (0.001) 0.091 (0.002) 0.077 (0.001) 

 0.093 (0.002) 0.069 (0.001) 0.094 (0.002) 0.069 (0.001) 

 0.094 (0.002) 0.065 (0.001) 0.095 (0.002) 0.066 (0.001) 

9500 500  0.127 (0.003) 0.127 (0.003) 0.127 (0.003) 0.127 (0.003) 

 0.125 (0.003) 0.121 (0.003) 0.125 (0.003) 0.121 (0.003) 

The ’s represent the proportion of DE genes that are upregulated and downregulated. 
0.5, 0.5 , 0.7, 0.3 , 0.8, 0.2 , 0.9, 0.1  and 0.95, 0.05 . 
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Table 13. The mean V/R proposed FDR methods using edgeR with associated standard errors in 
parentheses for each simulation setting (continued).  

 edgeR 

Mean V/R 

n m0 DE  Traditional 

BH 

Asymmetric 

BH 

Traditional 

QV 

Asymmetric 

QV 

4 9500 500  0.122 (0.003) 0.111 (0.003) 0.122 (0.003) 0.111 (0.003) 

 0.122 (0.003) 0.101 (0.003) 0.122 (0.003) 0.101 (0.003) 

 0.125 (0.003) 0.095 (0.003) 0.125 (0.003) 0.095 (0.003) 

6 

 

5000 5000  0.030 (<0.001) 0.030 (<0.001) 0.044 (<0.001) 0.044 (<0.001) 

 0.051 (<0.001) 0.043 (<0.001) 0.077 (<0.001) 0.068 (0.001) 

 0.085 (0.001) 0.063 (0.001) 0.130 (0.001) 0.104 (0.001) 

 0.142 (0.001) 0.086 (0.001) 0.209 (0.001) 0.153 (0.001) 

 0.182 (0.001) 0.095 (0.001) 0.260 (0.001) 0.181 (0.002) 

7000 3000  0.046 (0.001) 0.046 (0.001) 0.054 (0.001) 0.054 (0.001) 

 0.055 (0.001) 0.046 (0.001) 0.065 (0.001) 0.056 (0.001) 

 0.065 (0.001) 0.044 (0.001) 0.080 (0.001) 0.056 (0.001) 

 0.085 (0.001) 0.040 (0.001) 0.106 (0.001) 0.053 (0.001) 

 0.097 (0.001) 0.033 (0.001) 0.122 (0.001) 0.046 (0.001) 

9000 1000  0.080 (0.001) 0.080 (0.001) 0.081 (0.001) 0.081 (0.001) 

 0.081 (0.001) 0.075 (0.001) 0.082 (0.001) 0.076 (0.001) 

The ’s represent the proportion of DE genes that are upregulated and downregulated. 
0.5, 0.5 , 0.7, 0.3 , 0.8, 0.2 , 0.9, 0.1  and 0.95, 0.05 . 
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Table 13. The mean V/R proposed FDR methods using edgeR with associated standard errors in 
parentheses for each simulation setting (continued).  

 edgeR 

Mean V/R 

n m0 DE  Traditional 

BH 

Asymmetric 

BH 

Traditional 

QV 

Asymmetric 

QV 

6 9000 1000  0.083 (0.001) 0.070 (0.001) 0.084 (0.001) 0.071 (0.001) 

 0.083 (0.001) 0.061 (0.001) 0.085 (0.001) 0.060 (0.001) 

 0.086 (0.001) 0.056 (0.001) 0.087 (0.001) 0.056 (0.001) 

9500 500  0.104 (0.002) 0.103 (0.002) 0.104 (0.002) 0.104 (0.002) 

 0.104 (0.002) 0.101 (0.002) 0.105 (0.002) 0.101 (0.002) 

 0.103 (0.002) 0.097 (0.002) 0.104 (0.002) 0.096 (0.002) 

 0.109 (0.002) 0.089 (0.002) 0.109 (0.002) 0.089 (0.002) 

 0.107 (0.002) 0.082 (0.002) 0.107 (0.002) 0.081 (0.002) 

10 

 

5000 5000  0.029 (<0.001) 0.029 (<0.001) 0.047 (<0.001) 0.047 (<0.001) 

 0.067 (<0.001) 0.053 (<0.001) 0.110 (0.001) 0.097 (0.001) 

 0.120 (0.001) 0.087 (0.001) 0.194 (0.001) 0.167 (0.001) 

  0.209 (0.001) 0.146 (0.001) 0.316 (0.001) 0.288 (0.001) 

 0.264 (0.001) 0.184 (0.001) 0.376 (0.001) 0.354 (0.001) 

7000 3000  0.044 (<0.001) 0.044 (<0.001) 0.054 (0.001) 0.054 (0.001) 

 0.059 (0.001) 0.047 (0.001) 0.074 (0.001) 0.063 (0.001) 

The ’s represent the proportion of DE genes that are upregulated and downregulated. 
0.5, 0.5 , 0.7, 0.3 , 0.8, 0.2 , 0.9, 0.1  and 0.95, 0.05 . 
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Table 13. The mean V/R proposed FDR methods using edgeR with associated standard errors in 
parentheses for each simulation setting (continued).  

 edgeR 

Mean V/R 

n m0 DE  Traditional 

BH 

Asymmetric 

BH 

Traditional 

QV 

Asymmetric 

QV 

10 7000 3000  0.079 (0.001) 0.050 (0.001) 0.102 (0.001) 0.071 (0.001) 

 0.109 (0.001) 0.048 (0.001) 0.146 (0.001) 0.077 (0.001) 

 0.130 (0.001) 0.043 (0.001) 0.177 (0.001) 0.074 (0.001) 

9000 1000  0.069 (0.001) 0.069 (0.001) 0.071 (0.001) 0.071 (0.001) 

 0.072 (0.001) 0.067 (0.001) 0.074 (0.001) 0.069 (0.001) 

 0.075 (0.001) 0.061 (0.001) 0.077 (0.001) 0.062 (0.001) 

 0.080 (0.001) 0.054 (0.001) 0.083 (0.001) 0.055 (0.001) 

 0.083 (0.001) 0.048 (0.001) 0.086 (0.001) 0.049 (0.001) 

9500 500  0.089 (0.002) 0.089 (0.002) 0.089 (0.002) 0.089 (0.002) 

 0.088 (0.002) 0.083 (0.002) 0.089 (0.002) 0.083 (0.002) 

 0.092 (0.002) 0.082 (0.002) 0.092 (0.002) 0.082 (0.002) 

 0.094 (0.002) 0.075 (0.002) 0.094 (0.002) 0.074 (0.002) 

 0.091 (0.002) 0.066 (0.001) 0.091 (0.002) 0.063 (0.001) 

12 

 

5000 5000  0.029 (<0.001) 0.029 (<0.001) 0.047 (<0.001) 0.047 (<0.001) 

 0.074 (<0.001) 0.058 (<0.001) 0.123 (0.001) 0.109 (0.001) 

The ’s represent the proportion of DE genes that are upregulated and downregulated. 
0.5, 0.5 , 0.7, 0.3 , 0.8, 0.2 , 0.9, 0.1  and 0.95, 0.05 . 
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Table 13. The mean V/R proposed FDR methods using edgeR with associated standard errors in 
parentheses for each simulation setting (continued).  

 edgeR 

Mean V/R 

n m0 DE  Traditional 

BH 

Asymmetric 

BH 

Traditional 

QV 

Asymmetric 

QV 

12 5000 5000  0.140 (0.001) 0.103 (0.001) 0.230 (0.001) 0.208 (0.001) 

 0.240 (0.001) 0.179 (0.001) 0.360 (0.001) 0.347 (0.001) 

 0.300 (0.001) 0.232 (0.001) 0.416 (0.001) 0.411 (0.001) 

7000 3000  0.044 (<0.001) 0.044 (<0.001) 0.055 (<0.001) 0.055 (0.001) 

  0.060 (0.001) 0.047 (<0.001) 0.078 (0.001) 0.065 (0.001) 

 0.087 (0.001) 0.054 (0.001) 0.115 (0.001) 0.080 (0.001) 

 0.122 (0.001) 0.055 (0.001) 0.169 (0.001) 0.095 (0.001)  

 0.146 (0.001) 0.049 (0.001) 0.204 (0.001) 0.097 (0.001) 

9000 1000  0.068 (0.001) 0.068 (0.001) 0.070 (0.001) 0.070 (0.001) 

 0.070 (0.001) 0.064 (0.001) 0.072 (0.001) 0.065 (0.001) 

 0.075 (0.001) 0.060 (0.001) 0.077 (0.001) 0.062 (0.001) 

 0.080 (0.001) 0.054 (0.001) 0.083 (0.001) 0.055 (0.001) 

 0.081 (0.001) 0.045 (0.001) 0.085 (0.001) 0.046 (0.001) 

9500 500  0.086 (0.001) 0.086 (0.001) 0.086 (0.002) 0.087 (0.001) 

 0.083 (0.001) 0.078 (0.001) 0.083 (0.001) 0.079 (0.001) 

The ’s represent the proportion of DE genes that are upregulated and downregulated. 
0.5, 0.5 , 0.7, 0.3 , 0.8, 0.2 , 0.9, 0.1  and 0.95, 0.05 . 
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Table 13. The mean V/R proposed FDR methods using edgeR with associated standard errors in 
parentheses for each simulation setting (continued).  

 edgeR 

Mean V/R 

n m0 DE  Traditional 

BH 

Asymmetric 

BH 

Traditional 

QV 

Asymmetric 

QV 

12 9500 500  0.087 (0.002) 0.078 (0.002) 0.087 (0.001) 0.078 (0.002) 

 0.087 (0.002) 0.071 (0.001) 0.088 (0.001) 0.070 (0.001) 

 0.092 (0.002) 0.067 (0.001) 0.092 (0.002) 0.062 (0.001) 

The ’s represent the proportion of DE genes that are upregulated and downregulated. 
0.5, 0.5 , 0.7, 0.3 , 0.8, 0.2 , 0.9, 0.1  and 0.95, 0.05 . 

5.6. Real data analysis  

In this section, RNA-Seq data from a real gene expression experiment described by 

Bottomly et al. (2011) is reanalyzed using the traditional and asymmetric BH methods, and the 

traditional and asymmetric q-value methods for the DESeq2, NBPSeq, and edgeR methods. The 

description of the data was previously discussed in section 3.5. The data consist of two classes 

(B6 and D2); with a total of n = 21 samples, n1 = 10 B6 samples and n2 = 11 D2 samples. The 

data set contains 36,536 genes, the total number of genes m = 13,932 were analyzed after 

filtering to remove genes without any reads.  

The number of genes declared to be DE using all methods for estimating FDR (traditional 

and asymmetric BH and traditional and asymmetric q-value) for DESeq2, NBPSeq, and edgeR 

methods while controlling FDR at 5% are summarized in Figure 5, 6 and 7 respectively below. 

The total number of genes declared to be DE using all FDR methods for DESeq2, NBPSeq and 

edgeR are summarized in Table 14, 15, 16 respectively below.  
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The analysis was performed on a real, not simulated, data set, therefore genes that are EE 

and DE are not known. Thus, evaluating the true FDR associated with each method cannot be 

done. However, because the sample size for each class is relatively large with a small degree of 

asymmetry, the estimation of the FDR is being adequately controlled at 5% based on the results 

of the simulation study in section 5.4. 

Figure 5. Venn diagram of genes declared to be DE for DESeq2 method using all FDR 
methods. 
 

There were 1163 genes that were DDE by all methods. The asymmetric q-value method 

declared 1 more gene to be DE. The asymmetric q-value method declared more genes to be DE. 

This is not surprising based on the results from the simulation studies in section 5.4. 
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Table 14. Total number of genes declared to be differentially expressed using all FDR methods 
for DESeq2 method. 

Method Total number of genes DDE 

Traditional BH 1199 

Asymmetric BH 1199 

Traditional q-value 1202 

Asymmetric q-value 1203 

 

 

Figure 6. Venn diagram of genes declared to be DE for NBPSeq method using all FDR 
methods. 
 

There were 871 genes that were DDE by all methods. An additional 12 genes were DDE 

by the traditional q-value and BH methods. Both the asymmetric BH and q-value methods 

declared 22 more genes to be DE. Asymmetric BH method declared additional 11 genes to be 

DE. Hence, both the asymmetric q-value and BH methods declared the most genes to be DE, this 

is not surprising based on the results from the simulation studies in section 5.4.  
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Table 15. Total number of genes declared to be differentially expressed using all FDR methods 
for NBPSeq method. 

Method Total number of genes DDE 

Traditional q-value 888 

Asymmetric q-value 893 

Traditional BH 888 

Asymmetric BH 909 

 

 

Figure 7. Venn diagram of genes declared to be DE for edgeR method using all FDR methods. 
 

There were 1127 genes that were DDE by all methods. Additional 31 genes were DDE by 

both the traditional BH and q-value methods. Both the asymmetric BH and q-value methods 

declared 15 more genes to be DE. Asymmetric BH method declared additional 3 genes to be DE. 

Hence, both the traditional BH and q-value methods declared the most genes to be DE, this is not 

surprising based on the results from the simulation studies in section 5.4. 
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Table 16 Total number of genes declared to be differentially expressed using all FDR methods 
for the edgeR method. 

Method Total number of genes DDE 

Traditional BH 1165 

Asymmetric BH 1145 

Traditional q-value 1165 

Asymmetric q-value 1149 

 

5.7. Discussion 

The asymmetric BH and q-value methods for estimating FDR, when there exists 

asymmetry in the distribution of the test statistics, has observed advantages over the traditional 

BH and q-value methods. The observed FDRs for DESeq2, NBPSeq, and edgeR were elevated in 

most of these settings where the degree of asymmetry was high (80%, 90%, and 95% of genes 

upregulated). For DESeq2 method, using the asymmetric BH or q-value methods is 

recommended but preferably, the asymmetric q-value method should be used to estimate FDR 

when the degree of asymmetry is high. The asymmetric q-value method should be used to 

estimate FDR for the NBPseq method rather than the traditional q-value method. For the edgeR 

method, using the asymmetric BH and q-value methods is recommended, but preferably, the 

asymmetric BH method should be used when the degree of asymmetry is high. When the 

estimated percentage of EE genes is high and the proportion of genes that are upregulated and 

downregulated are the same, use of the original methods used to estimate FDR are recommended 

for DESeq2, NBPSeq, and edgeR.  

Using real RNA-Seq data, the traditional and asymmetric and q-value methods declared 

more genes to be DE than the other methods at 5% significance level for DESeq2, which is 
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consistent with the simulation results. Asymmetric BH and q-value methods declared more genes 

to be DE than the other methods at 5% significance level for NBPSeq. For edgeR, traditional BH 

and q-value methods declared more genes to be DE than the other methods at 5% significance 

level. 
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CHAPTER 6. CONCLUSION 

The performance of proposed methods I and II that takes into account asymmetry found 

in the distribution of the effect sizes in Chapters 3 and 4 indicates that the observed FDR was 

adequately controlled for larger sample sizes (n = 6, 10, 12) and when the degree of asymmetry 

is high (80%, 90%, and 95% of genes upregulated). In terms of the mean S from the simulation 

studies and the number of genes declared to DE using real gene expression experiment, the 

proposed methods I and II identified and declared more genes to DE compared to the traditional 

method (SAMseq). For smaller sample sizes, the SAMseq method and proposed methods I and II 

are not recommended. Other commonly-used methods such DESeq2, NBPSeq, and edgeR 

methods should be used.  

For any analysis where the distribution of the data is unknown, proposed methods I and II 

should be used over the other methods evaluated in this paper. Preferably, proposed method II 

should be used since it controls the observed FDR better than the other methods compared in this 

research and has higher power than proposed method I. Also, the probability of type 1 error was 

not compared. There is the possibility that proposed methods I and II could have higher 

probability of type 1 error compared to other commonly-used methods; however, this was not 

investigated because FDR is a more appropriate error rate to control in gene expression 

experiments, and FDR was adequately controlled for all sample sizes except sample size of four 

(n = 4) for both proposed methods. 

The performance of all the methods used to estimate FDR (traditional BH method, 

asymmetric BH method, traditional q-value method and asymmetric q-value method) in Chapter 

5 indicates that the observed FDR was not adequately controlled at 5% significance level when 

the degree of asymmetry was high (80%, 90%, and 95% of genes upregulated) in most 
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simulation settings. In simulation settings where the degree of asymmetry was low (50%, and 

70% of genes upregulated), all methods used to estimate the observed FDRs for DESeq2, 

NBPSeq and edgeR were adequately controlled close to 5% significance level. 
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APPENDIX. R CODE 

library(samr) 
library(impute) 
 
 
## Note: parts of the samr functions, modified to implements proposed method 
I and II 
##functions  
##sequencing depth 
seq.depth <- function(x) { 
 iter <- 5 
 cmeans <- colSums(x)/sum(x) 
 for (i in 1:iter) { 
  n0 <- rowSums(x) %*% t(cmeans) 
  prop <- rowSums((x - n0)^2/(n0 + 1e-08)) 
  qs <- quantile(prop, c(0.25, 0.75)) 
  keep <- (prop >= qs[1]) & (prop <= qs[2]) 
  cmeans <- colMeans(x[keep, ]) 
  cmeans <- cmeans/sum(cmeans) 
 } 
 depth <- cmeans/mean(cmeans) 
 return(depth) 
} 
 
 
##ranking within column (function to rank the data within #column) 
rankcol <- function(x) { 
 # ranks the elements within each col of the matrix x 
 # and returns these ranks in a matrix 
 n <- nrow(x) 
 p <- ncol(x) 
 mode(n) <- "integer" 
 mode(p) <- "integer" 
 mode(x) <- "single" 
 if (!is.loaded("rankcol")) { 
  #dyn.load('/home/tibs/PAPERS/jun2/test/rankcol.so') 
 } 
 junk = .Fortran("rankcol", x, n, p, xr = integer(n * p),  
   integer(n), PACKAGE = "samr") 
 xr = matrix(junk$xr, nrow = n, ncol = p) 
 return(xr) 

} 
 
 

##resampling of the data 
resample <- function(x, d, nresamp = 20) { 
 ng <- nrow(x) 
 ns <- ncol(x) 
 dbar <- exp(mean(log(d))) 
 xresamp <- array(0, dim = c(ng, ns, nresamp)) 
 for (k in 1:nresamp) { 
  for (j in 1:ns) { 

xresamp[, j, k] <- rpois(n = ng, lambda = (dbar/d[j]) * x[, 
j]) + runif(ng) * 0.1 

 } 
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} 
for (k in 1:nresamp) { 
 xresamp[, , k] <- t(rankcol(t(xresamp[, , k]))) 
} 
return(xresamp) 
} 

 
 
##test statistic (Wilcoxon two class unpaired) 
##ordered test statistic with its rank 
wilcoxon.unpaired.seq.func <- function(xresamp, y) { 

 tt <- rep(0, dim(xresamp)[1]) 
 for (i in 1:dim(xresamp)[3]) { 

tt <- tt + rowSums(xresamp[, y == 2, i]) - sum(y == 2) * 
(length(y) + 1)/2 

 } 
 tt <- tt/dim(xresamp)[3] 
 or.tt <- sort(tt,decreasing=FALSE) 
 rk.tt <- rank(tt)  
 

return(list(tt = tt, ordered.tt = or.tt, rank.tt = rk.tt )) 
} 

 
 
##permuted test statistics 
insert.value <- function(vec, newval, pos) { 
 if (pos == 1)  
  return(c(newval, vec)) 

lvec <- length(vec) 
if (pos > lvec)  
 return(c(vec, newval)) 
return(c(vec[1:pos - 1], newval, vec[pos:lvec])) 

} 
 
permute <- function(elem) { 
 # generates all perms of the vector elem 
 if (!missing(elem)) { 
  if (length(elem) == 2)  

        return(matrix(c(elem, elem[2], elem[1]), nrow = 2)) 
     last.matrix <- permute(elem[-1]) 
     dim.last <- dim(last.matrix) 
     new.matrix <- matrix(0, nrow = dim.last[1] *    

 (dim.last[2] + 1), ncol = dim.last[2] + 1) 
 
     for (row in 1:(dim.last[1])) { 
         for (col in 1:(dim.last[2] + 1)) new.matrix[row +  
                (col - 1) * dim.last[1], ] <-      

   insert.value(last.matrix[row, ],      
   elem[1], col) 

     } 
     return(new.matrix) 
} 
else cat("Usage: permute(elem)\n\twhere elem is a    

 vector\n") 
} 

 
getperms <- function(y, nperms) { 
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 total.perms = factorial(length(y)) 
 if (total.perms <= nperms) { 
  perms = permute(1:length(y)) 
  all.perms.flag = 1 
  nperms.act = total.perms 
 } 
 if (total.perms > nperms) { 
  perms = matrix(NA, nrow = nperms, ncol =     

  length(y)) 
  for (i in 1:nperms) { 
   perms[i, ] = sample(1:length(y), size =    

  length(y)) 
  } 
  all.perms.flag = 0 
  nperms.act = nperms 
 } 
 return(list(perms = perms, all.perms.flag =     

  all.perms.flag, nperms.act = nperms.act)) 
} 
 
 

##estimate pi0s 
pi <- function(testS.p, testS, m){ 

 qq <- quantile(testS.p, c(0.25, 0.75)) 
 pi0h <- sum(testS$tt > qq[1] & testS$tt < qq[2])/(0.5   

   * length(testS$tt)) 
 
 npos <- sum(testS$tt >= 0) # number of genes with    

      #positive test statistic 
 nneg <- sum(testS$tt < 0) # number of genes with    

      #negative test statistic 
 
 pi0hpos <- (pi0h*m/2)/npos   # estimate of proportion   

  #of EE genes with positive test statistics 
 pi0hneg <- (pi0h*m/2)/nneg   # estimate of proportion   

  #of EE genes with negative test statistics 
 
 return(list(pi0h = pi0h, pi0hpos = pi0hpos, pi0hneg =   

  pi0hneg)) 
 
} 
 
 

##estimate cutup, cutdown, number of significant positive and #negative genes  
cut.updn.nsig <- function(testS, deli, tt.bar) { 

  
 tag <- order(testS$tt) 
 res.mat <- data.frame(tt = testS$tt[tag], evo =    

    tt.bar, dif = testS$tt[tag] - tt.bar) 
 res.up <- res.mat[res.mat$evo > 0, ] 
 res.lo <- res.mat[res.mat$evo < 0, ] 
   
 cutup <- rep(1e+10, length(deli)) 
 cutlow <- rep(-1e+10, length(deli)) 
 nsig.up <- nsig.lo <- rep(0, length(deli)) 
 if (nrow(res.up) > 0) { 
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  res.up <- data.frame(dif = res.up$dif, tt =    
     res.up$tt, num = nrow(res.up):1) 

  ## get the upper part 
  j <- 1 
  ii <- 1 
  while (j <= nrow(res.up) & ii <= length(deli)) { 
   if (res.up$dif[j] > deli[ii]) { 
    cutup[ii] <- res.up$tt[j] 
    nsig.up[ii] <- res.up$num[j] 
    ii <- ii + 1 
   } 
   else { 
    j <- j + 1 
   } 
  } 
 } 
 if (nrow(res.lo) > 0) { 
  res.lo <- data.frame(dif = res.lo$dif, tt =    

     res.lo$tt, num = 1:nrow(res.lo)) 
  ## get the lower part 
  j <- nrow(res.lo) 
  ii <- 1 
  while (j >= 1 & ii <= length(deli)) { 
   if (res.lo$dif[j] < -deli[ii]) { 
    cutlow[ii] <- res.lo$tt[j] 
    nsig.lo[ii] <- res.lo$num[j] 
    ii <- ii + 1 
   } 
   else { 
    j <- j - 1 
   } 
  } 
 } 
 nsig <- nsig.up + nsig.lo 
 return(list(cutup = cutup, cutlow = cutlow, nsig =    

 nsig, nsig.up = nsig.up, nsig.lo = nsig.lo)) 
} 

 
 

##estimate the number of falsely called genes 
nfalse <- function(testS.p, cpdn) { 
 nfc.up <- matrix(NA, ncol = length(cpdn$cutup), nrow =    
 ncol(testS.p)) 

nfc.low <- matrix(NA, ncol = length(cpdn$cutlow), nrow =    
 ncol(testS.p)) 

 
cutup.rank <- rank(cpdn$cutup, ties.method = "min") 
cutlow.rank <- rank(-cpdn$cutlow, ties.method = "min") 
 
for (jj in 1:ncol(testS.p)) { 
   
 keep.up <- keep.dn <- testS.p[, jj] 
   
 nfc.up[jj, ] <- length(keep.up) - (rank(c(cpdn$cutup,   

     keep.up), ties.method =     
     "min")[1:length(cpdn$cutup)]     
    - cutup.rank) 
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 nfc.low[jj, ] <- length(keep.dn) - (rank(c(-     
    cpdn$cutlow, -keep.dn),ties.method     
  = "min")[1:length(cpdn$cutlow)] -       
 cutlow.rank) 

} 
 
nfc <- nfc.up + nfc.low 
return(list(nfc = nfc, nfc.up = nfc.up, nfc.low = nfc.low)) 

} 
 
 

################################################################ 
 

# Proposed Method I and II 
 

x <- data # data set 
m <- dim(x)[1] # total number of genes 
y <- c(rep(1, dim(x)[2]/2), rep(2, dim(x)[2]/2)) # indicator   
     #for a two class unpaired data 

  
d <- seq.depth(x)  # sequencing depth 
xresamp <- resample(x,d) # resample data 
 
 
testS <- wilcoxon.unpaired.seq.func(xresamp, y)  # test    
         #statistic 

  
perm <- getperms(y,100)  # permutation 
b <- perm$nperms.act  # actual number of permutations 
 
 
permsy <- matrix(y[perm$perms], ncol = length(y)) # indicator   
      #for permutations based on y 
nresamp.perm <- 20  # number of resamples 

 
 

testS.p <- matrix(0, nrow = nrow(x), ncol = dim(perm$perms)[1]) # permuted 
test statistics 
for(h in 1:dim(perm$perms)[1]){ 

xresamp.p <- xresamp[, , 1:nresamp.perm]    
y.p <- permsy[h, ]  
testS.p[, h] <- wilcoxon.unpaired.seq.func(xresamp.p,    

 y.p)$tt   # permuted test statistics 
  

cat("perm = ", 0 + h, "\n") 
} 
 
 
# permuted ordered test statistics 
or.testS.p <- apply(testS.p, 2, function(x) -1*sort(-1*x)) 
or.testS.p <- t(apply(or.testS.p, 1, sort)) 
 
 
# expected ordered statistics  
tt.bar <- apply(or.testS.p, 1, mean) 
tt.bar <- tt.bar[length(tt.bar):1] 
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or.tt <- testS$ordered.tt  # ordered test statistic 
 
 
# estimate for proposed pi0s 
pis <- pi(testS.p, testS, m) 
 
 
# delta values 
deli <- seq(0.01, 1, 0.001) 
 
 
# estimate cutup, cutdown, number of significant positive(+) and #negative(-) 
genes for all delta values 
cpdn <- cut.updn.nsig(testS, deli, tt.bar) 
 
 
# estimate the number of falsely called genes (+/-) for all delta values 
nfcb <- nfalse(testS.p, cpdn) 
 
 
# estimate the median number of falsely called genes (+/-) for #all delta 
values 
med.nfc.up <- apply(nfcb$nfc.up, 2, median) # number of falsely   
      #called positive genes 
med.nfc.dn <- apply(nfcb$nfc.low, 2, median) # number of falsely   
      #called negative genes 
 
 
### FDR ESTIMATION ### 
### PROPOSED METHOD I ### 
p.fdr1 <- ((pis$pi0hpos * med.nfc.up) +       
 (pis$pi0hneg*med.nfc.dn)) / (pmax(cpdn$nsig, 1)) 
 
### PROPOSED METHOD II ### 
# FDR for genes with positive test statistics 
fdr2.pos <- (pis$pi0hpos * med.nfc.up) / (pmax(cpdn$nsig.up,1)) 

 
# FDR for genes with negative test statistics 
fdr2.neg <- (pis$pi0hneg * med.nfc.dn) / (pmax(cpdn$nsig.lo,1)) 


