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ABSTRACT 

Pyrenophora teres f. teres is a fungal pathogen that causes barley net form net blotch. To 

evaluate the genetics of resistance in barley, a RIL population was developed using resistant 

barley lines CI5791 and Tifang and tested against a global collection of nine P. teres f. teres 

isolates. QTL analysis indicated that CI5791 resistance mapped to chromosome 6H and was 

effective against all isolates. Additionally, CI5791 harbored resistance on chromosome 3H 

effective against two Japanese isolates. Tifang also had resistance that mapped to 3H and was 

effective against four of the isolates. To evaluate the genetics of virulence in P. teres f. teres, a 

fungal population was developed and evaluated against ten barley lines. 19 unique QTL were 

identified on 12 different linkage groups. 1 or 2 major loci were identified for a few of the barley 

lines whereas for most lines, virulence was contributed by several loci. 
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INTRODUCTION 

 Net blotch disease of barley is caused by the fungus Pyrenophora teres and has emerged 

as a major problem in many barley-growing areas of the world. The pathogen typically causes 

yield loss of 10 to 40% with the possibility of total loss when a susceptible cultivar is planted 

under environmental conditions conducive to disease epidemic (Mathre, 1997; Murray and 

Brennan, 2010). The pathogen was divided into two forms based on the difference in symptoms 

observed at the time of infection (Smedgard-Peterson, 1971). The two forms were identified as 

P. teres f. teres and P. teres f. maculata causing net form net blotch (NFNB) and spot form net 

blotch (SFNB), respectively (Smedegard-Peterson, 1971). P. teres f. teres produces individual 

net-like lesions on barley leaves that coalesce into large necrotic lesions as the infection 

progresses on susceptible barley lines. The pathogen is a necrotrophic fungus that directly 

penetrates the host cells without forming a feeding structure. P. teres f. teres kills its host as it 

progresses with its colonization (Reviewed in Liu et al., 2011). As observed in 

Parastagonospora nodorum, a necrotrophic pathogen of wheat (Friesen and Faris, 2010), P. 

teres f. teres also interacts with host genes in an inverse gene-for-gene manner resulting in 

susceptibility (Liu et al. 2015). Host triggered program cell death often helps a necrotrophic 

pathogen to proliferate instead of inhibiting its growth (Friesen and Faris, 2010). In order to 

better understand the life style of this pathogen a thorough study needs to be carried out on the 

host as well as pathogen side. Building upon previous information from studies performed on the 

avirulence/virulence genes of the pathogen (Lai et al., 2007; Shjerve et al., 2014; Liu et al., 2015) 

and resistance/susceptibility genes of the host (Friesen, 2006; Abu Qamar et al., 2008; Shjerve et 

al, 2014; Liu et al., 2015, Richards et al., 2016), we further investigated this pathosystem from 

both the host and the pathogen perspective to gain more insight into these host-parasite genetic 
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interactions.  Host resistance was investigated using a barley population segregating for 

resistance and the genetics of virulence was characterized using a pathogen population derived 

from a cross between avirulent and virulent P. teres f. teres isolates. These studies have provided 

a better understand of the complex interactions occurring in this pathosystem. 
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CHAPTER 1: LITERATURE REVIEW 

Host 

Barley is a small-grain cereal belonging to the family Poaceae, the tribe Triticeae and the 

genus Hordeum (Mathre, 1997). The first records of barley domestication refer back to 8000 

B.C. in the fertile crescent of Asia  (Zohary et al., 2003, Mathre, 1997). Wide adaptability of 

barley has allowed it to be grown as a summer crop in tropical regions and as a winter crop in 

temperate regions of the world (www.barleyfoods.org/facts.html). Barley has been primarily 

used for animal feed, malting and brewing and also for human consumption in many parts of the 

world (Mathre, 1997). The US is among the leading producers of barley, ranking seventh in the 

world, with 27 states in production (www.barleyfoods.org/facts.html). North Dakota is typically 

the number one barley-producing state in the US.  Since 1900, breeding efforts have focused on 

barley improvement in the areas of malting and feed quality, yield, straw strength, and disease 

resistance (Mathre, 1997). Yet, currently, most of the barley lines grown are susceptible to 

NFNB. Hence, it is important to develop resistant barley varieties to combat this necrotrophic 

pathogen.  

The Causal Pathogen and Its Life Cycle 

P. teres f. teres is an ascomycete belonging to class Dothideomycete, in the order 

Pleosporales and the family Polyporacea. As P. teres f. teres is heterothallic in nature, it 

requires opposite mating types to produce fertile pseudothecia (Mathre, 1997). Pseudothecia 

consist of asci that are club-shaped, bitunicate, and rounded at the apex. Each of the asci contain 

eight ascospores that are light brown in color and have three to four transverse septa and one or 

two longitudinal septa specifically in the median cells (Mathre, 1997). Under favorable 

environmental conditions ascospores are forcibly discharged from the pseudothecia in the 
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presence of moisture and dispersed long distances by wind serving as primary inoculum in the 

beginning of the growing season (Jordan, 1981).  Asexual spores, known as conidia, are also 

produced at the tips of the conidiophores that are present either singly or in a group of two or 

three. The conidia are usually cylindrical with rounded apical cells, yellowish-brown in color and 

one to eleven septate (Mathre, 1997). Once the pathogen has colonized the host tissue, conidia 

are produced throughout the growing season, serving as secondary inoculum. Environmental 

factors such as leaf wetness, temperature and relative humidity play an important role in spore 

germination, dispersion and successful infection (van den Berg et al., 1990, 1991; Jordan, 1981). 

Under favorable environmental conditions there could be a development of high inoculum in the 

fields due to several secondary cycles. This increase in spores increases the disease severity on 

susceptible cultivars (Reviewed in Liu et al., 2011). Other factors contributing to disease severity 

are the continuous planting of barley in one field, minimum tillage practices, excessive nitrogen 

applications and movement of infested stubble from one field to another (Mathre, 1997). Seed 

borne mycelium also plays a role as inoculum in spreading the pathogen to fields previously free 

of the disease (Mathre, 1997). Finally, as the growing season ends, the fungus overwinters by 

forming pseudothecia and mycelium on barley stubble or as seed borne mycelium 

Disease Symptoms 

 In NFNB disease there is an appearance of small circular dot-like lesions in the 

beginning of the infection that develop into longitudinal and transverse striations forming a net-

like pattern on the leaves (Shipton, 1973; reviewed in Liu et al., 2011). Parts of the leaf affected 

by the disease turn brown due to necrosis, and the adjacent tissue becomes yellow due to 

chlorosis. The leaves that are severely affected by the disease become completely dried and 

necrotic (Mathre, 1997). In resistant varieties lesions do not expand but remain elliptical or spot-
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like whereas in susceptible varieties the lesions expand over time forming the striated net-like 

patterns (Tekauz, 1985). 

Disease Development  

Breeding for resistant cultivars is one of the most effective ways to overcome this disease 

but to obtain complete and durable resistance, it is also important to study the factors playing a 

crucial role in the success of the pathogen in causing disease (reviewed in Liu et al., 2012). The 

development of a plant disease begins when a pathogen finds a way to interact with its host. In 

NFNB disease, the spore lands on the leaf surface and germinates by forming a germ tube. After 

growing along the host surface the germ tube penetrates the host cells by forming an appressoria. 

Direct penetration occurs through the cuticle between the epidermal cells by the high turgor 

pressure generated through the formation of a penetration peg (Van Caeseele and Grumbles, 

1979; Keon and Hargreaves, 1983; Lightfoot et al., 2010). As the fungus grows, further 

colonizing the spaces between the mesophyll cells, it begins killing the plant cells it comes into 

contact with, leading to necrosis. Cells adjacent to the necrotic cells develop chlorosis, probably 

due to program cell death (PCD) triggered by the host in response to fungal infection (Lightfoot 

and Able, 2010). As the infection progresses the pathogen colonizes the host tissue, ultimately 

leading to dead necrotic leaves. No fungal growth was observed in the chlorotic cells 

surrounding the necrotic cells, indicating that the pathogen may release diffusible 

toxins/effectors that result in host cell death in the absence of direct contact with the fungal 

hyphae (Smedegard-Peterson, 1977; Keon and Hargreaves, 1983). 

Necrotrophic pathogens are classified as necrotrophic generalists and necrotrophic 

specialists based on the host range they infect. Necrotrophic generalists have a broad host range 

whereas necrotrophic specialists have a more defined host range (Andrew et al., 2012) and 
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release host specific toxins now called necrotrophic effectors (NE) to facilitate colonization. 

Examples of necrotrophic specialists include Parastagonospora nodorum, Pyrenophora tritici-

repentis, and several Cochliobolus species in which host-selective toxins have been identified 

that are specific to host sensitivity genes (Friesen et al., 2008; Ciuffetti et al., 2010; Condon et 

al., 2013). 

Toxins have also been identified in P. teres f. teres but little conclusive work has been 

done to identify their role in disease (Smedegård-Petersen, 1977a; Bach et al., 1979; Sarpeleh et 

al., 2007, 2008). Liu et al. (2015) identified a small secreted necrotrophic effector protein 

(PttNE1) from the intercellular wash fluids of a susceptible barley line, Hector, inoculated with a 

virulent P. teres f. teres isolate. The sensitivity to PttNE1 mapped to a gene designated SPN1 

that was associated with a resistance/susceptibility QTL region of barley chromosome 6H in a 

recombinant inbred barley population produced from a cross of Hector and a resistant barley line 

NDB112 (Liu et al., 2015). This study indicated that the inverse gene-for-gene type of 

interaction between host gene products and necrotrophic effectors of the pathogen lead to 

susceptibility instead of resistance as observed in wheat-Parastagonospora nodorum system 

(Friesen et al., 2008; Friesen and Faris, 2010). 

Pathogen Virulence 

Several factors play a key role in pathogen infection. These factors include favorable 

environmental conditions, suitable spore attachment to the leaf surface, sensing physical cues 

such as topography of the leaf surface for penetration of the germ tube (Callow and Green, 1994) 

and release of degrading enzymes (Andrew et al., 2012) that are effective in dissolving the host 

cuticle and degrading epidermal cells to enter the host. Even after successful entry into the host, 

the pathogen has to evade or suppress the host defense mechanisms to be a virulent pathogen. 
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Several types of interactions are continuously occurring between hosts and pathogens in the 

ecosystem. Amongst them, the gene-for-gene type of interactions have been observed in 

biotrophic pathosystems, where interactions between the host and pathogen gene products lead to 

resistance (de Wit et al., 1992). Inverse gene-for-gene type interactions have been observed in 

necrotrophic pathosystems where interactions between the host and pathogen gene products lead 

to susceptibility (Friesen and Faris, 2010). P. teres f. teres is classified as a necrotrophic 

pathogen and although there is strong evidence for dominant susceptibility genes and 

necrotrophic effectors (Abu Qamar et al., 2008; Shjerve et al., 2014; Liu et al., 2015), strong 

dominant resistance genes have also been identified (Bockelman et al., 1977; Steffenson et al., 

1996; Friesen et al., 2006 Koladia et al. 2017) suggesting that both interactions (gene-for-gene 

and inverse gene-for-gene) are playing a role in these host-pathogen genetic interactions. 

 Khan and Boyd (1969) performed studies to identify physiologic specialization among 

P. teres f. teres isolates collected from Western Australia and identified three physiological races 

WA-1, WA-2 and WA-3 using two barley differential lines Algerian and CI 7584.  Tekauz 

(1990) performed virulence studies on 12 differential lines using P. teres f. teres isolates 

collected from Western Canada and found greater variability among the isolates as compared to 

the previous studies carried out in Western Canada (McDonald and Buchannon 1962). 

Steffenson and Webster (1992b) identified virulence diversity among 16 pathotypes collected 

from California using 22 barley differential lines. A similar barley differential set was used by 

Wu et al., 2003 to characterize virulence diversity among P. teres f. teres isolates collected from 

different parts of the world. Gupta and Loughman (2001) conducted studies to determine 

virulence diversity in Western Australia and identified different groups of isolates based on 

virulence and avirulence on the commonly used barley differential line, Beecher. Arabi et al. 
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(2003) evaluated virulence diversity among isolates collected from Syria and France. French 

isolates R5 and S5 were found to be highly virulent on resistant barley lines CI5791, 79-S10-10 

and Arrivate. Arabi et al. (2003) evaluated the P. teres f. teres isolates using 11 barley genotypes 

and found continuous variability among isolates ranging from a high virulence pattern among 

French isolates S5, R5 and S6-2 to low virulence among Syrian isolates RICA31 and 12HAS-6. 

None of the barley genotypes were found to be highly resistant to all these isolates. Liu et al., 

(2012) conducted a study to determine virulence diversity among isolates collected in Langdon 

and Fargo, North Dakota. In this study, 22 barley differential lines including lines used by 

Steffenson and Webster (1999b) and Wu et al. (2003) were used. The study indicated a wide 

range of virulence diversity among the North Dakota isolates. Barley lines CI5791, Algerian, and 

Heartland were found to be resistant to all North Dakota isolates.  

Weiland et al. (1999) performed studies to investigate the genetics of virulence in P. teres 

f. teres isolates by developing a bi-parental population of P. teres f. teres isolates 15A 

(California isolate) and 0-1 (Ontario isolate) based on the information obtained from previous 

studies (Steffenson and Webster, 1999b). A single major gene AvrHar, conferring avirulence on 

barley line Harbin, was mapped using molecular markers. Lai et al., (2007) performed further 

studies using the same bi-parental population used by Weiland et al., (1999) and identified two 

additional genes AvrPra1 and AvrPra2 conferring avirulence towards barley line Prato. AvrPra2 

mapped to the same locus as AvrHar but in repulsion as both the genes were identified to confer 

avirulence to different parents. Beattie et al. (2007) identified gene Avrheartland conferring 

avirulence on barley line Heartland by mapping another biparental population derived from a 

cross between Canadian isolates WRS 1906 and WRS 1607. Afanasenko et al. (2007) studied the 

genetics of the NFNB host parasite interactions using 12 barley differential lines. Afanasenko et 
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al. (2007) showed that resistance in the host and avirulence in the pathogen were determined by 

one or two genes and concluded that the P. teres. f. teres-barley system was a gene-for-gene type 

of interaction. Shjerve et al., 2014 developed a bi-parental population by crossing California 

isolates 15A and 6A and evaluating the population on the barley lines Rika and Kombar, which 

were selected based on their differential reactions to isolates 15A and 6A. Two loci, VK1 and 

VK2 were shown to confer virulence on Kombar and two distinct loci, VR1 and VR2, were shown 

to confer virulence on Rika. Progeny isolates harboring only one of these genes were then 

selected and inoculated on a Rika × Kombar RIL population. Based on the results it was 

hypothesized that one or more tightly linked virulence target genes were located near the 

centromere of barley chromosome 6H that conferred susceptibility and this gene(s) was 

interacting with multiple virulence loci in the pathogen.  

Host Resistance 

Soon after a pathogen lands on the host surface, resistance mechanisms are activated via 

cell surface or plasma membrane anchored pattern recognition receptors (PRRs) that identify 

specific components of the pathogen called pathogen associated molecular patterns (PAMP) that 

activate PAMP-triggered immunity (PTI) to stop the infection (Jones and Dangl, 2006, 

Chisholm, 2006). However, the pathogen has the ability to evade or suppress PTI by releasing 

another set of weapons known as effectors. Effectors are the pathogen molecules that have the 

ability to modify the host cellular physiology, typically suppressing early PTI responses, leading 

to effector triggered susceptibility (ETS). In response to these pathogen effectors, the host 

evolved a second layer of defense known as resistance genes that typically have the nucleotide 

binding-leucine rich repeat (NB-LRR) protein domain architecture. The cytoplasmically 

localized NB-LRR proteins recognize the pathogen effectors (avirulent/virulent gene products) 
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directly or more commonly indirectly activating defense responses referred to as effector 

triggered immunity (ETI) (Jones and Dangl, 2006, Chisholm et al., 2006). In response, the 

pathogen can evade detection and ETI responses by mutation in or elimination of effectors that 

are recognized by host resistance genes returning back to the state of virulence on the host and 

disease susceptibility. Similarly, the natural host populations also select new alleles of genes 

with NB-LRR domains specific to the new effectors to obtain ETI (Jones and Dangl, 2006; 

Chisholm et al., 2006). Thus, along with the changing virulence strategies of the pathogen to 

cause infection, the host must also adapt its defense mechanisms to provide resistance to 

pathogen attack. The selection of effective host resistance genes is a major goal of disease 

resistance breeding in domesticated crops.  

 Resistance genes have been identified in some of the barley lines that are known to be 

effective against P. teres f. teres. Geschele (1928) reported that resistance to net blotch was 

inherited in a Mendelian fashion (Geschele, 1928). Later, three incompletely dominant resistant 

genes, Pt1, Pt2 and Pt3 were shown to be effective against P. teres isolates collected in California 

(Schaller, 1955; Mode et al., 1958) . Net blotch resistance genes Rpt1a, Rpt3d, Rpt1b and Rpt2c 

were identified by trisomic analysis on barley chromosomes 3H of Tifang, 2H of CI7584 and 3H 

and 5H of CI9819, respectively (Bockelman et al., 1977).  Several more recent NFNB studies 

have shown quantitative trait loci (QTL) to be present on each of the seven barley chromosomes 

(reviewed in Liu et al., 2011).  

Multiple studies have shown that in several barley backgrounds, resistance to NFNB 

maps to a similar region on chromosome 6H (Steffenson et al., 1996; Cakir et al., 2003; Friesen 

et al., 2006; Grewal, 2008; St. Pierre et al., 2010) and other studies have shown that a similar 

region on chromosome 6H consists of multiple genes that confer dominant susceptibility to 
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different P. teres f. teres isolates (Abu Qamar et al., 2008; Shjerve et al., 2014; Liu et al., 2015, 

Richards et al., 2016). Collectively, the studies on the 6H chromosome of barley indicate that 

there are multiple genes or groups of genes present at the 6H chromosome that play a major role 

in the NFNB host-pathogen interaction. 

Genome Sequencing 

Genome sequencing is a process that provides information about the genetic composition 

of a particular species. The human genome project was a huge effort in the field of genomics that 

paved a way for sequencing of several species (International Human Genome sequencing 

consortium, 2001). Earlier the genomes were sequenced using the Sanger sequencing method 

(Sanger, 1977), which was tedious and costly. With the advent of new sequencing technologies, 

next generation sequencing (NGS) replaced the old sequencing methods with advantages of less 

cost and deeper coverage of genomes, in less time (Morozova et al., 2008; Haridas et al., 2011). 

NGS platforms, such as PAC BIO, Illumina, and Ion Torrent have revolutionized genome 

sequencing with their massive parallel sequencing feature, allowing sequencing of several 

individuals of a species at the same time (Marguerat et al., 2008). Applications of NGS 

technologies include whole genome sequencing and transcriptome sequencing (Chierico et al., 

2015).  

Baker’s yeast, Saccharomyces cerevisiae was the first fungus to be sequenced, due to its 

simple eukaryotic organization and industrial applications in food, brewing and the 

pharmaceutical industry (Vassarotti and Goffeau, 1992; Mewes et al., 1997).  Among the the 

cereal fungal pathogens that have been sequenced are Magnaporthe oryzae, the fungal pathogen 

of rice (Dean et al., 2005), Parastagonospora nodorum, the fungal pathogen of wheat (Hane et 

al., 2007), and P. teres f. teres, the fungal pathogen of barley (Ellwood et al., 2010). Sequencing 
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of P. teres f. teres was carried out using an Illumina Solexa mate pair platform. The total size of 

the P. teres f. teres genome was found to be 41. 95 Mbp with 11,799 gene models, much like the 

genomes of M. oryzae and P. nodorum (Ellwood et al., 2010). Further studies will be carried out 

for the functional analysis of the identified genes in the P. teres f. teres genome. 

Molecular Markers 

Molecular markers are the DNA sequences that are associated with known, as well as 

unknown regions of the genome (Liu and Cordes, 2004). Molecular markers have several 

applications that include mapping of genomes and identifying genetic variation among different 

individuals in a population. Restriction fragment length polymorphism (RFLP) markers (Bostein 

et al., 1980) were one of the first markers developed in the field of molecular biology. Later, 

PCR based markers such as random amplified polymorphic DNA (RAPD) markers (Welsh and 

McClelland, 1990; Williams et al., 1990), amplified fragment length polymorphism (AFLP) 

markers (Vos et al., 1995) and microsatellites also known as simple sequence repeat (SSR) 

(Hearne et al., 1992) markers were used. Single nucleotide polymorphisms (SNPs) are caused by 

point mutations, giving rise to different alleles, having alternate bases  at a given nucleotide 

position within a locus. DNA sequencing has been the most useful approach for SNP discovery 

(Liu and Cordes, 2004). SNPs are important molecular markers as they are the most abundant 

polymorphism occurring in any organism.  

Restriction associated DNA (RAD) are small sequences of DNA, adjacent to the 

restriction sites that can be used to generate genetic markers (Miller et al., 2007). Initially, the 

RAD based microarray technique was developed to identify RAD markers based on the variation 

observed in the restriction sites across the genome (Miller et al., 2007). However, it was found 

that the microarray method was more complicated and not useful for sequencing of several 
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species simultaneously (Baird et al., 2008). Baird et al. (2008) developed a new RAD based 

sequencing method that utilized the same principles of array technology combined with next 

generation sequencing technology. An Illumina platform was used instead of the microarray 

technique that allowed sequencing of several distinct individuals in a single run (Baird et al., 

2008). High-through put sequencing of the RAD-tag libraries led to the discovery of thousands 

of SNPs across the genome. Moreover, this technique allowed for the discovery of SNPs outside 

the recognition site of a restriction enzyme as compared to AFLP technique. 

 As the name suggests, genotyping by sequencing (GBS) is an approach for genotyping a 

species along with the sequencing process (Deschamps et al., 2012). This approach eliminates 

the step of assay development for the generation of markers. SNPs identified across the genome, 

are directly used as genetic markers (Deschamps et al., 2012). The RAD-GBS method was 

adopted from a modified RAD method (Baird et al., 2008; Poland et al., 2012) and used for 

sequencing of several fungal populations using an Ion Torrent sequencer (Leboldus et al., 2014). 

The steps involved in this process included digestion, ligation, and size-selection followed by 

fragment sequencing.  

Through the NGS process, thousands of SNPs are identified across the genome that can 

then be utilized for construction of a genetic map. Once, there is availability of phenotypic and 

genotypic data, quantitative trait locus (QTL) can be identified. QTL provide us with the 

information about the virulence/avirulence regions in the pathogen responsible for a particular 

phenotypic reaction. Further, deeper exploration of these regions through full genome 

sequencing will provide the knowledge about the genes responsible for a particular response. In 

conclusion, there are several things to unravel on the host-pathogen interaction to understand the 

role of each factor responsible in the development of disease.      
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CHAPTER 2: GENETIC ANALYSIS OF NET FORM NET BLOTCH RESISTANCE IN 

BARLEY LINES CIHO 5791 AND TIFANG AGAINST A GLOBAL COLLECTION OF 

P. TERES F. TERES ISOLATES1 

Abstract     

The barley line CI5791 confers high levels of resistance to Pyrenophora teres f. teres, 

causal agent of net form net blotch (NFNB), with few documented isolates overcoming this 

resistance. Tifang barley also harbors resistance to P. teres f. teres which was previously shown 

to localize to barley chromosome 3H. A CI5791 × Tifang F6 recombinant inbred line (RIL) 

population was developed using single seed descent. The Illumina iSelect SNP platform was 

used to identify 2,562 single nucleotide polymorphism (SNP) markers across the barley genome, 

resulting in seven linkage maps, one for each barley chromosome. The CI5791 × Tifang RIL 

population was evaluated for NFNB resistance using nine P. teres f. teres isolates collected 

globally. Tifang was resistant to four of the isolates tested whereas CI5791 was highly resistant 

to all nine isolates. QTL analysis indicated that the CI5791 resistance mapped to chromosome 

6H whereas the Tifang resistance mapped to chromosome 3H. Additionally, CI5791 also 

harbored resistance to two Japanese isolates that mapped to a 3H region similar to that of Tifang. 

SNP markers and RILs harboring both 3H and 6H resistance will be useful in resistance breeding 

against NFNB. 

1The material in this chapter is reprinted under Copyright Clearance Center’s RightsLink® 
service applied by Springer for Theoretical and Applied Genetics from the article “V. M. 
Koladia, J. D. Faris, J. K. Richards, R. S. Brueggeman, S. Chao, T. L. Friesen. Genetic analysis 
of net form net blotch resistance in barley lines CIho 5791 and Tifang against a global collection 
of P. teres f. teres isolates” Vaidehi Koladia designed and performed the experiments, analyzed 
the data, wrote and edited the manuscript according to the suggestions of the co-authors and 
reviewers. 
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Introduction 

 Net blotch caused by Pyrenophora teres is present in most barley production regions of 

the world, including the Middle East, Australia, Asia, Europe, Africa, and South and North 

America (Mathre 1997). The pathogen is most prevalent where barley is planted under cool wet 

conditions; however, it also exists in warm dry areas (Shipton et al. 1973). P. teres exists in two 

forms, P. teres f. teres and P. teres f. maculata, causing net form net blotch (NFNB) and spot 

form net blotch (SFNB), respectively. The NFNB disease is initially observed as small circular 

and elliptical dot-like lesions that soon develop into dark brown blotches containing longitudinal 

and transverse striations forming a net-like pattern (Steffenson and Webster 1992; Mathre 1997). 

For highly resistant barley lines, dot-like lesions do not develop into the net-like pattern, but 

remain restricted. 

 Geschele (1928) showed that resistance to NFNB was inherited in a Mendelian fashion 

(Geschele 1928, Reviewed in Liu et al. 2011). Later, three incompletely dominant resistance 

genes reported as Pt1, Pt2 and Pt3 were shown to be effective against P. teres isolates collected 

in California (Mode and Schaller 1958; Schaller 1955) and several other breeding lines have 

been reported to harbor single dominant resistant genes (Gray 1966; McDonald and Buchannon 

1962). Khan and Boyd (1969a, b) were the first to report the physiological specialization of the 

pathogen which was useful in the evaluation of sources of resistance that correlated with 

differences in virulence. NFNB resistance genes Rpt1a, Rpt3d, Rpt1b and Rpt2c were identified 

by trisomic analysis on barley chromosomes 3H, 2H, 3H and 5H, respectively (Bockelman et al. 

1977). As is often the case, inheritance of resistance in adult plants under field conditions was 

shown to be more complex as compared to seedling resistance (Arabi et al. 1990; Douglas and 

Gordon 1985; Steffenson and Webster 1992). Dominant susceptibility genes have also been 
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identified in seedlings (Ho et al. 1996; Abu Qamar et al. 2008; Liu et al. 2015), as well as the 

potential for the corresponding pathogen effectors (Liu et al. 2015; Shjerve et al. 2014), showing 

the complexity of this host pathogen interaction. 

 In several barley backgrounds, resistance to NFNB has mapped to chromosome 6H 

(reviewed in Liu et al. 2011) but other studies have shown that a similar region on chromosome 

6H consists of multiple genes that confer dominant susceptibility to different pathotypes of P. 

teres f. teres. (Abu Qamar et al. 2008; Liu et al. 2011; Liu et al. 2015; Shjerve et al. 2014, 

Richards et al., 2016). Several studies have been performed using differential sets of barley lines 

that exhibited different resistance patterns when inoculated with NFNB isolates collected from 

different parts of the world (Steffenson and Webster 1992; Wu et al. 2003; Gupta and Loughman 

2001; Cromey and Parkes 2003; Jalli 2004; Tekauz 1990; Jonsson et al. 1997; Khan and Boyd 

1969b; Liu et al. 2011; Jalli and Robinson 2000). These studies indicated the presence of several 

different avirulence and/or virulence factors that theoretically correspond to different resistance/ 

susceptibility genes in these barley lines. 

CI5791 is an Ethiopian breeding line reported to show high levels of resistance against  

P. teres f. teres isolates (Mode and Schaller 1958; Khan and Boyd 1969a,b; Khan and Boyd 

1971; Tekauz 1990; Steffenson and Webster 1992; Wu et al. 2003; Cromey and Parkes 2003; 

Jalli 2004) and Tifang is a Manchurian line reported to show resistance against some P. teres f. 

teres isolates (Steffenson and Webster 1992; Wu et al. 2003; Cromey and Parkes 2003; Jalli 

2004; Jonsson et al. 1997; Khan and Boyd 1969b; Jalli and Robinson 2000; Khan and Boyd 

1971). Using trisomic analysis, Bockelman et al. (1977) reported that Tifang had resistance 

located on chromosome 3H (Bockelman et al. 1977).  Based on the phenotypic differences 

observed in the resistance patterns against various P. teres f. teres isolates, CI5791 and Tifang 
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were selected to develop a population and study the genetics of resistance found in CI5791 and 

Tifang. 

Materials and Methods 

Biological Materials 

One hundred and seventeen F2:6 recombinant inbred lines (RILs) were developed by 

single seed descent from a cross between CI5791 (hereafter referred to as the CT population) and 

Tifang resulting in a CI5791 (female) × Tifang RIL population (hereafter referred to as CT). F2 

individuals were similarly derived from crosses of CI5791 and Tifang to be used in evaluating 

gene action.  The CT population, F2 individuals and the parents were evaluated for reactions to 

nine P. teres f. teres isolates that had diverse geographic origins, including LDNH04Ptt-19, Tra-

A5, FGOH04Ptt-21, 15A, 6A, JPT0101, JPT9901, Br. Pteres and BB06 (Table 2.1). This is the 

most geographically diverse set of isolates that we have and several of these isolates have been 

used in other studies including as parents of mapping populations.   
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Table 2.1.  Source and collection location information for each of the nine P. teres f. teres 
isolates used in this study. 

 

Genotypic Analysis 

DNA was extracted from the CT population and parents using the Qiagen Biosprint 15 

Plant Extraction kit (Shjerve et al. 2014). After obtaining DNA, the Illumina iSelect SNP 

platform (Comadran et al. 2012), including 7,824 SNP markers, was used to genotype the 

population. The Infinium SNP assay was performed following the manufacturer’s instructions 

(Illumina Inc. 2010). Genotype calling was done using the genotyping module implemented in 

the GenomeStudio software v.2011.1 developed by Illumina (San Diego, CA). Genotype calls 

were then manually inspected for call accuracy. 

 

 

Isolate Location References Collector 

LDNH04Ptt-19 North Dakota, USA - Tim Friesen 

Tra-A5 Montana,USA - Tim Friesen 

FGOH04Ptt-21 North Dakota,USA - Tim Friesen 

JPT0101 Japan - Jack Rasmussen 

JPT9901 Japan Liu et al. 2015 Jack Rasmussen 

15A California, USA 

Steffenson and Webster 
1992; Wu et al. 2003; 

Shjerve et al. 2014; Liu 
et al. 2015 

Brian Steffenson 

6A California, USA 

Steffenson and Webster 
1992; Wu et al. 2003; 

Shjerve et al. 2014; Liu 
et al. 2015 

Brian Steffenson 

Br.Pteres Brazil Liu et al. 2015 Flavio Santana 

BB06 Denmark Liu et al. 2015 Lise Nistrup Jorgensen 
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Map Construction 

The Microsoft Excel-based software program MapDisto version 1.7.5 (Lorieux 2012) was 

used to construct the genetic linkage maps.  The ‘find groups’ command was used to identify 

linkage groups with LOD min=3.0 and rmax= 0.3. The ‘order sequence’ command was used to 

establish the initial order of markers in each linkage group. The ‘ripple order’, ‘check 

inversions’, and ‘drop locus’ commands were used to refine and validate the final order of the 

markers. The ‘draw all sequences’ command was used to obtain a graphical representation of the 

maps for all the linkage groups. For QTL analysis, co-segregating markers were identified from 

the genetic maps, and a single marker within each set of co-segregating markers was retained 

while the remaining redundant markers were removed. Preference for the marker to be retained 

at each locus was given to the one with the least amount of missing data. The maps were then 

reconstructed in MapDisto and the data exported for QTL analysis using the computer program 

QGene v4.3 (Joehanes and Nelson 2008). 

Genetic Map Comparison  

Population sequencing (POPSEQ) positions (Mascher et al. 2013) of the Illumina iSelect 

SNPs previously described by Cantalapiedra et al. (2015) in the tool BARLEYMAP were 

utilized to determine map concordance. Data was imported into Microsoft Excel and the 

command ‘vlookup’ was executed to create a cross reference file containing all available 

POPSEQ positions of the markers utilized in the genetic map construction. If no POPSEQ 

position was available from this dataset for markers flanking a QTL, BLAST searches of the 

barley genome were conducted (http://webblast.ipk-gatersleben.de/barley/viroblast.php).  
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Phenotypic Analysis  

 All P. teres f. teres isolates were grown on V8-PDA (150 ml V-8 juice, 10g Difco PDA, 

3g CaCO3, 10g agar, and 850 ml distilled water). Petri plates were kept in a dark cabinet at room 

temperature for 5 days, followed by 24 h of light at room temperature, followed by 24 h of dark 

at 15°C. Plates were then flooded with distilled water and conidia were harvested from plates 

using an inoculating loop. The inoculum was collected and diluted with distilled water to obtain 

2000 spores/ml. One drop of Tween 20 was added to every 50 ml of inoculum to reduce spore 

clumping (Abu Qamar et al. 2008). 

Individual RILs were planted along with the parents in a rack containing 98 cone-tainers 

(Stuwe and Sons, Inc., Corvallis, OR) with ‘Tradition’ barley planted as the border to reduce any 

edge effect. The border was placed around each rack but cones were not randomized within each 

rack. Inoculations were done as described by Friesen et al. (2006). When the secondary leaves 

were fully expanded, plants were inoculated with a conidial solution of individual P. teres f. 

teres isolates using an air sprayer (Huskey, model # HDS790) until a heavy mist covered all the 

leaves before runoff occurred. After inoculations, plants were placed in 100% relative humidity 

in the light at 21° C for 24 h and then placed in a growth chamber under a 12 h photoperiod at 

21° C. Disease reactions were evaluated seven days post-inoculation because, for this fungus, 

under these conditions, a 7 day evaluation was found to be optimal. These reactions were 

evaluated on a 1 to 10 scale as described by Tekauz (1985) where reaction type 1 was the most 

resistant and reaction type 10 was the most susceptible. Greater than or equal to 4 were 

considered as the susceptible rather than 5 as suggested by Tekauz (1985). Three un-randomized 

replicates with borders were completed for each isolate across the whole population. For F2 

analysis, F2 individuals were planted in a single cone-tainer and inoculated with the nine P. teres 
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f. teres isolates separately, similar to the RIL population. Each plant was evaluated individually 

for disease reaction to each isolate. 

For F2 analysis, F2   individuals were planted in a single container and inoculated with 

the nine P. teres f. teres isolate separately, similar to the RIL population. Each plant was 

evaluated individually for the disease reaction to each isolate. 

QTL Analysis 

The average of three replicates and the MapDisto marker data were exported to QGene 

software v 4.3.0 for QTL analysis (Joehanes and Nelson 2008). The critical logarithm of the odds 

ratio (LOD) threshold for each data set was calculated by performing 1000 permutations and the 

obtained value at the α0.01 level was used as the critical LOD threshold. Composite interval 

mapping (CIM) was performed by selecting the LOD value as the test statistic. QTL analysis was 

carried out by selecting a particular trait and looking across all the linkage groups for the 

significant QTL. The cofactor parameter was selected as a default parameter to identify the most 

significant marker underlying each QTL. The chromosome display command was used to view 

the marker loci on each linkage group.  

Statistical Analysis 

Least significant differences (LSD) were identified to determine separation between the 

average phenotypic reactions for genotypic classes identified in the CT population. SAS 9.4 

(SAS Institute Inc., 2013) was used to perform the LSD tests at α=0.05.  

Results 

Linkage Mapping  

The Barley iSelect chip used for marker identification featured 7824 SNP markers 

distributed across the barley genome. 2562 of the 7824 SNP markers were polymorphic in our 
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CT population and were, therefore, used for linkage mapping analysis.  The markers were 

assembled into seven linkage groups corresponding to the seven barley chromosomes. The 

linkage groups spanned a total genetic distance of 1012.2 cM, with the chromosome 6H linkage 

group being the shortest (113.6 cM) and the chromosome 5H linkage group being the longest 

(184.6 cM) (Table 2.2). The number of SNP markers per chromosome ranged from 243 

(chromosome 1H) to 503 (chromosome 5H). A total of 827 unique loci were detected by the 

2562 SNP markers yielding an average density of 1.2 cM/locus. 19 gaps were identified on the 

linkage groups with sizes ranging from 5 cM to 10.8 cM and these gaps were located at different 

positions on the linkage groups.  One marker from each of the 827 loci was chosen to derive a 

non-redundant marker set for subsequent QTL analysis.  

Table 2.2. Summary of the seven linkage maps developed in the CI5791 × Tifang RIL 
population. 
 

Chromosome SNP markers No. unique 
loci Length (cM) Marker Density 

(cM/locus) 

1H 243 90 133.5 1.5 

2H 480 143 161.2 1.1 

3H 407 122 156.7 1.3 

4H 250 91 115.3 1.3 

5H 503 146 184.6 1.3 

6H 323 103 113.6 1.1 

7H 356 132 147.3 1.1 

Total 2562 827 1012.2 1.2 
 

Genetic Map Comparison 

 A total of 2562 markers that were identified as polymorphic between CI5791 and Tifang 

were compared to the barley genome via data from BARLEYMAP to obtain POPSEQ genetic 
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positions. Of the 2562 markers, a POPSEQ locus was obtained for 1938 markers and used for 

collinear comparison to the barley genome. POPSEQ chromosomal anchoring of the 1938 

markers nearly perfectly correlated with the CI5791 × Tifang linkage groups, with the exception 

of marker SCRI_RS_180004, which was anchored to chromosome 7H via POPSEQ and to 

chromosome 6H in the CI5791 × Tifang population. However, upon further examination via 

BLAST searches of the barley genome, the second best BLAST hit (87% identity) for marker 

SCRI_RS_180004 was on chromosome 6H at 54.88 cM. Markers that flank SCRI_RS_180004 

in the CI5791 × Tifang linkage map have POPSEQ positions ~55 cM on chromosome 6H, 

indicating that this marker may have been non-specific in this population. Scatterplots were 

constructed to compare the genetic positions of the remaining markers. General collinearity was 

observed, with only a few minor discrepancies between the CI5791 × Tifang and POPSEQ 

genetic positions.  

Phenotypic Analysis 

Homogeneity between the replicates was high with Pearson’s correlation coefficients 

between replicates ranging from 0.6 to 0.9, therefore reps were averaged and used for analysis. 

CI5791 was highly resistant to all nine isolates (average disease reactions of less than 2.0) and 

Tifang was resistant to four of the nine isolates including 15A, 6A, Br. Pteres and BB06 (average 

disease reactions of less than 2) (Table 2.3, Fig.2.1). LDNH04Ptt-19, Tra-A5, FGOH04Ptt-21 

and JPT9901 were virulent on Tifang with average disease reactions equal to or greater than 5.0. 

JPT0101 was more virulent on Tifang compared to CI5791, with average disease reaction types 

of 4.00 and 1.0, respectively, indicated a relatively lower level of virulence on Tifang for this 

isolate compared to the other virulent isolates (Table 2.3, Fig. 2.1).       
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Table 2.3. Disease reaction types of parents and genotypic classes of the CI5791×Tifang RIL 
population. 
 

Isolatesa LSD b CI 5791c Tifangc 6HCI5791/ 
3HTifang

d 
6HCI5791/ 
3HCI5791

d 
6HTifang/ 
3HTifang

d 
6HTifang/ 
3HCI5791

d 

LDNH04Ptt-19 0.4220 1.00 7.17 1.12 A 1.10 A 5.99 B 6.21 B 

Tra-A5 0.4897 1.00 7.33 1.25 A 1.10 A 6.47 B 6.82 B 

FGOH04Ptt-21 0.4386 1.25 5.50 1.80 A 2.04 A 5.97 B 6.98 C 

JPT0101 0.4572 1.00 4.00 1.13 A 1.01 A 4.85 C 1.77 B 

JPT9901 0.4868 1.17 6.17 1.26 A 1.11 A 6.54 C 3.96 B 

15A 0.5653 1.00 1.50 1.08 A 1.04 A 2.32 B 6.14 C 

6A 0.6423 1.00 1.75 1.09 A 1.69 AB 1.89 B 4.94 C 

Br. Pteres 0.3692 1.17 1.00 1.03 A 1.35 A 1.28 A 3.12 B 

BB06 0.3592 1.00 1.17 1.00 A 1.12 A 1.16 A 3.35 B 
 

a The nine P. teres f. teres isolates used in the analysis, which include the Northern Great Plains 
isolates (LDNH04Ptt-19, Tra-A5, FGOH04Ptt-21), the Japanese isolates (JPT0101 and 
JPT9901), the California isolates (15A and 6A), the Brazilian isolate (Br. Pteres) and the Danish 
isolate (BB06)  
b Least significant difference (LSD) calculated at P=0.05 for each of the isolates 
c Parents, CI5791 and Tifang, used to develop the CT mapping population 
d The genotypic classes for the RIL population based on the presence of the most significant 
marker at the 3H and 6H resistance loci 
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Fig. 2.1. Disease reactions on CI5791 and Tifang for each of the nine P. teres f. teres isolates. 
Barley parental lines are indicated on the right and P. teres f. teres isolates are indicated on the 
left. All tested isolates were avirulent on CI5791.  15A, 6A, Br. Pteres, and BB06 isolates were 
avirulent on both CI5791 and Tifang. The Northern Great Plains isolates (LDNH04Ptt-19, Tra-
A5 and FGOH04Ptt-21) and the Japanese isolates (JPT0101 and JPT9901) were virulent on 
Tifang.  
 

Across the CT population, similarities also arose among the members of three groups, i.e. 

the Northern Great Plains isolates (LDNH04Ptt-19, Tra-A5, FGOH04Ptt-21), Japanese isolates 
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(JPT0101 and JPT9901) and a geographically diverse group of isolates consisting of two 

California isolates (15A and 6A), a Brazilian isolate (Br. Pteres) and a Danish isolate (BB06). 

R:S segregation ratios of the three Northern Great Plains isolates that were virulent on Tifang 

(LDNH04Ptt-19, Tra-A5 and FGOH04Ptt-21) were not significantly different from a 1:1 when 

using a reaction type of 4.0 as the susceptible cutoff, indicating a single major gene conferring 

resistance or susceptibility (Table 2.4). For the Japanese isolates (JPT0101 and JPT9901) the R:S 

ratio was narrowly but still significantly different from a  3:1 ratio (χ2=3.9; P=0.048 and χ2=4.1; 

P=0.043, respectively) (Table 2.4).  

Among isolates with avirulent phenotypes on both parents, inoculation of the California 

isolates (15A and 6A) resulted in a R:S segregation ratio that was not significantly different from 

a 3:1, indicating the presence of two resistance genes but with one coming from each parent. 

When using the same resistant/susceptible cutoff as we did for the other isolates, the Brazilian 

(Br. Pteres) and the Danish (BB06) isolates showed R:S ratios that were significantly different 

from a 3:1 ratio ( χ2 = 19.132; P < 0.0001 and χ2 = 17.220; P < 0.0001) indicating the potential of 

at least one resistance gene coming from each parent but with additional genes resulting in a 

complex quantitative inheritance (Table 2.4).  
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Table 2.4. Resistant: susceptible (R:S) segregation ratios of the CI5791 × Tifang RIL population 
and F2 individuals.  
 

Isolates 
Observed R:S 

ratioe 

(RILs) 
Expected ratio R:S ratioe 

(F2) Ratio 

LDNH04Ptt-19 63:54 1:1 40:9 3:1 

Tra-A5 63:51 1:1 35:15 3:1 

FGOH04Ptt-21 59:58 1:1 31:14 3:1 

JPT0101 97:20 3:1a 44:3 15:1 

JPT9901 74:37 3:1b 51:3 15:1 

15A 81:36 3:1 52:4 15:1 

6A 92:24 3:1 48:2 15:1 

Br. Pteres 99:7 3:1c 35:2 15:1 

BB06 98:8 3:1d 43:4 15:1 
 
a Significantly different from 3:1(P= 0.048) 
b Significantly different from 3:1 (P=0.043) 
c Significantly different from 3:1 (P<0.0001) 
d Significantly different from 3:1 (P<0.0001) 
e R:S ratios are based on a  ≥ 4.0 cutoff for susceptibility 
 
F2 Analysis 

To evaluate the resistance gene action conferred by both CI5791 and Tifang, F2 analysis 

was performed using ≥ 4 as the susceptible cut off. CI5791 × Tifang F2 individuals showed a 3:1 

(R:S) ratio when inoculated with LDNH04Ptt-19, Tra-A5 and FGOH04Ptt-21 isolates (Table 2.4, 

Fig. 2.2), confirming the single resistance gene interpretation from the RIL population. For the 

isolates avirulent on both parental lines, including the California isolates (15A and 6A), the 

Brazilian isolate (Br. Pteres) and the Danish isolate (BB06), the F2 individuals showed a R:S 

ratio not significantly different from 15:1 (Table 2.4, Fig. 2.2) indicating two dominant 

resistance genes. The Japanese isolates (JPT0101 and JPT9901) also showed a R:S ratio not 
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significantly different from a 15:1 (Table 2.4, Fig.2.2) indicating the presence of two resistance 

genes, both coming from CI5791, matching the results from the RIL population.  

Fig. 2.2. Histograms showing the phenotypic reactions obtained for F2 individuals of the 
CI5791×Tifang cross inoculated with the nine P. teres f. teres isolates (LDNH04Ptt-19, Tra-A5, 
FGOH04Ptt-21, JPT0101, JPT9901, 15A, 6A, Br. Pteres and BB06). The y-axis shows the 
number of the F2 individuals and the x-axis shows the disease reaction score categories separated 
in 0.5 point intervals.  
 
QTL Analysis 
 

By performing 1000 permutations on each data set, LOD value thresholds (P=0.01) were 

obtained that ranged from 3.6-4.0. Hence, the highest stringency identified (4.0) was used as a 

critical LOD threshold value for identifying significant QTL. 
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A major resistance QTL located on chromosome 6H with resistance effects contributed 

by CI5791 was identified for all nine isolates tested (Table 2.5, Fig. 2.3). The three Northern 

Great Plains isolates, LDNH04Ptt-19, Tra-A5 and FGOH04Ptt-21 showed only the 6H QTL 

(Table 2.5, Fig. 2.3). However, for all isolates avirulent on both parents, including 15A, 6A, Br. 

Pteres, and BB06, a 3H resistance QTL was identified with resistance effects contributed by 

Tifang (Table 2.5, Fig. 2.3). A similarly located chromosome 3H QTL was also identified for 

JPT0101 and JPT9901 (Fig. 2.3), however, the 3H resistance to these two Japanese isolates was 

conferred by CI5791 (Table 2.5, Fig. 2.3). Additional relatively minor 1H and 3H QTL were also 

observed for 6A with a LOD value of 5.4 and 5.0, respectively. 

The most significant markers at the major 3H and 6H QTL regions (i.e. 

SCRI_RS_140091 for 6H and SCRI_RS_221644 for 3H) were used to create four genotypic 

classes (Table 2.3). The genotypic classes consisted of 6HCI5791/3HCI5791, 6HCI5791/3HTifang, 

6HTifang/3HCI5791, and 6HTifang/3HTifang (Table 2.3) and were used to evaluate the data sets for 

each of the nine P. teres f. teres isolates. The Northern Great Plains isolates LDNH04Ptt-19, Tra-

A5 and FGOH04Ptt-21 showed a QTL on chromosome 6H alone that was conferred by CI5791. 

The genotypic classes containing the 6HCI5791 marker type (i.e. 6HCI5791/3HCI5791, 

6HCI5791/3HTifang) were highly resistant regardless of the 3H genotype with the 6HCI5791/3HCI5791 

and the 6HCI5791/3HTifang genotypes having disease reaction types ranging from 1.10 to 2.04 and 

1.12 to 1.80, respectively, and the 6HTifang/3HTifang and 6HTifang/3HCI5791 genotypic classes 

showing phenotypic reactions ranging from 5.99 to 6.47 and 6.21 to 6.98, respectively (Table 

2.3). Interestingly, for the FGOH04Ptt-21 data set, there was also a significant difference 

between the 6HTifang/3HCI5791 and 6HTifang/3HTifang genotypes, although, based on the QTL 

analysis, this is not explained by the 3H locus (Fig. 2.3). 
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For the Californian, Brazilian, and Danish isolates, the 3H resistance conferred by Tifang 

and the 6H resistance conferred by CI5791 were both highly effective. As observed for the 

Northern Great Plains isolates, the presence of the CI5791 type marker at the 6H locus 

(6HCI5791/3HCI5791 and 6HCI5791/3HTifang) showed complete resistance with reaction types ranging 

from 1.04 to 1.69 and 1.00 to 1.09, respectively (Table 2.3). When Tifang alleles were present at 

both 3H and 6H (6HTifang/3HTifang) the reaction types ranged from 1.16 to 2.32 showing the 

effectiveness of the 3H resistance being conferred by Tifang (Table 2.3) even in the absence of 

the 6H CI5791 resistance. When the Tifang allele at the 6H locus was combined with the CI5791 

allele at the 3H locus (6HTifang/3HCI5791), moderately susceptible to susceptible reactions were 

observed ranging from 3.12 to 6.14. For BB06 and Br. Pteres, no significant differences in 

resistance were identified between genotypes harboring Tifang alleles (6HTifang/3HTifang) and 

those harboring CI5791 alleles at both loci (6HCI5791/3HCI5791), however, the California isolate 

15A showed a significant difference between these two genotypic groups, indicating that 

although both 6HCI5791 and 3HTifang confer resistance, the 6H resistance conferred by CI5791 is 

significantly more effective, at least to the California isolate 15A.  

For the Japanese isolates, resistance was conferred by CI5791 only, with Tifang being 

significantly more susceptible (Table 2.3).  Interestingly, the presence of the CI5791 allele at 

either the 3H or 6H locus (i.e. 6HCI5791/3HCI5791 and 6HTifang/3HCI5791 and 6HCI5791/3HTifang) 

conferred a resistant reaction indicating that in addition to the CI5791 6H resistance, CI5791 

harbours an isolate-specific resistance at a similar position on chromosome 3H as that of Tifang.  

Genotypes having the CI5791 6H allele were highly resistant as with the other isolates ranging 

from 1.01 to 1.11 for the 6HCI5791/3HCI5791 genotype and 1.13 to 1.26 for the 6HCI5791/3HTifang 

genotype. Unlike the California/Brazil/Denmark group, the 6HTifang/3HCI5791 was significantly 
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more resistant, ranging from 1.77 to 3.96 compared to the genotypic group containing Tifang 

alleles at both loci (6HTifang/3HTifang), which showed moderately susceptible to susceptible 

reactions ranging from 4.85 to 6.54. Additionally, as was seen with the California isolates, 

genotypes harboring the CI5791 6H resistance alone showed a significantly more resistant 

reaction than the genotypes harboring the CI5791 3H resistance (Table 2.3).  

Table 2.5. Major quantitative trait loci associated with resistance to barley net form net blotch 
caused by P. teres f. teres isolates in the CI5791 × Tifang RIL population. 
  

Isolates LOD values (percent variation explained) 

 3H Resistance 
source 6H Resistance 

source 

LDNH04Ptt-19 - - 48.0 (83.0%) CI5791 

Tra-A5 - - 47.0 (86.0%) CI5791 

FGOH04Ptt-21 - - 35.0 (73.0%) CI5791 

JPT0101 11.0 (23.0%) CI5791 18.0 (37.0%) CI5791 

JPT9901 6.2 (8.1%) CI5791 29.0 (63.0%) CI5791 

15A 13.0 (18.0%) Tifang 21.0 (45.0%) CI5791 

6A
a
 16.0 (23.0%) Tifang 19.0 (30.0%) CI5791 

Br. Pteres 16.0 (28.0%) Tifang 9.9 (25.0%) CI5791 

BB06 16.0 (26.0%) Tifang 11.0 (26.0%) CI5791 
  
a Isolate 6A had additional QTL peaks on chromosomes 1H and 3H with LOD scores of 5.4      
(11.0%) and 5.0 (8.0%), respectively 
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Fig. 2.3. QTL analysis of resistance in the CI5791×Tifang RIL population against a global 
collection of P. teres f. teres isolates. Chromosomes 3H and 6H of barley are shown with markers 
to the right of the corresponding QTL composite interval mapping curve. LOD scales (0-50) are 
shown on the x axis. The dotted line indicates the LOD threshold of 4.0 (P=0.01). The most 
significant marker for each QTL is shown in red.  
 
 
 



40 
 

Discussion 

Several previous studies revealed the presence of both resistance and susceptibility genes 

at the centromeric region of barley chromosome 6H (reviewed in Liu et al. 2011). Here we 

showed that NFNB resistance conferred by CI5791 was effective against a global collection of P. 

teres f. teres and this resistance also mapped to a similar centromeric region on barley 

chromosome 6H. Unlike several of the other 6H studies, the 6H resistance conferred by CI5791 

was highly effective with almost no disease-associated damage to the leaf, outside of a pinpoint 

dark brown lesion (Fig. 2.1). Based on phenotypic analysis of F2 individuals and phenotypic and 

QTL analysis of an RIL population, it was clear that the 6H resistance conferred by CI5791 was 

dominant.  

When dividing the population into genotypic classes that did or did not have the CI5791 

6H alleles, the lines with CI5791 alleles ranged in disease reaction from 1.0 to 2.0 which are 

highly resistant reactions on the 1 to 10 Tekauz (1985) scale.  The complete effectiveness of the 

CI5791 resistance to all the isolates tested indicates the potential usefulness and durability of this 

gene. 

NFNB resistance/ susceptibility loci have also been identified on chromosome 3H 

(Graner et al. 1996; Raman et al. 2003; Gupta et al. 2004; Yun et al. 2005), including NFNB 

studies on Tifang (Schaller 1955) where resistance was located to chromosome 3H using 

trisomic analysis (Bockelman et al. 1977). However, no chromosome 3H map location was 

identified. Our current study mapped and genetically characterized the 3H locus and showed that 

resistance coming from chromosome 3H was effective against six of the nine isolates used in this 

study. Interestingly, 3H resistance effective against the Danish, the Brazilian, and the two 

California isolates was conferred by Tifang alleles, but the 3H resistance effective against the 
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two Japanese isolates was conferred by the CI5791 alleles, indicating the presence of allelic 

variation of a single resistance gene or two linked resistance genes, one in CI5791 and one in 

Tifang.  

RIL population analysis did not clearly define resistance gene action for the Japanese, 

Brazilian or Danish isolates (Table 2.4). However, the F2 results did indicate that the 3H 

resistance conferred by both Tifang and CI5791 as well as the 6H resistance conferred by 

CI5791 were dominant. It is possible that, similar to the 6H centromeric region identified here 

and by others, the 3H locus is also a complex region harboring different alleles of the same gene 

in Tifang and CI5791 or at least two closely linked resistance genes conferring resistance to 

different pathotypes. The generation of a larger population, fine mapping, and gene cloning will 

be necessary to characterize these regions. 

Recently, several necrotrophic specialist pathogens have been shown to produce 

necrotrophic effectors (NEs) that are effective at triggering the host programmed cell death 

(PCD) response to induce necrosis for the purpose of extracting nutrients from the host (Liu et al. 

2012; Lorang et al. 2012 and Ciuffetti et al. 2010). P. teres f. teres has also been defined as a 

necrotrophic pathogen (Liu et al. 2011) and we have shown that P. teres f. teres produces NEs 

that lead to NE-triggered susceptibility (NETS) (Liu et al. 2015). In this study, however, we have 

identified two single gene sources of dominant resistance, one of which (6H) was effective 

against all of the isolates tested and the other (3H) showing differential reactions across the set of 

isolates that we used, as well as showing resistance being conferred by different barley parental 

lines.  We speculate that the level of resistance conferred by both the 6H and 3H loci is an early 

response in the host-pathogen interaction that limits either penetration altogether or any 

proliferation immediately after penetration. Further investigation including microscopy studies is 
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necessary to understand the temporal and spatial occurrence of this resistance mechanism. 

Additionally, characterization of the mode of pathogen recognition includes the identification of 

this resistance gene and the identification of the pathogen effector triggering this high level of 

resistance will be necessary to fully understand this host-pathogen interaction.   
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CHAPTER 3: GENETIC ANALYSIS OF VIRULENCE/AVIRULENCE IN THE 

PYRENOPHORA TERES F. TERES POPULATION BB25 × FGOH04PTT-21 ACROSS A 

DIVERSE SET OF BARLEY LINES 

Abstract 

Pyrenophora teres f. teres is a necrotrophic pathogen responsible for causing net form net 

blotch of barley. In order to characterize the genetics of avirulence/virulence in the P. teres f. 

teres pathogen, a fungal population was developed using P. teres f. teres isolates BB25 

(Denmark) and FGOH04Ptt-21 (North Dakota, USA). 109 progeny isolates were obtained from 

the cross between BB25 and FGOH04Ptt-21 that were used for NFNB disease evaluation across 

ten barley lines. BB25 was virulent on three of the barley lines and avirulent on seven of the 

barley lines whereas FGOH04Ptt-21 was virulent on all ten barley lines evaluated. Genetic maps 

were generated with single nucleotide polymorphism (SNP) markers obtained using a restriction 

associated DNA genotyping by sequencing (RAD-GBS) approach. Sixteen linkage groups were 

formed and used to identify major quantitative trait loci (QTL) associated with 

avirulence/virulence on the ten barley lines. Nineteen QTL were identified on twelve linkage 

groups out of which three QTL had major effects (R2 ≥ 30%) while sixteen QTL were relatively 

minor (R2 < 30%). One or two major affect loci were identified for a few of the lines used 

regularly as differentials, conversely, variation in virulence on most of the local barley cultivars 

was associated with several loci that contributed quantitatively to disease.  

Introduction 

Net form net blotch (NFNB) of barley is caused by the fungal pathogen Pyrenophora 

teres f. teres and is prevalent in major barley-producing regions of the world.  The pathogen 

causes yield losses of 10 to 40% with the possibility of total loss when a susceptible cultivar is 
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grown under disease-conducive environmental conditions (Mathre, 1997; Murray and Brennan, 

2010). Initially, P. teres f. teres produces dot-like lesions on leaves that further develop into 

longitudinal striations, forming a net-like pattern. The pathogen directly penetrates the host cells 

without forming a feeding structure and kills its host as infection progresses (Reviewed in Liu et 

al., 2011). P. teres f. teres is closely related to other pathogens such as Parastagonospora 

nodorum, and Pyrenophora tritici-repentis that produce necrotrophic effectors (NEs) that 

interact with dominant host gene products in an inverse gene-for-gene manner (reviewed in Faris 

et al., 2013; Friesen and Faris, 2010). Liu et al. (2015) showed that P. teres f. teres also produces 

NEs, however, dominant resistance has also been identified in several barley backgrounds 

(Friesen et al., 2006; Koladia et al., 2017). 

Khan and Boyd (1969) showed that P. teres f. teres isolates were cultivar-specific and 

had strong host genotype specificity. Weiland et al. (1999) were the first to perform avirulence 

mapping studies on a P. teres f. teres bi-parental population obtained from a cross of two P. teres 

f. teres isolates. The single gene AvrHar conferred low virulence on Harbin barley and was 

identified and mapped using molecular markers. Lai et al. (2007) used the same P. teres f. teres 

cross to show that two additional genes (AvrPra1 and AvrPra2) conferred avirulence toward the 

barley line Prato where AvrPra2 and AvrHar mapped to the same locus, but in repulsion.  Beattie 

et al., (2007) developed a bi-parental mapping population by crossing two Canadian isolates, 

WRS 1906 (avirulent) and WRS 1607 (virulent) and identified a single gene Avrheartland 

conferring avirulence on Heartland barley. Afanasenko et al. (2007) showed that resistance in the 

host and avirulence in the pathogen were both controlled by one or two major genes. Specific 

host-pathogen interactions were shown to occur between barley lines and P. teres f. teres isolates 

and it was concluded that this system followed a gene-for-gene model (Afanasenko et al., 2007). 
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Shjerve et al., (2014) generated a cross of two California isolates to investigate the genetics of P. 

teres f. teres avirulence/virulence on barley lines Rika and Kombar, which were susceptible to 

6A and 15A, respectively. Two loci, VK1 and VK2 conferred virulence on Kombar and two 

separate loci, VR1 and VR2 conferred virulence on Rika. Progeny isolates of the 15A × 6A 

population harboring only one of these loci were then inoculated on the Rika × Kombar 

population and susceptibility to these isolates corresponded to the same barley chromosome 6H 

region as the parental isolates (Shjerve et al., 2014; Abu Qamar et al. 2008) indicating major 

susceptibility genes located on barley chromosome 6H. Liu et al. (2015) reported a small, 

secreted NE protein PttNE1 from the intercellular wash fluids (IWFs) of Hector, a susceptible 

barley line, after being inoculated with a virulent isolate. The sensitivity to PttNE1 mapped to a 

gene designated SPN1 that corresponded to a resistance/susceptibility QTL region of barley 

chromosome 6H in a recombinant inbred barley population derived from a cross between Hector 

and the resistant barley line NDB112 (Liu et al., 2015). This study showed the interaction 

between the host gene and NE of the pathogen led to susceptibility as observed in the wheat-

Parastagonospora nodorum system (Friesen et al., 2008; Friesen and Faris, 2010). Collectively, 

these studies indicate that the barley- P. teres f. teres pathosystem belongs partially to the NE- 

triggered susceptibility (NETS) model and partially to an effector triggered immunity (ETI) 

model as dominant resistance genes have also been identified to be effective against the pathogen 

(Friesen et al., 2006; Steffenson and Webster, 1992b). 

In the current study, the Danish P. teres f. teres isolate BB25 and the North Dakota P. 

teres f. teres isolate FGOH04Ptt-21 were chosen to develop a pathogen mapping population 

based on their phenotypic differences observed on both local and commonly used differential 

barley lines. This population was then used to genetically characterize this population for 
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virulence associated with net form net blotch on four local barley lines and six commonly used 

differential lines. 

Materials and Methods 

P. teres f. teres Pathogen Population Development  

P. teres f. teres isolates BB25 (kindly provided by Lise Nistrup Jorgensen, Aarhus 

University, Denmark) and FGOH04Ptt-21 (FGO21) (collected from Fargo, North Dakota, USA) 

were used in a cross resulting in 109 progeny using methods described in Shjerve et al. (2014). 

Briefly, sterile wheat stems were placed on Sach’s media (1 g CaNO3, 0.25 g MgSO4 7H2O, 

trace FeCl3, 0.25 g K2HPO, 4 g CaCO3, 20 g agar, ddH2O to 1 L) and parents (BB25 and 

FGO21) were inoculated on opposite ends of wheat stems using 100 µl of inoculum containing 

4000 spores/ml. Once the inoculum converged in the middle of the wheat stems, the media plates 

were incubated in the dark at 15º C for 12 days and then moved to 13º C with a 12 h photoperiod 

to produce pseudothecia-containing asci. When ascospores began to mature inside the 

pseudothecia, individual sterile wheat stems were transferred to lids of the water agar plates with 

the media facing opposite the wheat stems. These plates were then incubated at 13º C with a 12 h 

photoperiod and checked regularly for ascospore discharge on the water agar media.  Individual 

ascospores were then picked from different spots on the water agar plates and plated on V8PDA 

media (150 mL V8 juice, 10 g difco PDA, 3 g CaCO3, 10 g agar, ddH2O up to 1 L). These 

individual ascospores were then allowed to grow and sporulate and single conidia were isolated 

from cultures produced from each ascospore. Two rounds of single-sporing were done to ensure 

genetic purity. Mating type gene segregation ratios for all progeny isolates were evaluated as 

described in Lu et al. (2010).  
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 Disease Evaluation on Barley Lines 

The 109 progeny isolates of the BB25×FGO21 population along with the parents were 

used to perform phenotypic analysis on ten barley lines including the commonly used differential 

lines Manchurian, Tifang, CI9214, CI4922, Beecher, and Cape (Liu et al., 2012) as well as local 

barley cultivars Celebration, Pinnacle, Stellar and Hector.  

All P. teres f. teres progeny isolates along with parental isolates were grown and 

inoculated under the same conditions as described in Shjerve et al (2014). Briefly, the pathogen 

isolates were inoculated on V8-PDA plates and the inoculated plates were kept in the dark for 5-

7 days at room temperature. The plates were then placed in the light for 24 h at room temperature 

followed by dark for 24 h at 15º C. The plates were then flooded with distilled water and the 

spores were released using an inoculating loop. The inoculum was then collected and diluted to 

2000 spores/ml. Tween 20 was added at a rate of one drop/50 ml inoculum to avoid spore 

clumping. The ten barley lines were planted in a rack containing 49 conetainers (Stuwe and 

Sons, Inc., Corvallis, OR, USA) with ‘Stout’ barley planted as the border to reduce any edge 

effect. Stout and Conlon were used as checks for all inoculations. Inoculations were done as 

described by Friesen et al. (2006) and plants were grown as described in Shjerve et al. (2014). 

Briefly, 14-16 day-old seedlings with secondary leaves fully expanded were inoculated with the 

inoculum of progeny and parental isolates individually.  The isolates were inoculated using an air 

sprayer (Huskey, model # HDS790) until the leaves were covered with a heavy mist of inoculum 

but before run-off. The plants were then placed in mist chambers with 100% relative humidity at 

21º C with 24 h of light. After 24 h, the plants were placed in a growth chamber at 21º C with a 

12 h photoperiod until disease evaluation. Disease reactions were evaluated seven days post-

inoculation on a 1 to 10 scale as described by Tekauz (1985) where reaction type 1 was resistant 
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and reaction type 10 was susceptible. Three replicates were performed for each parental and 

progeny isolate across the set of barley lines with the lines being randomized in replicates two 

and three.  

Genotypic Analysis of the Pathogen Population 

DNA was extracted from the 109 BB25 × FGO21 progeny lines using a modified CTAB 

extraction method similar to Shjerve et al., (2014).  Genomic libraries were constructed using the 

RAD GBS method (Baird et al., 2008; LeBoldus et al., 2014; Shjerve et al., 2014). Size selection 

and amplification of the genomic libraries was carried out prior to performing sequencing runs 

on an Ion Torrent PGM system (Life Technologies). Once the sequencing was completed, the 

sequencing files obtained from the Ion Torrent Server were passed through a SNP calling 

pipeline to identify SNP markers useful for genetic mapping modified from LeBoldus et al., 

(2014) and Carlsen et al. (submitted). A low pass Ion Torrent sequence of the parental isolate 

FGO21 was used as the reference for SNP calling. 

Marker files were then exported to an Excel sheet and filtered as described in Shjerve et 

al. (2014). Briefly, markers that did not meet the quality score threshold of 999 (assigned by 

SAM tools) or had greater than 30% missing data were removed. Allele frequency filter 

parameters were used to keep data within a 3:1 allele ratio, (i.e. useful markers were between 25 

and 75% of each parental marker type).  

Genetic Map Construction 

The SNP markers obtained through the filtering process were exported to MapDisto 

version 1.7.5 (Lorieux 2012) for construction of genetic linkage maps. The “find groups” 

command was used for construction of linkage groups with LOD min= 7.0 and rmax=0.3. 

Functions such as “check inversions” and “ripple order”, were used to identify the best order of 
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the markers in each linkage group. The “drop locus” command was used to remove problematic 

markers that expanded the map size by greater than 3 cM. Co-segregating markers were 

identified for each linkage group and the marker with the least amount of missing data was 

retained from all the redundant markers. Linkage groups were named according to P. tritici-

repentis chromosomes (Manning et al., 2013). Marker sequences that corresponded to each of 

the linkage groups were compared with the P. tritici-repentis chromosomes (Manning et al., 

2013) using BLAST analysis (Altschul et al., 1990). If more than one linkage group showed 

correspondence to the same P. tritici-repentis chromosome they were renamed consecutively 

(i.e. if two linkage groups corresponded to chromosome 1, they were renamed as LG 1.1 and LG 

1.2).   

QTL Analysis 

The genotypic and phenotypic data was exported to Q gene v 4.3.0 (Joehanes and Nelson 

2008) for QTL analysis. QTL analysis was carried out as described in Shjerve et al. (2014). 

Briefly, critical logarithm of odds (LOD) was calculated by performing 1000 permutations. An α 

= 0.05 level was used as the critical LOD threshold value. Composite interval mapping (CIM) 

was performed for identification of significant QTL as described in Koladia et al. (2017).  

Results and Discussion 

Phenotypic Analysis 

In general, BB25 is less virulent than FGO21 on the barley lines used in this study 

(Figure 3.1), however, BB25 showed a higher virulence on CI9214, Cape, and Pinnacle showing 

average disease reactions greater than 4. FGO21 showed disease reactions of greater than 6 on all 

lines except CI9214, however, disease reactions across the progeny ranged from resistant (≤3) to 

susceptible (>6) for all the barley lines (Table 3.1, Figure 3.2). Transgressive segregation was 
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our first indication that BB25 and FGO21 had different complements of virulence and avirulence 

genes, likely because these isolates were collected on different continents and had the selection 

pressure of different resistance sources used by the respective local breeding programs.  

                                            

Figure 3.1. Disease reactions on ten barley lines. Parental isolates are indicated on the right and 
the ten barley cultivars are indicated on the left. 
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  Table 3.1. Phenotypic reactions of ten barley lines when inoculated with parental          
   isolates BB25 and FGO21. 
  

Barley lines BB25 FGO21 Range of 
population 

Manchurian 1.00 7.83 1.00-7.83 

Tifang 1.00 7.00 1.00-6.83 

CI4922 1.33 7.33 1.00-7.66 

Beecher 1.00 7.83 1.00-8.16 

CI9214 5.33 4.83 1.00-8.25 

Cape 4.16 7.83 2.33-8.33 

Celebration 2.00 6.83 1.83-7.16 

Pinnacle 6.16 7.00 2.50-8.33 

Hector 3.33 8.16 3.00-9.16 

Stellar 1.16 6.83 1.33-7.16 
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Figure 3.2. Histograms representing the average phenotypic reactions of progeny isolates of the 
BB25×FGO21 population when inoculated on ten barley lines. The y-axis represents the 
frequency of progeny isolates and x-axis represents the average disease reaction score of 
BB25×FGO21 progeny lines. Disease reactions for parents are shown on the histogram as BB25 
and FGO and can be found in Table 3.1. 
 
Marker Development and Linkage Mapping 

A total of 60,185 sequence tags were identified through the SNP calling pipeline out of 

which 685 high quality SNP markers were obtained through the filtering process as described 

above. The 685 SNP markers were exported to MapDisto version 1.7.5 (Louriex, 2012) and 315 

redundant markers were removed resulting in 370 high quality, non-redundant SNP markers to 

be used for construction of the linkage maps. Linkage mapping resulted in 16 linkage groups and 

a total map size of 1905.81 cM with the size of the linkage groups ranging from 32.77 to 230.71 
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cM (Table 3.2). Using only non-redundant markers, the average density was one marker locus 

every 5.15 cM with the largest gap being 19.8 cM (Table 3.2). Ellwood et al. (2010) estimated a 

minimum of nine and a maximum of eleven chromosomes for P. teres f. teres indicating that the 

smaller linkage groups are likely incomplete chromosomes. The maps presented in Ellwood et al. 

(2010) spanned 2477.7 cM, which may be explained by the difference in the quality of the 

different marker types used in the two studies because in our hands, SNP markers tend to be 

more reliable than AFLP markers. 
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    Table 3.2. BB25×FGO21 linkage group summary. 
 

Linkage groupa 
 

Marker loci 
 

Linkage group 
size (cM) 

 
Average marker 

density (cM/ 
marker) 

LG 1.1 40 230.71 5.76 

LG 1.2 40 219.22 5.48 

LG 1.3 22 92.78 4.21 

LG 1.4 9 39.45 4.38 

LG 2.1 44 218.97 4.97 

LG 3.1 29 149.54 5.15 

LG 5.1 22 131.99 5.99 

LG 6.1 13 95.73 7.36 

LG 6.2 15 79.76 5.31 

LG 7.1 29 111.06 3.82 

LG 8.1 8 39.28 4.91 

LG 9.1 23 160.66 6.98 

LG 9.2 15 73.16 4.87 

LG 9.3 7 32.77 4.68 

LG 10.1 24 109.51 4.56 

LG 11.1 30 121.23 4.04 
 
    a  Linkage groups for BB25 × FGO21 population named according to the   
      Pyrenophora tritici repentis chromosomes 
 
 
QTL Analysis 

A LOD value threshold (α=0.05) obtained after performing 1000 permutations on each of 

the data sets ranged from 2.9 to 3.1. The mean of all the LOD values (3.0) was used as the 

critical LOD threshold value when reporting significant QTL. Even if the maximum value of 3.1 

were used, only a single QTL associated with virulence on Pinnacle would have been removed 
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and when evaluating the Pinnacle data, a LOD threshold of 3.0 was identified. Therefore, we 

used the 3.0 value. A total of 19 QTL were identified on 12 of the 16 linkage groups, and the 

number of significant QTL ranged from 1 to 5 for individual barley lines.  The most significant 

QTL was identified on LG 10.1 and was identified on barley lines Manchurian, Tifang, and 

CI4922, accounting for 76%, 62% and 34% of the phenotypic variation, respectively (Figure 3. 

3). These three lines have been used repeatedly in P. teres f. teres population virulence studies 

worldwide (Afanasenko et al., 2009; Cromey and Parkes, 2003; Liu et al., 2010, 2012; 

Steffenson and Webster, 1992a; Wu et al., 2003). A relatively minor QTL was also identified on 

LG 9.1 for Tifang, accounting for 3.3% of the phenotypic variation (Figure 3.3). No other QTL 

were identified for Manchurian or CI4922. All QTL identified for Manchurian, Tifang and 

CI4922 showed the virulence allele to be contributed by FGO21. It is likely that the QTL 

identified on LG 10.1 is underlied by an avirulence effector that is recognized by these three 

barley lines in a gene-for-gene manner. Support for this hypothesis comes from the Koladia et al. 

(2017) study where it was shown that Tifang harbors a major dominant resistance gene on 

chromosome 3H that was effective against another Danish isolate. The Tifang, Manchurian and 

CI4922 resistance could be an early recognition of an effector produced by BB25, resulting in an 

incompatible interaction. 

For the commonly used differential line Beecher, unique QTL were identified on LG 1.1 

and LG 2.1 accounting for 43% and 17% of the phenotypic variation, respectively (Figure 3.3). 

Virulence at both loci was contributed by FGO21. Beecher has been used several times as a 

differential line (Cromey and Parkes, 2003; Gupta and Loughman, 2001; Jonsson et al., 1997; 

Khan and Boyd, 1969; Khan, 1982; Liu et al., 2010, 2012; Steffenson and Webster, 1992a; Wu 

et al., 2003) and shows a strong differential response between parents (i.e. 1.0 for BB25 and 7.3 
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for FGO21). A continuum of reaction types was observed (1.0-8.16) (Table 3.1), however, a high 

number of highly resistant type reactions were also observed compared to the locally planted 

barley cultivars as seen below and in Table 1 and Figure 2. This strong differential response is 

likely why this and other commonly used differential lines like Manchurian, Tifang, and CI4922 

have been popular in evaluating P. teres f. teres populations, resulting in an overly simplistic 

view of these interactions. 

CI9214 has also been used as a differential line in several studies (Akhavan et al., 2016; 

Cromey and Parkes 2003; Gupta and Loughman 2001; Liu et al., 2010, 2012; Tekauz, 1990) and 

for this line, unlike the other differential lines, several relatively minor effect loci were observed 

on LG 1.3, LG 5.1, LG 8.1, LG 9.2 and LG11.1 accounting for 21.0%, 4.2%, 8.4%, 19.0% and 

2.7% of the phenotypic variation, respectively. All QTL pertaining to CI9214 except the QTL on 

LG 8.1 were in unique genetic regions. Additionally, the virulence allele at each QTL was 

contributed by BB25 except that of the LG 8.1 QTL. The QTL region on LG 8.1 was also 

common to five of the ten lines used including CI9214, Cape, Celebration, Hector, and Steller 

and in each case the virulence allele was contributed by FGO21. (Figure 3.3). Typically, the 

differential lines that are commonly used provide a strong differential reaction; however, CI9214 

likely has several quantitative resistance/susceptibility loci that correspond to the virulence loci 

identified here. CI9214 was likely commonly used as a differential line due to its unique reaction 

pattern across natural populations, e.g. in the set of 10 lines that we used in this study, CI9214 

was the only line that was more susceptible to BB25 than FGO21. 

For Cape, which has also been used in several studies (Liu et al., 2010, 2012; Steffenson 

and Webster 1992a), unique QTL were present on LG 6.1, 9.1, and 9.2 accounting for 4.8%, 

5.9% and 8.9% of the phenotypic variation, respectively. The virulence allele was contributed by 
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BB25 for the QTL on LG 6.1 whereas the virulence allele was contributed by FGO21 for the 

QTL on LG 9.1 and 9.2. The common QTL with the virulence allele contributed by FGO21 on 

LG 8.1 (Figure 3.3) was also significant, accounting for 20% of the disease variation (Figure 

3.3). Similar to CI9214, Cape has been used as a differential line but does not have a 

“differential” type response, but more typically shows an intermediate response due to the 

number of quantitative virulences that are effective against it (Liu et al. 2010, 2012). This results 

in a reaction type histogram with a bell shaped curve, unlike the other common differential lines 

but similar to the local cultivars (Figure 3.2) 

The remainder of the lines, made up of locally planted cultivars, showed several 

relatively minor effect loci, similar to CI9214 and Cape. For Celebration, three QTL were 

observed, with unique QTL on LG 10.1 and 11.1 accounting for 6.1% and 15% of the phenotypic 

variation, respectively (Figure 3.3) and the common QTL on LG 8.1 that accounted for 15% of 

the phenotypic variation (Figure 3.3).  The virulence alleles were contributed by FGO21 for QTL 

on LG 8.1 and LG 11.1 whereas BB25 contributed the virulence allele for the QTL on LG 10.1. 

For Pinnacle, a major effect QTL was observed on LG 5.1, accounting for 41% of the 

phenotypic variation, with the virulence allele contributed by BB25. Additionally, a minor QTL 

was observed on LG 1.2 accounting for 6.0% of the phenotypic variation (Figure 3.3) with the 

virulence allele at this QTL being contributed by FGO21. Even though the only major QTL was 

observed on Pinnacle with the virulence allele contributed by BB25, a bell-shaped curve was still 

observed. Since FGO21 shows a higher disease reaction (7.0) than BB25 (6.16) (Table 3.1, 

Figure 3.1) and only a single minor virulence (accounting for only 6% of the disease variation) 

was contributed by FGO21, it is likely that other undetected loci are present in this population 

which are contributing to the bell-shaped curve.  
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For Hector, one of our most susceptible lines (Liu et al., 2010, 2012; Wu et al., 2003), 

minor effect QTL were observed on LG 1.2, LG 2.1, LG 8.1 and LG 11.1 accounting for 6.1%, 

7.2 %, LG 8.6 % and 12.0% of the phenotypic variation, respectively (Figure 3.3) with all 

virulence alleles being contributed by FGO21.  A Hector × NDB112 barley population was used 

to evaluate the genetics of resistance/susceptibility to P. teres f. teres (Liu et al., 2015) and 

showed that several susceptibility loci are present across the barley genome, including a 

necrotrophic effector sensitivity gene identified on chromosome 6H. It is likely that this 

necrotrophic effector gene corresponding to the 6H sensitivity underlies one of these four QTL.  

Stellar had only the common QTL found on LG 8.1 that accounted for 12% of the 

phenotypic variation, however, four additional QTL peaks just under the significance threshold 

were also present (Figure 3.3).  

 In summary, nineteen virulence/avirulence QTL were identified on twelve of the P. teres 

f. teres linkage groups, out of which only three QTL accounted for greater than 30% of the 

phenotypic variation and sixteen QTL accounted for less than 30% of the phenotypic variation. 

Among the major effect QTL (> 30%), a common QTL was identified for Manchurian, Tifang 

and CI4922 on LG 10.1. For Beecher one unique major effect QTL was identified on LG 1.1 and 

one unique major effect QTL was identified for Pinnacle on LG 5.1 (Figure 3.3). This study 

clearly shows that the P. teres f. teres interaction is complex and that the differential lines that 

have been used in the past are not sufficient for capturing the virulence diversity of the P. teres f. 

teres population. In general, barley lines chosen for evaluating virulence diversity have been 

chosen based on major differential reactions of which many are available. The danger of 

choosing differentials in this way is that the interaction is over simplified as is seen in the current 
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study where differential lines show one or two major loci whereas the barley lines that are 

planted in the field have a more complex quantitative interaction with the pathogen.  

 

Figure 3.3. Quantitative trait loci (QTL) associated with disease reaction to each of the ten 
barley lines. Composite interval mapping of 16 linkage groups showing the presence of QTL 
significant at a logarithm of odds (LOD) threshold of 3.0. The LOD and R2 values for each 
significant QTL are over or adjacent to the QTL peaks. Values in blue indicate that virulence is 
coming from FGO21 and values in red indicate that virulence is coming from BB25. 
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Conclusion 
 

When combining this study with the current literature reporting on both NFNB 

resistance/susceptibility in barley and virulence/avirulence in P. teres f. teres, we can conclude 

that this interaction is highly complex with interactions spanning the spectrum from quantitative 

to qualitative. On the host side, the NFNB literature contains several examples of qualitative 

dominant resistance and quantitatively inherited susceptibility (reviewed in Liu et al., 2011). On 

the pathogen side, both active virulence, including necrotrophic effectors (Liu et al., 2015), and 

defense-inducing avirulence type effectors (Beattie et al., 2007; Lai et al., 2007; Weiland et al., 

1999) that are likely triggering effective defense responses after recognition of the pathogen have 

been identified. Continued work on the cloning of the genes underlying these QTL is underway. 

Identification of these genes and their modes of action are critical to the understanding of the 

NFNB interaction. 
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CHAPTER 4: CONCLUSION 
 

NFNB caused by P. teres f. teres is prevalent in most of the barley producing regions of 

the world and causes significant yield losses (10-40%). Previous studies indicate that the barley-

P. teres f. teres pathosystem at least partially follows the NE-triggered susceptibility (NETS) 

model  in which there is an interaction between dominant barley susceptibility genes and 

necrotrophic effectors of the pathogen (Shjerve et al., 2014; Liu et al., 2015) and partially to an 

effector triggered immunity (ETI) model, as dominant resistance genes and avirulence genes 

have been identified (Steffenson et al., 1992; Weiland et al., 1999; Friesen et al., 2006;  Lai et al., 

2007;  Beattie et al., 2007; Afanasenko et al., 2007).  The barley line CI5791 confers high levels 

of resistance to P. teres f. teres with few documented isolates overcoming this resistance. Tifang 

barley also harbors resistance to P. teres f. teres and using trisomic analysis, this resistance was 

previously shown to localize to barley chromosome 3H. To increase our knowledge about the 

resistance/susceptibility of barley to P. teres f. teres, a CI5791 × Tifang F6 recombinant inbred 

line (RIL) population was developed using single seed descent. Utilizing the Illumina iSelect 

SNP platform 2,562 single nucleotide polymorphism (SNP) markers were identified across the 

barley genome, out of which 827 non redundant SNP markers were used to construct seven 

linkage maps that corresponded to the barley chromosomes. The CI5791 × Tifang RIL 

population was evaluated for NFNB resistance using nine P. teres f. teres isolates collected 

globally. Tifang was resistant to four of the isolates tested whereas CI5791 was resistant to all 

nine isolates. QTL analysis indicated that the CI5791 resistance mapped to chromosome 6H 

whereas the Tifang resistance mapped to chromosome 3H. Additionally, CI5791 also harbored 

resistance to two Japanese isolates that mapped to a 3H region similar to that of Tifang. SNP 
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markers and RILs harboring both 3H and 6H resistance will be useful in resistance breeding 

against NFNB.  

In order to characterize the genetics of avirulence/virulence in the P. teres f. teres 

pathogen, a fungal population was developed using P. teres f. teres isolates BB25 (a Danish 

isolate) and FGOH04Ptt-21 (a North Dakota isolate). 109 progenies were obtained and used for 

virulence evaluation across 10 barley lines. BB25 was found to be virulent on three of the barley 

lines and avirulent on seven of the barley lines whereas FGOH04Ptt-21 was found to be virulent 

on all ten barley lines. 685 SNP markers were obtained using a RAD-GBS approach in 

conjunction with Ion Torrent sequencing. 370 non redundant SNP markers were obtained and 

used for construction of genetic linkage maps. 16 linkage groups were formed and used to 

identify QTL associated with avirulence/virulence on the ten barley lines. Nineteen unique QTL 

were identified on twelve linkage groups out of which three QTL had major effects with 

phenotypic variation greater than 30% while sixteen QTL were relatively minor with phenotypic 

variation less than 30%. One or two major affect loci were identified for a few of the lines used 

as differentials, however, virulence on most of the barley cultivars was contributed by several 

loci. This information will be further utilized in identifying genes underlying the major QTL. 

Studies carried out in this thesis add more information to understand the complex 

interaction between barley and P. teres f. teres. The C15791×Tifang population will be useful in 

barley breeding programs. The 3H and 6H regions could be further studied to identify resistant 

genes underlying these regions. The major QTL regions identified in the BB25×FGOH04Ptt-21 

pathogen population will be useful in identifying the genes conferring virulence. These genes 

could be further studied in order to determine the corresponding host regions. 
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