
CONTEXT SPECIFIC MODULE MINING FROM MULTIPLE CO-EXPRESSION GRAPH

A Thesis
Submitted to the Graduate Faculty

of the
North Dakota State University

of Agriculture and Applied Science

By

Md Shakhawat Hossain

In Partial Fulfillment of the Requirements
for the Degree of

MASTER OF SCIENCE

Major Department:
Computer Science

May 2017

Fargo, North Dakota

NORTH DAKOTA STATE UNIVERSITY
Graduate School

Title

CONTEXT SPECIFIC MODULE MINING FROM MULTIPLE

CO-EXPRESSION GRAPH

By

Md Shakhawat Hossain

The supervisory committee certifies that this thesis complies with North Dakota State University’s

regulations and meets the accepted standards for the degree of

MASTER OF SCIENCE

SUPERVISORY COMMITTEE:

Prof. Saeed Salem
Chair

Prof. Simone Ludwig

Prof. Mukhlesur Rahman

Approved:
August 14, 2017

Date

Prof. Kendall Nygard
Department Chair

ABSTRACT

Gene co-expression networks can be used to associate genes of unknown function with bi-

ological processes or to find genes in a specific context, environment responsible for a disease. We

provide an overview of methods and tools used to identify such recurrent patterns across multiple

networks,can be used to discover biological modules in co-expression networks constructed from

gene expression data and we explain how this can be used to identify genes with a regulatory role

in disease. However, existing algorithms are very much costly in terms of time and space. As net-

work size or number increases, mining such modules get much more complex. We have developed

an efficient approach to mine such recurrent context specific modules from 35 gene networks.This

computationally very difficult problem due to the exponential number of patterns was solved non-

exponentially.

iii

ACKNOWLEDGEMENTS

I would like to be highly thankful to my supervisor, Dr. Saeed Salem. His guidance was

invaluable in helping me finish this paper. His enthusiasm in and profound knowledge of the

discipline of computer science are a source of inspiration to me.

I am very grateful to Dr. Kendall Nygard . Without him, I would not have been introduced

to this great university. His unfailing support and advising enabled me to successfully overcome the

challenges throughout my graduate studies.

I would like to express my gratitude to my committee members, Dr. Simone Ludwig and

Dr. Mukhlesur Rahman, for taking the time to help me graduate from the University.I also want

to thank North Dakota State University and the Department of Computer Science for offering me

the opportunity to study at such a great school, full of smart and diverse people who contributed

to a great environment for research and study.

iv

DEDICATION

To Almighty God,mother and father, for supporting me all the way.

v

TABLE OF CONTENTS

ABSTRACT . iii

ACKNOWLEDGEMENTS . iv

DEDICATION . v

LIST OF TABLES . vii

LIST OF FIGURES . viii

1. INTRODUCTION AND RELATED WORK . 1

2. FREQUENT ITEMSET MINING . 4

2.1. Hill-climbing (Greedy Local Search) . 6

2.2. Related Work . 7

3. PROBLEM DESCRIPTION . 10

3.1. Algorithm . 12

3.2. Pseudo-code . 17

4. EXPERIMENTS . 19

4.1. Description of Data-set . 19

4.2. Design of Experiment and Results . 19

4.3. Enrichment Analysis for Dense Module . 26

5. CONCLUSION AND FUTURE WORK . 31

REFERENCES . 32

vi

LIST OF TABLES

Table Page

4.1. Seed extraction From Dense Sub graph . 20

4.2. Analysis of Mining Maximal Dense Module Found with GTEx Data 24

4.3. Percentage of Module Enriched when considering module density more than .9 and mod-
ule size more than 6 for various d= 18,20,22,24 . 28

4.4. Percentage of Module Enriched when considering module density more than .9 and mod-
ule size more than 3 for various d= 18,20,22,24 . 29

4.5. Top 4 GO(Gene Ontology) processes with their GO:ID module density ≥ .9 and module
size ≥ 6 for various d= 18,20,22,24 . 30

vii

LIST OF FIGURES

Figure Page

1.1. Given six graphs with the same vertex set but different edge sets, we construct a summary
graph by adding these six graphs together.The dense subgraph in the summary graph
{a, b, c, d} actually does not occur in any original graph. (b) The vertices e and f are
shared by cliques {a, b, c, d, e, f} and {e, f, h, i}; they can be assigned to both cliques
only by approaches that are able to detect overlapping dense subgraphs (cliques are the
densest subgraphs) . 2

2.1. Set enumeration tree for {A,B,C,D} . 4

2.2. Frequent itemset enumeration tree with minimum support of 2 5

2.3. Maximal frequent itemset enumeration tree with minimum support of 2. 6

2.4. Hill climbing search . 7

2.5. Shown are six graphs with the same vertex set but different edge sets. The bold subgraph
{c− e, c− f, c− h, f − e, f − h, e− h, e− g, g− h, h− d, g− d} occurs in three out of the
six graphs (graphs 1,3, and 6). However, the vertices/edges of this subgraph may not
be tightly associated in their occurrence, because one large component, the subgraph
{c− e, c− f, c− h, f − e, f − h, e− h} occurs in every network 8

3.1. A gene co-expression network . 10

3.2. Example of modules . 10

3.3. Summary graph. 11

3.4. Summary graph and dense summary graph considering minimum occurrence of each edge
in a the graph network . 13

3.5. Sample co-expression graph network (partial network from four real co-expression graph) 14

3.6. Creating an module expansion tree for a toy sample co-expression graph network using
reduced Gene co-expression network shown in 3.5 . 15

4.1. The GTEx dataset. 20

4.2. Improved non-exponential almost quadratic runtime of Algorithm 1 for extracting roots 21

4.3. Number of Module extracted from graph network vs frequency threshold of dense sub
graph using Algorithm 2 of Minefrequent approach . 22

4.4. Example of a three node module extracted using Algorithm 1 22

viii

4.5. Module density calculation starting from a seed shown in figure 4.4 having Genes ND-
UFAB1,NDUFA4,NDUFA9,ATP5J,ATP5B,COX7B,ATP5G3 from ATTRIBUTE profile
value Ai and AM Edge Occurrence MatrixMX has been shown in this figure for all edges
in the module.module density is .909090. 23

4.6. Average size of Modules extracted from graph network in terms of nodes(genes) and edges
vs frequency threshold of dense sub graph using Algorithm 2 of Minefrequent approach 23

4.7. Example of a real module extracted using MineFrequent approach shown in Network 1
by expanding root shown in Figure 4.4 . 25

4.8. Same module appeared in Network 5 . 25

4.9. Running time of algorithm 2 of MineFrequent approach vs frequency threshold 26

4.10. Percentage of module enriched while considering module size 6 or greater 27

4.11. Percentage of module enriched while considering module size 3 or greater 29

ix

1. INTRODUCTION AND RELATED WORK

Gene co-expression networks are usually constructed using data sets generated by high-

throughput gene expression profiling technologies such as Micro array or RNA-Seq. A gene co-

expression network (GCN) is an undirected graph, where each node corresponds to a gene, and a

pair of nodes is connected with an edge if there is a significant co-expression relationship between

them.Large protein networks have only recently become available for human [11],enabling new op-

portunities for elucidating pathways involved in major diseases and pathologies [17]. Studying the

building principles of biological networks could potentially revolutionize our view of biology and

disease pathologies[3]. Due to the noisy nature of high throughput data, a significant number of

spurious edges exist in biological networks, which may lead to the discovery of false patterns if we

just extract modules from a single network. Since biological modules are expected to be active

across multiple conditions, we can easily filter out spurious interaction between genes -which is

represented by an edge- by mining frequent patterns in multiple biological networks simultaneously.

Based on the recurrent network patterns, we performed functional annotation, this approach can

address the problems above:(i)to separate true functional links from spurious co-expression links.

We suggest that a co-expression link recurrent in multiple data sets is more likely to represent a true

functional link. (ii) To identify functionally related genes without direct co-expression, when we

combine multiple expression networks , subtle signals may emerge that cannot be identified in any

of the individual networks. Such signals include recurrent paths that may extend beyond simple co-

expression clusters yet represent functional modules. (iii) To conditionally annotate gene functions.

Because a gene cannot exert its function by itself but instead does so by interaction with other

genes, its functional switch is likely to be caused by or result from the alteration of its interaction

partners[23].As a solution to mining dense module from multiple biological network could be ag-

gregating these networks together and identify dense subgraphs in the aggregated graph. However,

it could result in false dense subgraphs that may not occur frequently in the original networks[22].

Figure 1.1a illustrates such an example with a cartoon of six graphs. If we simply add these graphs

together to construct a summary graph, we may find a dense subgraph comprising vertices a, b, c,

and d. Unfortunately, this subgraph is neither dense nor frequent in the original graphs.

1

Figure 1.1. Given six graphs with the same vertex set but different edge sets, we construct a
summary graph by adding these six graphs together.The dense subgraph in the summary graph
{a, b, c, d} actually does not occur in any original graph. (b) The vertices e and f are shared by
cliques {a, b, c, d, e, f} and {e, f, h, i}; they can be assigned to both cliques only by approaches that
are able to detect overlapping dense subgraphs (cliques are the densest subgraphs)

A potential solution to the false pattern problem could be mining frequent subgraphs di-

rectly. A subgraph is frequent if it occurs multiple times in a set of graphs. Frequent subgraph

discovery in general is considered a hard problem. However, biological networks can often be mod-

eled as a special class of graph where each gene occurs once and only once in a graph. That means,

our graph has distinct node labels and we do not have the “subgraph isomorphism problem” which

is NP-hard and so far constitutes the bottleneck of subgraph frequency counting.Recently, we and

others have designed efficient approaches to identify frequent subgraphs across multiple relation net-

works by decomposing the networks into smaller pieces and applying pattern expansion techniques

[13] [21], or by performing frequent set mining with subsequent connectivity checking [9]. However,

these approaches encounter scalability and interpretability issues when being applied to massive bi-

ological networks: (1) In both approaches when tested, the time and memory requirements increase

exponentially with increasing size of patterns and increasing number of networks. The number of

frequent dense subgraphs is explosive when there are very large frequent dense subgraphs, e.g., sub-

graphs with hundreds of edges. (2) A frequent dense subgraph may not represent a tight association

among its nodes.

A dense sub graph is a sub graph that satisfies a user defined constraint [5]. In a PPI (

Protein–protein interaction) network, proteins which are members of the same dense sub graph

can represent protein complexes [15]. Although, there are ways of detecting protein complexes

experimentally, there are weaknesses to each of those ways [10]. Thus it is important to use data

currently available and extrapolate other proteins that might belong to these complexes and find

2

new complexes. This can help identify disease causing genes [20] to identify people at risk and start

preventative treatment of possible future conditions.

In this paper, we addressed the aforementioned two issues and developed a novel algorithm,

called “MineFrequent”, to implement this idea. We developed a data mining procedure based on

frequent itemset mining (FIM) and hill climbing (greedy local search) approach to extensively

discover network patterns that recur in at least certain number of graphs. We attempted to represent

each edge as a binary matrix, where each column represents occurrence of all edges in a particular

graph and from that matrix we efficiently extracted 3 connected nodes (genes) or two connected

edges with a common gene and that root appear in at least certain number of graph (frequency

threshold) . From this edge-graph matrix, using each three node seed, we followed a greedy hill

climbing approach based on a predefined density threshold and extracted dense subgraphs.

3

2. FREQUENT ITEMSET MINING

Starting from a single node and then enumerate all other possible nodes with the existing

nodes of a graph and looking them inside at least certain number of graph can be mapped to itemset

mining problem . This collection of all possible combinations of items of a set S is called the power

set, or P (S), of S [18]. A set enumeration tree is an efficient way to enumerate the power set of a

set. Creating a set enumeration tree is efficient and makes sure no combination is enumerated twice

[12]. An example of a set enumeration tree for the set {A,B,C,D} is shown in Figure 2.1.

{}

A B C D

A,B A,C A,D

A,B,C A,B,D

A,B,C,D

A,C,D

B,C B,D

B,C,D

C,D

Level 1 Level 1

Figure 2.1. Set enumeration tree for {A,B,C,D}

To create a set enumeration tree, the set is first sorted and the root of the tree is set as

null. Then the first level nodes of tree is created. Each node in the first level contains a different

item of the set in a sorted order; this set is called the member set. The tree can be traversed in a

breadth-first or a depth-first approach. In Figure 2.1, the depth-first traversal order would be for

the first level node with A as the member set would be {A}, {A,B}, {A,B,C}, {A,B,C,D}, {A,B,D},

{A,C}, {A,C,D}, {A,D}. Then the tree would go to node {B} on the first level.

[1] showed how to use the set enumeration tree for finding frequent itemsets in association rule

mining. An example of frequent itemset mining is shown in Figure 2.2. A number of transactions

containing items are mined. One of the parameters of frequent itemset mining is the minimum

4

{}

A B C D E

A,B A,C A,D A,E

A,B,C A,B,D A,B,E

A,B,C,D A,C,D,E

A,B,C,D,E

A,B,D,E

A,C,D A,D,E

A,C,D,E

B,C B,D B,E

B,C,D B,C,E

B,C,D,E

B,D,EA,C,E

C,D C,E

C,D,E

D,E

t1

t5

t4

t3

t2

B,C,D,E

A,B,E

B,D,E

C,D

D,E

 Not frequent, no

need to check children

 Not frequent, no

need to check children

 Not frequent, no

need to check children

Figure 2.2. Frequent itemset enumeration tree with minimum support of 2

support. An itemset is frequent if the number of transactions in which the itemset appears is

greater than or equal to the minimum support. Using the set enumeration tree, the member set of

each node is tested for frequency. In Figure 2.1, the search space is 15 nodes with a set size of 4; in

Figure 2.2, the search space is 30 nodes with a set size of 5. With the search space growing vastly

with each increase in set size, there is a need to prune the search space to avoid taking too much

time. In frequent itemset mining, the frequency property is anti-monotone, thus if an itemset is not

frequent, no superset of that itemset will be frequent as well. In the itemset enumeration tree, this

allows for pruning of all children of a node if the node is not frequent. In Figure 2.2, the search

branches rooted at {A}, {B,C}, and {C,D,E} are pruned this way. The frequent itemsets are shown

as bolded boxes in Figure 2.2.

[Anti-monotone constraint] A constraint P is anti-monotone for an itemset, V ⊆ V, if the

following condition is satisfied:

P (V) = TRUE ⇒ P (V ′) = TRUE, ∀V ′ : V ′ ⊆ V

We can see that the frequency constraint is anti-monotone and that is why we can employ it

in pruning search branches. Identifying small groups of related members are not very useful; instead

the largest groups that still satisfy the frequent property are more interesting. Thus the concept

of maximal frequent itemsets is introduced. An itemset is maximally frequent if there exists no

superset of that itemset that is frequent. Figure 2.3 shows the maximal itemsets as bolded boxes.

5

{}

A

[B,C,D,E]
B

[C,D,E]
C

[D,E]

D

[E]

E

A,B

[C,D,E]

A,C

[D,E]

A,D

[E]

A,E

A,B,C

[D,E]

A,B,D

[E]

A,B,E

A,B,C,D

[E]

A,C,D,E

A,B,C,D,E

A,B,D,E

A,C,D

[E]

A,D,E

A,C,D,E

B,C

[D,E]

B,D

[E]

B,E

B,C,D

[E]

B,C,E

B,C,D,E

B,D,EA,C,E

C,D

[E]

C,E

C,D,E

D,E

t1

t5

t4

t3

t2

B,C,D,E

A,B,E

B,D,E

C,D

D,E

 Not frequent, no

need to check children

 Pattern & all candidates already

 are in a found maximal pattern

 Not frequent, no

need to check children

 Not frequent, no

need to check children

Figure 2.3. Maximal frequent itemset enumeration tree with minimum support of 2.

[Maximal frequent] An itemset, S ⊆ S, is maximal if the following condition is satisfied:

FREQ(S) = TRUE, 6 ∃S′ ⊇ S ∧ FREQ(S′) = TRUE

Enumerating only maximal itemsets offers a few more opportunities for pruning. Any node

with a frequent child cannot be maximal. After pruning for frequency, only the leaf nodes are

potential maximal frequent nodes. Also, if a node’s member set combined with all possible extensions

is a subset of a discovered maximal set, then the node and its children can be pruned; as the node

and its children’s member sets will be subsets of that maximal set.

2.1. Hill-climbing (Greedy Local Search)

In Computer Science , hill climbing is a mathematical optimization technique which belongs

to the family of local search. It is an iterative algorithm that starts with an arbitrary solution to a

problem, then attempts to find a better solution by incrementally changing a single element of the

solution. If the change produces a better solution, an incremental change is made to the new solution,

repeating until no further improvements can be found. Hill climbing achieves optimal solutions in

convex problems – otherwise it will find only local optima (solutions that cannot be improved

by considering a neighbouring configuration), which are not necessarily the best possible solution

(the global optimum) out of all possible solutions (the search space) To attempt overcoming being

stuck in local optima, one could use restarts (i.e. repeated local search), or more complex schemes

6

state

f Global optimum,
where we want to be

Figure 2.4. Hill climbing search

based on iterations (like iterated local search), or on memory (like reactive search optimization and

tabu search), or on memory-less stochastic modifications (like simulated annealing) The relative

simplicity of the algorithm makes it a popular first choice amongst optimizing algorithms. It is used

widely in artificial intelligence, for reaching a goal state from a starting node.

This strategy is also widely applied for minimizing problem.

2.2. Related Work

In a paper published at 2009 Xianghong Jasmine Zhou [6] explained that to solve the issue of

subgraph discovery across multiple graph network could be mining frequent subgraphs directly. In

this way, the issue of false pattern problem or false interaction among genes can easily be overcome

and we could get the true interaction between certain group of genes contributing to a certain

disease or certain phenotype. A subgraph is frequent if it occurs multiple times in a set of graphs.

Frequent subgraph discovery in general is considered a hard problem. However, biological networks

can often be modeled as a special class of graph where each gene occurs once and only once in a

graph. That means, all their and our graphs(co -expression networks) has distinct node labels, and

we do not have the “subgraph isomorphism problem” which is NP-hard and so far constitutes the

bottleneck of subgraph frequency counting.

Recently, Xianghong Jasmine Zhou [6] and others have designed efficient approaches to

identify frequent subgraphs across multiple relation networks by decomposing the networks into

smaller pieces and applying pattern expansion techniques [13] [21], or by performing frequent set

mining with subsequent connectivity checking [9]. In all the mentioned approaches, time and mem-

ory requirements increase exponentially with increasing size of patterns and increasing number of

7

c

d
e

f

g

h a

b

c

d

e

g

h
a

b

c

d

e

g

h
f f

a

b

c

d
e

f

g

h
a c

d

e

g

h
a

b

c

d

e

g

h
f f

b

d d

d d d

a

b

(1) (2) (3)

(5) (6)(4)

Figure 2.5. Shown are six graphs with the same vertex set but different edge sets. The bold subgraph
{c− e, c− f, c− h, f − e, f − h, e− h, e− g, g− h, h− d, g− d} occurs in three out of the six graphs
(graphs 1,3, and 6). However, the vertices/edges of this subgraph may not be tightly associated in
their occurrence, because one large component, the subgraph {c− e, c− f, c− h, f − e, f − h, e− h}
occurs in every network

networks.

In the same paper Xianghong Jasmine Zhou [6], they also mentioned that, a frequent(if we

consider a certain frequency threshold as a definition of frequent) dense subgraph may not represent

a tight association among its nodes. Figure 2.5 shows a sample network dataset. Vertices e, c, f,

h, d, and g form a frequent dense subgraph. However,biologically it is more interesting to divide

this subgraph into two modules, one comprising e, c, f, and h; the other comprising h, d, g, and

e since these two modules have different occurrences throughout this graph set (details see the

figure caption). As one can see, frequent dense subgraphs may not capture accurate information for

the discovery of biological modules.

The bottleneck of subgraph frequency counting represented mining coherent dense sub-

graphs, a concept having better interpretability than frequent graph. All edges in a coherent

subgraph should exhibit correlated occurrences in the whole graph set. We also term this kind of

subgraph “Network Module” . This approach is known as CODENSE [6]. According to the defi-

nition of coherent dense subgraph, we are able to distinguish the two modules shown in Figure 2.5.

Moreover, the design of CODENSE can solve the scalability issue. Instead of mining each biologi-

cal network individually, CODENSE compresses the networks into two meta-graphs and performs

clustering in these two graphs only. Thus, CODENSE can handle any large number of networks.

Using CODENSE, we can successfully identify high-quality network modules within limited time

and memory.

As a side product, CODENSE also provides a solution to a graph mining problem-discovery

8

of overlapping graph clusters. It is known that under different conditions, one gene may serve

different roles and be involved in different functional groups [4]; thus identifying overlapping clusters

is important in biological applications.

They developed a data mining procedure based on frequent itemset mining FIM and bi-

clustering to extensively to discover network patterns that recur in at least five datasets and a

biclustering algorithm based on simulated annealing to discover frequent edge sets. More precisely,

they employed simulated annealing to maximize the objective function c′

mn+λ·c , where c
′ is the num-

ber of 1s in the input matrix, c, m and n are the numbers of 1s, rows and columns of the bicluster,

respectively, and λ is a regularization factor. Clearly, such an objective function is in favor of bi-

clusters with a high density of 1 and with large size. Note that, the density is maximized to 1 when

c′ = mn, while the size of bicluster is maximized when c′ = c i.e. the pattern is as large as the

input matrix [7].

The rest of the paper is structured as follows. Section 3 gives the problem definition and

algorithm. The results of the algorithm on real world data is shown in Section 4. Lastly, Section 5

presents the conclusion and how this work might be extended in the future.

9

3. PROBLEM DESCRIPTION

In this section, I define some terms that are used throughout the paper. The graphs consid-

ered for this paper are simple graphs. A simple graph is a graph which only has undirected edges.

In addition, a simple graph has no self-directed edges or multi-edges.

A graph G = (V,E), contains a set of vertices V = {v1, v2, · · · , vm}, and a set of edges

E = {e1, e2, · · · , ep} connecting the vertices. Two vertices u and v are adjacent if there is an edge

connecting u and v. The degree of a vertex v is denoted by deg(v) and is the number of edges

connected to v. A relation graph network set consists of n undirected simple graphs, D = {Gi =

(V,Ei)}, i = 1,. . . ,n, where a common vertex set V is shared by the graphs in the set. We denote

the vertex set of a graph G by V (G) and the edge set by E(G). Let wi(u, v) be the weight of an

edge ei(u, v) in Gi. For an unweighted graph, wi(u, v) is equal to 1 if there is an edge between u

and v, otherwise 0. We chose to illustrate the principles on unweighted and undirected graphs in

this paper, although our algorithm should be extendable to weighted and directed graphs.

[γ- modules] A module of a graph is a generalization of a connected component. A con-

nected component has the property that it is a set X of vertices such that every member of X is a

non-neighbor of every vertex not in X. (It is a union of connected components if and only if it has

this property.)More generally, X is a module if, for each vertex v not in X, either every member of

X is a non-neighbor of v or every member of X is a neighbor of v. Equivalently, X is a module if

all members of X have the same set of neighbors among vertices not in X. where γ represent the

connectivity of edges in that module across the graph network.In Figure 3.2, some sample modules

are shown from a sample graph network.

DC

EBA

FDC

BA E

G

FDC

EBA

G

G1 G2 G3

F

G

Figure 3.1. A gene co-expression network

CD

A

B

(a)

C

A

B

(b)

Figure 3.2. Example of modules

10

FDC

EBA

FDC

BA

FDC

E

FDC

EBA

E BA

Figure 3.3. Summary graph.

[Summary Graph] Given a relation graph dataset, D = {G1, G2, . . . , Gn}, where Gi =

(V,Ei), the summary graph of D is an unweighted graph Ĝ = (V, Ê) where an edge ei is present if

it occurs in more than k graphs in D, where k is a user-defined support threshold.see an example

in Figure 1.1a.

[Edge Occurence Matrix] An edge occurence matrix ME ,is a matrix Me×g,where mi×j

is a single entry in the matrix at it ith row and jth column , contains a binary value 0 or 1, where

e represent the number of frequent edges in that dense graph under that frequency threshold and

g represent number of graph in that co-expression network.In Figure 3.4 , we can see an edge

occurrence matrix.

[Edge Support Vector] Given a relation graph dataset, D = {G1, G2, . . . , Gn}, where

Gi = (V,Ei), the support vector of an edge e, written w(e), is of length n where n is the number

of graphs. The i-th element of w(e) corresponds to the weight of edge e in the i-th graph. The

support vector of the edge (a, b) for the six graphs shown in Figure 1.1a is [1, 1, 1, 0, 0, 0], while

the support vector of the edge (b, c) is [0, 0, 0, 1, 1, 1]. As one can see, edges (a, b) and (b, c) are

not correlated in this dataset,though both of them are frequent. We used this edge support vector

to calculate Ai as mentioned in Algorithm 2.

[Coherent Graph] Given a relation graph dataset, D = {G1, G2, . . . , Gn}, where Gi =

11

(V,Ei), a subgraph sub(Ĝ) is coherent if all the edges of sub(Ĝ) have support higher than k.

The problem of mining coherent dense subgraphs is formulated as follows: given a relation

graph dataset,D = {G1, G2, . . . , Gn}, discover subgraphs or modules g that satisfy the following

two criteria simultaneously: (1) g is a densely connected subgraph of the summary graph, where

density threshold is defined by γ ; and (2) g is a coherent graph, all the edges of that module satisfy

the frequency threshold of occurrence in that graph network.

For the purposes of this paper, I will only be looking at the modules with γ of 0.6 or higher.

The nodes with γ of 0.6 or higher has edges to at least half of the profile Attribute value other in

the module, and can be deemed significant.

3.1. Algorithm

To address the above problem formulation we worked on finding smallest unit of a dense

subgraph that satisfy all the two criteria simultaneously and can be solved in a much more efficient

way. In this way, we got the idea of developing an algorithm for discovering dense modules using

greedy approach starting from 3 node "Root". These three node "Roots"(shown in Figure 3.4)

were obtained using simple quadratic Algorithm as shown in Algorithm 1. The process of creating

a summary graph is shown in Figure 3.4. Pruning method was employed to extract dense summary

graph from that summary graph as we can see in Figure 3.4, we maintained an edge occurence

matrix which represent the binary vector for an edge across the graph network shown in Figure

3.4, we extracted the three root node and during the mining process we also used that matrix to

calculate the current density of overall module shown in Figure 3.4. Like in frequent itemset mining,

we created occurrence matrix, where each row contains binary representation of a certain edge in all

of these graph and each column represent occurrence of all edges in the the graph network in Figure

3.4. For the first level, for every edge ei in Ê in all of those dense sub graph Ĝ for various frquency

threshold d, three node roots R were extracted using a quadratic algorithm, where each root have its

own edgelist L and genelist Gen and attribute profile value A. Then using these roots we extracted

dense modules using Algorithm 2 section shown in Figure 1 of "MineFrequent" Algorithm. These

modules also contain a vertex set(Genes) Gen comprised of vi,Edge list L and its current attribute

profile value A and candidate Edge set Ei.cand comprised of all the neighboring edges of current

modules {Ei, Ej , Ej+1, . . . , } in Ê, where j > i. As has been discussed in frequent itemset mining,

this creates an enormous search space. So, we employed pruning methods and greedy approach to

12

f f

edge occurence matrix

Step 3

a

b
d

e

g

h

i

c
f

a

b

c

d

e

f

g

h

i

a

b

c

d

e

f

g

h

i

a

b

c

d

e

f

g

h

i

a

b
d

e

g

h

i

c a

b

c

d
e

f

g

h

i

a

b

c

d
e

g

h

i

G1 G3G2

G6G5G4

Step1

summary graph
support 3

…………………

111000e-f

011100c-i

111000c-h

111010c-f

111100c-e

G6G5G4G3G2G1E

Step2

e

c i

ei and ej connected

e

c

Three node root

seeds

e

g

h

i

Step 4

Figure 3.4. Summary graph and dense summary graph considering minimum occurrence of each
edge in a the graph network

limit our search space .

Modules have anti-monotone properties. Thus, all subsets of a module are densely connected

under that density threshold and any super set of an not dense module is also non dense. We

expanded module from the roots using a density calculation method based on relative number of

frequency of the current module and a new edge added everytime to that module and above process

has been repeated recursively.

Pruning Strategy I: As the module density γ and minimum number of occurrence,d: frequency

threshold for the graph in the network SG given , the minimum occurrence for each edge in a module

is the d. By eliminating edges which have occurrence less than this minimum , the algorithm

significantly reduces the number of potential edges to consider in the first level. In this way, we got

the dense summary graph.

Greedy Approach: we chose to follow greedy approach in every pass of a module building process

In Figure 3.6, Pruning Strategy I and greedy approach for selecting module expansion branch work

together to prune branches and choose Edge Ê from the dense summary graph Ĝ.

13

G1
G2 G3

G4

DES

TMP2

CA1

DEFA3

HBB

HBA2

ALAS2

JPH2 TPM1

BOLA3

CA1

DEFA3

FLNC

DES

TPM2

CD53

HBA2

ALAS2

MDH1

HBB

CD3E

AATK

JPH2

ERG1

TPM1

BOLA3 DES

FLNC

CA1

DEFA3 TPM2

HBB

HBA2

JPH2

FOS

FLNC

ERG1
TPM1

DES
TPM2

MDH1

CA1

XAF1

DEFA3

HBB

CD3E

HBA2

ALAS2

Figure 3.5. Sample co-expression graph network (partial network from four real co-expression
graph)

14

5

〈0,1, , 〉

〈1, , , 〉

 JPH2

DES

TPM2

6

〈1,1,1,0〉
〈1,1,1,0〉
 COX7

cOX5aATP5B

15

〈 , , , 〉

〈1,1,1,1〉

HBB

HBA2

M16

〈1,1,1,1〉
〈1,1,1,0〉

CD2

CD3G

M17

〈0,1,1,1〉
〈0,1,1,1〉

XAF1

OAS3OAS2

M18

〈 ,1, , 〉

〈1,1,1,1〉
CKM

MYH1 NRAP

M7

〈0,1,1,1〉
〈1,1,1,1〉
〈0,1,1,0〉

 JPH2

DES

TPM2

M8

〈0,1,1,1〉
〈1,1,1,1〉
〈0,1 ,1 ,1〉

 JPH2

DES

TPM2

 TPM1

M9

〈0,1,1,1〉
〈1,1,1,1〉
〈0,1,0,1〉

JPH2

DES

TPM2 MDH1

M10

〈0,1,1,1〉
〈1,1,1,1〉
〈0,0,1,1

JPH2

DES ERG1

TMP2

M20

〈1,0 ,1,1〉
〈1,1,1,1〉
〈1,1 ,0 ,1〉

CA1

 HBB

 HBA2

ALAS2

M21

〈1,0 ,1 ,1〉
〈1,1,1,1〉
〈0,1,0,1〉

CA1

HBB

HBA2 CD3E

M22

〈1,0,1,1〉
〈1,1,1,1〉
〈0,0,0,1〉
CA1

HBB XAF1

HBA2

M11

〈0,1,1,1〉
〈1,1,1 ,1〉
〈0,1,1,1〉
〈0,0,0,1〉

 JPH2

DES

 TPM!

M12

〈0,1,1,1〉
〈1,1,1,1〉
〈0,1,1,1〉
〈0,1,1,1〉
JPH2

DES

M13

〈0,1,1,1〉
〈1,1,1,1〉
〈0,1,1,1〉
〈0,1,0,0〉
JPH2

TPM2

TPM1

M23

〈1,0,1,1〉
〈1,1,1,1〉
〈1,1,0,1〉
〈1,1,1,1〉

 CA1

HBB

 HBA2

ALAS2

 C A 1

CD3D

BOLA3

TPM2

FOS FLNC
DES

CD53

DEFA3

THREE NODE ROOT EXPANSION
FOR DENSITY THESHOLD .9

DENSITY 1

DENSITY .66

DENSITY
 1

DENSITY
 .66

 DENSITY
 .66

DENSITY
1

DENSITY .66

DENSITY

.333

DENSITY

1

DENSITY 1

DENSITY .5

DENSITY .5

FREQUENCY THRESHOLD=20

MD ={ }

NO FURTHER
EXPANSION.
So,Add to MD

NO FURTHER EXPANSION.
SO,ADD TO MD.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Figure 3.6. Creating an module expansion tree for a toy sample co-expression graph network using
reduced Gene co-expression network shown in 3.5

15

Algorithm 1 Mining Three Node Root from Summary Graph
Input:

SG :Co-expression Network
γ:Gamma Value of a Module
d:frequency threshold for the graph

Output:
R: Set of three node root

1: procedure FindRoot(SG ,γ,d)
2: R = ∅ .Set of three node root
3: MX = ∅ .Empty Matrix for edge count
4: MF = ∅ .Empty Matrix for frequent edge with count
5: V=getV ertices(G) .Set of Vertices in G
6: for each Gi ∈ SG :
7: for each ek ∈ Gi :
8: if ek /∈MX :
9: Add ek in MX

10: Set Ck to 1
11: elseif
12: Increment Ci
13: end elseif
14: end for
15: end for
16: for each ei ∈MX :
17: if Ci > d:
18: Add inMX
19: end if
20: end for
21: for each ei ∈MF :
22: for each Gi ∈ SG :
23: Fill Ai ofMF : . Attribute for every edge ei
24: end for
25: end for
26: for each ei ∈MF :
27: for each ej ∈MF :
28: if ei and ej connected and |Ai ∩Aj | > d
29: Add ei ∩ ej to R
30: end if
31: end for
32: end for
33: end procedure

16

Algorithm 2 Dense Module Mining
M=getModules(R) .get a single three node root as Module from R
RemoveM from R

1: procedure Minefrequent(M,γ,MD)
2: .level 1 roots working as a seed for mining dense module
3: .All seeds have their own edgelist L and genelist Gen and attribute profile value A
4: for each ei ∈ E:
5: γcuri=1
6: if ei not inM ’s L and ei connected with moduleM
7: Anew =Amodule ∩Ai
8: calculate γnew=Anew ÷Amodule
9: if γnew > γcuri and γ

10: update γcuri to γnew
11: keep update of the current edge ei with γcuri
12: end if
13: end if
14: end for
15: update Edgelist L and Genelist Gen of moduleM by adding edge ei
16: if update not possible and moduleM /∈MD:
17: AddM toMD
18: return
19: Minefrequent(M,γ,MD)
20: end procedure

3.2. Pseudo-code

Algorithm 1 shows the main pseudo-code of the Mining maximally frequent dense module (

MineFrequent) approach which first find frequent three node roots from edge occurrence matrix.The

algorithm takes as input a set of co-expression Networks SG , the module density γ, summary

graph ∧SG build from all of these networks, using pruning strategy I from this summary graph a

dense summary graph Ĝ was created for every frequency threshold d in the graph network. Edge

Occurrence MatrixMX was build from that dense summary graph. The algorithm outputs R,set

of all three Node seeds. First, a summary graph was created from set of co -expression network SG ,

using that summary graph we created edge occurrence matrix MX or attribute profile for every

edge ei. From the Edge Occurrence Matrix MX , We extracted all the three node root, just by

checking whether these two edges are connected or not and they appeared in at least d or more

graph by doing logical And for their corresponding Attribute row Ai.

Algorithm 2 shows the maximal dense module extraction from each seed of R . Like travers-

17

ing the frequent itemset set enumeration tree, each three node root’s candidate set is combined with

its edgeset and genelist to expand that seed or module for further expansion. After getting the data

structure ready , for each γ value varying from .6 to .9 we extracted every seedM from set of seed

R with it genelist and edgelist (lines 2-4).After that, we considered all its neighboring edge set

Ei.cand to be considered within that density threshold and update that module. For each seed, we

get only one maximally dense module. If we already have that module generated from other seed

we consider only one (lines 15-18). If the module is still updating, we then considered it for further

expansion(line 19).

18

4. EXPERIMENTS

4.1. Description of Data-set

To determine if the algorithm is efficient in finding maximal dense module, its efficiency and

effectiveness are tested on a real-world dataset. A dataset is constructed from from GTEx data,

created a platform called Genetic Network Analysis Tool lets users instantly search and visualize

human genetic networks dataset [14] . Tissue-specific mechanisms of control may be captured by co-

expression networks, in which two genes are connected if their expression levels are correlated across

a set of individuals. In such a setting, genetic or environmental differences across individuals serve

as small perturbations to the underlying regulatory network, resulting in correlation between genes’

expression levels that are consistent with regulatory relationships. Co-expression networks provide

better insight into cellular activity as genes that are co-expressed often share common functions by

reducing noise and removing spurious links [16].

The Genotype-Tissue Expression (GTEx) consortium dataset [8] provides an opportunity to

study such co-expression networks for an unprecedented number of human tissues simultaneously.

However, many of the profiled tissues have fewer than a dozen samples, too few to accurately infer

the tens of millions of parameters that would define a co-expression or regulatory network. One

solution would be to combine all available samples and learn a single consensus network for all

tissues, but this would offer no insight into tissue-specificity. On the other hand, inferring each

network independently ignores tissue commonalities: tissue networks share far more links than

would be expected by chance, and learning links across multiple tissues is less noisy than learning

links using a single tissue, even when using the same number of total samples [16].

Figure 4.1 represents the summary graph of the GTEx network. It contains 35 distinct

human tissues, 9998 genes(nodes) , 5 million links.

4.2. Design of Experiment and Results

The algorithm for detecting maximal dense module had been run with varying frequency

threshold d to create dense subgraph and then three node roots were extracted from these dense

subgraphs.We got different numbers of root for different frequency threshold , d.Then, using all

these roots for specific d, we chose varying density threshold γ or module density to be mined from

19

Figure 4.1. The GTEx dataset.

the graph network. Module density γ had been varied from 0.6 to 0.9 in .1 increments based on the

running time for specific d ; The minimum size of the maximal module or average number of gene in

each module varied from five to eleven.The minimum number of links in all of these modules varied

from four to eleven in varying density increments. In Table 4.1 , we can see data found as output

of Algorithm 1 for various frequency threshold, d , different dense subgraph considering different

threshold. This table (table 4.1 gives us valuable information about the running time of first portion

of MineFrequent approach or Algorithm 1. We also get valuable insight about the extracted three

node roots and our new approach.

Table 4.1. Seed extraction From Dense Sub graph

Freq Thres Total Seed (Algorithm 1) Time(s) Dense Module(Algorithm 2)
18 3678 23980 2268
20 2097 10890 1402
22 1224 7980 833
24 760 5103 524

For Example, for frequency threshold 18, we got 3678 three node roots running Algorithm 1

of MineFrequent approach while it took 23980 second to generate such output and using Algorithm

2 we found 2268 dense modules out of these 3678 starter three node roots. In Figure 4.2, we can see

20

the performance of Algorithm 1 of MineFrequent approach, which is non-exponential as we wanted

in the beginning of our paper and it looks like almost quadratic. In Figure 4.3, we can also see the

number of final modules extracted as output of Algorithm 2 of this approach reduced exponentially

with the increase of frequency threshold, d. These final modules were expanded starting from seeds

as we got them as the output of Algorithm 1.

0

5000

10000

15000

20000

25000

30000

18 20 22 24

 Time taken to extract varying number of seeds

Total Seed Time(s)

Figure 4.2. Improved non-exponential almost quadratic runtime of Algorithm 1 for extracting roots

21

Graph frequency threshold vs No of modules found using Algorithm 2 of
Minefrequent approach

Along X axis,frequency threshold,d

A
lo

ng
 Y

 ax
is,

nu
m

be
r o

f m
od

ul
es

 f
ou

nd

Figure 4.3. Number of Module extracted from graph network vs frequency threshold of dense sub
graph using Algorithm 2 of Minefrequent approach

ATP5J NDUFAB1

NDUFB6

Three node seed extracted using frequency

threshold,d =20 from 35 co-expression network

Figure 4.4. Example of a three node module extracted using Algorithm 1

Table 4.2 shows the results of running time of the Algorithm 2 of MineFrequent approach for

the roots generated from Algorithm 1 under different d using specific density threshold, γ. In the

first row of table 4.2, we can see the running time of Algorithm 2 for d= 18 and γ = 0.6. The longest

running time that the algorithm took to complete, when the setting of γ = 0.6 and d= 18. This

took almost 32600 seconds. However, if either γ was increased, the running time was dramatically

reduced, module AvgGeneNum also reduced. The next longest running time was obtained under

the settings of γ = 0.7 and d= 18 . This took around 24600 seconds.

Another thing to note here is that the dense modules found were mostly highly connected

with each member of the modules and found in at least 20 graphs among 35 graphs. That is to say,

their average density were varying from .849 to .956 . The density of a graph is |E|/(|V |×|V |−1)/2,

22

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 . . . G33 G34 G35

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
1 0 1 1 1 1 1 1 1 1 . . . 1 1 1 15
1 1 1 0 1 0 1 1 1 1 . . . 1 1 1 144
1 1 1 1 1 1 1 1 1 0 . . . 0 1 1 1192
1 1 1 1 1 1 1 0 1 1 . . . 0 0 0 1193

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
1 1 1 1 1 1 1 0 1 1 . . . 1 1 1 1209

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
1 0 1 0 1 1 1 0 1 1 . . . 1 1 1 1267
1 1 1 1 1 0 1 1 1 0 . . . 1 1 1 1269

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
1 0 1 0 1 0 1 0 1 0 . . . 0 0 0 AMfinal

Fig. 19 Module density calculation starting from a seed shown in figure 18 having Genes NDU-
FAB1,NDUFA4,NDUFA9,ATP5J,ATP5B,COX7B,ATP5G3 from ATTRIBUTE profile value Ai and AM

Edge Occurrence Matrix MX has been shown in this figure for all edges in the module.module density
is .909090.

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Chart Title

FreqThres Avg Gene Avg E

Fig. 20 Average size of Modules extracted from graph network in terms of nodes(genes) and edges
vs frequency threshold of dense sub graph using Algorithm 2 of Minefrequent approach

27

Figure 4.5. Module density calculation starting from a seed shown in figure 4.4 having Genes NDU-
FAB1,NDUFA4,NDUFA9,ATP5J,ATP5B,COX7B,ATP5G3 from ATTRIBUTE profile value Ai and
AM Edge Occurrence MatrixMX has been shown in this figure for all edges in the module.module
density is .909090.

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Average module size found for varying graph frequency threshold

FreqThres Avg Gene Avg E

Figure 4.6. Average size of Modules extracted from graph network in terms of nodes(genes) and
edges vs frequency threshold of dense sub graph using Algorithm 2 of Minefrequent approach

or the number of edges in a graph over the maximum possible number of edges within the graph.

For most of the settings, the average density of the module found all have much higher density than

the density threshold. Another thing to note is that when we increased the density threshold of

module, Amodule also increased . That means, when we increase the density threshold ,we found

much more dense and frequent module.

In Figure 4.6, we can see, average size of the modules extracted using Algorithm 2 of this

23

Table 4.2. Analysis of Mining Maximal Dense Module Found with GTEx Data

FreqThres Density Time(s) Avg Gene Avg E Module Density

18 .60 32600 11 11 2268 0.85912
18 .70 24600 9 8 2268 0.88005
18 .80 18786 9 7 2268 0.90123
18 .90 12890 7 7 2268 0.9492
20 .60 8640 10 8 1402 0.849835
20 .65 6664 9 8 1402 0.8590
20 .70 5956 8 7 1402 0.8690
20 .75 5680 7 6 1402 0.879177
20 .80 5280 7 6 1402 0.8930
20 .85 4945 6 5 1402 0.91115
20 .90 4790 6 4 1402 0.93356
22 .60 11760 10 8 833 0.8531
22 .70 9680 9 7 833 0.8821
22 .90 4380 6 5 833 0.9400
24 .60 8970 9 8 524 0.8642
24 .70 6790 8 7 524 0.8997
24 .90 5890 6 5 524 0.9564

approach in term of nodes(genes) number and edges or links number with respect to frequency

threshold, d. we can hardly see any regular pattern like number of modules or size of module vs d

or running time ,t.

In Figure 4.9, we can see, the running time of Algorithm 2 of MineFrequent approach

using almost 17 data point found for different d and varying module density threshold γ. From

the graph, we can conclude that , running time of Algorithm 2 of MineFrequent approach clearly

non-exponential and it looks like almost quadratic.

24

presence of a final extracted module in co-expression network 1; module density .9090

These genes are associated with GO-Term Id GO:0006119 process name: oxidative phosphorylation

Figure 4.7. Example of a real module extracted using MineFrequent ap-
proach shown in Network 1 by expanding root shown in Figure 4.4

ATP5B

ATP5J

ATP5G3

COX7B

NDUFAB1

NDUFA9

NDUFB6

NDUFA4

These genes are associated with GO-Term Id GO:0006119 process name: oxidative
phosphorylation

presence of same module in co-express network 5; module density .9090

Figure 4.8. Same module appeared in Network 5

25

0

5000

10000

15000

20000

25000

30000

35000

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

 Improved quadratic runtime of our approach

FreqThres Time(s)

Figure 4.9. Running time of algorithm 2 of MineFrequent approach vs frequency threshold

4.3. Enrichment Analysis for Dense Module

Gene Set Enrichment Analysis (GSEA) is a computational method that determines whether

an a priori defined set of genes shows statistically significant, concordant differences between two

biological states. It is also known as functional enrichment analysis. This term can also be defined

as a method to identify classes of genes or proteins that are over-represented in a large set of

genes or proteins, and may have an association with specific phenotypic state (i.e disease,cancer

). The method uses statistical approaches to identify significantly enriched or depleted groups of

genes. Microarray and proteomics results often identify thousands of genes which are used for the

analysis Ranking functional categories based on co-occurrence with sets of genes in a gene list can

rapidly aid in unraveling new biological processes associated with cellular functions and pathways.

Researchers performing high-throughput experiments that yield sets of genes (for example, genes

that are differentially expressed under different conditions) often want to retrieve a functional profile

of that gene set, in order to better understand the underlying biological processes. This can be done

by comparing the input gene set to each of the bins (terms) in the gene ontology – a statistical test

can be performed for each bin to see if it is enriched for the input genes.

As in the begining of our paper, we said genes expressed in multiple co-expression network

with high d were extracted as dense module as output of our MineFrequent process and these

26

same set of genes appeared in multiple co-expression network build within same specific context or

microarray data set and all these genes appeared as a set representing the context or environment

of expressing genes, these modules are highly likely to be enriched. While the completion of the

Human Genome Project gifted researchers with an enormous amount of new information, it also

left them with the problem of how to interpret and analyze the incredible amount of data. In order

to seek out genes associated with diseases, researchers utilized DNA micro arrays, which measure

the amount of gene expression in different cell, GSEA method focuses on the changes of expression

in groups of genes, and by doing so, this method resolves the problem of the undetectable, small

changes in the expression of single genes [19].

94.31

96.19
95.4

98.03

92

93

94

95

96

97

98

99

Percentage

Module Size 6 or greater

18 >=.9 >=6 20 >=0.9 >=6 22 >=0.9 >=6 24 >=0.9 >=6

pe
rc

en
ta

ge
 o

f m
od

ul
es

 e
nr

ich
ed

Figure 4.10. Percentage of module enriched while considering module size 6 or greater

In the method that is typically referred to as standard GSEA, there are three steps involved

in the analytical process [2].These steps are summarized below:

1. Calculate the enrichment score that represents the amount to which the genes in the set are

over-represented at either the top or bottom of the list. This score is a Kolmogorov–Smirnov-like

statistic [2]

2. Estimate the statistical significance of the Enrichment Score (ES). This calculation is done by a

27

phenotypic-based permutation test in order to produce a null distribution for the ES [2].

3. Adjust for multiple hypothesis testing for when a large number of gene sets are being analyzed at

one time. The enrichment scores for each set are normalized and a false discovery rate is calculated

[2].

ClusterProfiler [24] allows investigators to sort gene categories from dozens of annotation

systems, this is an R package for comparing biological themes among gene clusters. Sorting can be

based on the number of genes within each category. Any given gene is associating with a set of

annotation terms. If genes share similar set of those terms, they are most likely involved in similar

biological mechanisms. The algorithm tries to group those related genes based on the agreement

of sharing similar annotation terms by hypergeometric P-value < 0.01. Using clusterprofiler, we

tried to annotate all the dense modules found from our "MineFrequent" approach. In Table 4.3,

we can see the percentage of final modules were enriched using clusterprofiler while considering

modules size six or grater.In Table 4.4 enrichment results are shown for all the modules extracted

using Algorithm 2 or modules have size three or greater than that.We can say by comparing these

tables that modules with high density and greater size are highly likely to be enriched. In table 4.5,

top four GO(Gene Ontology) process with GO Id has been shown while performing enrichment of

modules extracted using our MineFrequent method.

Table 4.3. Percentage of Module Enriched when considering module density more than .9 and
module size more than 6 for various d= 18,20,22,24

Freq Thres M density ≥ M Size ≥ Percentage
18 .9 6 94.31
20 .9 6 96.19
22 .9 6 95.4
24 .9 6 98.03

28

Table 4.4. Percentage of Module Enriched when considering module density more than .9 and
module size more than 3 for various d= 18,20,22,24

Freq Thres M density ≥ M Size ≥ Percentage
18 .9 3 82.58
20 .9 3 84.30
22 .9 3 83.19
24 .9 3 86.06

80

81

82

83

84

85

86

87

% Enriched

Module enrichment results size >=3

18 >=.9 >=3 20 >=.9 >=3 22 >=.9 >=3 24 >=.9 >=3

82.58

84.3

83.19

86.06

pe
rc

en
ta

ge
 o

f m
od

ul
e e

nr
ic

he
d

Figure 4.11. Percentage of module enriched while considering module size 3 or greater

29

Table 4.5. Top 4 GO(Gene Ontology) processes with their GO:ID module density ≥ .9 and module
size ≥ 6 for various d= 18,20,22,24

Freq Thres Go Id Go Process

18

GO:0006613 cotranslational protein targeting to membrane
GO:0006614 SRP-dependent cotranslational protein targeting to membrane
GO:0019058 viral life cycle
GO:0045047 protein localization to endoplasmic reticulum

20

GO:0019058 viral life cycle
GO:0006612 protein targeting to membrane
GO:0006613 cotranslational protein targeting to membrane
GO:0019083 viral transcription

22

GO:0000184 cellular nitrogen compound catabolic process
GO:0006612 protein targeting to membrane
GO:0006613 cotranslational protein targeting to membrane
GO:0000956 nuclear-transcribed mRNA catabolic process

24

GO:0006613 cotranslational protein targeting to membrane
GO:0000956 nuclear-transcribed mRNA catabolic process
GO:1901605 alpha-amino acid metabolic process
GO:0019439 aromatic compound catabolic process

30

5. CONCLUSION AND FUTURE WORK

In conclusion, using a summary graph and building a dense summary graph based on dif-

ferent density threshold to find meaningful module in networks helped find interesting interactions

among genes. Our developed algorithm, MineFrequent, to efficiently mine coherent dense subgraphs

across massive biological networks; In comparison with previous approaches, is scalable in the num-

ber and the size of the networks to mine, adjustable in terms of exact or approximate coherent

pattern mining, and extendable to weighted and directed networks. However, there are a few weak-

nesses that should be addressed in future work. One of them is that as modules do not have an

anti-monotone property, the algorithm must traverse large areas of the set enumeration tree to find

modules and another is genes among various modules intersects. Although we have a few pruning

strategies, they do not seem to be enough. This can lead to very long running times.

In future,we are planning to integrate simulated annealing approach with anti-monotone

property so that no overlapping module produced and maintain anti-monotone property that can

prevent generating further branch that could lead to the existing module. For producing dense

subgraph we can employ better strategy to get more precise edgeoccurence matrix ,so that, the

overall process get more efficient result.

The discovered network modules can be used in a variety of biological applications, e.g.,

predict the functions of unknown genes, construct the transcription modules, and infer the potential

protein assembly mechanisms.

Despite these limitations, the modules extracted by our approach can aid biologists in making

sense of the large amounts of information often produced by highthroughput experiments. Mapping

this information onto functional modules rather than large pathways makes highthroughput experi-

ments easier to understand. Furthermore, our representation of the modules in a functional network

can help biologists trace the transfer and integration of information and interaction between and

among modules, and can lead to experimentally verifiable hypotheses.

31

REFERENCES

[1] Rakesh A and Ramakrishnan S. Fast algorithms for mining association rules in large databases.

In Proceedings of the 20th International Conference on Very Large Data Bases, VLDB ’94, pages

487–499, 1994.

[2] Subramanian A, Tamayo P, and Moothka V. Gene set enrichment analysis: A knowledge-

based approach for interpreting genome-wide expression profiles. Proceedings of the National

Academy of Sciences, 102(43):15545–15550, 2005.

[3] Barabasi AL and Oltvai ZN. Network biology: understanding the cell’s functional organization.

Nat Rev Genet, 5:101–13, 2003.

[4] Gasch AP and Eisen MB. Exploring the conditional coregulation of yeast gene expression

through fuzzy k-means clustering. Genome Biol, 3:RESEARCH0059, 2002.

[5] Victor E, Ning R, Ruoming J, and Charu A. A survey of algorithms for dense subgraph dis-

covery. In Aggarwal CC and Haixun W, editors, Managing and Mining Graph Data, volume 40

of Advances in Database Systems, pages 303–336. Springer US, 2010.

[6] Haiyan H and Zhou XJ. Mining coherent dense subgraphs across massive biological networks

for functional discovery. Bioinformatics, 1:2–3, 2005.

[7] Haiyan H and Zhou XJ. Systematic discovery of functional modules and context-specific func-

tional annotation of human genome. Bioinformatics, 23:i223–i224, 2007.

[8] Lonsdale J and Thomas J. The genotype-tissue expression (gtex) project. Nature Genetics,

45(6):580–585, 2013.

[9] Mehmet K, Yohan K, Shankar S, Wojciech S, and Ananth G. Detecting conserved interaction

patterns in biological networks. Journal of Computational Biology, 13(7):1299–1322, 2006.

[10] Xiaoli L, Min W, Chee KK, and See KN. Computational approaches for detecting protein

complexes from protein interaction networks: a survey. BMC Genomics, 11(Suppl 1):S3, 2010.

32

[11] Peri LJ and Navarro MK. Development of human protein reference database as an initial

platform for approaching systems biology in humans. Genome Res, 13:2363–2903, 2003.

[12] Peri LJ and Navarro MK. Development of human protein reference database as an initial

platform for approaching systems biology in humans. Genome Res, 13:2363–2903, 2003.

[13] Kuramochi M and Karypis G. Finding frequent patterns in a large sparse graph. 2004 SIAM

Data Mining Conference, 2004.

[14] Emma P, Alexis B, and Sara M. Sharing and specificity of co-expression networks across 35

human tissues. PLoS Comput Biol, 11(5):e1004220, 2015.

[15] Sharan R, Ideker T, Kelley B, Shamir R, and Karp RM. Identification of protein complexes by

comparative analysis of yeast and bacterial protein interaction data. In Proceedings of the eighth

annual international conference on Resaerch in computational molecular biology, RECOMB ’04,

pages 282–289, 2004.

[16] Piro RM and Ala U. An atlas of tissue-specific conserved coexpression for functional annotation

and disease gene prediction. European Journal of Human Genetics, 19(11):1173–1180, 2011.

[17] Calvano SE and Xiao W. A network-based analysis of systemic inflammation in humans.

Nature, 437:1032–1037, 2005.

[18] Andrzej T. Enumerated sets. Journal of Formalized Mathematics, 1, 1989.

[19] Moothka V. Pgc-1a-responsive genes involved in oxidative phosphorylation are coordinately

downregulated in human diabetics. Nature Genetics, 34(3):267, 2003.

[20] Oron V, Oded M, and Tomer S. Associating genes and protein complexes with disease via

network propagation. PLoS Comput Biol, 6(1):e1000641, 2010.

[21] Zhou XJ and Han J. Development of human protein reference database as an initial platform

for approaching systems biology in humans. Mining Closed Relational Graphs with Connectivity

Constraints. Proceedings of the International Conference on Data Engineering, 2005.

[22] Zhou XJ and Kao MC. Transitive functional annotation by shortest-path analysis of gene

expression data. Proc. Natl Acad. Sci. USA, 99:12783–12788, 2003.

33

[23] Zhou XJ and Michael SW. Systematic discovery of functional modules and context-specific

functional annotation of human genome. Bioinformatics, 23:i222–i229, 2007.

[24] Guangchuang Y, Yanyan H, and Qing-YH. Clusterprofiler: an r package for comparing bio-

logical themes among gene clusters. OMICS: A Journal of Integrative Biology, 16(5):284–287,

2012.

34

	ABSTRACT
	ACKNOWLEDGEMENTS
	DEDICATION
	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION AND RELATED WORK
	Frequent Itemset Mining
	Hill-climbing (Greedy Local Search)
	Related Work

	Problem Description
	Algorithm
	Pseudo-code

	Experiments
	Description of Data-set
	Design of Experiment and Results
	Enrichment Analysis for Dense Module

	Conclusion and Future Work
	REFERENCES

