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ABSTRACT 

Experiments were conducted in 2015-2016 to determine if yield and protein 

concentration in corn (Zea mays L.) and hard red spring wheat (HRSW) (Triticum aestivum L.) 

could be enhanced through different nitrogen (N) fertilizer application timings, rates, and sources 

when compared to urea applied pre-plant and to quantify the dissolution rate of a controlled 

release fertilizer (CRF). The CRF effectively released N slowly over time. Placement depth did 

not impact release rate. Soil NH4
+-N and NO3

--N levels differed in diverse environments when 

different fertilizer sources were applied. Corn grain yield was not impacted by N application 

treatments in 2016, but the 100% N rate increased yield over other treatments in 2015. Nitrogen 

applied in October or November at the 100% rate increased HRSW yield over other treatments in 

2016. Total grain protein and percent protein in the grain were not improved with N treatment 

over the check in 2015. 
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INTRODUCTION 

More than 1.1 million ha of corn (Zea mays L.) and 2.4 million ha of hard red spring 

wheat (Triticum aestivum L. emend. Thell.) (HRSW) were planted in North Dakota in 2016 

(North Dakota Agricultural Statistics Service, 2016). The recent decline in corn and wheat prices 

in the Red River Valley (RRV) led farmers to search for ways to increase input efficiencies to 

maximize grain yield and wheat protein content without the addition of unnecessary costs.  One 

way producers in the RRV can improve returns is to increase the efficiency of nitrogen (N) 

fertilizers by minimizing environmental N losses. This can be achieved through the use of best 

management practices such as choosing the right fertilizer source, improved application timing, 

and improved decisions regarding application rate. Proper N management has the potential to 

decrease environmental losses of N to denitrification, volatilization, leaching to groundwater, 

and run off to surface waters, and thereby improving the efficiency of applied N fertilizers. The 

need for producers to minimize input costs to increase grain yield and protein in wheat supports 

the need of further research on N fertilizer sources in the RRV.  
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LITERATURE REVIEW 

Protein Importance 

Nitrogen is an essential element for plant development due to it being a key constituent of 

nucleic acids, amino acids, and chlorophyll. Plants take up N in the forms of ammonium (NH4
+) 

or nitrate (NO3
-) (Meisinger et al., 2008). However, N transformations generated by biological, 

chemical, and physical processes in the soil can reduce its availability to plants. Knowledge of 

these processes allows for the design and implementation of N management programs that can 

increase N use efficiency, and lead to higher yields and grain protein content per unit of applied 

N.  

Grain protein is an important factor in many crops for a variety of reasons. In the United 

States, HRSW growers experience price discounts at the elevator when grain protein content is 

below, and protein premiums when grain protein is above the market standard of 14%, 

particularly in years when US wheat protein levels are low. Premiums can result in up to 50% 

increase in the HRSW crop’s market value while protein discount percentages commonly exceed 

the amount paid for a premium protein difference (Brown et al., 2005). As an example, Montana 

wheat producers lost $10-$24 ha-1 due to low protein that many experienced in the 2010-2011 

marketing year (Jones and Olson-Rutz, 2012). The current recommendation in Montana to 

achieve 14% protein is to apply 1.5 kg of available N for every 25.4 kg-1 of expected yield. 

Based on a 2010 survey, growers only applied 1.2 kg of N for every 25.4 kg-1 of yield achieved. 

This under fertilization cost those growers $10-24 ha-1 (Jones and Olson-Rutz, 2012). Part of the 

reason for this disparity is that if farmers use a yield-goal based formula to determine N rate, 

their choice of a lower-than-actually achieved yield will most often result in lower grain protein.  
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Higher grain protein content can be influenced by variety selection, water management, 

fertilizer application timing, and fertilizer source. However, the most important factor impacting 

grain protein is sufficient N availability to the crop during key periods of crop development 

(Brown et al., 2005).  A deficiency in N availability to wheat causes a dilution effect of protein 

in the grain mass as yield increases. Grain protein formation utilizes N taken up before heading 

or flowering, then transported to the kernel during grain fill (Jones and Olson-Rutz, 2012). 

Through N fertilization, yield and protein can increase until maximum levels are limited by 

varietal genetics and environment. Maximum yield can be achieved with less N than maximum 

protein. The current N recommendations for most crops in North Dakota, including HRSW and 

corn, is based on the amount of nitrate (NO3
-) found in the top 60 cm of the soil in the fall, the 

yield potential of the area, historical productivity, previous crop N credits, crop price, and 

fertilizer cost (Franzen, 2014).  Hard red spring wheat utilizes a small portion of the total 

seasonal N requirements to establish a vegetative canopy during the first two to four weeks of 

growth. The majority of the N used by plants is taken up in the next 30 days (Franzen, 2017).  

Therefore, ensuring that adequate nutrient resources are available throughout the growing season 

is imperative. 

Nitrogen Cycle and Losses 

Ammonium is converted to NO3
- by bacteria present in the soil using a two-step process 

called nitrification. The first step occurs when the autotrophic bacteria, Nitrosomonas, oxidizes 

ammonia into plant toxic nitrite (NO2
-) (Nelson and Huber, 2001). The second step requires 

further oxidation by the Nitrobacter bacteria to result in an unbound, negatively charged nitrate 

ion. Temperatures below 10 °C and water filled pore space greater than 60% are examples of 
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environmental conditions that can retard the nitrification conversion rate; however, N losses due 

to leaching, volatilization, and denitrification can still occur (Mulvaney, 2008.  

Nitrate leaching occurs when the nitrate molecule moves with the water as it percolates 

through the soil. High rainfall intensity and distribution, highly irrigated fields, and coarse 

textured soils are conditions that favor nitrate leaching. A study at Iowa State University found 

that with 2.5 cm of rainfall, nitrate can move downward 6.4 cm in a coarse textured soil or a field 

with tile drainage, whereas in a clay loam soil, the movement downward was 2.54 cm (Nelson 

and Huber, 2001). Leaching distance with different rainfall totals vary greatly due to preferential 

flow at small horizontal spatial scales. Preferential flow always occurs in soils, but is also 

influenced greatly by presence of soil cracking, root channels, insect and other animal burrows 

and general discontinuities in the soil matrix. 

Ammonium volatilization can occur when N is applied at or near the soil surface in the 

form of urea (Rochette et al., 2013). Urea applied to the soil reacts quickly with water (if present) 

and urease enzymes to produce NH4
+ through hydrolysis; N released as ammonia gas to the 

atmosphere is lost permanently for crop uptake. Urease enzymes are most active when the soil 

pH is between 6 and 6.5. However, NH4
+ is lost most readily from the soil surface when the soil 

pH is greater than 7 (Kissel et al., 2008). Alkaline soils surrounding the granule or droplet 

increases the potential for NH3 volatilization to occur, since more free NH4
+ is partitioned in soil 

water at higher pH and the partial pressure of dissolved ammonia drives the reaction towards 

release from solution; however, losses can still occur in acidic soils (Rochette et al., 2013). Urea 

undergoing hydrolysis initially increases the soil pH near the urea pellet to greater than pH 8. 

Unstable NH4
+ carbonate is formed, which then dissociates quickly to release NH3 gas (Kissel et 

al., 2008). Soils with high clay content and/or high organic matter tend to have less risk of NH3 
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loss due to higher pH buffering capacities and greater cation exchange capacities. Greater 

volatilization losses from surface applications occur when soils are moist and warm, thereby 

increasing the rate at which fertilizers are dissolved through heightened biological and chemical 

reactions (Kissel et al., 2008). 

Denitrification is the conversion of NO3
- to gaseous N that can be lost into the 

atmosphere. Denitrifying bacteria, generally located in the topsoil, can utilize organic matter and 

the oxygen in NO3
- to complete metabolic processes when oxygen supply is restricted in 

waterlogged, anaerobic soils (Kissel et al., 2008). Denitrification increases when soil 

temperatures are above 15.6 ̊ C, the soil pH is above 7, and water filled pore space is above 60% 

for more than 15 minutes (Coyne, 2008). Although N losses cannot be eliminated, the use of N 

fertilizer additives or controlled-release N fertilizers and proper application timing have the 

potential to retard N losses caused by leaching and denitrification; therefore, more N may be 

available to the crop at critical growth periods.  

Nitrification Inhibitor 

 Products have been developed to increase N efficiency by delaying the nitrification 

process (Franzen, 2017). A nitrification inhibitor (NI) prevents or hinders activities of the soil 

bacteria, Nitrosomonas spp., by slowing the transformation of NH4
+ to nitrate for four to ten 

weeks depending on soil pH and moisture (Trenkel, 1997).  

The use of a NI in the fall can potentially reduce nitrification until the process stops when 

temperatures drop below 4 ̊ C, and may prevent NO3
- formation when plant uptake is low and 

precipitation is high in the early spring (Nelson and Huber, 2001). When a NI is utilized in 

growing seasons that receive above average rainfall, increased grain protein content has been 
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recorded in wheat when compared to treatments without an inhibitor. This is due to increased 

soil available inorganic N and plants remaining green longer during a growing season, thereby 

decreasing lodging and pathogen effects. (Nelson and Huber, 2001).  

Nitrapyrin (2-chloro-6-(trichloromethyl) pyridine) (NP) is the most common 

commercially used NI. The formulation, N-Serve 24, is labeled for use with anhydrous ammonia 

that is injected into the soil and had to be incorporated immediately (Wilson et al., 2013). 

Recently, however, a new formulation of nitrapyrin was developed using a microencapsulation 

process that allows it to be applied to granular urea (Franzen, 2017) and remain on the soil 

surface for up to ten days. This microencapsulated NP is sold under the trade name Instinct 

(ENP) (Dow Agrosciences, Indianapolis, IN), or more recently Instinct II. The product patent 

states the efficacy of the active ingredient in ENP surpasses unencapsulated NP, thereby 

decreasing the required application rate. Furthermore, it can be incorporated with rainfall instead 

of mechanically (Wilson et al., 2013). However, a study by Goos refuted these findings. In all 

four soil types tested, unencapsulated NP inhibited nitrification more effectively than ENP at 

equivalent rates (Goos, personal communication, 2016).   

Further studies conducted at the University of Nebraska summarized by Franzen (2017), 

showed no yield benefits with the use of nitrapyrin (GF-2017, Instinct) in 2008 or 2009. 

However, a laboratory study by Goos (2011) indicated nitrapyrin and the NI dicyandiamide 

(DCD) inhibited the nitrification process. A review on DCD was conducted in Midwest states 

and was published by Malzer et al. (1989). Inconsistent results in yield were seen when DCD 

was compared to fertilizer alone, but DCD showed similar nitrification inhibition to that of NP 

(Malzer et al., 1989).  
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The DCD produces a bacteriostatic effect on Nitrosomonas bacteria. The bacteria are not 

killed, but their ability to convert NH4
+ to NO3

- is inhibited or reduced allowing for stable NH4
+-

N to be present for six to eight weeks (Trenkel, 1997). The NI active ingredient in Super-U (SU) 

(IMC Phosphate Co., licensed exclusively to Koch Agronomic Services, Wichita, KS, USA) is 

DCD. 

Urease Inhibitors 

 Fertilizers containing amide-N, such as urea and urea-ammonium nitrate (UAN), can be 

rapidly transformed into unstable NH4
+ carbamate when urease enzymes are active in the soil 

(Trenkel, 1997). Utilization of a urease inhibitor at a proper rate binds with the active site of the 

urease enzyme, and essentially halts enzyme activity until soil microorganisms decompose the 

inhibitor to the point where it falls away from the enzyme and activity resumes. The time of 

inhibition is usually about 10 days plus or minus 3 days depending on soil temperature and 

moisture (Franzen, 2017).   

Super-U not only contains a NI, but the urease inhibitor N-(n-butyl) thiophosphoric 

triamide (NBPT) as well. This compound has shown consistent reductions in urea volatilization 

in controlled independent experiments. The NBPT locks onto urease enzyme binding sites, 

which prevents the urease from interacting with the enzyme (Franzen, 2017). 

 Four separate greenhouse studies conducted by Goos (2013) found increased NH4
+ loss 

15 days after fertilizer application when NBPT applied with UAN and UAN alone were 

compared. The studies were conducted on bare soil with small droplet size, bare soil with large 

droplet size, wheat residue ground and mixed with soil with small fertilizer droplet size, wheat 

residue ground and mixed with soil with large fertilizer droplet size. However, a study by Dell et 
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al. (2014) found Super-U, as well as Environmentally Smart Nitrogen (PCU) (Agrium Inc., 

Calgary, Canada), and UAN did not show any yield benefit in poorly drained field sites in 2009, 

2010, and 2011 when compared to urea or the unfertilized check. In this experiment (Dell et al., 

2014) higher yields were achieved with N fertilization in the 2012 growing season, but no 

improvement in yield was realized with N sources of PCU or SU. 

Controlled-Release Nitrogen Fertilizer 

 In addition to nitrification and urease inhibitors, controlled-release N fertilizers (CRF) 

have the ability to reduce N losses and increase N utilization by presenting a physical barrier to 

urea release. Urea is slowly into the soil solution, according to product literature and some 

independent studies, at the same approximate rate that N is needed by the crop (Maharjan et al., 

2016). Plant toxicity caused by elevated ionic concentrations of rapidly dissolved urea is reduced 

with CRF. Therefore, larger quantities of fertilizer can be applied in close proximity to 

seeds/plants in one application. This has the potential to decrease labor costs to growers, while 

reducing the potential for NO3
--N losses and NH4

+ volatilization (Trenkel, 1997).    

 Environmentally Smart Nitrogen is a polymer-coated, controlled-release urea fertilizer 

containing 44% N. Water must enter through the polymer coating to dissolve the urea and allow 

it to diffuse into the soil through cracks or after it degrades (Sullivan et al., 2015). The time it 

takes for coating degradation and urea dissolution depends on soil temperature and moisture 

(Trenkel, 1997). Due to imperfections in the polymer coating, 20-25% of the N is available at the 

time of application. Soil temperatures at 20°C will cause the remaining fertilizer to release in 50 

to 70 days (Sullivan et al., 2015).   
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A study conducted by Sullivan et al. (2015) at Oregon State University found there was 

no yield benefit in corn when PCU was applied when compared to urea. However, work by Geng 

et al. (2016) refuted these findings. The 100% PCU rate resulted in a corn yield of 8355 kg ha-1 

and a wheat yield of 8025 kg ha-1. These yields were significantly higher than the 100% urea rate 

yields of 7620 kg ha-1 and 7170 kg ha-1 for corn and wheat, respectively (Geng et al., 2016). 

Effectiveness of NI, urease inhibitors, and CRF vary depending on the location of use and 

environmental conditions. 
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RESEARCH OBJECTIVES 

The objectives of this research were to: 1) evaluate the dissolution rate of N fertilizers in 

a field setting based on incorporation depth, N source, and duration in the field; 2) evaluate the 

effectiveness of time of application, rate, and N source on supplying the N needs of corn and 

wheat relative to urea. 
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MATERIALS AND METHODS 

Site Description 

Dissolution Rate of N Fertilizers 

 The field experiment was conducted in 2016 at the North Dakota State University 

(NDSU) Seed Farm near Casselton, ND (Latitude = 47.00o N, Longitude = -97.64o W). Table 1 

provides the soil series, soil taxonomy, and slope for this location. 

Optimum Nitrogen Fertilizer Timing, Rate, and Source for Corn and HRSW Production 

Corn and wheat field experiments were conducted in 2015 and 2016 in North Dakota 

and Minnesota. The locations consisted of the NDSU NW22 Research Station, Fargo, ND, 

(Latitude = 46.93o N, Longitude = -96.86o W), a cooperator’s field in Steele County, ND, 

(Latitude = 47.46o N, Longitude = -97.64o W), the NDSU Seed Farm near Casselton, ND, 

(Latitude = 46.88o N, Longitude = -97.23o W), and at a cooperator’s field near Ada, MN, 

(Latitude = 47.34o N, Longitude = -96.42o W). Corn experiments were established in Steele 

County, ND and NW22 in 2015, followed by Steele County and Casselton, ND, in 2016. Wheat 

field experiments in 2015 consisted of Steele County and Casselton, ND. The 2016 experiments 

were located in Casselton, ND and Ada, MN. Table 1 lists the soil series, soil texture, soil 

taxonomy, and slope of each location. Soil samples were collected in the fall of 2014 and 2015 

to determine the levels of NO3
-
 in the soil at each location (Table 2). Five random core samples 

were collected throughout the experimental area and combined prior to analysis.  
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Table 1. Soil series, taxonomy, and slope of NW22, Casselton, Steele County, ND, and Ada, 
MN, in 2015 and 2016. 
Location Year Soil Series† Soil 

Texture† 
Soil Taxonomy‡ Slope   

     %  

NW22 2015 Fargo Silty Clay Fine, smectitic, frigid Typic Epiaquerts 0-1  

Casselton 2015-
16 

Kindred Silty Clay 
Loam 

Fine-silty, mixed, superactive, frigid 
Typic Endoaquolls 

0-2  

Steele 
County 

2015-
16 

Heimdal Loam Coarse-loamy, mixed, superactive, frigid 
Calcic Hapludolls 

0-40  

Ada 2016 Ulen Sandy Loam Sandy, mixed, frigid Aeric Calciaquolls 0-3  

† Soil data obtained from Web Soil Survey (USDA-NRCS, 2016). 
‡ Soil taxonomy listed on individual lines based on hyphenated soil series name. 
  
Table 2. Initial soil test nitrate-N levels, from the 0-60 cm depth, and preceding  
crop for corn and wheat sites in 2015 and 2016 in the fall preceding planting. 

    2015 2016 

Crop Location NO3
- Levels Previous Crop NO3

- Levels Previous Crop 

  --kg ha-1--  --kg ha-1--  

Corn NW22 51.6 Corn -      - 
 Steele County 31.4 Soybean 35.9 Dry Bean 

 Casselton -     - 40.4 Wheat 

Wheat Steele County  65.0 Wheat -      - 
 Casselton  38.1 Wheat 37.0 Wheat  

  Ada -     - 9.0 Soybean 

 

Treatments and Experimental Design 

Dissolution Rate of N Fertilizers 

This experiment was conducted at a single location near Casselton in 2016. The 

experimental design was a randomized complete block (RCBD) with a 3x2x4 factorial 

arrangement and three replicates. The factors included were: fertilizer treatment bag application 

depth, (0, 7.6, and 15.2 cm), N sources (urea and PCU), and fertilizer treatment bag removal dates 

(26 April, 10 May, 24 May, and 7 June). A complete treatment list can be found in Table 3.  
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Optimum Nitrogen Fertilizer Timing, Rate, and Source for Corn and HRSW Production 

The corn experiments were conducted at two site locations in 2015 (NW22 and Steele 

County) and two site locations in 2016 (Casselton and Steele County). The wheat experiments 

were performed at two site locations in 2015 (Casselton and Steele County), and three site 

locations in 2016 (Casselton, Steele County, and Ada). The experimental design for all locations 

was a RCBD with four replications. The corn and wheat treatments were derived from a factorial 

combination of application dates (October and November), N rates (75 and 100% rate of location 

N requirements), N sources (urea, PCU, a 50:50 ratio of urea and PCU (Urea-PCU), SU, and 

urea impregnated with ENP (Urea+ENP)), plus the addition of an untreated check, and a 75 and 

100% rate of urea and a 50:50 ratio of urea applied at the same time as other spring treatments 

followed by urea ammonium nitrate solutions, 28-0-0  (UAN) applied at the 4 leaf stage (Urea-

UAN) for a total of 25 treatments in 2015. A 150% rate of N, applied as urea, to serve as an N 

rich plot, along with 75 and 100% rates of spring applied urea and PCU were added in 2016 for a 

total of 30 treatments. The treatment list for 2015 and 2016 can be found in tables 4 and 5, 

respectively. 

In 2015, the corn trials had fertilizer treatments applied on 15 Oct. 2014, 10 Nov. 2014, 

and 18 Apr. 2015 at the NW22 location and 14 Oct. 2014, 7 Nov. 2014, and 27 Apr. 2015 in 

Steele County. The date of fertilizer application for 2015 and 2016 corn and wheat trials can be 

found in tables 6 and 7, respectively.  
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Table 3. Treatment list for dissolution rate  
of N fertilizer trial in a RCBD factorial  
arrangement applied in 2016. 

Treatment Depth† Source‡ Date§ 

 --cm--  --2016-- 

1 0 Urea 26 Apr. 

2 7.6 Urea 26 Apr. 

3 15.2 Urea 26 Apr. 

4 0   PCU¶ 26 Apr. 

5 7.6 PCU 26 Apr. 

6 15.2 PCU 26 Apr. 

7 0 Urea 10 May 

8 7.6 Urea 10 May 

9 15.2 Urea 10 May 

10 0 PCU 10 May 

11 7.6 PCU 10 May 

12 15.2 PCU 10 May 

13 0 Urea 24 May 

14 7.6 Urea 24 May 

15 15.2 Urea 24 May 

16 0 PCU 24 May 

17 7.6 PCU 24 May 

18 15.2 PCU 24 May 

19 0 Urea 7 June 

20 7.6 Urea 7 June 

21 15.2 Urea 7 June 

22 0 PCU 7 June 

23 7.6 PCU 7 June 

24 15.2 PCU 7 June 

† Depth of treatment burial  

‡ Type of N fertilizer  

§ Date of removal   

¶ Environmentally Smart Nitrogen 

   

General Procedures  

Dissolution Rate of N Fertilizers 

Forty fertilizer granules of the respective fertilizer source were counted then weighed 

using a GX-200 scale (A&D Company Ltd., Tokyo, Japan) for each experimental unit. The 
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granules were then placed in 6 cm by 3 cm, polypropylene 2 mm mesh bags. The tops of the 

bags were folded over 1 cm then stapled closed. The bags were placed in the field 30.5 cm apart 

on 13 Apr. 2016. The surface application treatments were placed on top of the tilled soil surface.  

A 40.5 cm high by 15 cm wide spade shovel was used to create a furrow in the soil to reach the 

7.6 and 15.2 cm depths. The bags were placed at the appropriate depth in the soil and were then 

covered.  

The bags were removed on the designated date, then placed in a dryer for approximately 

18 h at 34 °C to remove excess moisture. The bags were removed from the dryer and the 

remaining fertilizer granules were removed from the bag and weighed. Weather data was 

monitored and recorded from the NDAWN weather station in Prosper, ND, about 15 km from 

the experimental location (Table 8). 

Optimum Nitrogen Fertilizer Timing, Rate, and Source for Corn and HRSW Production 

Trials were grown using standard growing procedures for the location and region in 

regards to cultivation and pesticide application (Wiersma and Ransom, 2012). The plot size for 

an experimental unit in corn was 5.9 m long by 3.8 m wide, and consisted of 4 rows with a 76-

cm spacing between rows. Corn trials were planted using a four row Almaco SeedPro 360 

planter (Almaco, Nevada, IA) at a rate of 87 900 seeds ha-1. The corn plots were harvested using 

a Zurn 150 combine (Zürn Harvesting GmbH and Co, Waldenburg, Germany). 

The size of the wheat experimental unit in Ada, MN was 5.9 m long by 1.5 m wide, and 

consisted of 7 rows with an 18 cm spacing between rows. The plot size for Steele County and 

Casselton was 3.7 m long by 1.5 m wide, and consisted of 7 rows with an 18 cm spacing between 

rows. All wheat trials were planted using a 3P605NT drill (Great Plains Mfg Inc., Salina, KS) 
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with 18 cm row spacing, at a rate of 2.96 million seeds ha-1. Experimental units were harvested 

with a Wintersteiger Classic plot combine (Wintersteiger Ag, Ried, Austria).  

Table 4. Nitrogen fertilizer timing of application,  
N rate, and N source trial treatment list for corn  
and wheat trials in 2015. 

Treatment Timing Rate  Source 

  --%--†  
1 Spring 0 - 

2 Spring 75 Urea 

3 Spring 100 Urea 

4 Spring 75 Urea-UAN ‡ 

5 Spring 100 Urea-UAN ‡ 

6 October 75 Urea 

7 October 100 Urea 

8 October 75 PCU § 

9 October 100 PCU § 

10 October 75 Urea-PCU §¶  

11 October 100 Urea-PCU §¶  

12 October 75 SU 

13 October 100 SU 

14 October 75 Urea+ENP 

15 October 100 Urea+ENP 

16 November 75 Urea 

17 November 100 Urea 

18 November 75 PCU 

19 November 100 PCU 

20 November 75 Urea-PCU §¶ 

21 November 100 Urea-PCU §¶  

22 November 75 SU 

23 November 100 SU 

24 November 75 Urea+ENP 

25 November 100 Urea+ENP 

† Percent of rate considered optimum  
‡ 50% of rate applied as urea in spring: 50% of 
rate applied as UAN at the four leaf stage of 
crop 
§ PCU is Environmentally Smart Nitrogen 
¶ 50% of rate applied as urea: 50% of rate 
applied as PCU 
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Table 5. Nitrogen fertilizer timing of application, percent of  
optimum N rate, and N source trial treatment list for 2016. The  
optimum N rate in corn for 2016 was calculated by multiplying the  
yield goal (9,416 kg ha-1) by the constant 0.5, and then subtracting  
the fall N soil test and previous crop credits. The optimum N rate  
in wheat for 2016 was calculated by multiplying the yield goal  
(4,394 kg ha-1) by the constant 1.1, then subtracting the fall N soil  
test and previous crop credits. 

Treatment Timing Rate  Source † 

  --%--  

1 Spring 0 - 

2 Spring 75 Urea 

3 Spring 100 Urea 

4 Spring 75 PCU 

5 Spring 100 PCU 

6 Spring 75 Urea-PCU  

7 Spring 100 Urea-PCU  

8 Spring 75 Urea-UAN  

9 Spring 100 Urea-UAN  

10 Spring 150 Urea 

11 Oct. 75 Urea 

12 Oct. 100 Urea 

13 Oct. 75 PCU  

14 Oct. 100 PCU  

15 Oct. 75 Urea-PCU  

16 Oct. 100 Urea-PCU  

17 Oct. 75 SU 

18 Oct. 100 SU 

19 Oct. 75 Urea+ENP 

20 Oct. 100 Urea+ENP 

21 Nov. 75 Urea 

22 Nov. 100 Urea 

23 Nov. 75 PCU  

24 Nov. 100 PCU  

25 Nov. 75 Urea-PCU  

26 Nov. 100 Urea-PCU  

27 Nov. 75 SU 

28 Nov. 100 SU 

29 Nov. 75 Urea+ENP 

30 Nov. 100 urea+ ENP 

† PCU is environmentally Smart Nitrogen, UAN is urea ammonium 
nitrate, SU is Super-U, and ENP is encapsulated nitrapyrin 



18 

 

Table 6. Treatment application timing for North Dakota corn experiment  
locations in 2015 and 2016. 

  2015 2016 

Treatment Timing Fargo † 
Steele 

County Casselton  
Steele 
County 

 ----------------------------Day--------------------------- 

Spring 18 Apr. 27 Apr. 29 Apr. 3 May 

Early Fall ‡ 15 Oct. 14 Oct. 9 Oct. 14 Oct. 

Late Fall ‡ 10 Nov. 7 Nov.  3 Nov.  2 Nov. 

† NW22 is located in Fargo, ND 
‡ Treatments occurred the fall before growing season 

 
Table 7. Treatment application date for North Dakota and Ada, MN wheat experiment  
locations in 2015 and 2016. 

  2015  2016    

Treatment Timing Steele County Casselton Casselton Steele County Ada 

    -------------------------------------Day----------------------------------------- 

Spring 7 Apr. 7 Apr. 12 Apr. 30 Mar. 13 Apr. 

October † 14 Oct. 15 Oct. 9 Oct. 14 Oct. 13 Oct. 

November † 12 Nov.  7 Nov. 3 Nov. 2 Nov. 2 Nov. 

† Treatments occurred the fall before growing season   
 
Table 8. Total accumulated rainfall from the  
date of fertilizer burial (1 Apr. 2016) until  
removal date.  

Date Rain †        

   --cm--        

           26 Apr. 2016 4.32        

           10 May 2016 4.45        

           24 May 2016        5.41        

             7 June 2016      13.74        
† Weather data was monitored and recorded from  
the NDAWN weather station in Prosper, ND  
(Latitude= 47.00o N, Longitude = -97.12o W) 

  

The corn hybrid Pioneer 8640AM was used in 2015 corn experiments. It is an 86 day 

relative maturity hybrid that is well adapted to growing conditions in the experimental areas of 

North Dakota. This hybrid was not available in 2016 and was substituted with P8673AM. This 

hybrid was selected based on agronomic characteristic similarities to the previously used hybrid. 
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The spring wheat cultivar used was ‘Faller’. Faller was selected based on high characteristic 

yield potential and lower characteristic protein content compared to the range of tested HRSW 

varieties common in North Dakota and the region. 

The optimum N rate for both wheat and corn trials in 2015 was set at 100.89 kg ha-1. The 

optimum N rate in corn for 2016 was calculated by multiplying the yield goal (9 416 kg ha-1) by 

the constant 0.5, and then subtracting the fall N soil test and previous crop credits. The optimum 

N rate in wheat for 2016 was calculated by multiplying the yield goal (4 394 kg ha-1) by the 

constant 1.1, then subtracting the fall N soil test and previous crop credits (Table 9). This method 

is based on old procedures that do not consider the price of grain or urea and forces a grower to 

predict yield at least 3 months in advance of achieving it. These N recommendations would be 

similar to $5.00 27 kg-1 of wheat and $0.50 0.45 kg-1 of urea in regards to the N 

recommendations by Franzen (2009).  

The total N content of urea, SU, UAN, and PCU is 46, 46, 32, and 44%, respectively. 

Nitrapyrin was added to the urea at a rate of 456 g of active ingredient ha-1; nitrapyrin was added 

to the plastic bags containing the urea that had been weighed out per plot which was then shaken 

by hand for 45 s to ensure the urea was evenly coated before application.  

The granule fertilizer containing treatments were uniformly hand broadcast over the 

entire plot area at the specified application time, then incorporated into the soil 10 cm deep 

immediately after application using a field cultivator operated at 2.7 m s-1. The UAN treatments 

were applied at Feekes 4 in wheat and V4 in corn (NDSU, 2016; Ransom, 2013) with a CO2 

pressurized backpack sprayer and streamer bar boom in wheat and modified with drip hose to 

dribble between the rows in corn. The boom was held directly above canopy height and offset 



20 

 

from crop rows to prevent crop damage. Speed of UAN application was adjusted to achieve the 

application rate needed for each treatment.  

Table 9. The 100% rates of N and planting and harvest dates for corn and  
wheat experiments in 2015 and 2016. 

Year  Crop Location Planting Harvest 100% N Rate 
   ---------Date--------- --kg ha-1-- 

2015 Corn NW22 27 Apr. 29 Sept. 100.89 
  Steele County 27 Apr. 14 Oct. 100.89 
 Wheat Steele County 7 Apr. 4 Aug. 100.89 
  Casselton 7 Apr. 12 Aug. 100.89 

2016 Corn Casselton 2 May 10 Oct. 161.42 
  Steele County 3 May 15 Oct. 121.07 
 Wheat Casselton 14 Apr. 1 Aug. 142.37 

    Ada 13 Apr. 30 July 142.37 

 

Data Collection 

Optimum Nitrogen Fertilizer Timing, Rate, and Source for Corn and HRSW Production 

Experimental plots in 2016 were sampled for the amount of NH4
+-N and NO3

--N in the 

soil for fall applied treatments on 27 April at the Casselton corn location, 3 May for Steele 

County corn location, and 9 May for the Ada wheat location. Spring applied treatments were 

sampled on 2 June for Casselton and Steele County corn and wheat, and 3 June for Ada wheat  

locations. Data was collected only from the plots containing the 100% rate of any 

fertilizer and the untreated check. Five, 30 cm deep soil core samples were taken from each 

experimental unit using a 30 cm long by 1.9 cm in diameter sampling tube attached to a JMC 

Backsaver Handle (JMC Soil Samplers, Newton, IA). The five soil core samples were dried for 

18 h at 29.5 °C. General sample preparation and analysis procedures followed the recommended  

chemical soil test procedures for the North Central Region (Geldermann et al., 2015). The NH4
+- 
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N test followed the nitroprusside catalyzed indophenol reaction procedure (O’Dell, 1993). The 

soil was extracted using 2N KCl solution. An Autoanalyzer 3 High Resolution Digital 

Colorimeter (Seal Analytical, Mequon, WI) was used to measure the extracted NH4
+-N 

colormetrically. Nitrate levels were determined using the transnitration of salicylic acid method 

(Vendrell and Zupancic, 2008). The soil was extracted using deionized water with added 

gypsum. A Brinkmann PC 910 Colorimeter (Metrohm, Riverview, FL) at a wavelength of 420 

nm was used to measure NO3
--N. Total N was calculated by adding the NO3

--N and NH4
+-N 

together for each plot.  

Corn stand counts were obtained by counting the two interior rows of each experimental 

unit at V4 growth stage. Wheat stand counts were collected by counting plants that were between 

two wooden stakes placed 0.91 m apart in two interior rows of a plot before Feekes 3 growth 

stage.  

Normalized Difference Vegetation Index (NDVI) measurements using an active-optical 

sensor were not taken in 2015 for corn or wheat. In 2016, NDVI measurements for corn were 

acquired using a GreenSeeker (GS) handheld device (Trimble, Sunnyvale, CA) at the V6 growth 

stage and Crop Circle (CC) RapidScan handheld device (Holland Scientific, Lincoln, NE) at the 

V8 growth stage, according to North Dakota State University corn growth stages. These devices 

utilize the red or visible bands of the electromagnetic spectrum to estimate leaf area index (Bu et 

al., 2017). Red-NDVI (RNDVI) measurements can be calculated based on red and near-infared 

light in the following formula: 

NDVI = Near infrared reading – Red reading 

  Near infrared reading + Red reading 
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The sensing devices were held approximately 65 cm above the ground and measurements 

were taken at a walking speed of approximately 1.8 m s-1.  Wheat plots in 2016 had RNDVI 

measurements taken with the GS when wheat growth stages were at Feekes 2, Feekes 7, and 

Feekes 10, while the CC measured RNDVI at Feekes 10.51; plant growth staging was based on 

the NDSU Feekes scale.  

Harvested weights expressed at 12.5% moisture were obtained at the time of combining 

using a Harvest Master (Juniper Systems, Logan, UT) combine weighing system. A subsample 

of grain from each harvested plot was retained for further analysis. This subsample was cleaned 

using a Clipper Office Tester and Cleaner (Seedburo Equipment Co., Chicago, IL). Moisture and 

test weight were obtained from processed grain using a GAC 2100 moisture tester (Dickey-John 

Corp., Minneapolis MN). Corn seed protein content was measured based on 12.5% moisture 

using near-infa-red spectrometry with an Infratec 1241 Grain Analyzer (Foss, Eden Prairie, MN), 

while the wheat seed protein was analyzed using a DA 7250 NIR analyzer (Perten Instruments, 

Hägersten, Sweden). Total protein in wheat was calculated by multiplying the yield by the 

percent protein concentration. 

Statistical Analysis 

Dissolution Rate of N Fertilizers 

Data were statistically analyzed using PROC GLM in SAS 9.3 (SAS Institute, SAS 

Circle, Cary, NC). Application depth, fertilizer source and removal date were considered fixed 

effects, while replicate was considered a random effect. Proc mixed method=type3 was used for 

LSMEANS. Mean separations were done through a least significant difference calculation. An 

alpha level of 0.05 was used to test all hypotheses.  
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Optimum Nitrogen Fertilizer Timing, Rate, and Source for Corn and HRSW Production 

Data were analyzed with PROC MIXED in SAS 9.3. Application time, fertilizer source, 

and application rate were considered fixed effects in the model, while replicate and environment 

were considered random effects. All fixed effect interactions were considered fixed, while any 

interactions containing a random term were considered random. PROC MIXED method=type3 

was used for LSMEANS. Mean separations were done through a least significant difference 

calculation. Corn yield, GS NDVI, and CC NDVI correlations were analyzed in Xcel. Yield, 

protein, GS NDVI, and CC NDVI correlations were analyzed for wheat in Xcel. An alpha level 

of 0.05 was used for all hypothesis tests.  
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RESULTS AND DISCUSSION 

Weather Information 

Weather impacts crop yield and N status in the soil. Average monthly air temperatures in 

the 2015 and 2016 growing seasons in corn and wheat locations were comparable to the long 

term location averages (Tables 10 and 11). Despite the near average temperatures, differences in 

rainfall were observed (Tables 12 and 13). In 2015, Fargo recorded high rainfall in May (200 

mm), while June (64 mm), September (41 mm), and October (32 mm) experienced below 

average rainfall. The 2015 growing season in Casselton experienced above normal rainfall in 

May (149 mm), June (110 mm), and July (88 mm), and minimal rainfall in September (22 mm). 

In 2016, Casselton received slightly above normal rainfall in May (82 mm compared to 72 mm). 

On the other hand, June received below normal rainfall (38 mm). Ada also experienced high 

rainfall in May (119 mm) of 2015, while the 2016 growing was below normal in May (51 mm), 

but noted above average normal rainfall in July (156 mm), August (173 mm), and September 

(111 mm). The Finley ND weather station, located in Steele County, could not provide historical 

weather due to its establishment in 2014. However, rainfall differences between the 2015 and 

2016 growing seasons are evident in May when 2015 received 106 mm compared to 70 mm in 

2016. These differences in rainfall may have impacted corn and wheat response to treatments. 

Dissolution Rate of N Fertilizers 

The urea was completely dissolved by the first sampling date, two weeks after the 

initiation of the experiment. The site received 4.2 cm of rainfall by 25 April, shortly after 

installing the treatments, which was adequate to dissolve all the urea at all depths. The urea data 

were excluded from further analysis. When considering just the PCU, the main effect of depth 
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was not significant for the release of N. Treatments with the main effect of date, however, 

differed significantly (P <0.0001). Moreover, the date by depth interaction was not significant for 

the amount of PCU fertilizer dissolved (Table 14). Significantly less N remained in the PCU 

granules at each consecutive two week sampling date (Fig. 1).  

Table 10. Average air temperature for the months of planting to harvest in corn  
experiment locations, in 2015 and 2016, along with normal (1990-2016)†. 

  Fargo Steele County ‡§  Casselton  ¶   
Month 2015 2016 Normal 2015 2016 2015 2016 Normal  

 -----------------------------------------------°C---------------------------------------------------  
Apr. 8 6 7 7 4 8 6 5  
May  13 15 14 12 14 12 15 13  
June 20 20 19 19 19 19 19 18  
July  22 22 21 21 20 21 21 20  
Aug. 20 21 21 20 20 19 21 19  
Sept. 18 17 16 17 15 17 16 15  
Oct. 10 10 8 9 7 9 8 7  
Nov. 2 6 -1 1 4 2 4 -2  
† Information collected from NDAWN, 2016.      
‡ Weather information collected from the Finley, ND, weather station 47.526° N, -97.847° W.  

§ Normal data are not available due to the recent establishment of this site. 

¶ Weather information collected from the Prosper, ND, weather station 47.002° N, -97.115° 
W.  

 

Hyatt et al. (2010) also found that the release of urea from PCU was impacted by date. 

Their study was conducted on a Hubbard loamy sand with a May through September 30 year 

average temperature and precipitation of 6.8 °C and 752 mm, respectively. They found 73% of the N 

remaining after four weeks, while 35% of N remained six weeks after burial. This compares to 

the 78 and 64% of the N fertilizer remaining at four and six weeks after burial, respectively, in 

our study. The differences in the remainder of fertilizer between the two studies may be 

attributed to difference in the mesh size of the sample bags. A study by Wilson et al. (2009) 

found larger mesh spacing resulted in significantly higher N release rates caused by increased 
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soil to fertilizer contact. Greater rainfall events occurred in the study by Hyatt et al. (2010) 

compared to our study and could also explain the large difference in fertilizer remaining six 

weeks after burial. The urea inside the polymer granule is dissolved when water passes through 

the polymer coating through diffusion (Hyatt et al., 2010), which degrades and cracks overtime. 

Table 11. Average air temperature for the months of planting to harvest in wheat  
experiment locations, in 2015 and 2016, along with normal (1990-2016 for Casselton  
and 2007-2016 for Ada)†. 

  Casselton  ‡ Steele County §¶ Ada   
Month 2015 2016 Normal 2015 2016 2015 2016 Normal  

 ---------------------------------------°C-------------------------------------------------------  
Mar. 0 3 -3 0 2 -1 2 -3  
Apr. 8 6 5 7 4 7 5 5  
May  12 15 13 12 14 12 15 12  
June 19 19 18 19 19 18 19 16  
July  21 21 20 21 20 21 21 19  
Aug. 19 21 19 20 20 19 20 20  
Sept. 17 16 15 17 15 17 16 15  
† Information collected from NDAWN, 2016.      
‡Weather information collected from the Prosper, ND, weather station 47.002° N, -97.115° W. 

§ Weather information collected from the Finley, ND, weather station 47.526° N, -97.847° W. 

¶ Normal data are not available due to the recent establishment of this site. 

 

Optimum Nitrogen Fertilizer Timing, Rate, and Source for Corn and HRSW Production  

 NH4
+-N and NO3

--N Soil Levels 

The error variances in the combined location analysis of either spring or fall application 

timing treatments were found to be homogenous using Bartlett’s test. The fall applied N 

ANOVA showed NH4
+-N did not differ significantly between treatments at Ada, Casselton, 

Steele County, or combined across all locations (Table 15). However, lower than expected NH4
+-

N values were found across all locations. Ammonium levels in Ada were consistently less than 

those found in Casselton and Steele County. The percent of organic matter in the top 30.5 cm of 
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soil in Ada (2.2%), Casselton (4.7%), and Steele County (4.8%) is one possible explanation for 

this.  The biological decomposition of organic matter releases NH4
+-N into the soil at an 

increased rate when a larger amount of organic matter is present, provided that environmental 

conditions are similar. 

Table 12. Monthly rainfall averages for corn experiment locations in 2015, 2016 and  
historical (1990-2016)†. 

  Fargo Steele County ‡§ Casselton  ¶  
Month 2015 2016 Normal 2015 2016 2015 2016 Normal  

  ------------------------------------------mm-------------------------------------------------  
Apr. 16 59 35 12 39 20 43 26  
May  200 33 73 106 70 149 82 72  
June 64 69 110 108 93 110 38 101  
July  71 132 69 107 112 88 88 75  
Aug. 54 48 60 33 54 36 26 54  
Sept. 41 80 65 28 73 22 61 60  
Oct. 32 64 54 21 17 31 49 49  
† Information collected from NDAWN, 2016.     
‡ Weather information collected from the Finley, ND weather station 47.526 °N, -97.847 °W. 

§ Normal data are not available due to the recent establishment of this site. 

¶ Weather information collected from the Prosper, ND weather station 47.002 °N, -97.115 °W. 
 

Table 13. Monthly rainfall averages for wheat experiment locations in 2015, 2016 and  
historical (1990-2016 for Casselton and 2007-2016 for Ada)†. 

  Casselton ‡ Steele County §¶ Ada  
Month 2015 2016 Normal 2015 2016 2015 2016 Normal  

 ------------------------------------------mm----------------------------------------------------  
Apr. 20 43 26 12 39 20 41 34  
May  149 82 72 106 70 119 51 66  
June 110 38 101 108 93 100 65 106  
July  88 88 75 107 112 65 156 70  
Aug. 36 26 54 33 54 26 173 58  
Sept. 22 61 60 28 73 12 111 74  
† Information collected from NDAWN, 2016.     
‡Weather information collected from the Prosper, ND weather station 47.002 °N, -97.115 °W. 

§ Weather information collected from the Finley, ND weather station 47.526 °N, -97.847 °W. 

¶ Normal data are not available due to the recent establishment of this site.   
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Table 14. F-values for percentage  
of fertilizer remaining in granules  
in Casselton, ND, in 2016. 

SOV        F  
Rep 0.43  
Depth  0.92  
Date 40.01***  
Depth*Date 20.31  
*** Significant at the 0.001  
probability level. 

 

 
 

Fig. 1. Influence of date of removal on the dissolution rate of Environmentally Smart Nitrogen 
(PCU), averaged over depths in a field setting at Casselton, ND in 2016 (LSD=11). Points in the 
graph represent observed data and the line is the trend line. 

 

Fall applied treatments had statistically different NO3
--N levels at each location, as well 

as in the combined analysis. The Ada untreated check had significantly less NO3
--N than all 

other fall treatments (Table 15). The November applied SU had a NO3
--N level of 32.9 ppm, 

which was significantly higher than all other fall applied treatments. The untreated check had 

less NO3
--N than any of the fall treatments sampled in Casselton (Table 15). At the Steele 

County site, October applications of PCU and Urea+ENP had similar NO3
--N levels to the 
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untreated check, whereas PCU and Urea+ENP treatments were higher in NO3--N than the check 

at Ada and Casselton (Table 15). Overall, the fall combined locations showed the untreated 

check to have statistically less NO3
--N levels than all other treatments (Table 15). A six-week 

field study by Sullivan et al. (2014) found PCU, SU, and Urea+ENP had statistically lower NO3
--

N levels than urea up to four weeks after fertilizer application occurred, supporting the results in 

this study.  

Table 15. The fall applied 100% N rates in 2016 studies were soil sampled to evaluate the 
location and combined location average for ammonium (NH4

+-N), nitrate (NO3
--N), and total N 

through 0-60 cm deep soil sampling in Ada, Casselton, and Steele County on 9 May, 27 April, 
and 3 May, respectively. 

 Ada Casselton Steele County Combined 

Treatment † 
NH4

-N 
NO3

-N 
Total 

N 
NH4

-N 
NO3

-N 
Total 

N 
NH4

-N 
NO3

-N 
Total 

N 
NH4

-N 
NO3

-N 
Total 

N 

                         ---------------------------------------------ppm----------------------------------------------------- 

Check 3.0 5.3 8.3 7.3 16.9 24.2 4.3 12.4 16.7 4.9 11.5 16.4 

Oct. Applied             

Urea 3.5 19.4 22.8 6.7 49.3 56.0 6.0 33.8 39.7 5.4 34.1 39.5 

PCU 3.6 16.5 20.1 7.2 45.4 52.6 4.5 21.4 25.9 5.1 27.8 32.8 

Urea-PCU 3.8 13.5 17.3 6.9 45.0 51.9 4.8 22.1 26.9 5.2 26.9 32.0 

SU 3.4 16.3 19.6 6.9 50.1 57.0 4.7 31.6 36.3 5.0 32.7 37.7 

Urea+ENP 3.3 16.1 19.4 15.4 54.4 69.8 5.9 20.6 26.5 8.2 30.4 38.6 

Nov. Applied             

Urea 3.3 20.5 23.8 8.9 49.3 58.2 4.9 33.6 38.6 5.7 34.5 40.2 

PCU 4.1 15.8 19.9 8.6 31.9 40.4 6.6 23.4 30.0 6.4 23.7 30.1 

Urea-PCU 4.4 16.9 21.3 10.0 44.9 54.9 5.6 22.4 28.0 6.7 28.0 34.7 

SU 4.3 32.9 37.2 8.0 52.6 60.6 10.5 37.5 48.0 7.6 41.0 48.6 

Urea+ENP 3.5 21.8 25.3 14.8 39.3 54.0 6.6 29.1 35.7 8.3 30.0 38.3 

LSD (0.05) ‡ NS 7.7 8.0 NS 13.1 17.0 NS 9.2 11.6 NS 8.6 9.8 

† PCU is Environmentally Smart Nitrogen, Urea-PCU is 50% of the nitrogen applied as urea 
and 50% applied as PCU, SU is Super-U, Urea+ENP is the nitrogen rate applied as urea 
coated with encapsulated nitrapyrin. 
‡ LSD values are to be used to compare all numbers within the same column. 

 

The greatest total N with fall applications at Ada was recorded with the SU November 

application treatment. The untreated check had significantly less N than all other treatments at 
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8.3 ppm (Table 15). The untreated check in the fall applied soil samples had a comparable total 

N content to PCU applied in November (Table 15). The untreated check in Steele County had a 

total N level of 16.7 ppm, though it was not significantly lower than October applied PCU, 

Urea+ENP, and Urea-PCU, or November applied PCU. The combined ANOVA showed the 

untreated check had the lowest total N level statistically, while the November applied SU had the 

greatest total N level at 48.6 ppm. However, urea applied in October or November were not 

statistically different from the November applied SU. The combined results compared to a field 

study by Sullivan et al. (2014) when a 0 to 25.4 cm deep sample was analyzed 6 weeks after the 

fertilizer was applied; SU, and Urea+ENP total N levels did not differ significantly from urea. 

Ammonium levels did not differ statistically in the spring applied N at Ada and 

Casselton; however, differences were found at the Steele County site and the spring applied 

combined locations. The Steele County spring applied PCU had greater NH4
+-N levels than any 

other treatments (Table 16). The spring applied PCU in combined locations had 8.0 ppm of 

NH4
+-N, significantly higher than the untreated check (Table 16). A laboratory study by Dell et 

al. (2014) also found increased levels of NH4
+-N when PCU was applied compared to the 

untreated check when the soil was at 18% volumetric soil water content and sampling occurred 

21 days or more after treatment. The lack of differences between the untreated check and other 

treatments for NH4
+-N content could be attributed to environmental conditions favoring 

mineralization, where organic N is converted to NH4
+-N and the rapid conversion of NH4

+-N to 

NO3
--N. Nitrogen mineralization in southeastern ND was unusually high during the 2016 

growing season. One corn N rate study in southeast ND achieved 11 298.6 kg ha-1 with low 

residual nitrate-N in April and no added N fertilizers (Franzen, personal communication, 2017). 
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 Only the spring application timing in Steele County did not have discernable NO3
--N 

differences between treatments. In the spring soil samples at Ada, PCU had similar NO3
--N to 

the untreated check (Table 16). Similar NO3
--N levels were found between spring applied urea 

and the Urea-PCU blend, while Urea-UAN had the highest levels at 20.5 ppm. The highest levels 

of NO3
--N are associated with Urea-UAN due to UAN application 1 week prior to spring soil 

sampling in the wheat locations. Similar to the findings in Ada, soil analysis of the spring applied 

treatment experimental units found the untreated check and PCU had significantly lower levels 

of NO3
--N than Urea-PCU and urea (Table 16), supporting work by Geng et al. (2016). Their 

study showed urea had significantly higher NO3
--N levels than PCU when soil samples were 

taken from a 0-20 cm depth, even under higher than average annual temperature and rainfall at 

20.3 °C and 530 mm, respectively. The spring combined locations showed a similar pattern to the 

individual locations where the PCU NO3
--N level was not significantly higher than the untreated 

check (Table 16). The low PCU NO3
--N levels is caused by the polymer coating slowing the 

release of N in any form (Trenkel, 1997).  

The untreated check had significantly less total N than all other spring applied treatments 

(Table 16). Urea and Urea-PCU had similar total N concentrations of 14.8 and 17.7 ppm, 

respectively, while Urea-UAN had the highest amount at 22.6 ppm. In Casselton, the untreated 

check and PCU had lower total N levels than urea (Table 16). Work by Sullivan et al. (2014) 

found similar PCU and urea comparisons for total N levels two weeks after fertilizer application 

occurred. The lower PCU total N concentrations may be attributed to N being retained in the 

fertilizer granules. Steele County did not show differences between treatments for total N when 

N was applied, but all N applications, regardless of fertilizer type, were significantly higher than 
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the untreated check (Table 16). The ANOVA combined across locations showed similar 

statistical differences to those seen in Steele County. 

Table 16. The 2016 spring applied 100% N rate treatment experimental units, soil sampled 2 
June, Casselton and Steele County and 3 June, Ada and to evaluate ammonium (NH4

+-N),  
nitrate (NO3

--N), and total N by location and combined locations. 

 Ada Casselton Steele County Combined 

Treatment † 
NH

4-N 
NO3

-N 
Total 

N 
NH4

-N 
NO3-

N 
Total 

N 
NH4

-N 
NO3

-N 
Total 

N 
NH4

-N 
NO3

-N 
Total 

N 

 --------------------------------------------------ppm--------------------------------------------------- 

Check 2.0 3.0 5.0 4.4 11.6 16.0 4.1 12.6 16.7 3.5 9.0 12.5 

Urea 2.5 12.3 14.8 4.9 35.0 39.9 4.7 30.1 34.7 4.0 25.8 29.8 

PCU 2.6 6.8 9.4 8.3 20.5 28.8 13.2 24.3 37.5 8.0 17.2 25.2 

Urea-PCU 3.2 14.5 17.7 6.7 31.2 37.9 5.4 26.6 32.0 5.1 24.1 29.2 

Urea-UAN  2.1 20.5 22.6 5.8 26.7 32.5 6.7 28.3 35.0 4.9 25.1 30.0 

LSD 

(0.05)‡ NS 4.7 4.7 NS 10.3 9.9 5.2 NS 12.9 4.4 8.2 10.7 

† PCU is Environmentally Smart Nitrogen, Urea- PCU is 50% rate applied as urea: 50% of 
rate applied as PCU, Urea-UAN is 50% of nitrogen rate applied as urea and 50% applied as 
UAN at the 4-leaf stage. 

‡ LSD values are to be used to compare all numbers within the same column.  
 

Corn 

All Treatment Comparisons  

Active-optical sensors are currently being used to evaluate in-season plant N content. 

However, there is some debate among scientists regarding the ideal crop growth stage necessary 

to predict yield (Shaver et al., 2011; Lopresti et al., 2015). In 2015 and 2016, the variances of 

error for all locations within a year were evaluated for homogeneity through Barlett’s test. Since 

these variances were found not to differ statistically, locations within the same growing season 

and crop were combined in an analysis of variance.  

GreenSeeker and Crop Circle sensor data were not taken in 2015. GreenSeeker data did 

not show any discernable differences in 2016 at either location or in the combined location 
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analysis. The 2016 Crop Circle RNDVI readings did not differ statistically at Casselton, but did 

differ in Steele County. When the 2016 locations were combined, differences were not detected 

(Table 17).  

No statistical differences in RNDVI readings taken with the Crop Circle handheld device 

at the V8 growth stage in corn were noted in Casselton, which is not surprising given that there 

were no yield differences due to treatment at that location (Table 18). The RNDVI readings, 

therefore, predicted the non-response of corn to N at that location. The RNDVI readings at Steele 

County showed the 75% rate of urea applied in the spring was statistically greater than the 75% 

rate of PCU applied the previous November, the untreated check, and the 75% rate of Urea+ENP 

applied in October. The 75% rate of Urea+ENP applied in October had lower RNDVI readings 

than the 75% rate of urea applied in October and the 100% rate of urea applied in the spring, as 

well. A study conducted in North Dakota by Sharma et al. (2015) also found increasing the rate 

of N from 134 kg N ha-1 to 179 kg N ha-1 did not always lead to elevated reflectance of NIR 

wavelengths when measurements were taken at the V6 growth stage in corn with the Crop 

Circle. The Crop Circle measures the top of the corn canopy, while N stress on the plant first 

appears in lower leaf tissue (Barker and Sawyer, 2013). The Crop Circle may not have been able 

to pick up early signs of N deficiencies in some treatments. Nitrogen concentrations may also 

have been adequate at the sensing date so that rate differences may not have been apparent.  

No yield differences between treatments were recorded in 2015 at Steele County (Table 

19). The moderately well drained soil in Steele County may have resulted in low N loss during 

the 2015 growing season. In addition, the previous crop credit may have also contributed to lack 

of response at this site. The 2015 combined location analysis showed the highest yielding 

treatment was the 100% rate of urea applied in October. Only the 75% rates of October and 



34 

 

November applied PCU, 75% rate of November applied Urea+ENP, and the untreated check 

produced less yield than the 100% rate of October applied urea. The untreated check yielded less 

than the 75% rate of November applied PCU, 75% rate of October applied PCU, and the 75% 

rate of November applied Urea+ENP (Table 19). Lack of yield differences among treatments 

may be caused by 2015 seasonal weather conditions that limited N losses and favored 

mineralization. No yield differences due to treatment were found in 2016 (Table 20). There was 

a positive correlation between yield and CC RNDVI readings taken at Steele County (Table 21), 

indicating that these readings were able to detect plant color differences at this early stage that 

ultimately had an impact on yield, later in the season.  

Table 17. Statistical F values and level of significance from the 2015 and 2016 corn study 
location ANOVA tables for RNDVI (GreenSeeker) taken at V6, RNDVI (Crop Circle) taken at 
V8, yield, and protein variables. 

 2015 2016 

Variable Fargo Steele County Combined Casselton Steele County Combined 

RNDVI 
(GreenSeeker) - - - 1.47   1.15 1.62 

RNDVI (Crop Circle) - - - 0.71     1.73* 1.15 

Yield 2.04* 1.14 2.12* 1.05 0.8   1.51 

Protein - - -    1.65*     1.77*       2.33** 

** Significant at the 0.01 probability level. 
   

*   Significant at the 0.05 probability level.  
   

 

Seed protein content was not determined in 2015; however, protein content was impacted 

by treatments in 2016 at Casselton, Steele County, and in the combined site analysis (Table 17).  

Although no premium or discount applies to corn protein, subtle variations caused by the 

treatments may be seen in protein concentrations even if yield is not impacted by N treatment. 

Nitrogen treatments applied in excess of what the plant needs for yield accumulate as protein in 

the grain. At Casselton, the 75% rate of spring applied PCU had statistically greater protein 

concentrations than the 75% rate of spring and November applied urea (Table 22). At Steele 
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County, the untreated check, the 100% rate of October applied Urea-PCU, and the 75% rate of 

Urea-PCU produced less grain protein than the 100% rate of spring applied urea and the 75% 

rate of urea applied in October. The October application of Urea-PCU applied at a 75% rate 

produced less protein than the 75% rate of urea applied in either the spring or November, as well 

(Table 22). The spring applied 150% rate of urea and 100% rate of November applied Urea-PCU 

resulted in more protein than the 75% rate of urea applied in November when the locations were 

combined (Table 22). The increased rate of N application and/or the fertilizer applied in the fall 

may have caused lower protein to be seen with the 75% rate of urea applied in November 

(Franzen 2009; Brown et al., 2005). These differences in protein may be seen as differences in 

yield if a growing season favors N losses or minimizes mineralization. 

Since the experiment was designed so the effect of specific factors could be analyzed, the 

data were further analyzed to see if date of application, rate of fertilizer applied, type of fertilizer 

used, and any interactions between these factors affected RNDVI (GS), RNDVI (CC) yield, or 

protein. 

Fall Factorial Comparisons 

 In 2015 and 2016, select treatments that were balanced for the factors that were used to 

develop the full treatment list were analyzed as a factorial to look closer at the effect of the main 

factors of rate, timing, and fertilizer type, as well as their interactions. There were two rates of N 

(75% and 100% of ‘optimum’ N rate), two timings (October and November), and five fertilizer 

types (urea, PCU, Urea-PCU, SU, and Urea+ENP) in this factorial design. Folded F test for 

homogeneity error of variance was not significant per year per location; therefore, locations 

across growing seasons were combined in the ANOVA.  
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In the combined analysis, there were no yield differences between any the factors and their 

interactions (Table 23). Similarly, there were no yield differences within individual locations in 

both 2015 and 2016 (Table 23). Weather conditions that favored N mineralization probably 

masked any treatment effect. As was noted previously, yield was high even in the unfertilized 

check, which suggested that only minimal N fertilization was required in to attain optimum yield. 

The 2016, RNDVI (GS), RNDVI (CC), and protein data were analyzed using this 

factorial design. There were no statistical differences for RNDVI (GS) and for protein. However, 

the rate by fertilizer type interaction was significant for RNDVI (CC) taken at V8 growth stage 

(Fig. 2). Urea, PCU, and Urea+ENP had a crossover interaction where the 75% rate of urea and 

the 100% rate of PCU and Urea+ENP had greater RNDVI readings than the urea, PCU, and 

Urea+ENP at 100%, 75%, and 75%, respectively. It is unclear why the 75% rate of urea had a 

higher RNDVI reading than the 100% rate. The increased N applied to PCU and Urea+ENP 

resulted in more chlorophyll production, thus increasing the RNDVI reading. The Urea-PCU and 

SU RNDVI readings did not vary statistically when the 75 and 100% rates of the same fertilizer 

were compared. A diverging response occurred between the Urea+ENP and the SU fertilizer. 

The 100% rate of Urea+ENP had an RNDVI reading of 0.84 compared to the 100% rate of SU at 

0.82. The decreased greenness seen with SU may be attributed to N loss through elevated NO3
--

N levels in the SU compared to the Urea+ENP. However, the elevated RNDVI readings did not 

result in a statistical difference in grain yield.  
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Table 18. Red-normalized difference vegetative index readings obtained with a handheld Crop 
Circle device at the V8 growth stage in corn at Casselton, Steele County, and combined across 
locations in 2016. 
Application 
Timing Rate Fertilizer Type † Casselton Steele County Combined   
 --%--   

 
- - Check 0.82 0.80 0.81  
Spring 75 Urea 0.82 0.84 0.83  
Spring 100 Urea 0.83 0.83 0.83  
Spring 75 PCU 0.81 0.83 0.82  
Spring 100 PCU 0.81 0.83 0.82  
Spring 75 Urea-PCU 0.82 0.84 0.83  
Spring 100 Urea-PCU 0.83 0.84 0.83  
Spring 75 Urea-UAN 0.83 0.84 0.83  
Spring 100 Urea-UAN 0.83 0.83 0.83  
Spring 150 Urea 0.81 0.83 0.82  
Oct. 75 Urea 0.83 0.83 0.83  
Oct. 100 Urea 0.82 0.82 0.82  
Oct. 75 PCU 0.84 0.81 0.82  
Oct. 100 PCU 0.84 0.82 0.83  
Oct. 75 Urea-PCU 0.84 0.82 0.83  
Oct. 100 Urea-PCU 0.83 0.83 0.83  
Oct. 75 SU 0.81 0.82 0.81  
Oct. 100 SU 0.82 0.83 0.83  
Oct. 75 Urea+ENP 0.81 0.79 0.80  
Oct. 100 Urea+ENP 0.84 0.84 0.84  
Nov. 75 Urea 0.83 0.82 0.83  
Nov. 100 Urea 0.82 0.82 0.82  
Nov. 75 PCU 0.83 0.80 0.82  
Nov. 100 PCU 0.85 0.82 0.83  
Nov. 75 Urea-PCU 0.83 0.83 0.83  
Nov. 100 Urea-PCU 0.82 0.83 0.83  
Nov. 75 SU 0.82 0.83 0.83  
Nov. 100 SU 0.81 0.83 0.82  
Nov. 75 Urea+ENP 0.83 0.83 0.83  
Nov. 100 Urea+ENP 0.84 0.84 0.84  
LSD (0.05)‡  NS 0.03 NS  
† PCU is Environmentally Smart Nitrogen, Urea-PCU is 50% of the rate applied as urea and  
50% applied as PCU, Urea-UAN is 50% urea applied /incorporated spring plus 50% as UAN  
streamed at 4 leaf stage, SU is Super-U, Urea+ENP is encapsulated nitrapyrin coated urea. 

‡ LSD values are to be used to compare all numbers within the same column.  
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In the combined ANOVA, type of fertilizer applied performed differently at the two 

locations with respect to RNDVI readings recorded with the Crop Circle at V8. This interaction 

was a crossover type interaction (Table 24). A lower RNDVI reading occurred at Casselton when 

PCU was used compared to SU. However, the SU at Steele County had a higher average RNDVI 

reading than when PCU was applied. Variations are mostly likely caused by increased rainfall in 

Casselton compared to Steele County or variations in soil type. Time of day that the sensor was 

used should not have caused RNDVI readings to vary (Barker and Sawyer, 2013). 

Spring Factorial Comparisons 

A second factorial analysis of the data in 2016 was conducted for balanced treatments of 

N rate (75% and 100%), application timing (spring, October, and November), and fertilizer types 

(urea, PCU, and Urea-PCU). There was no significance between treatments in the Folded F test. 

Therefore, locations have been combined.  

The combined ANOVA did not show any significant interactions or main effects for 

yield (Table 25). When grain yields were analyzed separately, Casselton showed a significant 

interaction between rate and type of fertilizer applied. The type of fertilizer applied main effect 

was significant in Steele County. 

The significant N rate by fertilizer type applied interaction in Casselton grain yield was 

caused by a crossover interaction (Fig. 3). Grain yield increased when a 75% rate of urea was 

used instead of a 100% rate, while decreased yield occurred with the 75% rate PCU compared to 

the 100% rate. It is unclear why the 75% rate of urea resulted in greater yield than the 100% rate, 

while the additional N applied as PCU increased grain yield. This differs from the converging 

rate by type of fertilizer interaction for corn grain yield in a non-irrigated and non-drained 
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production system by Nelson et al. (2009). In their study, a smaller yield decrease occurred when 

PCU was applied at 140 kg ha-1 and 280 kg ha-1 than when urea was applied at the same rates.  

Table 19. Yield averages for the 2015 corn locations and combined analysis. 

Application Timing Rate Fertilizer Type † Fargo Steele County Combined  

 ---%--- 
 ----------------kg ha-1---------------- 

- - Check 7 741 8 321 8 031 

Spring 75 Urea 10 194 11 326 10 760 

Spring 100 Urea 9 850 11 028 10 439 

Spring 75 Urea-UAN 8 947 10 566 9 756 

Spring 100 Urea-UAN 9 577 9 995 9 786 

Oct. 75 Urea 9 480 10 771 10 126 

Oct. 100 Urea 10 381 11 225 10 803 

Oct. 75 PCU 10 127 8 853 9 490 

Oct. 100 PCU 9 633 10 368 10 001 

Oct. 75 Urea-PCU  9 708 9 850 9 779 

Oct. 100 Urea-PCU  9 778 9 910 9 844 

Oct. 75 SU 10 059 10 429 10 244 

Oct. 100 SU 10 382 10 449 10 416 

Oct. 75 Urea+ENP 9 902 10 771 10 336 

Oct. 100 Urea+ENP 9 656 11 609 10 633 

Nov. 75 Urea 9 935 9 690 9 813 

Nov. 100 Urea 9 216 10 394 9 805 

Nov. 75 PCU 9 080 9 876 9 478 

Nov. 100 PCU 9 714 10 282 9 998 

Nov. 75 Urea-PCU 9 535 10 980 10 257 

Nov. 100 Urea-PCU  9 383 11 102 10 243 

Nov. 75 SU 9 253 10 194 9 723 

Nov. 100 SU 9 876 10 063 9 969 

Nov. 75 Urea+ENP 9 612 9 524 9 568 

Nov. 100 Urea+ENP 10 531 9 928 10 229 

LSD (0.05)‡     1 130  NS 1 100 

† PCU is Environmentally Smart Nitrogen, Urea-PCU is 50% of the rate applied as urea and 
50%  applied as PCU, Urea-UAN is 50% urea applied /incorporated spring plus 50% as UAN 
streamed at 4 leaf stage, SU is Super-U, Urea+ENP is urea coated with encapsulated 
nitrapyrin. 

‡ LSD values are to be used to compare all numbers within the same column.  
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Table 20. Yield averages for the 2016 corn locations and combined analysis. 

Application Timing Rate Fertilizer Type † Casselton Steele County Combined 
 --%--  ------------------kg ha-1----------------- 

- - Check 14890 15552 15221 

Spring 75 Urea 15780 15861 15820 

Spring 100 Urea 14932 15871 15401 

Spring 75 PCU 15468 15790 15629 

Spring 100 PCU 16271 16408 16339 

Spring 75 Urea-PCU 15580 16004 15792 

Spring 100 Urea-PCU 16222 16453 16338 

Spring 75 Urea-UAN 15585 15692 15638 

Spring 100 Urea-UAN 14690 16070 15380 

Spring 150 Urea 15317 15779 15548 

Oct. 75 Urea 15588 15639 15614 

Oct. 100 Urea 15256 15655 15455 

Oct. 75 PCU 15239 15855 15547 

Oct. 100 PCU 15789 15800 15795 

Oct. 75 Urea-PCU 15765 15758 15762 

Oct. 100 Urea-PCU 15166 15584 15375 

Oct. 75 SU 15633 15764 15699 

Oct. 100 SU 15998 15968 15983 

Oct. 75 Urea+ENP 16261 15712 15986 

Oct. 100 Urea+ENP 15796 15650 15723 

Nov. 75 Urea 15689 15915 15802 

Nov. 100 Urea 15596 15759 15678 

Nov. 75 PCU 15257 15699 15478 

Nov. 100 PCU 16596 16158 16377 

Nov. 75 Urea-PCU 15494 16188 15841 

Nov. 100 Urea-PCU 14870 16190 15530 

Nov. 75 SU 15658 15516 15587 

Nov. 100 SU 16144 15889 16017 

Nov. 75 Urea+ENP 15293 15995 15644 

Nov. 100 Urea+ENP 15166 16129 15648 

LSD (0.05)‡  NS NS NS 

† PCU is Environmentally Smart Nitrogen, Urea-PCU is 50% of the rate applied as urea and 
50%  applied as PCU, Urea-UAN is 50% urea applied /incorporated spring plus 50% as UAN 
streamed at 4 leaf stage, SU is Super-U, Urea+ENP is urea coated with encapsulated 
nitrapyrin. 

‡ LSD compares all numbers within the same column.  
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Table 21. Correlation coefficients between red-normalized difference vegetative index (RNDVI) 
readings taken with the GreenSeeker at V6 and yield, and the RNDVI readings taken at V8 with 
the Crop Circle and yield at two locations in North Dakota, 2016. 

RNDVI Casselton Steele County 

GreenSeeker -0.15 -0.06 

Crop Circle -0.03    0.35* 

* Significant at the 0.05 probability level 

 

Yield was significantly affected by application timing in Steele County (Table 25). 

Treatments applied in the spring and November yielded more than treatments applied in October, 

supporting findings by Randall et al. (2003). This seven year study conducted in Minnesota 

showed N applied in October yielded 0.45 Mg ha-1 less than treatments applied in November. 

Temperatures fluctuations above 10 °C occurred after the October fertilizer application at Steele 

County in 2015.  Fall applied N can be lost through leaching and denitrification if temperatures 

remain above 10 °C for extended periods of time as a result of NH4
+-N fall nitrification to NO3

--

N (Randall et al., 2003). The Steele County site had the lightest soil texture and the least amount 

of organic matter compared to other sites, which may be the reason that differences in treatments 

due to timing were recorded there and not at other locations.  

The combined ANOVA showed the main effect of rate was significant for RNDVI (GS) 

readings at the V6 growth stage (Table 26). A three way interaction between rate, timing, and 

fertilizer type was significant for RNDVI readings taken with the Crop Circle at the V8 growth 

stage (Table 26). The location by rate and location by fertilizer type interactions were both 

significant for protein levels in the combined ANOVA, as well (Table 26). 
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Table 22. Mean grain protein for 2016 corn locations and combined analysis expressed at 12.5% 
moisture. 

Application Timing Rate Fertilizer Type † Casselton Steele County Combined  

 ---%---  ------------------------%------------------------ 

- - Check 8.9 8.7 8.8 

Spring 75 Urea 9.1 9.4 9.3 

Spring 100 Urea 9.4 9.5 9.4 

Spring 75 PCU 9.6 9.1 9.4 

Spring 100 PCU 9.5 9.4 9.4 

Spring 75 Urea-PCU 9.3 9.2 9.3 

Spring 100 Urea-PCU 9.5 9.1 9.3 

Spring 75 Urea-UAN 9.4 9.3 9.3 

Spring 100 Urea-UAN 9.5 9.3 9.4 

Spring 150 Urea 9.8 9.5 9.6 

Oct. 75 Urea 9.5 9.5 9.5 

Oct. 100 Urea 9.4 9.2 9.3 

Oct. 75 PCU 9.5 9.3 9.4 

Oct. 100 PCU 9.7 9.4 9.5 

Oct. 75 Urea-PCU 9.3 8.9 9.1 

Oct. 100 Urea-PCU 9.6 9.0 9.3 

Oct. 75 SU 9.3 9.1 9.2 

Oct. 100 SU 9.3 9.1 9.2 

Oct. 75 Urea+ENP 9.3 9.3 9.3 

Oct. 100 Urea+ENP 9.4 9.5 9.4 

Nov. 75 Urea 9.0 9.3 9.2 

Nov. 100 Urea 9.6 9.1 9.4 

Nov. 75 PCU 9.4 9.3 9.4 

Nov. 100 PCU 9.5 9.3 9.4 

Nov. 75 Urea-PCU 9.5 9.5 9.5 

Nov. 100 Urea-PCU 9.7 9.5 9.6 

Nov. 75 SU 9.4 9.2 9.3 

Nov. 100 SU 9.4 9.5 9.4 

Nov. 75 Urea+ENP 9.5 9.3 9.4 

Nov. 100 Urea+ENP 9.7 9.4 9.5 

LSD (0.05)‡   0.4 0.4 0.3 

† PCU is Environmentally Smart Nitrogen, Urea-PCU is 50% of the rate applied as urea and 
50% applied as PCU, Urea-UAN is 50% urea applied /incorporated spring plus 50% as UAN 
streamed at 4 leaf stage, SU is Super-U, Urea+ENP is urea coated with encapsulated 
nitrapyrin. 

‡ LSD values are to be used to compare all numbers within the same column.  
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Table 23. Effect of N rate, time of N fertilizer application, and fertilizer source on corn yield at 
four environments, 2015 and 2016. 

  2015 2016 2015-16 

  Fargo Steele County Casselton Steele County Combined 

  -----------------------------------kg ha-1------------------------------------ 

Rate 75 9669 10094 15588 15804 12789 

 100 9855 10533 15638 15878 12976 

  

     

Timing Oct. 9911 10424 15649 15738 12931 

 Nov. 9614 10203 15576 15944 12834 

  

     

Fertilizer† Urea 9753 10520 15532 15742 12887 

 PCU 9639 9845 15720 15878 12770 

 Urea-PCU 9601 10460 15324 15930 12829 

 SU 9893 10284 15858 15784 12955 

 Urea+ENP 9925 10458 15629 15871 12971 

LSD (0.05) ‡ NS NS NS NS NS 

† PCU is Environmentally Smart Nitrogen, Urea-PCU is 50% of the rate applied as urea and 
50% applied as PCU, SU is Super-U, Urea+ENP is encapsulated nitrapyin applied to the rate 
of urea. 
‡LSD compares types of N fertilizer in the same column. The means for rate, timing and 
fertilizer type     factors were found to not be statically different using an F-test. 

 

   

Fig. 2. The rate by fertilizer interaction in 2016 corn combined analysis across environments 
found statistical differences in Crop Circle RNDVI readings taken at the V8 growth stage in corn 
(LSD used to compare all means=0.008). 
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Table 24. The interaction between location and  
type of fertilizer for RNDVI measurements  
obtained with a Crop Circle handheld device at  
the V8 growth stage in corn. 

Type of Fertilizer † Casselton Steele County 

Urea 0.8249 0.8231 

PCU 0.8375 0.8131 

Urea-PCU 0.8306 0.8285 

SU 0.8186 0.8259 

Urea+ENP 0.8291 0.8247 

LSD (0.05) 0.0143 

† PCU is Environmentally Smart Nitrogen, 
Urea-PCU is 50% of the nitrogen rate 
applied as urea and 50% applied as PCU, SU 
is Super-U, Urea+ENP is encapsulated 
nitrapyrin applied to the rate of urea. 

   

Table 25. Effect of N rate, time of N fertilizer application, and fertilizer source on  
corn yield at two locations and combined across locations in 2016. 
     

  Casselton Steele County Combined 

  -----------------------kg ha-1--------------------- 

Rate † 75 15 540 15 857 15 698 
 100 15 633 15 986 15 810 
     

Timing Spring 15 709 16 064 15 887 
 Oct. 15 467 15 715 15 591 
 Nov. 15 584 15 984 15 784 

LSD(0.05) ‡ NS 237 NS 
     

Fertilizer Urea 15 474 15 783 15 628 
 PCU 15 770 15 952 15 861 
 Urea-PCU 15 516 16 030 15 773 

LSD (0.05) ‡ NS NS NS 

† The main effect of rate was not significant  
‡ LSD values are to be used to compare yield averages within the same column. 

 

The 75% rate of N had a statistically lower GreenSeeker reading of 0.594 compared to 

0.606 seen with the 100% rate of N. Work by Barker and Sawyer (2013) showed N applied at 
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135 kg ha-1 resulted in higher RNDVI values than when 67 kg N ha-1 was applied to corn. 

Measurements were taken with a GS during the day similar to our study. 

 

 

Fig. 3. Rate by type of applied fertilizer interaction for grain yield in 2016 at the Casselton corn 
location (LSD used to compare all means=644). 
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27). The 75% rate of October applied urea, 75% rate of October applied Urea-PCU, 100% rate of 

spring applied Urea-PCU, and 100% rate of November applied PCU had significantly higher 

RNDVI readings than the 100% rate of October applied urea and 75% rate of November applied 

PCU.  

The combined ANOVA showed location by rate and location by fertilizer type 
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across timing and fertilizer type or fertilizer type averaged across rate and timing. However, both 

interactions were significant in Casselton (Table 28). The 75% rate of fertilizer averaged 9.35% 

protein compared to the significantly higher 100% rate of fertilizer averaging 9.53%. The 

increased N applied may have provided additional N to be used for protein production. The type 

of fertilizer applied in Casselton resulted in discernable differences in protein.  The 50:50 ratio of 

urea and PCU resulted in the same protein level as urea and PCU. However, the protein content 

in urea was significantly less than that of PCU. The polymer coating may have prevented N loss 

or supplied a greater quantity of N when needed. This allowed for additional N to be utilized for 

protein production by the plant after yield was established. 

Table 26. F Values and their significance for RNDVI readings taken  
with the GreenSeeker at V6 growth stage, RNDVI readings taken  
with the Crop Circle at the V8 growth stage, protein levels, and  
yield for 2016 combined corn locations. 

Sources GreenSeeker Crop Circle Protein    Yield 

Rate (R)      841.00* 0.68 0.78  37.12 

Timing (T) 1.25 0.05 0.41  14.52 

Fertilizer Type (F) 8.12 0.56 0.36  1.97 

RxT 1.07 1.24 0.28  8.33 

RxF 1.06 4.23 0.05  3.02 

TxF 2.32 0.27 3.37  0.69 

RxTxF 1.62     7.69* 1.77  2.54 

Location (L)xR 0.00 0.19     4.23*      0.03*  

LxT 1.91      5.80** 1.15  0.19 

LxF 0.49 2.27     4.12*      0.86* 

LxRxT 2.51 0.71 1.18  0.14 

LxRxF 2.45 0.38 1.97  2.05 

LxTxF 0.67 1.46 1.2  1.15 

LxRxTxF 1.49 0.08 0.96  0.59 

** Significant at the 0.01 probability level.  

*   Significant at the 0.05 probability level.   
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Table 27. Average RNDVI readings obtained with  
a Crop Circle device at the V8 growth stage in  
corn when combined across 2016 locations. 
Rate Timing Fertilizer Type † Crop Circle 

---%--- 
   

75 Spring Urea 0.8274 

75 Spring PCU 0.8195 

75 Spring Urea-PCU 0.8268 

75 Oct. Urea 0.8332 

75 Oct. PCU 0.8239 

75 Oct. Urea-PCU 0.8332 

75 Nov. Urea 0.8251 

75 Nov. PCU 0.8157 

75 Nov. Urea-PCU 0.8269 

100 Spring Urea 0.8302 

100 Spring PCU 0.8212 

100 Spring Urea-PCU 0.8332 

100 Oct. Urea 0.8162 

100 Oct. PCU 0.8289 

100 Oct. Urea-PCU 0.8310 

100 Nov. Urea 0.8215 

100 Nov. PCU 0.8327 

100 Nov. Urea-PCU 0.8270 

LSD (0.05)    0.0073 

† PCU is Environmentally Smart Nitrogen, 
Urea-PCU is 50% of the rate applied as urea 
and 50% applied as PCU. 
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Table 28. Mean protein for main effects at Casselton  
and Steele County 2016 corn locations. 

  Casselton Steele County 

  --------------%-------------- 

Rate (%) † 75 9.35 9.28 

 100 9.53 9.27 

    

Timing  Spring 9.38 9.28 

 Oct.  9.48 9.22 

 Nov. 9.45 9.32 

LSD (0.05) ‡ 0.15 NS 

    

Fertilizer Type § Urea 9.33 9.35 

 PCU 9.53 9.29 

 Urea-PCU 9.46 9.18 

LSD (0.05) ‡ 0.15 NS 

† The main effect of rate was not significant.  
  ‡ LSD value used to compare averages of the same  
  main effect in the same column. 
  § PCU is Environmentally Smart Nitrogen, Urea-PCU  
  is 50% of the nitrogen rate applied as urea and 50%  
  applied as PCU. 
 
 

Wheat  

All Treatment Comparisons 

Bartlett’s test for homogeneity of variance was conducted on wheat locations for each 

growing season. The test was found not significant, thereby allowing combination of locations 

prior to analysis.  

Normalized difference vegetative index measurements were not collected with a 

GreenSeeker or Crop Circle handheld device in 2015. In 2016, RNDVI measurements collected 

with the GreenSeeker at the Feekes 2, 7, and 10 growth stages and the Feekes 10.51 growth stage 

with the Crop Circle were significant in Ada and when combined across locations, but not at 

Casselton (Table 29). Active-optical sensor readings were not significant due to treatment at 
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Casselton in 2016 probably because there were no yield differences due to treatment at Casselton 

in 2016. Lack of differences due to treatment with sensor readings predicted lack of yield 

differences due to treatment. 

Table 29. Dependent variable F values and significance levels for all treatments in  
2015-16 wheat locations and locations combined within the same growing season. 

 2015 2016 

 Casselton Combined Casselton Ada Combined 

GreenSeeker Feekes 2 - - 1.53 2.42***     2.46** 

GreenSeeker Feekes 7 - - 1.24 4.03***     2.90** 

GreenSeeker Feekes 10 - - 1.39 5.06***     2.84** 

Crop Circle Feekes 
10.51 

- - 1.46 4.92***   1.86* 

Yield     2.57** 1.34 1.59 2.92*** 1.49 

Protein 1.00 1.54     1.59**   1.75*                1.62 

Total Protein   1.70* 1.71   1.91* 3.72***     2.61** 

*** Significant at the 0.001 probability level. 
 

 

** Significant at the 0.01 probability level. 
 

 

*   Significant at the 0.05 probability level.  
 

 
 

The combined ANOVA showed GreenSeeker readings taken at Feekes 2 were significant 

for treatment. Greater RNDVI readings were seen with the 75% rate of November applied urea 

than the untreated check, the 75% and 100% rates of spring applied urea, the 100% rate of spring 

applied Urea-UAN, and the 150% rate of spring applied urea (Table 30). Plant roots are able to 

absorb increased rates of NO3
-- N compared to NH4

+- N due to an additional high affinity NO3
--

N transport system (Glass et al., 2002). Elevated NO3
-- N rates were seen in the November 

applied urea compared to spring applied urea in Ada in 2016, which may explain the additional 

greenness seen with the 75% rate of November applied urea. 

The combined location treatment means varied for the Feekes 7 RNDVI measurements 

(Table 31). The untreated check had statistically lower RNDVI readings than all other 

treatments. The RNDVI readings taken at Feekes 10 with a GreenSeeker (Table 32) and Feekes 
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10.51 with the Crop Circle (Table 33) showed the untreated check had lower RNDVI readings 

compared to other treatments. A similar difference in yield or protein to these RNDVI readings 

were not detected, however.  

NDVI readings at all growth stages correlated significantly with yield at both locations 

and the mid- to late-season NDVI readings at Ada correlated with protein (Table 35). These data 

suggest that the color difference detected by the GS and CC were predictive of yield at the end of 

the season and in more limited cases, protein.  

No spring wheat yield differences were measured in Steele County in 2015, at Casselton 

in 2016, or in the combined data from 2015 and 2016 (Table 34). Insignificance in 2015 data 

could be attributed to environmental conditions favoring mineralization. Thus, the lack of yield 

differences is supported by the in season RNDVI measurements. 

Differences in yield were seen when treatment means were compared at Casselton in 

2015 (Table 34). The 100% N rate of November applied SU out-yielded the 75% rate of urea 

applied in the spring, October, and November, as well as the 100% rate of urea applied in the 

spring and November. The DCD and NBPT in SU apparently protected the N from soil losses, 

while yield from unprotected urea was lower than protected urea treatments. The 100% rate of 

November applied SU yielded more than the 100% rate of SU applied in October. The DCD and 

NBPT may not have prevented N losses in the October applied SU until the N was protected 

from loss when temperatures fall below 4 ̊ C. In 2016, yield varied with treatment at Ada (Table 

34). The 100% rate of PCU applied in October yielded less than the 100% rate of urea applied in 

October. It is unclear why this occurred. 
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Table 30. Mean RNDVI values obtained using a GreenSeeker in spring wheat at Feekes 2 in 
2016. 

Application timing Rate Fertilizer Type † Casselton Ada Combined  

 ---%---   

- - Check 0.23 0.36 0.30 

Spring 75 Urea 0.26 0.41 0.34 

Spring 100 Urea 0.25 0.41 0.33 

Spring 75 PCU 0.28 0.43 0.36 

Spring 100 PCU 0.29 0.41 0.35 

Spring 75 Urea-PCU 0.28 0.43 0.36 

Spring 100 Urea-PCU 0.31 0.39 0.35 

Spring 75 Urea-UAN 0.28 0.44 0.36 

Spring 100 Urea-UAN 0.27 0.40 0.33 

Spring 150 Urea 0.25 0.37 0.31 

Oct. 75 Urea 0.32 0.41 0.36 

Oct. 100 Urea 0.29 0.45 0.37 

Oct. 75 PCU 0.32 0.41 0.37 

Oct. 100 PCU 0.32 0.42 0.37 

Oct. 75 Urea-PCU 0.28 0.40 0.34 

Oct. 100 Urea-PCU 0.30 0.45 0.37 

Oct. 75 SU 0.30 0.43 0.36 

Oct. 100 SU 0.29 0.47 0.38 

Oct. 75 Urea+ENP 0.31 0.45 0.38 

Oct. 100 Urea+ENP 0.32 0.44 0.38 

Nov. 75 Urea 0.33 0.46 0.39 

Nov. 100 Urea 0.30 0.45 0.37 

Nov. 75 PCU 0.30 0.47 0.38 

Nov. 100 PCU 0.31 0.42 0.36 

Nov. 75 Urea-PCU 0.28 0.46 0.37 

Nov. 100 Urea-PCU 0.27 0.46 0.36 

Nov. 75 SU 0.31 0.42 0.36 

Nov. 100 SU 0.28 0.44 0.36 

Nov. 75 Urea+ENP 0.27 0.44 0.35 

Nov. 100 Urea+ENP 0.33 0.45 0.39 

LSD (0.05)‡   NS 0.04 0.04 

† PCU is Environmentally Smart Nitrogen, Urea-PCU is 50% of the rate applied as urea and 
50% applied as PCU, Urea-UAN is 50% urea applied /incorporated spring plus 50% as UAN 
streamed at 4 leaf stage, SU is Super-U, Urea+ENP is urea coated with encapsulated 
nitrapyrin. 

‡ LSD values are to be used to compare all numbers within the same column.  
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Table 31. Red-normalized difference vegetative index values for spring wheat obtained using a 
GreenSeeker at Feekes 7 in 2016. 

Application Timing Rate Fertilizer Type † Casselton Ada Combined 
 ---%---   

- - Check 0.51 0.69 0.60 

Spring 75 Urea 0.63 0.82 0.73 

Spring 100 Urea 0.64 0.84 0.74 

Spring 75 PCU 0.64 0.82 0.73 

Spring 100 PCU 0.61 0.83 0.72 

Spring 75 Urea-PCU 0.65 0.84 0.75 

Spring 100 Urea-PCU 0.71 0.84 0.78 

Spring 75 Urea-UAN 0.65 0.83 0.74 

Spring 100 Urea-UAN 0.64 0.84 0.74 

Spring 150 Urea 0.65 0.83 0.74 

Oct. 75 Urea 0.70 0.77 0.73 

Oct. 100 Urea 0.66 0.83 0.75 

Oct. 75 PCU 0.65 0.81 0.73 

Oct. 100 PCU 0.70 0.82 0.76 

Oct. 75 Urea-PCU 0.64 0.80 0.72 

Oct. 100 Urea-PCU 0.63 0.82 0.73 

Oct. 75 SU 0.63 0.83 0.73 

Oct. 100 SU 0.62 0.82 0.72 

Oct. 75 Urea+ENP 0.67 0.83 0.75 

Oct. 100 Urea+ENP 0.71 0.82 0.76 

Nov. 75 Urea 0.69 0.83 0.76 

Nov. 100 Urea 0.67 0.83 0.75 

Nov. 75 PCU 0.65 0.82 0.74 

Nov. 100 PCU 0.67 0.83 0.75 

Nov. 75 Urea-PCU 0.61 0.83 0.72 

Nov. 100 Urea-PCU 0.66 0.82 0.74 

Nov. 75 SU 0.62 0.81 0.71 

Nov. 100 SU 0.59 0.84 0.72 

Nov. 75 Urea+ENP 0.60 0.82 0.71 

Nov. 100 Urea+ENP 0.70 0.86 0.78 

LSD (0.05)‡   NS 0.03 0.05 

† PCU is Environmentally Smart Nitrogen, Urea-PCU is 50% of the rate applied as urea and 
50% applied as PCU, Urea-UAN is 50% urea applied /incorporated spring plus 50% as UAN 
streamed at 4 leaf stage, SU is Super-U, Urea+ENP is urea coated with encapsulated 
nitrapyrin.  

‡ LSD values are to be used to compare all numbers within the same column.  
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Table 32. Red-normalized difference vegetative index values for wheat obtained with a 
GreenSeeker at Feekes 10 in 2016. 

Application 
Timing 

Rate Fertilizer Type † Casselton Ada Combined 

 ---%---   

- - Check 0.79 0.72 0.75 

Spring 75 Urea 0.83 0.83 0.83 

Spring 100 Urea 0.83 0.84 0.84 

Spring 75 PCU 0.83 0.83 0.83 

Spring 100 PCU 0.83 0.84 0.84 

Spring 75 Urea-PCU 0.82 0.83 0.83 

Spring 100 Urea-PCU 0.84 0.85 0.84 

Spring 75 Urea-UAN 0.84 0.84 0.84 

Spring 100 Urea-UAN 0.83 0.84 0.84 

Spring 150 Urea 0.83 0.85 0.84 

Oct. 75 Urea 0.84 0.81 0.83 

Oct. 100 Urea 0.83 0.83 0.83 

Oct. 75 PCU 0.84 0.82 0.83 

Oct. 100 PCU 0.83 0.82 0.83 

Oct. 75 Urea-PCU 0.83 0.81 0.82 

Oct. 100 Urea-PCU 0.83 0.84 0.84 

Oct. 75 SU 0.82 0.84 0.83 

Oct. 100 SU 0.83 0.84 0.83 

Oct. 75 Urea+ENP 0.83 0.83 0.83 

Oct. 100 Urea+ENP 0.84 0.82 0.83 

Nov. 75 Urea 0.84 0.83 0.84 

Nov. 100 Urea 0.84 0.83 0.83 

Nov. 75 PCU 0.83 0.83 0.83 

Nov. 100 PCU 0.82 0.84 0.83 

Nov. 75 Urea-PCU 0.83 0.84 0.83 

Nov. 100 Urea-PCU 0.83 0.83 0.83 

Nov. 75 SU 0.83 0.83 0.83 

Nov. 100 SU 0.83 0.84 0.84 

Nov. 75 Urea+ENP 0.82 0.83 0.83 

Nov. 100 Urea+ENP 0.84 0.84 0.84 

LSD (0.05)‡   NS 0.02 0.03 

† PCU is Environmentally Smart Nitrogen, Urea-PCU is 50% of the rate applied as urea and 
50% applied as PCU, Urea-UAN is 50% urea applied /incorporated spring plus 50% as UAN 
streamed at 4 leaf stage, SU is Super-U, Urea+ENP is encapsulated nitrapyrin coated urea. 

‡ LSD values are to be used to compare all numbers within the same column 
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Table 33. The treatment average for RNDVI readings taken with a Crop Circle ground-based 
active-optical sensor at the Feekes 10.51 spring wheat growth stage in 2016 at Casselton and  
Ada and combined across locations. 

Application Timing Rate Fertilizer Type † Casselton Ada Combined 

 ---%---   

- - Check 0.79 0.72 0.76 

Spring 75 Urea 0.81 0.79 0.80 

Spring 100 Urea 0.81 0.81 0.81 

Spring 75 PCU 0.81 0.80 0.80 

Spring 100 PCU 0.82 0.81 0.81 

Spring 75 Urea-PCU 0.81 0.80 0.81 

Spring 100 Urea-PCU 0.82 0.81 0.82 

Spring 75 Urea-UAN 0.82 0.80 0.81 

Spring 100 Urea-UAN 0.82 0.82 0.82 

Spring 150 Urea 0.82 0.81 0.81 

Oct. 75 Urea 0.83 0.78 0.80 

Oct. 100 Urea 0.82 0.80 0.81 

Oct. 75 PCU 0.83 0.78 0.81 

Oct. 100 PCU 0.82 0.79 0.81 

Oct. 75 Urea-PCU 0.82 0.79 0.80 

Oct. 100 Urea-PCU 0.82 0.80 0.81 

Oct. 75 SU 0.81 0.80 0.81 

Oct. 100 SU 0.81 0.81 0.81 

Oct. 75 Urea+ENP 0.82 0.80 0.81 

Oct. 100 Urea+ENP 0.83 0.79 0.81 

Nov. 75 Urea 0.82 0.80 0.81 

Nov. 100 Urea 0.82 0.80 0.81 

Nov. 75 PCU 0.82 0.80 0.81 

Nov. 100 PCU 0.81 0.81 0.81 

Nov. 75 Urea-PCU 0.82 0.80 0.81 

Nov. 100 Urea-PCU 0.82 0.80 0.81 

Nov. 75 SU 0.81 0.79 0.80 

Nov. 100 SU 0.81 0.81 0.81 

Nov. 75 Urea+ENP 0.82 0.80 0.81 

Nov. 100 Urea+ENP 0.83 0.81 0.82 

LSD (0.05)‡   NS 0.02 0.02 

† PCU is Environmentally Smart Nitrogen, Urea-PCU is 50% of the rate applied as urea and 
50% applied as PCU, Urea-UAN is 50% urea applied /incorporated spring plus 50% as UAN 
streamed at 4 leaf stage, SU is Super-U, Urea+ENP is encapsulated nitrapyrin coated urea. 

‡ LSD values are to be used to compare all numbers within the same column.  
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Protein levels differed significantly in Steele County in 2015 and at Ada in 2016 (Table 

36). Apparently, fertility levels were adequate for spring wheat yield, but not for maximum 

protein. Mineralization may have caused the lack of protein differences seen in the combined 

ANOVA tables.  Protein levels varied when treatment means were compared at the 2015 Steele 

County location (Table 36). Greater protein levels were seen with the 75% rate of urea-UAN 

application in the spring than all application timings and rates of urea. Protein levels also varied 

when treatment means from Ada in 2016 were compared (Table 36). The protein concentration 

of the 75% rate of November applied PCU was 13.1%, which was statistically greater than the 

protein concentrations of the 75% rates of urea applied in the spring and October at 12.9 and 

13.0%, respectively. It is difficult to hypothesize what may have caused varying protein levels 

due to the complexity of protein establishment. That being said, the increased protein levels seen 

in Steele County in 2015 with the 75% rate of urea-UAN application in the spring may be aided 

by N applied later in the plant’s life cycle (Brown et al., 2005). 

Because protein and yield are related inversely, total protein was collected and evaluated 

to determine treatment effects across the two variables. Total protein levels were significant only 

in Casselton in 2015, while Casselton, Ada and data combined across locations were significant 

in 2016 (Table 37). Differences in treatment means were seen at Casselton in 2015 (Table 37). 

The 100% rate of November applied SU provided more total protein than the 75% rates of urea 

applied in the spring, October, and November and the 100% rate of November applied urea. The 

greater total protein levels seen in the 100% rate of November applied urea can be attributed to 

increased yields and elevated protein concentrations seen with this treatment. Discrepancies in 

treatment means for total protein were seen in Casselton in 2016 (Table 37). The 100% rate of 

Urea+ENP applied in November had more total protein than the 100% rate October applied urea 
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at 727 kg ha-1 and 610 kg ha-1, respectively. The averaged treatment means found in Ada in 2016 

showed the total protein levels of the 100% rate of PCU applied in the spring was statistically 

similar to the 100% rate of urea applied in the spring, October, and November. The combined 

across location treatment means in 2016 showed the 100% rate of Urea+ENP applied in October 

or November had similar total protein levels to the 75% rate of urea applied in October and 

November, as well as the 100% rate of urea applied in the spring, October, and November (Table 

37).  Similarities between these treatments are caused by comparable protein and yield levels.  

Although differences in dependent variables were found, complex treatment analyses do 

not clearly reveal reasons for data dissimilarities. Therefore, the data were further analyzed to see 

if date of application, rate of fertilizer applied, type of fertilizer used, and any interactions 

between these factors affected the GreenSeeker RNDVI readings, Crop Circle RNDVI readings, 

yield, protein, or total protein. 

Fall Factorial Comparisons 

In 2015 and 2016, select treatments that were balanced for the number of levels for the 

factors that were used to develop the full treatment list, were analyzed as a factorial to look 

closer at the effect of the main factors of rate, timing, and fertilizer type, as well as their 

interactions. The factors analyzed were N rate (75 and 100%), fertilizer application timing 

(October and November), and fertilizer type (urea, PCU, Urea-PCU, SU, and Urea+ENP). 

Bartlett’s test for homogeneity error of variance was not significant when testing the experiments 

at each environment; therefore, locations across growing seasons were also combined in the 

ANOVA for yield, protein, and total protein. Only in 2016 were RNDVI measurements taken. 

Therefore, Bartlett’s test for homogeneity of error variance was conducted for RNDVI 
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measurements across 2016 growing locations. No significance between locations was found, and 

therefore experiments conducted in 2016 locations were combined.  

The combined ANOVA showed N rates behaved differently between locations for yield 

(Table 38). The 2015 locations yielded less than 2016 locations (Fig. 4). One factor that affected 

the yield differences between years was caused by the applied rate determination structure of N 

rate treatments in 2015 compared to 2016 when N rates accounted for the fall N soil test and 

previous crop credit. In 2015 in Steele County there were no differences in yield between the 

75% and 100% rate of N. In 2015 and 2016 in Casselton and in 2016 in Ada yield increases 

varied when the 100% rates of N was applied compared to the 75% rate (Fig. 4). The greatest 

yield increase occurred at Casselton in 2015. Wheat was the previous crop grown at this location 

and its previous production in a field does not provide a crop credit, which results in low initial 

soil N levels. In addition, current N rate determination recognizes that greater than a 907 kg ha-1 

straw residue results in greater tie-up of N in the soil the subsequent year. This modification of N 

rate was not considered in 2015.  This, along with poorly drained soils and heavy rainfall in May 

allowed for preponderant yield differences.  

The rate by timing by fertilizer type interaction affected yield at Casselton in 2015. The 

causes of this interaction cannot easily be understood given its complexity. Rate also impacted 

yield at Casselton in 2015 (Table 39).  The 100% rate of N produced more yield than the 75% 

rate of N. Yield was not statistically different for all interactions and main effects at Steele 

County in 2015 (Table 38). High levels of mineralization and excellent soil fertility may have 

prevented discernable yield differences.  
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Table 34. Spring wheat yield means in 2015 and 2016 at locations and combined across locations 
by year. 

   2015 2016 

Application 
Timing 

Rate 
Fertilizer 
Type † 

Casselton 
Steele 

County 
Combined Casselton Ada Combined 

 -%-  -----------------------------------kg ha-1------------------------------- 

- - Check 2 538 3 198 2 868 4 354 3 660 4 007 

Spring 75 Urea 3 381 3 408 3 394 4 546 5 014 4 780 

Spring 100 Urea 3 665 3 302 3 484 4 786 5 386 5 086 

Spring 75 PCU -  - - 4 663 5 422 5 043 

Spring 100 PCU -  - - 4 751 5 578 5 165 

Spring 75 Urea-PCU -  - - 4 848 5 132 4 990 

Spring 100 Urea-PCU -  - - 4 995 5 218 5 106 

Spring 75 Urea-UAN 3 714 3 028 3 371 4 593 5 088 4 841 

Spring 100 Urea-UAN 3 794 3 272 3 533 4 812 5 518 5 165 

Spring 150 Urea -  - - 4 976 5 071 5 023 

Oct. 75 Urea 3 255 3 326 3 290 5 154 5 020 5 087 

Oct. 100 Urea 3 883 3 309 3 596 4 712 5 495 5 104 

Oct. 75 PCU 3 454 3 091 3 272 5 349 4 996 5 172 

Oct. 100 PCU 3 884 3 293 3 588 5 251 4 940 5 095 

Oct. 75 Urea-PCU 3 227 2 887 3 057 5 049 4 741 4 895 

Oct. 100 Urea-PCU 3 745 3 160 3 452    4 958 5 436 5 197 

Oct. 75 SU 3 415 3 093 3 254    5 077 5 053 5 065 

Oct. 100 SU 3 354 3 343 3 349 5 094 5 437 5 265 

Oct. 75 Urea+ENP 3 364 3 116 3 240 4 930 5 365 5 147 

Oct. 100 Urea+ENP 3 759 3 445 3 602 5 214 5 306 5 260 

Nov. 75 Urea 3 619 3 355 3 487 5 251 5 068 5 160 

Nov. 100 Urea 3 560 3 381 3 471 4 832 5 356 5 094 

Nov. 75 PCU 3 742 3 060 3 401 5 149 5 159 5 154 

Nov. 100 PCU 3 802 3 638 3 720 4 849 5 483 5 166 

Nov. 75 Urea-PCU 3 436 3 329 3 382 5 000 5 404 5 202 

Nov. 100 Urea-PCU 3 686 3 285 3 486 4 916 5 420 5 168 

Nov. 75 SU 3 060 3 440 3 250 5 019 4 915 4 967 

Nov. 100 SU 4 250 3 325 3 787 4 917 5 293 5 105 

Nov. 75 Urea+ENP 3 399 2 967 3 183 4 967 5 058 5 012 

Nov. 100 Urea+ENP 3 521 3 325 3 423 5 307 5 444 5 375 

LSD (0.05)‡  583 NS NS NS 495 NS 

† PCU is Environmentally Smart Nitrogen, Urea-PCU is 50% of the rate applied as urea and 
50% applied as PCU, Urea-UAN is 50% urea applied /incorporated spring plus 50% as UAN 
streamed at 4 leaf stage, SU is Super-U, Urea+ENP is encapsulated nitrapyrin coated urea. 

‡ LSD values are to be used to compare all numbers within the same column.  
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Table 35. Correlation coefficients (r) for RNDVI values and yield  
and protein at two locations in North Dakota, 2016. 

  Casselton Ada 

          RNDVI Yield  Protein   Yield   Protein 

GreenSeeker Feekes 2 0.74**   0.74**  0.55** 0.15 

GreenSeeker Feekes 7 0.57**   0.33  0.84**     0.57** 

GreenSeeker Feekes 10 0.53**   0.36*  0.85**     0.53** 

Crop Circle Feekes 10.51 0.66**   0.17  0.88**     0.61** 

** Significant at the 0.01 probability level  

* Significant at the 0.05 probability level 
 
The rate by fertilizer type interaction was significant for yield at Casselton in 2016 (Fig. 

5). An increase in fertilizer rate from 75% to 100% did not result in a statistical difference in 

yield for Urea-PCU and SU. Despite this, a crossover interaction was seen between Urea+ENP, 

urea, and PCU (Fig. 5). The crossover interaction resulted from Urea+ENP applied at the 100% 

rate yielded more than the 75% rate, while yield decreased when urea or PCU were applied at the 

higher rate. A diverging response occurred when the 100% rates of PCU and urea were 

compared. Although differences between yields decreased with both types of fertilizer when 

additional N was applied, reduced yield loss was seen with PCU application. This differed from 

work by Geng et al. (2016). In this study, yield showed a converging rate by fertilizer type 

interaction when comparing the 70% and 100% rates of PCU and urea. Both urea and PCU 

yielded more when the 100% rate of N was applied, but a greater yield increase was seen with 

PCU use. It is unclear why the 100% rates of urea, PCU, Urea-PCU, and SU yielded less than the 

75% rates in this study. 

The main effect of rate was significant in Ada in 2016 (Table 39).  The additional N 

applied with the 100% rate resulted in an increase of 283 kg ha-1 compared with the 75% rate of 

N. A field study by Ayoub et al. (1994) also found increased N rates produced more spring 

wheat yield when averaged across four wheat varieties. Nitrogen was applied at 60, 120, and 180 
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kg ha-1; the wheat yielded 2.9, 3.0, and 3.1 t ha-1, respectively. The increase in yield was 

attributed to greater kernel per spike counts. Kernel per spike counts were not collected in our 

research, therefore, it is unclear if the additional N provided in the 100% rate yielded more due 

to additional kernels per spike.  

Differences in protein were not significant in the combined ANOVA for the main effects and all 

interactions (Table 38); similar results were seen at Casselton in 2015 and 2016 (Table 40). 

However, significant differences were recorded at Steele County in 2015 and at Ada in 2016 

(Table 40).  

Differences in protein levels were seen at Steele County in 2015 and at Ada in 2016 when 

comparing the rate by timing by fertilizer type interaction. Differences in protein levels occurred 

in the rate by application timing interaction at Ada in 2016 (P=0.0498). Differences between 

protein levels increased when October application rates increased from 75 to 100% compared to 

the November application timing (Fig. 6). The delayed application timing seen with N applied in 

November reduced the amount of time N was exposed to nitrification that fall. Differences 

between years may have been caused by discrepancies in N rate calculations. Rate was also 

significant at Steele County in 2015 and Ada in 2016 (Table 40). Greater protein levels were 

seen when the 100% rate of fertilizer was used instead of the 75% rate. This is caused by greater 

N availability to the plant after yield establishment.  

Spring Factorial Comparisons 

A second factorial in 2016 was analyzed to look closer at two N rates (75% and 100%), 

three application timings (spring, October, and November), and three fertilizer types (urea, PCU, 

and Urea-PCU) and their possible interactions. Bartlett’s homogeneity of variance test was 

conducted with no significance.  
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Table 36. Mean protein (at 12.5% moisture) as a result of treatment, 2015 and 2016 locations  
and combined across location within year. 

      2015 2016 

Application 
Timing 

Rate 
Fertilizer 
Type † 

Casselton 
Steele 

County 
Combined Casselton Ada Combined 

 -%-  ---------------------------------------%------------------------------------ 

- - Check 11.2 12.8 12.0 13.0 12.0 12.5 

Spring 75 Urea 11.6 13.2 12.4 14.0 12.4 13.2 

Spring 100 Urea 11.9 13.2 12.6 14.2 12.9 13.6 

Spring 75 PCU - - - 14.5 12.5 13.5 

Spring 100 PCU - - - 14.3 13.1 13.7 

Spring 75 Urea-PCU - - - 13.9 13.0 13.5 

Spring 100 Urea-PCU - - - 14.1 13.0 13.5 

Spring 75 Urea-UAN 11.0 13.8 12.4 14.2 12.5 13.4 

Spring 100 Urea-UAN 12.2 13.5 12.8 14.4 13.0 13.7 

Spring 150 Urea - - - 14.7 13.2 13.9 

Oct. 75 Urea 10.5 12.9 11.7 14.0 12.4 13.2 

Oct. 100 Urea 11.5 13.1 12.3 13.3 13.1 13.2 

Oct. 75 PCU 11.9 13.2 12.5 13.2 12.3 12.8 

Oct. 100 PCU 11.8 13.3 12.5 13.3 13.1 13.2 

Oct. 75 Urea-PCU 11.1 13.2 12.2 13.5 12.6 13.1 

Oct. 100 Urea-PCU 11.2 13.3 12.2 13.8 12.5 13.2 

Oct. 75 SU 11.1 12.9 12.0 14.1 12.7 13.4 

Oct. 100 SU 11.9 13.1 12.5 13.6 12.8 13.2 

Oct. 75 Urea+ENP 11.7 13.1 12.4 14.2 12.2 13.2 

Oct. 100 Urea+ENP 11.1 13.0 12.1 13.9 12.9 13.4 

Nov. 75 Urea 11.5 13.2 12.3 13.9 13.0 13.4 

Nov. 100 Urea 11.1 12.9 12.0 14.0 12.8 13.4 

Nov. 75 PCU 11.2 13.2 12.2 13.8 13.1 13.5 

Nov. 100 PCU 11.9 13.2 12.5 13.9 12.9 13.4 

Nov. 75 Urea-PCU 11.5 12.9 12.2 13.7 12.5 13.1 

Nov. 100 Urea-PCU 11.5 13.3 12.4 13.9 13.1 13.5 

Nov. 75 SU 10.4 13.1 11.8 13.2 12.9 13.0 

Nov. 100 SU 12.9 13.4 13.1 13.9 12.7 13.3 

Nov. 75 Urea+ENP 10.7 13.1 11.9 13.1 12.6 12.8 

Nov. 100 Urea+ENP 11.1 13.4 12.3 14.1 12.9 13.5 

LSD (0.05)‡   NS 0.4 NS NS 0.5 NS 

† PCU is Environmentally Smart Nitrogen, Urea-PCU is 50% of the rate applied as urea and 
50% applied as PCU, Urea-UAN is 50% urea applied /incorporated spring plus 50% as UAN 
streamed at 4  leaf stage, SU is Super-U, Urea+ENP is encapsulated nitrapyrin coated urea.  

‡ LSD values are to be used to compare all numbers within the same column.   
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Table 37. Mean total protein yield due to treatment for spring wheat locations and locations 
combined within year, 2015 and 2016. 

   
 2015  2016   

Applicatio
n Timing 

Rate 
Fertilizer 
Type † 

Casselton 
Steele 

County 
Combine

d 
Casselton Ada Combined 

 -%-  -----------------------------------kg ha-1------------------------------- 

- - Check 284 398 341 552 427 490 

Spring 75 Urea 383 437 410 618 602 610 

Spring 100 Urea 426 423 424 660 676 668 

Spring 75 PCU - - - 655 657 656 

Spring 100 PCU - - - 659 711 685 

Spring 75 Urea-PCU - - - 656 649 652 

Spring 100 Urea-PCU - - - 686 653 669 

Spring 75 Urea-UAN 401 402 401 636 615 626 

Spring 100 Urea-UAN 449 427 438 674 695 684 

Spring 150 Urea - - - 711 649 680 

Oct. 75 Urea 334 417 376 703 607 655 

Oct. 100 Urea 436 421 429 610 697 654 

Oct. 75 PCU 403 395 399 703 596 650 

Oct. 100 PCU 448 424 436 679 627 653 

Oct. 75 Urea-PCU 352 370 361 660 582 621 

Oct. 100 Urea-PCU 412 406 409 664 663 663 

Oct. 75 SU 369 386 377 697 626 661 

Oct. 100 SU 389 427 408 671 677 674 

Oct. 75 Urea+ENP 386 395 390 679 639 659 

Oct. 100 Urea+ENP 405 436 421 707 666 686 

Nov. 75 Urea 405 430 418 709 638 674 

Nov. 100 Urea 383 423 403 657 665 661 

Nov. 75 PCU 409 392 400 692 659 676 

Nov. 100 PCU 442 466 454 656 687 672 

Nov. 75 Urea-PCU 384 418 401 667 658 662 

Nov. 100 Urea-PCU 412 424 418 665 687 676 

Nov. 75 SU 307 438 373 644 616 630 

Nov. 100 SU 531 431 481 688 654 671 

Nov. 75 Urea+ENP 356 376 366 631 619 625 

Nov. 100 Urea+ENP 384 432 408 727 682 705 

LSD (0.05)‡   107 NS NS 71 76 73 

† PCU is Environmentally Smart Nitrogen, Urea-PCU is 50% of rate is urea and 50% applied 
as PCU, Urea-UAN is 50% urea and 50% is UAN, SU is Super-U, Urea+ENP is 
urea+encapsulated nitrapyrin. 

‡ LSD values are to be used to compare all numbers within the same column. 
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The location by timing by fertilizer type interaction statistically impacted the yield 

response in the combined ANOVA (Table 41). However, the complexity of the interaction 

makes it difficult to know the cause of significance. The location by rate and location by 

application timing interactions differences were significant for yield in the combined ANOVA 

(Table 41). 

Table 38. The combined ANOVA F values and significance for the  
main effects of rate, timing, and fertilizer type and their interactions for  
yield and protein when averaged across four environments. 

Sources Yield  Protein 

Rate (R) 3.66 8.08 

Timing (T) 2.04 3.96 

Fertilizer Type (F) 0.78 0.61 

RxT 11.24 0.61 

RxF 0.78 0.72 

TxF 0.77 0.77 

RxTxF 0.70   1.87 

Location (L)xR      5.12** 0.99 

LxT 0.70 0.20 

LxF 0.64 0.78 

LxRxT 0.02 2.15 

LxRxF 1.03 1.28 

LxTxF 0.93 0.82 

LxRxTxF 1.72 1.01 

** Significant at the 0.01 probability level. 

*   Significant at the 0.05 probability level.  
 

A crossover interaction occurred in the location by rate interaction in the combined 

ANOVA (Fig. 7). Yield decreased in Casselton when the rate of N increased from 75 to 100%. 

In Ada, yield increased when the 100% rate of N was applied compared to the 75% rate. It is 

unclear why yield decreased in Casselton at the elevated rate.  

Data converged in the location by application timing interaction (Fig. 8). When N was 

applied in October instead of in the spring at Casselton yield increased, but decreased in Ada. 
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Casselton yielded more when N was applied in October than it did in November. In contrast, Ada 

yielded more with November N application than October. The Ada location had sandier soil that 

was more prone to leaching than the soil type at Casselton, which may explain why November 

and October applications caused greater yield differences at their respective locations. A 

converging yield response was also seen when spring application was compared to November N 

application (Fig. 8). Smaller yield differences between the two locations were seen with the 

November application timing than with N applied in the spring. Nearly all N taken up and used 

by plants is in the NO3
--N form (Glass et al., 2002). Nitrogen applied in November at Casselton 

would have additional time for nitrification to occur to compensate for the warmer soil 

temperature and soil moisture and aeration balance in Ada that favors nitrification. Lower soil 

temperatures in the spring and waterlogged soil in Casselton may have inhibited the nitrification 

process compared to Ada. Therefore, less NO3
--N was available for plant uptake at Casselton.  

 

Fig. 4. Location by N rate interaction for spring wheat yield across four locations, 2015 and 2016 
(LSD used to compare all means=163). 
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Table 39. The mean spring wheat yield for the main effects of fertilizer rate,  
application timing, and fertilizer type within 2015 and 2016 locations and combined  
across locations and years. 

  2015 2016 2015-16 

  
Casselton Steele County Casselton Ada Combined 

  
----------------------------------kg ha-1------------------------------- 

Rate 75 3 397 3 170 5 093 5 078 4 184 

 100       3 744*** 3 350 5 006     5 361** 4 365 

  
     

Timing Oct. 3 534 3 209 5 077 5 179 4 250 

 Nov. 3 608 3 310 5 022 5 260 4 300 

  
     

Fertilizer Urea 3 579 3 343 4 987 5 235 4 286 

 PCU 3 720 3 270 5 145 5 145 4 320 

 Urea-PCU 3 523 3 173 4 981 5 250 4 232 

 SU 3 520 3 300 5 028 5 174 4 256 

 Urea+ENP 3 511 3 213 5 106 5 293 4 281 

LSD (0.05)† NS NS NS NS NS 

† LSD compares yield averages of the same main effect in the same column. 

*** Significant at the 0.001 probability level.   
** Significant at the 0.01 probability level.   

  

 

 
Fig. 5. Spring wheat yield response to the fertilizer rate by fertilizer type interaction at Casselton 
in 2016 (LSD used to compare all means=93).   
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Table 40. Mean wheat protein and significance for the main effects of rate, timing,  
and fertilizer type by location and combined across locations and years. 

  2015 2016 2015-16 

  Casselton Steele County Casselton Ada Combined 

  --------------------------------%---------------------------------- 

Rate 75 11.2 13.1 13.7 12.6 12.6 
 100 11.6   13.2* 13.8   12.9* 12.9 
  

     
Timing Oct. 11.4 13.1 13.7 12.7 12.7 
 Nov. 11.4 13.2 13.7 12.8 12.8 
  

     
Fertilizer Urea 11.1 13.0 13.8 12.8 12.7 
 PCU 11.7 13.2 13.6 12.8 12.8 
 Urea-PCU 11.3 13.2 13.7 12.7 12.7 
 SU 11.6 13.1 13.7 12.8 12.8 
 Urea+ENP 11.1 13.1 13.8 12.6 12.7 

LSD (0.05)† NS NS NS NS NS 

† LSD compares protein averages for the fertilizer type main effect in the same column. 

* Significant at the 0.05 probability level for rate effect between sites within a year.   
 

 

Fig. 6. Application timing by rate interaction for protein in spring wheat at Ada in 2016 (LSD 
used to compare all means=0.26). 
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Differences in yield levels were seen at Casselton in 2016 when N rate by application 

timing interactions were compared (Fig. 9). A converging response occurred between spring 

applied rates and rates applied in November. The additional N applied with the 100% rate in the 

spring increased yield by 158 kg ha-1, while the additional N applied with the 100% rate in 

November decreased yield levels by 268 kg ha-1. It is unclear why the additional N applied in 

November decreased yield levels at Casselton. The 100% rate of N was well within acceptable 

application rates, therefore, it is highly unlikely that NH4
+ toxicity or excessive salts would have 

reduced yield levels. Stand counts were not taken on an entire plot basis, thus, differences in 

plant stand may have affected yield levels.  

Table 41. F values and significance for  
the main effects and interactions of wheat  
yield and protein from the combined  
ANOVA table. 

Sources Yield Protein 

Rate (R) 0.18 1.48 

Timing (T) 0.27 2.53 

Fertilizer Type (F) 2.98 0.27 

RxT 0.55 0.20 

RxF 0.34 0.13 

TxF 0.11 0.98 

RxTxF 0.76 0.63 

Location (L)xR     8.73** 1.67 

LxT     5.39** 2.32 

LxF 0.19 0.17 

LxRxT 1.73 0.89 

LxRxF 0.76 0.91 

LxTxF   2.78* 0.76 

LxRxTxF 0.81 1.33 

** Significant at the 0.01 probability level. 

*   Significant at the 0.05 probability level.  
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There was a significant difference in yield production levels seen at Ada in 2016 when 

comparing the main effect of rate when averaged across application timing and fertilizer type 

(P<0.05). When a 75% rate of N was applied, the average yield was 5106 kg ha-1, the additional 

N applied with the 100% rate increased yield levels by 262 kg ha-1. A similar yield increase was 

seen when elevated N levels were applied in a North Dakota field study by Otteson et al. (2007). 

The increased N levels allowed additional tillers and increased spikes to be produced. Therefore, 

the increased yield in this study may be explained by the elevated N levels allowing wheat plants 

that produced more tillers and spikes.  

  

 
Fig. 7. The location by rate interaction for yield levels was significant for the 2016 wheat 
combined ANOVA (LSD used to compare all means=123). 
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Fig. 8. The location by application timing for protein levels was significant for the 2016 wheat 
combined ANOVA (LSD used to compare all means=151). 
 

There were no significant differences in protein levels seen with interactions or main 

effects in the combined ANOVA (Table 41). However, significant differences in protein levels 

were seen at Casselton and in Ada (Table 42). At Casselton in 2016, significant differences in 

protein levels were seen when the N was applied at different times. The protein levels when N 

was applied in October were statistically lower than when N was applied in the spring. The 

delayed fertilizer application shortened environmental exposure time that is conducive to N loss. 

Thus, more N was available for nutrient uptake by the plant. Differences in protein levels were 

also seen with varying N application rates at Ada in 2016 (Table 42). When the 75% rate of N 

was applied, the protein level was 12.6%. With the additional N applied with the 100% rate, 

protein increased 0.3%. The increased N availability seen with higher N rates may allow for 

greater amino acid production, which is essential for protein synthesis (Brown et al., 2005). 
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Fig. 9. The N rate by application timing interaction at Casselton in 2016 significantly affected 
yield levels when averaged across three fertilizer types (LSD used to compare all means=246). 
 

Table 42. Wheat protein averages and significance for the main effects of  
nitrogen rate, timing of application, and fertilizer type at Casselton and  
Ada in 2016 and combined across the two locations. 

  Casselton Ada Combined 

   --------%-------  

Rate 75 13.8 12.6 13.2 
 100 13.9   12.9* 13.4 
     

Timing Spring 14.2 12.8 13.5 
 Oct. 13.5 12.7 13.1 
 Nov. 13.9 12.9 13.4 

LSD (0.05)† 0.4 NS NS 
     

Fertilizer Urea 13.9 12.8 13.3 
 PCU 13.8 12.8 13.3 

 Urea-
PCU 

13.8 12.8 13.3 

LSD (0.05)† NS NS NS 

† LSD compares protein averages of the same main effect in the same column 
* Significant at the 0.05 probability level.  
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CONCLUSIONS 

The data from the PCU release experiment, showed that regardless of depth of placement, 

PCU released nitrogen relatively slowly in the environment. Most, but not all of the urea was 

released from the PCU-N granules by the end of the six-week experiment. This release pattern 

more closely follows the N demand of crops than urea, which usually dissolves within a few 

hours of application if moisture is present and could be a very useful tool in reducing N losses in 

those environments where losses are high. From the field experiments where PCU was applied to 

either corn or wheat, there was only limited data to support a higher yield and protein level from 

the use PCU. This may have been due to limited N losses in the environments where these 

experiments were conducted.  

 Fertilizer NH4
+-N and NO3

--N levels varied due to environmental differences. The levels 

of NH4
+-N were similar between the untreated check and all other fertilizers. This is most likely 

caused by the high levels of mineralization seen in 2016. Thus, the nitrification and urease 

inhibitors, as well as the CRF were not beneficial this growing season. Total N is calculated as 

the sum of NH4
+-N and NO3

--N, therefore, more plant available inorganic N is available with 

greater total N values. Greater total N content was seen with SU application than the other 

fertilizer types.  

 High levels of mineralization and excellent soil fertility in 2015 and 2016 made testing 

nitrification and urease inhibitors, as well as CRF in corn difficult. For the most part, RNDVI 

readings taken in corn with the GreenSeeker and Crop Circle hand held devices did not show 

differences for all treatment comparisons, particularly at sites with no yield response to N. In 

2015, the addition of N at any rate, application timing, or fertilizer type yielded more than the 

untreated check. No differences in corn yield were seen between treatments, including the 



72 

 

untreated check in 2016. Overall, the data from the past two years shows applying nitrogen to 

corn at any rate, application timing, or form did not increase yield. The past two growing seasons 

in North Dakota do not accurately reflect the additional N requirements required of corn. Further 

experiments should be conducted under diverse environments to see if varied rates, application 

timings, and/or fertilizer types impact corn yield in North Dakota. Differences in corn grain 

protein levels were noted in 2016 across all treatments, the fall factorial, and the spring factorial. 

 Similar to the corn trials, high levels of mineralization and excellent soil fertility in 2015 

and 2016 caused few if any discernable differences in dependent traits in spring wheat. When all 

data are compared, applying N at any rate, timing, or form did not increase wheat yield. 

However, applying a 100% rate of N yields significantly more than when a 75% rate is applied to 

wheat, according to the fall factorial. The spring factorial demonstrated that significantly more 

yield can be obtained in sandier soils with lower organic matter content, like Ada, MN, with the 

additional N applied in a 100% rate of N compared to a 75% rate. Fertilizer applied closer to 

plant utilization increased wheat yield in these soil types, as well. Soils containing greater clay 

content produce more yield when N is applied in October. Nitrogen application did not increase 

wheat protein content in 2015 and 2016.  

Overall, N was an unnecessary input for corn and wheat production systems in 2015 and 

2016 due to high levels of mineralization. Continuing this research over a wider range of variable 

growing season climates that North Dakota growers are subjected to over their farming career 

may reveal fertilizer rate, application timing, and type of fertilizer effects on yield and protein in 

corn and wheat production systems. 
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