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ABSTRACT 

Geomagnetic disturbances caused by external solar events can create geomagnetically 

induced currents (GIC) throughout conducting networks of Earth’s surface. GIC can cause 

disruption that scales from minor to catastrophic. However, systems can implement preemptive 

measure to mitigate the effects of GICs with the use of GIC forecasting. Accurate forecasting is 

dependent on accurate modeling of Earth’s geomagnetic field. Unfortunately, it is not currently 

possible to have a measurement at every point of Earth’s field. Spatial interpolation methods can 

be implemented to fill in for the unmeasured space. The performances of two spatial interpolation 

methods, Inverse Distance Weighting and Kriging, are assessed to determine which better predicts 

the unmeasured space. Error testing shows both methods to be comparable, with the caveat of 

Kriging having a tighter precision on predictions.  
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1. INTRODUCTION  

Earth is enveloped by a geomagnetic field created by several sources, both internal and 

external to the planet. Multipole expansions are used to study the field. Assumed theory is that the 

field is made by the superposition of various fields from a series of poles found at the Earth’ center. 

Currently there is no recorded monopole, therefore the expansion begins with the known two, 

North and South poles or the dipole. Subsequent poles are then layered upon the previous. The 

source of the poles is found within the Earth, namely electric currents within the molten core. 

These internal sources are arguably the greatest influence on the creation and behavior of the field 

(McPherron, 2010).  

The Earth’s field is measured by magnetometers scattered about the globe (Gjerloev, 

2012). Magnetometers measure the strength and direction of local magnetic fields. They can 

measure fields on the Earth’s surface along with fields out towards space C.F Gauss (1832) 

developed one of the simpler magnetometers. A bar magnet is suspended by a gold fiber. The 

oscillations of the magnet are measured to find the surrounding field’s strength (Magnetometer, 

2011).  It is assumed from the multipole description of the Earth’s field “that the effects of the 

higher-order poles decrease more rapidly with distance than lower order poles” (McPherron, 

2010). 

Observations of the Earth’s fields have shown that it changes continuously with time. An 

example of this is the reversal of the dipole, which occur roughly between every 300,000 and 

1,000,000 years.  These fluctuations can be caused by natural elements of the internal forces or by 

external geomagnetic disturbances (GMDs). GMDs are caused by events on the sun, such as solar 

flares or coronal holes, reaching and interacting with Earth geomagnetic field. This interaction 

creates geomagnetically induced currents (GICs). GICs can disrupt conducting networks and 
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shortwave radio transmissions, increase corrosion in pipelines, create anomalies in communication 

satellites, and in extreme instances have catastrophic effects (McPherron, 2010). An example of 

the latter is the geomagnetic storm in March of 1989. A particularly strong GMD caused the 

Hydro-Quebec electrical system to fail for approximately nine hours. This left 6 million 

individuals without power (Boteler, 2003). Countries around the globe have taken steps to alleviate 

the effects of the GMDs. An example of this is the Space Disturbance Forecast Center in Boulder, 

Colorado. This center monitors the Sun and calculates predictions for GMDs and space weather 

(McPherron, 2010).   

However, simply predicting GMDs does not lead to directly predicting the behavior of 

GICs; and adequate forecasting is required for systems to mitigate the effects of the GMDs by 

preemptively blocking or limiting the flow of GICs (Boteler, 2003). A key component of GIC 

modeling is a measurement of the Earth’s magnetic field. (Kazerooni, 2015). Unfortunately, 

magnetometer data is sparsely spread across the Earth’s surface. Spatial interpolation can be used 

estimate the magnetic field at non-measured locations. One of the more popular magnetic field 

models, The World Magnetic Model (WMM), “provides the complete geometry of the [magnetic] 

field” (Chulliat, 2015). Nevertheless, the WMM is limited by excluding GMD’s, and is only 

updated in five year intervals. It can be argued that there is a need for a spatial interpolation model 

that includes GMDs and can be quickly updated, to allowed for more accurate GIC forecasting.      

One such model is proposed in M. Kazerooni (2015). A two-dimensional inverse distance 

weighting (IDW) function is used to model these external disturbances. This paper included a 

manipulation to the weight function to include the interdependences of magnetometer 

observatories via correlation analysis. The paper used real data from 21 irregularly spaces 

magnetometer observatories scattered across North America, and also measured interdependencies 
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within observatory pairs. Those interdependencies are then included in the IDW function in the 

hope it will increase performance. This new model boasted an accuracy of nearly 80% for 

predicated magnetometer reading against actual recorded values (Kazerooni, 2015).  

Another spatial interpolation method, Kriging, has also been implemented in relation to 

measuring geomagnetic fields. Hao (2012) cross-validated accuracy of two-dimensional Kriging 

(without a temporal effect) against other methods for magnetic survey data. The paper 

implemented a gridding pattern to sample local regional geomagnetic field in Northwest China 

with 3131 measured points. Kriging’s accuracy was compared against serval other methods such 

as, IDW, Natural Neighbor, Polynomial Fitting, and others.  In Hao (2012) Kriging significantly 

outperformed its counterparts in “terms of small-scale magnetic data interpolation.”  However, 

Hao (2012) includes only locally measured and equally spaced gridded sampled points. Therefore, 

it is unknown if Kriging performance increases or decreases when extended to a global scale and/or 

with irregularly spaced data. An interest of this thesis is implementing Kriging in those untested 

situations and measuring its performance.   

The focus of this thesis is replicating the proposed two-dimensional IDW model from 

Kazerooni (2015), and comparing it against a Kriging interpolation model that includes a temporal 

element. These methods are chosen because of previous interest in them with regards to 

geomagnetic interpolation. Other methods were considered, such as Natural Neighbor, however 

computational constraints limited this thesis to only consider Kriging and IDW.  Cross validation 

is applied to determine which method better depicts the geomagnetic field.  

While a model’s accuracy is assessed, there is a particular interest to see if the model 

preforms well during solar activity. The year of 2012 had several space weather events that 

significantly affected Earth’s geomagnetic field. January 19th, 2012 saw the year’s first coronal 
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mass ejection (CME). It made landfall early morning of the 22nd and caused minor disturbances 

(Phillips, 2012). The largest solar flare since May 2005 erupted on January 23rd, 2012 accompanied 

by a CME. The arrival of the CME was on the 24th and caused minor level geomagnetic storm 

(Phillips, 2012). On March 6th, 2012, a region of the Sun erupted with two solar flares within an 

hour of each other. These solar flares were accompanied by two CMEs, both of which were 

directed towards the Earth. The activity on March 6th struck an Earth that was already experiencing 

a moderate geomagnetic storm caused by activity on March 2nd (Fox, 2012).  The previous are a 

few examples of the solar activities during 2012. However, all recorded geomagnetic storm days 

in 2012 will be used to measure a model’s precision during turbulent space weather. 

The theory and background for Kriging and IDW is provided in Section2. Section 3 

contains the preliminary data exploration and the required transformation for interpolation 

implementation. Both interpolation methods are performed on the same data, and their respective 

performances are found in Section 4. Section 5 contains the method comparisons, and the thesis 

finishes with the conclusions and thoughts for future research in Section 6.   
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2. LITERATURE REVIEW 

2.1. Inverse Distance Weighting (IDW) 

2.1.1. Introduction and Theory  

Shepard (1968) proposed a two-dimensional spatial interpolation function. From a data set 

of known locations 𝑥𝑖 with recorded values 𝑧𝑖  for 𝑖 = 1,2, … , 𝑁, an interpolated value z(x) at 

unmeasured point x is calculated using the following function: 

𝑧(𝑥) =  ∑
𝑤𝑖(𝑥)𝑧𝑖

∑ 𝑤𝑖(𝑥)𝑁
𝑖=1

𝑁

𝑖=1
 

The influence between points is measured by the weighting function 𝑤𝑖. The larger the weight the 

greater influence. Weights decrease as the distance increases between 𝑥 and 𝑥𝑖 . This aspect puts 

more significance on known points at a more immediate distance with respect to 𝑥. One of the 

simplest weighting functions defined in Shepard (1968) is 

𝑤𝑖(𝑥) =
1

𝑑(𝑥, 𝑥𝑖)𝑝 
, 

where 𝑑(𝑥, 𝑥𝑖) is the distance between 𝑥 and 𝑥𝑖, raised to the power parameter  𝑝 > 0. An 

interesting caveat of IDW is that its weighting function can be manipulated depending on the 

interpolation circumstances and goals of the experimenter. An example of this is proposed in 

Kazerooni (2015) which is discussed in the next section. 

2.1.2. Correlation Addition to Weighting Function  

Kazerooni (2015) suggests that the magnetic fields around the observatories may have 

unforeseen dependencies with other observatories. These dependencies are folded into the study’s 

IDW weighting function with the creation and addition of an indicator variable 𝑐(𝑥, 𝑥𝑖). The 
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methodology behind this new variable from Kazerooni (2015) is found in the following 

paragraphs.  

𝑤𝑖(𝑥) =
𝑐(𝑥, 𝑥𝑖)

𝑑(𝑥, 𝑥𝑖)
 

𝑐(𝑥, 𝑥𝑖) =  {
1 𝑖𝑓 𝑥 𝑎𝑛𝑑 𝑥𝑖𝑎𝑟𝑒 𝑑𝑒𝑝𝑒𝑛𝑑𝑎𝑛𝑡

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝑐(𝑥, 𝑥𝑖) indicates the dependency between locations, and the dependency is calculated through 

correlation analysis between the known points. To find the dependency within pairs, Pearson’s 

correlation coefficient is calculated across entire time interval. It’s defined as: 

𝜌𝑥𝑥𝑖
=

𝑐𝑜𝑣(𝑥, 𝑥𝑖)

𝜎𝑥 ∗ 𝜎𝑥𝑖

 

with 𝑥 and 𝑥𝑖 being a single observatory respectfully, 𝑐𝑜𝑣(𝑥, 𝑥𝑖) the covariance between the 

observatories, and finally σ as the standard deviation for a single observatory. The probability of 

dependency between observatory pairs is calculated from 

𝑃(𝑥1, 𝑥2) =  
∑ 𝑐𝑜𝑒(𝑥1,𝑥2)𝑗

𝐷
𝑗=1

𝐷
, 

where D is the total number of days and an indication for correlation strength for each 𝑗𝑡ℎ day is 

defined as: 

𝑐𝑜𝑒(𝑥1, 𝑥2)𝑗 =  {
1 𝑖𝑓 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑖𝑠 ≥ 0.5

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Pairs that have probabilities greater than 0.5 are deemed as interdependent and have 𝑐(𝑥, 𝑥𝑖) = 1.  
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2.2. Kriging 

2.2.1. Introduction and Theory   

Kriging was first proposed in Krige (1951) and later perfected in Mathenm (1960).  Using 

existing data, Kriging interpolates missing value data by providing the best linear unbiased 

prediction at unmeasured locations. It utilizes “the spatial positions of points to be interpolated and 

neighboring observations points” (Hao, 2012), the spatial relationships between neighboring 

points, and the spatial distribution of the data.  Depending on the properties of the field being 

interpolated, different methods of Kriging can be applied. Regarding this thesis Ordinary Kriging 

is implemented for estimating Earth’s geomagnetic field. 

2.2.2. Ordinary Kriging 

The following information is obtained from Hao (2012. In a sample of size N on an area of 

research, 𝑖𝑡ℎ sampled point is denoted by 𝑍𝑖(𝑥, 𝑥𝑖) where x is the interpolated point and 𝑥𝑖 is a 

measured point, with 𝑖 = 1,2 … . , 𝑁 for all sampled locations. The interpolated point, denoted 𝑍0 

is calculated from the weighted sum of the sampled values. 

𝑍0 =  ∑ 𝜆𝑖𝑍𝑖
𝑚
𝑖=1 (𝑥, 𝑥𝑖), 

where 𝜆𝑖 is the weighted coefficient of 𝑖𝑡ℎ sampled values.  

Ordinary Kriging has the following assumptions. First the mean, or expected value of 

points 𝑍𝑖(𝑥, 𝑥𝑖), of the research field exists and is equal to a constant 𝑚: 

𝐸(𝑍(𝑥, 𝑥𝑖)) = 𝑚. 

Second, covariance functions of the points 𝑍𝑖𝑎𝑛𝑑 𝑍𝑖
∗ exist. This implies they are only dependent 

on spatial lag distance h and not their positions. 

𝐶𝑜𝑣(𝑍𝑖, 𝑍𝑖+ℎ) = 𝐸[𝑍𝑖 ∗ 𝑍𝑖+ℎ] − 𝑚2 = 𝐶(ℎ). 
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 Minimizing the variance of the estimations results in the following: 

∑ ∑ 𝜆𝑖𝛾(ℎ𝑖 − ℎ𝑗) + 𝜇 = 𝛾(ℎ0 − ℎ𝑖)
𝑚

𝑗=1

𝑚

𝑖=1
 

where 𝑖, 𝑗 = 1,2, . . . , 𝑚, 𝜇 is the Lagrange constant, 𝛾(ℎ𝑖 − ℎ𝑗) and 𝛾(ℎ0 − ℎ𝑗) are the 

semivariograms between the sampled points and given point and interpolated point respectfully. 

The theory and importance of the semivariogram for Kriging is found in the following section. 

2.2.3. Semivariogram 

 A semivariogram is the measure of spatial correlation, i.e. how data is correlated with 

distance. It’s defined as: 

𝛾(ℎ) = (
1

2𝑁ℎ
)(∑ [𝑍𝑖+ℎ − 𝑍𝑖]

2)
𝑁ℎ
𝑖=1 , 

where 𝑁ℎis the total number of sampled pairs whose distance is equal to h (Hao, 2012). Usually, 

the Euclidean distance is used. However, this thesis implemented the great circle distance instead. 

Where the distance d is found by 

𝑑 = 𝑟Δ𝜎, 

Δ𝜎 = 2arcsin (√sin2 (
Δ𝜙

2
) + cos(𝜙1) ∗ cos(𝜙2) ∗ sin2 (

Δ𝜆

2
), 

where 𝜙1, 𝜆1, and 𝜙2, 𝜆2 are the geographical latitude and longitude of the two observations, along 

with Δ𝜙 and Δ𝜆 as their absolute differences (Rios, 1975). This distance formula is chosen due to 

the expansive sampled areas that are either the entire North American continent or the Globe. 

𝑍𝑖+ℎ and 𝑍𝑖 are values of the observatory pair whose distance is equal to h.   

Variogram analysis is done before the actual Kriging. The goal is to find an adequate 

semivariogram model that best estimates the underlying spatial correlation in each research area.  

An experimental semivariogram is constructed from the sampled data. First a set separation 

distance (h) is chosen. Then the average, 𝛾(ℎ), for each 𝑁ℎ  of pairs’ 𝑍𝑖 squared difference is 
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calculated. The experimental semivariogram is then plotted and used to fit a model. This is derived 

by a combination of model selection and fitting parameters (Hao, 2012).  Parameters of the 

semivariogram are, sill, range, and nugget. Sill measures variance as distance between points 

increases. The distance that points become uncorrelated is denoted by the range.  Nugget reports 

measurement error or noise within the data.  Figure 2.1 is a graphical display of these parameters.  

Common theoretical semivariogram models are presented in Figure 2.2. 

 

Figure 2.1: Semivariogram model parameters. 

(Spadavecchia,  http://www.geos.ed.ac.uk/homes/s0198247/variograms.html) 
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Figure 2.2: A selection of permissible semivariogram models: 

(A) Powered Exponential model (i) Broken line with power (ω)=2, equivalent to a Gaussian 

model. (ii) Solid line with ω=1. (B) Spherical model. (C) Rational Quadratic model. (D) Power 

model. (E) Cosine (hole effect) model. (F) Dampened Hole model.  (Spadavecchia, n.d.) 

 

2.2.4. Spatial-Temporal Kriging 

 Arguably most spatial measurements have some temporal influence. Examples include the 

periodic changing seasons, sudden weather or geological events, catastrophic actions of mankind, 

and more. All could be influential on the behavior of a spatial plane. Including temporal 

information should, in theory, improve any interpolation or prediction. An interesting aspect of 

Kriging is its ability to interpolate on a spatial-temporal plane. The following are a few methods 

of incorporating this information to improve interpolation. 

Because the semivariogram is a function of the distance between pairs it is easily extended 

into higher dimensions. Using this property time can be considered as a third orthogonal 

dimension, elevating the interpolated spatial plane into a spatial-temporal plane. The only caveat 
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of this manipulation is that interval of time needs to be rescaled to fit with the physical spatial 

dimension (Benedikt Graler, 2011). A suggestion for geomagnetic readings, the 1-mintue intervals 

can be rescaled into radians. A single day would be equal to one full rotation around a unit circle 

or 2𝜋.  Therefore, the first minute of the first day is 0, and the last minute of the first day is 2𝜋. 

Subsequent days are treated as multiple rotations. For example, the last minute of the second day 

has the value 4𝜋. The physical distance between pairs is still calculated by the great circle distances 

with the output formula in radians instead of miles. First the physical distance between pairs is 

calculated, and then their distance in time. This results in the following distance formula: 

𝑑3(𝑥, 𝑡𝑋 , 𝑦, 𝑡𝑦) = √(𝑑2(𝑥, 𝑦))2 + (𝑡𝑥 − 𝑡𝑦)
2
, 

with x and y as individual observatories, whose longitude and latitude values in degrees, and 𝑡𝑥, 𝑡𝑦 

as the specific point in time for each observatory. Finally, 𝑑2 is the great circle distance between 

x and y. This method rakes full advantage of the temporal information and is considered a full 

spatial-temporal model. However, it can become computationally heavy, as the combinations 

between different points of time at a physical location can increase very quickly with the addition 

of more sampled locations. 

 Another method is Daily Evolving Semivariogram.  The empirical semivariogram is 

calculated with information from a single day only. The fitted model’s parameters are then 

calculated from the daily semivariogram and previous days parameter estimates with 

“exponentially decaying influence” (Benedikt Graler, 2011). Even though Kriging interpolation is 

still performed per time instances, the evolving semivariogram somewhat include the temporal 

information (Benedikt Graler, 2011). As with the previous method, calculating the evolving 

semivariogram for every time slices, in the context of this thesis a new semivariogram per minute, 

is computationally heavy when using a large interval of time. The evolving semivariogram and the 
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3-dimensional approach proved to be too difficult for the capabilities of this thesis and a third 

method is sought after. 

 Assuming a constant spatial (but not temporal) structure throughout the interval allows for 

the creation of a pooled semivariogram. The pooled semivariogram is created by averaging the 

empirical variograms per time slice. Then interpolation uses the same variogram per instance of 

time (Benedikt Graler, 2011). Of the methods mentioned, this is the least computationally intensive 

and the one implemented in this thesis.   
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3. RESEARCH METHODS 

3.1. Data Description 

3.1.1. Description 

The data analyzed was collected from the SuperMAG (http://supermag.jhuapl.edu/) 

website. 1-minute ground, i.e., readings at ground level per minute, magnetometer data (Gjerloev, 

2012), from January 1st, 2012 to December 31st, 2012, is collected from 35 observatories.  

Observatory locations are displayed in Figure 3.1. The 35 observatories are split into two groups 

for analysis. The first group are spread across the globe in a pseudo grid like pattern. The second 

groups is made up of 19 of the 35 observatories and are located only on in the North American 

continent. Some observatories appear in both groups.  Analysis is performed on the two groupings 

separately, with the North American and global locations subsequently referred to as North and 

World respectively. The magnetic readings are in three directions, North, East, and vertical. The 

vertical direction does not affect power systems and was not included. Analysis on the North and 

East directions can be performed separately (Kazerooni, 2015); but due to time and computational 

limitations only the North direction is presented in this thesis. However, the East direction can be 

substituted in place of the North readings and analyzed with the same methods.    
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Figure 3.1: Observatory Locations (South, 2011) 
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3.1.2. Interpolation: Filling in Missing Data   

For various reasons observatories may have incomplete data for the whole time interval. 

The interpolation methods in this thesis are performed on a single minute and use the values from 

all recorded locations. Missing location can impact the interpolation. Kriging is especially 

susceptible to this as the removal of an observatory could drastically adjust the semivariogram for 

that minute. Before beginning the interpolation, the 1 minute ground magnetic data screened to fill 

in those missing data values.  Using the minute increments, missing data is filled in with linear 

interpolation and extrapolation which is defined below: 

𝑣0 = 𝑣1 + (𝑡0 − 𝑡1) (
𝑣2−𝑣1 

𝑡2−𝑡1
), 

The interpolated/extrapolated magnetic value is denoted by 𝑣0, with 𝑡0  as the corresponding 

minute. 𝑣1, 𝑣2 are the recorded values of closest minutes 𝑡1, 𝑡2 on either side of 𝑣0.  For example, 

assume the magnetometer failed to record a value on the 6th minute of the 1st day, but recorded 

values during the 5th and 7th minute. Those values are used to interpolate a magnetic reading for 

the 6th minute. This interpolation is only applied on observatories that originally contain magnetic 

values for at least 80% of the interval, a threshold that was arbitrarily set. Observatories that fail 

to meet this requirement are removed. Each spatial interpolation method is performed on a single 

time slice; in this instance, a single minute. Because of this, input is required from each sample 

location per minute.  

3.1.3. Exploration 

The average daily 1-minute ground magnetic readings across all observatories for each 

group is displayed in Figure 3.2. Of note, both groups appear to behave similarly. The large 

negative spikes correspond with recorded solar activity and appears to have affected both groups 
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equally. Most the magnetic readings appear to fall within [-20,0], which corresponds with days 

that have no recorded extreme space weather activities. This figure supports the idea that there is 

a temporal effect on the geomagnetic field. 

 

Figure 3.2: Average Magnetic Reading per Day 

 

Recall from section 2.2.2 that Ordinary Kriging assumes a constant mean throughout the 

area of interest. This means that there should not be an obvious trend present in the recorded values. 

The average magnetic value per observatory is displayed in Figures 3.3 and 3.4. The bars on the 

right side of the graph measures the average ground magnetic reading. The values increase from 

negative to positive values via from the deep pink to bright cyan shades. These plots are used to 

see if there is an underlying trend present in the spatial plane. A display showing a steady color 
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change in a specific direction is an example of a trend.  Through the samples are sparse and the 

play marked by white space, it can still be seen that there is not a distinct trend in either group. 

This allows Ordinary Kriging to be a viable interpolation method for the 1-minture ground 

magnetic readings. 

 

Figure 3.3: Average Magnetic Field per Observatory: World 

 

 

Figure 3.4: Average Magnetic Field per Observatory: North 
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The Histograms presented in Figure 3.5 show that the magnetic ground data is 

approximately bell shaped however, the data is severely negatively skewed. However, the extreme 

outliers are not displayed in the histograms as the x axes has been adjusted. Table 3.1 contains 

descriptive statistics, including Pearson’s Skewness and Kurtosis coefficients, for the two 

observatory groups.   

 

Figure 3.5: Histograms of 1-minute Ground Readings 
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Table 3.1: Descriptive Statistics of 1-minute ground magnetic readings 

Group Mean Median Standard Deviation Min Max Skewness Kurtosis 

World -7.0331 -2.3 44.6786 -2401.3 672.6 -5.4134 95.9543 

North -5.7158 -1.6 52.4348 -2791.4 96806 -4.1788 68.4511 

 

While IDW has no assumptions for the samples data; Ordinary Kriging requires that the 

response variable be approximately normally distributed. Transformation provides the added 

benefits of suppressing outliers, and improving stationarity of the data. This thesis chose a Rank 

Order transformation (J. Wu, 2006). First all the data points 𝑛  are arranged in an increasing order 

𝑧(1) ≤ 𝑧(2) ≤ ⋯ ≤ 𝑧 (𝑛), 

where 𝑧𝑟 is the 𝑟𝑡ℎ ordered 1-minute ground reading with  𝑟 = 1,2, … , 𝑛 , and 𝑛 is equal to the 

total number magnetic readings in the data set. Therefore 𝑧(𝑟)  is the 𝑟𝑡ℎ order statistic. The 

standardized rank 𝑦(𝑟) of the sample is calculated  

𝑦(𝑟) =
𝑟

𝑛
 . 

With the value of 𝑦(𝑟) falling within the interval of 
1

𝑛
   and 1 (J. Wu, 2006).  This is done so that 

the transformed data follows an approximately standard normal distribution.  

Figure 3.6 displays the transformed ground magnetic data. The transformation has 

addressed its skewness issue and the histograms now show a nearly symmetric bell-shaped 

distributions. Descriptive statistics for the newly transformed data are displayed in Table 3.2. The 
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transformed data now has an approximately normal distribution which closely resembles the 

standard normal. Spatial interpolation is then performed on the ranked values (J. Wu, 2006).   

 

Figure 3.6: Histograms of transformed 1-minute Ground Readings 

 

Table 3.2: Descriptive Statistics of Transformed 1-minute Ground Readings 

Group Mean Median Standard 

Deviation 

Min Max Pearson’s 

Skewness 

Pearson’s 

Kurtosis 

World -3.7699e-07 -0.0044 0.9999 -5.3171 5.3171 -1.8471e-06 3.0000 

North -1.6180e-07 -0.0007 0.9999 -5.3270 5.3270 -6.9719e-07 3.0000 
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3.2. Error Testing 

N-1 Error testing is used to measure the performance of a method (Kazerooni, Use of 

Sparse Magnetometer Measurements for Geomagnetically Induced Current Model Validation, 

2015). This method of performance testing creates a sub-set data set by removing a single location. 

The sub-set is then used to interpolate value at the removed location. Then the interpolated value 

is compared against the actual recorded value at that location. Methods that interpolate a value 

more closely to the actual reading are deemed to be more accurate than methods that have a larger 

discrepancy between predicted and actual values.  

 This was the method used in Kazerooni (2015). It seems pertinent to simply extend the 

comparison formula used previously to include Kriging. N denotes the total number of 

observatories in the data, and the “-1” occurs when a single observatory is removed from the data. 

This reduced data sub-set is then used to interpolate values at the removed observatory’s location. 

Performance is quantified by comparing the interpolated values against the actual magnetic field 

readings for that location. Recall from section 3.1.3 that the original 1-minute ground magnetic 

values are run though a rank order transformation. Those ranked values are used to interpolate at 

removed locations. The following error function is used in the comparison between the real 

transformed and interpolated values: 

𝐸𝑟𝑟𝑜𝑟 =  
||𝑈−𝑈||

2

||𝑈||
2

 , 

where �̂� and 𝑈 as vectors of the transformed recorded and interpolated values. ||. ||
2
is the 

Euclidean norm. This process is repeated across all observatory locations, days, and minutes for 

both the North American and World observatory groups.  
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4. REAL DATA ANALYSIS 

4.1. IDW 

4.1.1. Correlation Analysis 

Before IDW is implemented, correlation analysis is preformed to find any underlying 

relationships between observatory pairs to include in the weighting function. Pearson’s Correlation 

Coefficient has a range of [-1, 1] with values near ±1 indicating a strong correlation, while values 

closer to 0 suggest a weak relationship. In Figures 4.1 and 4.2, the strength of the correlation 

between pairs is indicated by black for a strong, grey for moderate, and white no correlation. The 

axes are denoted by an observatory name; hence, a cell’s position indicates which pair is being 

compared. For example, in Figure 4.1, to find the correlation between VIC and OTT, start from 

VIC on the x-axis then find OTT on the y-axis, and check the cell where they intersect. In this 

instance, VIC and OTT have a moderate correlation. Note that cells with matching labels per axis, 

default to white. These matching pairs are found on the diagonal on the two figures.    

Correlation coefficients for the World group are displayed in Figure 4.1. The strongest pair 

is TRW and VIC. A few pairs without a correlation are, VIC and CLF, GUI and SCO, and OTT 

and MCQ. The pair with the strongest correlation is TRW and LIV. PBK and CSY have the least 

number of correlated pairs. Remarkably, neither of them are isolated geographically from other 

observatories. Which can be seen in observatory map presented in Figure 3.1. Finding those listed 

observatories on the map shows that they are not isolated from other observatories by great 

distances.  This could imply that distance is not the only indicator for influence between locations. 

Baring these two observatories, the other have numerous interdependencies, though they may not 

be strong in nature. Numeric values of the correlation coefficients are found in the Appendix. 
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Figure 4.1: Correlation Coefficients for Observatory pairs: World 

 

However, the observatories in the North group behave differently. From Figure 4.2 the 

strongest correlated observatory pairs are TUC and BOU, FRD and OTT, and NEW and VIC. This 

is two more pairs than that of the World group. On the other side of the scale RES appears to have 

the least interdependencies. It only has five non-zero coefficients, and of those none of them are 

strong. RES, like PBK and CSY in World, is not geographically isolated, on the contrary of the 

observatories is has the highest number of close neighbors. Unlike the World group, North has a 

larger amount on uncorrelated and strongly correlated observatory pairs. A possible explains for 

this is the closer proximity of the North observatories compared to the spread-out grid pattern 

found in World; as the influence of between location generally decreases as distance increases.    
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Figure 4.2: Correlation Coefficients for Observatory pairs: North 

 

Figures 4.5 and 4.6 display the dependency across pairs for World and North groups 

respectively. The total number of combinations for observatories pairs is found using the follow 

formula: 

(
𝑁

2
) =

𝑁!

2! (𝑁 − 2)!
  , 

where 𝑁 is the total number of observatories in the sample. N is equal to 18 and 19 for World and 

North respectfully. Recall from section 2.1.2 that observatories pairs are deemed dependency if 

they have a probability of dependency greater than or equal to 0.5. Figures 4.5 and 4.6 display 

those interdependencies. The observatories pair with interdependency are marked by darker cells. 
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Figure 4.3: Interdependency Plot: World 

 

 

Figure 4.4: Interdependency Plot: North 
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From Figure 4.5, 11 of 153 (7%) possible observatory pairs, in the World group, have some 

dependency with each other. 21 of 171 (12%) of possible North pairs show dependency in Figure 

4.6.  VIC, CSY, and OTT in World have no dependences with other observatories. In North, IQA, 

CBB, BLC, and GDH have not interdependencies. IDW’s modified weighting function uses the 

interdependencies to calculate the influence between points. Therefore, observatories that have no 

interdependences will be treated differently during interpolation than observatories with no 

interdependences. This is explored more in the following section. 

4.1.2. Real Data Interpolation  

Recall from Figure 4.5 that the observatories VIC, OTT, and CSY have no dependences 

with other locations. Therefore, IDW is unable interpolate a value at those locations. The reason 

for this is found in IDW’s weighting function. 𝑐(𝑥, 𝑥𝑖) returns 0 for all known pairs that include 

the independent observatories, reducing their influence on the interpolated location to 0. This 

effectively disregards the independent observatory from the rest of the group, as these three 

observatories do not have a discernable relationship between themselves and the rest. As such, 

their values cannot be interpolated; and similarly, these locations are not included in the 

interpolation for the remaining observatories. 

Table 4.1 contains the summary statistics for the error testing for World. Observatories 

with “*” for values are ones that do not have interdependencies. In Figure 4.5, of note GUI and 

PBK have only a dependency with one other observatory, and in Table 4.1 have the largest ranges 

of error at 16.7538 and 24.6689 respectfully. Along with the highest ranges, GUI and PBK have 

two of the higher mean errors of 1.1140 and 1.0944 as well as the highest standard deviations of 

1.3640 and 1.5320 respectfully.  Conversely, ASP has the most dependent pairs at three and has 

the lowest mean error of 0.6202, along with the second to smallest range of 1.892 
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Like VIC, OTT, and CSY in World, North has four observatories (BLC, CBB, GDH, and 

IQA) without dependencies. BLC, CBB, GDH, and IQA, are disregarded during the interpolation 

for the remaining observatories. Table 4.2 displays the summary statistics for the error testing for 

North. Unlike World, Table 4.2 shows that North has little variation among the ranges of error per 

observatory. All the locations fall within in two units of each other. This could be explained from 

North’s higher amount of interdependences between observatories; as its interpolation included 

more information. The variation between the two groups is most evident in Figures 4.7 and 4.8; 

where World has significant spikes of error rates across the days in contrast to North more 

consistent error rates. Of note the larger spike in Figure 4.7 do correspond with dates that had 

significant solar activity.  
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Table 4.1: IDW Error Rates per Observatory: World Group 

Observatory VIC CLF OTT SCO CMO ASP EYR GUI HER 

Mean * 0.8285 * 0.9864 0.9211 0.6202 0.8178 1.1140 00.8673 

Median * 0.7600 * 0.9614 0.8745 0.5952 0.7524 0.7937 0.7977 

Std. Deviation * 0.4249 * 0.2329 0.2871 0.3237 0.4247 1.3640 0.4679 

Min * 0.1155 * 0.4553 0.4295 0.0852 0.1152 0.1613 0.1264 

Max * 3.0076 * 2.0714 2.2927 1.9780 2.9790 16.9151 3.0521 

Range * 2.8921 * 1.6161 1.8632 1.8928 2.8638 16.7538 2.9257 

 
Observatory HON IRT PPT MCQ PBK CSY MAW LIV TRW 

Mean 0.6656 0.8534 0.7064 0.9137 1.0944 * 1.0437 0.8767 0.7339 

Median 0.5988 0.7831 0.6373 0.8456 0.8776 * 0.9823 0.7872 0.6619 

Std. Deviation 0.4427 0.4789 0.4551 0.3953 1.5320 * 0.3310 0.5177 0.3865 

Min 0.0525 0.0791 0.0504 0.3531 0.3933 * 0.4830 0.1448 0.1335 

Max 2.9934 3.6352 2.4298 3.6280 25.0622 * 2.7929 3.6964 2.1822 

Range 2.9409 3.5561 2.3794 3.2749 24.6689 * 2.3099 3.5516 2.0487 
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Table 4.2: IDW Error Rates per Observatory: North Group 

Observatory YKC CBB RES BLC MEA SIT BOU VIC NEW 

Mean 0.7417 * 0.8857 * 0.7398 0.6155 0.3683 0.3899 0.3599 

Median 0.7066 * 0.8683 * 0.7337 0.5967 0.3470 0.3802 0.3508 

Std. Deviation 0.2531 * 0.2408 * 0.2139 0.2467 0.1792 0.1560 0.1441 

Min 0.3502 * 0.1953 * 0.1664 0.0964 0.0757 0.0491 0.0543 

Max 3.1050 * 1.5838 * 1.3092 2.6310 1.2519 1.4183 1.0810 

Range 2.7457 * 1.3885 * 1.1428 2.5346 1.1762 1.3692 1.0267 

 

Observatory OTT FRD THL GDH FCC BRW IQA SJG TUC SHU 

Mean 0.5239 0.44174 0.8111 * 0.7725 0.9679 * 0.6885 0.4869 0.8189 

Median 0.4877 0.3878 0.7933 * 0.7365 0.9325 * 0.6421 0.4579 0.8030 

Std. Deviation 0.2725 0.2208 0.2117 * 0..2247 0.2754 * 0.3638 0.2265 0.3145 

Min 0.1112 0.0595 0.2557 * 0.3661 0.4485 * 0.0622 0.0734 0.1191 

Max 3.2185 1.4643 1.4572 * 1.6190 2.4219 * 1.8360 1.3855 1.9111 

Range 3.1073 1.4048 1.2015 * 1.2529 1.9734 * 1.7738 1.3121 1.7920 
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In World and North, is appears that the average error for interpolation is at its lowest at 

observatories that have the most interdependences with other observatories in their respective 

groupings. These locations also exhibit less variability in error across the year, unlike observatories 

with little dependence on others. For example, in Figure 4.7 the largest spike found near day 100, 

is from observatory PBK. Which, along with the largest range of error, has the highest mean error, 

and standard deviation, and only one interdependency. On the other side of things, ASP has the 

lowest mean error rates, and the most interdependences at three. In Figure 4.7 ASP’s daily mean 

error is consistently between 0 and 2. Additionally, North has more interdependences overall than 

World.  
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Figure 4.5: IDW Average Daily Error Rate per Day: World 
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Figure 4.6:  IDW Average Daily Error Rate per Day: North 
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Interestingly, IDW has a higher accuracy on stormy days’ verse calm ones. Tables 4.3 – 

4.5 contain the average descriptive statistics per sample group. For World, it has an average error 

for is .8783 for calm days. But sees an over 20% drop in error for days that experienced space 

weather .6330. This trend is seen in the North group as well, with the error dropping from .6425 

to .5494 for stormy days. Of note the model preforms objectively better for the North than the 

World one. This could be attributed to North’s higher number of interdependent observatories, 

along with their closer proximity with each other.  

Table 4.3: IDW Average Error Rates: All Days 

Group Avg. Mean Avg. Median  Avg. Std Avg. Min Avg. Max Avg. Range 

World 0.8570 0.8001 0.6654 0.0504 25.0622 25.0118 

North 0.6392 0.6121 0.3111 0.0491 3.2185 3.1694 

Table 4.4: IDW Average Error Rates: Storm Days 

Group Avg. Mean Avg. Median  Avg. Std Avg. Min Avg. Max Avg. Range 

World 0.6330 0.4718 0.7504 0.0.0669 7.8321 7.7652 

North 0.5494 0.4932 0.3255 0.0542 1.6158 1.5616 

Table 4.5: IDW Average Error Rates: Calm Days 

Group Avg. Mean Avg. Median  Avg. Std Avg. Min Avg. Max Avg. Range 

World 0.8783 0.8082 0.6605 0.0504 25.0622 25.0118 

North 0.6425 0.6125 0.3101 0.0491 3.2185 3.1694 

 

 

T-tests are implemented to check the validity of the above claims and are conducted within 

each group. Note that none of the following tests compare the sampled groups against each other; 

but rather, they are testing the behavior of the observatories within in a sampled group. The tests 
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use the means of the observatories within in group per weather type. Both tested groups sizes are 

under 30, and therefore the small sample T-tests is implemented.  The results are found in Tables 

4.6 and 4.7.  

Table 4.6: IDW T-Tests Storm vs Calm: Means 

Group Results 

World 

T Statistic P Value 95% CI for 𝝁𝑺𝒕𝒐𝒓𝒎 − 𝝁𝑪𝒂𝒍𝒎 

-2.4088 0.0268 (-0.4591, -0.0315) 

 

North 
T Statistic P Value 95% CI for 𝝁𝑺𝒕𝒐𝒓𝒎 − 𝝁𝑪𝒂𝒍𝒎 

-1.0902 0.2856 (-0.2685,0.0824) 

 

 

When observing just the means, North does not appear to have a notable change in 

performance with a change in weather. On the other hand, the T-tests does confirm the suspicion 

that the performance does change significantly with the weather for World. In this case, the 

performance increases on recorded storm days. However, when looking at just standard deviations, 

there appears to not be a change in the methods performance’s variation across weather types for 

either group. T-tests are conducted on the average standard deviation per observatory for each 

sample group. I.E testing the average difference between observation locations in North, across 

the two weather types.  The results are found in Table 4.7 
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Table 4.7: IDW T-Tests Results for Average Standard Deviations from Observatories 

Group Results 

World 
T Statistic P Value 95% CI for 𝑺. 𝑫𝑺𝒕𝒐𝒓𝒎 − 𝑺. 𝑫𝑪𝒂𝒍𝒎 

-0.8534 0.4020 (-0.5271,0.2189) 

 

North 
T Statistic P Value 95% CI for 𝑺. 𝑫𝑺𝒕𝒐𝒓𝒎 − 𝑺. 𝑫𝑪𝒂𝒍𝒎 

-1.5749 0.1273 (-0.0872,0.0115) 
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4.2. Kriging 

4.2.1. Variogram Analysis 

The empirical semivariogram, calculated from the sample data, is used to define the fitted 

semivariogram that is used during Kriging. Figures 4.9 and 4.10 have World and North’s 

respective empirical and fitted semivariograms from the transformed 1-minute ground magnetic 

readings. The empirical semivariograms displayed below are found by finding the individual 

empirical semivariograms for each minute in 2011. Then the values at separation distance h are 

averaged. This is how Kriging can somewhat include the temporal effect of solar weather on the 

geomagnetic field. The separation distance in the plots is in radians.  

 

Figure 4.7: Variograms: World 

 

From the theory behind the semivariogram, the value at the origin should be near or equal 

to 0. A significant jump from the origin suggests either extreme variability at locations within 
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proximity to each, or simply measurement error. Recall from Section 2.2.3 that is referred to as 

the nugget. Figure 4.9 shows a nugget effect around 0.18. Also form Section 2.2.3 that the range 

is the measure the separation distance when autocorrelation between points has dropped to zero.    

This is usually seen when the empirical semivariogram reaches the sill and begins to level out. 

However, there is a significant degree of fluctuation witnessed in the empirical. This is more than 

likely attributed to the sample size; recall that only 18 observatories are used in the World grid. 

That means that for some stretches of ℎ𝑖to ℎ𝑖+1 there may only be one or a small number of pairs 

that interval. This means that if there is significant variation in in an observatory’s magnetic 

reading it can manipulate the semivariogram for that interval. I.e.; an empirical semivariogram for 

one minute may change drastically to the next minute. Unfortunately, this impacts the fit of the 

pooled semivariogram.  

The fluctuation and small nugget effect are present in North, though the fluctuation could 

be argued to not be as pronounced. However, the pooled semivariogram for North is still not a 

perfect fit and is impacted by the same small sample issue in World.  It does appear to have a 

similar sill to World, a value somewhere near 0.4. When fitting both models, it is found that they 

both were optimized with the same parameter values.   
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Figure 4.8: Variograms: North 

 

4.2.2. Interpolation 

Table 4.8 and 4.9 display the summary statistics of the error rates per group. Unlike IDW 

error summaries in Tables 4.1 and 4.3, Kriging has interpolated values for observatories that have 

no interdependencies. Specifically, for World, Kriging incorporates observatories VIC, OTT, and 

CSY; which, if recalled from Figure 4.5, had no interdependencies. Remarkably these 

observatories’ error rates are not significantly different from the rest of the World group. All the 

observatories’ mean error rates fall within [0.7250, 1.0112].  CSY has the highest mean error rate, 

while LIV has the lowest. Except for GUI and PBK, the range of the observatories’ error rates fall 

within in [1.0434, 2.1201].   

Looking at Figure 4.11, the additional observatories do not have any significantly higher 

daily average error rates when compared to the rest of the group. However, the figure does show 
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two spikes, whose corresponding days have recorded storm activity; but these are attributed to 

observatories GUI and PBK. Which, recalling from Table 4.1, are the same lowest preforming 

observatories for IDW.     

Table 4.8: Kriging Error Rates per Observatory: World 

Observatory VIC CLF OTT SCO CMO ASP EYR GUI HER 

Mean 0.7250 0.7328 0.7338 0.9579 0.8984 0.7069 0.7014 0.9497 0.7281 

Median 0.7229 0.7295 0.7218 0.9624 0.9098 0.6774 0.6875 0.7137 0.6868 

Standard Deviation 0.2628 0.2795 0.2474 0.1316 0.1654 0.2686 0.2613 1.0342 0.2914 

Min 0.0990 0.1817 0.1627 0.3299 0.2503 0.1237 0.1736 0.1991 0.1441 

Max 1.7419 1.9531 2.0505 1.3733 1.5198 1.7223 1.5773 11.3930 1.8186 

Range 1.6429 1.7715 1.8878 1.0434 1.2695 1.5985 1.4037 11.1939 1.6745 

 

Observatory HON IRT PPT MCQ PBK CSY MAW LIV TRW 

Mean 0.7286 0.7156 0.7082 0.8491 0.9526 1.0112 0.9945 0.6817 0.7189 

Median 0.6981 0.6979 0.6867 0.8681 0.9092 0.9704 0.9752 0.6846 0.6814 

Standard Deviation 0.3006 0.2716 0.2524 0.2063 0.5924 0.1878 0.1505 0.2477 0.2704 

Min 0.2005 0.1857 0.1814 0.2797 0.2634 0.4519 0.5036 0.0868 0.2168 

Max 2.3207 1.9210 1.9139 1.9569 10.3214 2.4772 2.2297 1.4430 1.8358 

Range 2.1201 1.7353 1.7325 1.6771 10.0580 2.0253 1.7260 1.3562 1.6190 
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Figure 4.9: Kriging Average Daily Error Rate per Observatory: World 
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Along with the World group, Kriging for North also includes observatories that IDW 

dropped. Recall that GDH, CBB, and BLC, had no interdependencies with the other observatories 

as seen in Figure 4.6. These observatories have missing values in the error summary Table 4.2 for 

North IDW. Their inclusion in Kriging yields error rates, along with the rest of the North group in 

Table 4.7.  Of note, their respective mean error rates do not significantly deviate from the rest of 

the group; and in fact they have some of the lowest ranges for error. Unlike World, North does not 

have any observatories with extremely large ranges, nor does it show any spikes in the daily 

average means in Figure 4.12.   
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Table 4.9: Kriging Error Rates per observatory: North Group 

Observatory YKC CBB RES BLC MEA SIT BOU VIC NEW 

Mean 0.7398 0.7785 0.9373 0.8683 0.7077 0.7405 0.7028 0.4247 0.4194 

Median 0.7411 0.7766 0.9267 0.8671 0.6887 0.7267 0.6895 0.4152 0.4100 

Std. Deviation 0.1014 0.1146 0.1595 0.1239 0.2035 0.2418 0.2308 0.1355 0.1370 

Min 0.4178 0.4811 0.5594 0.3944 0.1506 0.1818 0.2084 0.1305 0.1153 

Max 1.0408 1.1862 1.8575 1.1538 15124 2.4507 1.4815 1.0520 1.0995 

Range 0.6230 0.7051 1.2981 0.7534 1.3618 2.2689 1.2730 0.9214 0.9842 

 

Observatory OTT FRD THL GDH FCC BRW IQA SJG TUC SHU 

Mean 0.6312 0.6902 0.7032 0.9705 0.8415 0.9114 0.8410 0.8761 0.7361 0.9082 

Median 0.6220 0.6632 0.6922 0.9783 0.8389 0.9018 .8410 0.8522 0.7200 0.8884 

Std. Deviation 0.1815 0.2079 0.1135 0.1465 0.1387 0.1032 0.1118 0.2661 0.2236 0.2979 

Min 0.1856 0.2758 0.3674 0.3950 0.3614 0.5830 0.4120 0.3678 0.3083 0.2887 

Max 1.7243 1.3443 1.2839 1.5552 1.2431 1.5955 1.2610 1.8601 1.5748 1.9183 

Range 1.5387 1.0685 0.9165 1.1602 0.8814 1.0125 0.8490 1.4923 1.2665 1.6296 
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Figure 4.10: Kriging Average Daily Error Rates per Observatory: North 
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Accuracy during interpolation is stronger in North than World, with error rates around 0.5 

lower. However, World has a lower error rates during storm activity. Of note thought these error 

rates have values close to each other, and could be argued those differences are negligent. Kriging 

does perform better during stormy days overall. Again, the different in rates is small, around a 5% 

drop in error. This is all displayed in Tables 4.8 through 4.10. 

Table 4.10: Kriging Average Error Rates: All Days  

Group Avg. Mean Avg. Median Avg. Std Avg. Min Avg.  Max Avg.  Range 

World 0.8052 0.8091 0.3800 0.0868 11.3930 11.3062 

North 0.7594 0.7693 0.2334 0.1153 2.4507 2.3354 

Table 4.11: Kriging Average Error Rates: Storm Days 

Group Avg. Mean Avg.  Median Avg.  Std Avg.  Min Avg. Max Avg.  Range 

World 0.6721 0.5695 0.5896 0.0990 6.6808 6.5817 

North 0.6869 0.6912 0.2447 0.1153 1.2944 1.1791 

Table 4.12: Kriging Average Error Rates: Calm Days 

Group Avg. Mean Avg. Median  Avg. Std Avg. Min Avg. Max Avg. Range 

World 0.8101 0.8157 0.3692 0.0868 11.3930 11.3062 

North 0.7620 0.7710 0.2326 0.1269 2.4507 2.3238 

 

T-tests are conducted to measure performance changes from calm to storm days with a 

significant threshold of 0.05. Note that none of the following tests compare the sampled groups 

against each other; but rather, they are testing the behavior of the observatories within in a sampled 

group. The results are displayed in Tables 4.13 and 4.14. When looking only at the mean error 

rates, World and North, do not show a statistically significant difference between weather types. 
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Both groups have insignificant p values, and confidence intervals that suggest no difference 

between the means. It appears that Kriging performance does not change significantly when the 

weather changes. This is also true when looking at the standard deviations for both calm and storm 

days. T-tests are conducted on the average standard deviation per observatory within each sample 

group across weather types. The results are found in Table 4.14. Again, the test results show 

insignificant p values and confidence intervals that contain 0.  

Table 4.13: Kriging T-Tests Storm vs Calm: Means 

Group Results 

World 
T Statistic P Value 95% CI for 𝝁𝑺𝒕𝒐𝒓𝒎 − 𝝁𝑪𝒂𝒍𝒎 

-1.9921 0.0584 (-0.2814,0.0053) 

 

North 
T Statistic P Value 95% CI for 𝝁𝑺𝒕𝒐𝒓𝒎 − 𝝁𝑪𝒂𝒍𝒎 

-1.43 0.1614 (-0.1818,0.0315) 

 

Table 4.14: Kriging T-Tests Results for Standard Deviations 

Group Results 

World 
T Statistic P Value 95% CI for 𝑺. 𝑫𝑺𝒕𝒐𝒓𝒎 − 𝑺. 𝑫𝑪𝒂𝒍𝒎 

0.2197 0.828 (-0.2162,0.2677) 

 

North 
T Statistic P Value 95% CI for 𝑺. 𝑫𝑺𝒕𝒐𝒓𝒎 − 𝑺. 𝑫𝑪𝒂𝒍𝒎 

0.7221 0.4754 (-0.0224,0.0469) 
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5. METHOD COMPARISONS 

The primary focus of the thesis is comparing the performance of IDW and Ordinary 

Kriging’s interpolation on the 1-mintue ground magnetic readings. Table 5.1 is a summary the two 

methods averaged performances across observatories for the entire year. 

Table 5.1: Descriptive Statistics of a Model’s Accuracy: Across all Observatories for All Days 

IDW Kriging 

Group World North 

Mean 0.8570 0.6392 

Median 0.8001 0.6121 

Range 25.0118 3.1694 

 

Group World North 

Mean 0.8052 0.7594 

Median 0.8091 0.7693 

Range 11.3062 2.3354 

 

 

Looking just at the mean error rates for the methods present a muddled picture. IDW 

preforms better on average for North; however, this changes for World as Kriging has the lower 

mean error rate. Granted the mean error rates between the two methods are not extremely different, 

there is a less than 10% difference in any of the comparisons. Simple T-test across the means of 

the observatories per group is implemented between the two interpolation methods. Note that none 

of the following tests compare the sampled groups against each other; but rather, they are testing 

the behavior of the observatories within in a sampled group. The test results are found in Table 

5.2. 
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Table 5.2: T-Tests Interpolation Method’s Means 

Group T Statistic P Value 95% CI for 𝝁𝑰𝑫𝑾 − 𝝁𝑲𝒓𝒊𝒈𝒊𝒏𝒈 

World 1.6451 0.1899 (-0.0338,0.1624) 

North -1.8989 0.0689 (-0.2470,0.0099) 

 

 The testing confirms the initial suspicions that there is not much difference between the 

mean error rates per interpolation method. This is apparent in the confidence intervals for both 

North and World. Bot intervals contain 0, suggesting insufficient evidence for a difference between 

the two methods. Perhaps a better measure may be the overall variability of the two methods.  

Kriging has a smaller range of error across all observatories for both North and World 

groups when compared with IDW. Particularly with World, where IDW has an overall error range 

of 25.0118 versus Kriging’s 11.3062. Kriging’s range is less than half that of IDW.  Most of that 

range is attributed to observatory PBK, whose error summaries can be seen in Table 4.1 for IDW 

and Table 4.6 for Kriging. Those tables show that PBK is the most variable of the observatories, 

as it has the largest standard deviation for error rates, 1.5320 and 0.5924 for IDW and Kriging 

respectfully. Unlike the other observatories whose standard deviations remain closer to 0.3 across 

both methods. Note that while PBK is still the more violate observatory in Kriging, its variability 

and range of error is much smaller than it is for IDW. And even though its standard deviation is 

the largest it’s much closer to the rest of the observatories. Therefore, it appears that Kriging can 

control for the more eradicate behavior for this observatory over IDW.    

In North, the more erratic observatories are OTT and SIT as seen in Tables 4.2 and 4.7. 

While the overall ranges for error in North are much smaller than World, Kriging still has error 

ranges that are almost half that of IDW with respect for the most variable observatory OTT; 
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dropping from 3.1073 for IDW to 1.5387 for Kriging. This trend is repeated with SIT, albeit with 

less magnitude in difference, as the range for error is 2.5346 for IDW and 2.2689 for Kriging. 

Again, Kriging has smaller standard deviation across the observatories when compared to IDW. It 

appears for the more violate observatories Kriging has a more precise interpolation over IDW. 

. To confirms these cursory suspicions T-tests for the standard deviations across 

observatories per group by method is performed. T-tests are conducted on the average standard 

deviation per observatory for each sample group. Table 5.3 contains the results of those tests.  The 

tests confirm the assertion that Kriging has a significantly lower variably of error than IDW. Both 

P values and their corresponding confidence intervals lead to this conclusion.  

Table 5.3: T-Tests Interpolation Method’s Standard Deviations 

Group T Statistic P Value 95% CI for 𝑺. 𝑫𝑰𝑫𝑾 − 𝑺. 𝑫𝑲𝒓𝒊𝒈𝒊𝒏𝒈 

Word 2.1629 0.04236 (0.0090,0.4639) 

North 3.2654 0.0027 (0.0247,0.1069) 

 

During geomagnetic events caused by solar weather. The mean error rates range per 

method are much closer, at most 0.1-unit difference; however, IDW does have a lower mean error 

rate for North and World. Of note though Kriging still has a tighter variation when compared to 

IDW as seen in their respective ranges. The error rate summaries for stormy days is found in Table 

5.4. With a significance threshold of 0.5, T-tests are implemented to compare the method 

performances for stormy weather. The T-tests are conducted on error values per observatory across 

the groups. The values are split between calm and stormy days. The results are displayed in Table 

5.5 and 5.6.  
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Table 5.4: Descriptive Statistics of a Model’s Accuracy: Storm Days  

IDW Kriging 

Group World North 

Mean 0.6330 0.5494 

Median 0.4718 0.4932 

Range 7.7652 1.5616 

 

Group World North 

Mean 0.6721 0.6869 

Median 0.5696 0.6912 

Range 6.5817 1.1791 

 

Table 5.5: Method Comparisons Storm Days: Means 

Group Results 

World 
T Statistic P Value 95% CI for 𝝁𝑰𝑫𝑾 − 𝝁𝑲𝒓𝒊𝒈𝒊𝒏𝒈 

-1.7961 0.091 (-0.3860,0.03162) 

 

North 
T Statistic P Value 95% CI for 𝝁𝑰𝑫𝑾 − 𝝁𝑲𝒓𝒊𝒈𝒊𝒏𝒈 

-2.784 0.011 (-0.3713, -0.05392) 

 

 

From the mean results, only the North group shows a statistically significance difference 

in performance between methods.  It appears that IDW has a better performance for story days 

over Kriging. While, World does not have a p value below the threshold, it could be argued that 

the results are moderately significant. It is possible that IDW performances better for World as 

well. However, the results for the standard deviations is in contrast with the assertion that Kriging 

has a tighter variation over IDW. The T test finds that there is not a significance difference in 

variation between the two methods for storm weather. T-tests are conducted on the average 

standard deviation per observatory for each group. The results are found in Table 5.6. 
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Table 5.6: Method Comparisons Storm Days: Standard Deviations 

Group Results 

World 
T Statistic P Value 95% CI for 𝑺. 𝑫𝑰𝑫𝑾 − 𝑺. 𝑫𝑲𝒓𝒊𝒈𝒊𝒏𝒈 

0.5323 0.6016 (-0.2519,0.4214) 

 

North 
T Statistic P Value 95% CI for 𝑺. 𝑫𝑰𝑫𝑾 − 𝑺. 𝑫𝑲𝒓𝒊𝒈𝒊𝒏𝒈 

1.2336 0.2281 (-0.0193,0.0774) 
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6. CONCLUSIONS/DISCUSSIONS 

The goal of this thesis is to find an adequate model to measure and predict the Earth’s 

geomagnetic field by evaluating different spatial interpolation methods. This is achieved by 

evaluating two different methods. The first is IDW with a modified weighting function that 

includes correlation analysis. Kriging with a pooled semivariogram is the second method assessed. 

Both methods are implemented on the same 1-mintue ground magnetometer data, then cross 

validated through N-1 Error testing. The result of the error testing is used to compare their 

respective performances.  

It is found that IDW does preform marginally better on average then Kriging. Yet, it is 

possible that the lower mean rates of error for IDW are from the exclusion of observatories deemed 

unrelated to their counter parts. These locations went unmeasured in the N-1 error testing, and thus 

did not provide any error information. Observatories that are dropped in IDW are still used in 

Kriging and could very well be the source of the extra error in that method. If that is the case, this 

slight increase in error is offset by Kriging’s tighter variation, albeit not significant, in error rate 

over all. It should be noted that while it appears that Kriging is more likely to be off in its 

interpolation, when IDW does make an error in interpolation, it is more likely to be of a greater 

magnitude than Kriging.  

Nevertheless, this increased precision is offset by Kriging’s substantially longer calculation 

process and higher requirements for computation power. The analysis was conducted on a 

Windows 10 computer with an i7 processor and 16GBs of RAM. Kriging maxed out the 

capabilities of the device.  IDW returns a result much faster than Kriging and can easily be 

implemented on a decent computer. During the N-1 error testing, IDW can run though all 

observatories and days within ten minutes. Kriging on the other hand, took close to an hour to 
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complete. Also, computer hardware limitations caused the more complicated hypothesized Kriging 

modifications discussed in Section 2.2.3 to be dropped in favor of the lighter pooled 

semivariogram analysis; which of the three methods discussed is arguably the least precise. The 

pooled semivariogram can be classified as a pseudo-temporal method, as it only implements the 

temporal effect in the model’s semivariogram while the actual Kriging is only done during a single 

time slice. It is possible that the three-dimensional method would vastly improve the rate of error 

for Kriging and bring its mean error rate below IDW.  However, finding the distance between each 

observatory at a single point in time against all other locations and points of time proved to be 

outside of the capabilities of this thesis.  Therefore, Kriging’s increased computational load should 

be assed in future research to see if its benefits in precision outweigh the computational costs.  

 Another limitation in this research is the small sample sizes. Lack of computational power 

limited the interval that could be interpolated. Kazerooni (2015) included 1-minute ground 

magnetic readings for three years (2011 to 2013), where this thesis only processed data during 

2012.  Also, it can be argued that the World group suffered severely from the minimal number of 

observatories for such a large expanse of space. This is evident in the fluctuation present in its 

variogram analysis. While Kriging is decently robust and can work with an ill-fitting 

semivariogram, inadequate semivariogram analysis can potentially decrease the methods 

precession. Even with these limitations it appears that Kriging is a viable method to pursue for 

interpolation the Earth’s geomagnetic field. It’s this thesis suggestion for research to be continued 

with greater computation resources, and a larger sample time interval. The smaller sample sizes 

also affect the power of the T-tests implemented. It is possible the results found here, could change 

with larger samples.  
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APPENDIX A: TABLES 

Table A1: Correlation Coefficients: World Group 
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Table A2: Correlation Coefficients: North Group 
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APPENDIX B: CODE BREIFS  

Code B1: IDW 
###################################################################################### 

 

          #### Section: Creating Char Matrix for Strong Cor Indicator    

 

Coef.Matrix <- matrix(data= NA,nrow=Total.Locs,ncol=Total.Locs)                 ## Empty Matrix to hold Corr Coef 

rownames(Coef.Matrix) <- Name.List; colnames(Coef.Matrix) <- Name.List 

 

Dep.Matrix <- matrix(data= NA,nrow=Total.Locs,ncol=Total.Locs)                  ## Empty Matrix to hold Indicator Var Value for 

Corr Coef 

rownames(Dep.Matrix) <- Name.List; colnames(Dep.Matrix) <- Name.List 

 

 

                                                                                ## Looping to Find Cor Coefficients for all Location Combos ## 

coef <- array(NA,dim=c(Total.Locs,Total.Locs,Total.Days)) 

 

for (i in 1:Total.Locs){ 

  for (j in 1:Total.Locs){                                                      ## Looping & Comparing Values per Locations 

    print(paste("i at ", i," and j at ",j, sep = "")) 

     

    if (i == j) { 

      Coef.Matrix[i,j] <- 0                                                     ## Comparing a Loc aganist itself 

      Dep.Matrix[i,j] <- 0                                                      ## Comparing a Loc aganist itself 

    } else { 

      for (k in 1:Total.Days){ 

        coef[i,j,k] <- cor(Inter.Array[,i,k],Inter.Array[,j,k])                 ## Corr between Locs per Day 

      } 

    } 

    coef.mean <- apply(coef,c(1,2),mean)                                        ## Mean Corr across all days 

    Coef.Matrix[i,j] <- coef.mean[i,j]                                          ## Filling matrix w/ Mean Corr Coef values 

     

     

     

    #Dep.Matrix[i,j] <- ifelse(abs(Coef.Matrix[i,j])>= 0.5, 1, 0)                ## Finding Indicator Value and Filling Matrix 

    count <- length(which(coef[i,j,] >= 0.5)) 

    Dep.Probability <- count/Total.Days 

    Dep.Matrix[i,j] <- ifelse(Dep.Probability >= 0.5, 1, 0) 

    ## if |Corr.Coef| > 0.5 then value of 1, otherwise 0                        ## Dependancy Probability 

  }   

} 

 

#Coef.Matrix <- abs(Coef.Matrix) 

 

 

                                # Section: Plotting # 

library(lattice) 

colnames(Coef.Matrix) <- Name.List; rownames(Coef.Matrix) <- Name.List 

col.pal <- colorRampPalette(c("black","white", "black")) 

Mean.Cor.Plot <- levelplot(Coef.Matrix,at=seq(-1,1,length=10),col.regions = col.pal, 

                      main="Average Correlation Coefficients \n North Observatory Pairs",xlab="", ylab="", pretty= FALSE) 

Mean.Cor.Plot                                                                 ## Plotting Corr Coef #### 

 

Day.Index <- seq(1,Total.Days,1) 

#Corr.Scatter <- plot(Day.Index, coef[1,2,]) 

 

#for(i in 1:Total.Locs) { 

#  for(j in 1:Total.Locs) { 

#    Get.Title <- paste(i ," and ", j, sep="") 

#    if(i == j) { 
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#    Corr.Scatter <- plot(Day.Index, rep(0,Total.Days), xlab = "", ylab = "", main = Get.Title) 

#    Corr.Scatter 

#     

#    } else { 

#      Corr.Scatter <- plot(Day.Index, coef[i,j,], xlab = "", ylab = "", main = Get.Title) 

#      Corr.Scatter 

#    } 

#    

#  } 

#} 

 

colnames(Dep.Matrix) <- Name.List; rownames(Dep.Matrix) <- Name.List 

col.pal <- colorRampPalette(c("grey", "black")) 

Dep.Plot <- levelplot(Dep.Matrix,at=seq(0,1,length=10),col.regions = col.pal, 

                      main="Dependancy Between \n  North  Observatory Pairs",xlab="", ylab="", pretty= FALSE) 

Dep.Plot 

 

###################################################################################### 

 

                            ### Section: Creating IDW Function ### 

 

IDW<-function(x,sim=T) { 

   

  z<-matrix(nrow=1440,ncol=Total.Days) 

  w<-d<-c<-vector() 

   

  for(i in 1:Total.Locs) { 

    c[i] <- Dep.Matrix[i,x] 

    d[i] <- DS2[i,x] 

    w[i] <-ifelse(sim==T,c[i]/d[i],1/d[i]) 

  } 

   

  for(i in 1:1440){ 

    for(j in 1:Total.Days){ 

      z[i,j]<-sum(w[-x]*Inter.Array[i,-x,j])/sum(w[-x]) 

    } 

  } 

  return(z) 

} 

###################################################################################### 

 

                        # Section: Error and N - 1 Accuracy Testing: IDW # 

 

## Error here is the N-1  

 

I.Error.Matrix<-matrix(NA,ncol=Total.Locs, nrow=Total.Days)                          ## Treating a single Day as a Sample: Error per 

Day 

p.b <- txtProgressBar(min = 0, max = Total.Locs, style = 3) 

for(j in 1:Total.Locs){ 

  e <- IDW(j,sim=T) 

 

  for(i in 1:Total.Days){ 

    I.Error.Matrix[i,j] <- sqrt(sum((e[,i]-Inter.Array[,j,i])^2))/sqrt(sum(Inter.Array[,j,i]^2)) 

  } 

   

  Sys.sleep(0.1) 

  setTxtProgressBar(p.b, j) 

} 

 

colnames(I.Error.Matrix) <- Name.List 

summary(I.Error.Matrix) 
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Storm.Days <- c(66,67,68,69,70,129,168,190,191,192.197,198,305,306) # March 6th - 10th 2012 

 

Storm.Error <- NULL 

for(i in 1:length(Storm.Days)){ 

  Day <- I.Error.Matrix[Storm.Days[i],] 

  Storm.Error <- rbind(Storm.Error, Day) 

} 

 

Calm.Error <- I.Error.Matrix[-Storm.Days,] 

 

get.range <- function(x){ 

  out <- max(x) - min(x) 

  return(out) 

} 

 

 

Ranges <- NULL 

Stds <- NULL 

for(i in 1:Total.Locs){ 

  #col <- K.Error.Matrix[,i] 

  #col <- Storm.Error[,i] 

  col <- Calm.Error[,i] 

   

  Ranges[i] <- get.range(col) 

  Stds[i] <- sd(col, na.rm = TRUE) 

} 
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Code B2: Kriging 
###################################################################################### 

                      #### Sample Semi-Variogram Creation/Analysis 

library(gdata) 

ds2 <- DS2 

ds2[upper.tri(ds2)] <- NA 

 

h <- seq(0,3.0,0.5) ## h is the Seperation Distance /  Lag 

H.Bins <- vector() 

Avg.SemiVar <- NULL 

 

p.b <- txtProgressBar(min = 0, max = Total.Days, style = 3) 

for(d in 1:Total.Days){ 

  for(m in 1:1440){ 

    Sample.Array <- Inter.Array[m,,d] 

    semivariogram <- NULL 

    for (i in 1:length(h)){ 

   

     ix <- which(ds2 >= h[i] & ds2 <=h[i+1], arr.ind = TRUE) 

      N.h <- length(ix[,1]) 

      H.Bins[i] <- N.h 

   

      mag.diff <- NULL 

        if(length(ix[,1]) != 0){ 

            for(j in 1:length(ix[,1])){ 

              diff <- Sample.Array[ix[j,1]] - Sample.Array[ix[j,2]] 

              mag.diff <- c(mag.diff,diff) 

        } 

        } else { 

            diff <- NA 

            mag.diff <- c(mag.diff,diff) 

        } 

   

    semivariogram <- c(semivariogram, (sum(mag.diff^2))/(2*N.h)) 

    } 

    Avg.SemiVar <- rbind(Avg.SemiVar, semivariogram) 

  } 

  Sys.sleep(0.1) 

  setTxtProgressBar(p.b, d) 

} 

 

colMeans(R.Semivariogram, na.rm = T) 

plot(h,colMeans(R.Semivariogram, na.rm = T), type="l", col= "green" ,main = "Semivariogram: 2D \n Average across Year", 

xlab = "h", ylab = ~gamma(h)) 

################################################## 

 

                #### Ploting Variograms  

library(plotly) 

library(tidyr) 

library(plyr) 

 

h <- seq(0,3.0,0.5) ## h is the Seperation Distance /  Lag Grid 

h <- seq(0,1.4,0.2) 

Semi <- colMeans(G.Semivariogram) 

Grid <- data.frame(h,Semi) 

 

# f(h,v,l):  

 

v <- 0.45 

l <- 0.25 

n <- 0.0 

 



61 

#exponential variogram model, v,n, l are parameters 

f<-function(h,v,l) {    

  (v-n)*(1-exp(-3*h/l))  

} 

 

Model <- NULL 

for(i in 1:length(h)){ 

  Model[i] <- f(h[i],v,l) 

} 

 

x <- list(title="h", titlefont= "f") 

y <- list(title= "gamma(h)", titlefont= "f") 

legendtitle <- list(yref="paper", xref="paper", y = 1.05, x=1.1, 

                    text = "Cylinders", showarow = F) 

 

p <- plot_ly(Grid, x = ~h, y = ~Semi) %>% 

  add_trace(y = ~Semi, mode= 'lines', name = 'Averaged Emperical') %>% 

  add_trace(y = ~Model, mode= 'lines', name = 'Fitted Pooled') %>% 

  layout(xaxis= x ,yaxis = y, title = "World") 

############################################################################################### 

                                      ########################## 

                                      #### Kriging Analysis #### 

                                      ########################## 

## Creating Kirging Function  

# Obs0: investigation location, "BOU" for example 

# Day0: investigation day, 4 for example 

 

kriging1<-function(DS, DM, Loc.Names, Obs0, Day0, f, v, l,sim=T) { 

   

  n<-length(Loc.Names) 

  b<-vector() 

  for(i in 1:n) { 

    name1<-Loc.Names[i] 

    name2<-Obs0 

    ix<-which(names(DS) %in% c(name1,name2)) 

     

    one <- DS2[ix,ix] 

    two <- one[1,2] 

     

    b[i]<--f(two,v,l) 

  } 

  b<-c(b,1) 

   

  A<-matrix(ncol=n+1,nrow=n+1) 

  for(i in 1:n) { 

    for(j in 1:n) { 

      if(j==i) { 

        A[i,j]<-0 

      } else { 

        name1<-Loc.Names[i] 

        name2<-Loc.Names[j] 

        ix<-which(names(DS) %in% c(name1,name2)) 

         

        one <- DS2[ix,ix] 

        two <- one[1,2] 

         

        A[i,j]<--f(two,v,l) 

      } 

    } 

    A[i,n+1]<-1 

  } 

  A[n+1,]<-c(rep(1,n),0) 
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  x<-solve(A,b) 

  z0<-vector() 

  for(i in 1:1440) { 

    z0[i]<-sum(DM[i,,Day0]*x[-(n+1)]) 

  } 

   

  return(list(b=b,A=A,x=x,z0=z0)) 

} 

 

##################################################################################### 

                                #################################### 

                                # Error and N - 1 Accuracy Testing # 

                                #       Kriging                    # 

                                #################################### 

 

K.Error.Matrix <- matrix(NA, ncol=Total.Locs, nrow = Total.Days) 

 

for (k in 1:Total.Locs){ 

  Obs <- Name.List[k] 

  Left.Locs <- Name.List[-k] 

  print(paste("At Location ", k, sep="")) 

   

  for (D in 1:Total.Days){ 

    S.D <- D 

    Krig.out <- kriging1(DS2, Inter.Array, Left.Locs, Obs, S.D, f, v, l,sim=F) 

    Krig.z <- Krig.out$z0 

     

    K.Error.Matrix[D,k] <- sqrt(sum((Krig.z-Inter.Array[,k,D])^2))/sqrt(sum(Inter.Array[,k,D]^2)) 

  } 

} 

 

summary(K.Error.Matrix) 

colnames(K.Error.Matrix) <- Name.List 

 

Storm.Days <- c(66,67,68,69,70,129,168,190,191,192.197,198,305,306) # March 6th - 10th 2012 

 

Storm.Error <- NULL 

for(i in 1:length(Storm.Days)){ 

  Day <- K.Error.Matrix[Storm.Days[i],] 

  Storm.Error <- rbind(Storm.Error, Day) 

} 

 

Calm.Error <- K.Error.Matrix[-Storm.Days,] 

 

get.range <- function(x){ 

  out <- max(x) - min(x) 

  return(out) 

} 

 

Ranges <- NULL 

Stds <- NULL 

for(i in 1:Total.Locs){ 

  #col <- K.Error.Matrix[,i] 

  #col <- Storm.Error[,i] 

  col <- Calm.Error[,i] 

   

  Ranges[i] <- get.range(col) 

  Stds[i] <- sd(col) 

} 


