
    

 

MUNICIPAL WATER USE AND DUST IMPACTS ON SOYBEANS  

 

 

 

 

A Thesis 

Submitted to the Graduate Faculty 

of the 

North Dakota State University 

of Agriculture and Applied Science 

 

 

 

By 

 

Amy Frances Gnoinsky 

 

 

 

In Partial Fulfillment of the Requirements 

for the Degree of 

MASTER OF SCIENCE 

 

 

 

Major Program: 

Natural Resources Management  

 

 

 

March 2017 

 

 

 

Fargo, North Dakota 

 

 

 

 

 

 

 

 

 



    

  

North Dakota State University 

Graduate School 
 

Title 
 

MUNICIPAL WATER USE AND DUST IMPACTS ON SOYBEANS 

  

  

  By   

  
Amy Frances Gnoinsky 

  

     

    

  The Supervisory Committee certifies that this disquisition complies with North Dakota 

State University’s regulations and meets the accepted standards for the degree of 

 

  MASTER OF SCIENCE  

    

    

  SUPERVISORY COMMITTEE:  

    

  
 Christina Hargiss 

 

  Chair  

  
Jack Norland 

 

  
Deirdre Voldseth 

 

  
Thomas DeSutter 

 

    

    

  Approved:  

   

 4/11/2017    Edward DeKeyser  

 Date  Department Chair  

    



 

 iii   

ABSTRACT 

 As human extraction of earth’s natural resources continue to impact the surrounding 

environment, such effects are compounding and may affect the quantity and quality of other 

natural resources. Natural resources in oil-developed regions that may be feeling these effects are 

water quantity and agricultural food production. Therefore, two different studies were conducted 

to determine if municipal water use was altered from oil and gas development and if soybean 

production fields were impacted due to increased dust accumulation. Municipal water use 

increased from 2014 to 2015 in Bismarck, North Dakota and may be attributable to increased 

population and increased air temperatures and a departure from normal total annual rainfall. Dust 

impacts on soybean leaf temperature and yield were found to be not significant (p > 0.05), but 

chlorophyll content was significantly different (p < 0.05) for a couple dust treatments that may 

have been due to observed chlorosis in the field. 
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PREFACE 

This thesis contains two very different chapters. This is due to the fact that two different 

grants paid for the projects and my stipend. The first was a grant from the North Dakota State 

Water Commission and the United States Geological Survey for a pilot study to understand 

municipal water quantity use in North Dakota. The grant for the second project was from the 

North Dakota Soybean Council and assessed the impact of road dust on soybean physiology and 

production.     
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CHAPTER 1. MUNICIPAL WATER USE 

Abstract 

Allocation of water supplies for human use is a priority, but many municipalities are 

unable to predict water use shifts in times of population and economic growth due to a lack of 

methodology and a known baseline of water use for municipal water users. Therefore, the pilot 

study with the United States Geological Survey (USGS) and the North Dakota State Water 

Commission was conducted to determine the availability of municipal water-use data and to 

define municipal water-use categories based on the water user that could be applied to 

municipalities of various sizes statewide. Multiple municipalities were contacted, however, 

Bismarck, North Dakota promptly provided municipal water-use data for 2014 and 2015, 

presented in hundred cubic feet (HCF). An assessment of Bismarck, North Dakota’s available 

municipal water-use data created 72 municipal water-use categories. The two main categories of 

water use are residential and commercial, with six sub-categories in residential, and 66 sub-

categories in commercial. Total annual water use was determined for residential and commercial 

categories along with each of the sub-categories. Water-use ranges, and average annual water use 

were also determined for each sub-category. Total annual water use for Bismarck increased from 

2014 to 2015 by 406,808 HCF. The increase in water use corresponded to increased water use in 

residential water use by 281,024 HCF and in commercial by 125,784 HCF. Major sub-

categorical water users in each main category were single-family homes in residential and hotel 

with pool, office building, and lawn meter in commercial. The overall increase in water use for 

Bismarck may be attributed to an increase in population, an increase in average monthly air 

temperatures from 2014 to 2015, and a decrease from normal total rainfall in both years.  
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Introduction 

The ‘Bakken oil boom’, 2005-2015, brought with it a shift and increase in water use that 

is mostly concentrated in the western half of North Dakota. However, along with the oil ‘boom’ 

came population and economic growth. From 2010 to 2015 the population of North Dakota 

increased 12.5% (USCB 2016) and between 2013 and 2014 the state’s gross domestic product 

(GDP) increased by 6.3%, which was the largest increase in that time frame for all 50 states 

(USDoC 2015). In terms of population and economic growth due to oil and gas development, it 

is unknown how such growth impacts municipal water use.  

Research on municipal water use shows that water-use data is not always reliable and 

depends on the source of the data (Averyt et al. 2013), and most research is conducted to improve 

data systems (Cole and Stewart 2013; Mini et al. 2014), determine trends in water use (House-

Peters et al. 2010; Wong et al. 2010), or create future projections (Zhou et al. 2000; Qi and 

Chang 2011). In North Dakota there has been little effort to collect and assess municipal water 

quantity-use data, beyond identifying problems in municipalities or general reporting to the 

North Dakota State Water Commission (NDSWC). In general there is a need to identify water-

use categories across municipality sizes and to determine how energy development has impacted 

municipal water use in the state. This information will be useful in predicting future use needs 

for all water-use categories in the state; as well as, providing information to water managers on 

appropriate ways to manage municipal water during times of flood or drought.  

The objectives of this project are to: 1) gauge availability of water-use data within a 

municipality; and 2) generate water-use categories that can be applied to municipalities of 

various sizes statewide. Once developed this water-use profile methodology will be used to 
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inform water management and be applied to a larger study looking at the impact of oil 

development on municipal water use statewide.  

Literature Review 

Water Quantity Assessment 

Obtaining water-use data can be done through primary or secondary efforts (USGS 

2000). Primary gathering of data is done through the use of direct or indirect methods. Direct 

methods include reading cumulative water meters and are usually done by public water suppliers, 

while indirect methods include the use of a certain type of flow meter that is used in conjunction 

with a measurement of time to calculate water usage. Secondary actions of data collection are 

done through the use of surveys or reports issued to water users who supply water usage 

information through primary data collection efforts (USGS 2000).  

In collection of water-use data pertinent to water-use groups the more common methods 

are water use reports and estimation techniques or a combination of both (Morales et al. 2009, 

Averyt et al. 2013, Mini et al. 2014). Averyt et al. (2013) compared water-use data gathered on 

thermoelectric water users with the use of both reported and estimated techniques and examined 

the differences. Significant differences among the reported and calculated water withdrawal data 

of thermoelectric users were observed on a regional level and were associated with unreported or 

misreported data, and imperfections in the coefficients and the application of coefficients. 

Calculations made in Averyt et al. (2013) were done by using national level water-use 

coefficients that based water usage amounts on per unit of generated electricity and are specific 

to the technologies and cooling systems used in generating the electricity. Shiklomanov (2000) 

also used coefficients and estimated domestic water use through a coefficient developed by 

population dynamics data and per capita water withdrawal. In addition to coefficients used to 
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estimate water use, models can be employed to collect water-use information. For instance, 

Maidment and Parzen (1984) used transfer function models to illustrate daily urban water use 

based on air temperature and rainfall.  

Analysis of water quantity data can be done on a number of levels from micro, a use level 

which includes a household or an agricultural field; to mezzo, a service level; and finally a macro 

level including multiple water uses and service systems within a basin or sub-basin (Molden and 

Sakthivadivel 1999). Dependent on the level of analysis, managing water-use data to include 

helpful information to aid in the analysis include identification numbers such as those associated 

with the North American Industry Classification System (NAICS). The NAICS is a standard 

used by federal agencies to classify businesses into groups based on their processes of producing 

products (USCB 2014). A few NAICS groups include utilities, retail trade, and manufacturing. 

The United States Geological Survey (USGS) utilizes the NAICS codes for these groups to see 

how water is used and in using these groups can help to desensitize water-use data among water 

users (USGS 2000).  

Geographic information such as longitude and latitude can also be useful if geospatial 

software is employed, while the rate or volume of water used, and where that water comes from 

are other important factors in water withdrawal assessments (USGS 2000). Federal agencies such 

as the USGS use a Hydrologic Unit Code (HUC) to identify a hydrologic unit that depicts a 

geographic area, hydrologic units separate geographic areas into four levels: regions; sub-

regions; accounting units; and cataloging units (Seaber 1987). The HUC identifies at which 

spatial level the assessment is taking place and what water resource is impacted. Focusing water-

use data collection efforts on a municipality scale or mezzo level, Mini et al. (2014) gathered 

household residential water-use information from the Los Angeles Department of Water and 
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Power (LADWP), and used it to analyze water billing data methods and a remote-sensing model 

for quantifying outdoor water use in the residential areas of Los Angeles. To protect customer 

privacy they aggregated the customer billing data to the census tract level with data they 

obtained from the United States Census Bureau. Census tracts are small geographical areas that 

divide counties based on population densities. Boundaries of census tracts fall in line with 

boundaries of townships, counties, and states. Since LADWP provided water to users outside the 

city boundary of Los Angeles, Mini et al. (2014) dropped individual water-use data that fell 

outside city limits and was able to use the census tracts within the city boundaries to desensitize 

customer water-use data.  

When assessing current water use in a municipality, characteristics of the water service 

area must be determined along with the type of demand for the water use. In doing so customer 

data from a public water supplier can be aggregated into categories that share common water-use 

characteristics, such classification of water users into groups with similar water-use 

characteristics include the NAICS (USCB 2014). The NAICS provides a database in which 

businesses are lumped together under codes that correlate with an industry production process. 

Although the NAICS provides standard definitions for water-use groups it lacks certain water-

use types, such as recycled water, water reuse, navigational, and reclaimed water as it is geared 

toward economic activity versus water use (USCB 2014). Water-use groups also vary from state 

to state; for instance, the USGS presents water-use data for eight categories including: 

thermoelectric power; irrigation; public supply; self-supplied industrial; aquaculture; mining; 

self-supplied domestic and livestock water-use groups (Hutson 2007; Maupin et al. 2014). On 

the other hand, the states include the same eight categories with variations including: power 

generation as a category that houses thermoelectric power and hydroelectric power; and an 
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agriculture category with aquaculture and livestock as subcategories. However, most states 

include aquaculture under the livestock category. Additional categories that some states 

incorporate for water uses include navigation, sewage treatment, recreation and preservation, and 

miscellaneous (Hutson 2007; Maupin et al. 2014).  

Current problems in quality assurance and quality control for determining water use 

include misreported data, unreported data, wrongful use of coefficients, and lack of inclusion of 

determinant variables (Averyt et al. 2013). Determinant variables are factors of climate or 

socioeconomics that dictate changes in water use. A few variables that water use is thought to 

depend on include rainfall, air temperature, income, and education level (House-Peters et al. 

2010). Gleick (2003) highlights inaccurate data as a problem along with the fact that water-use 

data isn’t readily available for all uses as they are unquantifiable or at least not easily quantified. 

The systematic collection of water-use data is not common and the data provided in such 

collections can be outdated. A case in point is USGS’s compilation of water-use information 

from all states within the United States every five years (Maupin et al. 2014). Water-use 

collection methods are not standardized among states and can contribute to inaccuracies in 

comparisons. Some states lack resources for data collection, like man power or funding, and 

information may be missing or not included or the water-use data is a year behind the rest of the 

states’ water-use data. Overall improvements are needed in data collection efforts and further 

studies can aid in such improvement through new technologies like the concept of smart 

metering that allows meters to capture water-use information automatically, and electronically 

transmits that information in real-time (Cole and Stewart 2013). Improved access to certain 

levels of data can improve already existing coefficients and models. New databases that provide 

access to up to date information on customer classification and heated building area can be used 
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to better improve coefficients in estimating water use for commercial, industrial and institutional 

categories (Morales et al. 2009).   

Trends in Water Quantity 

Looking at water use over time is a good reference to see which sectors have increased, 

decreased, or stabilized their water use and can illustrate patterns of use for current and future 

water needs. Furthermore, efforts can be made to determine factors that cause changes in water 

use. Capturing total water withdrawal among water-use categories over a set time period can 

illustrate the direct causes of water withdrawal changes. Such is the case with Konieczki (2004) 

who discovered a trend in total water withdrawal data from 1950 to 2000 that illustrated a 

proportional increase in withdrawal for domestic use compared to agricultural use.  

House-Peters et al. (2010) used statistical analysis to determine significant factors that 

influenced single family residential water use and found that base use (indoor water use) is 

dependent on household size, while seasonal use was indicated by the percent of adults with a 

college degree as well as the size of the outdoor space. Another study by Wentz and Gober 

(2007) corroborates these findings, but further evaluated household residential water use by 

number of people, lot size, presence of pools, and vegetation type. In addition they discovered 

people in adjacent neighborhoods display similar water-use behavior. Wong et al. (2010) also 

looked at indoor use and seasonal water use at a municipal level in Hong Kong. Their study 

incorporated calendrical use as well, which looks at the day-of-the-week effect, holiday effect, 

and how they influence urban daily water use. Using six statistically driven models, the 

researchers were able to develop a single model that explained how these three aspects of 

calendrical use affect urban water use. It was found that urban water use was higher during the 

weekdays than during weekends and decreased during the holidays starting two days before a 
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holiday and until one day after. Another study by Portnov and Meir (2008) compared domestic 

water use and municipal water use in Israel. They revealed that areas within the residential 

domain that have low rates of water use and high rates of water use have a tendency to converge 

over time. The cause of the low rates of water use to catch up to high rates of water use are due 

to improvements in infrastructure for areas that exhibit low rates of water use. Conversely, in the 

municipal sector of water use, the tendency between low consumption rates and high 

consumption rates diverge. The divergence in municipal water rates are due to municipalities that 

were once agricultural communities and still offer a water supply to agricultural providers, this 

can lead to excessive consumption of water since municipalities receive water at a discounted 

price and in turn promotes wasteful water-use practices. The savings from discounted water use 

can also afford the option to wealthy municipalities to invest in further expansion and 

maintenance on parks and green space to appeal to newcomers, adding to the increase in water-

use rates due to irrigation. Poor municipalities are unable to compete with aesthetic advances due 

to locations near unsuitable environments, so water-use rates remain the same (Portnov and Meir 

2008).  

The evolution of water use over time can further provide information on the impact of 

climate change, such as drought impacts on water rates and the context in which conservation 

efforts are successful. In Santa Barbara California during the drought years 1986-1992 municipal 

water use and water rates were a combination of water rate manipulation and water conservation 

measures and significantly reduced water use, along with increasing environmental awareness in 

consumer behavior (Loaiciga and Renehan 1997). However, in Athens Greece, through the use 

of a Stone-Geary utility function water rate manipulation was unsuccessful in altering water use 

due to increases in consumer income (Kostas and Chrysostomos 2006 ). This study established 
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that a water savings plan should be based on quantitative restrictions as opposed to qualitative 

restrictions driven by consumer viewpoints on water use. This would mean restricting the 

amount of water residents can use and for what, and they propose doing it voluntarily through 

increased environmental awareness (Kostas and Chrysostomos 2006 ). Furthermore, in an area 

where water availability is low due to an over-use situation (ex. irrigated agricultural lands) 

researchers in the Phoenix Arizona area, hypothesized water availability would increase due to 

the urbanization of agricultural lands and overall water consumption would decrease since urban 

land needs half the amount of water per unit area (Wehmeier 1980), however, this was not the 

case. The failure to reduce consumption was pinpointed to water law, water-use policy, the type 

of urban development, and the attitudes of people who failed to view water as a limited resource 

(Wehmeier 1980).  

The scope of water-use trends can also be conducted on a national scale and can be 

evaluated by a structural decomposition analysis. An analysis by Wang et al. (2014) was done 

this way on the United States industrial sector by comparing water withdrawal data to economic 

data from 1997 to 2002. The factors that contributed to an increase in water use for numerous 

industrial sectors were population growth, gross domestic product (GDP) per capita (total 

production of goods and services within a country divided by population), and water-use 

intensity; while changes in production structure, and consumption patterns decreased water use. 

The study found consumption patterns to be the largest net contributor in changing water 

withdrawals (Wang et al. 2014).  

In general, the most common method used in analyzing trends in water use is time series 

regression. A time series regression evaluation of water use compares total water withdrawals 

with related water-use data such as population to determine per capita use over a specified time 
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period (Mini et al. 2014). Mini et al. (2014) used a time series regression method and conducted 

a Seasonal Mann-Kendall trend test to gauge a relationship between outdoor water use and 

evapotranspiration on the landscape. In the study it turned out that over half of household water 

use was used to irrigate landscapes.  

Future Projections 

Forecasting water use aids in planning efforts for water supply and security. Forecasting 

can be done for different periods of time via short-term or long-term data depending on what the 

intended outcomes are for the projection. Short-term approaches forecast daily and monthly 

water use, while long-term forecasts in years. Approaches to forecasting water use can be 

categorized into six categories including: regression analysis; time series analysis; computational 

intelligence approach; hybrid approach; Monte Carlo simulation; and the system dynamics 

approach (Qi and Chang 2011). Traditional methods consist of regression analysis and the time 

series analysis while the following approaches are more advanced modeling techniques.  

 Regression models have been in use the longest for water-use prediction and are based on 

a statistical estimated relationship between water demand and the independent variables it 

depends upon (ex. socioeconomic factors) (Qi and Chang 2011). Maidment and Miaou (1986) 

developed a regression model using daily water-use data from nine cities from various states to 

forecast the fluctuations in water usage to precipitation and air temperature variables. Time series 

analysis is based on a mathematical extraction of numerous trends that naturally alter water use 

over time (Yevjevich and Harmancioglu 1985). Zhou et al. (2000) used a time series analysis 

when they forecasted daily water use in Melbourne, Australia for the short term and long term by 

splitting daily water use into base use and seasonal use.  
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 Computational intelligence models such as artificial neural networks (ANN), fuzzy-logic, 

and agent based models are geared towards simulating complex systems (Engelbrecht 2007). 

Cutore et al. (2008) used the Shuffled Complex Evolution Metropolis algorithm (SCEM-UA) to 

calibrate an ANN model as the model is driven by historical data. Therefore, past data is used to 

train a learning algorithm to which the ANN model output values are compared. From this model 

error can be refined by the model (Cutore et al. 2008). Examples of fuzzy-logic models and 

agent-based models are also illustrated in Altunkaynak et al. (2005) and Yuan et al. (2014). 

Altunkaynak et al. (2005) used a Takagi Sugeno fuzzy method to forecast monthly water use in 

Istanbul City in Turkey while Yuan et al. (2014) used a household water demand prediction 

(HWDP) model to predict urban household water usage in the year 2020. 

 Hybrid approaches are an extension of computational intelligence models. The hybrid 

approach is self-explanatory in the fact that it integrates a number of models to gain combined 

advantages. Examples of models that use this approach are pattern recognition (Shvartser et al. 

1993), neural-fuzzy modeling system (Yurdusev et al. 2009), and the M5 modeling tree 

(Solomatine and Xue 2004). Monte Carlo simulations assign fluctuations in water demand on a 

per capita basis and simulates the resulting system changes into a structure and further pinpoints 

uncertainties in the forecasting (Khatri and Vairavamoorthy 2009). Lastly, system dynamic 

models aid in portraying system behaviors including feedback loops that aid in precise forecasts. 

Qi and Chang (2011) created a system dynamic model based on the assumption that average 

annual income is increasing in a linear trend over the years 2003-2009 in Manatee County, 

Florida, and that this tendency can be assumed to persist in the future. Using such assumptions 

domestic water use in the context of the current macroeconomic environment can be forecasted. 
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Methods 

Working with the USGS and NDSWC multiple North Dakota municipalities were 

contacted via email and phone calls to gauge availability of water-use data and gain permission 

to access municipal water-use billings. Bismarck, North Dakota was the first to grant permission 

and encourage collaboration with North Dakota State University (NDSU). Therefore, the pilot 

project is focused on approximately 20,000 customer water-use billings supplied by Bismarck 

Public Works for the timeframe of 2014-2015.  

Monthly customer billing records with water-use information were correlated into 

specific water-use categories. Correlation of two years of water-use information into water-use 

categories was done using Microsoft Excel. Breakdown of water-use categories with water-use 

data was done to determine accuracy and usefulness of categories in determining a water-use 

profile for the city. For the purposes of this study water-use categories were disaggregated to the 

lowest level possible, from this level results can be re-aggregated into categories to coincide with 

North Dakota Century Code and NAICS categories for further analysis. 

Analysis of the water-use data includes: trend analysis of seasonal use; estimates of 

individual category users and the average amount of water used (hundred cubic feet annually or 

gallons/time period; ex. one carwash bay uses approximately 100 gallons of water per day); and 

major water users in individual categories. It is assumed that results of this study would be an 

indication of typical categories for a municipality the size of Bismarck; however, comparisons of 

other cities of the same size should be conducted to determine typical categories. 

Results and Discussion 

Annual water usage for Bismarck, North Dakota is presented in hundred cubic feet 

(HCF), one hundred cubic feet equals 748 gallons. In 2014, the entire City of Bismarck used 
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3,731,182 HCF of water, and in 2015 the amount increased to 4,137,990 HCF as observed in 

Table 1.1. This increase is a function of both commercial and residential water use growth. 

However, residential increased water use from 2014 to 2015 by 281,024 HCF; while commercial 

increased by 125,784 HCF. This information indicates that during 2014 and 2015 at home water 

use had more of an impact on public water supplies than commercial use. The increase in water 

use is attributed to general growth in the City of Bismarck during those years. The United States 

Census Bureau reports population estimates for the entire state of North Dakota in July 2014 at 

739,482 and 756,927 in July 2015 (USCB 2016). Much of this growth took place in the western 

part of the state in the Bakken region, with Bismarck being a fringe city of this growth. In 2014, 

the total number of customers billed in the residential category for Bismarck was 20,402 and this 

increased to 20,911 in 2015. Similarly in the commercial category the amount increased from 

2,080 in 2014 to 2,189 in 2015. This means there were 618 new customer billings in the City of 

Bismarck in 2015. 

Table 1.1  

 

Total water usage for the year for the City of Bismarck, North Dakota, 2014 and 2015 in 

hundred cubic feet (HCF). 

 

Residential 

Residential water use was disaggregated into sub-categories including single-family 

home, duplex, condo, apartment, trailer park, and assisted living. The total water usage for the 

year for each sub-category in 2014 and 2015 are listed in Table 1.2. The highest water user of 

sub-categories was single-family homes with assisted living as the lowest. The data illustrates the 

Category 
Total Water Use-

2014 

Total Water Use-

2015 
Difference 

Residential 2,566,853 2,847,877 +281,024 

Commercial 1,164,329 1,290,113 +125,784 

Total 3,731,182 4,137,990 +406,808 
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high number of single family homes in the Bismarck area compared to the lower number of 

assisted living facilities. The total number of single-family home accounts was 18,554 in 2014  

and 19,039 in 2015. The total number of assisted living facilities in 2014 was 12 while in 2015 it 

was 11. The number of total units for assisted living facilities was 611 in 2014 and 599 in 2015. 

The large differences in water usage between single-family and assisted living facilities is 

explained by each categories’ number of residential units.  

Table 1.2  

 

Annual residential water use sub-categories for 2014 and 2015 and the difference between years 

in hundred cubic feet (HCF). 

 

Residential Sub-

Category 

Total Water Use-

2014 

Total Water Use-

2015 
Difference 

Single-family 1,721,159 1,949,294 +228,135 

Duplex 94,865 98,586 +3,721 

Condo 164,088 172,867 +8,779 

Apartment 319,851 352,391 +32,540 

Trailer Park 240,390 245,135 +4,745 

Assisted Living 26,500 29,604 +3,104 

   

 Annual water use ranges of each residential sub-category are provided in Table 1.3. The 

highest water use per meter belonged to a trailer park, this is not surprising as one meter in a 

trailer park supplies a higher number of units than any other residential sub-category. Minimum 

water use numbers were similar in both years except for an increase of 9 HCF in minimum water 

used by a single meter in the assisted living category. Single-family, duplex, and condo 

categories have a minimum of 0 HCF of water use for a single meter and are either due to water 

usage under the required 1 HCF of water used for charged services or denote the installation of a 

new meter. The change in maximum water used within a category across the two years are larger 

than the changes found in minimum water use. The biggest changes occurred in single-family 
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with a drop in maximum water use of 9,998 HCF and in trailer park with an increase of 9,210 

HCF, both in 2015.  

Table 1.3 

 

Annual water-use ranges for residential water use sub-categories on a per meter basis within 

2014 and 2015 in hundred cubic feet (HCF).  

 

Residential 

Sub-Category 

2014 Water-Use Range 2015 Water-Use Range 

Minimum Maximum Minimum Maximum 

Single Family 0 19,998 0 10,000 

Duplex 0 1,462 0 1,456 

Condo 0 1,292 0 3,319 

Apartments 5 4,892 1 7,252 

Trailer Park 707 44,458 696 53,668 

Assisted Living 4 7,387 15 8,338 

Note. A minimum of 0 HCF can either denote a new meter or water usage under the required 1 

HCF of water used for charged services. 

Average water use per residential sub-category is listed in Table 1.4. Averages were 

obtained by dividing total water use in a sub-category by number of accounts. A few of the 

accounts have more than one meter and show up as two accounts with the same name; however, 

it was difficult to distinguish between accounts with the same name as one entity with two 

meters for the same building or for two separate buildings. Less than one percent of residential 

accounts fell into this category while about five percent of commercial accounts fell into it. 

Looking across both years all sub-categories increased water use between 2014 and 2015. The 

highest annual water usage per water meter/account were trailer parks with an average of 12,020 

HCF in 2014 to 14,420 HCF in 2015 per trailer park as illustrated in Table 1.4. The range of 

trailers or units in a trailer park vary from 12 to 458. As a single trailer park distributes water 

from a single meter, large amounts of water use from larger trailer parks may skew the average 

water use per trailer park. In this case, looking at average water use per trailer per park may be 

more beneficial. Furthermore, Table 1.4 illustrates average water use by sub-category while a 
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follow up of average water use per residential unit (i.e. per trailer, per household, per assisted 

living patient room, per apartment unit) is illustrated in Table 1.5.  

The second highest residential water use sub-category was assisted living facilities (Table 

1.4). Water use in this category was higher, again due to the number of units each water 

meter/assisted living facility serves. For example, an assisted living facility has around 53 units. 

Apartments in Bismarck have about on average 23 units and therefore, have lower water use 

volumes. As increases occur in units the amount of water used per meter or per account 

increases. Overall, the trend in average water use is increasing across all residential sub-

categories.  

Table 1.4 

 

Average of residential categorical water use per account per year in hundred cubic feet (HCF).  

 

Residential 

Sub-Category 

Average Water 

Use-2014 
# of Accounts 

Average Water 

Use-2015 
# of Accounts 

Single-family 93 18,554 102 19,039 

Duplex 105 904 107 919 

Condo 260 631 277 625 

Apartment 1,138 281 1,175 300 

Trailer Park 12,020 20 14,420 17 

Assisted Living 2,208 12 2,691 11 

Total - 20,402 - 20,911 

Note. The number of units within a residential sub-category account vary from 1 to 458. One 

trailer park has one water meter and supplies water to a range of 12 to 458 trailers or residential 

units. 
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Table 1.5  

 

Average annual residential water use per residential unit in hundred cubic feet (HCF).  

 

Note. Total annual water use for a sub-category was divided by the total number of residential 

units within sub-category. 

 Average water use per residential unit (i.e. apartment unit, trailer, single unit in assisted 

living) for each residential sub-category are listed in Table 1.5. Average water use per unit was 

determined by taking the total annual water use per sub-category in Table 1.2 and dividing by the 

total number of units in each sub-category. For example in a duplex the total annual water use 

was 94,865 HCF in 2014 (Table 1.2), this number was then divided by 1,808 as there are a total 

of 1,808 residential units in the duplex sub-category; therefore, per unit water use for a duplex 

was 53 HCF in 2014 as illustrated in Table 1.5.  

There was an increase in average water use per unit in every sub-category except 

apartment. However, looking at Table 1.2 there is still an increase of 32,540 HCF between 2014 

and 2015 water use in apartments. This demonstrates that as the number of apartments increases, 

the per unit average of water use decreases which could be due to empty apartments not using 

water or potentially other factors such as installation of water-conserving appliances and delivery 

systems. In general the largest sub-category water user per unit in both 2014 and 2015 was single 

family homes and the second largest was trailer homes. Interestingly the average size single-

family home in 2015 was 2,745 ft2 while the average size trailer home was 1,430 ft2 (MHI 2016). 

This would indicate that while homes may be larger or smaller they are still utilizing close to the 

Residential 

Sub-Category 

2014 Average 

Water Use 

# of Residential 

Units 

2015 Average 

Water Use 

# of Residential 

Units 

Single-Family 93 18,554 102 19,039 

Duplex 53 1,808 54 1,838 

Condo 52 3,169 55 3,147 

Apartment 52 6,162 51 6,923 

Trailer Park 87 2,784 91 2,687 

Assisted Living 43 611 49 599 
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same amount of water for inside use (washing dishes and clothing, showering, etc.) and outdoor 

use (watering lawns and gardens, pools, etc.). The average water use amongst the other sub-

categories of duplex, condo, apartment, and assisted living are similar in amount and less than 

the single family home and trailer home. This could potentially indicate one of two things: 1) 

there are less people on average living in each of these sub-categories using water for indoor use; 

or 2) there is water savings on not having as many outdoor water-use functions. This study did 

not look into additional factors such as home size, number of individuals living in a home, and 

water-use habits; therefore, it would be impossible based on current data to pinpoint the changes 

in water use.      

Water use in Bismarck is increasing across all categories and per capita. Comparing the 

data found in Bismarck to both the United States and other municipal water-use data is useful to 

gauge where the city is in comparison to other municipal and national averages. The City of 

Santa Fe, New Mexico (2001) reports that a single-family in Santa Fe uses on average 108 HCF 

of water per home annually, while Bismarck in 2014 only used 93 HCF. Assisted living facilities 

in Santa Fe used on average 61 HCF annually, while those in Bismarck used 43 HCF; and multi-

family dwellings such as, condominiums and apartments typically use 91 HCF annually while 

those in Bismarck used 52 HCF (CoSF 2001). Santa Fe, New Mexico on average used more 

water per category than Bismarck. Santa Fe is in a drier area of the United States and this may 

account for at least a portion of the higher water use per category.   

The USGS identified the national average of public-supplied domestic water use in 2010 

as 89 gallons per day per person; while North Dakota’s estimated public-supplied domestic water 

use was 80 gallons per day per person in 2010 (Maupin et al. 2014). Additionally in 2010, the 

United States Census Bureau identified that a United States household contains on average 2.58 
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people (Lofquist et al. 2012). Taking the average annual water use for single-family home in 

Bismarck (Table 1.5) for 2014 and multiplying it by 748 gallons (per one HCF) equals 69,414 

gallons of water used per year for a single-family home. Taking the USGS estimate for the state 

of North Dakota (80 gallons/person/day), and multiplying it by 2.58 people estimated to be in a 

single family household and multiplying that by 365 days in a year equals 75,336 gallons per 

household per year. This estimate is slightly above the average 69,414 gallons observed in 

Bismarck, and would be well below the averages estimated in the rest of the nation at 89 

gallons/person/day in 2010.   

Trailer parks and assisted living per unit water use were determined by dividing total 

annual water use by total number of residential units in that category (Table 1.5). For instance, 

the total water use of trailer parks for 2014 was 240,390 HCF and there were a total of 2,784 

trailers within the category; therefore, the resulting per unit water use is 86 HCF per year per 

trailer. In 2015 there was a drop in the number of trailer parks; as well as, the number of trailers, 

but the annual water use still increased by 4,745 HCF. Meaning per trailer on average water use 

is increasing (Table 1.5). In Santa Clara Valley, California the average annual water use per 

trailer is 115 HCF with a one water meter system per trailer park (SCVWD 2007). Interestingly 

enough, when a pilot program implemented sub-meters for each trailer in a park the average 

annual water use dropped to 90 HCF per trailer, which is a more similar water use to the results 

of water use found in Bismarck (SCVWD 2007).   

Assisted living has the second highest difference in water-use per unit between 2014 and 

2015 with an increase of 6 HCF in water use (Table 1.5). This increase also came with a loss of 

12 assisted living units from 611 in 2014 to 599 in 2015. The 6 HCF change in the year period 

would equate to approximately 31 gallons more water used per day across all assisted living 
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units combined. While this is a small number the trend does add up over time. Apartment is the 

only category with a decrease in per unit water use from 2014 to 2015. This may be attributed to 

newly available residential units that have yet to be filled as number of units increased by 761 

units in 2015. Overall within Bismarck, water use for each sub-category are increasing. 

Commercial 

The total annual commercial water use was disaggregated into sub-categories and is 

displayed in Table 1.6. In 2014, commercial facilities used a total of 1,164,329 HCF of water 

annually and 1,290,113 HCF in 2015, leading to a 125,784 HCF increase between the two years. 

Total water use between years increased in most commercial sub-categories; however, there 

were a few sub-categories with decreased total water use from 2014 to 2015 including: auto 

part/supply; auto repair; bar; beverage maker (Coca-Cola bottling company); butcher; concrete 

batch; construction supplies; entertainment; fast food; funeral home; manufacturer; nursing 

home; public pool; spa; and veterinarian. The largest decrease was observed with concrete batch 

plants decreasing 4,201 HCF for the year; while construction supplies had the second biggest 

decrease at 3,067 HCF (Table 1.6). The largest increase in water use was by lawn meters with an 

increase in water use of 28,464 HCF from 2014 to 2015.  

Annual water-use ranges per commercial sub-category on a per meter basis for each year 

are presented in Table 1.7. Water-use ranges were determined based on the lowest meter reading 

and the highest meter reading in each sub-category. The annual water use maximum for lawn 

meters increased from 2014 by 7,374 HCF in 2015. The two sub-categories behind lawn meters 

with large increases in maximum water use for a meter were the golf course and the waste water 

treatment plant categories; with golf courses increasing by 8,528 HCF and waste water treatment 

plant by 5,493 HCF of water for the highest meter reading. Overall, 43 of the 66 commercial 
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sub-categories had an increase in maximum water use for a single meter, which is representative 

of the rise in total water usage between the years for the category. Inflation of maximum water-

use ranges is likely due to increases in average monthly air temperatures from 2014 to 2015 and 

a shortage of rainfall from the normal total rainfall of 17.97 inches, with 2014 receiving 14.10 

inches and 2015, 15.37 inches (NDAWN 2015; NDAWN 2014). 

Decreases in maximum water use readings occurred across the other 23 commercial sub-

categories. The largest decrease occurred in the beverage maker sub-category, with a drop in 

water use of 7,517 HCF for one meter. Subsequent decreases in maximum water use per meter 

occurred for the concrete batch and nursing home categories. Although the declines for concrete 

batch and nursing home were not as strong as the beverage maker sub-category, the water use 

decreased by 1,752 HCF and 1,616 HCF, respectfully.   

Average commercial water use per sub-category was calculated by taking total water use 

in a sub-category and dividing by the number of accounts within the sub-category. Average 

commercial water use per category per year are listed in Table 1.8. In the case of high and low 

water users amongst sub-categories, the number of lawn meters only increased by five accounts 

between the two years while average water use per account increased on average by 380 HCF 

from 2014 to 2015 (Table 1.8). Lawn meter increases in water use per account could be 

attributed to the rise of monthly average air temperatures in 2015 from 2014 (NDAWN 2015; 

NDAWN 2014). As for concrete batch plants and construction supply the number of businesses 

did not decrease, there was only a decrease in average water use per account. 

Sub-categories with a decrease in total annual water use from 2014 to 2015 were also 

decreasing their average water use per account. The exceptions include bars which lost one 
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account, but kept increasing average water use per bar; as well as fast food which lost several 

accounts, but water usage continued to increase per account on average. 

Table 1.6  

 

Total annual commercial water use per sub-category in hundred cubic feet (HCF) in 2014 and 

2015 as well as the difference in water use between the two years. 

 

Commercial Sub-Category 
Total Water Use-

2014 

Total Water Use-

2015 
Difference 

Airport 2,118 2,865 +747 

Auto Part/Supply 511 497 -14 

Auto Repair 4,663 4,335 -328 

Bank 10,924 11,513 +589 

Bar 5,816 5,462 -354 

Bev Maker 41,948 39,092 -2,856 

Big Box Store 12,666 13,380 +714 

Body Shop 1,126 1,283 +157 

Butcher 453 424 -29 

Car Dealer 5,742 7,414 +1,672 

Car Wash 39,346 49,302 +9,956 

Cemetery 2,536 5,091 +2,555 

Church 5,267 7,059 +1,792 

Clinics 23,187 26,306 +3,119 

College 40,489 48,464 +7,975 

Concrete Batch 12,020 7,819 -4,201 

Construction Supply 10,676 7,609 -3,067 

Contractors 8,436 9,817 +1,381 

Dentist/Optical 2,860 3,306 +446 

Entertainment 17,466 16,126 -1,340 

Fast Food 26,067 24,317 -1,750 

Fire Station 1,501 1,895 +394 

Food Processing 15,997 16,072 +75 

Funeral Home 1,382 1,232 -150 

Gas Station 11,331 13,735 +2,404 

Golf Course 23,141 31,669 +8,528 

Government Offices 26,377 29,887 +3,510 

Grocery Store 7,285 9,268 +1,983 

Gym 1,790 1,843 +53 

Hair Salon 1,080 1,096 +16 
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Table 1.6. Total annual commercial water use per sub-category in hundred cubic feet (HCF) in 

2014 and 2015 as well as the difference in water use between the two years (continued). 

 

Commercial Sub-Category 
Total Water Use-

2014 

Total Water Use-

2015 
Difference 

Hospital 46,306 52,663 +6,357 

Hotel 19,620 22,423 +2,803 

Hotel/Pool 122,148 121,232 -916 

Jail/Prison 48,570 55,626 +7,056 

Kennels 520 593 +73 

Landscapers 1,595 1,553 -42 

Large Mall 16,891 17,981 +1,090 

Laundromat/Laundry Service 53,288 59,248 +5,960 

Lawn Meter 48,830 77,294 +28,464 

Machine Shop 975 1,123 +148 

Manufacturer 23,831 22,591 -1,240 

Military 7,463 10,503 +3,040 

Nursing Home 46,852 46,709 -143 

Office Building 84,509 88,486 +3,977 

Parking Lot 766 1,017 +251 

Parks 20,490 28,018 +7,528 

Public Pool 3,655 2,757 -898 

Restaurant 23,625 24,629 +1,004 

Restaurant/Bar 48,069 48,966 +897 

Retail 28,470 28,843 +373 

Public Schools 29,793 35,591 +5,798 

Private Schools 7,183 9,120 +1,937 

Service 30,105 31,858 +1,753 

Shop Condo 2,788 3,386 +598 

Small Mall 1,292 1,308 +16 

Spa 1,391 1,194 -197 

Sport Complex 14,014 20,984 +6,970 

Storage Units 369 546 +177 

Strip Mall 17,289 17,591 +302 

Truck Parts/Service 3,405 3,903 +498 

Trucking Company 689 1,345 +656 

Utility 7,489 8,720 +1,231 

Veterinarian 1,110 1,018 -92 

Warehouse 8,528 9,924 +1,396 

Waste Water Treatment Plant 23,538 29,395 +5,857 

Zoo 4,672 3,797 -875 
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Table 1.7 

 

Annual water-use ranges for commercial sub-categories on a per meter basis within 2014 and 

2015 in hundred cubic feet (HCF).  

 

Commercial                                    

Sub-Categories 

2014 Water-Use Range 2015 Water-Use Range 

Minimum Maximum Minimum Maximum 

Airport 3 1,443 0 2,136 

Auto Part/Supply 2 85 2 95 

Auto Repair/Service 0 2,340 0 1,466 

Bank 0 2,435 1 2,903 

Bar 25 1,316 29 1,351 

Bev Maker 112 41,836 0 34,319 

Big Box Store 185 3,061 79 3,476 

Body Shop 2 459 4 353 

Butcher 58 395 55 369 

Car Dealer 4 1,501 3 1,642 

Car Wash 12 7,470 1 7,585 

Cemetery 0 2,530 0 3,158 

Church 2 818 20 1,048 

Clinics 2 8,546 4 9,879 

College 397 19,519 3 21,117 

Concrete Batch 116 6,270 54 4,518 

Construction Supply 0 2,801 0 2,364 

Contractors 0 2,769 0 1,934 

Dentist/Optical 11 665 26 675 

Entertainment 0 4,325 0 5,095 

Fast Food 25 1,526 63 1,911 

Fire Station 142 416 116 543 

Food Processing 6 5,466 5 6,037 

Funeral Home 334 579 325 533 

Gas Station 20 3,243 7 3,286 

Golf Course 23,141 23,141 31,669 31,669 

Government Offices 0 5,350 0 5,921 

Grocery Store 348 1,676 0 1,752 

Gym 36 848 22 982 

Hair Salon 22 490 27 380 

Hospital 0 12,965 0 14,241 

Hotel 340 3,480 740 3,486 

Hotel/Pool 37 16,150 297 15,746 

Jail/Prison 12 27,857 86 32,971 

Kennels 141 379 202 391 

Landscapers 18 1,518 16 1,451 
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Table 1.7. Annual water-use ranges for commercial sub-categories on a per meter basis within 

2014 and 2015 in hundred cubic feet (HCF) (continued).  

 

Commercial  

Sub-Categories 

2014 Water-Use Range 2015 Water-Use Range 

Minimum Maximum Minimum Maximum 

Large Mall 0 3,654 0 4,013 

Laundromat/Laundry Service 38 29,104 34 33,475 

Lawn Meter 0 9,183 0 16,557 

Machine Shop 3 290 3 338 

Manufacturer 0 9,069 0 8,607 

Military 0 2,119 0 2,377 

Nursing Home 1,173 13,803 1,568 12,187 

Office Building 0 3,047 0 2,791 

Parking Lot 10 621 5 725 

Parks 0 6,512 0 8,213 

Public Pool 268 2,557 303 1,189 

Restaurant 152 3,539 0 3,194 

Restaurant/Bar 328 5,322 224 5,535 

Retail 0 3,113 0 3,513 

Schools-Public 0 4,925 0 5,202 

Schools-Private 186 2,102 185 3,228 

Service 0 1,495 0 1,463 

Shop Condo 0 542 0 435 

Small Mall 0 693 0 547 

Spa 46 1,049 37 873 

Sport Complex 7 5,719 0 6,889 

Storage Units 1 120 2 181 

Strip Mall 0 3,050 0 3,661 

Truck Parts/Service 23 769 0 1,119 

Trucking Company 3 425 2 345 

Utility 25 3,185 11 4,058 

Veterinarian 8 489 2 349 

Warehouse 0 2,042 0 2,750 

Waste Water Treatment Plant 1 20,774 1 26,267 

Zoo 4,672 4,672 3,797 3,797 

Note. Ranges are determined based on the lowest meter reading and the highest meter reading in 

a sub-category. A minimum of 0.0 HCF can either denote a new meter or water usage under the 

required 1.0 HCF of water used for charged services. 
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Table 1.8  

 

Average commercial water use per account per year in hundred cubic feet (HCF) in 2014 and 

2015. 

 

Commercial Sub-Category 2014 Average Water Use 2015 Average Water Use 

Airport 212 238.8 

Auto Part/Supply 44 41.4 

Auto Repair 173 154.8 

Bank 266 274.1 

Bar 485 496.6 

Beverage Maker 41,948 * 39,092.0 * 

Big Box Store 1,407 1,338.0 

Body Shop 94 80.2 

Butcher 227 212.0 

Car Dealer 287 285.2 

Car Wash 2,315 2,739.0 

Cemetery 634 848.5 

Church 188 261.4 

Clinics 610 674.5 

College 13,496 16,154.7 

Concrete Batch 6,010 2,606.3 

Construction Supply 134 93.9 

Contractors 136 160.9 

Dentist/Optical 238 275.5 

Entertainment 546 474.3 

Fast Food 606 657.2 

Fire Station 300 379.0 

Food Processing 5,332 5,357.3 

Funeral Home 461 410.7 

Gas Station 708 763.1 

Golf Course 23,141* 31,669.0* 

Government Offices 628 729.0 

Grocery Store 1,214 1,158.5 

Gym 358 368.6 

Hair Salon 135 156.6 

Hospital  1,781 2,025.5 

Hotel 2,180 2,491.4 

Hotel/Pool 5,552 5,271.0 

Jail/Prison 8,095 11,125.2 

Kennels 260 296.5 

Landscapers 399 388.3 

Large Mall 445 438.6 
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Table 1.8. Average commercial water use per account per year in hundred cubic feet (HCF) in 

2014 and 2015 (continued). 

 

Commercial Sub-Category 2014 Average Water Use 2015 Average Water Use 

Laundromat/Laundry Service 6,661 7,406.0 

Lawn Meter 828 1,208 

Machine Shop 89 125 

Manufacturer 1,702 1,506 

Military 1,866 2,626 

Nursing Home 3,124 3,114 

Office Building 241 259 

Parking Lot 153 203 

Parks 820 1,078 

Public Pool 1,218 919 

Restaurant 1,181 1,173 

Restaurant/Bar 1,602 1,689 

Retail 156 153 

Public Schools 1,295 1,424 

Private Schools 1,197 1,520 

Service 154 157 

Shop Condo 33 27 

Small Mall 646 654 

Spa 348 299 

Sport Complex 934 1,399 

Storage Units 37 61 

Strip Mall 258 267 

Truck Parts/Service 170 186 

Trucking Company 98 192 

Utility      1,248 1,453 

Veterinarian   159 145 

Warehouse 152 168 

Waste Water Treatment Plant 23,538* 29,395* 

Zoo 4,672* 3,797* 

* = Same water usage as total as there is only one water user in category.  

 The State of Indiana defines large commercial water users as significant water 

withdrawal facilities and classify them as such based on their capability of withdrawing over 134 

HCF per day or 48,797 HCF annually (IURC 2013). Based on this definition of large water 

users, Table 1.9 displays total annual water usage of Bismarck’s commercial water users with 

large water withdrawals of 48,797 HCF or more for either 2014 or 2015, or for both years. There 
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are a total of nine large water users within Bismarck and through water use, illustrate their 

intrinsic value to commercial business within a city of this size. The largest water user of 

commercial sub-categories are hotels with pools. On average, a hotel with a pool utilizes 5,412 

HCF annually in the City of Bismarck (average of 2014 and 2015, Table 1.8). However, other 

sub-categories have higher annual water usage per facility, but lack the sheer number of facilities 

(23 in 2015) to compete with hotel/pool total annual water use (121,690 HCF average of 2014 

and 2015, Table 1.9) as a sub-category. A few examples are college, jail/prison, and 

laundromat/laundry service.  

Table 1.9 

 

Total annual commercial water use by large water users Bismarck in hundred cubic feet (HCF) 

for 2014 and 2015 (listed largest user to smallest).  

  

Note. Large commercial water users are water-use categories that withdraw over 48,797 HCF 

annually (IURC 2013). 

 

In New Mexico, a hotel with a pool utilizes an average of 24,757 HCF annually, which 

equates to a total annual water use of 74,270 HCF among the three hotels that are full service 

(CoSF 2001). According to City of Santa Fe (2001), a full service hotel contains swimming 

pools, saunas, restaurants, and cocktail bars. For the City of Bismarck, hotels were only assessed 

on whether or not they had a swimming pool; and therefore, the pools and water features of the 

Commercial Sub-

Category 

Total Water Use-

2014 

Total Water Use-

2015 Difference 

Hotel/Pool 122,148 121,232 -916 

Office Building 84,509 88,486 +3,977 

Lawn Meter 48,830 77,294 +28,464 

Laundromat/Laundry 

Service 
53,288 59,248 +5,960 

Jail/Prison 48,570 55,626 +7,056 

Hospital 46,306 52,663 +6,357 

Car Wash 39,346 49,302 +9,956 

Restaurant/bar  48,069 48,966 +897 
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hotels in Bismarck were likely smaller than the full service hotels in New Mexico. This is likely 

why Bismarck’s hotel/pool sub-category has a lower average annual water use per facility. 

Additionally, the City of Bismarck range of total annual water use per hotel with pool was 

anywhere from 479 HCF to 16,150 HCF in 2014 and 1,618 HCF to 15,746 HCF in 2015; which 

shows that hotels with larger water facilities use more water and would be closer to the amount 

used in New Mexico.   

 The largest difference or change in commercial water use between 2014 and 2015 in 

Bismarck was lawn meters, with an increase of 28,464 HCF from 2014 ending with a total 

annual water use of 77,294 HCF in 2015. While lawn meters have the largest change (increase) 

in water use between 2014 and 2015, they are actually the third largest water user in the City of 

Bismarck, with a total annual water use of 77,294 HCF in 2015. The second largest water user is 

office building with a total annual water use of 88,486 HCF in 2015 (Table 1.9). In New Mexico, 

average annual water use for office building is 19,514 HCF (CoSF 2001). In comparison, the 

City of Bismarck had an average annual office building water use of 86,498 HCF which is vastly 

higher than that of New Mexico’s office building water use. The difference is likely due to the 

business functions that occupy the office buildings.   

 For 2014 the total annual water use for the commercial sub-category car wash was 39,346 

HCF and 49,302 HCF in 2015, with an increase of 9,956 HCF within one year. Further 

disaggregation of total annual water use by facility was done to discern areas of increased water 

use. The total annual water use by car wash facility and average annual water use per bay a 

facility held in HCF can be found in Table 1.10. 
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Table 1.10  

 

Total annual car wash facility water use and average water use per bay in hundred cubic feet 

(HCF).  

Note. Differences in total annual water use and average water use per bay are due to separate 

water meters and separate buildings for the convenience store and car wash bay.  

Overall, the amount of water used per car wash facility and even per bay varies within the 

City of Bismarck. A few of the car washes were recently built and are just beginning to establish 

a customer base, among them include Car Wash #17 and Car Wash #18. From 2014 to 2015 two 

more car wash bays were added to the data set, but added little water use due to timing of 

development. However, car wash as a sub-category still increased water use; as well as, average 

water use per bay. In 2014, the total average water used per bay annually was 1,639 HCF, with  

ID Number 

Number of 

Car Wash 

Bays 

2014 Total 

Annual 

Water Use 

2014 

Average 

Annual 

Water 

Use/Bay 

2015 Total 

Annual 

Water Use 

2015 

Average 

Annual 

Water 

Use/Bay 

Car Wash #1 1 736 736 5,494 5,494 

Car Wash #2 1 1,268 1,268 1,215 1,215 

Car Wash #3 1 254 254 137 137 

Car Wash #4 1 7,470 7,470 7,585 7,585 

Car Wash #5 5 1,157 231 4,211 842 

Car Wash #6 1 7,701 1,446 1,5450 1,348 

Car Wash #7 1 1,496 1,496 4,133 4,133 

Car Wash #8 3 6,618 2,206 6,225 2,075 

Car Wash #9 1 3,600 3,600 3,758 3,758 

Car Wash #10 1 2,036 2,036 1,859 1,859 

Car Wash #11 1 43 43 54 54 

Car Wash #12 1 2,696 2,696 2,848 2,848 

Car Wash #13 2 2,011 1,006 2,059 1,030 

Car Wash #14 1 3,335 3,335 3,115 3,115 

Car Wash #15 1 1,047 1,047 1,246 1,246 

Car Wash #16 1 4,813 3,766 1,398 1,245 

Car Wash #17 1 17 17 2,419 1,983 

Car Wash #18 2 - - 1 1 
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a total of 24 car wash bays in service. In 2015, the total average water used per bay was 1,896 

HCF, as the total annual water use was 49,302 HCF and the number of car wash bays increased 

to 26. In comparison to residential water use, condominium and apartment water use closely 

resemble water used per car wash bay annually. 

A study done by Brown (2002) for the International Carwash Association examined three 

types of car washes in three regions of the United States. Gallons of water used per vehicle 

depended on type of wash for the in-bay car wash and varied between car washes due to owner 

preference on equipment set up (i.e. nozzle attachments, number of nozzles, etc.). At one car 

wash in Phoenix, Arizona the gallons per vehicle was 111.5 and during the one week observation 

period about 178 vehicles were washed (Brown 2002). These numbers were adjusted to annual 

water use in HCF to compare to Bismarck. To get monthly gallons used per bay, 178 vehicles a 

week was multiplied by four weeks in a month equaling 712 vehicles. Additionally, multiply by 

111.5 gallons per vehicle equals 79,388 gallons a month/bay. Multiplying by 12 months equals 

952,656 gallons/car wash bay/year. Divide by 748 gallons equals 1,274 HCF of water used/car 

wash bay. In comparison to Bismarck, North Dakota with a total average water use of 1,639 

HCF per car wash bay in 2014 and 1,896 HCF in 2015 both findings are similar but higher than 

the water use per car wash bay as found by Brown (2002). 

 Average annual water use per hotel room for Bismarck, North Dakota in 2014 and 2015 

are presented in Table 1.11. Average water use per hotel room was determined by dividing total 

annual water use for each hotel by the hotel’s number of rooms. Water use in hotels with pools 

were segregated from hotels without pools. As hotel characteristics such as property size, 

amenities, and occupancy rates were found to determine the amount of water a hotel would use 

(Scanlon 2007). In both years (2014 and 2015), the highest average water use per hotel room 
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belonged to hotels without pools. However, the overall average for water use per room for hotels 

without pools fell below the average of hotels with pools in both years.  

In 2014, hotels without pools had an average of 32 HCF of water use per hotel room, 

while water use per room at hotels with pools used on average 52 HCF. The following year 

(2015) the trend was similar in that hotels without pools had an average 37 HCF water use per 

room and hotels with pools had an average of 49 HCF per room. The smaller difference in 

overall average water use per room between the two hotels in 2015 can be tied to the 

development of a new hotel with a pool that wasn’t present in 2014, but was still being 

established in 2015. Although differences in hotel characteristics make it difficult to compare 

water usage (Scanlon 2007) the numbers give a strong indicator of trends in water use for hotels 

with and without pools.  

In the city of Santa Fe, New Mexico water use trends were similar between hotels 

without pools and hotels with pools. For instance, hotels without pools used on average 57 HCF 

of water per room while hotels with pools used 139 HCF of water on average per room (CoSF 

2001). Although the evident increase in average water use per hotel room due to climatic 

differences (Scanlon 2007) between Santa Fe and Bismarck, the trends between both types of 

hotel are similar and can be related back to hotel characteristics such as property size, occupancy 

rate, and amenities.  
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Table 1.11  

 

Annual average water use per hotel room for 2014 and 2015 in hundred cubic feet (HCF).  

 

ID Number 2014 Water use/Room 2015 Water use/Room Difference 

Hotel/Pool #1 35 42 +7 

Hotel/Pool #2 70 64 -6 

Hotel/Pool #3 63 57 -6 

Hotel/Pool #4 44 34 -10 

Hotel/Pool #5 69 71 +2 

Hotel/Pool #6 42 37 -5 

Hotel/Pool #7 65 54 -11 

Hotel/Pool #8 48 47 -1 

Hotel/Pool #9 85 52 -34 

Hotel/Pool #10 45 42 -3 

Hotel/Pool #11 5 50 +44 

Hotel/Pool #12 48 57 +8 

Hotel/Pool #13 43 48 +5 

Hotel/Pool #14 63 52 -11 

Hotel/Pool #15 29 30 +1 

Hotel/Pool #16 61 65 +4 

Hotel/Pool #17 31 24 -7 

Hotel/Pool #18 55 40 -15 

Hotel/Pool #19 43 38 -5 

Hotel/Pool #20 52 57 +5 

Hotel/Pool #21 18 24 +6 

Hotel/Pool #22 46 48 +2 

Hotel/Pool #23 75 73 -2 

Hotel/Pool #24 * 15 +15 

Hotel #1 104 65 -39 

Hotel #2 33 35 +2 

Hotel #3 54 34 -21 

Hotel #4 36 39 +3 

Hotel #5 39 80 +42 

Hotel #6 20 25 +5 

Hotel #7 29 31 +2 

Hotel #8 9 34 +25 

Hotel #9 26 25 -1 

* = Not established in 2014. Note - Hotels with pools were distinguished from hotels without 

pools. 
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Annual average water use per patient bed for hospitals and nursing homes in Bismarck 

are presented in Table 1.12 for 2014 and 2015. Overall, the total annual average water use per 

hospital bed for both hospitals in 2014 was 85 HCF and 98 HCF in 2015. Between the two years 

the biggest change in water use was an increase of 17 HCF per hospital bed for Hospital #1, 

almost twice the amount of increase for Hospital #2 (Table 1.12).  

Table 1.12  

 

Annual average water use per bed in hospitals and nursing homes in Bismarck, North Dakota for 

2014 and 2015 presented in hundred cubic feet (HCF).  

 

ID Number 2014 Water use/Bed 2015 Water use/Bed Difference 

Hospital #1 64 80 +16 

Hospital #2 107 116 +9 

Nursing Home #1 65 60 -5 

Nursing Home #2 24 31 +7 

Nursing Home #3 63 46 -16 

Nursing Home #4 56 62 +6 

Nursing Home #5 48 49 +1 

 

Both hospitals in Bismarck are considered large hospitals, meaning they have more than 

200,000 square feet (ft2) (USEIA 2012). According to the 2007 Commercial Buildings Energy 

Consumption Survey (CBECS), hospitals that have a building floor space of 200,001 to 500,000 

ft2 consume on average 158 HCF of water per bed (CBECS 2007). In the case of Bismarck’s 

hospitals, both fall below this average with Hospital #1 using 64 HCF per bed in 2014 and 80 

HCF in 2015 and Hospital #2 using 107 HCF and 116 HCF per bed in 2014 and 2015, 

respectively. Even though Hospital #1 has a floor space of 494,265 ft2 and Hospital #2 has a 

square footage of 575,000 ft2. For Hospital #2, the typical average water use per bed for hospitals 

with a building floor space of 500,001 to 1,000,000 ft2 was 199 HCF (CBECS 2007). Overall, 

hospitals located in the Midwest were found to average 204 HCF of water use per bed (CBECS 

2007), in which both hospitals in Bismarck fall short of this regional average.  
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The overall annual average of water use per bed for nursing homes in Bismarck was 51 

HCF in 2014 and decreased to 50 HCF per bed in 2015 (Table 1.12). The greatest change in 

water use between the two years was for Nursing Home #3 with a decrease in water use per bed 

of 16 HCF, double the change of any other nursing home in Bismarck. The highest water use per 

bed for a nursing home varied between the years but the nursing home with the lowest water use 

per bed stayed the same. Nursing Home #2 had the lowest water use, even though they had the 

second highest number of beds (140).  

A benchmark for efficient water use in nursing homes was established for the City of 

Boulder, Colorado at 49 HCF of water use per bed (CoB 2007). The benchmark was established 

by the Brendle Group, who conducted a water use benchmark study for the City of Boulder 

Colorado for high water users in the commercial, industrial, and institutional water-use 

categories. The benchmark was calculated based on indoor water use of nursing homes during 

the winter months (December to April) and was extrapolated to twelve months of water use. For 

2014, only two out of the five (40%) nursing homes in Bismarck fell below the Colorado 

benchmark of 49 HCF, with 24 HCF and 48 HCF of water use per bed. In 2015, three out of the 

five (60%) nursing homes met or fell below the benchmark with 31 HCF, 46 HCF, and 49 HCF 

of water use per bed. The total annual average water use per bed for nursing homes in Bismarck 

were 51 HCF in 2014 and 50 HCF in 2015, both of which fall above the Colorado benchmark. 

Although Bismarck’s total annual average of water use per bed for nursing homes fell above or 

close to the benchmark set for the state of Colorado, the water-use data provided in Table 12 may 

also include outdoor water use depending on the nursing home; whereas, the benchmark only 

considers indoor water use. Utilization of such benchmarks would further aid assessments of 
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performance in water use conservation practices within the state of North Dakota and provide 

information on areas of improvement. 

Seasonal/Monthly Water Use 

Seasonal water use within the City of Bismarck, along with seasonal water use for 

residential and commercial categories are displayed in Figure 1.1. Seasonal water use for the 

City of Bismarck contains both residential and commercial water use; as a summation of 

averaged water used per category for 2014 and 2015. For each main category of water use (i.e. 

residential and commercial), seasonal water usage for winter is comprised of December, January, 

and February water use; spring of March, April, and May; summer of June, July, and August; 

and fall of September, October and November. Proportions of water used in the different seasons 

are relatively similar across residential and commercial categories and are represented in the 

seasonal use for the City of Bismarck. To further disseminate seasonal water use, monthly water 

usage for residential and commercial use were determined for 2014 and 2015. 
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Monthly residential water use for Bismarck is listed in Table 1.13 and illustrated in 

Figure 1.2. Total water use per account was added up for the month and divided by number of 

accounts present in that month. Average monthly water usage within the residential category 

shows increased water use per account in late spring to late summer. Water use then starts to 

decrease after August and into November and December and then stays low until late spring.  

Table 1.13  

 

Average monthly residential water use in hundred cubic feet (HCF) for 2014 and 2015. 

 

Year Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec. 

2014 9 8 8 8 9 16 18 23 15 13 9 8 

2015 9 8 7 9 12 13 17 25 23 13 8 8 

Figure 1.1. Percent seasonal water use for the City of Bismarck and for residential 

and commercial water use categories. 
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A study done by Cole and Stewart (2013) discovered temperature and rainfall are the 

most influential factors causing fluctuations in residential water use and such influences are 

heightened when both factors reinforce one another. For instance, when temperatures are high 

and rainfall is low outdoor water use will increase or when temperatures are low and rainfall is 

high it is expected that outdoor water use will decrease (Cole and Stewart 2013). Therefore, it is 

expected that water use would be higher during the summer months as this is when residents’ use 

water to irrigate landscape, use water through outdoor hose bibs, fill or backwash swimming 

pools, and wash cars and pavement (DeOreo et al. 2016). Mini et al. (2014) found on average, 

landscape irrigation makes up 54% of total annual single-family water use in Los Angeles, 

California. But this number varies depending on annual weather patterns and climate. As areas 

with arid climates have an outdoor water use percentage of 59-67%, while areas with cool/rainy 
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Figure 1.2. Average monthly residential water use in hundred cubic feet (HCF). 
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climates have 22-38% outdoor water use (Mayer et al. 1999). The data from the City of 

Bismarck, when averaged for 2014 and 2015, shows that 67% of residential water used in the 

city is used between May-October, and the remaining 33% is used between November-April.   

Within the residential category outdoor and indoor water use depends on factors such as 

owner occupied dwellings, income, household swimming pools, number of residents, family 

structure (single-family, multi-family, etc.), household location, lot size, and age of water using 

devices (ARCWIS 2002, Mayer et al. 1999). However, it was found that location of household, 

lot size, rain water tank ownership, household income, and household makeup (number of 

residents and family structure) were the most influential (Willis et al. 2013). Indoor water use is 

also affected by seasonal changes, more specifically shower water use. During winter months, 

shower times are typically longer, while in the summer months showers occur more frequently 

(Rathnayaka et al. 2015).  

Monthly commercial water use is listed in Table 1.14 and is displayed in Figure 1.3. 

Monthly commercial water use was calculated through summing total monthly water use per 

account and dividing by the number of accounts, similar to the monthly residential water usage 

above. Also, similarly to residential water use, commercial water use increases in early spring 

but drops off after August and September and steadily decreases into December. 

Table 1.14  

 

Average monthly commercial water use in hundred cubic feet (HCF) for 2014 and 2015. 

Year Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec. 

2014 37 38 39 38 43 56 78 87 66 64 42 33 

2015 41 37 36 40 53 57 68 96 90 67 42 39 



 

40 

 

Overall, water use increases considerably during the summer months due to higher 

temperatures and increased water use for cooling, irrigation, and dust control purposes, among 

other outdoor activities (Dziegielewski et al. 2000). The high water use in summer months is 

followed by a subsequent decrease in water use due to lower temperatures and a drop in outdoor 

irrigation and indoor cooling coinciding with macroclimate. Dziegielewski et al. (2000) 

discovered that 25% of commercial water use in Southern California is seasonal water use. The 

direct nature of a business venture also directs the amount of seasonal variation observed in total 

annual water use by the commercial category. As Dziegielewski et al. (2000) found that sports 

clubs, which run on seasonal business cycles, utilize 72.4% of their water use during the summer 

months. 

Figure 1.3. Average monthly commercial water use in hundred cubic feet (HCF). 
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Conclusions 

From 2014 to 2015 Bismarck’s total water usage increased across both categories of 

residential and commercial water use. The water use difference between the two years amounts 

to 406,808 HCF or 304,292,384 gallons of water. Residential water use increased more than 

commercial water use by 155,240 HCF; as residential increased water usage from 2014 to 2015 

by 281,024 HCF and commercial increased by 125,784 HCF. This would indicate that the 

population of Bismarck grew between the two years, but the commercial sector water use did not 

increase as much as the residential water use.  

Growth, as observed in recent years (2015 and prior), in this part of the state may be 

linked to energy development and oil extraction but could also be from normal city growth. Even 

more, the observed increases in water use between 2014 and 2015 may be linked to a dry 

weather pattern and an increase in air temperature. The annual rainfall for Bismarck in 2014 was 

14.10 inches, while in 2015 the annual rainfall was 15.37 inches (NDAWN 2014; NDAWN 

2015). Rainfall in both years fell below the normal total rainfall of 17.97 inches (NDAWN 

2014). Furthermore, the area has experienced an increase in average monthly air temperature in 

2015 from averages experienced in 2014 (NDAWN 2014; NDAWN 2015). The decrease in 

rainfall from the annual average and an increase in monthly air temperatures in 2015 may 

attribute to the observed rise in water use for both categories.   

Within the residential water use category, single family homes had the largest water use 

increase and is by far the category that uses the most water. The number of single family 

dwellings increased by 485 units from 2014, resulting in 19,039 homes in 2015. The total 

number of single family homes increased water usage by 228,135 HCF since 2014 with total 

water use amounting to 1,949,294 HCF in 2015. The second largest category of water use was 
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apartment with a total water use of 319,851 HCF in 2014 and 352,391 HCF in 2015. Although, 

the number of apartment units increased by 761 units, the total water usage by apartment only 

increased by 32,540 HCF. Further increases in water usage to match the increase in apartments 

may still happen.  

Within the commercial water use category, lawn meters had the largest change in water 

usage with an increase of 28,464 HCF. Lawn meters had the largest increase with 48,830 HCF in 

2014, and increasing by 28,464 HCF in 2015 to 77,294 HCF. Other commercial water users had 

changes in total water usage less than 10,000 HCF.           

Overall, water use in Bismarck increased across both the residential and commercial 

categories. Water use also increased within most sub-categories within residential and 

commercial. As in many areas around the United States water use in both the commercial and 

residential categories was highest in the summer as this is the time when water is used most 

frequently to water lawns and gardens, fill swimming pools, and wash cars. It is important to 

understand these trends long term to make accurate water projections of the water that will be 

required to sustain a municipality.     

The City of Bismarck proved to be an excellent municipality to use as a pilot project of 

water use information and categories within the state of North Dakota. In this pilot project we 

were able to obtain all billings from the City of Bismarck for two years. The City of Bismarck 

informed us that prior to 2014 this type of data would not be available because of limitations in 

data recordings. The City of Bismarck agreed to do the pilot study as they were interested in the 

results of the research.  

Future research into water use should be flexible in the type of data that is collected. 

Potential ideas to make future water use research easier include: determine what type of data is 
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available on average from municipalities across the state, collect only certain categories and/or 

sub-categories of water-use data, and know that research prior to the most recent 5-10 years may 

not be available. 
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CHAPTER 2. DUST IMPACTS ON SOYBEANS 

Abstract 

Road dust is a common by-product of transportation and it is important to understand the 

impact of road dust on crop production. Therefore, dust was applied to soybean plants to 

determine if soybean (Glycine max) production (i.e. chlorophyll content, leaf temperature, and 

yield) and seed quality (i.e. seed composition), were altered by dust. In the 2015 and 2016 

growing season Roundup Ready soybeans with indeterminate growth were planted using a 

randomized block design with eight replicates. Dust was applied weekly to soybean treatment 

areas at designated rates of 0, 15.8, 78.8, 158 g/m2, in 2015 and 0, 15.8, 78.8, 158, 2×158, and 

315 g/m2 in 2016. The 2×158 g/m2 treatment is 158 g/m2 applied twice a week. Leaf temperature 

and chlorophyll content of all treatments were taken prior to dust application at the V4, R1, R3, 

and R6 growth stages. Soybeans were harvested at the R8 growth stage and yield and seed 

composition data were determined. Results of dust treatments on soybean production and seed 

quality found no significant differences for leaf temperature and chlorophyll content among 

treatments (p > 0.05). Also, no significant differences were found among treatments in yield, 

yield components, and seed composition in either year (p > 0.05). Therefore, results of the study 

indicate that weekly and bi-weekly applications of dust has little if any impact on soybean 

production and seed quality. 

Introduction 

Agriculture is a major land use worldwide and in the United States, with agricultural 

fields covering approximately 51% of the land base (Nickerson et al. 2011). Considering 

unpaved roads surround many of these fields, increased traffic during the growing season can 

intensify dust deposition on nearby vegetation (Everett 1980; Creuzer et al. 2016; U.S. DOT 
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2016). Although unpaved roads have been around for decades, an increase in demand for food 

production worldwide has turned traditional smallholder production into a more mechanized, 

large-scale commercial approach (Chapoto et al. 2013), such an approach increases the number 

of trucks and traffic traveling on these unpaved roads, contributing and increasing the overall 

dust particles in the air and potentially impacting crop growth, physiology, and production. 

Research efforts on dust have focused on vegetative impacts by non-inert dust and inert 

dust. Different types of non-inert dust include industrial dusts such as fly ash (Raja et al. 2014), 

cement (Anda 1986, Bačić et al. 1999, Borka 1980, Shukla et al. 1990), and ceramic (Ali et al. 

2003). The few studies that assessed non-inert dust effects on crops studied rice (Oryza sativa) 

(Raja et al. 2014), olive trees (Olea europaea L.) (Nanos et al. 2007), sunflower (Helianthus 

annuus) (Borka 1980), soybean and corn (Zea mays L.) (Mishra et al. 1986), and soybean and 

rosemary (Rosmarinus officinalis L.) (Ali et al. 2003). The two studies that looked at soybeans 

were both in conjunction with ceramic or fly ash dust presence in the soil (Ali et al. 2003; Mishra 

et al. 1986) and not on the plants themselves. These studies found vegetation to be negatively 

impacted by these types of dusts; specifically through stomatal conductance, leaf temperature, 

chlorophyll content, growth and yield.  

Studies that have focused on ambient dust have examined its impacts on crops such as 

cotton (Gossypium hirsutum L.) (Zia-Khan et al. 2015), grape (Vitis vinifera L.) (Leghari et al. 

2014), wheat (Triticum aestivum L.) and garden pea (Pisum sativum L.) (Jwan Khidhr Rahman 

2015), and cucumber (Cucumis sativus L.) and kidney bean (Phaseolus vulgaris L.) (Hirano 

1995). Cotton was found to have increased leaf temperature on dusted leaves and an increase in 

number of blocked stomata (Zia-Khan et al. 2015). The same results were discovered in 

cucumber and kidney bean which also, increased transpiration rates and altered the 
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photosynthetic rate corresponding to its response curve with leaf temperature (Hirano et al. 

1995). While reduced chlorophyll content was found in grape and in wheat and garden pea 

(Leghari et al. 2014; Jwan Khidhr Rahman 2015), along with a decrease in carbohydrate content 

for both wheat and garden pea but an increase in proline content (Jwan Khidhr Rahman 2015). 

As impacts of ambient dust are apparent on some crops, information on soybeans and whether or 

not these affects apply is lacking. Additionally, it is unknown if these impacts would still occur if 

these crops were placed in field settings since most of these studies were conducted indoors. 

Experimentation in the field would provide information on how road dust impacts soybeans in a 

natural environment that includes uncontrollable variables such as weather and soil variability, 

two such variables that agricultural growers experience throughout the growing season. 

Furthermore, as many studies have examined dust impacts on stomatal conductance, and 

photosynthesis, understanding how dust impacts overall yield along with seed quality, are crucial 

in food production systems. 

Soybeans are a highly utilized crop and are incorporated into food products (i.e. 

vegetable oil, margarine, edamame), animal feed (i.e. soybean meal), and industrial applications 

(i.e. inks, paints, biodiesel fuel, and hydraulic fluids) (Smith 1996; Liu 1996). The quality of 

soybeans and their derivatives are important, as soybeans are in great demand due to their high 

protein, oil, and dietary fiber content, along with containing a multitude of vitamins and minerals 

(Lokuruka 2011). However, it is possible that these factors may be altered due to extenuating 

circumstances in the field, such as road dust. A case in point includes soybeans in situ exposed to 

varying levels of pH in acid rain which experienced corresponding reductions in protein and 

carbohydrate content (Evans et al. 1981). Yet, to date, no studies have analyzed seed 

composition of soybeans impacted by road dust and what that would mean for soybean yield.  
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The objectives of this study were to: (1) determine if applied road dust influences 

soybean physiology, specifically leaf temperature and chlorophyll content; and (2) determine if 

applied road dust impacts soybean production, specifically yield quantity and quality (i.e., seed 

protein, oil composition, and amino acids). 

Literature Review 

Vegetation plays a crucial role in sustaining human life, specifically through generation 

of oxygen for human consumption, food production, and environmental services. Plant 

production and the services provided by plants are highly influenced by the surrounding 

environment (Power 2010); and dust has been found to be a large supplier of air pollution, 

contributing almost 725,748 metric tons of dust into the air annually (NEI 2014). Vegetation in 

its natural environment is surrounded by large amounts of dust and it is necessary to determine 

how such dusts effect vegetation and how much dust is needed to create these effects.  

Dust Characteristics 

The impact and intensity of the effect of dust on vegetation heavily relies on the 

characteristics of the dust. Dust characteristics that influence its effect or harmfulness to plants 

include particle size, deposition rates, and chemical composition (van Jaarsveld 2008; 

Chaturvedi et al. 2013). Size of dust particulates is one factor of concern in how much dust is 

deposited and how it impacts vegetative processes. Based on human health research, particulate 

matter (i.e. dust) with aerodynamic diameters less than or equal to 10 micrometers (µm) (PM10) 

were found to have significant effects (U.S. EPA 2014). However, in vegetative health research, 

airborne particulates with diameters of 0.01 to 100 µm, depending on the type of dust, were 

shown to influence plant physiological processes (Farmer 1993). Contributors of these different 

types of dust are either natural causes or by anthropogenic activities. Anthropogenic activities 
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that contribute to airborne dust include industrial processes, roads, transportation, agriculture, 

prescribed burning, and construction, among others (U.S. EPA 2014).  

Dust deposition rates also plays a part in the intensity of impacts on plant processes, and 

dust deposition can be influenced by a number of factors. The amount of dust deposited on 

vegetation relies on the plant’s distance from the dust source (Cruezer et al. 2016, Farmer 1993), 

as well as the size of the dust particle (Everett 1980, Tamm and Troedsson 1955, Rao 1971). 

Wind speed, surface roughness, and whether surfaces are wet or dry, are a few other factors that 

also influence dust deposition rates (Farmer 1993). Even though the amount of dust on leaf 

surfaces is a crucial component when considering dust impacts on vegetation, such impacts are 

also influenced by the type of dust deposited and its chemical composition. 

Chemical composition of dust differs between types of dust. Chemical components of 

dust can either be non-inert or inert. Non-inert dusts may be chemically active with various 

combinations of metals (Cawse et al. 1989, Santelmann and Gorham 1988), alkalinity (Arslan 

and Boybay 1990), and salinity (Everett 1980). However, some of these chemical attributes can 

be seen in inert dusts. In agriculture, inert dusts are classified into four different categories based 

on composition and particle size (Golob 1997). The four groups of inert dusts are non-silica 

dusts, coarse grain silicates, diatomaceous earths, and silica aerogels (Golob 1997). An example 

of a non-silica dust is limestone (Golob 1997), limestone is high in carbonates and can attribute 

to an increase in alkalinity (Kheshgi 1995). Limestone can also be found in different types of 

cements, which are non-inert dusts (Abu-Romman and Alzubi 2015). However, the difference 

between non-inert dust and inert dust is that inert dust primarily causes effects through physical 

means such as hindering the absorption of light energy through a layer of dust on leaf surfaces 

(Loppi and Pirintsos 2000), whereas, non-inert dust with chemical compositions directly impact 
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plant metabolic processes (Golob 1997). A study done by Manning (1971) discovered limestone 

(i.e. a combination of lime, slaked lime, and fly ash) dusted leaves of wild grape (Vitis vulpina 

L.) and sassafras (Sassafras albidum) were darker in color than non-dusted leaves but were all 

comparable in size. The darker colored leaves were believed to be beneficial but dusted leaves 

also experienced an increase in leaf spot disease as it promoted a suitable habitat for fungi at 

moderate dust levels (Manning 1971). Furthermore, inert dusts may become chemically active 

under certain conditions (Golob 1997). Chemical elements found in dust mostly occur as small 

particulates and are likely to form a large percentage of the small fractions portion of dust 

(Milford and Davidson 1985, Farmer 1993). For vegetative health, this means the impacts of the 

elemental portion of dust are felt by vegetation at longer distances from the point source (Everett 

1980).  

History of Research on Vegetative Impacts by Dust 

The impacts of dust on vegetation are variable and have the potential to be harmful.  

Reviewing past and present research, in regards to dust impacts on vegetation, will be helpful to 

gauge what is known about dust impacts on vegetation and where further research is needed. The 

study of dusts and their impacts on vegetation have been under investigation since the early 

twentieth century. Early on most research was guided towards impacts of non-inert dust 

including industrial particulates of coal (Raja et al. 2014), cement (Borka 1980; Anda 1986; 

Shukla et al. 1990; Bačić et al. 1999), and ceramic dust (Ali et al. 2003). Jameson and Schiel 

(1972) even looked at gypsum dust and how it impacted trees near a gypsum processing plant. 

Even though gypsum is a known beneficial soil amendment (Miller 1990), when deposited on 

leaf surfaces they found that trees within a half mile of the plant showed more impacts as a result 

of higher amounts of dust deposition. The reflectance due to the gypsum dust on the vegetation 
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was increased because of the higher amounts and hindered photosynthesis. Growth rate was also 

impeded and it was evident in tree core samples (Jameson and Schiel 1972). More recent studies 

have focused on natural causes of dust, specifically dust associated with arid climates (Zia-Khan 

et al. 2015) and volcanic ash/soot (Hirano et al. 1995), both of which are typically inert dusts.  

Dust Impacts on Vegetation 

The impacts of dust on vegetation typically cause either a physical or chemical effect on 

the plant and are based on the properties of the dust. Physical effects of dust on vegetation 

include shading, plugging of the stomata, decreased growth, increased temperature of leaves and 

canopy cover (Farmer 1993; Hirano et al. 1995). Furthermore, Shukla et al. (1990) discussed the 

impediment of pollen germination due to cement dust coating the stigmas and this hindrance 

decreased yield of field mustard (Brassica campestris L.). The study also noted a decline in leaf 

area, number of pods and seeds per pod. With these physical effects also came chemical effects 

which included negative impacts on photosynthesis, transpiration, oil content and synthesis of 

chlorophyll (Shukla et al. 1990).  

Non-inert Dust Vegetative Impacts 

 In examining the impacts of non-inert dusts on vegetation, impacts of such dusts were 

seen on both structural components and structural composition. Dusts with heavy metals, such as 

nickel, cobalt, and lead, were shown to bio-accumulate in roadside vegetation (Brumbaugh et al. 

2011; Baby et al. 2008) and increase pH (Chauhan et al. 2010); while dusts with soluble salts 

increased alkalinity of soybean and corn at high deposition rates (Mishra et al. 1986). Cement 

dust induced oxidative stress in Mouseear cress (Arabidopsis thaliana) and enhanced protease 

activity, but decreased total protein content and chlorophyll (Abu-Romman and Alzubi 2015). 

Furthermore, cement dust was found to reduce vitamin content in Lago Spinach (Celosia 
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argentea) (Ade-Ademilua and Obalola 2016), increase leaf temperature, evapotranspiration, and 

decrease fertilization and yield in corn (Anda 1986). Cement dust also plugged stomatal 

openings, and altered the appearance of surface wax on needles in Aleppo Pine (Pinus 

halepensis) (Bačić et al. 1999), and overtime decreased plant growth, respiration rate, and 

catalase activity in sunflower (Helianthus annuus) (Borka 1980). However, in some instances 

non-inert dusts have been shown to improve or not effect plant processes or structures. In the 

case of fly ash, it was shown to increase plant soybean and corn growth, metabolic rate, and 

chlorophyll content by counteracting a boron deficiency at lower deposition rates (Mishra et al. 

1986). Moreover, ceramic dust in clay soils increased soybean and rosemary growth and yield at 

lower rates of occurrence (Ali et al. 2003).  

Inert Dust Vegetative Impacts 

Negative impacts of inert dust have been observed in physical structures of plants. Plant 

physical structures effected by dust include leaves, stomata, and stems. Deposition of inert dust 

on plant leaves acted as a blanket on leaf surfaces which block stomatal openings and increase 

leaf temperature (Zia-Khan et al. 2015). As a result of blocked stomatal openings and increased 

leaf temperature, research has shown that transpiration rates increase and decrease plant water 

use efficiency, leaf chlorophyll content, and photosynthetic rate decreased (Hirano et al. 1995, 

Sharifi et al. 1997, Prusty et al. 2005, Jwan Khidhr Rahman 2015). Furthermore, particulate 

deposits without harmful materials have been shown to decrease plant growth in cotton 

(Gossypium hirsutum L.), but were determined to not be a major problem for cotton production 

due to naturally low deposition rates (1.5 µg/m2/day) and high removal of particulates by wind 

and rain (Armbrust 1986). Another study by Chaturvedi et al. (2013) found teak (Tectona 

grandis) to have higher dust loads of inert dust due to its rough and hairy leaf texture, along with 
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a greater leaf area, compared to the relatively smooth leaf textures of the other three studied tree 

species (Anthocephalus cadamba, Syzygium cumini, and Madhuca indica). Declines in 

chlorophyll content, leaf area, photosynthetic rate, and intrinsic water-use efficiency were also 

the greatest in T. grandis and was determined to be more sensitive to dust (Chaturvedi et al. 

2013). Based on research to date we understand that dusts, whether inert or non-inert, are likely 

to impact all vegetative types. However, it is still unclear how these different dusts impact 

different plants types and specific species under certain environmental conditions and at different 

deposition rates.  

Road Dust Vegetative Impacts 

Although most air pollution research focuses mainly on human health, the impacts of dust 

on vegetation, namely agricultural crops, is a cause for concern in achieving an economic food 

crop that will sustain future generations (Greening 2011). Not all vegetation and ecoregions have 

to deal with arid climates and volcanoes; however many terrestrial areas on the planet deal with 

dust deposition caused by unpaved roads. Fine particulate matter or dust is known to be directly 

connected to the quantity of dust emitted by unpaved roads (Sanders et al. 1997). In a study done 

by Creuzer et al. (2016) dust deposition between highly trafficked and low trafficked unpaved 

roads was most significant within 40 meters adjacent to the road. As most agricultural fields are 

surrounded by unpaved roads, the traffic-generated dust that lands on roadside vegetation and 

nearby crops are thought to have negative impacts (Greening 2011).  

In a study by Thompson et al. (1984) researchers went beyond road dust and studied 

motor vehicle exhaust dust. They found that exhaust dust with a particle size of 1-10 µm can 

reduce photosynthesis on upper leaf surfaces and impede diffusion on the lower leaf surfaces if 

the observed leaf surface held 5-10 grams of dust per meter squared (g/m2). However, the 
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maximum load of exhaust dust seen on leaves of shrubs on the roadside of the motorway was 

about 2g/m2 (Thompson et al. 1984). Meaning that the impact on photosynthesis through shading 

or hindrance of diffusion are likely to be minimal.  

Of current research only a handful of studies address the impacts of gravel road dust on 

crops. Gravel road dust impacts have been evaluated on grape (Leghari et al. 2014), cotton (Zia-

Khan et al. 2015), wheat and garden pea (Jwan Khidhr Rahman 2015), and on cucumber and 

kidney bean (Hirano et al. 1995).  Overall, road dust has reduced plant growth in grape (Leghari 

et al. 2014), blocked stomatal openings and increased leaf temperature in cucumber and kidney 

bean (Hirano et al. 1995), reduced chlorophyll and carbohydrate content in wheat and garden pea 

(Jwan Khidhr Rahman 2015), and decrease yield in cotton (Zia-Khan et al. 2015). However, 

there has typically been only one study addressing road dust and a particular species, and only 

certain species have been evaluated.  

Impacts on Crop Physiology 

Influences on plant physiology by gravel road dust have been shown to impact major 

plant structural components. Structural components that have been impacted in vegetation 

include leaves, stomatal openings, and shoots or stems. Number of leaves and leaf area have 

been found to decrease due to dust deposition (Jwan Khidhr Rahman 2015) along with a 

decrease in total plant biomass in cotton (Zia-Khan 2015). Leghari et al. (2014) found a negative 

correlation between the amounts of dust accumulated and plant growth parameters such as plant 

length, plant cover, and number of leaves. In general as the amount of dust increased on grape 

plant growth decreased (Leghari et al. 2014). Plant height, shoot, pod, and seed length are other 

physiological structures that have been found to be negatively influenced by dust (Leghari et al. 

2014; Jwan Khidhr Rahman 2015; Zia-Khan et al. 2015). Dust accumulations on leaf surfaces 
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have also been found to increase leaf temperatures and decrease total chlorophyll content 

(Hirano et al. 1995; Zia-Khan et al. 2015), both of which factor into a plant’s photosynthetic rate.  

Impacts on Crop Processes 

Plant processes that have been impacted by dust include transpiration, photosynthesis, 

and respiration. Zia-Khan et al. (2015) found a 30% decrease in stomatal conductance of cotton 

with dust treatment in comparison to the control. The dust treatment included the application of 

100 g/m2 of dust every ten days while the control group received no application of dust and no 

cleaning of leaves. Further implications of the findings are attributed to blocking of the stomata 

on the upper leaf surface and increased canopy temperature of dust-applied leaves by 2-4˚C 

compared to the control (Zia-Khan et al. 2015), both of which increase the rate of transpiration 

(Hirano et al. 1995). Differences in transpiration rates between dusted plants and non-dusted 

plants increased as air temperature increased (Hirano et al. 1995). 

Leaf temperature is known to be directly related to photosynthetic rate through a response 

curve in which dust shifts the response curve to the left (Hirano et al. 1995). Where, an increase 

in leaf temperature corresponds to an increase in photosynthetic rate at a lower air temperature, 

but will decrease photosynthetic rate at a higher air temperature (Hirano et al. 1995). Moreover, 

as leaf temperature rises enzymes that catalyze the light independent reaction of photosynthesis 

are denatured as the optimum temperature range is surpassed, decreasing the photosynthetic rate 

(Eller 1977). Therefore, as photosynthetic rate decreases so does plant respiration. Other limiting 

factors for photosynthesis besides temperature include carbon dioxide concentration and light 

intensity. 

Light intensity at the leaf surface can be hindered by dust and can cause the plant not to 

reach the light saturation point needed for optimum photosynthetic rate (Gaastra 1959; Hirano et 
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al. 1995). Additionally, chlorophyll is required to capture light energy to be used in 

photosynthesis, but a reduction in chlorophyll content can further limit the plant’s ability to reach 

an optimum photosynthetic rate (Evans 1989). A dusted leaf surface can increase leaf 

temperature and cause a shading effect that can hinder or degrade chlorophyll synthesis (Shukla 

et al. 1990; Mark 1963) and decrease a leaf’s total chlorophyll content (Abu-Romman and 

Alzubi 2015; Singh and Rao 1981). Chlorophyll content has been shown to decrease in response 

to road dust in crops such as grape (Leghari et al. 2014), cotton (Zia-Khan et al. 2015), wheat 

and garden peas (Jwan Khidhr Rahman 2015). Pollutants have also been shown to decrease 

production of chlorophyll and further its degradation (Chauhan et al. 2010; Sandelius et al. 

1995), and chlorophyll content has been highly utilized as a qualitative measurement for 

vegetative health in plant research (Chauhan et al. 2010; Pawar and Dubey 1985; Gilbert 1968). 

Vegetative health is highly influenced by plant surroundings, and the environmental 

stress which a plant experiences has the ability to alter the functional capacity of plant processes. 

These plant processes are vital to overall vegetative health and give a plant the ability to produce 

fruit and seed as a means of reproduction. In terms of food production, the quality and quantity 

of such fruits and seeds are paramount in achieving a sustainable yield for human consumption.  

Impacts on Crop Production (nutrient content/yield) 

The importance of plant production is highlighted in terms of yield and yield 

composition, and it is important to understand how these factors are impacted by dust. Nutrient 

content of plants have been shown to decline in some crops due to dust deposition on leaf 

surfaces (Jwan Khidhr Rahman 2015). In wheat, total carbohydrate, total chlorophyll, and water 

content were decreased while proline content increased on dusted treatments (Jwan Khidhr 

Rahman 2015). In the same study, total carbohydrate, and total chlorophyll content decreased in 
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garden pea, as water and proline content increased (Jwan Khidhr Rahman 2015). The decrease in 

carbohydrate content was associated with harmful metals within the dust and reduced the amount 

of accessible food resources to the plants (Jwan Khidhr Rahman 2015). The increase in proline 

content was tied to a plant defense response towards environmental stress (Jwan Khidhr Rahman 

2015). A similar response was shown in wheat and mustard, but with a decrease in ascorbic acid 

and carotenoids, both of which are antioxidants (Chauhan et al. 2010). In the study, ascorbic acid 

was consumed due to oxidative stress and the decline in carotenoids was attributed as a 

protection mechanism from photo-oxidative stress on chlorophyll-protein complexes (Chauhan 

et al. 2010). Other nutrients in crops that have been shown to be affected by dust include protein, 

total sugars, starch, lipids, and amino acids, but these impacts were triggered by non-inert dusts 

such as cement (Raajasubramanian et al. 2011).  

Road dust impacts on yield have been shown in grape (Leghari et al. 2014), cotton (Zia-

Khan et al. 2015), and wheat and garden pea (Jwan Khidhr Rahman 2015), along with wheat and 

mustard growing near urban and industrial areas (Chauhan et al. 2010). Yield in cotton was 

reduced by an average of 28% in dusted plants and seemed to impact growth and yield during the 

flowering period due to an observed decrease in flowering and fruiting potential (Zia-Khan et al. 

2015). A significant decrease in growth of grape occurred and was apparent through number of 

leaves, plant length, and plant cover (Leghari et al. 2014). Furthermore, a negative correlation 

was determined between dust amount and growth rate (Leghari et al. 2014). Other observed 

reductions in yield have been shown in plant height, and leaf area of wheat and garden pea, along 

with a decrease in wheat spike length, and pea pod length in comparison to non-dusted plants 

(Jwan Khidhr Rahman 2015). In wheat and mustard growing near urban and industrial areas, 

number of grains per plant, grains weight per plant and weight of 100/1000 grains were 
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significantly reduced (Chauhan et al. 2010). With a number of physiological characteristics of 

plants being affected by road dust, a decrease in yield is inevitable. Such yield losses have been 

ascribed to decreases in photosynthetic rates in which plants revert supplies to ensure 

reproductive development and seed growth (Chauhan et al. 2010; Krupa and Kickert 1989).  

Methods 

Study Area 

 The experimental site was located in Cass County, North Dakota near Prosper 

(47.001306o N, 97.0198o W) (Figure 2.1). Weather data on maximum wind speed, rainfall, 

maximum and minimum air temperature, average air temperature, and total solar radiation were 

collected onsite by the North Dakota Agricultural Weather Network (NDAWN) throughout the 

duration of the 2015 and 2016 growing seasons. Data for each weather variable during each 

growing season can be found in Appendixes A and B. Intensity and timing of rain were variable 

over both years but factored into the accumulation and duration of dust on leaf surfaces. 

Maximum daily wind speed along with timing and amount of rainfall between dust applications 

and soybean measurements are illustrated for both years in Appendixes C and D. Between dust 

applications it rained 30.5% and 28.7% of the time in 2015 and 2016, respectively (NDAWN 

2015; NDAWN 2016). Wind speeds were another factor that played a role in dust accrual and 

time length on plants. Wind speeds above 5 m/s occurred 95% of the time between dust 

applications in 2015 and 94% in 2016 (NDAWN 2015; NDAWN 2016).Wind speeds were 

accounted for before each dust application in an attempt to minimize dust deposition disturbance. 

Mild to moderate average wind speeds occurred per month for each growing season and most 

days with mild to moderate wind were utilized for dust applications when possible.  



 

62 

 

Experimental Design 

In the growing season of 2015 a 73.2 m × 45.7 m field plot was planted with a single 

variety of Roundup Ready soybeans, while a 61.0 m × 45.7 m plot was planted in 2016. Soybean 

variety RG607RR from Howe Seed Farm (Casselton, North Dakota) was used in 2015 while 

soybean variety 16RO9N from Peterson Farms Seed (Harwood, North Dakota) was used in the 

2016 growing season due to a decrease in germination of the 2015 soybean variety. In 

accordance with Thompson et al. (1984) both fields were controlled for ambient road dust by 

being surrounded by other fields as a buffer and with the nearest gravel road being a quarter mile 

to a half mile away. Annual grass (Sonalan) and broadleaf (Sharpen) pre-emergence herbicides 

were applied in 2015 and 2016, while annual and perennial grass and broadleaf (Buccaneer Plus) 

post-emergence herbicide was sprayed twice on the 2015 field to combat weed abundance and 

prevent competition (Table 2.1). All herbicides were applied at the labeled rates. When soybeans 

reached the V1 stage (i.e. first trifoliate unrolled) of vegetative growth, flags were placed to mark 

treatment areas within replicates and dust applications began.   

 

 

Prosper 

2016 Experimental Site 

2015 Experimental Site 

Figure 2.1. Location of experimental sites in Cass County, North Dakota. 

Weather Station 
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Table 2.1  

 

Herbicides applied on experimental sites with dates applied, growth stage of soybeans at time of 

application, and application rate of herbicide. 

 

Herbicide Date Applied 
Growth Stage of 

Soybeans 
Application Rate 

Sonalan1 5/20/2015 Not planted 2.92L/187.1 L of water/ha 

Sharpen2 5/24/2015 Planted on 5/23/2015 109.61mL/187.1 L of water/ha 

Buccaneer Plus3 6/18/2015 V1  4.10L/187.1 L of water/ha 

Buccaneer Plus 7/14/2015 V6  4.10L/187.1 L of water/ha 

Sonalan 5/16/2016 Not planted 2.92L/187.1 L of water/ha 

Sharpen 5/24/2016 Not planted 109.61mL/187.1L of water/ha 
1 = Ethalfluralin, Dow Agro Sciences LLC, Indianapolis, Indiana, USA 
2 = Saflufenacil, BASF, Triangle Park, North Carolina, USA 
3 = Glyphosate, Tenkoz, Inc., Alpharetta, Georgia, USA 

To determine how dust interacts with soybean physiology and growth, treatments were 

based upon rates of applied dust. Average rates of dust loading from normal traffic gravel roads 

from Cruezer et al. (2016) were 1-4 g/m2/day depending on distance from the road, while dust 

loads during times of high traffic were 3-4 g/m2/day. Based on these findings the treatments were 

0, 4, 20, and 40 g/m2/day which equated to 15.8, 78.8, and 158 g/m2, respectively.  

In 2015 eight randomized replicates of each treatment occurred within the block. Plot 

sizes were 7.62 m × 7.62 m and the dust application areas were located within the middle of the 

plots and were 0.75 m × 0.75 m (Appendix E). Application of dust took place on the specified 

treatment area on a weekly basis; therefore, daily dust amounts were compiled to equalized 

weekly amounts. Further information on the application process is discussed in the dust 

application section.  

Based on low differences seen among treatments in 2015, two treatments were added for 

the 2016 growing season. These two treatments included an increase in frequency of dusting at 

the 158 g/m2 rate which occurred twice per week versus just once, while the second treatment 
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doubled the highest dust amount to 315 g/m2, applied once a week. The experimental field 

design for the 2016 growing season is provided in Appendix F.  

Dust Application 

Fine particulate matter was obtained from standard class 5 road gravel (North Dakota 

standard for class 5 includes; 90-100% of aggregate that pass through 1.9 cm sieve, 35-70% < 

4.76 mm, 16-40% < 0.595 mm, 4-10% < 75 µm) (NDDoT 2014). A sample of dust was sent to 

the NDSU Soil Testing Laboratory (Fargo, North Dakota) for mechanical analysis and chemical 

composition. For standardization, road gravel was sieved with a No. 40 mesh sieve (425 µm) 

based on Sanders et al. (1997). Dust was then weighed into 37 mL plastic cups (PL125 37, 

Solo®, Lake Forest, Illinois, USA), capped, and transported to the field. Application of dust 

occurred using a 1.2 L stainless steel flour sifter with a spring-action hand trigger and a three 

layer mesh > 0.425 mm (080468-006-000, Starfrit, Longueuil, Quebec, Canada) (Figure 2.2a) 

modified with a slow release apparatus (Figure 2.2b) cut from wax paper into a 5 cm2 area with 

four 5 cm wide attachments elongating from each side of the square area to attach to the outside 

of the sifter with tape (Figure 2.2c). The slow-release apparatus allowed the dust applicator to 

hold dust before dispensing and aid in a more uniform application of dust within the treatment 

area.  
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To decrease disturbance by wind during application and to ensure that dust is applied 

evenly within the treatment area, a spray booth was constructed from 19.1 mm polyvinyl 

chloride (PVC) pipe, 8-19.1 mm 3-way PVC elbows, polyethylene tarp, and tape. The frame 

(1.31m × 0.75m × 0.75m) was constructed with 11.24 m of PVC pipe and fittings, the 

polyethylene tarp was secured on the inside of the structure with tape (Figure 2.3). Trial 

experiments confirmed that dust was not adhering to the sides of the tarp.   

Figure 2.2. Method used for dust application includes: a) stainless steel flour sifter; 

b) slow-release apparatus; c) sifter with slow-release apparatus attached. 

a) 

c) 

b) 
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Leaf Dust Quantification 

 To determine the amount of dust deposited on plant leaves in each treatment, a separate 

study was conducted in summer 2016 where 15.8, 78.8, 158, and 315 g/m2 was applied to 

soybeans adjacent to the study area, three replications each. After application three leaves 

located towards the top of the plant were sampled from each repetition, with a total of nine 

leaves per treatment. Leaves were clipped and put into individually packaged 120 mL specimen 

containers (M4928, GENT-L-KARE®, Medical Action Industries Inc., Gallaway, Tennessee, 

USA). To quantify dust from specimen containers, 9 cm filter paper (Qualitative, 413, 28310-

048, VWR, Chicago, Illinois, USA) was weighed before filtration using a 4 decimal analytical 

balance (GH-300, A&D Weighing, San Jose, California, USA), then placed in an 87 mL capacity 

Buchner funnel (COORS™, 60240, Coorstek Inc., Golden, Colorado, USA) which was situated 

into a 250 mL Erlenmeyer filter flask (KIMAX™, Kimble™ 27060250, 10-181D, Fisher 

Scientific Co. L.L.C., Pittsburgh, Pennsylvania, USA). The filter flask was connected to a 

Figure 2.3. Dust spray booth during dust 

application. 
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vacuum outlet using 0.79 cm × 1.11 cm × 0.16 cm plastic tubing (Nalgene™ 180 Clear Plastic 

PVC Tubing, Thermo Scientific™ 80000090, 14-176-30, Fisher Scientific Co. L.L.C., Pittsburgh, 

Pennsylvania, USA) cut to 60.96 cm. Dust was rinsed from a leaf and specimen container with 

deionized (DI) water and captured onto filter paper. Once dust was filtered, the filter paper with 

dust was placed into a desiccator to assimilate samples to the same relative humidity. After a 

minimum of 24 hours in the desiccator, filter paper with dust was re-weighed to quantify the 

mass per leaf. Leaf area data of sampled leaves was also collected via a Leaf Area Meter (LI-

COR Environmental Portable Area Meter LI-3000C, Lincoln, Nebraska, USA) with the 

transparent belt conveyor accessory (LI-COR Environmental Conveyor Accessory LI-3050C, 

Lincoln, Nebraska, USA). The quantification of leaf dust was then used to determine how much 

dust per treatment actually ended up on a square area of a leaf.  

Soybean Measurements 

Chlorophyll Content 

Measurements were taken during the 2015 and 2016 growing season to assess impacts of 

dust applications on soybean physiology. Soil plant analysis development (SPAD) readings were 

taken to measure the amount of chlorophyll in soybean plants (Konico Minolta Chlorophyll 

Meter SPAD-502 Plus, Aurora, Illinois, USA). The amount of chlorophyll in a leaf correlates to 

leaf nitrogen status and is also proportional to photosynthetic rate (Evans 1983; Seeman et al. 

1987). Furthermore, chloroplast development is based on light availability, plant nutrition, and 

water stress (Buetow et al. 1991; Sundqvist et al. 1980). To measure chlorophyll a leaflet (leaf) 

from a selected plant was clipped from the uppermost fully expanded trifoliate. The leaflet was 

then rinsed thoroughly with DI water to remove any residual dust that may interfere with the 

SPAD reading and air-dried for 5 sec. Three places on the leaflet were measured with the SPAD 
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meter and averaged to give an overall reading for the leaflet which represented the given plant. 

Three plants were selected within each treatment area for all replicates. SPAD readings were 

taken throughout the growing season during the V4, R1, R3, and R6 growth stages. 

Measurements were taken prior to the dust application for that week. Previously measured 

leaflets were below that of subsequent leaflets as both soybean varieties are indeterminate in 

growth and continued to produce leaves on the main stem, as well as on branches throughout the 

flowering period. Shade and irradiance effects were minimized for SPAD readings by taking 

measurements of leaflets on the uppermost part of the plant.  

Leaf Temperature 

Infrared temperature (IRT) readings were also taken to gauge leaf temperature 

differences between treatments (Apogee Infrared Radiometer Model MI-210, Logan, Utah, 

USA). Previous research has determined that dusted leaves can have higher leaf temperatures 

than non-dusted leaves (Eller 1977; Hirano et al. 1995; Sharifi et al. 1997; Zia-Khan et al. 2015) 

and may influence leaf photosynthetic rates (Eller 1997). Leaf temperature was measured at the 

same growth stages of V4, R1, R3, and R6 and taken the same day as chlorophyll readings. Leaf 

temperature readings were measured before SPAD readings were taken to ensure leaves were not 

disturbed. To determine leaf temperature, a leaflet from three separate plants in a treatment area 

were selected from the uppermost fully expanded trifoliate. Furthermore, leaflets were facing 

approximately the same direction as the sun and were unshaded from other leaflets. After leaf 

selection the infrared radiometer was held approximately 5.08-7.62 cm away from the leaf 

surface so the field of view contained only the selected leaf surface. The infrared radiometer was 

held in that position until a constant temperature reading was obtained for the selected leaflet. 
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Prior to reading leaf temperatures, atmospheric temperature readings were recorded in 

each cardinal direction and directly above the plots. Atmospheric readings occurred right before 

leaf temperatures were taken, half way through leaf temperature readings, and at the end to 

account for ambient air temperature and changes over the sampling period. Atmospheric 

temperature readings were then used to correct leaf temperature data for leaf emissivity before 

data analysis using a leaf emissivity coefficient (ɛ) of 0.96 (ECIRS, n.d.): 

Ttarget =  √
Tsensor

4− (1−ε)×Tbackground
4

ε

4

  Eq. 1 

where Ttarget is the leaf temperature corrected for leaf emissivity in Kelvin (K), Tsensor is leaf 

temperature measured by the infrared radiometer (K), and Tbackground is the temperature of the sky 

measured by the infrared radiometer (K) (Apogee Instruments, Inc. 2016).   

Yield and Seed Composition 

Soybeans were harvested 7 to 14 d after full maturity was reached and each treatment 

area was hand harvested. All plants in a treatment area were hand clipped at ground level and 

placed into a polypropylene bag, each replicate and treatment were collected individually. In 

order to obtain pod number per plot and to minimize pod breakage and seed loss, plants were not 

dried. Seeds were transported back to a lab at NDSU and were hand threshed. Data on number of 

pods and seeds per plot were accounted for along with seed weight, moisture content, and yield 

adjusted to 13% moisture content were determined for each treatment and replicate. The threshed 

seeds were then sent to the Northern Crops Institute (NCI) Laboratory (Fargo, North Dakota) to 

be analyzed for the seed composition components listed in Table 2.2.  
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Table 2.2  

 

Soybean seed composition parameters that were determined from harvested seeds. 

 

Parameter Parameter cont'd Parameter cont'd 

Alanine Leucine Raffinose 

Arginine Linoleic acid Serine 

Ash Linolenic acid Stachyose 

Aspartic acid Lysine Stearic acid 

Available lysine Methionine Sucrose 

Cysteine Moisture content Taurine 

Fiber Neutral Detergent Fiber Threonine 

Glutamic acid Oil Tryptophan 

Glycine Oleic acid Tyrosine 

Histidine Ornithine Valine 

Hydroxylysine Palmitic acid  

Hydroxyproline Phenylalanine  

Isoleucine Proline  

Lanthionine Protein  

 

Statistical Analysis 

The data analyses for this paper was generated using SAS® software, Version 9.4 of the 

SAS System for Windows (Copyright © 2015 SAS Institute Inc. SAS and all other SAS Institute 

Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc., 

Cary, NC, USA). Leaf dust quantification data collected via a randomized design were analyzed 

using ANOVA in SAS software via PROC-GLM (SAS 9.4 2015). Pair-wise comparison of 

means were adjusted using the Tukey correction. Before analysis, individual leaf dust amounts 

per leaf area were calculated and percent deviation from target rate of application was 

determined. All data collected between the two growing seasons were evaluated separately and 

then analyzed for differences among treatments within each year (2015 and 2016). Weather data 

from the nearest NDAWN weather station was recorded to help interpret results within an 

environmental context. 
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Individual leaf data collected from IRT and SPAD readings were averaged per treatment 

within each replication and then averaged at the treatment level across vegetative stages. A 

repeated measures randomized complete block design was used to determine differences of IRT 

and SPAD readings within and over vegetative stages. The repeated measure was the different 

vegetative stages. A mixed procedure (PROC-MIXED) analysis of variance (ANOVA) was used 

with a restricted maximum likelihood (REML) method (SAS 9.4 2015). Pair-wise comparisons 

used the Tukey correction. 

 Yield data was collected via a randomized complete block design and was analyzed as 

ANOVA in SAS software using the general linear model procedure (PROC-GLM) (SAS 9.4 

2015). Selected yield factors included the following for both years: pods/plot, seeds/pod, yield at 

13% moisture content, and seed weight. The Tukey correction was used to adjust p-values for 

pair-wise comparisons.  

Seed composition data utilized a randomized complete block design and underwent a 

permutational multivariate analysis of variance (PERMANOVA) analysis with treatments as a 

fixed effect factor implemented in PC-ORD Version 6 software (McCune and Mefford 2011). 

Prior to analysis, percent seed composition variables were transformed with arcsine method and 

a few seed composition variables were discarded due to machine non-calibration for the selected 

variable. A Euclidean Similarity index was used in the PERMANOVA analysis. Nonmetric 

Multidimensional Scaling (NMS) was utilized via PC-ORD (McCune and Mefford 2011) to 

graphically represent seed composition data for both years (2015, 2016). To quantify the 

pairwise interrelationship of seed composition data, points were given spatial distribution using 

the Euclidean Similarity index. Arrangement of the data was revealed by running PC-ORD with 

500 iterations of the seed composition data for each year, where 2015 data was reduced to three 
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axis from six and 2016 to one axis from six, both with an instability criterion of 0.00000. 

Dimensions and model selection were founded on (1) a significant Monte Carlo test of p < 0.05, 

(2) a model with a final stress <20, (3) an instability <0.0001, and (4) a discontinuation of 

additional axes if stress was not reduced by a minimum of 5 points. Factors with a correlation 

coefficient (r) greater than 0.4 or less than -0.4 with the NMS axes were considered to be 

interpretable. Factor analysis of a priori seed composition variables was also conducted as 

ANOVA through SAS software with PROC-GLM (SAS 9.4 2015) and pair-wise comparisons 

adjusted using the Tukey method. Selected a priori seed components for factor analysis are 

provided in Table 2.3. 

Table 2.3  

 

Selected a priori seed components for factor analysis in 2015 and 2016. 

 

Parameter Parameter cont'd Parameter cont'd 

Alanine Leucine Protein 

Arginine Linoleic acid Raffinose 

Aspartic acid Linolenic acid Serine 

Available lysine Lysine Stachyose 

Cysteine Methionine Stearic acid 

Glutamic acid Moisture content Sucrose 

Glycine Oil Taurine 

Histidine Oleic acid Threonine 

Hydroxylysine Ornithine Tryptophan 

Hydroxyproline Palmitic acid Tyrosine 

Isoleucine Phenylalanine Valine 

Lanthionine Proline  

 

Results and Discussion 

Dust Characterization 

 The dust used for this study was 72.8% sand (2.0 mm to 0.05 mm), 20.9% silt (0.05 mm 

to 0.002 mm), and 6.3% clay (<0.002 mm) (Table 2.4). Other chemical parameters can be found 
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in Table 2.5. Of the parameters determined the dust material did not have properties that would 

be limiting to plant growth. 

Table 2.4  

 

Mechanical analysis of dust composition based on United States Department of Agriculture 

classification of size fractions (Gee 2002). 

 

Percent Sand Percent Silt Percent Clay Soil Texture  

72.8 20.9 6.3 SANDY LOAM 

 

Table 2.5  

 

Chemical parameter amounts found in experimental dust. 

 

Parameter (units) Amount 

Ammonium-nitrogen (mg/kg) 5.80 

Calcium (mg/kg) 4620 

Calcium carbonate equivalent (%) 16 

Cation exchange capacity (mmolc/kg) 13.7 

Chloride (g/m2) 27.45 

Copper (mg/kg) 1.62 

Electrical conductivity (dS/m) 0.43 

Iron (mg/kg) 6.2 

Magnesium (mg/kg) 242 

Manganese (mg/kg) 2.9 

Nitrate-nitrogen (g/m2) 0.56 

Organic matter (%) 0.40 

pH 7.70 

Phosphorus (mg/kg) 2 

Potassium (mg/kg) 52 

Sodium (mg/kg) 22.4 

Sulfate-sulfur (g/m2) 1.79 

Zinc (mg/kg) 0.75 

 

Leaf Dust Quantification 

From the leaf dust quantification study in 2016, average dust masses per leaf area and 

average deviation from the target rate of application were not significantly different among 

treatments (Table 2.6). However, the deviation increased as target rate increased (Table 2.6). 
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Visual observations indicated that as the dust rate increased the leaves were less green (Figure 

2.4).  

Table 2.6  

 

Leaf dust quantification target rate of application per treatment and average dust amount per 

leaf area for each rate of application. Average deviation of dust amount per leaf area from 

target rate of application is also given. 

 

Treatment 

(g/m2/day) 

Dust 

Amount 

Applied 

(g/m2) 

Target Rate of 

Application 

(mg/cm2) 

Average Dust 

Amount/Leaf Area 

(mg/cm2) 

Average 

Deviation from 

Target Rate 

(mg/cm2) 

4  15.8 2.80 1.49 -1.24 

20  78.8 14.0 5.60 -7.89 

40  158 28.0 11.0 -10.3 

80  315 56.0 39.2 -17.1 

 

Dust accumulation on leaf surfaces were found to be influenced by leaf size and shape, 

surface texture, level of pubescence, leaf orientation, and petiole length (Younis et al. 2013). 

Large deviations from target rate of application among treatments could be from leaf surface 

orientation along with petiole length. Leaf angle could have hindered the ability of dust to adhere 

to leaf surfaces and larger dust amounts could have been unable to be retained by leaves due to 

long petioles and the nature of dust application. Therefore, as applied, dust amount was a larger 

deviation from the target rate was expected. Furthermore, weekly dust applications are more 

aligned with pulse events than how actual road dust is deposited. Road dust deposition may have 

a higher frequency than pulse events and vary in intensity depending on fine particle content of 

road, soil moisture content, vehicle weight, and vehicle speed (Gillies et al. 2005).   
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Even then, deposition of road dust on vegetation depends on wind speed, vegetation 

characteristics, plant distance from dust source, and dust particle size (Farmer 1993; Everett 

1980; Tamm and Troedsson 1955; Rao 1971). Headlands, along with gravel roads, create dust 

and edge effects; however, this study didn’t account for these random edge effects. This study 

examined pulse dust effects on soybean production and seed quality. Results of the study provide 

a knowledge base for future research on dust effects on soybean production and seed quality. 

b) c) 

a) 

d) 

e) 

Figure 2.4. Soybean treatment areas after weekly dust application: a) 0 g/m2; b) 15.8 g/m2; c) 

78.8 g/m2; d) 158 g/m2; e) 315 g/m2. 
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Chlorophyll Content 

No significant differences were seen in chlorophyll content of treatments within the 2015 

growing season (p > 0.05), and no trends existed. The average chlorophyll contents were lowest 

for 0 g/m2, increased at the 15.8 g/m2, decreased at the 78.8 g/m2, but increased at the 158 g/m2 

(Table 2.7). In 2016, given that the statistical repeated measures model accounted for the 

different growth stages, the test of the main treatment effects for chlorophyll content were found 

to be significantly different (p < 0.05) (Table 2.8). The highest amount of chlorophyll content 

belonged to the 2×158 g/m2, with 315 g/m2 having the second highest chlorophyll content (Table 

2.8). In 2016, chlorophyll content at the 15.8 g/m2 treatment was significantly different from the 

chlorophyll content of 315 g/m2 (p < 0.05) and the 2×158 g/m2 treatment (p < 0.05) (Table 2.8). 

Chlorophyll content of treatments within each growth stage, were not significantly different for 

2015 or 2016 (p > 0.05). Chlorophyll content among growth stages in 2015 and 2016 were 

significantly different (p > 0.05) except for V4 and R3 in 2016. Interactions between stages and 

treatments were not significant (p > 0.05).  

Leaf chlorophyll content is expected to be different at different growth stages as leaf 

composition and color are functions of leaf age (Gupta and Woolley 1971). In young leaves the 

rate of chlorophyll synthesis starts out rapid and then as leaf cells age chlorophyll development 

gradually slows down until a constant value of chlorophyll has been achieved (Gupta and 

Woolley 1971). A study on a number of genotypes for wheat by Hamblin et al. (2014), found 

averages of SPAD measurements of chlorophyll content consistent over time, when time 

differences in plant measurements were accounted for with a mixed linear model approach. 

Wheat is similar to soybean as it has been recommended that both could use SPAD readings to 
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determine chlorophyll content, in relation to nitrogen deficiency (Hamblin et al. 2014; Fritschi 

and Ray 2007). 

Table 2.7  

 

Average chlorophyll content in SPAD units at each growth stage measured for the 2015 growing 

season.  

 

Treatment (g/m2) 
Measured Growth Stages Overall 

Average V4 R1 R3 R6 

0 30.8 (3.68) 33.1 (2.38) 34.1 (1.59) 38.3 (2.36) 34.1 

15.8 31.3 (3.37) 33.3 (1.51) 35.2 (2.51) 38.4 (2.10) 34.5 

78.8 31.2 (2.74) 32.8 (2.75) 34.3 (1.96) 39.0 (1.46) 34.3 

158 31.6 (4.11) 33.7 (2.36) 35.6 (1.31) 39.7 (1.30) 35.2 

Average 31.2a 33.2b 34.8c 38.8d  

Note. Small letters denote significance across row. Different letters in superscript denote 

significance at p < 0.05. Overall average is the average chlorophyll content across all the 

measured growth stages. Standard deviations are presented in parentheses.  

 

Table 2.8  

 

Average chlorophyll content in SPAD units at each growth stage measured for the 2016 growing 

season.  

 

Treatment (g/m2) 
Measured Growth Stages Overall 

Average V4 R1 R3 R6 

0 34.0 (0.78) 30.3 (1.30) 31.9 (2.11) 42.0 (1.03) 34.6AB 

15.8 32.0 (2.09) 30.1 (1.27) 33.7 (1.46) 41.0 (1.10) 34.2A 

78.8 33.6 (1.52) 31.9 (1.02) 32.2 (2.26) 41.5 (1.81) 34.8AB 

158 33.0 (3.36) 31.2 (0.87) 33.3 (1.84) 41.8 (1.18) 34.8AB 

315 34.9 (2.10) 32.0 (1.02) 33.1 (1.61) 41.9 (1.21) 35.5B 

2×158 34.7 (1.92) 32.3 (0.98) 33.9 (1.38) 41.4 (1.58) 35.6B 

Average 33.7a 31.3b 33.0a 41.6c  

Note. Small letters denote significance across row. Capital letters denote significance down 

column. Different letters in superscript denote significance at p < 0.05. Overall average is the 

average chlorophyll content across all the measured growth stages. Standard deviations are 

presented in parentheses. 

Overall this study only found a significant difference in chlorophyll content in 2016 

between the dust treatment of 15.8 g/m2 and 315 g/m2, as well as, 15.8 g/m2 and 2×158 g/m2 

(Table 2.8). However, no significant differences were seen between dusted treatments and the 
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zero dust treatment. The 15.8 g/m2 had an average chlorophyll content just below that of the zero 

dust treatment and significant differences from the 315, and 2×158 g/m2 treatments may be due 

to the visual observation of chlorosis in the field at the V4 growth stage measurement of 

chlorophyll readings. Chlorosis in the field affected the 15.8 g/m2 treatment in replicate one and 

two, and affected 78.8, and 158 g/m2 in replicate one. Chlorosis was no longer visible at later 

growth stages (i.e. R1, R3, and R6) for chlorophyll readings.  

Reductions in chlorophyll content by dust has been detected to be significantly different 

in dusted crops such as grape (Leghari et al. 2014), and wheat and garden pea (Jwan Khidhr 

Rahman 2015). In the study by Leghari et al. (2014), grape plants were exposed to road side dust 

containing a mixture of harmful metals. Furthermore, Jwan Khidhr Rahman (2015) reported the 

dust applied to wheat and garden pea contained a total concentration of 66 mg/kg of K, 400 

mg/kg Na, 500 mg/kg Ca, 1.5 mg/kg N, 400 mg/kg Mg, 35 mg/kg Zn, an EC of 0.49 dS/m and a 

pH of 7.90. The experimental dust in this study contained a similar pH, EC, and K, however, it 

lacked concentrations of Na, Zn, and Mg, but had a greater amount of Ca. Therefore, a possible 

reason for the lack of significant differences in chlorophyll content in soybean caused by dust, 

maybe due to the applied dust not containing harmful elements or high enough amounts of 

harmful elements at the applied rates. Additionally, the weekly applied amounts of dust to 

soybeans could have received enough wind and rainfall to be removed from leaf surfaces 

between applications.  

Removal of particulate matter (PM) by wind and rainfall have been found to affect dust 

accumulation amounts on leaves (Wang et al. 2015). In a study by Przybysz et al. (2014), 30 to 

41% of PM washed off with 20 mm of simulated rainfall, of which contained about 38% very 

coarse (100 to 10 µm), 30% coarse (10 to 2.5 µm), and 25% fine (2.5 to 0.2 µm) fractions. 
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Furthermore, Freer-Smith et al. (2005) reported that accumulation of coarse (<10 µm), fine (<2.5 

µm and >0.1 µm), and ultra-fine (< 0.1 µm) PM on poplar (Populus deltoides), field maple (Acer 

campestre), pine (Pinus nigra), cypress (Cupressocyparis leylandii), and whitebeam (Sorbus 

intermedia) were not significantly different before and after a two day rainfall event. The studies 

above examined trees near urban and rural sites that experienced dust deposition on a daily basis 

and could explain why significant amounts of dust remained on leaf surfaces after a rainfall 

event.  

The particle size fraction that makes up the dust applied to soybeans could have hindered 

the capacity of dust to accumulate on leaves. The applied dust was determined to be 72.8% sand 

(2.0 mm to 0.05 mm), 20.9% silt (0.05 mm to 0.002 mm), and 6.3% clay (<0.002 mm). 

Standardization of the applied dust with a number 40 sieve removed coarse sand particles (2.0 

mm to 0.4 mm) (Gee 2002). Particles sizes of 0.044 to 0.177 mm were found to be removed by 

46% from leaf surfaces due to wind in 2.5 days and 90% lost in a week due to wind and rain 

(Armbrust 1986). For larger particles (0.088 to 0.77 mm), the maximum retention time was 

found to be 10 days (Armbrust 1986). Particle losses have also been found to be rapid in the first 

day of application (Armbrust 1986). Particle sizes of the applied dust fall largely in the size 

range for larger particles and were more easily removed than smaller particles of silt or clay.  

Along with particle size, retention of dust on leaf surfaces was determined to be based on 

leaf surface characteristics (Chauhan et al. 2010). A positive correlation between total PM 

accumulation and leaf hair density, along with quantity of leaf waxes were found, but not for leaf 

surface roughness or leaf size (Sæbø et al. 2012). Soybean leaf hairs add around 10 percent 

surface area to leaf surfaces and are about one mm long and spaced one mm apart on leaf 

surfaces (Woolley 1964). However, the orientation of leaf hairs are not perpendicular to the leaf 
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surface but slant toward the tip and sides. In young leaves the hairs are filled with water but 

become hydrophobic and air-filled or flattened as leaves age or if hairs are bent (Woolley 1964). 

Soybean leaves have rosette-like clusters of wax platelets on both adaxial and abaxial surfaces 

(Damato et al. 2017), but adaxial surfaces may not contain enough wax content to capture PM as 

was found in conifer needles (Sæbø et al. 2012). Furthermore, the orientation of soybean leaf 

hairs, leaf hair density, and leaf hair age may not be conducive in dust accumulation on leaf 

surfaces.  

Leaf Temperature 

Average leaf temperature of treatments for growing season 2015 are in Table 2.9 and the 

same data for 2016 are displayed in Table 2.10. Differences in leaf temperature occurred among 

treatments but were variable in both years, with treatment differences from ambient air 

temperatures ranging from 0.46 to 7.72 ˚C and from the zero dust treatment from -1.35 to 1.15 

˚C across growth stages. No significant differences were found in leaf temperatures of treatments 

within each growth stage for 2015 or 2016 (p > 0.05). Interactions between growth stages and 

treatments were not significant (p > 0.05). 

Table 2.9  

 

Average leaf temperature (˚C) of treatments in 2015 growing season.  

 

Note. Standard deviations are presented in parentheses. 

 

 

 

 

 

Treatment (g/m2) V4 R1 R3 R6 

0  25.6 (1.15) 28.7 (2.35) 24.8 (1.12) 28.2 (1.28) 

15.8  25.8 (1.02) 28.7 (1.68) 24.7 (0.86) 28.3 (1.59) 

78.8  25.9 (1.29) 29.3 (1.12) 24.6 (1.42) 27.7 (0.91) 

158  25.8 (1.22) 29.4 (1.14) 25.2 (1.43) 28.6 (1.33) 
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Table 2.10  

 

Average leaf temperature (˚C) of treatments in 2016 growing season.  

 

Note. Standard deviations are presented in parentheses. 

 Studies on dust impacts on crops has typically reported an increase in leaf temperature 

from dust. Increases in leaf temperature have been reported in cotton (Gossypium hirsutum L) 

(Zia-Khan et al. 2015), where dusted cotton leaves were found to have the highest increase in 

temperature of 4.1 ˚C when compared to leaves that were rinsed with water (Zia-Khan et al. 

2015). In cucumber (Cucumis sativus L.) and kidney bean (Phaseolus vulgaris L.), Hirano et al. 

(1995) reported leaf temperature differences of dusted leaves from control leaves to be 3.7, 3.1, 

and 1.7˚C at air temperatures of 15, 25, and 40 ˚C, respectively. In comparison to this study, on 

days that leaf temperature readings were taken between 1000 and 1400, ambient air temperatures 

differed anywhere from 2 to 9˚C (NDAWN 2015; NDAWN 2016) and had more variation than 

leaf temperature differences of dusted leaves in comparison to non-dusted leaves. Over the 

course of the growing season ambient air temperatures ranged from -6 to 34 ˚C (NDAWN 2015; 

NDAWN 2016). Ambient air temperature fluctuations could have mitigated increases in leaf 

temperature between dust applications and before leaf temperature readings. Furthermore, a 

study on an evergreen shrub (Viburnum tinus), found that leaf temperature didn’t increase by 

dust due to a high air flow rate which kept the leaf temperature close to air temperature 

(Thompson et al. 1984). Leaf temperature measurements were taken irrespective of wind speed 

Treatment (g/m2) V4 R1 R3 R6 

0  20.1 (1.05) 28.3 (0.87) 25.6 (2.06) 24.0 (0.79) 

15.8 20.2 (1.30) 28.7 (0.72) 24.5 (3.26) 23.9 (0.73) 

78.8  20.7 (1.36) 29.1 (0.90) 24.8 (3.04) 24.0 (0.69) 

158  21.3 (1.66) 28.7 (1.34) 24.3 (3.20) 24.4 (0.60) 

315 20.7 (1.56) 29.2 (1.76) 25.7 (2.42) 24.5 (0.81) 

2×158 21.3 (1.31) 29.0 (1.04) 26.1 (2.83) 24.1 (0.70) 
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so the reduction in the boundary layer over the leaves due to wind may have normalized leaf 

temperatures across treatments.  

Another possibility could be leaf temperatures of dusted soybean leaves could have 

returned to normal by the time leaf temperature readings were taken a week after dust 

application. Leaf temperature readings were done right before the weekly dust application and 

was at a point of maximum dust ‘wear off’. Even though, soybean leaf hairs were found to 

reduce wind speed by 40%, 0.50 mm from the leaf surface, it is unknown what leaf hair affect 

would have on wind speeds of more than 100 cm/s (Woolley 1964). Furthermore, leaf hairs have 

been found to minimize water loss at the leaf surface, even when hairs were flattened or air-filled 

(Woolley 1964). Leaf hydraulic conductance of aged leaves on the plant may also prevent leaf 

temperature increases in the measured leaflets in the uppermost part of the plant. As leaves age a 

decline in leaf hydraulic conductance was found and enabled the hydraulic supply to be kept in 

balance with plant demand without limiting transpiration (Locke and Ort 2014). Therefore, by 

the time leaf temperature readings were taken any spikes in leaf temperature by dust may have 

been lost, as dust was removed before leaf temperature readings and leaf transpiration could have 

mitigated any temperature effect caused by dust.  

Yield  

Analysis of the yield data found no significant differences in treatment yields for either 

2015 or 2016 (p > 0.05) (Table 2.11). Variation in yield characteristics was observed among 

treatments, but no significant differences were found (p > 0.05) in 2015 (Table 2.12) or in 2016 

(Table 2.13). It has been shown that soybean seed yield has a significant positive relationship 

with number of seeds per pod, number of seeds per plant, and number of pods per plant, with the 

strongest relationship with number of seeds per pod (Ali et al. 2013). In both years, number of 
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seeds per pod was accounted for; however, number of seeds per plant and number of pods per 

plant were only determined in 2016.  

Table 2.11  

 

Yield of treatments were adjusted to 13% moisture content and are presented in g/m2 and bu/ac 

(adjusted to 13% water content) for growing season 2015 and 2016. 

 

Note. Standard deviations are provided in parentheses following averages. 

 

Table 2.12  

 

Yield characteristics per treatment for 2015 growing season. 

 

Treatment 

(g/m2) 
# pods/plot # seeds/pod 

# 

seeds/plot 

Seed weight 

(g) 

Seed 

weight 

(mg)/seed 

Seed 

weight 

(mg)/pod 

0  529 (72.2) 2.47 (0.07) 1305 (186) 203 (33.2) 155 (6.04) 383 (17.20) 

15.8 551 (51.7) 2.42 (0.06) 1335 (129) 202 (26.0) 151 (7.85) 366 (21.64) 

78.8  556 (113) 2.41 (0.07) 1335 (253) 206 (47.1) 153 (9.32) 369 (24.15) 

158  542 (149) 2.43 (0.10) 1311 (340) 196 (52.8) 149 (6.68) 363 (28.14) 

Note. Standard deviations are provided in parentheses following averages. 

 

 

 

 

 

 

 

 

Treatment (g/m2) 
2015 2016 

g/m2 bu/ac g/m2 bu/ac 

0 288 (46.7) 42.8 (6.95) 334 (50.3) 49.6 (7.47) 

15.8  286 (37.1) 42.5 (5.51) 379 (45.9) 56.3 (6.82) 

78.8 291 (66.9) 43.3 (9.94) 378 (46.7) 56.3 (6.95) 

158 276 (74.3) 41.1 (11.1) 335 (31.7) 49.9 (4.71) 

2×158  - - 320 (36.1) 47.6 (5.36) 

315 - - 359 (77.8) 53.3 (11.6) 
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Table 2.13 

 

Yield characteristics per treatment for the 2016 growing season. 

 

Treatment 

(g/m2) 

# 

pods/

plot 

# 

seeds/

pod 

# seeds/plot 
Seed 

weight (g) 

Seed 

weight 

(mg)/seed 

Seed 

weight 

(mg)/pod 

# 

seeds/ 

plant 

# 

pods/

plant 

0 

580 

(81.4) 

2.61 

(0.24) 

1517 

(268.6) 
235 (35.5) 156 (10.1) 

406 

(16.4) 

73.9 

(9.18) 

28.4 

(4.06) 

15.8  

652 

(71.0) 

2.47 

(0.10) 

1606 

(166.6) 
267 (32.5) 166 (7.05) 

410 

(21.7) 

72.9 

(16.8) 

29.7 

(7.51) 

78.8 

642 

(65.0) 

2.57 

(0.17) 

1652 

(242.9) 
267 (33.7) 162 (9.22) 

415 

(14.6) 

81.9 

(12.8) 

32.2 

(6.22) 

158 

601 

(37.4) 

2.43 

(0.11) 

1455 

(94.54) 
236 (22.5) 162 (6.71) 

393 

(19.9) 

76.4 

(10.8) 

31.5 

(3.99) 

2×158  

591 

(73.0) 

2.41 

(0.14) 

1416 

(136.3) 
226 (25.5) 159 (4.56) 

383 

(22.6) 

70.7 

(10.1) 

29.4 

(4.38) 

315 

611 

(95.1) 

2.53 

(0.18) 

1554 

(305.0) 
253 (55.7) 162 (5.65) 

411 

(39.3) 

73.4 

(10.5) 

29.1 

(4.29) 

Note. Standard deviations are provided in parentheses following averages.  

No study to date has specifically looked at the impacts of dust on soybeans or its yield as 

a result of dusts being present on leaves. Dust impacts on crop production have been observed in 

cotton (Zia-Khan et al. 2015), grape (Leghari et al. 2014), and in wheat and garden pea (Jwan 

Khidhr Rahman 2015); however, only Zia-Khan et al. (2015) looked at yield specifically. Zia-

Khan et al. (2015) found that dust decreased cotton yield by 28%; while Leghari et al. (2014) 

determined a negative correlation between growth rate and dust amount but didn’t investigate 

yield. Dust has also been shown to impact wheat and garden pea through decreases in plant 

height, leaf area, and in wheat spike length and pea pod length (Jwan Khidhr Rahman 2015). 

Among different soybean varieties tested under semi-arid condition, a significant positive 

relationship has been determined for soybean seed yield and plant population, plant height, plant 

biomass, and leaves per plant (Ali et al. 2013). Therefore, a similar photosynthetic response 

could have been seen in soybeans, with the appearance of new leaves, along with the removal of 

dust by rain and wind between dust applications, any hindrances by dust to plant metabolic 

processes could have been mitigated, thereby, preventing reductions in soybean yield. 
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Effects of car exhaust dust on an evergreen shrub (Viburnum tinus) were observed with 5 

to 10 g/m2 of dust per leaf (Thompson et al. 1984). However in the same study, leaves of shrubs 

in central reserves of motorways were only found to have a maximum dust load of 2 g/m2 and 

car exhaust dust was determined to have a minimal effect on plant photosynthesis (Thompson et 

al. 1984). In comparison to soybeans, it is likely that in our study, the average dust amount found 

per leaf area per treatment were too small to have hindered any physiological processes. On the 

other hand, dust loads of 1.0 to 1.5 g/cm2 from an urban road were found to increase leaf 

temperature in aspen (Populus tremula) (Fluckiger et al. 1979) and urban road dusts at 0.0039 to 

0.0077 g/cm2 declined leaf area, chlorophyll concentration, photosynthetic rate, and water-use 

efficiency in four tree species (Anthocephalus cadamba, Mangifera indica, Syzygium cumini, and 

Tectona grandis) along the roadside (Chaturvedi et al. 2013). Even so, Chaturvedi et al. (2013) 

determined that Tectona grandis and Mangifera indica had greater declines in the 

aforementioned traits and were; therefore, more sensitive to higher dust loads than Syzygium 

cumini and Anthocephalus cadamba. Plant response to dust contamination level is variable 

between species and is apparent at higher dust loads. For soybeans, the lack of significant 

differences in yield could mean that it may take a more frequent application of dust for dust to 

accumulate and cause negative effects on soybean yield and yield characteristics.   

Seed Composition 

The NMS analysis of the seed composition data set for the 2015 growing season 

produced a final solution in 59 iterations, as three dimensional that accounted for 97.2% of the 

variation in the data, at a final stress of 6.15, and a final instability of 0.00000 (Figure 2.5). 

Strong positive correlations with axis 1 included linoleic acid (0.886), and linolenic acid (0.609). 

A strong negative correlation with axis 1 occurred with oleic acid (-0.981), while weak negative 
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correlations included: glycine (-0.441), methionine (-0.488), stearic acid (-0.516), and tryptophan 

(-0.412). For axis 2, a strong positive correlation involved the following: alanine (0.850), 

arginine (0.886), aspartic acid (0.898), available lysine (0.833), glutamic acid (0.897), glycine 

(0.720), histidine (0.830), isoleucine (0.853), leucine (0.870), lysine (0.892), phenylalanine 

(0.823), proline (0.801), protein (0.874), serine (0.881), threonine (0.892), tyrosine (0.835), and 

valine (0.821). Weak positive correlations with axis 2 were cysteine (0.440), and linolenic acid 

(0.548). A strong negative correlation with axis 2 included oil (-0.655) and weak negative 

correlations involved hydroxylysine (-0.586), and raffinose (-0.434). 

The NMS analysis of seed composition data for the 2016 growing season produced a one 

dimensional final solution in 62 iterations that explained 98.0% of the variation in the data, with 

a final stress of 7.23, and a final instability of 0.00000 (Figure 2.6). A strong positive correlation 

(r) with axis 1 occurred with linoleic acid (0.988) and a weak positive correlation with moisture 

percentage (0.420). Strong negative correlations with axis 1 included linolenic acid (-0.795), and 

0 g/m2 

15.8 g/m2 

78.8 g/m2 

158 g/m2 

Treatment 

Figure 2.5. 2015 growing season Nonmetric Multidimensional Scaling (NMS) ordination of 

soybean seed composition data for each treatment of 0, 15.8, 78.8, and 158 g/m2. Points in 

ordination space represent a replication of a treatment. 
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oleic acid (-0.992), and a weak negative correlation with neutral detergent fiber based on percent 

dry matter (-0.477), and palmitic acid (-0.429). Differences observed in ordination of seed 

composition data may result from genetics in the use of two different varieties and from 

ecological variations between the two growing seasons (Anwar et al. 2016; Bellaloui et al. 2015). 

PERMANOVA of seed composition amongst treatments were not significantly different for 

2015 or 2016 (p > 0.05). Factor analysis of a priori seed components found no significant 

differences in either year for selected seed components (p > 0.05) (Table 2.3).  

Seed composition factors that have been effected by road dust include wheat, garden pea, 

and field mustard (Chauhan et al. 2010; Jwan Khidhr Rahman 2015). In the study by Jwan 

Khidhr Rahman (2015), total carbohydrate and water content decreased in wheat as proline 

content increased; whereas, in the garden pea total carbohydrate content decreased as water 

content and proline content increased. The decrease in total carbohydrate content in both wheat 

and garden pea were due to dust containing harmful metals which reduced the amount of food 

available to the plants. Furthermore, the proline content rise in both crops was found to be a 

Treatment 

0 g/m2 

15.8 g/m2 

78.8 g/m2 

158 g/m2 

2×158 g/m2 

315 g/m2 

Figure 2.6. 2016 growing season Nonmetric Multidimensional Scaling (NMS) ordination of 

soybean seed composition data for each treatment of 0, 15.8, 78.8, 158, 2×158, and 315 g/m2. 

Points in ordination space represent a replication of a treatment. 
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defense mechanism towards environmental stress (Jwan Khidhr Rahman 2015). Chauhan et al. 

(2010) established a similar response in wheat and mustard; however, the response triggered a 

decline in ascorbic acid and carotenoids. The ascorbic acid was utilized by the plant to combat 

oxidative stress while the carotenoids protected chlorophyll-protein complexes against photo-

oxidative stress (i.e. activation of oxygen) due to high exposure to ultraviolet irradiation 

(Chauhan et al. 2010). In both studies, dust deposited on plants contained chemical elements and 

may have prompted a defensive metabolic plant response. Furthermore, photo-oxidative stress is 

known to damage pigments, proteins, and lipids in the thylakoid membrane, which decreases 

photosynthetic efficiency (Szabó et al. 2005). In this study, no significant defense responses were 

observed in soybean seed composition and could be from the experimental dust not containing 

elements that are harmful to plant processes.  

Conclusion 

 This study examined impacts of dust on soybean production and seed quality. Production, 

as determined by chlorophyll content, leaf temperature, and yield were not significantly different 

among treatments and seed quality via seed composition of treatments, were not significantly 

different among treatments. The minimal effect that dust had on physiology and yield fills a 

knowledge gap in how increased deposition of road dust may affect soybean production and 

quality. Previous studies have reported increased leaf temperature, altered photosynthetic rate, 

and decreased yield or yield components. However, even at the highest dust amounts this study 

found no significant differences in those factors which in part could be attributed to the inert 

nature of the dust, in that no biologically harmful elements were found at the rates applied. 

Further studies should determine the constituents and potential harmful agents found in 

road dust and determine if those constituents impact soybean production and seed quality; as the 
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inert dust showed no impact on yield or seed components even with high application rates. In 

addition, dust was shown to be removed from leaves after a duration of time. Due to constraints 

this study was only able to apply dust one or two times per week, thus understanding the daily 

loads of dust to the plants should be investigated. Also, further investigations into soybean leaf 

temperature immediately following dust application may better quantify the impacts that dusts 

have on soybeans. 
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APPENDIX A. WEATHER VARIABLES FOR THE 2015 GROWING SEASON 

 

Month

/Day 

Max. 

Wind 

Speed 

(m/s) 

Rainfall 

(mm) 

Maximum 

Air Temp. 

(˚C) 

Minimum 

Air 

Temp. 

(˚C) 

Avg. 

Air 

Temp. 

(˚C) 

Departure 

from 

Normal 

Avg. Air 

Temp. 

(˚C) 

Total Solar 

Radiation 

(MJ/m2/day) 

Dust 

Applied 

5/18 18.9 1.78 4.1 0.4 2.29 -29.38 126.80  

19 9.90 0.00 13.7 -0.3 6.71 -24.95 678.86  

20 8.14 0.00 22.6 0.7 11.64 -20.58 650.05  

21 8.78 0.00 21.6 5.8 13.70 -18.52 678.67  

22 7.34 0.00 25.4 3.9 14.66 -17.56 663.24  

23 10.1 0.00 24.0 7.1 15.57 -17.21 641.86  

24 9.42 0.00 22.2 8.5 15.37 -17.41 309.98  

25 5.25 7.62 19.5 10.4 14.93 -17.85 234.33  

26 8.30 0.00 26.8 8.4 17.59 -15.74 546.95  

27 10.1 0.25 28.0 12.4 20.22 -13.11 605.76  

28 18.2 11.18 29.8 15.4 22.61 -10.72 366.32  

29 15.5 0.25 17.2 5.3 11.22 -22.67 394.00  

30 11.2 0.00 15.2 0.9 8.03 -25.86 710.87  

31 10.2 0.00 17.5 4.8 11.14 -22.75 398.07  

6/1 15.0 0.00 24.0 10.8 17.37 -17.08 387.30  

2 11.8 0.00 27.8 14.7 21.22 -13.23 314.63  

3 9.90 0.00 20.9 12.3 16.63 -17.81 158.41  

4 11.2 0.00 24.3 12.2 18.23 -16.78 522.57  

5 9.90 0.00 25.5 13.2 19.37 -15.63 457.70  

6 12.9 10.16 23.8 14.0 18.90 -16.11 280.61  

7 12.3 0.00 29.8 13.6 21.69 -13.87 665.09  

8 12.0 0.25 31.2 12.8 22.01 -13.55 632.78  

9 14.7 0.00 33.2 13.1 23.15 -12.41 578.88  

10 6.70 0.00 23.9 13.7 18.77 -16.79 442.55  

11 6.86 0.00 27.8 15.4 21.60 -14.51 658.51  

12 11.0 0.00 29.0 11.9 20.46 -15.65 705.56  

13 11.7 0.00 29.6 14.2 21.94 -14.18 628.32  

14 9.10 40.41 21.5 13.8 17.67 -18.45 382.28  

15 9.26 0.00 20.5 10.3 15.41 -21.26 557.53  

16 6.86 7.37 15.6 7.0 11.29 -25.38 170.29  

17 5.09 0.00 21.3 10.8 16.07 -20.60 385.43  

18 9.58 0.25 20.4 10.5 15.44 -21.23 612.32 ALL 

19 12.5 1.27 29.2 12.6 20.89 -16.34 596.10  

20 9.10 1.78 26.7 14.0 20.37 -16.86 467.25  

21 15.8 13.97 30.1 11.7 20.88 -16.34 662.33  



 

97 

 

Month

/Day 

Max. 

Wind 

Speed 

(m/s) 

Rainfall 

(mm) 

Maximum 

Air Temp. 

(˚C) 

Minimum 

Air 

Temp. 

(˚C) 

Avg. 

Air 

Temp. 

(˚C) 

Departure 

from 

Normal 

Avg. Air 

Temp. 

(˚C) 

Total Solar 

Radiation 

(MJ/m2/day) 

Dust 

Applied 

22 13.7 3.81 23.0 13.6 18.28 -18.95 499.49  

23 7.66 0.00 28.2 11.6 19.89 -17.89 645.34 ALL 

24 12.8 1.78 28.6 14.8 21.66 -16.12 491.49  

25 5.74 0.25 27.1 12.2 19.66 -18.12 613.15  

26 11.5 0.00 29.4 15.6 22.51 -15.27 656.82  

27 11.3 28.47 28.9 15.0 21.93 -15.85 439.68  

28 8.46 0.00 27.6 15.4 21.49 -16.29 632.00  

29 6.54 0.00 24.4 16.6 20.50 -17.83 309.71  

30 4.45 0.00 23.5 13.6 18.51 -19.82 311.44 ALL 

7/1 6.54 0.00 24.8 15.3 20.02 -18.31 509.73  

2 7.66 0.00 25.9 13.1 19.52 -18.81 533.42  

3 4.77 0.00 28.5 15.8 22.17 -16.17 508.46  

4 9.42 0.00 29.5 14.5 22.04 -16.29 557.73  

5 9.58 0.00 28.5 18.4 23.45 -14.88 397.38  

6 10.9 0.00 20.1 8.2 14.14 -24.75 540.32 ALL 

7 7.34 0.00 23.1 6.4 14.73 -24.16 711.49  

8 7.66 6.10 21.7 12.0 16.86 -22.03 368.41  

9 5.42 0.00 28.0 10.3 19.11 -19.78 663.19  

10 7.18 0.00 30.5 12.2 21.37 -17.52 657.39  

11 9.42 0.00 29.3 19.2 24.27 -14.62 539.09  

12 13.6 3.05 31.8 18.6 25.18 -13.71 531.89  

13 6.54 2.79 28.1 18.0 23.05 -15.84 495.97  

14 5.42 0.00 30.8 18.1 24.41 -14.48 613.15  

15 13.4 2.79 30.8 18.1 24.46 -14.43 350.20  

16 10.1 1.27 27.1 18.4 22.75 -16.69 359.96  

17 18.2 35.08 29.1 14.9 22.01 -17.44 571.48 ALL 

18 12.9 0.25 23.3 14.8 19.02 -20.43 564.28  

19 9.26 0.00 29.1 13.9 21.53 -17.91 686.64  

20 7.66 0.00 24.0 13.5 18.71 -20.73 685.38  

21 4.13 0.00 27.4 12.0 19.72 -19.73 570.38  

22 7.66 12.19 29.2 18.0 23.60 -15.85 632.23 ALL 

23 12.1 10.67 29.9 17.8 23.84 -15.60 624.68  

24 7.66 4.57 27.9 17.6 22.76 -16.69 559.33  

25 8.62 0.00 29.2 14.7 21.98 -17.47 423.06  

26 6.22 0.00 30.1 15.5 22.80 -16.65 656.95  

27 8.62 0.00 30.4 17.4 23.94 -15.50 604.67  

28 15.4 9.65 24.9 18.2 21.54 -17.91 611.05  
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Month

/Day 

Max. 

Wind 

Speed 

(m/s) 

Rainfall 

(mm) 

Maximum 

Air Temp. 

(˚C) 

Minimum 

Air 

Temp. 

(˚C) 

Avg. 

Air 

Temp. 

(˚C) 

Departure 

from 

Normal 

Avg. Air 

Temp. 

(˚C) 

Total Solar 

Radiation 

(MJ/m2/day) 

Dust 

Applied 

29 13.9 0.00 26.9 16.4 21.63 -17.81 600.34  

30 11.3 0.00 27.6 13.7 20.66 -18.78 621.60  

31 7.66 0.00 27.5 12.1 19.78 -19.66 660.07 ALL 

8/1 6.06 0.00 29.4 11.6 20.50 -18.94 605.69  

2 9.26 0.00 25.1 11.8 18.44 -21.01 598.88  

3 8.62 0.00 25.4 9.6 17.48 -21.96 668.68  

4 6.22 0.00 26.5 8.9 17.71 -21.73 646.70 ALL 

5 7.18 0.00 26.7 10.1 18.37 -21.08 456.14  

6 6.06 0.00 24.2 17.0 20.58 -18.86 235.45  

7 12.0 12.47 29.2 12.9 21.03 -17.86 574.06  

8 5.25 2.03 28.1 15.6 21.85 -17.04 537.56  

9 6.06 0.00 26.4 15.0 20.71 -18.18 495.41  

10 5.25 0.00 27.9 12.9 20.40 -18.49 615.90 ALL 

11 5.90 0.00 29.7 11.4 20.52 -18.37 609.49  

12 10.5 0.00 32.3 13.2 22.77 -16.12 563.17  

13 6.70 0.00 31.1 18.4 24.72 -14.17 327.74  

14 5.25 0.00 33.5 16.9 25.19 -13.15 555.99  

15 10.5 1.78 33.6 21.3 27.43 -10.91 563.63  

16 10.2 0.51 23.1 12.5 17.80 -20.54 212.63  

17 4.77 0.00 24.0 10.0 17.02 -21.32 485.44  

18 8.30 11.68 18.0 10.1 14.03 -24.30 108.12  

19 9.10 0.76 21.6 8.3 14.97 -22.81 408.00  

20 5.90 0.00 24.3 5.6 14.92 -22.85 591.29 ALL 

21 7.98 0.00 27.5 13.1 20.32 -17.46 424.00  

22 16.0 4.57 23.8 10.8 17.28 -20.50 122.52  

23 18.1 2.54 20.8 10.9 15.85 -21.38 502.88  

24 9.58 0.00 21.5 7.6 14.55 -22.67 583.57  

25 6.06 0.00 22.7 5.6 14.19 -23.03 566.35  

26 6.38 0.00 24.6 6.3 15.47 -21.75 504.02 ALL 

27 5.58 0.00 25.6 10.5 18.07 -18.60 388.23  

28 8.78 0.00 27.3 15.1 21.20 -15.47 456.32  

29 7.66 0.00 28.4 15.6 21.99 -14.68 369.83  

30 9.42 0.00 29.8 16.2 23.00 -13.12 455.20  

31 7.98 0.00 28.2 13.2 20.70 -15.41 341.95  

9/1 5.90 0.00 31.6 11.2 21.39 -14.72 512.31  

2 8.46 0.00 31.8 18.1 24.94 -10.62 504.36 ALL 

3 11.0 0.00 33.4 20.8 27.13 -8.43 436.58  
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Month

/Day 

Max. 

Wind 

Speed 

(m/s) 

Rainfall 

(mm) 

Maximum 

Air Temp. 

(˚C) 

Minimum 

Air 

Temp. 

(˚C) 

Avg. 

Air 

Temp. 

(˚C) 

Departure 

from 

Normal 

Avg. Air 

Temp. 

(˚C) 

Total Solar 

Radiation 

(MJ/m2/day) 

Dust 

Applied 

4 9.58 1.52 28.0 20.2 24.09 -10.91 185.34  

5 5.74 7.62 25.8 17.7 21.74 -13.26 152.55  

6 10.1 0.25 26.2 10.6 18.40 -16.61 257.49  

7 5.74 0.00 22.1 7.1 14.63 -19.82 246.14  

8 9.90 0.00 24.0 7.6 15.78 -18.67 509.06  

9 6.06 0.00 24.0 7.3 15.64 -18.25 332.16  

10 7.98 0.00 19.0 5.0 11.99 -21.90 407.54  

11 7.66 0.00 20.4 5.1 12.74 -21.15 471.53 ALL 

12 10.1 0.00 25.1 3.1 14.14 -19.19 459.93  

13 10.7 0.00 30.8 9.7 20.24 -13.09 478.47  

14 8.30 0.00 26.5 10.0 18.24 -14.54 404.30  

15 13.6 0.00 29.1 18.2 23.68 -9.10 348.20  

16 7.50 0.00 25.9 13.9 19.92 -12.30 358.16  

17 11.8 0.00 21.5 6.4 13.95 -18.28 293.35  

18 5.90 0.76 16.1 3.2 9.63 -22.60 140.45  

19 10.9 0.00 25.8 5.0 15.35 -16.31 428.17  

20 8.78 0.00 26.3 7.7 17.00 -14.67 442.05  

21 10.2 0.00 33.3 9.6 21.45 -9.67 439.77 ALL 

22 8.46 0.00 19.4 6.4 12.90 -18.21 297.18  

23 9.10 11.68 14.8 9.6 12.21 -18.90 71.57  

24 4.61 0.00 21.9 12.6 17.23 -13.33 143.46  

25 7.50 0.00 27.0 11.6 19.30 -11.26 316.83  

26 13.9 0.00 28.8 14.0 21.39 -8.61 401.10  

27 9.58 0.00 27.1 12.4 19.74 -10.27 303.91  

28 10.1 0.00 21.5 4.9 13.15 -16.29 356.31  

29 6.86 0.00 21.1 0.0 10.58 -18.87 403.45  

30 12.6 0.00 22.2 7.3 14.73 -14.71 324.36 HARVEST 

10/1 12.9 0.00 19.4 8.3 13.85 -15.04 214.44  
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APPENDIX B. WEATHER VARIABLES FOR THE 2016 GROWING SEASON 

 

Month

/Day 

Max. 

Wind 

Speed 

(m/s) 

Rainfall 

(mm) 

Maximum 

Air Temp. 

(˚C) 

Minimum 

Air 

Temp. 

(˚C) 

Avg. 

Air 

Temp. 

(˚C) 

Departure 

from 

Normal 

Avg. Air 

Temp. 

(˚C) 

Total Solar 

Radiation 

(MJ/m2/day) 

Dust 

Applied 

5/18 11.1 0.00 24.3 1.5 12.90 -18.77 664.44  

19 13.7 0.00 27.9 9.9 18.90 -12.77 603.22  

20 12.9 0.00 24.0 12.0 17.97 -14.26 328.56  

21 14.0 0.00 28.8 6.9 17.87 -14.35 685.10  

22 17.0 2.79 28.4 10.2 19.28 -12.95 355.64  

23 9.04 6.86 28.1 16.4 22.24 -10.54 688.37  

24 12.2 0.00 27.7 13.9 20.77 -12.01 662.27  

25 11.2 24.66 20.0 13.8 16.91 -15.87 229.80  

26 11.3 10.92 23.6 10.9 17.26 -16.08 537.57  

27 7.94 6.35 22.3 11.9 17.08 -16.25 288.41  

28 9.14 0.00 21.5 14.4 17.99 -15.35 409.10  

29 11.9 0.00 25.5 12.3 18.87 -15.02 492.01  

30 16.6 25.93 30.6 10.8 20.71 -13.18 520.60  

31 13.2 3.30 20.2 10.8 15.54 -18.35 512.74  

6/1 13.3 0.00 17.0 9.7 13.31 -21.13 417.20  

2 6.47 0.00 25.1 6.9 16.00 -18.45 613.85  

3 11.9 9.65 22.7 15.1 18.90 -15.54 322.33  

4 11.9 0.00 23.0 13.6 18.30 -16.70 450.12  

5 13.5 0.00 27.2 12.9 20.02 -14.99 621.93  

6 20.8 2.54 20.8 11.8 16.27 -18.73 472.64  

7 7.14 0.00 21.9 8.1 15.00 -20.56 673.39  

8 7.61 0.00 28.2 9.5 18.85 -16.71 643.93  

9 9.34 0.00 31.7 13.7 22.67 -12.89 649.69  

10 16.1 4.06 31.8 18.4 25.13 -10.43 630.45  

11 11.2 0.00 25.3 17.1 21.21 -14.91 541.84  

12 11.4 0.51 29.5 17.3 23.44 -12.68 397.96  

13 9.04 0.00 27.9 12.9 20.39 -15.72 670.82  

14 10.9 10.92 20.7 15.8 18.23 -17.89 170.64  

15 9.14 0.25 24.6 15.8 20.20 -16.47 373.32  

16 12.2 0.00 27.9 11.9 19.90 -16.77 632.54  

17 8.94 1.02 29.4 20.4 24.93 -11.74 534.99  

18 7.77 5.08 25.8 17.0 21.43 -15.24 371.00  

19 11.4 0.00 31.1 18.6 24.85 -12.37 596.56  

20 10.9 0.00 24.5 13.6 19.04 -18.18 710.15  

21 7.11 0.00 28.0 10.7 19.35 -17.87 661.80  
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Month

/Day 

Max. 

Wind 

Speed 

(m/s) 

Rainfall 

(mm) 

Maximum 

Air Temp. 

(˚C) 

Minimum 

Air 

Temp. 

(˚C) 

Avg. 

Air 

Temp. 

(˚C) 

Departure 

from 

Normal 

Avg. Air 

Temp. 

(˚C) 

Total Solar 

Radiation 

(MJ/m2/day) 

Dust 

Applied 

22 12.1 3.56 24.5 13.4 18.92 -18.31 489.04  

23 6.14 0.00 26.4 13.2 19.78 -18.00 709.56 ALL 

24 12.9 0.00 29.4 13.9 21.66 -16.12 603.63  

25 12.9 0.00 28.7 15.6 22.14 -15.64 553.59  

26 13.9 0.00 26.5 15.6 21.00 -16.78 639.98  

27 9.01 0.00 21.7 10.5 16.06 -21.72 589.81 2×158 

28 4.74 0.00 26.0 7.6 16.83 -20.95 718.80  

29 8.74 0.00 28.7 9.6 19.14 -19.19 669.28  

30 11.0 0.00 19.2 12.5 15.86 -22.48 581.18  

7/1 6.21 0.00 23.7 5.7 14.67 -23.67 690.18 ALL 

2 5.74 0.00 26.2 14.1 20.18 -18.15 435.73  

3 10.7 0.00 27.1 12.9 20.00 -18.33 676.71  

4 12.9 5.59 30.8 16.2 23.50 -14.84 607.05  

5 11.6 0.00 26.5 14.7 20.60 -17.74 437.23 2×158 

6 5.34 0.25 27.3 13.4 20.33 -18.56 500.39  

7 9.04 2.79 25.4 16.1 20.77 -18.12 396.82  

8 6.84 0.00 26.2 14.6 20.41 -18.48 595.90  

9 17.0 17.81 27.5 11.9 19.71 -19.18 490.11 ALL 

10 19.5 10.16 27.9 16.9 22.43 -16.46 525.69  

11 17.5 38.38 23.4 15.0 19.19 -19.70 147.41  

12 13.6 0.25 26.6 14.3 20.44 -18.45 633.92  

13 13.3 0.76 23.4 15.8 19.59 -19.30 314.41 2×158 

14 9.27 2.79 17.5 13.9 15.65 -23.24 202.82  

15 3.94 0.00 25.0 11.5 18.24 -20.65 645.29 ALL 

16 8.17 0.00 24.7 12.1 18.36 -21.09 450.43  

17 9.14 0.00 26.6 15.0 20.79 -18.66 623.51  

18 3.60 0.00 29.3 12.3 20.81 -18.63 628.87 2×158 

19 11.8 0.00 30.2 17.2 23.70 -15.75 581.81  

20 18.6 5.08 31.0 19.9 25.42 -14.03 381.41  

21 5.24 0.25 32.5 18.7 25.60 -13.84 582.73  

22 5.77 0.00 32.0 17.3 24.64 -14.81 528.64 ALL 

23 9.64 0.00 29.1 18.4 23.75 -15.69 337.32  

24 10.2 0.00 27.7 14.4 21.05 -18.40 619.46  

25 7.67 0.00 32.1 13.6 22.86 -16.59 644.33 2×158 

26 8.44 3.56 29.5 18.1 23.78 -15.67 390.58  

27 9.07 0.25 25.3 16.8 21.05 -18.39 602.52  

28 7.14 0.00 26.7 14.7 20.70 -18.75 601.22 ALL 
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Month

/Day 

Max. 

Wind 

Speed 

(m/s) 

Rainfall 

(mm) 

Maximum 

Air Temp. 

(˚C) 

Minimum 

Air 

Temp. 

(˚C) 

Avg. 

Air 

Temp. 

(˚C) 

Departure 

from 

Normal 

Avg. Air 

Temp. 

(˚C) 

Total Solar 

Radiation 

(MJ/m2/day) 

Dust 

Applied 

29 4.50 0.00 27.5 12.5 19.96 -19.48 601.13  

30 8.21 0.00 27.7 16.1 21.87 -17.57 492.21  

31 9.51 0.00 29.7 15.5 22.61 -16.83 602.75  

8/1 10.5 0.00 30.4 21.0 25.70 -13.74 498.46 2×158 

2 5.04 0.00 31.2 15.9 23.53 -15.91 633.08  

3 12.0 1.52 31.5 14.1 22.81 -16.64 545.93  

4 12.5 0.51 26.8 13.8 20.28 -19.16 555.42  

5 6.84 0.00 26.1 10.9 18.53 -20.92 555.25 ALL 

6 7.14 0.00 28.1 10.9 19.49 -19.95 605.91  

7 5.27 0.00 29.2 13.4 21.28 -17.61 613.95  

8 10.6 0.00 28.6 13.1 20.86 -18.03 533.56 2×158 

9 7.34 0.00 29.5 15.2 22.33 -16.56 582.28  

10 10.0 13.97 25.6 15.0 20.32 -18.57 251.41  

11 6.27 0.25 27.3 18.8 23.06 -15.83 381.03  

12 7.84 0.00 27.6 15.8 21.67 -17.22 543.13 ALL 

13 10.3 0.00 27.6 12.4 19.99 -18.90 488.68  

14 4.91 0.00 28.4 11.2 19.80 -18.54 585.22  

15 9.41 0.00 26.2 14.7 20.47 -17.86 419.32 2×158 

16 7.14 0.76 28.4 12.7 20.59 -17.74 382.55  

17 6.14 0.00 31.2 12.4 21.82 -16.52 573.57  

18 11.2 6.86 26.9 14.5 20.68 -17.66 275.72  

19 8.37 0.00 24.7 12.5 18.62 -19.16 511.95 ALL 

20 9.07 0.00 21.5 9.9 15.70 -22.08 431.68  

21 7.47 0.00 26.5 6.2 16.35 -21.43 562.63  

22 8.27 0.00 29.4 12.0 20.67 -17.11 550.69 2×158 

23 12.8 0.00 33.6 18.8 26.22 -11.00 501.82  

24 11.0 0.00 24.9 11.3 18.09 -19.14 478.89  

25 10.3 0.00 21.9 10.6 16.22 -21.01 267.01 ALL 

26 8.34 0.00 25.5 6.3 15.92 -21.30 390.82  

27 8.47 2.54 25.1 14.9 19.99 -16.68 269.21  

28 10.4 0.00 31.4 14.1 22.72 -13.95 480.56  

29 8.04 0.00 28.0 12.0 20.04 -16.63 419.48 2×158 

30 4.40 0.00 27.3 8.3 17.79 -18.32 525.67  

31 6.51 0.00 26.3 9.9 18.09 -18.03 509.73  

9/1 8.94 0.00 28.0 10.3 19.15 -16.96 481.45 ALL 

2 13.8 0.00 26.8 14.0 20.44 -15.12 451.47  

3 13.7 0.00 29.7 17.0 23.33 -12.23 441.45  
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Month

/Day 

Max. 

Wind 

Speed 

(m/s) 

Rainfall 

(mm) 

Maximum 

Air Temp. 

(˚C) 

Minimum 

Air 

Temp. 

(˚C) 

Avg. 

Air 

Temp. 

(˚C) 

Departure 

from 

Normal 

Avg. Air 

Temp. 

(˚C) 

Total Solar 

Radiation 

(MJ/m2/day) 

Dust 

Applied 

4 9.51 4.57 25.6 16.0 20.81 -14.19 154.11  

5 8.24 0.51 18.6 14.1 16.38 -18.62 143.61 2×158 

6 7.67 0.00 23.0 11.6 17.28 -17.72 390.83  

7 11.6 22.63 25.8 9.1 17.45 -17.00 276.48  

8 7.81 0.25 25.1 10.2 17.63 -16.82 447.95 ALL 

9 8.91 0.00 21.9 9.7 15.81 -18.08 319.05  

10 8.14 0.00 22.7 9.3 15.96 -17.93 435.17  

11 9.04 0.00 29.4 9.7 19.53 -14.36 472.76  

12 12.1 0.00 19.8 9.3 14.57 -18.76 318.64 2×158 

13 8.04 0.00 15.6 1.5 8.56 -24.77 338.21  

14 10.4 0.00 20.8 -0.2 10.34 -22.43 443.37 ALL 

15 8.67 0.00 22.9 12.3 17.57 -15.21 158.76  

16 6.67 9.14 19.9 12.7 16.31 -15.91 154.79  

17 6.74 0.00 24.6 8.1 16.35 -15.87 460.82  

18 11.4 0.00 25.2 10.2 17.69 -14.54 196.59 2×158 

19 12.1 0.00 25.6 8.3 16.92 -14.75 448.37  

20 5.44 6.10 20.8 7.0 13.89 -17.78 135.34  

21 11.7 0.00 23.0 8.8 15.91 -15.21 343.38  

22 10.1 0.00 19.5 9.0 14.25 -16.87 293.47 ALL 

23 8.71 17.04 18.2 13.6 15.89 -15.23 85.53  

24 14.2 0.25 25.8 17.6 21.66 -8.90 184.48  

25 17.0 0.00 18.6 10.0 14.30 -16.26 171.55  

26 16.5 0.00 19.2 4.8 11.96 -18.04 426.37 2×158 

27 10.2 0.00 18.7 3.5 11.09 -18.91 405.90  

28 6.17 0.00 17.7 3.8 10.78 -18.67 316.69  

29 8.27 0.00 19.8 3.0 11.40 -18.04 350.14  

30 10.0 0.00 22.2 5.2 13.73 -15.72 338.36  

10/1 8.47 0.00 23.3 7.9 15.60 -13.29 316.60  

2 10.9 0.00 26.1 12.7 19.40 -9.49 303.97  

3 14.6 0.25 26.0 13.3 19.64 -8.70 352.98  

4 14.9 16.28 18.9 13.1 16.03 -12.31 66.11  

5 16.4 0.25 13.1 4.7 8.89 -18.89 189.18  

6 9.17 0.00 10.8 0.7 5.74 -22.04 321.48  

7 11.7 0.00 6.3 -0.1 3.11 -24.11 145.07  

8 6.54 0.00 9.7 -0.8 4.43 -22.80 273.14 HARVEST 
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APPENDIX C. 2015 WEATHER VARIABLES AND DATES OF DUST APPLICATIONS 

AND IN SITU SOYBEAN MEASUREMENTS
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APPENDIX D. 2016 WEATHER VARIABLES AND DATES OF DUST APPLICATION 

AND IN SITU SOYBEAN MEASUREMENTS 
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APPENDIX E. 2015 FIELD PLOT DESIGN 
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APPENDIX F. 2016 FIELD PLOT DESIGN 

 

 


