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ABSTRACT 

The biological variation in feed efficiency is regulated by multiple physiological 

mechanisms relevant to energy use in livestock species. The current study examined the 

associations between body composition, feeding behavior, linear body measurements and plasma 

metabolites with different measures of feed efficiency in growing heifers, finishing steers and 

mature pregnant cows. Our findings indicate that inclusion of body size measurements in 

prediction models of gain and intake improved the models’ accuracy and might account important 

differences related to eating capacity. Among the traits evaluated, feeding behavior possessed 

stronger associations with efficiency measures and displayed differences between efficient and 

inefficient animals. The associations between the traits studied herein varied across the efficiency 

measures used and beef cattle stage of production. Thus, selection criteria and performance 

evaluation based on efficiency measures should account for these traits, combined with animal’s 

stage of production and system’s outputs of interest. 
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1. INTRODUCTION AND LITERATURE REVIEW 

1.1.  Introduction 

The origin of cattle in North America is generally linked to Christopher Columbus’ second 

expedition in the 15th century. For the first 400 years that cattle were in the continent, herd size 

was relatively small and feeding practices relied solely on grazing of natural forages, while the 

animals were primarily used for milk and work-force (Corah, 2008). However, with the 

development of the regions in the United States territory, as reviewed by Ball (1998), approaches 

started to change in a feeding management perspective. Hence, the earliest mention of corn feeding 

and cattle “fattening” in historical proceedings appeared later in the 19th century (reviewed in 

Corah, 2008). Undoubtedly, the first steps of the beef cattle sector were not shaped into the current 

modern agricultural system, which among others involves maximizing reproductive and 

productive efficiencies, finishing animals with a grain-based diet and shortening the production 

cycle, until the middle of the 20th century. By that time, researchers started to investigate the effects 

of grain-based finishing diets and quickly realized the positive effects of feeding an increased 

proportion of grains, more specifically corn, into final body weights,  average daily gain (ADG) 

and improved carcass quality (reviewed in Corah, 2008).  

The current model of beef production in the United States is a highly specialized system 

that is diversified with various types of operations, which enables different possible paths to be 

taken between calving and slaughter. The beef cycle starts with the cow-calf producer, who 

maintains a breeding herd of cows typically maintained on pasture and/or fed forages year round. 

Calves are weaned at 6 to 10 months of age, when weighing on average between 200 to 300 kg. 

The calves weaned have multiple production routes that can be followed and combined differently: 

1) calves may be sent to a backgrounder or stocker, who will continue to graze them until they are 
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12 to 16 months old; 2) calves may be sold at an auction market; or 3) in the case of heifer calves, 

they may also be kept by the cow-calf producer who wishes to use them as replacement for the 

cow herd; 4) some calves do not go through the auction market and can go to the feedlot (finishing 

phase) straight from the cow-calf producer, or the backgrounder/stocker. Thus, the feedlot phase 

can last from an average of 4 to 6 months, and by the end of it, market weights are typically 

between 550 to 630 kg (North American Meat Institute, 2014).  

Furthermore, cattle production is one of the most important industries in the United States. 

In 2015, the Economic Research Service (ERS) reported that this segment of the agricultural sector 

accounted for $78.2 billion dollars in cash receipts and was the largest cash receipt forecasted, 

representing 21% of the profits from agricultural commodities (USDA, 2016). It is interesting to 

note that with the advance of the beef cattle industry, and taking into account the importance of 

this sector to the overall economics of the United States, there was also a concomitant development 

of the commercial cattle feeding industry. Indeed, this industry also represents a substantial portion 

in the context of agricultural commodities. In 2015, corn production yielded 12% of total cash 

receipts and was the second largest cash receipt in the agricultural sector (USDA, 2016). Therefore, 

it is sensible to recognize the importance to consider those two segments of agricultural production 

together when establishing beef cattle management strategies to maximize production and overall 

profits. Especially when taking into account that feed is a major expense in all livestock production 

systems, and accounting for up to 70% of production costs in beef cattle enterprises (Herd et al., 

1998). Certainly, the future of the beef industry, as wisely concluded by Corah (2008): “will be 

dependent on our ability to continue producing high-quality beef for a global market through 

effective use of genetics, new technologies, and economic management strategies”. 
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1.2.  Feed efficiency and the beef industry 

Even though beef production in the United States is a highly diversified sector with 

multiple segments, the division of this industry can be roughly divided into two production sectors: 

cow-calf operations and feedlot cattle feeding. Regardless of stage of production, the provision of 

feed constitutes the largest expense to agricultural production systems. It should be noted, 

however, that the cow-calf herd might account for 65 to 85% of overall feed costs in the production 

system (Montaño-Bermudez et al., 1990). This relationship becomes even more important when 

considering feedlot cattle, because the high cost of feeding means that profitability depends on the 

efficient and productive use of feed for maintenance and growth with minimal excesses and losses 

(Nkrumah et al., 2006). In fact, feed efficiency becomes the most important factor that a feedlot 

can control to gain an advantage over the competition (Lee, 1993). 

Additionally, livestock production systems are one of the largest users of agricultural lands 

(Thornton, 2010). Thus, there are relevant environmental implications associated with this 

production system. The statistical estimation and reports of the contribution of livestock 

production to global greenhouse gas emissions can often vary, but the FAO (2006) estimated that 

livestock production contributed 18% of all emissions. With the expectations of an increase in the 

world population, and consequently a higher demand for animal products, there are also reports 

suggesting that growth in the livestock sector may contribute to increases in greenhouse gas 

concentrations in the atmosphere (FAO, 2013) through the waste product of animals.  

Therefore, optimizing the production of animal products in relation to the amount of 

feedstuffs fed to animals would bring significant economic (Arthur and Herd, 2005) and 

environmental (Nkrumah et al., 2006) benefits to the livestock sector. Taking into account the 

economic interest in feed efficiency, this trait has been a hot topic and a tremendous focus of 



 

4 

attention for producers, researchers and companies in the agriculture business within the past few 

years. There are several factors that can influence feed efficiency including age, sex, type of diet, 

breed, production level, environmental temperature, the use of growth promotants, physical 

activity, and many other management and environmental variables (NRC, 2016). The 

improvement of cattle feed efficiency can be accomplished through management practices and 

decisions, that can vary from: handling practices (Grandin, 1998); housing facilities and 

environmental conditions (Grandin, 2016) to dietary manipulation with the incorporation of feed 

additives in the diets and anabolic implants (Song and Choi, 2001); as well as genetic selection for 

improved efficiency (Arthur and Herd, 2005), which may often rely on measures of feed 

efficiency. 

1.3.  Feed additives and feed efficiency 

The use of feed additives, such as ionophores, can improve feed efficiency and body weight 

gain by altering rumen fermentation patterns. These compounds disrupt the ion concentration 

gradient across microorganisms’ membranes, causing them to enter a futile ion cycle. Briefly, the 

disruption of the ion concentration prevents the microorganism from maintaining normal 

metabolism and causes the microorganism to expend extra energy. Therefore, these compounds 

function by selecting against or negatively affecting the metabolism of many gram-positive rumen 

bacteria (i.e., Ruminococcus albus, R. flavefaciens, Eubacterium ruminantium) and protozoa that 

proposedly decrease efficiency of digestion in the rumen. By controlling certain protozoa and 

bacteria in the rumen, less methane is generated (Guan et al., 2006) and ruminal protein breakdown 

is decreased, which results in decreased ammonia production. The shift in ruminal bacteria 

population and metabolism allows more efficient bacteria to benefit through an increase in the 
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amount of propionic acid and a decrease in the production of acetic acid and lactic acid. Therefore, 

cattle experience an increase in the overall energy status and use feed resources more efficiently.  

Certain β-adrenoreceptor agonists (β-agonists) are also labeled for use as feed additives in 

food-producing animals in the United States to improve feed efficiency, increase growth rate, alter 

adipose accretion, and increase muscle mass (Johnson and Chung, 2007). In a simplified manner, 

their mode of action is to bind to receptors on adipocytes, redirect the metabolism of fat and reduce 

fat deposition. Consequently, less fat is produced and less fat is stored in the carcass. The 

compounds bind to receptors on muscle cells, redirect, and increase the size of muscle fibers. 

Muscle fiber size replaces some of the weight normally found from fat and the total carcass 

contains a higher percentage lean muscle. These actions reduce the energy supplied by the feed to 

produce weight gain. With more weight produced by the same level of feed intake, feed efficiency 

is improved (Johnson et al., 2014).  

Despite the addition of additives or implants into finishing strategies as ways to improve 

feed efficiency and maximize outputs, the selection for animals with enhanced metabolic 

efficiencies, which is based on the known biological variation between animals (Johnson et al., 

2003), also emerges as a viable option to improve feed efficiency.  As proposed by Archer et al. 

(1999), this improvement in efficiency of energy and feed use in cattle could be achieved using 

many different measures of feed efficiency.   

1.4. Diet types and feed efficiency 

There are several factors known to contribute, influence and that might potentially shift 

how nutrients are used in cattle; a couple of examples are the different breed types (Schenkel et 

al., 2004), sex (Elzo et al., 2009; Nkrumah et al., 2004), age (Carstens et al., 1989), physiological 

stage (Johnson et al., 1990), and production level (NRC, 2016). Furthermore, another relevant 
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point is the dietary treatment of the animals. It is important to note that the relationship between 

diet types (i.e., forage-based, concentrate-based), digestibility and feed efficiency is not well 

characterized in cattle (Russell et al., 2016) and might bring significant differences to efficiency 

of nutrient utilization. In fact, it is suggested that animals may perform differently depending on 

the diet provided (Goonewardene et al., 2004).  

For instance, Meyer et al. (2008), while evaluating females on a concentrate diet found 

significant differences related to feed efficiency phenotypes, measured through residual feed 

intake (RFI), but no differences were found when the cows were re-evaluated on a pasture-based 

system. Moreover, Fan et al. (1995), when evaluating bulls on concentrate vs. roughage diets, 

found that bulls fed a higher roughage diet had a negative RFI when compared to bulls fed a more 

concentrate diet. Overall, the lack of standard diet not only represents a concern when evaluating 

animals, but also a limitation for comparison across studies that should be carefully taken into 

account prior to any feed efficiency evaluation.  

1.5. Measures of feed efficiency 

Efficiency of feed utilization can be assessed through a myriad of different measurements 

(Swanson and Miller, 2008). Nevertheless, one of the key factors regulating the outcome of most 

of the research involving feed efficiency is the definition of the term feed efficiency (Freetly, 

2014). Different methods will most likely have different outcomes, which could be advantageous 

or disadvantageous, depending on the portion of the beef cycle. As reviewed by Swanson and 

Miller (2008), it can be challenging to define specific biological or economic inputs and outputs. 

Thus, care must be taken in how these values are interpreted and used in developing nutrition or 

animal breeding programs. Additionally, there are some practical limitations to determining any 

measure of feed efficiency, since the assessment can be highly laborious, time consuming (Herd 



 

7 

et al., 2003), and can be an expensive method if taking into account the equipment and labor needed 

(Moore et al., 2009). Regardless of the efficiency measure, the biological basis associated with the 

variation in efficiency of feed utilization has not been completely elucidated in livestock species. 

A better understanding of the biological basis associated with feed efficiency might result in the 

improvement of the prediction of correlated responses to selection, the identification of traits that 

are less expensive to measure in comparison to feed intake and efficiency, and finally, it might 

suggest alternative, non-genetic methods, which might be useful tools to manipulate metabolism 

in beef cattle (Montanholi, 2007; Swanson and Miller, 2008).  

1.5.1. Gross efficiency 

Gross efficiency is one of the most broadly used measure of feed efficiency and is highly 

used in feedlot operations. This measure can simply be calculated through the ratio of dry matter 

intake (DMI) to live weight gain (gain to feed, G:F) or its inverse (feed conversion ratio, FCR or 

F:G) over a defined period of growth (Archer et al., 1999; Swanson and Miller, 2008).  Therefore, 

a more feed efficient animal would have higher G:F ratio value, which would indicate more gain 

per unit of required feed. Gross efficiency is a satisfactory index for monitoring feedlot cattle 

performance and is widely used in the beef industry (Schenkel et al., 2004). However, even though 

selection for improved gross efficiency may improve performance during growing and finishing 

phases of beef cattle production, it may not necessarily improve the profitability of the entire 

production system (Arthur et al., 2001). It has been suggested that this measure may have 

detrimental effects on overall cow efficiency when used as a selection tool for the herd (Archer et 

al., 1999). This is mostly related to the fact that selecting for improved gross efficiency may result 

in an increase in genetic merit for growth, leading to an increased mature cow size, which could 

ultimately increase feed costs for the cow herd (Swanson and Miller, 2008).  
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1.5.2. Residual gain 

Residual gain (RG) is an alternative measurement to quantify efficiency of feed utilization 

and has been proposed to be used in beef cattle by Koch et al. (1963). This measure is defined and 

calculated by the difference between actual gain (i.e. average daily gain, ADG) and the predicted 

gain, which is performed through regression analysis within the test population, taking into account 

animals’ body weight (i.e. estimation of background energy requirements), feed intake (Koch et 

al., 1963) and body composition (Freetly, 2014). Thus, a feed efficient animal would have a higher 

RG value, as it gained more live body weight than what it was predicted for its weight, intake and 

carcass composition. However, similarly to the gross efficiency approach, this measure can be 

highly correlated to growth (Crowley et al., 2010).  

1.5.3. Residual feed intake 

Residual feed intake represents the difference between average feed intake and expected 

feed intake, as estimated by an animal’s background energy requirements (Koch et al., 1963). Most 

studies have calculated expected feed intake by regression of actual feed intake on metabolic body 

weight, ADG (Koch et al., 1963), and carcass characteristics (Montanholi et al., 2009). From this 

difference, an animal with a low RFI is considered to be feed efficient, as it ate less than their 

counterparts eat, but still produced the same outputs. Some of the benefits are that RFI is 

phenotypically independent of the production traits used in the calculation, relatively repeatable, 

with a moderate heritability (Swanson and Miller, 2008). These characteristics that altogether, 

suggest that RFI has the ability to be used in selection programs (Crowley et al., 2011). Therefore, 

this measure has gained increased usage in research and to some level, application by the beef 

industry (i.e. USDA Feed Efficiency Project, United States; The 2014 LSARP project, Canada; 

Australian Angus Association, Australia).   
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Additionally, since RFI is considered not to be highly correlated to the level of production 

(Richardson et al., 2001), it might also represent an interesting trait for studying the biological 

factors associated with feed efficiency. Within the past two decades, studies with the objective of 

understanding the underlying mechanisms of feed efficiency through RFI are abundant. A few 

examples of biological processes related to RFI that may contribute to the indirect assessment of 

RFI include: measurement of heart rate (Munro et al., 2017), stress responses (Montanholi et al., 

2010; Munro et al., 2017) hepatic and small intestinal micro-architecture (Montanholi et al., 2013; 

Montanholi et al., 2017) and metabolic profile of blood (Gonano et al., 2014; Montanholi et al., 

2017).  

1.5.4. Cow/calf efficiency 

Cow/calf efficiency has been used as an approach to examine efficiency of beef production 

(Jenkins and Ferrell, 1994). This measure is proposed to be a better measure of production system 

efficiency than the other measures of biological efficiency and is thought to be an useful indicator 

to verify the phenotypic variation in the beef herd (Archer et al., 1999). The calculation of this 

measure involves measuring the total feed intake, both for the dam and the progeny, over an entire 

production cycle from weaning of one calf to the weaning of another calf (Jenkins and Ferrell, 

1994). This measure is expressed in relation to the weight of the calf weaned to express the 

efficiency of the cow/calf unit. As reviewed by Archer et al. (1999) and Swanson and Miller 

(2008), there are problems associated with this measure, which include the fact that the intake of 

the progeny is only measured until the weaning period, leaving a lack of information regarding the 

performance from weaning until slaughter or if the animals are to be used as replacements in the 

cow herd, the genetic merit from the sire to both cow and calf, as well as huge limitations from a 
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practical standpoint requiring considerable cost and labor to evaluate these parameters for an 

extended time period.  

1.6.  Metabolic aspects of feed efficiency 

The biological processes involved in maintenance and growth are energetically divergent 

and are dependent on the metabolic demand (Kleiber, 1961) and physiological stage of an animal 

(NRC, 2016). Basal metabolism is defined as “the result of chemical change that occurs in the 

cells of an animal in the fasting and resting state using just enough energy to maintain vital cellular 

activity, respiration, and circulation” (NRC, 1981). Such tasks require constant energy even when 

the organism is at a resting stage (Brody, 1945). The successful meeting of maintenance 

requirements is only viable with energy that comes from dietary intake. Consequently, imbalances 

between energy use and need are a marked cause of weight gain, when there is exceeding energy 

for maintenance that can be devoted to growth processes; or weight loss, when there is not enough 

energy provided for maintenance, forcing the body to use its energy reserves (i.e., muscle and fat) 

to provide the proper functioning of vital functions.  

Metabolizable energy (ME) becomes a very important concept in the overall understanding 

of the metabolic aspect of feed efficiency, since ME is the portion of food energy which is available 

for metabolic processes in a living animal (Armsby, 1917). This can be understood as the 

subtraction of energy losses (i.e., feces, urine, and gaseous products of digestion) from the total 

gross energy (Baldwin et al., 1980). Furthermore, ME supplied to the animals at a maintenance 

level can be divided into net energy for maintenance, which will be the energy available for 

function of vital organs in the body, and heat increment for maintenance, which will be the energy 

associated with expenditures from digestion and assimilation processes (Baldwin et al., 1980). 

Furthermore, the maintenance requirements can be divided into two major groups: the first, service 
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functions, which are responsible for respiration, functioning of the heart, lungs, kidney, liver, and 

other vital organs, as well as removal of wastes. Energetically, this accounts for 36 to 50% of total 

basal energy expenditure; and the second, cellular maintenance functions, that can be further 

divided into protein turnover, lipid turnover, and ion transport. This represents the remaining 40 

to 56% of basal energy requirements (Baldwin et al., 1980). Noteworthy, there are studies that 

suggest the partition of energy towards maintenance and production can vary greatly among 

animals because of individual variation in relation to maintenance requirements (Johnson et al., 

2003), as well as physiological stage (Johnson et al., 1990). Moreover, one of the possible 

explanations for the basis of the biological differences regarding efficiency of energy use in beef 

cattle is the assumption that feed efficient animals might potentially have lower energy 

requirements for maintenance requirements (Herd and Arthur, 2009).   

1.7.  Potential sources of variation in feed efficiency 

Discovering the traits that are responsible for phenotypic differences in efficiency of feed 

utilization could lead not only to the identification of indirect markers of feed efficiency, but also 

aid in the understanding of the biological basis of this phenomenon. Historically, the study of feed 

efficiency traits has suggested that there is not a single mechanism controlling the phenotypic 

differences in feed efficiency (Oddy, 1999), and because most feed efficiency traits are correlated 

with production traits (i.e., growth; Archer et al., 1999), it has been difficult to investigate the 

physiological mechanisms underlying this variation.  
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Figure 1.1. Physiological mechanisms proposed to contribute in the biological variations of 

feed efficiency, measured through RFI. Adapted from Richardson and Herd (2004). 

 

Richardson and Herd (2004), while summarizing a series of experiments in beef cattle 

divergently selected for RFI, proposed that 73% of the variation of feed efficiency, measured 

through RFI, could be explained by processes involving animal feeding patterns and activity, body 

composition, heat associated with metabolic processes, digestibility and protein turnover, tissue 

metabolism and stress (Figure 1.1). Notably, there are a large number of processes that could be 

contributing to the variation in feed efficiency. However, the following topics reviewed within this 

Chapter will focus on traits that are emphasized and measured in the experiments conducted for 

this thesis (Chapters 2 and 3).    

1.7.1. Animal size 

It is well known that body size, in mature and growing phases, has both biological and 

economic effects on the efficiency of animal production (Dickerson, 1978). In fact, much research 
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has been conducted to investigate and potentially determine what the optimal animal size is to 

achieve maximum biological or economic efficiency (Johnson et al., 2010). Despite the fact that 

feed intake can be highly influenced by animal size (NRC, 1987), linear measurements of body 

dimensions may also provide insight into changes in maintenance energy requirements and surface 

area and gut capacity (Kleiber, 1961). Additionally, measures of the animal’s girth have been 

shown to have strong correlations with body weight variation (Heinrichs et al., 1992), since these 

measurements (i.e. heart girth and mid-girth) can be greatly influenced by gastrointestinal tract fill 

(Wood et al., 2014).  

Wood et al. (2014) found, that in mature pregnant cows, hip width and body length were 

positively correlated with dry matter intake and mid-point body weight. Moreover, RFI was 

negatively correlated with body length, while G:F was negatively correlated with heart girth, mid-

girth, and flank girth. It is interesting to note that Basarab et al. (2003), Kelly et al. (2010), and 

Wood et al. (2014) did not find differences regarding animal height (i.e. hip height) across different 

RFI phenotypes in growing animals. This is suggestive that, in the context of feed efficiency, 

relevant body measurements are associated with areas that reflect internal organ fill and capacity, 

such as measurements of girth.     

In the current scenario of feed efficiency research, differences in gross measurements of 

animal size (i.e. linear body measurements) are not being emphasized even though previous studies 

suggest that linear measurements may be associated with the different efficiency phenotypes 

(Wood, 2013). Although it becomes very clear that the biological basis of feed efficiency is more 

complex than animal size and dimensions (Herd et al., 2004), the evaluation of these parameters 

might assist in the understanding of the biological variation associated with efficiency of feed 



 

14 

utilization. Thus, body measurements might not only aid in identifying superior phenotypes, but 

might also aid in the enhancement of gain and intake prediction models.   

1.7.2. Feeding behavior 

Animal behavioral responses can alter physical activity and thus influence total energy 

expenditure and feed efficiency (Susenbeth et al., 1998). In fact, according to Richardson and Herd 

(2004), feeding patterns and activity could account for up to 12% of the variation in RFI (Figure 

1.1). Many studies indicate distinguished behavioral patterns across cattle with differing feed 

efficiency (Nkrumah et al., 2006; Nkrumah et al., 2007; Kelly et al., 2010; Montanholi et al., 2010). 

Generally, it has been shown that more feed efficient (low-RFI) cattle typically engage in less daily 

feeding activity (Golden et al., 2008), eat smaller meals (Montanholi et al., 2010) at a slower pace 

(Kelly et al., 2010), and visit the feeder less often (Kelly et al., 2010; Montanholi et al., 2010) 

during the feeding test. Moreover, studies also show that more feed efficient animals typically 

engage in 22% fewer daily feeding events compared with less efficient animals (Nkrumah et al., 

2006; Nkrumah et al., 2007; Kelly et al., 2010). Moreover, it is suggested that feed efficient cattle 

prefer to eat at the time fresh feed is offered (King et al., 2016). The use of pedometers has also 

indicated that feed efficient cattle spend more time ruminating than feed inefficient cattle (Herd, 

2009).  

This evidence indicates the possibility of optimizing the screening for feed efficiency by 

including feeding and social behavior traits into selection tools and/or management strategies. 

Thus, the evaluation of feeding behavior in the context of feed efficiency may not only constitute 

another possibility to identify superior feed efficient phenotypes, but also become a trait that 

potentially could be used to indirectly assess feed efficiency. 
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1.7.3. Metabolic markers of efficiency 

The biological basis associated with feed efficiency in beef cattle, reported mostly through 

the measurement of RFI, have been intensively investigated over the last few years. Moreover, 

much attention has been given to plasma analytes (i.e. metabolic hormones, enzymes and 

metabolites, mediators of nutrient uptake, inhibitors of tissue catabolism) that are associated with 

energetically demanding functions of the whole body or organ systems and that might reflect the 

differences in efficiency of feed utilization (Blaxter, 1962). Therefore, a myriad of analytes have 

been examined to identify potential physiological markers for feed efficiency, while also 

improving the understanding of the metabolic basis of efficiency of feed utilization in cattle 

(Basarab et al., 2003; Nkrumah et al., 2007; Kelly et al., 2010; Gonano et al., 2014). Metabolites 

such as glucose, urea and non-esterified fatty acids (NEFA), which are respectively involved in 

carbohydrate, protein and lipid metabolism, might reveal basic aspects of the biological differences 

in feed efficiency, since their concentrations are highly dependent on level of dry matter intake 

(Yambayamba et al., 1996), diet composition and productive priorities of the animal (Huntington, 

1986), which are important players when considering the energetic basis of efficiency of feed 

utilization.  

1.7.3.1.  Plasma urea-N 

Over the years, attention has been given to urea-N, which is the end-product of nitrogen 

metabolism in ruminants and its potential to explain and reflect some of the variation in feed 

efficiency. Notably, plasma urea-N (PUN) could be associated with skeletal muscle mass (Herd et 

al., 2004), rate of protein turnover and differences in body composition, as well as nutrient and 

energy losses (Swanson and Miller, 2008).  
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It is important to understand that, in ruminants, the movements of nitrogen across the gut 

can be more than double its intake (Lapierre and Lobley, 2001) and the process of nitrogen 

recycling, through urea, can have major metabolic expenses (Egan et al., 1984). Furthermore, one 

of the possible ways to analyze the importance of PUN is to focus on the recycling process of urea. 

Briefly, hepatic urea-N synthesis has the fates of 1) excretion in the urine, or 2) recycling back to 

the gastrointestinal tract (GIT) via salivary secretions or by the direct transfer across the epithelial 

tissues of the digestive tract (Reynolds and Kristensen, 2008). It is also known that energy 

expenditure by the liver increases after eating or with a sustained increase in energy intake 

(Huntington and McBride, 1987). Increases in activity of substrate cycles (i.e. ureagenesis, 

gluconeogenesis) are dependent on the level of intake (Sarraseca et al., 1998) and may be 

responsible for increases in energy expenditure by the ruminant GIT (Webster et al., 1975). 

Notably, urea synthesis is reported to account for 25% of energy expenditure in the liver 

(Huntington and Reynolds, 1987). Since urea is not used by the portal-drained viscera, clearing 

urea from the blood is also energetically demanding, but it allows another opportunity for 

ruminants to salvage the nitrogen in urea through bacterial urease and formation of other 

nitrogenous compounds (Huntington and McBride, 1987). In this context, it is sensible to 

hypothesize that energetically, it may be more efficient to use nitrogen from the first pass through 

the GIT rather than recycle and transport it in the form of urea. However, the extent of this energy 

expenditure also tends to vary with the physiological state of the animal. Thus, the magnitude of 

urea-N recycling to the GIT and its utilization for anabolic purposes is regulated by several dietary 

and ruminal factors, and perhaps by biological factors influencing feed efficiency. 

Several researchers have reported different outcomes on studies regarding PUN studying 

the association between PUN and feed efficiency. Richardson et al. (2004) reported that feed 
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efficient steers tended to have lower concentrations of PUN in the weaning phase, but when the 

same steers approached the finishing phase, a higher concentration of PUN was associated with 

improved feed efficiency. Gonano et al. (2014), when studying the circadian profile of various 

plasma analytes in beef heifers at different stages (i.e. pregnant, non-pregnant), found that more 

efficient pregnant heifers had lower levels of PUN in late gestation. Thus, future studies are 

warranted to further investigate the association between PUN concentrations and feed efficiency.  

1.7.3.2.  Non-esterified fatty acids  

Lipid metabolism is a dynamic and critically important function in both growing and 

mature ruminants, and has been the focus of numerous reviews (Bell, 1980; Chilliard, 1993). 

Briefly, lipids, such as triglycerides, from dietary supply are converted into free, non-esterified 

and long-chain fatty acids (LCFA) in the rumen, being mostly absorbed in the small intestine. To 

supply energy to peripheral tissues, the major metabolic pathway in the small intestine is to 

repackage LCFA into triglycerides (TG). In the peripheral tissues (mostly adipose tissue, skeletal 

muscle, and heart), the lipoprotein lipase enzyme is responsible for converting TG into non-

esterified fatty acids (NEFA). Therefore, the inter-organ transport of fatty acids is accomplished 

mostly by the circulation of NEFA, which in turn, assumes a key role as a reserve of readily 

available energy to peripheral tissues in the growing ruminant (Drackley, 2005). In contrast to 

growing animals, circulating NEFA concentrations in the plasma of mature cows can be associated 

with the catabolism of body fat to supply metabolic needs of the organism rather than dietary 

supply of lipids (Wathes et al., 2007). The concentrations of NEFA in the plasma could be of great 

importance as an indicator of energy delivery to peripheral tissues. Interestingly, negative 

associations between NEFA and RFI have been found in growing heifers (Kelly et al., 2010) and 

mature pregnant cows (Wood et al., 2014). These findings appear to be physiologically relevant 
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when taking the premise that greater concentrations of NEFA may be associated with increased 

energy delivery to peripheral tissues in growing animals, and are suggestive that the ability to 

mobilize fat, by mature pregnant cows, may play an important role in feed efficiency.  

1.7.3.3.  Glucose 

In ruminants, during the process of pre-gastric fermentation, more readily digestible, non-

structural carbohydrates (i.e., sugar and starch) are subjected to microbial fermentation in the 

reticulo-rumen before becoming available to the amyloytic digestion and absorption in the small 

intestine. This leads ruminants to depend almost exclusively on gluconeogenesis in the liver and, 

to a lesser extent, kidneys for their tissue glucose requirements (Weeks, 1979). Notably, the 

principal precursor for hepatic gluconeogenesis is propionate, one of the major volatile fatty acid 

byproducts of pre-gastric fermentation, which is absorbed via the ruminal epithelium into portal 

venous blood and almost completely removed by the liver (Elliot, 1980). Additionally, other 

products from pre-gastric fermentation such as acetate and 3-hydroxybutyrate (derived mostly 

from hydroxylation of ruminal butyrate), are major substrates for oxidation in tissues such as 

kidneys, heart and skeletal muscle (Weeks, 1979). Altogether, these factors contribute to the fact 

that most ruminant tissues, including muscle and adipose tissue, have evolved the capacity to 

substantially substitute VFA and their derivative ketoacids for glucose as respiratory fuel or 

lipogenic substrate (Bell and Bauman, 1997).  

However, even though ruminants typically do not absorb great amounts of glucose from 

dietary intake, glucose supply is still crucial for maintenance and productive functions in 

ruminants, as it is an indispensable metabolic fuel for other tissues in the body, such as the brain 

and the liver (Weeks, 1979; Bell, 1980). Previous studies examining the relationship between RFI 

and blood metabolites suggested that glucose utilization and metabolism might be associated with 
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differences in RFI (Richardson et al., 2004; Kelly et al., 2010). However, there is still much 

contradiction among results. Kolath et al. (2006) reported that glucose concentration was lower in 

feed efficient steers, while Fitzsimons et al. (2014) did not report any differences in glucose 

concentrations among efficiency groups of growing heifers. 

1.8.  Research hypothesis and objectives 

It is hypothesized that animal size, feeding behavior and blood metabolites related to 

protein and lipid metabolism may be associated with feed efficiency considering the energy and 

protein metabolism linkage between these factors. These relationships may differ according to 

both animal stage and to the efficiency measurement used. Thus, the evaluation of linear body 

measurements, feeding behavior patterns, and analyses of plasma metabolites may provide new 

insights and reveal basic aspects of efficiency of feed utilization that could be later used as indirect 

assessments of feed efficiency. Additionally, the evaluation of linear body measurements may 

enable improvements in prediction models of feed intake and growth.   

To evaluate the hypothesis, three experiments were conducted with the objectives to:  

1) Evaluate the inclusion of animal size traits in feed efficiency prediction models;  

2) Investigate the relationship between linear body measurements, feeding behavior, and 

plasma metabolites with different measures of feed efficiency in growing heifers and 

steers, and mature pregnant cows;   

3) Determine the differences in body measurements, feeding behavior, and plasma 

metabolites in animals diverging in feed efficiency measured through residual feed 

intake.  
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2. RELATIONSHIPS BETWEEN ANIMAL SIZE, FEEDING BEHAVIOR, PLASMA 

METABOLITES AND FEED EFFICIENCY IN BEEF CATTLE: I. GROWING 

HEIFERS AND FINISHING STEERS 

2.1. Introduction 

The optimization of production of animal products in relation to the amount of feedstuffs 

fed to animals could bring significant increases in profits of production systems (Arthur and Herd, 

2005) and represent positive impacts on the environment (Nkrumah et al., 2006). Thus, the 

improvement of feed efficiency has been a great focus of interest to the beef industry. Feed 

efficiency can be assessed through a variety of different measures (Swanson and Miller, 2008) that 

have been utilized extensively in growing beef cattle including: gain to feed (G:F; Swanson et al., 

2014), residual gain (RG; Koch et al., 1963); and residual feed intake (RFI; Koch et al., 1963; 

Montanholi et al., 2009). Regardless of efficiency measure, the biological basis associated with 

the variation in efficiency of feed utilization has not been completely elucidated in livestock 

species. A better understanding of the biological basis associated with feed efficiency might result 

in the improvement of prediction models of gain and intake (Wood et al., 2014), in the evaluation 

of correlated response to selection (Fontoura et al., 2016), and with the identification of traits that 

are less expensive to measure than feed intake and efficiency (Wheadon et al., 2014).  

Body size has both biological and economic effects on the efficiency of animal production 

(Dickerson, 1978). Furthermore, the measurement of linear body dimensions may also provide a 

non-invasive estimate and insights into changes in maintenance energy requirements and surface 

area and gut capacity (Kleiber, 1961) due to its strong associations with BW fluctuations 

(Heinrichs et al., 1992). Measurements of girth have been suggested to be associated with feed 

efficiency (Wood et al., 2014), and may represent an important inclusion in prediction models of 
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RFI and RG. Feeding patterns and activity could influence feed efficiency (Richardson and Herd, 

2004), as animal behavioral responses can alter physical activity and thus influence total energy 

expenditure and impact digestive efficiency (Susenbeth et al., 1998). It is suggested that more feed 

efficient cattle typically engage in less daily feeding activity (Golden et al., 2008), eat smaller 

meals (Montanholi et al., 2010), and visit the feeder less often (Kelly et al., 2010; Montanholi et 

al., 2010). Blood analytes have been extensively examined to improve the understanding of the 

metabolic basis of efficiency of feed utilization in cattle (Basarab et al., 2003; Nkrumah et al., 

2007; Gonano et al., 2014). Metabolites such as urea, non-esterified fatty acids and glucose are 

involved in carbohydrate, protein and lipid metabolism and might reveal basic aspects of the 

biological differences in feed efficiency. The concentration of these metabolites is highly 

dependent on level of DM intake, diet composition and productive priorities of the animal 

(Huntington, 1986; NRC, 2016), which are important players when considering the energetic basis 

of efficiency of feed utilization.  

We hypothesized that feeding behavior, animal size and plasma metabolic markers are 

associated with different measures of feed efficiency and may display differences in relation to 

efficiency phenotypes, measured through RFI. Additionally, the inclusion of animal size 

measurements into prediction models of gain and intake may enable improvements in the accuracy 

of prediction models of feed intake and efficiency. The objectives of this study were to 1) evaluate 

the inclusion of animal size traits in feed efficiency prediction models of growing animals; 2) 

evaluate the association between feeding behavior, animal size and plasma metabolites with 

different measures of feed efficiency in growing heifers and finishing steers; and 3) determine the 

differences in feeding behavior, animal size and plasma metabolites in animals diverging in feed 

efficiency measured through three different models of RFI.  
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2.2. Materials and methods 

2.2.1. Animals, experimental conditions and dietary treatments 

During the summer of 2015 and 2016, 162 crossbred heifers were part of a 2-year 

experiment and were tested over a 106-day experiment (year 1 = 89; year 2 = 73). Similarly, during 

the spring of 2016, 62 steers were tested over a 112-day experiment. All procedures were approved 

by the North Dakota State University Animal Care and Use Committee. Animals were housed at 

the Beef Cattle Research Complex (North Dakota State University, Fargo, United States). Heifers 

were placed into pens of 20 to 22 animals per pen, while steers were equally divided into two pens 

of 31 animals. The pens had dimensions of 15.24 m x 56.39 m and gave access to an outdoor yard, 

as well as an indoor feeding area equipped with 8 Insentec electronic feeding stations (Hokofarm 

Group B. V., Marknesse, The Netherlands). Prior to all the experiments, a radio frequency ID tag 

was placed in the right ear allowing the recording of feed intake and behavioral measurements. A 

14-day adaptation period occurred to provide animal acclimation to the research facility and the 

automated feeding system. Heifers were fed a forage-based diet (Table 2.1) twice a day that 

allowed for ad libitum consumption, first between 0830 h and 0930 h followed by a second feeding 

between 1430 h and 1530 h. In year 1 of the heifer experiment, the diet had to be reformulated 

because of a lack of silage supply. Steers were fed a corn-based diet (Table 2.2), with two levels 

of vitamin A supplementation, once a day, between 0830 h and 0930 h, that allowed for ad libitum 

consumption. The steers’ dietary treatments are explained in detail by Knuston et al. (2017). 

Briefly, the low vitamin A diet contained 723 IU of vitamin A/kg of DM, the control treatment 

was supplemented with 2,200 IU of vitamin A/kg of DM, which is the NRC (2016) 

recommendations of vitamin A for finishing cattle.  
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At the beginning and end of each feeding experiment, a 2-day BW and measurements of 

animal size were collected. For the heifer experiment, BW and blood samples were collected every 

14 days and for the steer experiment every 28 days prior to feed delivery.  

Table 2.1. Ingredient and nutrient composition of TMR in growing 

heifers. 

Item (% DM) 
Year 1   Year 2 

Diet 1 Diet 2   Diet 

Ingredient      
     Hay 78.50 88.40  78.50 

     Corn silage 16.50 0.00  16.50 

     Corn, dry rolled 0.00 6.60  0.00 

     Corn, fine ground 1.92 1.92  1.92 

     DDGS1 1.93 1.93  1.93 

     Supplement2 2.00 2.00  2.00 

Chemical composition      
     DM 73.70 77.70  73.30 

     CP 10.53 11.02  12.27 

     NDF 59.82 63.61  62.01 

     ADF 35.15 34.70  35.41 

     Ca 0.46 0.35  0.41 

     P 0.33 0.29   0.27 
1Dried distiller’s grains with solubles. 
2Supplement contained urea, salt, monensin (176.4 g/kg premix, 

Elanco, Greenfield, IN), vitamin premix, and a trace mineral premix. 
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Table 2.2. Ingredient and nutrient composition of TMR 

in finishing steers. 

Item (% DM) Control Low Vitamin A 

Ingredient   

     Wheat straw 10.00 10.00 

     Corn 60.00 60.00 

     CSB1 5.00 5.00 

     DDGS2 20.00 20.00 

     Supplement3 5.00 5.00 

     Trace mineral premix 0.05 0.05 

     Vitamin A 0.007 0.00 

     Vitamin D 0.0007 0.00 

Chemical composition   

     DM 86.43 86.43 

     CP 14.70 14.70 

     NDF 25.50 25.50 

     ADF 10.30 10.30 

     Ca 1.01 1.01 

     P 0.53 0.53 
1Concentrated separator by-product (partially de-sugared 

beet molasses). 
2Dried distiller’s grains with solubles. 
3Supplement contained ground corn, limestone, urea, 

salt, monensin (176.4 g/kg premix, Elanco, Greenfield, 

IN), tylosin (88.2g/kg premix, Elanco, Greefield, IN). 

 

2.2.2. Feed analysis 

Similar to Swanson et al. (2014), diet samples were collected weekly. Samples were dried 

in a 55°C oven and ground to pass a 1-mm screen. The samples were analyzed for DM, ash, 

nitrogen (N; Kjehldahl method), calcium, and phosphorus by standard procedures (AOAC, 1990) 

and for NDF (assayed with heat stable amylase and sodium sulfite and expressed inclusive of 

residual ash) and ADF (expressed inclusive of residual ash) concentration by the method of 

Robertson and Van Soest (1981) using a fiber analyzer (Ankom Technology Corp., Fairport, 

USA). Percent crude protein (CP) was calculated by multiplying N concentration × 6.25. 
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2.2.3. Productive performance and feed efficiency assessments 

Individual feed intake was determined using the Insentec automated feeding system 

(Hokofarm Group B. V., Marknesse, The Netherlands). At the end of each experiment, feed intake 

data was downloaded and used to calculate the average daily feed intake (DMI; kg/d) over the 

entire period. Firstly, the feed intake data was filtered in order to exclude outlier records or days 

where mechanical problems potentially occurred, as previously described by Mader et al. (2009). 

Average daily gain (ADG; kg/d) was computed as the coefficient of linear regression of body 

weight on time of measurement. In addition, both daily DMI and ADG were calculated as a 

percentage of mid-point BW (DMIrbw, ADGrbw; %). The gain to feed ratio (G:F; ratio) was 

calculated as a ratio of ADG:DMI during the experiments’ duration. Both residual gain (RG), and 

residual feed intake (RFI) were modeled three different ways. The first (RGKoch and RFIKoch) were 

based on the models described by Koch et al. (1963), the second (RGus and RFIus) were based on 

the RFI models adjusted for body composition traits as proposed by Montanholi et al. (2009) and 

the third (RGsize and RFIsize) were adjusted for both body composition and animal size traits. All 

the RG and RFI models were calculated using the ordinary least squares (GLM procedure; SAS 

Institute Inc., Cary, USA), using year (in the case of the heifer experiment), mid-point BW0.75, feed 

intake, body and carcass composition, and animal size measurements collected over the duration 

of the trial. Overall, predicted gains were calculated as:  

ADG = β0 + β1(mmBW; kg) + β2(DMI; kg) + β3 … βn(body or carcass composition traits) 

+ βn+1… βz(animal size traits) + RG models (RGKoch, RGus or RGsize) 

Where β0 is the regression intercept, β1 is the coefficient of regression for mid-point 

metabolic body weight, β2 is the coefficient of regression for dry matter intake, β3 … βn, are the 

models’ best fit body or carcass composition traits, βn+1… βz are the models’ best fit animal size 
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traits. RGKoch, RGus or RGsize were the residue of this regression, and were used accordingly to 

each model. The selection criteria for each model across all experiments were based on the 

Bayesian information criterion (BIC) and R2.  

Overall, predicted intakes were calculated as:  

DMI = β0 + β1(mmBW; kg) + β2(ADG; kg) + β3 … βn(body or carcass composition traits) 

+ βn+1… βz(animal size traits) + RFI models (RFIKoch, RFIus or RFIsize) 

Where β0 is the regression intercept, β1 is the coefficient of regression for mid-point 

metabolic body weight, β2 is the coefficient of regression for average daily gain, β3 … βn, are the 

models’ best fit body or carcass composition traits, βn+1… βz are the models’ best fit animal size 

traits. RFIKoch, RFIus or RFIsize were the residue of this regression, and were used accordingly to 

each model. The selection criteria for each model across all experiments were based on the BIC 

and R2.  

2.2.4. Body composition determinations 

For the heifer experiment, carcass ultrasounds were performed using an Aloka SSD-500 

ultrasound unit (model 5044; 172 mm; 3.5 MHz; Corometrics Medical Systems, Wallingford, 

USA) equipped with a 17-cm linear array transducer. Measurements were performed on initial and 

final days of the feeding trials and consisted of longissimus muscle area (rib eye area, cm2), four 

independent images collected laterally between the 12th and 13th ribs to estimate the percentage of 

intramuscular fat within the longissimus dorsi muscle (intramuscular fat, %), subcutaneous fat 

depth over the longissimus muscle in the fourth quadrant distal to the spine (rib fat thickness, mm), 

and fatness at the termination point of the biceps femoris muscle (rump fat, mm). 

For the steer experiment, animals were slaughtered at a commercial abattoir (Tyson Fresh 

Meats, Dakota City, NE) at an average of 58 ± 14 days after completion of the feeding trial. Carcass 
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composition traits were then collected by camera data at the plant and this data included yield 

grade (range 1 to 5), kidney pelvic heart fat (%); and with the assistance of computer image 

analysis, marbling score (range 400 to 599; 400 – 399, small; 500 – 599, modest), area of the 

longissimus muscle (ribeye area, cm2) and subcutaneous fat (cm). 

2.2.5. Feeding behavior and animal size assessments 

Feeding behavior traits were calculated similar to Swanson et al. (2014) and were 

summarized as: events (per day; number of bunk visits and meals), eating time (minutes; per visit, 

per meal, and per day), and eating rate (grams of DM; per visit and per meal). A visit was defined 

as each time the Insentec system detect an animal at a bunk, while a meal was defined as eating 

periods that might include short breaks separated by intervals not longer than 7 min (Forbes, 1995; 

Montanholi et al., 2010). The data were summarized as the average of each individual animal from 

the initial day until the last day of the experiment.  

Body measurements were recorded similar to as described by Wood et al. (2014). Body 

length was defined as the distance from the point of shoulder to end of the rump, hip height was 

defined as the distance from ground to base of tail head and hip width the distance between the 

crista iliaca. For the girth measurements, heart girth was measured as the circumference around 

the midsection caudal to shoulder, mid-girth was measured as the circumference around middle 

over navel, and flank girth was measured as the circumference around the middle at the flank. 

Additionally, in the heifer experiment, the flank girth was measured cranially to the udder. Body 

length, girth measures and hip width were recorded using a fabric measuring tape, and hip height 

measurements were recorded with a livestock height measuring stick.  
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2.2.6. Plasma metabolic markers 

Blood samples were collected by jugular venipuncture while the animals were individually 

restrained in a squeeze chute. Blood was collected using 1.1 x 25 mm blood collection needles 

(BD Vacutainer® Precision Glide, BD Inc., Franklin Lakes, USA) and 10 mL sodium heparin 

blood collection tubes (BD Vacutainer®, BD Inc., Franklin Lakes, USA). Immediately after 

collection, samples were kept at 4°C until centrifugation. The samples were centrifuged at 4 °C at 

3000×g for 20 minutes. The plasma was decanted into three 2-mL micro centrifuge tubes and 

stored at -20°C until analysis. Urea concentration in plasma (PUN) was measured by the 

QuantiChrom™ Urea Assay Kit (BioAssay Systems, Hayward, USA) and was determined using 

the urease/Berthelot procedure (Chaney and Marbach, 1962; Fawcett and Scott, 1960). Non-

esterified fatty acid (NEFA) concentration was analyzed using the acyl-CoA synthetase-acyl-CoA 

oxidase method using a kit from Wako Pure Chemical Industries (Dallas, TX). Glucose 

concentration was measured using the Infinity Glucose Hexokinase kit (Thermo Trace, Louisville, 

USA) and was analyzed using the hexokinase/gluxose-6-phosphate dehydrogenase method 

(Farrance, 1987). All assays were performed using a 96-well microplate reader (Synergy, HI 

Microplate Reader, BioTek Instruments, Winooski, VT).  

2.2.7. Statistical analysis 

For both experiments, the individual animal (heifer or steer) was considered an independent 

variable and was evaluated as a random effect, RFI groups (high- and low-) in the three prediction 

models (RFIKoch, RFIus and RFIsize) and day were treated as fixed effects, and the interaction 

between day and RFI group was treated as a random effect. Productive performance, body and 

carcass composition, feeding behavior, animal size and plasma metabolic markers were the 

response variables evaluated. Statistical analysis was performed using the SAS® software (version 
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9.4; SAS Institute Inc., Cary, USA). Prior to statistical analysis, normality was tested and ensured 

through residuals’ diagnostic plots using the ordinary least squares. If needed, transformations 

were performed and values were back-transformed to be reported. A categorical analysis was 

carried out in order to compare the animals according to RFI values within each determination 

model (RFIKoch, RFIus and RFIsize). Means of the two RFI groups (high- and low-) in each of the 

models (RFIKoch, RFIus and RFIsize) for body and carcass composition, feeding behavior and animal 

size traits were tested using the general linear model of SAS, while the means for plasma metabolic 

markers were tested using the mixed procedure of SAS. The covariance structures used to test fit 

statistics of the mixed model included variance components, compound symmetry, autoregressive 

one, unstructured, and ante-dependence one. Smaller fit values (BIC) were always selected. The 

least square means comparisons for analysis conducted using both the general linear model and 

mixed model were performed using the Scheffé’s test. The associations between body and carcass 

composition, feeding behavior, animal size and blood metabolites with productive performance 

traits were measured through partial correlations, adjusted for year (heifer experiment) and dietary 

treatment (steer experiment), using the MANOVA/PRINTE statement of the general linear model. 

For all analyses, data were considered statistically significant when P ≤ 0.05 and were considered 

a trend towards significance when 0.10 ≥ P > 0.05. 

2.3. Results 

2.3.1. Prediction models 

The goodness of fit (R2, CV, R MSE) for regression models of intake (RFIKoch, RFIus and 

RFIsize) and gain (RGKoch, RGus and RGsize) can be found in Table 2.3. The addition of size traits 

in the intake prediction model (RFIsize) increased the accuracy of prediction from 3 to 4% in the 

models accounting for BW and BW gain (RFIKoch), and approximately 0 to 3% in the models that 
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were adjusted to body or carcass composition (RFIus). Similarly and more drastically, the addition 

of size traits in the gain prediction model (RGsize) increased the accuracy of prediction from 1 to 

12 % and 1 to 11% in comparison to RGKoch and RGus models, respectively.   

 

Table 2.3. Model fit statistics for the selected residual feed intake (DMI models) and residual gain 

(ADG models) with differing covariates over the different experiments. 

Experiment Model covariates† N R2 CV R MSE 

Heifers Residual feed intake     

    RFIKoch: yr mmBW ADG 162 0.66 8.28 0.75 

    RFIus: yr mmBW ADG mIMFT mRBEA 

mRBFT mRUMP 
162 0.67 8.23 0.75 

    RFIsize: yr mmBW ADG mIMFT mRBEA iHG 

iMG 
162 0.66 8.35 0.76 

 Residual gain     

    RGKoch: yr mmBW DMI 162 0.55 18.52 0.12 
    RGus: yr mmBW DMI mRBFT 162 0.55 18.57 0.13 
    RGsize: yr mmBW DMI mRBFT iMG 162 0.55 18.61 0.13 

Steers Residual feed intake     

    RFIKoch: mmBW ADG 61 0.72 6.80 0.74 
    RFIus: mmBW ADG BKFT 58 0.72 6.75 0.74 
    RFIsize: mmBW ADG RBEA KPH iHW iMG 57 0.75 6.62 0.73 
 Residual gain     

    RGKoch: mmBW DMI 61 0.44 7.53 0.11 
    RGus: mmBW DMI BKFT 58 0.46 7.31 0.11 
    RGsize: mmBW DMI BKFT iHG iMG 57 0.54 6.84 0.10 

†mmBW, mid-point BW0.75; mIMFT, mid-point intramuscular fat; mRBEA, mid-point rib eye 

area; mRBFT, mid-point rib fat; mRUMP, mid-point rump fat; iHG, initial heart girth; iMG, initial 

mid girth; iHW, initial hip width; BKFT, back fat thickness; RBEA, rib eye area; KPH, kidney 

pelvic heart fat. 
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Table 2.4. Least square means of productive performance traits, measured in growing heifers, by high- and low-RFI groups according 

to the three RFI determination models (RFIKoch, RFIus and RFIsize). 

Traits (unit) 
RFIKoch RFIus RFIsize 

high-RFI† low-RFI† P high-RFI† low-RFI† P high-RFI† low-RFI† P 

Initial BW (kg) 341 ± 5.30 343 ± 4.74 0.69 340 ± 5.23 344 ± 4.79 0.59 342 ± 5.20 342 ± 4.82 0.93 

Final BW (kg) 410 ± 6.60 413 ± 5.91 0.79 410 ± 6.51 413 ± 5.97 0.70 413 ± 6.47 410 ± 6.01 0.75 

Average daily gain 

(kg/d) 
0.67 ± 0.02 0.67 ± 0.02 0.94 0.67 ± 0.02 0.67 ± 0.02 1.00 0.69 ± 0.02 0.66 ± 0.02 0.36 

Average daily gain 

relative to BW (%) 
0.18 ± 0.01 0.18 ± 0.01 0.90 0.18 ± 0.01 0.18 ± 0.01 0.97 0.18 ± 0.01 0.17 ± 0.01 0.87 

Dry matter intake 

(kg) 
9.66 ± 0.14 8.60 ± 0.12 0.01 9.61 ± 0.14 8.62 ± 0.13 0.01 9.64 ± 0.14 8.58 ± 0.13 0.01 

Dry matter intake 

relative to BW (%) 
2.58 ± 0.05 2.28 ± 0.07 0.01 2.57 ± 0.05 2.28 ± 0.08 0.01 2.56 ± 0.03 2.29 ± 0.05 0.01 

Gain to feed (ratio) 0.07 ± 0.002 0.08 ± 0.002 0.01 0.07 ± 0.002 0.08 ± 0.002 0.01 0.07 ± 0.002 0.08 ± 0.002 0.06 

RG (Koch et al., 

1963) (RGKoch, 

kg/d) 

-0.02 ± 0.01 0.02 ± 0.01 0.04 -0.02 ± 0.01 0.02 ± 0.01 0.04 -0.01 ± 0.01 0.01 ± 0.01 0.15 

RG (ultrasound 

traits) (RGus, kg/d) 
-0.02 ± 0.01 0.02 ± 0.01 0.03 -0.02 ± 0.01 0.02 ± 0.01 0.03 -0.01 ± 0.01 0.01 ± 0.01 0.16 

RG (size adjusted) 

(RGsize, kg/d) 
-0.02 ± 0.01 0.01 ± 0.01 0.08 -0.02 ± 0.01 0.01 ± 0.01 0.09 -0.01 ± 0.01 0.01 ± 0.01 0.15 

RFI (Koch et al., 

1963) (RFIKoch, 

kg/d) 

0.61 ± 0.06 -0.49 ± 0.05 0.01 0.58 ± 0.06 -0.48 ± 0.06 0.01 0.55 ± 0.06 -0.47 ± 0.06 0.01 

RFI (ultrasound 

traits) (RFIus, kg/d) 
0.58 ± 0.06 -0.48 ± 0.05 0.01 0.58 ± 0.06 -0.50 ± 0.05 0.01 0.55 ± 0.06 -0.49 ± 0.06 0.01 
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Table 2.4. Least square means of productive performance traits, measured in growing heifers, by high- and low-RFI groups 

according to the three RFI determination models (RFIKoch, RFIus and RFIsize) (continued). 

Traits (unit) 
RFIKoch RFIus  RFIsize 

high-RFI† low-RFI† P high-RFI† low-RFI† P high-RFI† low-RFI† P 

RFI (size adjusted) 

(RFIsize, kg/d) 
0.54 ± 0.06 -0.43 ± 0.05 0.01 0.54 ± 0.06 -0.45 ± 0.05 0.01 0.55 ± 0.06 -0.48 ± 0.05 0.01 

†Mean ± SEM. 
RG = residual gain; RFI = residual feed intake. 
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Table 2.5. Least square means of productive performance, measured in finishing steers, by high- and low-RFI groups according to 

the three RFI determination models (RFIKoch, RFIus and RFIsize). 

Traits (unit) RFIKoch     RFIus     RFIsize     

  high-RFI† low-RFI† P high-RFI† low-RFI† P high-RFI† low-RFI† P 

Initial BW (kg) 397 ± 9.82 406 ± 10.35 0.52 398 ± 10.22 404 ± 10.09 0.66 394 ± 10.15 408 ± 10.18 0.32 

Final BW (kg) 596 ± 11.98 609 ± 12.39 0.48 599 ± 12.25 607 ± 12.25 0.63 594 ± 12.39 610 ± 12.21 0.36 

Average daily gain 

(kg/d) 
1.48 ± 0.03 1.50 ± 0.03 0.73 1.47 ± 0.03 1.50 ± 0.03 0.44 1.49 ± 0.03 1.49 ± 0.03 0.93 

Average daily gain 

relative to BW (%) 
0.30 ± 0.12 0.30 ± 0.15 0.90 0.30 ± 0.10 0.30 ± 0.10 0.97 0.30 ± 0.15 0.30 ± 0.17 0.95 

Dry matter intake 

(kg) 
11.38 ± 0.23 10.39 ± 0.24 0.01 11.38 ± 0.24 10.46 ± 0.23 0.01 11.35 ± 0.24 10.45 ± 0.24 0.01 

Dry matter intake 

relative to BW (%) 
2.30 ± 0.07 2.08 ± 0.09 0.17 2.31 ± 0.10 2.09 ± 0.11 0.20 2.31 ± 0.05 2.08 ± 0.07 0.22 

Gain to feed (ratio) 0.13 ± 0.002 0.14 ± 0.002 0.01 0.13 ± 0.002 0.14 ± 0.002 0.01 0.13 ± 0.002 0.14 ± 0.002 0.01 

RG (Koch et al., 

1963) (RGKoch, kg/d) 
-0.04 ± 0.02 0.05 ± 0.02 0.01 -0.05 ± 0.02 0.05 ± 0.02 0.01 -0.04 ± 0.02 0.04 ± 0.02 0.01 

RG (ultrasound 

traits) (RGus, kg/d) 
-0.05 ± 0.02 0.04 ± 0.02 0.01 -0.06 ± 0.02 0.05 ± 0.02 0.01 -0.04 ± 0.02 0.03 ± 0.02 0.01 

RG (size adjusted) 

(RGsize, kg/d) 
-0.04 ± 0.02 0.04 ± 0.02 0.01 -0.05 ± 0.02 0.04 ± 0.02 0.01 -0.04 ± 0.02 0.03 ± 0.02 0.01 

RFI (Koch et al., 

1963) (RFIKoch, kg/d) 
0.53 ± 0.08 -0.59 ± 0.09 0.01 0.57 ± 0.09 -0.55 ± 0.09 0.01 0.54 ± 0.09 -0.54 ± 0.09 0.01 

RFI (ultrasound 

traits) (RFIus, kg/d) 
0.52 ± 0.09 -0.55 ± 0.09 0.01 0.59 ± 0.08 -0.55 ± 0.08 0.01 0.54 ± 0.09 -0.52 ± 0.09 0.01 

RFI (size adjusted) 

(RFIsize, kg/d) 
0.48 ± 0.09 -0.53 ± 0.09 0.01 0.54 ± 0.09 -0.51 ± 0.08 0.01 0.53 ± 0.08 -0.54 ± 0.08 0.01 

†Mean ± SEM. 
RG = residual gain; RFI = residual feed intake. 
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Table 2.6. Least square means of body composition traits, measured in growing heifers, by high- and low-RFI groups according to 

the three RFI determination models (RFIKoch, RFIus and RFIsize). 

Traits (unit) 
RFIKoch RFIus RFIsize 

high-RFI† low-RFI† P high-RFI† low-RFI† P high-RFI† low-RFI† P 

Initial 

intramuscular fat 

(%) 

3.56 ± 0.09 3.49 ± 0.08 0.56 3.54 ± 0.08 3.51 ± 0.08 0.77 3.49 ± 0.08 3.55 ± 0.08 0.57 

Initial rib eye area 

(cm2) 
49.37 ± 0.86 50.73 ± 0.77 0.24 49.79 ± 0.85 50.41 ± 0.78 0.59 49.86 ± 0.85 50.36 ± 0.79 0.66 

Initial backfat 

thickness (mm) 
6.68 ± 0.17 6.78 ± 0.15 0.67 6.69 ± 0.17 6.77 ± 0.15 0.73 6.68 ± 0.17 6.78 ± 0.16 0.66 

Initial rump fat 

(mm) 
4.06 ±  0.16 4.24 ±  4.24 0.41 4.14 ± 0.16 4.17 ± 0.14 0.88 4.00 ± 0.15 4.30 ± 0.14 0.15 

Final 

intramuscular fat 

(%) 

3.59 ± 0.09 3.52 ± 0.08 0.51 3.60 ± 0.09 3.51 ± 0.08 0.45 3.57 ± 0.09 3.54 ± 0.08 0.79 

Final rib eye area 

(cm2) 
56.73 ± 0.93 58.32 ± 0.84 0.21 57.69 ± 0.93 57.55 ± 0.85 0.91 57.65 ± 0.92 57.58 ± 0.85 0.96 

Final backfat 

thickness (mm) 
7.61 ± 0.19 7.66 ± 0.17 0.85 7.65 ± 0.18 7.63 ± 0.17 0.93 7.60 ± 0.18 7.67 ± 0.17 0.79 

Final rump fat 

(mm) 
5.22 ± 0.20 5.02 ± 0.18 0.44 5.30 ± 0.20 4.95 ± 0.18 0.20 5.15 ± 0.20 5.07 ± 0.18 0.77 

†Mean ± SEM. 
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Table 2.7. Least square means of carcass quality traits, measured in finishing steers, by high- and low-RFI groups according to the 

three RFI determination models (RFIKoch, RFIus and RFIsize). 

Traits (unit) 
RFIKoch RFIus RFIsize 

high-RFI† low-RFI† P high-RFI† low-RFI† P high-RFI† low-RFI† P 

Calculated yield 

grade (1 to 5) 
2.92 ± 0.13 2.81 ± 0.13 0.54 2.80 ± 0.13 2.94 ± 0.13 0.44 2.87 ± 0.13 2.91 ± 0.13 0.83 

Marbling (score, 400 

to 599) 
521 ± 19.64 496 ± 21.06 0.41 517 ± 20.55 502 ± 20.55 0.63 516 ± 19.98 510 ± 20.38 0.84 

Rib eye area (cm2) 34.85 ± 0.76 36.47 ± 0.82 0.16 35.39 ± 0.81 35.81 ± 0.81 0.72 34.96 ± 0.79 36.06 ± 0.80 0.34 

Backfat thickness 

(cm) 
1.14 ± 0.07 1.03 ± 0.07 0.24 1.06 ± 0.07 1.12 ± 0.07 0.58 1.10 ± 0.07 1.10 ± 0.07 1.00 

Kidney pelvic heart 

fat (cm) 
1.86 ± 0.04 1.78 ± 0.04 0.18 1.83 ± 0.04 1.81 ± 0.04 0.65 1.84 ± 0.04 1.81 ± 0.04 0.61 

†Mean ± SEM. 



 

47 

2.3.2. Productive performance and body composition 

By design, the RFIKoch, RFIus and RFIsize were different between the high- and low-RFI 

groups in both experiments (Table 2.4, Table 2.5). This represented a difference in daily DMI of 

up to 1.06 kg between less efficient (high-RFI) and more efficient (low-RFI) heifers (Table 2.4), 

and up to 0.90 kg between high-RFI and low-RFI steers (Table 2.5), as reported for the RFIsize 

model. Additionally, all RFI models across experiments suggested that low-RFI animals possessed 

a better G:F ratio (Table 2.4, Table 2.5). Body composition traits of heifers (Table 2.6) and carcass 

composition traits of steers (Table 2.7) did not differ between the high- and low-RFI groups across 

the three RFI models. 

The evaluation of the associations among productive performance, efficiency and body 

composition traits, in heifers, indicated similar correlations between ADG and DMI with initial 

and final intramuscular fat (ADG: r = -0.16 and r = -0.14, respectively; DMI: r = -0.23 and r = -

0.19, respectively), and initial and final ribeye area (ADG: r = 0.36 and r = 0.27, respectively; 

DMI: r = 0.43 and r = 0.26, respectively). Low to moderate positive correlations (P ≤ 0.05) were 

observed between G:F with initial (r = 0.22) and final (r = 0.17) ribeye area, while negative 

correlations were observed between RGKoch and initial rib fat (r = -0.15). In steers, greater DMI 

tended to be correlated (P ≤ 0.10) with increased carcass ribeye area (r = 0.25) and greater marbling 

score (r = 0.25). The RFIKoch model showed a tendency (P ≤ 0.10) for a correlation of higher RFI 

with increased kidney pelvic heart fat (r = 0.23).  
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Table 2.8. Least square means of feeding behavior traits, measured in growing heifers, by high- and low-RFI groups according to the 

three RFI determination models (RFIKoch, RFIus and RFIsize). 

Traits (unit) 
RFIKoch RFIus RFIsize 

high-RFI† low-RFI† P high-RFI† low-RFI† P high-RFI† low-RFI† P 

Meals 

(events/d) 
25 ± 1.75 22 ± 1.56 0.14 24 ± 1.73 22 ± 1.59 0.31 23 ± 1.73 23 ± 1.60 0.96 

Visits 

(events/d) 
112 ± 3.54 85 ± 3.16 0.01 109 ± 3.59 86 ± 3.30 0.01 106 ± 3.66 88 ± 3.40 0.01 

Daily time 

(min) 
149.97 ± 4.44 159.86 ± 3.97 0.10 151.92 ± 4.40 158.45 ± 4.03 0.28 154.66 ± 4.38 156.17 ± 4.07 0.80 

Time per 

meal 

(min/event) 

11.84 ± 0.31 13.97 ± 0.28 0.40 11.18 ± 0.31 14.58 ± 0.28 0.18 11.40  ± 0.31 14.42 ± 0.28 0.23 

Time per visit 

(min/event) 
4.44 ± 0.13 5.3 ± 0.11 0.40 4.18 ± 0.12 5.54 ± 0.11 0.18 4.25 ± 0.12 5.49 ± 0.11 0.22 

Eating rate 

per meal (g of 

DM/event) 

585 ± 38.41 550 ± 34.35 0.51 600 ± 37.76 537 ± 34.63 0.22 618 ± 37.26 520 ± 34.59 0.06 

Eating rate 

per visit (g of 

DM/event) 

93 ± 5.19 118 ± 4.65 0.01 96 ± 5.20 116 ± 4.77 0.01 100 ± 5.24 112 ± 4.86 0.08 

†Mean ± SEM. 
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Table 2.9. Least square means of feeding behavior traits, measured in finishing steers, by high- and low-RFI groups according to the 

three RFI determination models (RFIKoch, RFIus and RFIsize). 

Traits (unit) 
RFIKoch RFIus RFIsize 

high-RFI† low-RFI† P high-RFI† low-RFI† P high-RFI† low-RFI† P 

Meals 

(events/d) 
10 ± 0.34 9 ± 0.36 0.09 10 ± 0.34 9 ± 0.33 0.01 11 ± 0.34 9 ± 0.35 0.02 

Visits 

(events/d) 
25 ± 0.92 22 ± 0.97 0.09 25 ± 0.91 21 ± 0.90 0.01 25 ± 0.93 22 ± 0.93 0.02 

Daily time 

(min) 
96.10 ± 2.50 90.45 ± 2.64 0.13 94.04 ± 2.65 92.82 ± 2.62 0.75 95.41 ± 2.62 91.73 ± 2.63 0.33 

Time per 

meal 

(min/event) 

9.54 ± 0.40 10.00  ± 0.43 0.44 9.21 ± 0.41 10.29 ± 0.40 0.07 9.40 ± 0.41 10.19 ± 0.41 0.18 

Time per 

visit 

(min/event) 

4.03 ± 0.19 4.31 ± 0.20 0.32 3.89 ± 0.19 4.43 ± 0.19 0.05 3.97 ± 0.19 4.40 ± 0.19 0.12 

Eating rate 

per meal (g 

of 

DM/event) 

3014 ± 125.39 2705 ± 160.55 0.17 3239 ± 145.95 2505 ± 144.04 0.01 3128 ± 151.38 2579 ± 151.38 0.01 

Eating rate 

per visit (g 

of 

DM/event) 

1128 ± 44.26 1142 ± 46.64 0.83 1107 ± 45.74 1161 ± 45.14 0.41 1110 ± 45.72 1160 ± 45.88 0.44 

†Mean ± SEM. 
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2.3.3. Feeding behavior 

Decreased daily visits to the bunk and faster eating rate per visit (P ≤ 0.05) were observed 

in low-RFI heifers (Table 2.8). For efficient steers, daily meals (P ≤ 0.10), visits and eating rate 

per meal were decreased (P ≤ 0.05), while the amount of time spent at the bunk during a visit was 

increased (P ≤ 0.05; Table 2.9). 

In steers, all RFI models (P ≤ 0.05) suggested that higher RFI was correlated with increased 

number of meals (range of r = 0.29 to 0.34) and visits (range of r = 0.30 to 0.33). In heifers, RFIKoch 

and RFIus were positively correlated (P ≤ 0.05) with meals per day (r = 0.17 and r = 0.18, 

respectively) and visits per day (r = 0.41 and r = 0.40, respectively), while longer time spent at the 

bunk per day was correlated (P ≤ 0.05) with improved BW gain (G:F: r = 0.34; RGKoch: r = 0.20). 

Furthermore, interesting and opposite results were found in relation to the eating rate per visit and 

RFIus (P ≤ 0.05); in heifers, a negative correlation was found (r = -0.24), while a positive correlation 

was found in steers (r = 0.33). 
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Table 2.10. Least square means of animal size traits, measured in growing heifers, by high- and low-RFI groups according to the 

three RFI determination models (RFIKoch, RFIus and RFIsize). 

Traits (unit) 
RFIKoch RFIus RFIsize 

high-RFI† low-RFI† P high-RFI† low-RFI† P high-RFI† low-RFI† P 

Initial body 

length (cm) 
100.46 ± 0.95 99.25 ± 0.85 0.26 100.54 ± 0.93 99.17 ± 0.85 0.12 101.28 ± 0.92 99.38 ± 0.86 0.06 

Initial hip 

height (cm) 
110.99 ± 1.11 110.57 ± 0.99 0.51 110.84 ± 1.10 110.69 ± 1.00 0.42 110.97 ± 1.09 110.58 ± 1.01 0.37 

Initial hip 

width (cm) 
41.96 ± 0.36 41.38 ± 0.32 0.22 41.86 ± 0.35 41.46 ± 0.32 0.4 42.00 ± 0.35 41.33 ± 0.32 0.16 

Initial heart 

girth (cm) 
163.98 ± 0.95 163.03 ± 0.85 0.45 163.51 ± 0.93 163.4 ± 0.86 0.93 163.75 ± 0.93 163.2 ± 0.86 0.66 

Initial mid 

girth (cm) 
195.39 ± 1.33 192.5 ± 1.19 0.11 194.59 ± 1.32 193.1 ± 1.21 0.41 194.45 ± 1.31 193.21 ± 1.22 0.49 

Initial flank 

girth (cm) 
172.76 ± 5.29 170.94 ± 4.73 0.27 172.32 ± 5.23 171.28 ± 4.79 0.53 172.05 ± 5.19 171.49 ± 4.82 0.74 

Final body 

length (cm) 
103.58 ± 1.09 102.15 ± 0.97 0.41 103.87 ± 1.08 101.87 ± 0.98 0.35 104.06 ± 1.07 101.69 ± 0.99 0.54 

Final hip 

height (cm) 
116.12 ± 0.87 115.14 ± 0.78 0.72 116.23 ± 0.86 115.02 ± 0.79 0.9 116.29 ± 0.85 114.96 ± 0.79 0.73 

Final hip 

width (cm) 
43.06 ± 0.57 42.67 ± 0.51 0.61 42.80 ± 0.56 42.88 ± 0.51 0.92 43.1 ± 0.55 42.62 ± 0.52 0.52 

Final heart 

girth (cm) 
177.98 ± 1.05 177.1 ± 0.94 0.54 177.35 ± 1.04 177.61 ± 0.95 0.86 177.58 ± 1.03 177.41 ± 0.96 0.91 

Final mid 

girth (cm) 
215.23 ± 1.59 214.57 ± 1.43 0.76 214.29 ± 1.56 215.36 ± 1.44 0.61 215.26 ± 1.55 214.53 ± 1.45 0.73 

Final flank 

girth (cm) 
225.89 ± 1.23 221.36 ± 1.10 0.52 223.94 ± 1.22 222.88 ± 1.12 0.88 222.75 ± 1.21 223.90 ± 1.12 0.87 

†Mean ± SEM. 
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Table 2.11. Least square means of animal size traits, measured in finishing steers, by high- and low-RFI groups according to the 

three RFI determination models (RFIKoch, RFIus and RFIsize). 

Traits (unit) 
RFIKoch RFIus RFIsize 

high-RFI† low-RFI† P high-RFI† low-RFI† P high-RFI† low-RFI† P 

Initial body 

length (cm) 
87.31 ± 0.97 86.01 ± 1.01 0.36 88.21 ± 0.98 85.24 ± 0.95 0.06 87.72 ± 0.97 85.64 ± 0.98 0.14 

Initial hip 

height (cm) 
112.2 ± 0.08 114.88 ± 1.09 0.11 112.33 ± 1.10 114.58 ± 1.07 0.15 112.24 ± 1.07 114.74 ± 1.08 0.11 

Initial hip 

width (cm) 
41.04 ± 0.68 41.92 ± 0.70 0.37 40.91 ± 0.70 41.98 ± 0.68 0.29 41.31 ± 0.69 41.61 ± 0.69 0.76 

Initial heart 

girth (cm) 
172.38 ± 1.81 172.55 ± 1.88 0.95 172.22 ± 1.88 172.69 ± 1.83 0.86 171.82 ± 1.83 173.11 ± 1.84 0.62 

Initial mid 

girth (cm) 
208.01 ± 1.95 208.5 ± 2.02 0.86 207.68 ± 2.02 208.78 ± 1.97 0.7 208.21 ± 1.98 208.28 ± 1.98 0.98 

Initial flank 

girth (cm) 
179.68 ± 2.10 181.34 ± 2.19 0.59 181.4 ± 2.19 179.60 ± 2.13 0.56 180.34 ± 2.14 180.62 ± 2.15 0.93 

Final body 

length (cm) 
116.66 ± 1.28 118.18 ± 1.32 0.41 116.76 ± 1.30 118.02 ± 1.30 0.5 116.09 ± 1.31 118.77 ± 1.29 0.15 

Final hip 

height (cm) 
120.37 ± 1.21 122.55 ± 1.26 0.22 120.78 ± 1.25 122.07 ± 1.25 0.47 120.5 ± 1.25 122.04 ± 1.23 0.39 

Final hip 

width (cm) 
47.68 ± 0.56 48.31 ± 0.58 0.44 47.75 ± 0.57 48.22 ± 0.57 0.56 47.59 ± 0.58 48.31 ± 0.57 0.39 

Final heart 

girth (cm) 
201.08 ± 1.70 200.57 ± 1.75 0.84 201.30 ± 1.73 200.36 ± 1.73 0.7 200.89 ± 1.76 200.73 ± 1.74 0.95 

Final mid 

girth (cm) 
232.33 ± 2.32 231.03 ± 2.39 0.7 232.32 ± 2.36 231.08 ± 2.36 0.72 231.9 ± 2.40 231.80 ± 2.36 0.98 

Final flank 

girth (cm) 
198.47 ± 1.62 199.06 ± 1.68 0.8 198.62 ± 1.66 198.89 ± 1.66 0.91 198.09 ± 1.68 199.41 ± 1.66 0.58 

†Mean ± SEM
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2.3.4. Animal size 

Despite a few tendencies towards significance in relation to decreased body length in 

efficient heifers (Table 2.10) and steers (Table 2.11), animal size traits did not differ between 

efficiency groups across all RFI models. All animal size traits were positively correlated (P ≤ 0.05) 

with ADG (heifer experiment, range: r = 0.17 to r = 0.44; steer experiment, range: r = 0.22 to r = 

0.54) and DMI (heifer experiment, range: r = 0.27 to r = 0.47; steer experiment, range: r = 0.25 to 

r = 0.88). The RFIKoch, RFIus and RFIsize models did not display any correlation with animal size 

traits (P > 0.10). However, G:F was correlated (P ≤ 0.05) with initial and final heart girth (heifer 

experiment, r = 0.16 and r = 0.28, respectively; steer experiment, r = -0.56 and r = -0.53, 

respectively); and in heifers, final mid-girth was positively associated (P ≤ 0.05) with G:F (r = 

0.35), RGKoch (r = 0.20)  and RGus (r = 0.20). 

2.3.5. Plasma metabolic markers 

The results for plasma metabolic markers followed the same pattern across all RFI models. 

Therefore, the pattern of plasma metabolic markers across the entire testing period for heifers and 

steers is being shown within the RFIsize model (Figure 2.1). Plasma urea-N (Figure 2.1A and Figure 

2.1D) and glucose (Figure 2.1C and Figure 2.1F) concentrations did not differ between efficiency 

groups in both heifer and steer experiments. Although NEFA concentrations did not differ between 

efficiency groups in the steer experiment (Figure 2.1E), feed efficient heifers had greater NEFA 

levels (P ≤ 0.05) when compared to inefficient heifers (Figure 2.1B).   
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Figure 2.1. Plasma metabolites in heifers (A, B, C) and steers (D, E, F) over the performance 

evaluation (106 d) by feed efficiency group (RFIsize model, adjusted for size traits). (A, D) Plasma 

urea-N, (B, E) Non-esterified fatty acids and (C, F) glucose.  
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The averaged value over the entire experimental period for PUN was positively associated 

(P ≤ 0.05) with DMI (heifer experiment, r = 0.18) and negatively associated with RFI (heifer 

experiment, RFIKoch: r = -0.13, RFIus: r = -0.14). Non-esterified fatty acids were negatively 

correlated (P ≤ 0.05) with ADG (heifer experiment, r = -0.22; steer experiment, r = -0.26), DMI 

(heifer experiment, r = -0.30; steer experiment, r = -0.45), RFI (heifer experiment, RFIKoch: r = -

0.28, RFIus: r = -0.29; RFIsize: r = -0.30) and positively associated with G:F (steer experiment, r = 

0.34). Glucose was negatively correlated (P ≤ 0.05) with ADG (heifer experiment, r = -0.21) and 

G:F (heifer experiment, r = -0.17). 

2.4. Discussion 

In beef cattle production systems, animals with poor feed efficiency may represent a greater 

cost of production and may influence the environmental footprint of the livestock sector (Basarab 

et al., 2013). Therefore, identification and selection for cattle with improved feed efficiency is 

warranted and represents a relevant scope for improvements in both economical (Carstens, 2006) 

and environmental (Herrero et al., 2013) scenarios of livestock production. In the present study, 

the difference between efficiency groups observed in the RFIsize model represented up to 32 kg 

and 27 kg less DMI on a monthly basis for each feed efficient heifer and steer in comparison to 

their less efficient counterparts.  

From a modelling perspective, it is important to note that the accuracy of RFI prediction 

models, can greatly vary between studies, with reported values ranging from 38 to 82% (Koch et 

al., 1963; Fitzsimmons et al., 2013; Freetly and Brown-Brandl, 2013; Mercadante et al., 2015). 

Thus, numerous attempts have been made to increase the prediction capacity of RFI while also 

ensuring biological differences are being accounted into the model proposed by Koch et al. (1963). 

For example, the inclusion of body composition traits (Basarab et al., 2003; Montanholi et al., 
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2009) has been a successful addition to the previous Koch model. This addition may not only 

account for the difference regarding the differences in the energetic demand for fat and protein 

accretion (Owens et al., 1993), which may help verification of correlated responses to selection 

(Richardson and Herd, 2004), but also increased the accuracy of the prediction models 

(Montanholi et al., 2009). It was previously hypothesized that the addition of animal size traits, 

especially measurements of girth, to the RFI and RG models would represent an increase in the 

prediction capacity of these models, considering their potential to reflect internal organs demands 

(Kleiber, 1961) and its direct effects on DMI (NRC, 2016). To date, no attempts have been made 

in regards to the addition of body measurement traits in the prediction models of gain and intake. 

Our results demonstrated that the addition of girth measurements, across all experiments, increased 

the accuracy of prediction for both intake and gain models. This could be a valuable inexpensive 

addition to the sample collection routine and would potentially account for animal size variations 

and greater capacity for feed intake that are not being accounted for when using BW or metabolic 

BW in the prediction models. In fact, the metabolic weight (BW0.75) proposed by Kleiber (1961) 

is an accurate factor to be used across species, but it might not accurately reflect the metabolic 

differences within each species that present smaller differences than the classic example of the 

elephant and the mouse (Schmidt-Nielsen, 1970). Furthermore, it has been shown that distinct 

metabolic states within species might require different exponents to properly calculate metabolic 

body weight (Labussière et al., 2016). 

The absence of associations between RFIKoch, RFIus and RFIsize models, body and carcass 

composition traits, combined with the similarities in the different efficiency phenotypes are in 

agreement with previous studies (Arthur et al., 2003; Basarab et al., 2003; Montanholi et al., 2009) 

and might be suggestive that RFI has a weak association with body composition. To date, this is 
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still a controversy, since there are other studies that have reported differences in relation to protein 

and fat deposition among different efficiency groups (Richardson and Herd, 2004; Schenkel et al., 

2003). Nonetheless, the addition of body composition traits in RFI prediction models is still 

valuable, since this might account for the differences in regards to energy needs for fat or protein 

deposition (Owens et al., 1993) to ensure carcass soundness at slaughter and reduce potential 

decrease in carcass quality. In the present study, the positive associations between DMI, ribeye 

area and G:F highlight the positive relationship between growth and gross efficiency measures 

(Archer et al., 1999) and reinforce and the concept that selecting for gross efficiency consequently 

results in larger animals, as reported previously (Crowley et al., 2010). The contrastingly negative 

association between DMI with intramuscular fat in heifers and the positive association between 

DMI and carcass marbling in steers could be attributed to a variety of different factors, such as 

diverse hormonal status, tissue accretion and age in relation to animals’ growth curve (Garret, 

1987; NRC, 2016) factors that were all different between the heifer and steer experiments in the 

current study. Animals’ genotypes and genetic potential were additional sources of variation that 

were not accessed throughout the experiment. Thus, we believe the associations found in the steers 

could be attributed to the development of internal fat deposits (Andrews, 1958), which in finishing 

animals has been proven to increase with increased days on feed (Bruns et al., 2004) as well as 

dietary energy density and DMI.   

Feeding patterns and activity could account for up to 12% of the variation in RFI 

(Richardson and Herd, 2004) and many studies indicate distinguished behavioral patterns across 

cattle with differing feed efficiency (Nkrumah et al., 2006; Nkrumah et al., 2007; Kelly et al., 

2010; Montanholi et al., 2010). As expected, increased number of feeding events daily was 

positively associated with RFI, which has been shown elsewhere (Montanholi et al., 2010). 
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Furthermore, our findings illustrate the importance of feeding behavior traits and suggest their 

association not only with intake prediction models, but also with the gain prediction models as 

well as gross measurements of efficiency. Similar to Kelly et al. (2010), more efficient heifers in 

the present study visited the feeder less times daily. Noteworthy, the present study also suggests 

that more efficient heifers ate more (g of DM) during each visit. We attribute this result to the fact 

that, when summarizing the Insentec feeding data and calculating feeding behavior parameters, we 

included every feeding event with zero g of DM consumption, with intent to also access animal 

activity. Thus, we believe that the daily visits could be representative of animal activity and that 

more feed efficient heifers engaged in less daily feeding activity (Golden et al., 2008). Similarly, 

results showed that efficient steers exhibited diminished number of daily meals and visits, along 

with fewer amounts eaten per meal in comparison to their inefficient counterparts, which is in 

agreement with Montanholi et al. (2010).   

Numerous attempts in determining the optimal animal size to achieve maximum biological 

and/or economic efficiency have been made (Johnson et al., 2010) due to their biological and 

economic impacts on animal production (Dickerson, 1978) and the potential of its variance to be 

used as an important resource for increasing production efficiency (Cartwright, 1979). 

Measurements of girth have been described to be positively associated with DMI, ADG, and feed 

conversion efficiency (i.e., F:G, the inverse measurement of G:F) in growing heifers (Kelly et al., 

2010). The present results are in agreement with the previous findings, since all girth 

measurements exhibited moderate to strong positive correlations between girth measurements, 

DMI, ADG and G:F; and could be supported by the fact that greater animal size (i.e., BW) requires 

a greater DMI (NRC, 2016), and, consequently, daily gains and overall efficiency of gain in 

relation to feed will be greater considering the animals are larger. In agreement with Kelly et al. 
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(2010), the present study did not find any significant differences regarding animal size phenotypes 

between RFI groups.  

Several metabolites and hormones have been associated with divergent feed efficiency 

phenotypes (Richardson et al., 2004; Gonano et al., 2014; Montanholi et al., 2017). The association 

between DMI and PUN found in the present study was expected and can be attributed to the close 

positive relationship of this metabolite with the level of intake (Lapierre and Lobley, 2001). In this 

context, the negative association between PUN and RFI also seems reasonable, since animals with 

low-RFI distinctly consume less feed. Additionally, there are also major metabolic expenses 

related to the process of urea recycling and clearance within the blood (Egan et al., 1984), which 

could also be influencing feed efficiency and may constitute one possible explanation for efficient 

animals to have lower maintenance requirements. However, the strength of this association is 

suggested to be fairly low (Kelly et al., 2010) and described not to have major effects on overall 

performance and efficiency (Richardson et al., 2004). Hence, lack of differences in relation to 

efficient phenotypes found in the present study (Figure 2.1A, 2.1D) reinforces this hypothesis and 

provides more indications that those associations may be mostly due to the positive association of 

dietary intake and urea (Clarke et al., 2009) rather than actual differences on efficiency of energy 

and protein use. The negative associations of plasma NEFA concentrations with ADG, DMI and 

RFI, along with the positive association with G:F have also been described elsewhere (Richardson 

et al., 2004; Kelly et al., 2010; Wood et al., 2014). Interestingly, feed efficient heifers had marked 

lower NEFA concentrations throughout the experiment, which is in accordance with previous 

studies (Kelly et al., 2010) and may be because of a potential higher nutrient delivery in efficient 

animals, since the circulation of NEFA serve as a reserve of readily available energy to peripheral 

tissues in growing animals (Drackley, 2005). The association between ADG and G:F with plasma 
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glucose along with the lack of associations with RFI  or differences across divergent phenotypes 

found in the present study was also reported elsewhere (Richardson et al., 2004; Kelly et al., 2010). 

Altogether, this might be attributed to the fact that ruminants do not absorb high amounts of 

glucose from dietary intake or solely rely on glucose as a respiratory fuel (Weeks, 1979). Hence, 

lack of differences in relation to efficient animals provides more indications that glucose 

metabolism may not be of great relevance in explaining the biological variation of feed efficiency 

in growing animals.    

In conclusion, linear measurements of girth seemed to be a valuable addition to the 

prediction models of gain and intake in growing animals. These measurements may be accounting 

for variation in animal size that are not reflected in BW or BW0.75 and may represent a non-invasive 

inexpensive practice that could be easily applied into cattle handling routines. Body and carcass 

composition may be important players in the biological variation of feed efficiency and this 

relationship could be influenced by a multitude of factors (i.e., genotypes, hormonal status, tissue 

accretion and growth curve). Thus, the associations between body composition traits may vary 

across feed efficiency measures. It is interesting to note that behavioral patterns were associated 

with multiple measures of efficiency, and their respective associations indicated less daily activity 

in more efficient phenotypes. Animal size traits showed greater association with G:F and RG in 

comparison to RFI. Lastly, PUN, NEFA and glucose seemed to be highly dependent on DMI and 

ADG. However, only NEFA seemed to be associated with the efficiency measures of RFI and G:F. 

The evaluation of different approaches for calculating RFI provided additional biological 

inferences about productive performance, feeding behavior, animal size and plasma metabolic 

markers. From all traits evaluated herein, the feeding behavior traits had the strongest relationship 

with the different estimates of RFI as calculated in these experiments. Based on this study, a more 
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feed efficient heifer visited the bunk fewer times a day but ate larger amounts at each visit, and 

had greater concentrations of NEFA in plasma; a more feed efficient steer also visited the bunk 

fewer times a day, and while having smaller meals, spent more time per meal and visit. These traits 

may represent important variation in the biological variation of efficiency of feed use and might 

be used as indirect assessments of efficiency.  

2.5. Literature cited 

Andrews, F. N. 1958. Fifty years of progress in animal physiology. J. Anim. Sci. 17:1064-1078. 

Archer, J. A., Richardson, E. C., Herd, R. M., and P. F. Arthur. 1999. Potential for selection to 

improve efficiency of feed use in beef cattle: a review. Aust. J. Agric. Res. 50:147-161. 

doi:10.1071/A98075. 

Arthur, P. F., and R. M. Herd. 2005. Efficiency of feed utilization by livestock – implications 

and benefits of genetic improvement. Can. J. Anim. Sci. 85:281-290. doi:10.4141/A04-

062. 

Arthur, P. F., Herd, R. M., and J. A. Archer. 2003. Should measures of body composition be 

included in the model for residual feed intake in beef cattle? Proc. Bi. Conf. Assoc. Adv. 

Anim. Breed. Gen. 15:306–309. 

Association of Official Analytical Chemists (AOAC). 1990. Official methods of analysis. 15th 

ed. AOAC, Arlington, VA. 

Basarab, J. A., Beauchemin, K. A., Baron, V. S., Ominski, K. H., Guan, L. L., Miller, S. P., and 

J. J. Crowley. 2013. Reducing GHG emissions through genetic improvement for feed 

efficiency: effects on economically important traits and enteric methane production. 

Animal 7:303-315. doi:10.1017/S1751731113000888. 



 

62 

Basarab, J. A., Price, M. A., Aalhus, J. L., Okine, E. K., Snelling, W. M., and K. L. Lyle. 2003. 

Residual feed intake and body composition in young growing cattle. Can. J. Anim. Sci. 

83:189-204. doi:10.4141/A02-065. 

Bruns, K. W., Pritchard, R. H., and D. L. Boggs. 2004. The relationships among body weight, 

body composition, and intramuscular fat content in steers. J. Anim. Sci. 82:1315-1322. 

Chaney, A.L., and E. P. Marbach. 1962. Modified reagents for determination of urea and 

ammonia. Clin. Chem. 8:130-132. 

Carstens, G. E. 2006. Defining feed efficiency in beef cattle. 

http://www.bifconference.com/bif2006/pdfs/carstens.pdf (Accessed 03 February 2017). 

Cartwright, T. C. 1979. Size as a component of beef production efficiency: cow-calf production. 

J. Anim. Sci. 48:974-980. 

Clarke, A. M., Drennan, M. J.,  McGee, M.,  Kenny, D. A., Evans, R. D., and D. P. Berry. 2009. 

Live animal measurements, carcass composition and plasma hormone and metabolite 

concentrations in male progeny of sires differing in genetic merit for beef production. 

Animal 3:933–945. 

Crowley, J. J., McGee, M., Kenny, D. A., Crews, D. H., Evans, R. D., and D. P. Berry. 2010. 

Phenotypic and genetic parameters for different measures of feed efficiency in different 

breeds of Irish performance-tested beef bulls. J. Anim. Sci. 88:885-894. 

doi:10.2527/jas.2009-1852. 

Dickerson, G. E. 1978. Animal size and efficiency: basic concepts. Anim. Prod. 27:367-379. 

Drackley, J. K. Interorgan lipid and fatty acid metabolism in growing ruminants. In: D. G. Burrin 

and H. J. Mersmann, editors. Biology of metabolism in growing animals. Saunders, St. 

Louis, MO. p. 323-350. 



 

63 

Egan, A. R., Boda, K., and J. Varady. 1984. Regulation of nitrogen metabolism and recycling. 

In:  L. P. Milligan, W. L. Grovum and A. Dobson, editors. Control of Digestion and 

Metabolism in Ruminants. Prentice-Hall, Englewood Cliffs, NJ. p. 386-402. 

Farrance, I. 1987. Plasma glucose methods, a review. Clin. Biochem. Rev. 8:55-68. 

Fawcett, J. K., and J. E. Scott. 1960. A rapid and precise method for the determination of urea. J. 

Clin Pathol. 13:156-159.  

Fitzsimons, C., Kenny, D. A., Deighton, M. H., Fahey, A. G., and M. McGee. 2013. Methane 

emissions, body composition, and rumen fermentation traits of beef heifers differing in 

residual feed intake. J. Anim. Sci. 91:5789-5800.  doi:10.2527/jas.2013-6956. 

Fontoura, A. B. P., Montanholi, Y. R., Diel de Amorim, M., Foster, R. A., Chenier, T., and S. P. 

Miller. 2016. Associations between feed efficiency, sexual maturity and fertility-related 

measures in young beef bulls. Animal 10:96-105. doi:10.1017/S1751731115001925. 

Forbes, J. M. 1995. Feeding behavior. In: J. M. Forbes, editor. Voluntary food intake and diet 

selection in farm animals. CAB International, Wallingford, UK. p. 11-37. 

Freetly, H. C., and T. M. Brown-Brandl. 2013. Enteric methane production from beef cattle that 

vary in feed efficiency. J. Anim. Sci. 91:4826-4831. doi:10.2527/jas.2011-4781. 

Garret, W. N. 1987. Relationship between energy metabolism and amounts of protein and fat 

deposited in growing cattle. In: P. W. Moe, H. F. Tyrell, and P. J. Reynolds, editors. 

Energy metabolism of farm animals: proceedings of the 10th symposium. Rowman & 

Littlefield, New York, NY. p. 98-101. 

Golden, J. W., Kerley, M. S., and W. H. Kolath. 2008. The relationship of feeding behavior to 

residual feed intake in crossbred Angus steers fed traditional and no roughage diets. J. 

Anim. Sci. 86:180-186. doi:10.2527/jas.2005-569. 



 

64 

Gonano, C. V., Montanholi, Y. R., Schenkel, F. S., Smith, B. A., Cant, J. P., and S. P. Miller. 

2014. The relationship between feed efficiency and the circadian profile of blood plasma 

analytes measured in beef heifers at different physiological stages. Animal 10:1-15. 

doi:10.1017/S1751731114001463. 

Heinrichs, A. J., Rogers, G. W., and J. B. Cooper. 1992. Predicting body weight and wither 

height in Holstein heifers using body measurements. J. Dairy Sci. 75:3576-3581. 

Herrerro, M., Havlík, P., Valin, H., Notenbaert, A., Rufino, M. C., Thornton, P. K., Blümmel, 

M., Weiss, F., Grace, D., and M. Obersteiner. 2013. Biomass use, production, feed 

efficiencies, and greenhouse gas emissions from global livestock systems. Proc. Natl. 

Acad. Sci. U.S.A. 110: 20888–20893. doi:10.1073/pnas.1308149110. 

Huntington, G. B. 1986. Uptake and transport of nonprotein nitrogen by the ruminant gut. Fed. 

Proc. 45:2272-2276. 

Johnson, J. J., Radakovich, J. D., and B. H. Dunn. 2010. Producing right sized cows. 

http://www.beefusa.org/uDocs/2010%20NCBA%20Cow%20Efficiency%20_Final_.pdf 

(Accessed 19 May 2016). 

Kelly, A. K., McGee, M., Crews Jr., D. H., Fahey, A. G., Wylie, A. R., and D. A. Kenny. 2010. 

Effect of divergence in residual feed intake on feeding behavior, blood metabolic 

variables, and body composition in growing beef heifers. J. Anim. Sci. 88:109-123. 

doi:10.2527/jas.2009-2196. 

Kleiber, M. 1961. The fire of life: an introduction to animal energetics. John Wiley & Sons, New 

York, USA. 

Knuston, E. E., Sun, X., Fontoura, A. B. P., Gaspers, J., Liu, J. H., Carlin, K. R., Bauer, M., 

Swanson, K. C., and A. K. Ward. 2017. Effect of a low vitamin A diet on marbling and 



 

65 

carcass characteristics of Angus cross and Simmental steers. Proc. West. Sec. Amer. Soc. 

Anim. Sci. 68:90-100.  

Koch, R. M., Swiger, L. A., Chambers, D., and K. E. Gregory. 1963. Efficiency of feed use in 

beef cattle. J. Anim. Sci. 22:486-494. 

Labussière, E., Dubois, S., van Milgen, J., and J. Noblet. 2016. Fasting heat production and 

metabolic body weight in non-ruminant growing animals. In: J. Skomial and H. Lapierre, 

editors. Energy and protein metabolism and nutrition: proceedings of the 5th international 

symposium in energy and protein metabolism and nutrition. Wageningen Academic 

Publishers, Wageningen, NE. p. 55-63.  

Lapierre, H., and G.E. Lobley. 2001. Nitrogen recycling in the ruminant: a review. J. Dairy Sci. 

84:E223-E236. 

Mader, C. J., Montanholi, Y. R., Wang, Y. J., Miller, S. P., Mandell, I. B., McBride, B. W., and 

K. C. Swanson. 2009. Relationships among measures of growth performance and 

efficiency with carcass traits, visceral organ mass, and pancreatic digestive enzymes in 

feedlot cattle. J. Anim. Sci. 87:1548-1557. doi:10.2527/jas.2008-0914. 

Mercadante, M. E. Z., Caliman, A. P. M., Canesin, R. C., Bonilha, S. F. M., Berndt, A., 

Frighetto, R. T. S., Magnani, E., and Branco R. H. 2015. Relationship between residual 

feed intake and enteric methane emission in Nellore cattle. R. Bras. Zootec. 44:255-262. 

doi:http://dx.doi.org/10.1590/S1806-92902015000700004. 

Montanholi, Y. R., Haas, L. S., Swanson, K . C., Coomber, B. L., Yamashiro, S., and S. P. 

Miller. 2017. Liver morphometrics and metabolic blood profile across divergent 

phenotypes for feed efficiency in the bovine. Acta. Vet. Scand. 59:24. 

doi:10.1186/s13028-017-0292-1. 



 

66 

Montanholi, Y. R., Swanson, K. C., Palme, R., Schenkel, F. S., McBride, B. W., Lu, D., and S. 

P. Miller. 2010. Assessing feed efficiency in beef steers through feeding behavior, 

infrared thermography and glucocorticoids. Animal 4:5:692-701. 

doi:10.1017/S1751731109991522. 

Montanholi, Y. R., Swanson, K. C., Schenkel, F. S., McBride, B. W., Caldwell, T. R., and S. P. 

Miller. 2009. On the determination of residual feed intake and associations of infrared 

thermography with efficiency and ultrasound traits in beef bulls. Livest. Sci. 125:22-30. 

doi:10.1016/j.livsci.2009.02.022. 

Nkrumah, J. D., Crews Jr., D. H., Basarab, J. A., Price, M. A., Okine, E. K., Wang, Z., Li, C., 

and S. S. Moore. 2007. Genetic and phenotypic relationships of feeding behavior and 

temperament with performance, feed efficiency, ultrasound, and carcass merit of beef 

cattle. J. Anim. Sci. 85:2382–2390. doi:10.2527/jas.2006-657. 

Nkrumah, J. D., Okine, E. K., Mathison, G. W., Schmid, K., Li, C., Basarab, J. A., Price, M. A., 

Wang, Z., and S. S. Moore. 2006. Relationships of feedlot feed efficiency, performance, 

and feeding behavior with metabolic rate, methane production, and energy partitioning in 

beef cattle. J. Anim. Sci. 84:145-153. doi:/2006.841145x. 

NRC. 2016. Nutrient requirements of beef cattle. 8th rev. ed. The National Academies Press, 

Washington, DC. 

Owens, F. N., Dubeski, P., and C. P. Hanson. 1993. Factors that alter the growth and 

development of ruminants. J. Anim. Sci. 71:3138:3150. 

Richardson, E. C., and R. M. Herd. 2004. Biological basis for variation in residual feed intake in 

beef cattle. 2. Synthesis of results following divergent selection. Aust. J. Exp. Agr. 

44:431-440.  



 

67 

Richardson, E. C., Herd, R. M., Archer, J. A., and P. F. Arthur. 2004. Metabolic differences in 

Angus steers divergently selected for residual feed intake. Austr. J. Exp. Agric. 44:441-

452. 

Robertson, J. B., and P. J. Van Soest. 1981. The detergent system of analysis and its application 

to human foods. In: W. P. T. James and O. Theander, editors. The analysis of dietary 

fiber. Marcell Dekker, New York, NY. p. 123–158. 

Schenkel, F.S., Miller, S.P., and J. W. Wilton. 2003. Genetic parameters of feed efficiency, 

growth and carcass traits of beef bulls. Can. J. Anim. Sci. 83:617 618. 

Schmidt-Nielsen, K. 1970. Energy metabolism, body size, and problems of scaling. Fed. Proc. 

29:1524-1532. 

Susenbeth, A., Mayer, R., Kiehler, B., and O. Neumann. 1998. Energy requirements for eating in 

cattle. J. Anim. Sci. 76:2701–2705.  

Swanson, K. C., Islas, A., Carlson, Z. E., Goulart, R. S., Gilbery, T. C., and M. L. Bauer. 2014. 

Influence of dry-rolled corn processing and increasing dried corn distillers grains plus 

solubles inclusion for finishing cattle on growth performance and feeding behavior. J. 

Anim. Sci. 92:2531-2537. doi:10.2527/jas.2013-7547. 

Swanson, K., and S. Miller. 2008. Feed efficiency and nutrient utilization in cattle. In: J. France 

and E. Kebreab, editors. Mathematical modelling in animal nutrition. CAB International, 

Oxfordshire, UK. p. 419-441. 

Weeks, T. E. C. 1979. Carbohydrate metabolism. In: D. C. Church, editor. Digestive Physiology 

and Nutrition in Ruminants. O&B Books, Corvallis, OR. p. 187-209. 



 

68 

Wheadon, N. M., McGee, M., Edwards, G. R., and R. J. Dewhurst. 2014. Plasma nitrogen 

isotopic fractionation and feed efficiency in growing beef heifers. Br. J. Nutr. 111:1705-

1711. doi:https://doi.org/10.1017/S0007114513004078.  

Wood, K. M., Montanholi, Y. R., Fitzsimmons, C. F., Miller, S. P., McBride, B. W., and K. C. 

Swanson. 2014. Characterization and evaluation of residual feed intake measured in mid- 

to late-gestation mature beef cows and relationships with circulating serum metabolites 

and linear body measurements. Can. J. Anim. Sci. 94:499-508. doi:10.4141/CJAS2013-

165.  



 

69 

3. RELATIONSHIPS BETWEEN ANIMAL SIZE, FEEDING BEHAVIOR, PLASMA 

METABOLITES AND FEED EFFICIENCY IN BEEF CATTLE: II. MATURE 

PREGNANT COWS 

3.1. Introduction 

The provision of feed to animals is a major cost to beef production. This is especially 

relevant in the cow-calf herd, which may account for about 65 to 85% of overall feed costs 

(Montaño-Bermudez et al., 1990). It is unquestionable that adequate nutrition is needed for proper 

maintenance, growth and reproduction. However, there may be a large animal-to-animal variation 

in relation to how energy and nutrients are utilized (Richardson and Herd, 2004). This may enable 

the selection of more feed efficient breeding females, along with improvements in profitability and 

environmental impacts (Basarab et al., 2013) of beef production systems. 

Several measures of feed efficiency have been proposed to assess efficiency of feed and 

energy use in beef cattle (Archer et al., 1999; Swanson and Miller, 2008). Traditional gross 

efficiency measurements (i. e. gain to feed ratio), residual gain and feed intake (Koch et al., 1963; 

Montanholi et al., 2009) have been intensively studied. However, even though the beef industry 

has been focusing on the topic of feed efficiency, most of these efforts have focused on growing 

animals (Berry and Pryce, 2014). In this context, another feed efficiency measure that might aid 

in the understanding of the biological variation of feed efficiency is cow/calf efficiency (Jenkins 

and Ferrell, 1994), which is expressed as the weight of the calf weaned (output) in relation to what 

has been consumed by the cow/calf unit (input) (Archer et al., 1999).  

Several studies have been conducted to quantify the biological processes that might 

account for differences in feed efficiency. There is a great number of literature reviews on this 

topic (see: Richardson and Herd, 2004; Carstens, 2006; Montanholi, 2007; Arthur and Herd, 2008). 
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However, little effort have been made in the phenotypic characterization of mature feed efficient 

females. Recent studies have suggested the association between linear body measurements and 

blood metabolic markers with productive performance and efficiency measures (Wood et al., 

2014), and differences in feeding behavior patterns (Xi et al., 2016). 

We hypothesized that calving parameters, animal size, feeding behavior and plasma 

metabolic markers are associated with different measures of feed efficiency and may display 

differences in relation to efficient and inefficient phenotypes, measured through residual feed 

intake (RFI). Additionally, the adjustment of animal size measurements into prediction models of 

gain and intake may enable improvements on the accuracy of prediction models of feed efficiency. 

The objectives of this study were to: 1) evaluate the inclusion of animal size traits in feed efficiency 

prediction models of mature pregnant cows; 2) evaluate the association between calving 

parameters, animals size, feeding behavior, and plasma metabolites with different measures of feed 

efficiency; and 3) determine the differences in calving parameters, body measurements, feeding 

behavior, and plasma metabolites in animals diverging in feed efficiency measured through two 

different measurements of RFI. 

3.2. Materials and methods 

3.2.1. Animals, experimental conditions and dietary treatments  

All procedures were approved by the North Dakota State University Animal Care and Use 

Committee. During the fall of 2015 and winter of 2016, a total of 46 multiparous, crossbred mature 

pregnant beef cows were part of a 135 day testing period and were housed at the Beef Cattle 

Research Complex (North Dakota State University, North Dakota State University, Fargo, United 

States). Cows were divided into groups of 11 or 12 animals per pen (15.24 m x 56.39 m) with free 

access to an outdoor yard, as well as an indoor feeding area equipped with 8 Insentec electronic 
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feeding stations (Hokofarm Group B. V., Marknesse, The Netherlands). Prior to the experiment, 

each cow received a radio frequency ID tag that was placed in the right ear and allowed for the 

recording of feed intake and behavioral assessments. A 21-day adaptation period occurred to 

provide animal acclimation to the research facility and the automated feeding system. Cows were 

fed a forage-based diet (Table 3.1), with two levels of corn supplementation (0 vs. 0.2% of BW), 

three times a day that allowed for ad libitum consumption (first feeding occurred at 0800 h, second 

at 1200 h and the last at 1600 h). The cows’ dietary treatments are explained in detail by Tanner 

et al. (2017). Briefly, the control diet consisted of solely the forage-based TMR and the 

supplemented group received corn at 0.2% BW (chemical composition: 89.37% dry matter, 7.60% 

CP, 14.10% NDF, and 3.20% ADF) in addition to the forage-based TMR. For the first 43 days of 

experiment, the forage-based TMR (Diet 1, Table 3.1), on a DM basis, consisted of: 45.00% hay, 

45.00% straw and 10.00% concentrated separated by-product. However, due to the loss of a cow 

from an impacted abomasum, the diet had to be reformulated (Diet 2, Table 3.2), and the ingredient 

composition of the forage-based TMR (DM basis) remained the same until the end of the testing 

period was: 60.00% hay, 30.00% straw and 10.00% concentrated separated by-product.  

At the beginning and end of the feeding trial, a 2-day BW and measurements of animal size 

were taken. Performance evaluations that consisted of BW measurement and blood collection were 

performed on days 1, 78 and 135 of the experiment prior to feed delivery. These assessments were 

planned accordingly to the periods of mid- (day 110 of pregnancy) to late-gestation (day 188 of 

gestation), as well as closer to the calving date (day 245 of gestation).   
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Table 3.1. Ingredient and nutrient composition 

of TMR in pregnant cows. 

Item (% DM) Diet 1 Diet 2 

Ingredient   

     Hay 45.00 60.00 

     Straw 45.00 30.00 

     CSB1 10.00 10.00 

     Corn2   

Chemical composition   

     DM 83.92 81.38 

     CP 6.40 7.10 

     NDF 67.00 64.50 

     ADF 42.30 38.90 

     Ca 0.28 0.37 

     P 0.12 0.26 
1Concentrated separator by-product (partially de-

sugared beet molasses). 
2Supplemented cows received corn at 0.20% BW 

and control cows received no corn. 

 

3.2.2. Feed analysis 

Similar to Swanson et al. (2014), the diet samples were collected weekly. Samples were 

analyzed at the Nutrition Laboratory at North Dakota State University. Briefly, samples were dried 

in a 55°C oven and ground to pass a 1-mm screen. The samples were analyzed for DM, ash, 

nitrogen (N; Kjehldahl method), calcium, and phosphorus by standard procedures (AOAC, 1990) 

and for NDF (assayed with heat stable amylase and sodium sulfite and expressed inclusive of 

residual ash) and ADF (expressed inclusive of residual ash) concentration by the method of 

Robertson and Van Soest (1981) using a fiber analyzer (Ankom Technology Corp., Fairport, 

USA). Percent crude protein (CP) was calculated by multiplying N concentration × 6.25. 

3.2.3. Productive performance and feed efficiency assessments 

Individual feed intake was determined using the Insentec automated feeding system 

(Hokofarm Group B. V., Marknesse, The Netherlands). At the end of the experiment, feed intake 
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data was downloaded and used to calculate the average feed intake (DMI; kg) over the entire 

period. The feed intake data were filtered to exclude outlier records or days where mechanical 

problems potentially occurred, as previously described by Mader et al. (2009). Similar to Wood et 

al. (2014), pregnancy corrected average daily gain (pcADG, kg) was computed as the coefficient 

of linear regression of body weight on time of measurement, with the corrections of the uterus, 

fetal membranes and fetus (Silvey and Haydock, 1978). In addition, both DMI and pcADG were 

calculated as a percentage of mid-point pregnancy corrected BW (pcBW, kg; pcDMIrbw, 

pcADGrbw, %). The gain to feed ratio (G:F; ratio) was calculated as a ratio of ADG:DMI during 

the experiments’ duration. The cow/calf efficiency index was also calculated. However, because 

cattle were moved to pasture before weaning, the calculations proposed by Jenkins and Ferrel 

(1994) were modified  and was calculated based on cow intake during the test period until 3 weeks 

post calving (mid-gestation until calving) divided by the weight of the calf at 21 days of age 

(CCEd21; kg of calf/kg DM). Both residual gain (RG), and residual feed intake (RFI) were modeled 

two different ways. The first (RGKoch and RFIKoch) were based on the models described by Koch 

et al. (1963), the second (RGsize and RFIsize) were based on the RFI models adjusted for gestation 

length (Wood et al., 2014) and animal size traits. All the RG and RFI models were calculated using 

the ordinary least squares (GLM procedure; SAS Institute Inc., Cary, USA), using mid-point 

pregnancy corrected BW0.75, feed intake, gestation length and animal size measurements collected 

over the duration of the trial.  

Overall, predicted gains were calculated as:  

pcADG = β0 + β1(mmpcBW; kg) + β2(DMI; kg) + β2+1… βn(days at pregnancy and animal size 

traits) + RG models (RGKoch or RGsize) 
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Where β0 is the regression intercept, β1 is the coefficient of regression for mid-point 

pregnancy corrected metabolic body weight, β2 is the coefficient of regression for dry matter 

intake, β2+1… βn are the models’ best fit the days at pregancy and animal size traits. RGKoch and 

RGsize were the residue of this regression, and were used accordingly to each model. The selection 

criteria for each model across all experiments were based on the Bayesian information criterion 

(BIC) and R2.  

Overall, predicted intakes were calculated as:  

DMI = β0 + β1(mmpcBW; kg) + β2(pcADG; kg) + β2+1… βn(days at pregnancy and animal size 

traits) + RG models (RFIKoch or RFIsize) 

Where β0 is the regression intercept, β1 is the coefficient of regression for mid-point 

pregnancy corrected metabolic body weight, β2 is the coefficient of regression for pregnancy 

corrected average daily gain, β2+1… βn are the models’ best fit the days at pregancy and animal 

size traits. RFIKoch and RFIsize were the residues of this regression, and were used accordingly to 

each model. The selection criteria for each model across all experiments were based on the BIC 

and R2.  

3.2.4. Feeding behavior and animal size assessments 

Feeding behavior traits were calculated similar to Swanson et al. (2014) and were 

summarized as: events (per day; number of bunk visits and meals), eating time (minutes; per visit, 

per meal, and per day), and eating rate (grams of DM; per visit and per meal). A visit was defined 

as each time the Insentec system detect an animal at a bunk, while a meal was defined as eating 

periods that might include short breaks separated by intervals not longer than 7 min (Forbes, 1995; 

Montanholi et al., 2010). The data were summarized as the average of each individual animal from 

the initial day until the last day of the experiment.  
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Body measurements were recorded similar to as described by Wood et al. (2014). Body 

length was defined as the distance from the point of shoulder to end of the rump, hip height was 

defined as the distance from ground to base of tail head and hip width the distance between the 

crista iliaca. For the girth measurements, heart girth was measured as the circumference around 

the midsection caudal to shoulder, mid-girth was measured as the circumference around middle 

over navel, and flank girth was measured as the circumference around the middle at the flank and 

cranially to the udder. Body length, girth measures and hip width were recorded using a fabric 

measuring tape, and hip height measurements were recorded with a livestock height measuring 

stick.  

3.2.5. Plasma metabolic markers  

Blood samples were be collected by jugular venipuncture while cows were restrained in 

the squeeze chute. Blood was collected using 1.1 x 25 mm blood collection needles (BD 

Vacutainer® Precision Glide, BD Inc., Franklin Lakes, USA) and 10 mL sodium heparin blood 

collection tubes (BD Vacutainer®, BD Inc., Franklin Lakes, USA). Immediately after collection, 

samples were kept at 4°C until centrifugation. The samples were centrifuged at 4 °C at 3000×g for 

20 minutes. The plasma was decanted into three 2 mL micro centrifuge tubes and stored at -20°C 

until analysis. Urea concentration in plasma (PUN) was measured by the QuantiChrom™ Urea 

Assay Kit (BioAssay Systems, Hayward, USA) and was determined using the urease/Berthelot 

procedure (Chaney and Marbach, 1962; Fawcett and Scott, 1960). Non-esterified fatty acid 

(NEFA) concentration was analyzed using the acyl-CoA synthetase-acyl-CoA oxidase method 

using a kit from Wako Pure Chemical Industries (Dallas, TX). Glucose concentration was 

measured using the Infinity Glucose Hexokinase kit (Thermo Trace, Louisville, USA) and was 

analyzed using the hexokinase/gluxose-6-phosphate dehydrogenase method (Farrance, 1987). All 
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assays were performed using a 96-well microplate reader (Synergy, HI Microplate Reader, BioTek 

Instruments, Winooski, VT).  

3.2.6. Statistical analysis  

Individual cow was considered an independent variable and was evaluated as a random 

effect, RFI groups (high- and low-) in the two prediction models (RFIKoch and RFIsize) and day 

were treated as fixed effects, and the interaction between day and RFI group was treated as a 

random effect. Productive performance along with calf performance, feeding behavior, animal size 

and plasma metabolic markers were the response variables evaluated. Statistical analysis was 

performed using the SAS® software (version 9.4; SAS Institute Inc., Cary, USA). Prior to statistical 

analysis, normality was tested and ensured through residuals’ diagnostic plots using the general 

linear model of SAS. If needed, transformations were performed and values were back-

transformed to be reported. A categorical analysis was carried out in order to compare the animals 

according to RFI values within each determination model (RFIKoch and RFIsize). Means of the two 

RFI groups (high- and low-) in each of the models (RFIKoch and RFIsize) for body and carcass 

composition, feeding behavior and animal size traits were tested using the general linear model of 

SAS, while the means for plasma metabolic markers were tested using the mixed procedure of 

SAS. The covariance structures used to test fit statistics of the mixed model included variance 

components, compound symmetry, autoregressive one, unstructured, and ante-dependence one. 

Smaller fit values (BIC) were always selected. The least square means comparisons for analysis 

conducted using both the general linear model and mixed model were performed using the 

Scheffé’s test. The associations between calving parameters, feeding behavior, animal size and 

blood metabolites with productive performance traits were measured through partial correlations, 

adjusted for dietary treatment, using the MANOVA/PRINTE statement of the general linear 
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model. For all analyses, data were considered statistically significant when P ≤ 0.05 and were 

considered a trend towards significance when 0.10 ≥ P > 0.05. 

3.3. Results 

3.3.1. Prediction models 

The goodness of fit (R2, CV, R MSE) for regression models of intake (RFIKoch, RFIsize) and 

gain (RGKoch, RGsize) can be found in Table 3.2. The addition of size traits in both prediction 

models (RFIsize, RGsize) increased the accuracy of prediction by 12% for the models accounting for 

BW and BW gain (RFIKoch) and 13% for the gain prediction model (RGsize).  

Table 3.2. Model fit statistics for the selected residual feed intake (DMI models) and 

residual gain (ADG models) with differing covariates. 

Experiment Model covariates† N R2 CV R MSE 

Cows Residual feed intake     

    mpcmBW pcADG 45 0.26 7.93 1.15 
    mpcmBW pcADG iHG iFG pregd 45 0.34 7.73 1.12 
 Residual gain     

    mpcmBW pcADG 45 0.29 53.54 0.16 
    mpcmBW pcADG iHG iFG pregd 45 0.42 50.31 0.15 

† mpcmBW, mid-point pregnancy corrected BW; pcADG, pregnancy corrected 

ADG; pregd, days of pregnancy; iHG, heart girth; iFG, initial flank girth.  
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Table 3.3. Least square means of productive performance and calving parameters, measured in mature pregnant cows, by high- and 

low-RFI groups according to the two RFI determination models (RFIKoch and RFIsize). 

Traits (unit) RFIKoch     RFIsize     

  high-RFI† low-RFI† P high-RFI† low-RFI† P 

Productive Performance       

   Initial pcBW (kg) 653 ± 10.73 660 ± 10.97 0.66 658 ± 10.99 655 ± 10.74 0.85 

   Final pcBW (kg) 694 ± 13.14 698 ± 13.43 0.87 700 ± 13.41 692 ± 13.11 0.70 

   pcADG (kg/d) 0.31 ± 0.04 0.29 ± 0.04 0.71 0.31 ± 0.04 0.28 ± 0.04 0.62 

   pcADG relative to BW (%) 0.04 ±0.005 0.04 ± 0.005 0.61 0.04 ± 0.005 0.04 ± 0.005 0.6 

   Dry matter intake (kg) 15.34 ± 0.20 13.57 ± 0.20 0.01 15.38 ± 0.20 13.62 ± 0.20 0.01 

   Dry matter intake relative to BW (%) 2.28 ± 0.03 2.01 ± 0.03 0.01 2.27 ± 0.03 2.03 ± 0.03 0.01 

   Gain to Feed (ratio) 0.02 ± 0.002 0.02 ± 0.003 0.81 0.02 ± 0.003 0.02 ± 0.002 0.91 

   Cow/Calf efficiency at d 21 (CCEd21, kg of calf/kg DM) 0.22 ± 0.004 0.19 ± 0.004 0.01 0.22 ± 0.004 0.19 ± 0.004 0.01 

   RG (Koch et al. 1963) (RGKoch, kg/d) -0.02 ± 0.03 0.02 ± 0.03 0.43 -0.02 ± 0.03 0.02 ± 0.03 0.36 

   RG (size adjusted) (RGsize, kg/d) -0.01 ± 0.03 0.02 ± 0.03 0.48 -0.01 ± 0.03 0.01 ± 0.03 0.52 

   RFI (Koch et al. 1963) (RFIKoch, kg/d) 0.86 ± 0.14 -0.90 ± 0.15 0.01 0.85 ± 0.16 -0.82 ± 0.16 0.01 

   RFI (size adjusted) (RFIsize, kg/d) 0.77 ± 0.15 -0.80 ± 0.15 0.01 0.84 ± 0.14 -0.80 ± 0.14 0.01 

Calving Parameters       

   Gestation length (d) 278 ± 0.74 279 ± 0.76 0.66 279 ± 0.76 278 ± 0.75 0.79 

   Calf BW at birth (kg) 40 ± 0.71 41 ± 0.79 0.33 40 ± 0.79 41 ± 0.78 0.46 

   Calf BW at 21 d (kg) 70 ± 1.37 71 ± 1.47 0.52 69 ± 1.42 71 ± 1.39 0.27 

   Calf BW at 168 d (kg) 270 ± 4.52 270 ± 4.85 0.99 271 ± 4.73 270 ± 4.62 0.90 
†Mean ± SEM. 

RG = residual gain; RFI = residual feed intake 



 

79 

3.3.2. Productive performance and calving parameters 

The RFIKoch and RFIsize were different between the high- and low-RFI groups (Table 3.3). 

Feed inefficient cows (high-RFI) consumed 11% more feed daily over the feeding trial, this could 

represent 642 kg of extra feed per cow per year (Table 3.3). Notably, when comparing DMI as a 

percentage of BW, inefficient cows still consumed more feed than their efficient counterparts 

(Table 3.3). Interestingly, when considering the cow/calf efficiency index, inefficient cows 

produced more kg of calves per kg of DM consumed. However, calving parameters and gestation 

length did not differ between high- and low-RFI groups (Table 3.3). 

The evaluation of the associations between productive performance with calving 

parameters revealed that both pcADG and pcADGrbw were negatively correlated (P ≤ 0.05) with 

gestation length (r = -0.33; r = -0.34) and positively correlated (P ≤ 0.05) with calf BW at day 21 

(r = 0.35; r = 0.32) and calf BW at day 168 (r = 0.37; r = 0.35). The G:F ratio and RGKoch were 

negatively correlated (P ≤ 0.05) with gestation length (r = -0.34 and r = -0.42, respectively). 

Furthermore, G:F was also positively correlated (P ≤ 0.05) with calf BW at 21 d (r = 0.34) and at 

168 d (r = 0.35). 
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Table 3.4. Least square means of feeding behavior and animal size, measured in mature pregnant cows, by high- and low-

RFI groups according to the two RFI determination models (RFIKoch and RFIsize). 

Traits (unit) 
RFIKoch RFIsize 

high-RFI† low-RFI† P high-RFI† low-RFI† P 

Feeding Behavior       

   Meals (events/d) 48 ± 2.63 38 ± 2.69 0.01 46 ± 2.85 40 ± 2.80 0.17 

   Visits (events/d) 95 ± 4.96 75 ± 5.07 0.01 91 ± 5.37 80 ± 5.26 0.18 

   Daily time (min) 202.56 ± 7.33 195.29 ± 7.49 0.49 207.29 ± 7.32 191.09 ± 7.16 0.12 

   Time per meal (min/event) 4.64 ± 0.42 5.69 ± 0.43 0.08 5.10 ± 0.45 5.21 ± 0.44 0.86 

   Time per visit (min/event) 2.32 ± 0.21 2.83 ± 0.21 0.09 2.55 ± 0.22 2.60 ± 0.21 0.87 

   Eating rate per meal (g of DM/event) 347.01 ± 26.07 396.47 ± 26.66 0.19 368.95 ± 27.20 373.33 ± 26.60 0.91 

   Eating rate per visit (g of DM/event) 124.31 ± 7.78 89.85 ± 7.96 0.01 118.17 ± 8.50 97.22 ± 8.31 0.08 

Animal Size       

   Initial body length (cm) 107.62 ± 1.83 105.87 ± 1.87 0.51 107.78 ± 1.86 105.8 ± 1.82 0.45 

   Initial hip height (cm) 124.93 ± 0.84 128.84 ± 0.85 0.71 124.84 ± 0.84 128.76 ± 0.82 0.12 

   Initial hip width (cm) 59.03 ± 0.82 57.73 ± 0.84 0.28 59.69 ± 0.81 57.15 ± 0.79 0.03 

   Initial heart girth (cm) 197.73 ± 3.35 204.53 ± 3.42 0.16 203.43 ± 3.46 198.78 ± 3.39 0.34 

   Initial mid girth (cm) 244.34 ± 2.66 243.32 ± 2.72 0.79 243.21 ± 2.73 244.45 ± 2.67 0.75 

   Initial flank girth (cm) 210.82 ± 4.27 215.03 ± 4.32 0.49 216.30 ± 4.32 209.61 ± 4.23 0.27 

   Final body length (cm) 130.95 ± 1.07 128.5 ± 1.10 0.12 131.19 ± 1.08 128.38 ± 1.06 0.07 

   Final hip height (cm) 132.58 ± 2.32 133.02 ± 2.37 0.24 131.85 ± 2.37 133.69 ± 2.32 0.24 

   Final hip width (cm) 65.07 ± 5.11 57.5 ± 5.23 0.31 65.15 ± 0.53 57.76 ± 0.35 0.02 

   Final heart girth (cm) 199.47 ±  1.95 203.32 ±  2.00 0.17 201.24 ± 2.04 201.46 ± 2.00 0.93 

   Final mid girth (cm) 248.59 ± 2.73 248.68 ± 2.85 0.98 250.31 ± 2.77 246.96 ± 2.77 0.39 

   Final flank girth (cm) 213.25 ± 2.12 214.34 ± 2.18 0.72 214.14 ± 2.18 213.44 ± 2.13 0.82 
†Mean ± SEM. 
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3.3.3. Feeding behavior 

Less daily feeding events (meals and visits) and less amount of DM eaten per visit were 

observed in low-RFIKoch cows (P ≤ 0.05, Table 3.4). Additionally, it was also observed that 

efficient cows had up to 2-minute longer meals in comparison to their inefficient counterparts 

(Table 3.4). Furthermore, daily number of meals and visits were positively correlated (P ≤ 0.05) 

with pcDMIrbw (r = 0.50 and r = 0.49, respectively), cow/calf efficiency (r = 0.42 and r = r = 0.42, 

respectively), and RFIKoch (r = 0.40 and r = 0.40, respectively). Increased daily time spent at the 

bunk was correlated (P ≤ 0.05) with increased pcADGrbw (r = 0.31) and increased RG (RGKoch, r 

= 0.31; RGsize, r = 0.32). Furthermore, the amount eaten per visit (g of DM) was positively 

correlated (P ≤ 0.05) with pcDMIrbw (r = 0.54), cow/calf efficiency (r = 0.48), RFIKoch (r = 0.53) 

and RFIsize (r = 0.40). 

3.3.4. Animal size 

The RFIsize model suggested that efficient cows possessed smaller hip width (P ≤ 0.05) and 

tended to have a shorter body length (P ≤ 0.10; Table 3.4). Dry matter intake was the only trait that 

was correlated (P ≤ 0.05) with linear measurements of body length (initial, r = 0.29; final, r = 0.32), 

initial hip width (r = 0.32) and final flank girth (r = 0.41).  

3.3.5. Plasma metabolic markers 

The results for plasma metabolic markers followed the same pattern across all RFI 

predictions. Therefore, the pattern of plasma metabolic markers across the entire testing period is 

being shown within the RFIsize estimate (Figure 3.1). There were no differences in PUN, NEFA or 

glucose between efficient and inefficient cows. Moderately strong negative correlations (P ≤ 0.05) 

between NEFA and ADG (r = -0.49), DMI (r = -0.30), G:F (r = -0.48), cow/calf efficiency (r = -

0.35), RGKoch (r = -0.36) and RGsize (r = -0.32) were found. 
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Figure 3.1. Plasma metabolites in mature pregnant 

cows over the performance evaluation (135 d) by feed 

efficiency group (RFIsize model, adjusted for size 

traits). (A) Plasma urea-N, (B) non-esterified fatty 

acids and (C) glucose.  
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3.4. Discussion 

In comparison to accuracy of the growing animal prediction models presented and 

discussed in Chapter 2  and elsewhere (48 – 60%, Koch et al., 1953; 77%, Montanholi et al., 2009), 

the accuracy of prediction in mature animals (Table 3.2) was markedly lower in both intake 

(RFIKoch, RFIsize) and gain (RGKoch, RGsize) models. This has been shown in second parity pregnant 

heifers (Lawrence et al., 2011) and gestating mature beef cows (Lawrence et al., 2013; Wood et 

al., 2014). The present results regarding the RFIKoch model displayed a similar R2 range to the 

previous studies (24 – 29%, Lawrence et al., 2011, Lawrence et al., 2013; 21 – 54%, Wood et al., 

2014). Despite the suggestions of increased variability when measuring RFI with high-forage diets 

(Meyer et al., 2008), we believe the lowered R2 may reflect some of the challenges in measuring 

feed efficiency in mature cows because the output measures, such as body weight gain or loss, 

changes in body composition, or growth of the conceptus are difficult to quantify. Furthermore, 

during this period mature cows may also maintain body weight, having body weight gains close 

to zero (Morgan and Davis, 1936) or even lose weight (Fontoura et al., 2016). It is interesting to 

note, however, that similar to in growing animals (Chapter 2), the addition of size traits in the 

prediction models also increased the accuracy of prediction by up to 12% for RFI and 13% in RG 

models in mature pregnant cows. This may reinforce the addition of these traits to feed intake or 

ADG prediction models, as previously proposed in Chapter 2, but may also indicate improvements 

for the prediction models of mature animals.   

The associations between increased pcADG, G:F and RGKoch with decreased days at 

pregnancy, along with the associations between increased pcADG and G:F with greater calf BW 

seem reasonable because those factors are known parameters affecting gestation length (Knapp et 

al., 1940). The lack of associations between RFI predictions and calving parameters may indicate 
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a poor association between calving parameters with this measure of feed efficiency. Notably, the 

homogeneity of calving parameters when comparing efficient and inefficient cows was also found 

in cows divergently selected for RFI (Arthur et al., 2005) and pregnant heifers (Hafla et al., 2013). 

As expected, feed efficient cows (low-RFI) consumed less feed daily in both prediction models, 

as it has been described elsewhere (Wood et al., 2014). It is interesting to note that high-RFI cows 

also had higher cow/calf efficiency (or vice-versa), indicating that inefficient cows produced more 

3 g of calf in relation to each kg of DM consumed, when compared to their efficient counterparts. 

However, the absence of differences in calf BW at birth, 21-d or 168-d among efficient and 

inefficient cows, may suggest that this difference might not be biologically relevant. Overall, calf 

performance uniformity found in the present study might be suggestive that selection for residual 

feed intake may not bring significant selection line differences for calving parameters (Crowley et 

al., 2011; Hafla et al., 2013). However, due to the lower number of animals in the present study, 

and the lack of studies focusing on this matter, further studies are warranted to verify this 

hypothesis and to ensure there is no collateral response to this selection. 

Feed efficient cattle may display distinguished behavioral patterns in comparison to feed 

inefficient cattle. It has been demonstrated that efficient animals typically engage in less daily 

feeding activity (steers, Golden et al., 2008), eat smaller meals (steers, Montanholi et al., 2010) at 

a slower pace (Kelly et al., 2010), and visit the feeder less often (heifers, Kelly et al., 2010; steers, 

Montanholi et al., 2010) over the feeding test. Recent studies in mature females indicate that 

efficient cows spend less time in the bunk daily (Xi et al., 2016). This has also been reported in 

pregnant heifers (Hafla et al., 2013), which spent 26% less time at the bunk daily. In contrast, our 

results suggest that efficient cows visited bunks less and ate less meals daily, consumed 27% less 

feed per meal and tended to spend 21% more time in each of the feeding events. However, it is 
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interesting to note that the previous studies (Hafla et al., 2013; Xi et al., 2016) did not measure the 

time for each specific event. We attribute this discrepancy in the findings of feeding behavior 

patterns to different methodologies used to examine feeding behavior.  

The positive associations between DMI, body length, hip width and flank girth presently 

found are in agreement with previous findings in mature pregnant cows (Wood et al., 2014), as 

well as growing animals (presented in Chapter 2). The lack of differences in animal body size 

according to RFI groups has also been reported in dairy cows (Xi et al., 2016). Thus, the lack of 

associations and differences between RFI phenotypes and animal size traits may be suggestive that 

no detrimental effects of increased cow size might be present in animals selected for improved 

RFI. 

In the present study, no associations were found between the concentration of PUN and 

productive performance or differences between RFI groups. This is in contrast to the findings of 

Wood et al. (2014), who described positive associations between this metabolite and DMI, pcADG 

and RFI. However, as discussed in Chapter 2, the strength of this association is suggested to be 

fairly low (Kelly et al., 2010) and described not to have major associations with overall 

performance and efficiency (Richardson et al., 2004). The negative correlations of NEFA with 

pcADG, DMI, G:F, cow/calf efficiency and RG are in agreement with previous findings in 

growing heifers (Chapter 2; Kelly et al., 2010), steers (Chapter 2; Richardson et al., 2004) and 

mature pregnant cows (Wood et al., 2014). This could indicate that, regardless of stage of 

production, fat metabolism might play an important role in the variation of feed efficiency (Wood 

et al., 2014; Gonano et al., 2014). However, in the present study, no differences in NEFA patterns 

between the efficiency groups were found. This is opposite to the findings of Xi et al. (2016), who 

found markedly lower NEFA concentrations in more feed efficient dairy cows. The lack of 



 

86 

associations between glucose and feed efficiency (measured through RFI) was also found in 

mature cows (Wood et al., 2014; Walker et al., 2015; Xi et al., 2016) and may be suggestive that, 

even though glucose is the primary source of energy for the conceptus (Bell and Bauman, 1997), 

differences in glucose metabolism between animals may not play an important role in the 

regulation of feed efficiency as it has been suggested elsewhere (Richardson et al., 2004; Kelly et 

al., 2010). 

Overall, linear measurements of girth seemed to be a valuable addition to the prediction 

models of gain and intake in mature females. These measurements may be accounting for 

variations in animal size that are not reflected in BW or BW0.75 and may represent a non-invasive 

inexpensive practice that could be easily applied into cattle handling routines. Gestation length, 

calf BW at birth, at day 21 and at day 168 of life did not differ across divergent RFI grouping in 

both RFI predictions (RFIKoch, RFIsize). It is interesting to note that behavioral patterns were 

associated with multiple measures of efficiency, and in mature cows, their respective associations 

may differ depending on the efficiency measure used. Animal size traits in the mature cow may 

have a closer association with eating capacity (i.e., DMI) than with feed efficiency measures. 

Lastly, the three metabolic markers evaluated in the present study were not strongly associated 

with productive performance or feed efficiency measures in mature cows.  

The evaluation of different models of RFI provided additional biological inferences about 

productive performance, calving parameters, feeding behavior, animal size and blood metabolic 

markers. In essence, more efficient cows had less daily intake with no differences in gestation 

length, calf body weight at birth and at weaning. However, the cow/calf efficiency index (CCEd21) 

seemed to be reduced for efficient animals (low-RFI), which may be suggesting lighter calves from 

low-RFI animals at day 21 of age. From all traits evaluated herein, feeding behavior was the 
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category that presented more differences in relation to efficiency phenotypes based on RFI 

classification. Based on this study, a more feed efficient cow consumed fewer meals daily, visited 

the bunk less times a day and ate less at each visit, but tended to stay 21% longer in each feeding 

event (meals and visits). These results may provide further information on the basic aspects 

contributing to differences in feed efficiency in mature cows and reinforce the importance of 

feeding behavior and animal activity in the context of feed efficiency. Considering the present 

findings, future studies are warranted to verify the associations between RFI and the cow/calf 

efficiency index. The traits evaluated in the present study indicate that the biological variation of 

efficiency of feed use in growing animals (Chapter 2) and mature animals might differ.   
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4. SUMMARY AND CONCLUSIONS 

There are several economic and environmental benefits associated with the improvement 

in the efficiency of feed utilization. However, the complexity of feed efficiency, which is 

influenced by several traits and can be assessed through a myriad of different measures, impose 

several implementation obstacles by the industry. To date, there is still much controversy in 

regards of what is the biological basis of feed efficiency. This is not only important for research 

focused on the development of new proxies for feed efficiency, but also to ensure the lack of 

collateral response to genetic selection of animals with improved feed efficiency. The studies 

conducted and presented in this thesis have allowed for the opportunity to evaluate the association 

between important traits in beef cattle such as body composition, feeding behavior, animal size 

and plasma metabolites across different measures of feed efficiency and at different stages of beef 

cattle production.  

The experiments presented in Chapter 2 and Chapter 3 demonstrated that the addition of 

linear measurements of girth seemed to be a valuable addition to the prediction models of gain 

(RGKoch, RGus, RGsize) and intake (RFIKoch, RFIus, RFIsize) in beef cattle, with improvements in 

accuracy ranging between 1 to 13%. These measurements may not only represent a non-invasive 

and inexpensive practice that could be easily applied into cattle handling routines at performance 

experiments, but also may be accounting for variations in animal size that are not reflected in body 

weight or metabolic body weight measures.  
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Figure 4.1. Contributions of body composition, feeding behavior, 

animal size and blood metabolites traits to the explained variation in 

gain to feed (G:F) in (A) steers, (B) heifers (with the addition of year), 

and (C) cows (with the addition of gestation length and calf parameters). 
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In general, body composition, feeding behavior, animal size and plasma metabolites were 

associated with the different measures of feed efficiency. However, the extent of this association 

was variable across animal stage and feed efficiency measure (G:F, RG, or RFI). To illustrate these 

differences, partial regression analyses were performed using the SAS software (version 9.4; SAS 

Institute Inc., Cary, USA), to summarize the overall contributions of body composition, feeding 

behavior, animal size and plasma metabolites traits to the explained variation in the different 

measures of efficiency. Figure 4.1 illustrates the contribution of these traits to G:F. In steers, 

feeding behavior, body composition and animal size accounted for most of the variability of this 

measure, whereas in heifers, animal size and feeding behavior were the most relevant traits. It was 

interesting to note that all traits evaluated were highly relevant in pregnant cows, with gestation 

length, calf parameters and feeding behavior accounting for at least 50% of the G:F variation.  

Residual gain was the feed efficiency measure with the least percentage of variation 

explained by the traits studied herein (Figure 4.2). However, regardless of experiment, the largest 

contributions for this efficiency measure were animal size and feeding behavior traits, which 

represented 24%, 21% and 36% in the known variation of residual gain in steers, heifers and cows, 

respectively. Residual feed intake was the feed efficiency measure with the highest percentage of 

variation explained by feeding behavior (Figure 4.3). With the exception of the steer experiment, 

animal size showed little importance in the variation of RFI, when compared to the G:F and RG 

efficiency measures.  
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Figure 4.2. Contributions of body composition, feeding behavior, 

animal size and blood metabolites traits to the explained variation in 

residual gain (RGsize model) in (A) steers, (B) heifers (with the addition 

of year), and (C) cows (with the addition of gestation length and calf 

parameters). 
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Figure 4.3. Contributions of body composition, feeding behavior, animal 

size and blood metabolites traits to the explained variation in residual 

feed intake (RFIsize model) in (A) steers, (B) heifers (with the addition of 

year), and (C) cows (with the addition of gestation length and calf 

parameters). 
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The analysis of the different RFI models (RFIKoch, RFIus, RFIsize) provided important 

information regarding differences between efficient (low-RFI) and inefficient (high-RFI) 

phenotypes. Among all categories of traits evaluated, feeding behavior differed the most in relation 

to efficiency phenotypes. Based on the findings of Chapter 2 and 3, feed efficient (low-RFI) 

heifers, steers and cows visited the bunk fewer times a day, which may be indicating reduced 

activity in efficient phenotypes, regardless of stage. However, differences were found in relation 

to meal size and time across experiments. While feed efficient heifers ate more (g of DM) each 

visit, efficient steers and cows ate less in each meal and visit but stayed longer in each feeding 

event. Body composition, animal size and calving parameters and blood metabolite traits did not 

seem to be affected by RFI classification. Furthermore, the similarity in NEFA, productive 

performance and feed efficiency correlations across stages of production suggests that efficient 

phenotypes possess higher concentration of this metabolite. However, the robustness of this 

correlation may not be sufficient for this metabolite to become a single marker to predict feed 

efficiency. Notably, heifers were the only category to express this difference in the least square 

means analysis.  

In summary, linear body measurements seemed to be a valuable addition to prediction 

models of gain and intake. Animal size traits seemed to be more relevant to the measures of G:F 

and RG, rather than RFI. However, this association tended to vary across stage of production. 

Feeding behavior may constitute an important physiological factor regulating feed efficiency 

across efficiency measures and shows potential to be used for the development of new proxies of 

feed efficiency in the future. The diminished number of associations between plasma metabolites 

and feed efficiency suggest that these metabolites (PUN, NEFA and glucose) play minor roles in 

the variation in feed efficiency in beef cattle. It is notable that outputs of interest differ accordingly 
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to each stage of beef cattle production. Based on the present findings, G:F ratio and RG may be 

good indicators of efficiency in animal stages that are not impaired by an increase in animal size 

and growth (i.e. finishing animals) in comparison to the potential detrimental effects on the 

breeding herd (increased cow size and nutritional requirements). Overall, RFI seemed to be a good 

indicator of feed efficiency in growing animals. However, future studies involving a larger 

population of mature cows along with longevity assessments are warranted to further investigate 

the presently found associations between RFI and the cow/calf efficiency index. Regardless of 

efficiency measure, production systems that base selection criteria on efficiency of feed utilization 

should take into account animals’ stage of production and system’s outputs of interest. 


