
EFFECTS OF PRETREATMENTS ON SEPARATING THE SEED COAT FROM THE 

COTYLEDON OF BLACK BEAN  

 

 

 

 

A Thesis 

Submitted to the Graduate Faculty 

of the 

North Dakota State University 

of Agriculture and Applied Science 

 

 

 

 

By 

 

Hettige Supun Sandaru Fernando 

 

 

 

 

In Partial Fulfillment of the Requirements 

for the Degree of 

MASTER OF SCIENCE  

 

 

 

 

Major Program 

Cereal Science 

 

 

 

 

March 2017 

 

 

 

 

Fargo, North Dakota 

 

 



North Dakota State University 

Graduate School 
 

Title 
 

Effects of pretreatments on separating the seed coat from the cotyledon of 

black bean 

  

  

  By   

  

Hettige Supun Sandaru Fernando 

  

     

    

  The Supervisory Committee certifies that this disquisition complies with North Dakota 

State University’s regulations and meets the accepted standards for the degree of 

 

  MASTER OF SCIENCE  

    

    

  SUPERVISORY COMMITTEE:  

    

  
Dr. Frank Manthey 

 

  Chair  

  
Dr. Clifford Hall III 

 

  
Dr. Halis Simsek 

 

  
  

 

    

    

  Approved:  

   

 03/24/2017    Dr. Harlene Hatterman-Valenti  

 Date  Department Chair  

    

 

 



 

iii 
 

ABSTRACT 

Separation of seed coat from the cotyledon could result in an additional black bean food 

ingredient. The objective of this study was to develop a standard milling procedure that can 

achieve optimum seed coat removal from black bean seed. Black beans were cooked in boiling 

water for 0, 5, 10, and 20 min or were tempered to 10, 20, 30, 40 and 50% moisture. Then all 

samples were dried to the original moisture content in ambient air or at 90°C. Pretreated black 

beans were milled using a burr mill and a roller mill. Seed coat was removed by aspiration. Seed 

coat yield was greater with tempered than with boiled seed dried at 90°C. The chemical and 

physical changes in the bean flours were less in tempered-dried pretreatment than with cooked-

dried pretreatments. Higher seed coat separation with less changes in flour is important in food 

applications with health benefits.  
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INTRODUCTION 

Dry beans (Phaseolus vulgaris L.) are divided into the following eleven market classes 

that are grown in the United States (US): black beans, kidney beans (light red and dark red), 

navy beans, pinto beans, great northern beans, small red beans, pink beans, small white beans, 

cranberry beans, and yellow-eye beans. Pinto and navy beans are the two leading classes of dry 

beans produced in the US (USDA-ERS 2016a). Although dry beans of different market classes 

possess a similar seed structure, they vary widely among classes for color, size and shape (Siddiq 

and Uebersax 2013).  

Globally, dry beans are important staple food in human nutrition, especially among the 

low-income groups of people in developing countries where protein energy malnutrition is often 

prevalent. Dry beans are a low cost source of protein and important source of carbohydrates, 

dietary fiber, certain minerals and vitamins in the human diet (Sathe 2002; Van Heerden and 

Schonfeldt 2004; Iqbal et al. 2006).  In addition, secondary metabolites, such as phenolic 

compounds that possess antioxidant properties, are known to contribute to the health benefits of 

dry beans (Madhujith and Shahidi 2005). 

  Dry bean utilization by the food industry can be increased by developing value-added 

processing applications. The new trend of incorporating non-wheat flours into food products is 

driven by the increased demand for nutrient dense foods. Several studies have explored the 

utilization of dry beans in traditional products, such as bread, spaghetti, and snacks (Aguilera et 

al. 1982; Chillo et al. 2008; Han et al. 2010). Hence, the inclusion of bean flour in these products 

will improve their nutritional value.  

Use of dry beans in processing and implementing research findings in commercial 

operations have been hindered by the presence of seed coat, anti-nutrients and beany flavor 
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(Siddiq and Uebersax 2013). Removal of these factors can be challenging and requires treatment 

methods such as cooking, soaking, tempering, fermentation and germination (Abd El-Hady and 

Habiba 2003; Martin-Cabrejas et al. 2004). Interestingly, seed coat removal has been reported to 

reduce cooking time and increase in in vitro protein digestibility (Kon et al. 1973; Deshpande et 

al. 1982).  

In general, dehulling or the seed coat removal is a very difficult process due to strong 

attachment of seed coat to the cotyledons. Dehulling produces refined cotyledons with good 

appearance, texture, and cooking qualities (UDPLC 2010). Separation of seed coat from the 

cotyledon can expand the use of bean flour in food product applications by creating different 

food ingredients such as cotyledon flour and seed coat flour. Other than the economic 

advantages, seed coat removal will result in improving the cotyledon flour digestibility and 

palatability as the content of some of the antinutrients, such as tannins, would be reduced by 

removing the seed coat (Towo et al. 2003).  

Cooking and tempering as pretreatments to aid in removal of the seed coat was the focus 

of the reported research. Dry bean seeds cooked in boiling water increased the seed plasticity and 

water absorption (Abu-Ghannam and McKenna 1997). Cooking dry beans improves the texture 

and inactivates undesirable enzymes such as protease inhibitors (Siddiq and Uebersax 2013). 

Starch gelatinization, swelling, leaching of amylose and loss of crystalline structure occurs 

during cooking (Ovando-Martinez et al. 2011).  Even though some antinutrients are somewhat 

heat resistant (i.e. phytate), cooking reduces the majority of antinutrients to acceptable levels and 

can improve organoleptic quality of dry beans (Rehman et al. 2004).  
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Tempering brings the seed to a desired moisture content before milling. Relatively few 

studies have been published concerning tempering of dry beans. Tempering dry beans can result 

in smaller nutritional losses when compared to cooking.  

Carter (2014) used a burr mill in the pre-break step in milling black beans. A burr mill is 

a device that consists of a set of burrs or raised edges that use cutting, shearing, and crushing 

action for particle size reduction (Haque 1991). A burr mill has two roughened chilled cast iron 

plates that rub together, one plate is stationary and the other one rotates on a shaft with operation 

speed usually less than 1,200 rpm. Grain fed between the plates is crushed and sheared. The 

fineness of ground product is controlled by the size and quantity of burrs on the plate and the 

clearance between the two plates. The efficiency of a burr mill depends on the moisture content 

of the food-materials as well as the mechanical strength of its constituent composition (Shakiru 

and Babasola 2014). 

After the pre-break step with the burr mill, the bean pieces can be further milled on a 

roller mill. The roller mill has the potential of further mechanically removing any remaining seed 

coat from cotyledon. Each roll in a pair can rotate at different speed (Posner and Hibbs 2005). 

Roll speed differential results in a shearing action that aids in removing the seed coat from the 

cotyledon. A roller mill uses multiple stage approach to achieve desired size reduction.   

Dry bean milling has attracted interest due to the increasing need of non-wheat food 

ingredients available for food applications (Siddiq and Uebersax 2013). Black beans were 

selected for this research since the dark seed coat offered a stark contrast against the cream color 

of the cotyledon, which aided in the assessment of efficiency of removing the seed coat. Any 

articles were not found in the literature search that reported on physical separation of seed coat 

from cotyledon during milling of black bean seeds nor on the effect of pretreatments on the 
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physical quality, chemical composition, and pasting properties of black bean flour. The effect of 

cooking and tempering pretreatments in combination with drying on burr mill/roller mill system 

and on seed and flour physical and chemical composition was the focus of this research.  
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LITERATURE REVIEW 

Background 

After cereals, the Fabaceae family (which includes legumes) is the second largest source 

of human food and feed for livestock (Graham and Vance 2003; Berrios 2006). Fabaceae 

represents one of the most diverse families of plants that are grown in different parts of the world 

(Deshpande 1992). More than 7,000 years ago, dry beans were domesticated in tropical and 

subtropical areas of Central and South America (Kaplan 1965).  Today, dry beans (Phaseolus 

vulgaris L.) are the world’s second most important legume class, after soybeans, and are one of 

the basic foods in Africa, India and Latin America (Xu and Chang 2008). The regions of highest 

dry bean consumption include all of Latin America, where legume consumption ranges from 1-

25 kg per capita per year, and where dry beans dominate and account for 87% of the total legume 

products consumed (Leterme and Munoz 2002). Dry beans are not a staple in the US, and per 

capita consumption had been declining since the mid-1960s with a recent figure of 2.6 kg in 

2014 (USDA-ERS 2016b). 

The world production of dry beans was 26.5 million metric tons and Myanmar, India, 

Brazil, US and United Republic of Tanzania were the top five dry beans producing countries in 

2014 (FAOSTAT 2016). North Dakota and Michigan states were the two leading dry bean 

producing states in 2014; together they represent about 45% of total US production with a 30.4% 

and 15.1% share, respectively (USDA-NASS 2016). Pinto bean (43%), navy bean (18%), black 

bean (17%), and great northern (11%) are the leading dry bean market classes in US (USDA-

ERS 2016b). In US, total metric tons of black bean production were about 2.6 times more in 

2014 compared to 1980 and it was the only bean class that has seen such a tremendous growth 

(USDA-ERS 2016a).  
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Dry beans are a good source of protein, dietary fiber, starch (Osorio Diaz et al. 2003), and 

minerals and vitamins (Kutos et al. 2002). From a nutritional perspective, dry beans are 

considered to be important in countries where protein energy malnutrition is prevalent (Van 

Heerden and Schonfeldt 2004). Dry beans contain 20-30% protein on dry weight basis, which is 

twice as much as found in cereal grains (7-14%) (Tosh and Yada 2010). Presence of fiber, 

bioactive proteins and secondary metabolites such as phenolic compounds that possess 

antioxidant properties, contribute to the health benefits associated with dry beans (Madhujith and 

Shahidi 2005). Some of these antioxidants, such as flavonoids, are heat resistant and could 

survive extreme processing conditions (Kon 1979). Several researchers have reported on 

potential health benefits of dry bean consumption including reduced risk of hyperglycemia 

(Anderson et al. 2009), diabetes (Sievenpiper et al. 2009), cardiovascular disease (Bazzano et al. 

2001), obesity (Anderson et al. 2009) and cancer (McCann et al. 2010). 

Morphology and Anatomy of Dry Bean Seed  

All dry beans possess a similar seed structure, which includes a seed coat, cotyledon and 

embryonic axis. The structural features of seed tissues and the cellular and sub-cellular 

components greatly influence hydration, cooking and processing performance of the dry bean 

(Siddiq and Uebersax 2013). The outermost layer of the seed is the seed coat, which protects the 

embryonic structure. Phytic acid, tannins, and phenolic compounds are concentrated in the dry 

bean seed coat.  These compounds exhibit antioxidant activities and protect the seed from 

oxidative damage (Adebooye and Singh 2007). The cotyledon serves as energy storage and it 

comprises the largest mass of the seed. The embryonic structure is relatively small, high in lipid 

and can have a dramatic influence on seed quality as optimum conditions can activate the 
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enzymes and lead to seed germination. Hilum and micropyle are two external anatomical 

features, which help in water absorption and seed gas exchange.  

Seed Coat 

The seed coat consists of approximately 8% of the total dry weight of the dry bean 

(Rahman 2007). The seed coat is mainly composed of cellulose and hemicellulose, which 

contribute to the high level of total dietary fiber found in the seed coat (Aguilera et al. 1982). 

Main function of the seed coat is to protect the cotyledon and embryo from microbial 

contamination and diseases especially during harvest and storage. The major components of the 

seed coat microstructure are; the waxy cuticle layer, palisade cell layer, the hour-glass cells, and 

the parenchyma layer (Ruengsakulrach 1990). The waxy cuticle layer is the outer most layer of 

the seed coat. Bukovac et al. (1981) reported that its primary function was to prevent water 

penetration through its hydrophobic layers, though the cuticle layer does allow some polar and 

non-polar molecules to permeate the seed coat. The palisade layer has been reported to have two 

layers of cells (Sefa-Dedeh and Stanley 1979a). Hourglass cell layer is immediately beneath the 

palisade layer, which Sefa-Dedeh and Stanley (1979a) reported it to be the second layer in 

palisade layer. The parenchyma cells have thick cell walls, which can be easily distinguish after 

hydration as the water imbibition rate increases and cells become spongy (Siddiq and Uebersax 

2013).  

Cotyledon 

Cotyledon represents the largest portion of the black bean seed, accounting for 90% of 

the seed weight (Rahman 2007) and contributes to the texture and nutritive value of the bean. 

Dry bean cotyledons had about 39% starch, 28% protein, 2% lipids, 4% ash and 20-30% non-



 

8 
 

starch polysaccharides (Powrie et al. 1960; Harvard 2015). Cotyledons of dry beans are 

botanically classified as a segment of the embryo (Siddiq and Uebersax 2013). During the seed 

maturation period, cotyledon works as a storage unit and upon germination, the seedling uses it 

as an energy source. Cotyledon is also a photosynthetic structure that is responsible for the 

embryonic leaf tissue. Zimmermann et al. (1967) demonstrated the partitioning of nutrients 

within the cotyledon, with higher levels of protein and trypsin inhibitors in the outer layers 

compared to inner layers. The epidermal layer is the outer most layer, which consists of outer 

cells that appear to be cubical and inner cells that are elongated. Siddiq and Uebersax (2013) 

surmised that the epidermal layer did not contain starch, as all cells appeared to contain granular 

like protein. The hypodermis, which consists of large elliptical cells, is the next apparent layer. 

The remaining parenchyma cells are bound by distinct cell walls and middle lamellae. They have 

thick walls that give rigidity to the cotyledon. The parenchyma cells in the cotyledon are packed 

with starch granules that are embedded in a matrix of storage proteins (Tiwari and Singh 2012). 

Mature parenchyma cells are very thick with the secondary wall and pits in the wall facilitate the 

water diffusion during soaking. The middle lamella is a pectin layer, which binds cells together 

(Siddiq and Uebersax 2013).  

Embryo 

Embryonic axis serves as a nutrient-absorbing organ for the embryo during germination. 

Raphe, micropyle and hilum work as entry points for water diffusion into the seeds during water 

imbibition by the seed coat (Tiwari and Singh 2012). Water permeability is greatest in the hilum 

or micropyle areas. The hilum is the scar left when the ovule separated from the funiculus (stalk) 

which had supported and attached the seed to the pod during development. The micropyle is the 

site of pollen tube entry during fertilization. Raphe is the ridge on seed coat formed by the 



 

9 
 

attachment of the funiculus to the seed coat (Helm et al. 1990). The embryo is living tissue, 

relatively small and represents only 2% or less of the seed weight (Rahman 2007). The embryo is 

rich in lipids, vitamins and enzymes required in growth and development (Siddiq and Uebersax 

2013). 

Optimum moisture and temperature conditions can activate the embryonic enzymes. The 

optimum temperature for most seeds is between 15 and 30o C and optimum moisture level is 

greater than 18% (Siddiq and Uebersax 2013).  During storage, high temperature can damage the 

embryo with irreversible loss of seed vitality. Ambient water soaking conditions have been 

commonly recognized to initiate the precursors of the germination process. The water hydrating 

and water holding capacity of the dry bean are enhanced with traditional overnight soaking as it 

activates many embryonic enzymes that are utilized in seed sprouting. 

Macro Nutrients 

Carbohydrate 

Carbohydrates are an important chemical component that accounts for 55-65% of dry 

bean weight (Siddiq and Uebersax 2013). The carbohydrate portion consists of starch and 

nonstarch polysaccharides with small amounts of oligosaccharides (Bravo et al. 1998). 

Starch 

Starch is the main nutrient in dry bean and accounts for approximately 60% of total 

carbohydrates present in the seed (Reddy et al. 1984). Raw dry bean starches appear to be 

smooth with an oval or elliptical shape (Gujska et al. 1994; Hoover and Ratnayake 2002). Starch 

is mainly composed of amylose and amylopectin. The total amylose in black beans can range 

from 27-39% (Hoover et al. 2010) and is higher than the amylose content ≈ 20% in cereal grains 
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(Hu et al. 2010). Dry bean starches are known to develop greater viscosity than cereal starches 

(Lineback and Ke 1975).  

The shape, size, and other morphological characteristics of starch granules vary 

depending primarily on factors such as the botanical source and environmental conditions under 

which the crop was grown (Wang 2013). Smaller granules gelatinized at higher temperature with 

lower gelatinization enthalpy than larger granules (Chiotelli and Le Meste 2002). Large granules 

are more likely to be damaged during milling than are small ones and the degree of starch 

damage will influence flour functionalities, such as water absorption and flour dough properties 

because damaged starch absorbs considerably more water than undamaged starch (Oh et al. 

1985; Dexter et al. 1994). 

 Based on both in vitro and in vivo studies, the digestion rate of dry bean starches is slow 

and relatively incomplete compared to common cereal starches, but more digestible than potato 

or high amylose maize starch (Tovar et al. 1992; Madhusudhan and Tharanathan 1995; Hoover 

and Zhou 2003; Liu et al. 2006; Sandhu and Lim 2008).  The slow digestion rate, in turn, makes 

beans a low glycemic food, compared to cereals (Jenkins et al. 1983).  Starch structure, amylose 

and amylopectin ratio, presence of antinutrients that effect enzyme activity, and cell structure 

also can influence the low glycemic response of dry beans (Bjorck et al. 1994). 

Non-Starch Polysaccharides 

Dry beans contain complex polysaccharides such as celluloses, hemicelluloses, pectins 

and gums (Siddiq and Uebersax 2013). Less hemicellulose and more pectin are present in dicots 

than monocots (Caffall and Mohnen 2009).  Dietary fiber (DF) represents non-starch 

polysaccharides. Significant amounts of dietary fiber present in dry beans have attracted food 

processers to incorporate dry bean into novel foods (Bressani 1993). In dry beans, dietary fiber 
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can range from 5-20% with a high portion being insoluble (Tiwari et al. 2011). The seed coat is 

comprised of cellulose, which was found to be more than 60%, hemicellulose (20%), and small 

amount of lignin (2%) (Srisuma et al. 1991).  The pectin layer can be found in the plant primary 

cell wall and the middle lamellae. Non-starch polysaccharides in foods are known for their 

swelling capacity, water-holding capacity, oil-binding capacity, and cation exchange capacity.  

Oligosaccharides 

Dry beans contain various oligosaccharides, mainly raffinose and stachyose, which 

cannot be hydrolyzed within human digestive system (Shimelis and Rakshit 2007). Microflora in 

the colon, metabolize the oligosaccharides and result in intestinal discomfort and flatulence.  

Different processing methods can reduce the oligosaccharides in significant amounts 

(Barampama and Simard 1994; Matella et al. 2005; Kelkar et al. 2012). The loss of these 

oligosaccharides (like raffinose and stachyose) from the beans may increase the digestibility of 

the beans which leads to less gas formation since bacteria in human large intestine can break 

these oligosaccharides down into carbon dioxide and water (Roberfroid and slavin 2000). 

However, this loss of oligosaccharides from the beans will mean fewer oligosaccharides reaching 

the large intestine and serving as an energy-source for bacteria like Bifidobacteria or Lactobacilli 

that live there (Bornet and Brouns 2002). Since robust concentrations of these bacteria are 

usually helpful to human health, this loss of oligosaccharides may not be desirable from an 

intestinal health standpoint. 

Protein 

In dry beans, most of the protein is found in protein bodies located in cells of the 

cotyledon and embryonic axis (Van Der Poel 1990). The protein bodies of dry beans are in a cell 

matrix between the starch granules and individual protein bodies are small (1-10 μm) and 
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spherical to oval (Berrios and Swanson et al. 1998; Wood et al. 1998). Phaseolin and 

phytohemagglutinin are the main seed storage proteins of dry beans (Siddiq and Uebersax 2013). 

Phaseolin is a globulin and highly soluble in all pH values in salt solutions. Phytohemagglutinin 

has carbohydrate-binding specificity for a complex oligosaccharide containing galactose, N-

acetylglucosamine, and mannose (Sharon and Lis 1989).  

Even though dry beans contain high levels of protein, the protein contains low amounts 

of some essential amino acids and low true digestibility of protein due to antinutrients; thus, dry 

bean protein quality is considered low, compared to animal protein (Belitz et al. 2009). Dry 

beans are rich in amino acid lysine, but some amino acids like methionine, cysteine and 

tryptophan are present in low frequency (Deshpande and Nielsen 1987).  

Dry bean proteins have gained increased importance in food systems because they are 

used to provide functional properties including gelling, emulsifying properties, fat binding and 

water holding (Tiwari et al. 2011). Proteins in bean flour restrict starch granule swelling and 

reduce the amylogram viscosity. 

Lipids 

Dry beans have low lipid content, typically ranging from 1.8-2.6% and includes 

triacylglycerides, free fatty acids, sterols, glycolipids and phospholipids (Drumm et al. 1990). 

Lipid content may vary depending upon origin, location, climate and other growing conditions 

(Worthington et al. 1972). The most important polyunsaturated fatty acids in black beans are 

linolenic (C18:3) and linoleic (C18:2) acids. Palmitic (C16:0) and oleic (C18:1) acids were detected in 

significant quantities in black beans (Sutivisedsak et al. 2010). Lipids in black beans are not a 

function of storage as in soybeans, which contain high fat content of ≈20% (Coelho and Benedito 

2008). The lipid fraction contains the essential vitamins, E and K (Campos-Vega et al. 2010). 
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Micro Nutrients 

Vitamins 

Black beans have water soluble vitamins especially thiamine, niacin, riboflavin and folate 

that can mostly be found in the cotyledons (Siddiq and Uebersax 2013). Gregory and Kirk (1981) 

reported the presence of nondigestible polysaccharides and lignin may reduce the availability of 

Vitamin B for absorption.   

Minerals 

Minerals can be classified as macro-mineral nutrients and micro-mineral nutrients.  

Macro-mineral nutrients include: calcium, magnesium, phosphorus, potassium, and sodium.  

Micro-mineral nutrients include: copper, iron, manganese, selenium and zinc. Black beans are 

rich in minerals such as calcium, iron, copper, zinc, potassium, phosphorus and magnesium 

(Siddiq and Uebersax 2013). Dry beans contain low sodium levels and contain high amounts of 

iron, calcium, and zinc. Most of the phosphorus and iron are found in the cotyledons. Phosphorus 

in beans is present in the form of phytic acid. Storage iron in legumes is sequestered in ferritin, 

which is the major iron storage protein. However, 70–85% of the iron present in beans is in the 

form of non-ferritin-bound iron possibly bound to phytic acid (Petry et al. 2015). Calcium, 

copper, zinc, potassium, phosphorus and magnesium are found mainly in the seed coat 

(Deshpande and Damodaran 1990). The difference in mineral content is due to different soil 

types and fertilizers used to grow dry beans (Tiwari and Singh 2012).  
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Phytochemicals 

Dry beans contain various bioactive phytochemical compounds that are referred to as 

“antinutritional factors” due to their adverse impact on nutrient bioavailability (Siddiq and 

Uebersax 2013).  Black bean has phytochemicals such as enzyme inhibitors, lectins, phytates, 

and phenolic compounds. In the dry bean seed, enzyme inhibitors such as trypsin and 

chymotrypsin could affect protein digestibility. Proteins with high digestibility are desired owing 

to their positive contribution to nutritional value (Boye et al. 2010).  

Phytic acid is a major storage form for phosphorus and inositol in dry bean seeds. 

Phenolic compounds such as phenolic acids and polyphenols such as tannins, flavonoids and 

anthocyanins are responsible for the seed coat pigmentation. Diaz et al. (2010) reported the 

relationship between tannins and seed coat color, where black beans with a dark purple color 

have more tannins than seed coats of white or light colored beans. Flavonoids are present in the 

seed coat, whereas non-flavonoid compounds are present in the cotyledons.  

These antinutritional factors collectively contribute to several health benefits on 

hyperglycemia, diabetes, cancer and cardiovascular disease, as well as some adverse effects on 

nutrition (Siddiq and Uebersax 2013).  The inactivation of antinutritional factors is important to 

ensure nutrient absorption and proper contribution of health benefits by consuming beans 

(Uebersax 2006).  

Black Bean Processing 

Cooking 

Dry bean seeds can be cooked in boiling water, which increases seed plasticity and water 

absorption (Abu-Ghannam and McKenna 1997). Cooking softens plant tissues, improves the 

texture and palatability of plant-based foods and helps to increase the access of digestive 
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enzymes to the starch and protein present inside the cell (Siddiq and Uebersax 2013). Aguilera 

and Stanley (1985) described cooking as a two-phase process. During the first phase, the middle 

lamella breaks down and the cells separate (Rockland and Jones, 1974).  During the second 

phase, the predominant phenomenon is starch gelatinization. Starch gelatinization, swelling, 

leaching of amylose and the loss of the crystalline structure occur during cooking (Ovando-

Martinez et al. 2011). Starch susceptibility to enzyme digestion can increase due to loss of the 

granular structure during phase transition by starch during processing operations and cooking. 

During thermal treatments, middle lamellae is degraded and pectin is broken down (Aguilera et 

al. 2009). The polysaccharide structure can be affected by the high temperature by breaking 

linkages and promoting de-polymerization (Ilker and Szczesniak 1990; Del Valle and Stanley 

1995). Thermal treatments increase the water solubility by de-polymerization of polysaccharides 

and changes the nutritional properties of the dietary fiber (Brett and Waldron 1996).  

Dry bean processing methods such as soaking and thermal treatments can reduce the 

protein content while increasing the digestibility (Rehman and Shah 2005). For proteins, the 

exact mechanism underlying the influence of heating on legume protein digestibility is still 

unclear and conflicting (Siddiq and Uebersax 2013).  Starch gelatinization, protein denaturation, 

and swelling may further facilitate cell separation and the development of the uniform, smooth 

texture in fully cooked beans (Rockland and Jones, 1974).  

Wang (2010) reported that cooking dry beans in boiling water increased the amount of 

available Mn and P (on a dry weight basis), but decreased K and Mg.  In general, the ash content 

of dry beans was found to decrease after cooking due to diffusion of certain minerals into the 

cooking water (Wang et al. 2010). Vitamins of cooked dry beans’ bioavailability and interaction 

with other food components are not well known. 
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Cooking inactivates Antinutritional Factors (ANF) such as protease inhibitors and lectins. 

Cooked beans with acceptable firmness are not necessarily free of ANFs (Wang et al. 1988). 

Even though some ANFs are somewhat heat resistant (i.e. phytic acids), cooking reduces the 

majority of ANFs to acceptable levels, and improves organoleptic quality of dry beans (Rahman 

et al. 2004).  

Tempering 

Tempering is used to bring the seed to desired moisture content before milling by adding 

water depending on the initial seed moisture level. Tempering beans can result in smaller 

nutritional losses when compared to cooking; however, relatively few studies have been 

published concerning tempering of dry beans.  

Drying 

Drying step is essential due to the high moisture content in the seed at harvest (18-25%) 

as well as after some pre-treatments. Drying reduces the moisture content of the dry bean seed to 

9 -12%, which is considered an optimum range for safe storage (Tiwari et al. 2011). Different 

traditional and modern techniques can be used to dry the beans. In developing countries, sun 

drying is the most common drying method. Other artificial and commercial methods can be 

utilized, such as thin-layer drying and fluidized-bed drying. Temperature and moisture content of 

the seed will affect the drying rate and the milling properties (Kundu et al. 2005). 

Dehulling 

Removal of the seed coat before processing and consumption is referred to as dehulling 

or decortication. The dehulling of legumes generally consists of two steps: 1) loosening the seed 

coat (often by a dry or wet treatment) and 2) removing the seed coat and cleaning. Dehulling 
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produces refined cotyledons with good appearance, texture, and cooking qualities. Legumes that 

have gone through this process are more easily digested and are efficiently utilized by the body 

(Deshpande et al. 1982). Dehulling can be a time-consuming procedure depending on how 

tightly the legume seed coat adheres to the endosperm or cotyledon. For legumes in general, 

large grain legumes are easier to dehull and give a higher yield, making them the preferred 

legume among millers (UDPLC 2010). Small seeded legumes, meanwhile, require repeated pre-

dehulling treatments and other complex procedures. Due to the higher moisture content, freshly 

harvested legumes are more difficult to process. Legumes of this kind are either stored for some 

time to reduce moisture, or are treated with lime-water or a solution of sodium carbonate to 

loosen the hull (UDPLC 2010).  

Dry beans can be dehulled by several methods. Drying seeds in the sun or mixing seeds 

with water and then pounding them in a mortar with a pestle are the oldest and most common 

techniques to remove seed coat (UDPLC 2010). The seed coat is winnowed-off to get the clean 

cotyledons. Similar methods are used in commercial mills, though on a larger scale.  Dry bean 

dehulling on a commercial scale generally is based on dry-processing techniques. Smaller 

processors can expect less removal with the first effort and the process is then repeated several 

times until almost all the grain is converted into dehulled, split cotyledons. It can be difficult 

with this approach to achieve complete removal of the seed coat from the grain (UDPLC 2010). 

Another method for dehulling is based on adjusting the moisture of the grain to loosen the seed 

coat.  First, the grain is exposed to heated air in a tempering bin for a pre-determined time based 

on the market class. Through gradual aeration, it reaches a critical moisture level. The seed coat 

is then removed in an abrasion type-hulling machine (UDPLC 2010).  
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Kon et al. (1973) reported a reduction of 42, 53 and 70% in cooking times for dehulled, 

unsoaked California small white, navy, and pinto beans, respectively, compared to the controls. 

According to Deshpande et al. (1982), dehulling significantly increased the amount of phytic 

acid, trypsin, chymotrypsin and α-amylase inhibitory activities in several dry beans while it 

decreased the tannin content of colored beans by 68-95% and improved the in vitro protein 

digestibility (Deshpande et al. 1982). Since phytates are mainly located in cotyledon and tannins 

in the seed coat, the physical removal of seed coat increases the phytic acid while decreasing 

tannin and polyphenol levels (Alonso et al. 2000). Similarly, dehulling increases the measured 

protein content, as the seed coat of dry beans contain less protein than do cotyledons (Alonso et 

al. 2000).  Dehulling not only improves the cooking utility and reduces some of the 

antinutritional factors, but also improves protein quality, palatability, and digestibility of pulses 

(Salunkhe et al. 1986).  

Milling 

Milling is a process where grains are reduced to meal or flour by processes involving 

grinding, sieving, and purifying (Limsangouan and Isobe 2009). Milling process can be of two 

kinds, (1) wherein the whole grain is converted into flour without abstracting any parts or, (2) it 

could undergo differential milling to separate the grain into different parts (Oghbaei and Prakash 

2016). During milling, the seed absorbs force as strain energy. When the local strain energy in 

the seed exceeds a critical level, fractures occur along lines of weakness and the stored energy is 

released as heat (Earle and Earle 2004; Schorno 2006). The efficiency of milling is related to 

uniformity of the particle size distribution and the differences in particle sizes, which can impact 

the bioavailability of macronutrients and their digestion (Wondra et al. 1995). Starch granules 

are damaged by the disruption of the granular structure of starch by the effect of particle size 
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reduction (Tran et al. 2011). Heat generated during milling, can change flour characteristics, 

such as increase starch damage, protein denaturation and lipid oxidation.  

Seed parameters like size, shape, weight, volume, porosity, density, and coefficient of 

friction are relevant to milling yields of beans and these factors influence the performance and 

quality of dry bean milling (Altuntas and Demirtola 2007). Assuming other seed attributes are 

the same, when the seed coat fraction is low, the milling yield will increase. Seed size should be 

uniform to obtain higher milling yields. Seed shape should be uniform to reduce broken seeds 

(Wang 2005; Wood et al. 2008; Goyal et al. 2009; Wood 2010). 

Seed hardness is important in milling, because it affects the milling time and energy 

expenditure as well as the final ground product properties and appearance (De Francisco et al. 

1982). An incremental increase in seed moisture level reduces the seed hardness and decrease the 

impact milling efficiency (Tyler and Panchuk 1982). Most researchers have concluded that 

moisture of the seed is one of the most important factor affects hardness (Morris 2002; Tranquilli 

et al. 2002), which will finally affect the milling ability.  

Burr Mill 

A burr mill (Figure 1) consists of a set of burrs or raised edges that use a cutting, 

shearing, and crushing action for particle size reduction (Haque 1991). Burr mills, a type of plate 

mill, have two circular plates where material is fed between them. One of the circular plates is 

fixed and the other rotates. The material comes in contact with the two plates where it is sheared 

and crushed and exits through the edge of the plates. The plates of the burr mill are vertically 

mounted. Particle size principle of the burr mill is mainly due to cutting and shearing forces. 

Burr mill is suitable for dry grains and beans, but does not grind oily, wet or fibrous materials 

very well.  
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Figure 1. Burr mill 

 

Roller mill 

Roller mill is a common mill used to mill wheat into bran and flour.  Roller 

mills use cylindrical rolls, either in opposing pairs or against flat plates, to crush or grind various 

materials. The roller mill has the potential of mechanically removing the seed coat from 

cotyledon. Size reduction in roller mill is done by multiple stage approach.  Roller mill has a set 

of paired rolls that can be corrugated or smooth. The corrugated rolls are cut with a slight spiral 

and are not parallel to the roll axis. Increasing the spiral corrugation also increases the slicing 

action (Creason 1975). The corrugations have sharp or dull angles that can have different 

orientation configurations such as: sharp: sharp, sharp: dull, dull: sharp, or dull: dull. The 

orientation of roll configurations impact shear and compression forces. For example, dull: dull to 

sharp: sharp, shear force increases and compression forces decreases (Schorno 2006). Each roll 

in a pair can rotate at the same speed or can rotate at different speeds (Posner and Hibbs 2005). 

Differences in roller speed results in a shearing action that can aid in removing seed coat from 

the cotyledon. When feed material is drawn between the rolls having similar rotational speed, 

compression force is applied whereas, shearing forces result when roll-speed differential and roll 

corrugation are used (Schorno 2006).  

Stationary plate Rotary plate 
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The functional and physiochemical properties of the milled pulse flour are influenced by 

the particle size, which is an important variable of flour quality (Kerr et al. 2000). According to 

Kerr et al. (2000; 2001) and Singh et al. (2015), the particle size affects end product attributes. 

According to Singh et al. (2015), Navy bean flour particle size affected the cake baking and 

batter quality. Fine bean flour fractions were less sticky, and had storage modulus similar to 

wheat flour batters. Therefore, it is important to select a suitable mill, which achieves the desired 

particle size reduction for a specific food product and at a minimum cost. 
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OBJECTIVES AND NEEDS STATEMENT 

Needs Statement 

Dry bean milling, has not been studied extensively. However, dry bean milling has 

attracted interest due to the increasing need of non-wheat food ingredients available for food 

applications. Separation of seed coat from the cotyledon can expand the use of dry bean flour in 

food product applications by creating different food ingredients such as cotyledon flour and seed 

coat flour. This study developed a standard milling procedure that can achieve optimum yields of 

different flours (cotyledon and seed coat) for black bean by determining the effect of cooking 

and tempering pretreatments in combination with drying on seed and flour physical and chemical 

composition using a burr mill/roller mill system.  

Research Objectives 

The present study was conducted to determine the effect of cooking and tempering 

pretreatments in combination with drying on: 

1. Achieving optimum yields of black bean seed coat and cotyledon using a burr mill/roller 

mill system.  

2. Black bean seed and flour physical, chemical composition and functional properties.   

Hypothesis 

Cooking and tempering pretreatments in combination with drying will affect the seed 

coat yield, flour chemical composition, physical and functional properties after milling. 
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MATERIALS AND METHODS 

Black beans were obtained from three dry bean companies. Seeds from each company 

were kept separate and treated as replications in the ensuing experiments. Cooked-dried and 

tempered-dried pretreatments were evaluated. For the cooked-dried pretreatments, 400 g of clean 

black beans were cooked in 2 L boiling distilled water for 0, 5, 10 and 20 min. Each cooked 

sample was divided into two sets.  One set was air-dried (ambient conditions, 22°C, 30% rh) and 

one set was dried at 90°C in a forced-air oven. Seeds were dried to the original pretreated 

moisture content (6.5%). For the tempered-dried pretreatments, 400 g of clean dry beans were 

tempered with distilled water to ‘as is’ and to 10, 20, 30, 40 and 50% moisture.  Samples were 

allowed to equilibrate in a closed plastic container for 1 day.  Each tempered sample was divided 

into two sets.  One set was air-dried and one set was dried at 90°C in a forced-air oven. Seeds 

were dried to the original pretreated moisture content. Cooked-dried and tempered-dried 

pretreatments were separate experiments. A sub set of each pretreated bean was cooked to 

determine the cooking loss by AACC International method 66-50.01 for pasta. 

Physical Seed Properties 

Seed Weight and Size 

Seed weight before and after cooking or tempering was recorded. Wet seed appearance 

for both cooked and tempered seeds were visually determined. Also, seed dimension was 

measured for seeds dried after cooking or tempering. Seed dimension was calculated using a 

caliper by measuring the seed length, width, and thickness. Estimated seed volume was 

calculated by determining the product of length x width x thickness. Mass of 100 dry black bean 

seeds was determined by taking 100 seeds randomly and measuring the mass of seeds for all the 

different treatments.  
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Seed Hardness  

Seed hardness was determined before and after all seed treatments. A compression test 

was conducted using a Texture Analyzer (TA-XT2 texture analyzer, Texture Technologies 

Corp., Scarsdale, NY) to measure black bean seed hardness.  The fracture force of the seed in 

terms of force (N) required to break the seed along its principal axis was measured. The 

parameters calculated from the force-distance curve were fracture force and maximum 

compression force. The Texture Analyzer had a TPA-probe fitted onto a 50 kg load cell and it 

moved downwards with a speed of 1 mm/sec. The seed sample was placed on the fixed base. The 

seed samples were compressed with a 40% strain and a trigger force of 4 g. The fracture force 

was associated with a non-linear deformation zone as the first crack of the seed, and the 

maximum compression force was associated with the final force. These determinations were 

done on 10 seeds per dry bean pretreatment. 

Milling Procedure 

A laboratory-type burr mill (Model 289, Laboratory Constructions Co., KS) was used as 

a prebreak system before milling with a roller mill (Model MLU202, Buhler, Minneapolis, MN, 

USA) configured for milling durum wheat into semolina and bran/germ. The burr mill settings, 

such as gap and feed rate, were fixed. A commercial aspirator (Model 63-115-60-VS, Grain 

Machinery Mfg. Corp., FL) was used to remove the seed coat from the pre-break seed fraction. 

The air flow use was set on setting 3 of the aspirator. Samples without seed coat were sieved 

through 6.73, 2.83 and 2.38 mm sieves and the particles retained on sieves with screen mesh of 

6.73 and 2.83 mm were combined and milled together on the roller mill using only the 1st break. 

Seed coat rich percent was the portion recovered by the aspirator.  
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The cotyledon fraction was milled using the first break rolls. The milled product was 

sieved through the 1.19 mm mesh sieve and the commercial aspirator was used to remove the 

seed coat from the first break seed fraction that remained on the 1.19 mm mesh sieve. Whole 

bean, cotyledon and seed coat fractions were further milled into flour using a UDY mill (3010-

030, UDY Corp., Colorado) configured with a 1 mm mesh screen.  These flours were assayed for 

chemical, physical and functional properties.  

Physical Quality of Flour 

Flour fractions were evaluated for color (CIE L, a, b values) using Minolta 410 

colorimeter. Flour was placed in a round black measurement cell (6 cm diameter x 2 cm depth) 

with a quartz glass window. Color difference was determined, which is defined as “the 

magnitude and character of the difference between two colors under specified conditions”.  

Color difference (ΔE*ab) was calculated using the equation:   

  

Where L1, a1, and b1 were CIE L, a, b values for control sample, while L2, a2, and b2 

were CIE L, a, b values of a pretreated sample.  

Chemical Composition of Flour 

Ash content, moisture content and protein content were determined according to AACC 

International Approved Methods 08-01.01, 44-15.02, and 46-30.01, respectively. Nitrogen 

content of samples was determined using Leco FP 528 combustion nitrogen analyzer (LECO 

Corp, St. Joseph, MI). Protein content was calculated as % N × 6.25.  Total lipid content was 

determined using 16 h Soxhlet extraction with hexane according to Method Ba 3-38 (AOCS 

1998).  Total starch content was determined using an enzymatic total starch assay kit (Megazyme 
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International, Co. Wicklow, Ireland) according to AACC International Approved Method 

76.13.01 and the amount of starch damage was determined using an enzymatic starch damage 

assay kit according to AACC International Approved Method 76-31.01.   

Pasting Properties 

Pasting properties were determined using a Rapid Visco-Analyzer (Perten Instruments, 

Springfield, IL, USA). Black bean flour (3.5 g, 14% moisture basis) was added to 25 ml 

deionized water in a RVA canister. The flour slurry was held at 50 °C for 1 min before heating to 

95 °C at a rate of 12 °C/min and held at 95 °C for 2 min. The slurry was cooled at a rate of 12 

°C/min to 50 °C and held for 2 min.  

Scanning Electron Microscopy (SEM) 

Scanning electron microscopy was conducted by the Electron Microscopy Center located 

at North Dakota State University, Fargo.  Samples were mounted on aluminum mounts with 

silver paint (SPI Supplies, Structure Probe Inc., West Chester, PA, USA).  They were then 

sputter coated (Model SCD 030, Balzers, Liechtenstein) with gold-palladium to make them 

electrically conductive.  The samples were viewed and images obtained with a JEOL JSM-

6490LV scanning electron microscope (JEOL USA, Peabody, Massachusetts USA) at an 

accelerating voltage of 15 kV.  

Experimental Design and Data Analysis 

The experimental design was a randomized complete block with a factorial arrangement 

of cooking time (4) and drying method (2) or of tempering level (6) and drying method (2). Each 

treatment was replicated three times. Data were analyzed using SAS 9.3 package.  The data were 
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subjected to analysis of variance. F-Test was significant at P< 0.05. Treatment means were 

separated by Fisher’s protected Least Significant Difference test calculated at P=0.05. 
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RESULTS AND DISCUSSION 

Black Bean Seed Structure 

Black beans are small to medium, oval shaped beans with a shiny black seed coat, a small 

white spot (hilum), and a creamy white interior (cotyledons). Black beans possess a seed 

structure, which contains a seed coat, two cotyledons and embryonic axis (Figure 2). Raphe, 

micropyle and hilum in seed, work as entry points for water diffusion into the seeds during water 

imbibition by the seed coat (Tiwari and Singh 2012). The hilum is the scar left when the ovule 

separates from the funiculus (stalk), which had supported and attached the ovule to the pod 

during development. The micropyle is the site of pollen tube entry during fertilization.  

 

 

 

 

 

                                                         A                                                  B 

Figure 2. Black bean seed macrostructure (A) Intact seed and (B) Split seed  
 

The black appearance of black bean is due to high concentration of anthocyanins in the 

seed coat (Siddiq and Uebersax 2013). The seed coat accounts for about 8% of the seed weight 

(Carter 2014) and it protects the cotyledon and embryo from physical damage, microbial 

contamination and diseases especially during harvest and storage. Also during the seed 

development stage, the seed coat supplies nutrients that are imported through the phloem, using 
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its vascular network (Boesewinkel and Bouman 1995; Ammerlaan et al. 2001; Van Dongen et al. 

2003). High level of dietary fiber can be found in the seed coat as it mainly is composed of 

cellulose and hemicellulose (Aguilera et al. 1982).  

The major components of the seed coat microstructure are; the waxy cuticle layer, 

palisade cell layer (epidermal layer), the hour-glass cells (hypodermis), and the parenchyma 

layer (Figure 3) (Ruengsakulrach 1990). The waxy cuticle layer is the outer most layer (Figure 

4A) of the seed coat and its primary function is to prevent water penetration through its 

hydrophobic layers (Bukovac et al. 1981). The palisade layer has been reported to have two 

layers of cells (Sefa-Dedeh and Stanley 1979b) that are perpendicularly oriented to the surface. 

Hour-glass cell layer (Figure 4B) is immediately beneath the palisade layer and cells are oriented 

parallel to the surface. The parenchyma cells are elongated cells that are parallel to the surface of 

cotyledon and have thick cell walls (Tiwari and Singh 2012). These cells can be easily 

distinguished after hydration as the cells swell and become spongy (Siddiq and Uebersax 2013). 

 

 

 

 

 

 

Figure 3. Scanning Electron Micrograph of raw black bean seed coat cross section 

Source-Carter 2014 
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                                             A                                                                        B 

Figure 4. Scanning Electron Micrograph of untreated black bean seed coat (A) Outer surface and 

(B) Inner surface 

 

The cotyledon serves as energy storage and it comprises the largest mass of the seed 

accounting for 90% of the seed weight (Rahman 2007). The outer most layer is a tightly packed 

epidermal layer (Figure 5A), which consists of outer cells that appear to be cubical and inner 

cells that are elongated. Epidermal layer does not contain starch, as all cells appeared to be 

granular like protein (Siddiq and Uebersax 2013). The next apparent layer is the hypodermis, 

which consists of large elliptical cells. The remaining parenchyma cells have thick walls that 

give rigidity to the cotyledon and bound by distinct cell walls and a pectin rich middle lamellae 

layer. Starch granules in the parenchyma cells are embedded in a matrix of storage proteins 

(Figure 5B) (Tiwari and Singh 2012).  
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                                         A                                                                      B 

Figure 5. Scanning Electron Micrograph of untreated black bean (A) cotyledon outer surface 

which contact with seed coat and (B) starch granules embedded in a protein matrix  

 

The embryo is relatively small and represents only 2% or less of the seed weight 

(Rahman 2007). Embryonic axis (Figure 6) serves as a nutrient- absorbing organ for the embryo 

during germination. The embryonic axis has the radicle, hypocotyl and epicotyl. Raphe, 

micropyle and hilum in seed, work as entry points for water diffusion into the seeds during water 

imbibition by the seed coat (Tiwari and Singh 2012). The hilum is the scar left when the ovule 

separates from the funiculus (stalk), which had supported and attached the ovule to the pod 

during development. The micropyle is the site of pollen tube entry during fertilization. 

 

 

 

 

Figure 6. Dissected embryo of black bean seed 
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Proximate Chemical Composition of Untreated Black Beans 

The proximate chemical composition of the untreated black bean flour fractions is shown 

in Table 1. Manual dehulling of the untreated beans enabled the separation of 8% of seed coat 

from the cotyledon fraction (90%) for the proximate tests. Embryo came off with the cotyledon, 

where further dissecting allowed separating 2% of embryo.  In general, protein, ash, lipid and 

starch content values were greater for cotyledon flour than for whole bean flour (Table 1). An 

increase from 22.9 to 24.5%, 1.9 to 2.7%, and 4.5 to 4.8% in protein, fat, and ash contents, 

respectively, in cotyledon flour compared to whole flour was reported by Deshpande et al. 

(1982). Other researchers have reported similar results (Dzudie and Hardy 1996; Eknayake et al. 

1999; Wang et al. 2009; Mugendi et al. 2010; Siddiq et al. 2010; Akinjayeju and Ajayi 2011).  

These results reflect the composition of the seed coat, which is composed mainly of fiber, while 

the cotyledon is the storage organ, which contains protein, starch, lipid and ash.     

Table 1. Proximate compositiona of untreated black bean fractions. 

Black bean 

fraction 

Moisture content Ash Protein Total lipids Total starch 

(%) 

Whole seed 6.4 4.01 21.8 1.9 38.0 

Cotyledon 6.7 4.12 23.5 3.1 38.4 

 

 

a
Wet weight basis. 

Black beans contain 70% of carbohydrates (Belitz et al. 2009). The major carbohydrate 

component of the cotyledon fraction is starch (Bravo et al. 1998). Whole black bean flour and 

cotyledon fraction total starch was 38.0% and 38.4%, respectively (Table 1). The difference 

between the carbohydrate level and the total starch values reported here is due to the non-starch 

polysaccharides that was not determined. Total starch of whole black bean flour is in agreement 

with values found by Carmona-Garcia et al. (2007). Since seed coats reportedly contain little 

protein and starch, it is suggested that dehulled seeds would proportionately contain more protein 
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and starch (Wang et al. 2009). The seed coat is composed mostly of fiber and waxes. Starch in 

seed coat has not been reported in published literature. 

Effect of Cooking and Tempering Pretreatments on Physical Seed Properties 

Cooked-Dried Pretreatment 

Cooked Seed Appearance 

After cooking, seeds were bigger in size compared to untreated seeds but did not swell 

equally probably due to differences in individual water absorption rates. The seed coat of cooked 

beans was lighter in color, wrinkled and most remained intact with the cotyledon. Some seed had 

ruptured seed coat and split cotyledon (Figure 7). Cooked beans felt rubbery, soft and seed coat 

came off easily after cooling. 

According to Abu-Ghannam and McKenna (1997), cooking increases seed plasticity and 

water absorption. They reported that the cooking water (≥40 ºC) had a plasticizing effect on the 

seed coat, which resulted in the seed coats developing a rubbery texture and that there was a 

positive relationship between the plasticity of the seed coat and the water absorption rate.  

Rehman et al. (2004) reported that cooking improved the protein and starch digestibility.  

The cell wall of dry beans has a pectin-rich structure and is rich in arabinan with high hydroxide 

concentrations indicating a strong association (Gooneratne et al. 1994).  
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Figure 7. Appearance of cooked black beans after 20 min 

Cooking generally rendered black beans pale and opaque with a gray or brown 

appearance. The leaching of pigment (anthocyanins) during cooking is a major quality problem 

associated with all colored beans, particularly black beans. The cooking water left in the beaker 

was very dark due to high amounts of anthocyanins (Bushey and Hosfield 2007). Pigments found 

in the seed coat are typically phenolic compounds, particularly anthocyanins that impart a 

distinctive color (Siddiq and Uebersax 2013).  

The cooking quality of dry beans is dependent on the thermal degradation and 

solubilization of cell wall polymers and consequently on the structure and chemical composition 

of their pectic polysaccharides (Gooneratne et al. 1994; Talbott and Ray 1992). The cooking 

process involves gelatinization of starch granules contained within integral cell units and 

concurrent dispersion of intercellular components of the middle lamella, which facilitates 

separation of intact cells without rupture of cell walls. Mechanical stresses due to starch 

gelatinization, protein denaturation, swelling and heat convection can promote cell separation.   

The cotyledon splitting is related to the high hydration capacity and swelling capacity of 

the seeds and results in more exudation of starch into the cooking water (Tiwari and Singh 
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2012). The pectin content and calcium content in the seed coat and starch gelatinization behavior 

determine the tendency of seed coat to split during cooking (Lu and Chang 1996). Hard-to-cook 

phenomenon is the occurrence of seeds that do not hydrate completely and remain hard even 

after extensive cooking (Siddiq and Uebersax 2013). The formation of insoluble pectate, 

polymerization and cross-linking of phenolic compounds, lignification of middle lamellae, and 

protein-starch interactions may contribute to the hard-to-cook phenomena and these factors make 

adhesion of the seed coat to the cotyledon surface strong (Sefa-Dedeh et al. 1978). 

Cooking Loss and Cooked Weight Gain  

Cooking impacted cooking loss and cooked weight gain of black beans (Table 2). 

Cooking loss increased with increased cooking time up to 10 min. No additional cooking loss 

was detected between 10 and 20 min of cooking because near maximum level of materials has 

leached out after 10 min cooking. Cooking loss probably reflects the loss of solids from 

disrupted starch granules during gelatinization and from soluble oligosaccharides such as 

raffinose (Siddiq and Uebersax 2013). These oligosaccharides can be identify by the mass 

spectroscopy and Nuclear Magnetic Resonance methods.  

Table 2. Mean cooking loss and cooked weight gain valuesa of cooked seeds. 

Cooking time 

(min) 

Cooking loss (%) Cooked weight gain (%) 

5 0.7b 145c 

10 1.8a 158b 

20 1.8a 185a 

a
Values followed by same letter are not significantly different at P=0.05. 

 

Cooked weight gain was due to the water absorbed by the seeds during cooking. Most of 

the weight gain (45 percentage units) occurred by 5 min of cooking. The cooked weight gain 

increased by an additional 40 percentage units as cooking time increased from 5 to 20 min (Table 

2).  
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Cooked-Dried Seed Appearance 

The cooked-dried whole beans were less dark in color while the cotyledons looked 

mostly dark due to pigments leached from the seed coat into the cooking water and onto the 

cotyledons (Figure 8). After drying, the cooked seeds looked similar to their original non-treated 

dry seeds. Seed coat had ruptured and cotyledons were split in some seeds, as the forces 

associated with drying deformed the shape of the seeds. After the cooked dried pretreatment, 

holes and cracks, were visible in outer and inner surfaces of the seed coat micro structure (Figure 

9 & 10). Cooked dried cotyledon outer surface was also different to the untreated cotyledon 

(Figure 11).  

 

 

  

 

 

 

Figure 8. Appearance of cooked-oven dried black beans 
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                                               A                                                                         B 

Figure 9. Scanning Electron Micrograph of black bean seed coat outer surface (A) untreated and 

(B) 20 min cooked and oven dried  
 

 

 

 

 

 

 

 

 

 

 
 

                                               A                                                                         B 

Figure 10. Scanning Electron Micrograph of black bean seed coat inner surface (A) untreated 

and (B) 20 min cooked and oven dried  
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                                               A                                                                        B 

Figure 11. Scanning Electron Micrograph of black bean (A) untreated and (B) 20 min cooked 

and oven dried cotyledon outer surface 

 

Cooked-Dried Seed Physical Tests 

Cooked-dried pretreatment significantly affected the seed length, width thickness, and 

volume (Table 3). As cooking time increased, seed dimension values (length, width, thickness) 

increased.  Although not statistically different, the 100-seed weight for black bean seeds tended 

to decrease.  The small decline in seed weight reflects the relatively low level of cooking loss 

detected in the cooking water after cooking 20 min (Table 2). Drying temperature had no 

significant effect on the 100-seed weight, but seed length and thickness were greater with seed 

dried at 90°C compared to seed that was air dried. The increase in seed length and thickness 

resulted in an increase in seed volume. The effect of drying on seed size is attributed to the 

possibility that slow drying allowed for contraction of the seed, which did not occur when the 

seed was dried rapidly. 
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Table 3. Mean physical properties valuesa of cooked-dried seeds. 

 Length Width Thickness Estimated volume 

(mm3) 

100-seed 

weight 

(g) 

(mm)   

Cooking time (min) 

b 

     

0 8.8c 6.0b 4.7b 245c 19.7 ns 

5 9.1c 6.1b 4.9a 271b 19.5 ns 

10 9.6b 6.2ab 4.9a 292b 19.5 ns 

20 10.1a 6.4a 4.9a 319a 19.0 ns 

Drying temperature 

(°C) c 

     

20 9.1b 6.1 ns 4.7b 263b 19.3 ns 

90 9.7a 6.2 ns 5.0a 300a 19.5 ns 

a
Values followed by same letter are not significantly different at P=0.05. 

b Values averaged over cooking time 
c Values averaged over drying temperature  

ns – Not Significant 

 

Cooked-Dried Seed Hardness 

Cooked-dried pretreatment significantly affected bean fracture force (Table 4). For 

cooked samples, fracture force decreased as cooking time increased. The fracture force decreased 

≈ 63% for seeds cooked for 20 min compared to the non-treated seeds. Drying temperature had 

no significant effect on the fracture force.  
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Table 4. Mean seed fracture forcea of cooked-dried seeds. 

 Fracture point (N) 

Cooking time (min)b  

0 162a 

5 128b 

10 86c 

20 60d 

Drying temperature (°C)c  

20 113 ns 

90 106 ns 
a
Values followed by same letter are not significantly different at P=0.05. 

b Values averaged over cooking time 
c Values averaged over drying temperature 

ns – Not Significant 

 

Peak force had an interaction effect of cooking time and drying temperature on cooked-

dried seeds (Table 5). Peak force for black beans dried at 90°C decreased nearly 50% as cooking 

time increased from 0 to 20 min.  Conversely, peak force for black beans cooked up to 20 min 

and then air-dried did not vary greatly.   The effect of cooking time on peak force was more 

pronounced when dried at 90°C than when air-dried. This could reflect the contraction of seed 

with air drying making the seed denser or conversely the lack of contraction with high 

temperature drying resulted in less dense seed and easier to crack seed.  

Table 5. Mean seed peak force valuesa for cooked-dried seeds. 

Cooking time Peak Force (N) 

20 °C 90 °C 

   

0 178a,A 183a,A 

5 158ab,A 150b,A 

10 137b,A 123c,A 

20 114c,A 94d,B 
a
Different uppercase letters across rows indicates significant differences between drying 

temperature (P=0.05). Different lowercase letters across column indicates significant differences 

between cooking time (P=0.05) 
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Tempered-Dried Pretreatment 

Tempered Seed Appearance 

Physical appearance of black bean seed was not affected by tempering and remained 

similar to non-treated seeds. The cotyledon retained its color and did not split (Figure 12). The 

seed coat and cotyledon remained intact without loosening or seed coat being ruptured. The seed 

coat inner surface appeared brownish in color and the cotyledon remained white in color. No 

major changes occurred to tempered seeds on the surface and interior of the cotyledon. 

 

 

 

 

 

 

Figure 12. Appearance of tempered black beans 

 

Tempered Weight Gain 

Tempered weight gain was due to the water absorbed by the seeds during moisture 

conditioning. The tempered weight gain was increased by 79% as tempering moisture levels 

increased from 10% to 50 % and the increment was significantly different between every 

moisture level (Table 6). It is interesting to note that weight gained with 40 and 50% temper was 

similar to cooking for 10 and 20 min, respectively (Tables 2 and 6). 
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Table 6. Mean weight gaina of tempered seeds. 
 

 

 

 
 

 

a
Values followed by same letter are not significantly different at P=0.05. 

 

Tempered-Dried Seed Appearance 

The tempered-dried whole beans retained its color (Figure 13). No major changes 

occurred to tempered seeds on the surface (Figure 14 & 15) and interior of the cotyledon (Figure 

16) and looked similar to their original non-treated dry seeds. Seed coat was ruptured and 

cotyledon was split in some seeds, as the forces associated with drying deformed the shape of the 

seeds.  

 

 

 

 

 

 

 

Figure 13. Appearance of tempered-dried black beans 

 

 

 

 

Tempered Seeds Tempered Weight Gain 

(%) (%) 

10 102e 

 20 115d 

30 131c 

40 154b 

50 181a 
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                                            A                                                                        B 

Figure 14. Scanning Electron Micrograph of black bean seed coat outer surface (A) untreated 

and (B) 30% tempered black bean oven dried  

 

                             

 

 

 

 

 

 

 

 

 

 

                                            A                                                                        B 

Figure 15. Scanning Electron Micrograph of black bean seed coat inner surface (A) untreated 

and (B) 30% tempered black bean oven dried  
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                                    A                                                                            B 

Figure 16. Scanning Electron Micrograph of black bean cotyledon outer surface (A) untreated 

and (B) 30% tempered black bean oven dried  

 

Tempered-Dried Seed Physical Tests 

Tempered-dried pretreatment significantly affected seed dimension (i.e., length, width, 

and thickness) (Table 7). Drying temperature had no significant effect on the seed dimension and 

100-seed weight. As tempering level increased, length and width values continuously increased, 

while thickness was lower in the beans tempered to the 50% moisture level. Altuntas and 

Demirtola (2007) also reported that as moisture content increased in kidney bean seeds, length, 

width, and thickness slightly increased. The effect of tempering on 100-seed weight was variable 

and was not significant. Altuntas and Demirtola (2007) reported as moisture content increased 

for pea, kidney beans, and black-eyed, 1000-seed weight was increased and showed a linear 

relationship. This positive linear relationship of 1000-seed weight and moisture content of the 

seed were also reported by Aviara et al. (1999) in guna seeds and Vilche et al. (2003) in quinoa 

seeds. In this study, the tempered seeds were dried to the initial moisture level as to facilitate the 

final milling and drying may be the reason for not having such a significant increment and linear 

relationship in black beans compared to previous reports.  
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Table 7. Mean physical properties valuesa of tempered-dried seeds. 

 Length 

 

Width Thickness Estimated 

Volume 

 

(mm3) 

100-seed 

weight 

(g) 

(mm)   

Temper moisture 

(%)b 

     

7.7 8.7d 6.0b 4.7e 244c 19.7 ns 

10 8.9dc 6.0b 4.7de 251c 19.2 ns 

20 8.9dc 6.1b 4.9bc 260bc 19.9 ns 

30 9.0c 6.1b 5.0ab 277bc 19.6 ns 

40 9.5b 6.4a 5.1a 308a 19.2 ns 

50 10.2a 6.6a 4.8cd 321a 19.7 ns 

Drying 

temperature (°C)c 

     

20 9.1 ns 6.2 ns 4.8 ns 272 ns 19.8 ns 

90 9.3 ns 6.3 ns 4.9 ns 283 ns 19.3 ns 
a
Values followed by same letter are not significantly different at P=0.05. 

b Values averaged over temper moisture 
c Values averaged over drying temperature 

ns – Not Significant 

 

Tempered-Dried Seed Hardness 

Tempered-dried seed pretreatment significantly affected bean fracture force (Table 8). 

The fracture force was the first major rupture point where the seed first cracks. As moisture 

content increased, the fracture force decreased, particularly between 20 and 30% temper 

moisture. Peak force had an interaction effect of tempering moisture and drying temperature on 

tempered-dried seeds (Table 9).  
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Table 8. Mean seed fracture forcea of tempered-dried seeds. 

 Fracture point 

(N) 

Tempered moisture 

(%)b 

 

7.7 161a 

10 162a 

20 129b 

30 60c 

40 40c 

50 40c 

Drying temperature 

(°C) c 

 

20 105 ns 

90 92 ns 
a
Values followed by same letter are not significantly different at P=0.05. 

b Values averaged over temper moisture 
c Values averaged over drying temperature  

ns – Not Significant 

 

Table 9. Mean seed peak valuesa for tempered seeds. 

Tempered moisture level Peak Force (N) 

20 °C 90 °C 

   

7.7 190ab,A 187a,A 

10 186bc,A 187a,A 

20 165bcd,A 125bc,A 

30 118d,A 130b,A 

40 153cd,A 94cd,B 

50 212a,A 75d,B 
a
Different uppercase letters across rows indicates significant differences between drying 

temperature (P=0.05). Different lowercase letters across column indicates significant differences 

between temper moisture (P=0.05) 

 

Frączek et al. (2005) stated that at low moisture content, the seed coat is “relatively hard 

and brittle, whereas at greater moisture contents it acts like an elastic membrane”. Based on 

morphological differences, bean seed coat, which possesses several layers of cells, absorbs water 

slower than the cotyledon or embryo (Frączek et al. 2005). 
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Effect of Cooking and Tempering Pretreatments on Milling Yield and Physical Flour 

Quality 

Cooked-dried Pretreatment 

Cooked-dried Burr Mill - Milling Yield 

Cooked-dried pretreatment affected the separation of cotyledon and seed coat during burr 

milling (Table 10). The yield of these fractions was inversely proportional since as cotyledon 

rich fraction decreased, the seed coat rich fraction increased. 

The cooking time by drying temperature interaction was significant for each milling 

fraction. Cooking for 20 min and drying at 90 °C treatment, resulted in the highest seed coat rich 

fraction among all the treatments (Figure 17).  It had a 4.7% increment in seed coat rich fraction 

yield, compared to the control, which was non-treated. Dry bean seed consists of about 8% seed 

coat on a dry basis (Rahman 2007).  The seed coat fraction was higher when dried at 90 °C than 

at ambient (22 °C) conditions.  The separation of the seed coat from the cotyledon was not very 

efficient step.  During aspiration, embryo and light cotyledon particles were moved into the seed 

coat fraction.  

Cooking time by drying temperature was significant for seed coat fraction and particle 

size distribution values. Increasing the cooking time and drying at 90 °C increased the amount of 

particle size < 2.38 mm fraction. Cooking and drying at 20°C treatments did not have a clear 

relationship. By visual evaluation and comparing seed coat yields, it was apparent that, whatever 

the drying method, cooking improved seed coat removal. 
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                                    A                                                                           B 

Figure 17. (A) Seed coat and (B) Cotyledon from cooked-dried pretreatment after Burr mill 

 

Table 10. Mean fractions (%) and cotyledon fraction particle size distribution valuesa from 

cooked-dried seeds following burr milling. 

Cooking 

time 

Seed Coat Fraction 2.83-6.73 mm < 2.38 mm 

20 °C 90 °C 20 °C 90 °C 20 °C 90 °C 

0 0.9c,A 0.9d,A 99.2ab,A 99.1a,A 0.5ab,B 0.6c,AB 

5 3.2a,B 4.2c,AB 98.8c,A 98.8b,A 0.6a,B 0.9b,A 

10 2.9ab,B 4.8b,A 99.0bc,A 98.6b,A 0.6ab,B 0.9b,A 

20 2.6b,B 5.6a,A 99.4a,A 98.5b,A 0.4b,B 1.1a,A 
a
Different uppercase letters across rows indicates significant differences between drying 

temperature (P=0.05). Different lowercase letters across column indicates significant differences 

between cooking time (P=0.05) 

 

Cooked-dried Roller Mill - Milling Yield 

Cooked-dried pretreatment was not significant for further seed coat removal in the roller 

mill (Table 11). Also the seed coat fraction was highly contaminated with light cotyledon 

particles. 
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Table 11. Mean fractions (%) and cotyledon fraction particle size distribution valuesa from 

cooked-dried seeds following roller milling. 

 > 1.19 mm Light fraction Heavy fraction 

Cooking time  

(min) b 

   

0 57.0c 8.7 ns 91.3 ns 

5 56.9c 9.7 ns 90.3 ns 

10 59.2b 9.6 ns 90.4 ns 

20 61.6a 9.7 ns 90.3 ns 

Drying temperature (°C) c    

20 60.9a 12.6a 87.4b 

90 56.4b 6.2b 93.8a 

a
Values followed by same letter are not significantly different at P=0.05. 

b Values averaged over cooking time 
c Values averaged over drying temperature 

ns – Not Significant 

 

Cooked-Dried Color 

Cooked-dried seed pretreatments significantly affected L-value and color difference 

(Table 12). Cooked-dried pretreatments decreased L-value for the intact seed and whole bean 

flour. The L-value of cotyledon flour was not affected by the cooked-dried pretreatments. The 

most significant color difference (ΔE*ab) of intact seed, whole bean flour and cotyledon flour 

was between the flours of the 5 min cooking and control. Greatest reduction in lightness, and 

highest color difference was observed in the 5 min cooked seeds and respective flours. Drying 

temperatures did not affect the L-value or color differences of whole bean flour and cotyledon 

flour. However, L-value was greater for intact beans dried at 90°C than at 20°C.  
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Table 12. Mean L valuesa of intact seed, whole bean flour and cotyledon flour from cooked-dried 

seeds. 

 Intact Seed Whole bean flour Cotyledon flour 

 L ΔE*ab L ΔE*ab L ΔE*ab 

Cooking time 

(min) b 

      

0 26.21a 0.00b 80.05a 0.00b 82.68 ns 0.00b 

5 22.71b 3.86a 77.00c 3.40a 82.80 ns 2.33a 

10 23.42b 3.44a 79.12ab 1.50ab 83.74 ns 1.85a 

20 24.08b 3.54a 77.4bc 2.68a 82.88 ns 1.35a 

Drying 

temperature 

(°C) c 

      

20 22.99b 3.15 ns 78.38 ns 1.72 ns 82.83 ns 1.30 ns 

90 25.21a 2.27 ns 78.39 ns 2.07 ns 83.22 ns 1.47 ns 

a
Values followed by same letter are not significantly different at P=0.05. 

b Values averaged over cooking time 
c Values averaged over drying temperature 

ns – Not Significant 

 

The L-value for flour color is commonly used to measure the degree of lightness (Siddiq 

et al., 2013). It was expected that lightness of intact seed and whole seed flour fractions would 

decrease, as cooking time increased. But in this study, 5 min cooking time had the lowest 

lightness. It was observed that during cooking of black beans, soluble color compounds, 

anthocyanins, leached into the cooking water medium and stained the seeds. Flour color is an 

important quality factor because it transfers to the final product and defines its acceptability, 

marketability and freshness. Cooking treatment greatly affected the color difference (ΔE*ab) due 

to leaching of the seed coat color.  
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Tempered-Dried Pretreatment 

Tempered-dried Burr Mill - Milling Yield 

Tempering moisture level by drying temperature interaction was significant for seed coat 

yield (Table 13). Tempering to 40% moisture content and drying at 90 °C treatment, resulted in 

the highest seed coat rich fraction (7.4%) among all the treatments (Figure 18).  It had a 6.3% 

increment in seed coat rich fraction yield, compared to the non-treated control. At each 

tempering moisture, the seed coat fraction was higher when dried at 90 than at 20 °C. The 

separation of the seed coat from the cotyledon was not very efficient step, where an aspirator was 

used. In that separation process, air blowing could have separated the embryo parts and light 

cotyledon particles into the seed coat fraction.  

Temper moisture level by drying temperature interaction was significant for particle size 

distribution of cotyledon fraction (Table 13). At the 30% temper moisture level, particle size < 

2.38 mm fraction resulted in the highest yield at both the drying temperatures. Other cotyledon 

fraction particle size distribution values did not have a clear relationship with temper moisture 

level and drying temperature. In both drying temperatures, tempering made the seed coat 

removal easier compared to the control. Also, visual evaluation and seed coat yield comparison 

showed that tempered-dried pretreatment was more effective than the cooked-dried pretreatment.  
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                                     A                                                                           B 

Figure 18. (A) Seed coat and (B) Cotyledon from tempered-dried pretreatment after burr mill 

 

Table 13. Mean seed coat fraction (%) and cotyledon fraction particle size distribution valuesa 

from tempered-dried seeds following burr milling. 

Temper 

moisture level 

Seed Coat Fraction 2.83- 6.73 mm < 2.38 mm 

20 °C 90 °C 20 °C 90 °C 20 °C 90 °C 

7.7 1.0e,A 1.1c,A 99.2a,A 99.2a,A 0.5b,A 0.5c,A 

10 1.3de,A 1.6c,A 98.8ab,A 98.9ab,A 0.7ab,A 0.7c,A 

20 2.4bc,AB 3.6b,A 98.6bc,A 96.0d,AB 0.8a,AB 1.4b,A 

30 3.2ab,B 6.8a,A 98.3c,A 96.6c,AB 0.9a,B 1.8a,A 

40 3.3a,B 7.4a,A 98.4bc,A 98.5b,A 0.9a,AB 1.2b,A 

50 2.1cd,B 7.4a,A 98.6bc,A 98.5b,A 0.7a,AB 1.1b,A 

a
Different uppercase letters across rows indicates significant differences between drying 

temperature (P=0.05). Different lowercase letters across column indicates significant differences 

between temper moisture (P=0.05) 

 

Tempered-dried Roller Mill - Milling Yield  

Seed coat extraction was greatest and cleanest with beans tempered to 40% moisture and 

then dried at 90 °C, in the burr mill. Roller mill tended to extract more contaminated seed coat 

with cotyledon (Table 14).  

Seed coat removal efficiency is important to ensure the economic potential of intact seed 

coat and cotyledon fractions. Seed coat fraction represents an opportunity for an intact and clean 

source of dietary fiber, which has been shown to provide physiological benefits such as the 
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reduction of glycemic index (Hangen and Bennink 2002, Han et al. 2004). The seed coat removal 

from cotyledons contribute to reduced tannin content, better appearance, texture, palatability and 

digestibility for the cotyledon flour (Deshpande et al. 1982; Ehiwe and Reichert 1987, Towo et 

al. 2003). 

Table 14. Mean cotyledon fraction particle size distribution valuesa (%) from tempered-dried 

seeds following roller milling. 
 

a
Values followed by same letter are not significantly different at P=0.05. 

b Values averaged over cooking time 
c Values averaged over drying temperature 

ns – Not Significant 

 

Tempered-Dried Color 

Tempered pretreatment significantly affected L-value and color difference (Table 15). In 

general, L values decreased compared to control, for whole seeds and whole bean flour, when 

moisture content increased from 7.7 to 50%. Highest L value for cotyledon flour was obtained in 

the 30% moisture pretreatment. Color of flour compared to whole seeds, had the highest L-value 

or lightness due to finer particle size. It was expected that lightness of the cotyledon flour 

fractions are higher in temper moisture levels where seed coat removal was easy. Drying 

 > 1.19 mm Light fraction Heavy fraction 

 (%)  

Cooking time (min) b    

7.7 58.6c 11.7 ns 88.3 ns 

10 58.5c 11.0 ns 89.0 ns 

20 59.3bc 11.7 ns 88.3 ns 

30 60.2abc 10.9 ns 89.1 ns 

40 60.3ab 10.8 ns 89.2 ns 

50 61.2a 11.7 ns 88.3 ns 

Drying temperature (°C) c    

20 59.2 ns 11.7 ns 88.3 ns 

90 60.2 ns 11.0ns 89.1 ns 
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temperatures did not affect the L-value and color differences of whole seed, whole bean flour 

and cotyledon flour. 

Table 15. Mean L valuesa of whole seed, whole bean flour and cotyledon flour from tempered-

dried seeds. 

 Whole Seed Whole bean flour Cotyledon flour 

 L ΔE*ab L ΔE*ab L ΔE*ab 

Tempered moisture (%)b       

7.7 24.65a 0.00d 79.65a 0.00d 83.07b 0.00d 

10 22.00b 2.87c 79.59a 0.53d 83.48b 0.64cd 

20 20.76cd 3.96ab 78.18b 1.66c 83.50b 0.82c 

30 21.21bc 3.54bc 77.86b 2.02c 84.56a 2.02b 

40 20.93cd 3.80ab 76.45c 3.57b 83.44b 3.26a 

50 20.26d 4.47a 75.39d 4.70a 81.78c 2.42b 

Drying temperature (°C) c       

20 21.46 ns 3.13 ns 78.34 ns 2.14 ns 82.76 ns 1.12 ns 

90 21.81 ns 3.08 ns 77.37 ns 2.03 ns 83.83 ns 1.93 ns 

a
Values followed by same letter are not significantly different at P=0.05. 

b Values averaged over temper moisture 
c Values averaged over drying temperature 

ns – Not Significant 

Effect of Cooking and Tempering Pretreatments on Flour Chemical and Functional 

Properties 

Chemical Composition of Flour 

Cooked-Dried Whole Bean Flour 

Cooked-dried seed pretreatment affected starch damage and ash content (Table 16). 

Cooking followed by drying of the seeds resulted in a significant (P=0.05) increase in starch 

damage and a decrease in ash content (P=0.05) as cooking time increased (Table 16). Cooked-

dried pretreatment did not affect total starch, lipid and protein contents. Wang et al. (2010) 

reported a small increase in total starch from 38.8 to 39.1 g/g dry matter for raw and cooked 

black beans. Eyarua et al. (2009) reported total starch of nonsoaked-cooked red kidney beans to 
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be higher than total starch of raw beans. They suggested that starch gelatinization and dispersion 

of starch molecules made them more susceptible and accessible to starch hydrolyzing enzymes 

attack; hence, higher total starch was reported. As there is no significant different among cooking 

times in total starch values, it suggests that cooking loss is due to the soluble oligosaccharides 

(Table 2).  

Table 16. Mean chemical compositiona of whole bean flour from cooked-dried seeds. 

 Moisture Ash Protein Lipid Starch Starch 

Damage 

 (%) 

Cooking time (min) b       

0 6.4 ns 4.08a 21.8 ns 1.9 ns 40.6 ns 0.4d 

5 5.9 ns 3.90b 21.3 ns 1.7 ns 42.3 ns 1.8c 

10 6.3 ns 3.74c 21.5ns ND 40.7 ns 2.9b 

20 6.3 ns 3.35d 21.5 ns 1.6 ns 41.6 ns 6.2a 

Drying temperature (°C) c       

20 6.3 ns 3.77 ns 21.4 ns 1.7 ns 41.5 ns 3.2 ns 

90 6.1 ns 3.76 ns 21.7 ns 1.6 ns 41.1 ns 2.4 ns 
a
Values followed by same letter are not significantly different at P=0.05. 

b Values averaged over cooking time 
c Values averaged over drying temperature  

ns – Not Significant 

ND- Not Determined 

 

Starch damage (Table 16) increased with cooking time from 0.4 to 6.2 %. During 

cooking, starch granules gelatinized and lost their crystalline structure. Starch granules also 

swelled, which would allow amylose to leach into the cooking water. These factors might have 

contributed to an increase in starch damaged for all cooked beans. Similar results were reported 

by Ovando-Martinez et al. (2011) where cooked black beans had 1-4% higher starch damage 

than raw beans, which is in agreement with this study starch damage values after cooking. 

Cooking would cause starch damage due to gelatinization process whereby starch granules swell 

and disrupt.  
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Ash content significantly decreased as cooking times increased (Table 16). Flour from 20 

min cooked-dried seed pretreatment had the lowest ash content, which decreased ca. 18% when 

compared to flour from non-treated seeds. Ash content after cooking dry bean seeds are related 

to loss of minerals during cooking. Kon (1979), Wang et al. (2008 and 2010), and Siddiq and 

Uebersax (2013) reported that cell membrane permeability increased during thermal processing, 

which allowed minerals and other small molecules to diffuse from seeds into the cooking water.  

Cooking pretreatments did not affect protein content (Table 16). Protein content values 

ranged from 21.3 to 21.8%. Similar protein content for raw black bean was reported by Siddiq et 

al. (2010). Kon (1979) also suggested that by thermal processing, proteins were denatured and 

rendered insoluble so that leaching could not occur. Similarly, lipid content was not affected 

significantly by cooking pretreatments (Table 16). Lipid content values ranged from 1.6 to 1.9%. 

Drying temperature did not significantly affect the chemical composition of black beans.  

Cooked-Dried Cotyledon Flour 

Cooked-dried seed pretreatment affected ash and protein of cotyledon flour (Table 17). 

Cooked-dried pretreatment resulted in a (P=0.05) decrease in ash content as cooking time was 

increased (Table 17). Total starch and lipid content was not significantly affected by the cooked-

dried pretreatment. Cooking time by drying temperature interaction was significant for starch 

damage (Table 18). Starch damage increased with cooking time. With 5 min cooking time, 

drying temperature did not affect starch damage; however, with 10 and 20 min of cooking, starch 

damage was greater when cooked beans were dried at 20 than 90°C. The lower apparent starch 

damage with 90°C than 20°C is attributed to the formation of amylase resistant starch associated 

with high temperature drying. Resistant starch can be determined according to AACC method 

32-40.01 by using the Megazyme assay kit.  



 

57 
 

Table 17. Mean chemical compositiona of cotyledon flour from cooked-dried seeds. 

 Moisture Ash Protein Lipid Starch 

 (%) 

Cooking time 

(min) b 

     

0 6.7b 4.03a 22.2b 3.1 ns 41.1 ns 

5 6.6b 3.83b 23.2a 2.9 ns 43.7 ns 

10 6.7b 3.66c 22.9a ND 43.2 ns 

20 7.0a 3.32d 23.2a 2.7 ns 43.8 ns 

Drying 

temperature (°C) c 

     

20 7.0 ns 3.73 ns 22.9 ns 2.9 ns 43.0 ns 

90 6.5 ns 3.69 ns 22.9 ns 2.6 ns 42.9 ns 
a
Values followed by same letter are not significantly different at P=0.05. 

b Values averaged over cooking time 
c Values averaged over drying temperature 

ns – Not Significant 

ND- Not Determined 

 

Table 18. Mean starch damage (%)a of cotyledon flour from cooked-dried seeds. 

Cooking time Starch Damage (%) 

20 °C 90 °C 

0 0.5d,A 0.5c,A 

5 2.1c,A 1.9b,A 

10 3.7b,A 2.5b,B 

20 8.1a,A 5.0a,B 
a
Different uppercase letters across rows indicates significant differences between drying 

temperature (P=0.05). Different lowercase letters across column indicates significant differences 

between cooking time (P=0.05) 

 

Tempered-Dried Whole Bean Flour 

Tempered-dried pretreatments had little or no effect on total starch content, starch 

damage, protein content, and ash content (Table 19). Drying temperature did not significantly 

affect the chemical composition of black beans.  
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Table 19. Mean chemical compositiona of whole bean flour from tempered-dried seeds. 

 Ash Protein Lipid Starch Starch Damage 

 (%) 

Tempered 

moisture (%)b 
     

7.7 4.00 ns 21.5 ns 1.9 ns 39.0c 0.4b 

10 4.06 ns 21.5 ns ND 39.3bc 0.4b 

20 4.08 ns 21.5 ns ND 40.9a 0.4b 

30 4.06 ns 21.6 ns 1.8 ns 41.6a 0.6a 

40 4.43 ns 21.4 ns ND 41.7a 0.6a 

50 4.19 ns 21.4 ns 1.8 ns 40.6ab 0.6a 

Drying 

temperature (°C) c 
     

20 4.09 ns 21.6 ns 1.8 ns 40.2 ns 0.5 ns 

90 4.19 ns 21.4 ns 1.7 ns 40.8 ns 0.5 ns 
a
Values followed by same letter are not significantly different at P=0.05. 

b Values averaged over temper moisture 
c Values averaged over drying temperature  

ns – Not Significant 

ND – Not Determined 

 

Tempered-Dried Cotyledon Flour 

Temper moisture content and drying temperature pretreatments had little or no effect on 

starch, lipid, protein and ash contents (Table 20). Starch values were greater in 30-50% temper 

moisture levels on weight basis as they have given the highest seed coat extraction. Tempered 

moisture level by drying temperature interaction was significant for starch damage (Table 21). 

Except for 7.7% moisture, starch damage was greater when dried at 90 than 20°C.  Starch 

damage did increase as tempered moisture level increased.   
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Table 20. Mean chemical compositiona of cotyledon flour from tempered-dried seeds. 

 Ash Protein Lipid Starch 

 (%) 

Tempered moisture 

(%)b 
    

7.7 4.02 ns 22.3 ns 3.1 ns 41.6b 

10 4.05 ns 22.5 ns ND 41.0b 

20 4.03 ns 22.6 ns ND 41.8b 

30 4.00 ns 22.5 ns 3.0 ns 42.2b 

40 4.05 ns 22.7 ns ND 44.0a 

50 4.15 ns 23.2 ns 3.0 ns 42.7ab 

Drying temperature 

(°C) c 
    

20 4.05 ns 22.5 ns 3.1 ns 41.9 ns 

90 4.06 ns 22.7 ns 3.0 ns 42.5 ns 
a
Values followed by same letter are not significantly different at P=0.05. 

b Values averaged over temper moisture 
c Values averaged over drying temperature  

ns – Not Significant 

ND – Not Determined 

 

Table 21. Mean starch damagea of cotyledon flour from tempered-dried seeds. 

Temper moisture level Starch Damage 

20 °C 90 °C 

7.7 0.5b,A 0.5a,A 

10 0.4a,B 0.5a,A 

20 0.5b,B 0.6b,A 

30 0.6c,B 0.8c,A 

40 0.6c,B 1.0e,A 

50 0.7d,B 0.9d,A 
a
Different uppercase letters across rows indicates significant differences between drying 

temperature (P=0.05). Different lowercase letters across column indicates significant differences 

between temper moisture (P=0.05) 

Pasting Properties of Flour 

Cooked-Dried Whole Bean Flour 

Pasting properties are useful to predict functional behavior of starch during heating and 

cooling while processing (Bello-Pérez and Paredes-López 2009). Granule swelling, amylose 
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leaching, starch crystallinity, amylose content and amylopectin chain influence pasting properties 

(Chung et al. 2008). 

Table 22. Mean pasting propertiesa of whole bean flour from cooked-dried seeds. 

 Peak Trough Breakdown Final 

Viscosity 

Setback 

 (RVU) 

Cooking time (min) b      

0 90a 89a 1.9b 138a 49c 

5 63b 60b 3.4a 130a 70a 

10 49c 45c 4.1a 107b 61b 

20 13d 11d 1.9b 33c 22d 

Drying temperature (°C) c      

20 53 ns 51 ns 2.6 ns 98 ns 48 ns 

90 55 ns 52 ns 3.0 ns 105 ns 53 ns 
a
Values followed by same letter are not significantly different at P=0.05. 

b Values averaged over cooking time 
c Values averaged over drying temperature 

ns – Not Significant 

 

Drying temperature did not affect pasting properties of cooked dry beans (Table 22). 

Pasting properties of whole bean flour were affected by cooked-dried seed pretreatment of black 

bean (Table 22). In general, cooked-dried pretreatment decreased all pasting properties as cooked 

times increased. The peak viscosity values decreased from 90 to 13RVU as cooking time 

increased from 0 to 20 min. Similarly, trough and final viscosity values decreased from 89 to 11 

RVU and 138 to 33 RVU, respectively over the 20 minute cook. Set back value was highest with 

5 min cooking time.  

Final viscosities decreased significantly from 138 to 33 RVU, which indicates a tendency 

to form a weak gel after cooling. Trough viscosity decreased from 89 to 11 RVU. Trough 

viscosity is influenced by the rate of amylose exudation, granule swelling and amylose-lipid 

complex formation (Wani et al. 2012). Breakdown viscosity is a measure of the ease with which 

the swollen starch granules can be disintegrated. As starch granules were disintegrated by high 
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temperature cooking, the breakdown viscosity was lowest for 20 min cooking treatment and 

since some starch granules were already broken as seen by starch damage data. Setback viscosity 

decreased and it has been reported that low setback values at high cooking times reflect low 

retrogradation, hence low tendency of flour to form a gel during cooling (Wani et al. 2012). 

Cooked-Dried Cotyledon Flour 

Pasting properties of black bean cotyledon flour were affected by cooked-dried seed 

pretreatment (Table 23).  Peak viscosity and trough values decreased as cooking time increased. 

The peak values decreased from 95 to 24 RVU as cooking time increased from 0 to 20 min. 

Similarly, trough values decreased from 91 to 21 RVU. Set back value was highest with 5 min 

cooking time. Breakdown values were not affected by the cooking time. The drying temperature 

did not affect any of the pasting properties.  

Table 23. Mean pasting propertiesa of cotyledon flour from cooked-dried seeds. 

 Peak Trough Breakdown Final 

Viscosity 

Setback 

 (RVU) 

Cooking time (min) b      

0 95a 91a 3.8 ns 146ab 55c 

5 82a 78a 4.3 ns 164a 86a 

10 64b 59b 4.5 ns 131b 71b 

20 24c 21c 3.0 ns 50c 29d 

Drying temperature 

(°C) c 

     

20 67 ns 63 ns 4.2 ns 121 ns 58 ns 

90 66 ns 62 ns 3.6 ns 124 ns 62 ns 

a
Values followed by same letter are not significantly different at P=0.05. 

ns – Not Significant 
b Values averaged over cooking time 
c Values averaged over drying temperature 

 

Breakdown values were low, which indicated the presence of restriction in starch 

granules swelling and high amylose content (27-39%) (Hoover et al. 2010). High setback values 
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reflect a high level of retrogradation (Kim et al. 1997) as was for 5 and 10 min cooked beans. 

Final viscosities decreased as cooking time increased from 0 to 20 min, and suggest a decreasing 

capacity of the flour to retrograde and form a strong gel. The low peak viscosity and low 

breakdown could be due to weakening of the starch by protein-lipid-fiber interactions (Chung et 

al. 2008). Peak viscosity has been reported to be influenced by amylose content, properties of 

amylopectin chain length, and phosphorous content (Chung et al. 2008). Long cooking times 

attributed to probably high amylose leaching out. Thus, declined in peak viscosities were 

possibly influenced by differences in amylose content. 

Black bean starch is found in protein matrix inside the cotyledon. Cooking denatures 

protein, which can restrict starch granule swelling. Cooking can gelatinize some starch which 

will retrograde upon cooling. Pasting properties of pregelatinized starch would have lower 

viscosity and lower breakdown values. 

Tempered-Dried Whole Bean Flour 

Temper moisture content main effect was significant for the pasting properties of whole 

bean flour (Table 24). For peak, trough and final viscosity lowest values were observed when 

tempered to 40% moisture content. Flour sample from seed tempered to 10% moisture content 

indicated greatest peak viscosity, which is indicative of high water binding capacity of starch. 

Low breakdown values obtained for all flours suggests tendency to form a weak gel after 

cooling. Final viscosity values were greatest for flour from seed tempered to 30% moisture 

content (146 RVU), which indicates good stability of the cooked paste. Schoch and Maywald 

(1968) suggested that bean starch presented restricted swelling power. They showed a decrease 

in swelling and solubilization, and stabilization of swollen granule against mechanical shearing. 

They also showed curves with no pasting peak rather with very high viscosity, which remained 
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constant or else increased during cooking. Low setback values have a low tendency to 

retrograde. While flour from black bean seeds tempered to 30% moisture content recorded the 

highest setback value (65 RVU) while flour from seeds at 10% moisture content had the lowest 

(48 RVU) setback value (Table 24). Drying temperature did not significantly affect the pasting 

properties of whole black bean flour (Table 24). 

Table 24. Mean pasting propertiesa of whole bean flour from tempered-dried seeds. 

 Peak Trough Breakdown Final 

Viscosity 

Setback 

 (RVU) 

Tempered 

moisture (%)b 

     

7.7 91a 89a 2.0b 138ab 49c 

10 96a 94a 1.4b 143a 48c 

20 92a 89a 2.7ab 145a 56b 

30 85b 81b 4.3a 146a 65a 

40 77c 73c 4.3a 131b 59b 

50 85b 81b 4.4a 142a 61ab 

Drying 

temperature (°C) c 

     

20 89ns 86 ns 3.5 ns 138 ns 52 ns 

90 86ns 83ns 2.9 ns 144 ns 60 ns 
a
Values followed by same letter are not significantly different at P=0.05. 

b Values averaged over temper moisture 
c Values averaged over drying temperature 

 ns – Not Significant 

 

Tempered-Dried Cotyledon Flour 

Temper moisture content main effect was significant for some pasting properties of 

cotyledon bean flour (Table 25). Temper moisture content had little or no effect on pasting 

properties of cotyledon black bean flour (Table 25). Similarly, drying temperature did not affect 

pasting properties of cotyledon flour. Cotyledon flour pasting values were slightly higher than 

whole bean flour pasting values. 
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Table 25. Mean pasting propertiesa of cotyledon flour from tempered-dried seeds. 

 Peak Trough Breakdown Final 

Viscosity 

Setback 

 (RVU) 

Tempered 

moisture (%)b 

     

7.7 99 ns 94ab 4.7bc 151d 57c 

10 102 ns 99a 2.9c 155cd 56c 

20 95ns 90b 5.1ab 163bc 73b 

30 94 ns 89b 5.0b 171a 82a 

40 96 ns 92b 4.5bc 166ab 74b 

50 97 ns 90b 7.0a 162bc 73b 

Drying 

temperature (°C) c 

     

20 97 ns 90.91 ns 5.8 ns 154 ns 63 ns 

90 98 ns 93.70 ns 3.9 ns 168 ns 75 ns 
a
Values followed by same letter are not significantly different at P=0.05. 

b Values averaged over temper moisture 
c Values averaged over drying temperature  

ns – Not Significant 
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CONCLUSIONS 

Dry beans are divided into eleven market classes in the US according to their color, size 

and shape. They are a low cost source of protein and important source of carbohydrates, dietary 

fiber, certain minerals and vitamins in the human diet.  Dry bean utilization by the food industry 

can be increased by developing value-added processing applications. Separation of seed coat 

from the cotyledon can expand the use of bean flour in food product applications by creating 

different food ingredients such as cotyledon flour and seed coat flour.  

In this research, the chemical and physical changes in the whole bean flour and cotyledon 

flour were less for tempered-dried pretreatment than for cooked-dried pretreatments, which 

greatly impacted flour chemical composition as well as pasting properties.  Pretreatments 

impacted the seed coat removal of black beans with the burr mill/roller mill system. Tempered-

dried pretreatment made the seed coat removal easier, compared to cooked-dried pretreatment. 

Tempered to 30%, 40%, or 50% and dried at 90°C resulted in the cleanest and greatest seed coat 

yield.  Aspiration system used was not effective enough to separate light cotyledon particles 

from the embryo particles, which were removed along with the seed coat fraction. An improve 

air-classification system should be used to increase seed coat removal efficiency. The burr mill 

only generated high yields of the clean seed coat fraction, when the seeds were subjected to 

appropriate pretreatment. Separated seed coat can be used to fulfill the higher dietary fiber 

requirement in food applications while cotyledon flour can be used with improved functional 

qualities and health benefits.   
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FUTURE RESEARCH AND APPLICATIONS 

Future research needs to be done to develop a standard milling procedure for other dry 

bean market classes. Research can be conducted on different mill settings and on the effect of 

bean flour particle size distribution and flour physical quality, chemical composition, and 

functionality. It is necessary to evaluate the antinutrient levels after different pretreatments. The 

future research should include an integrated process from milling to final product utilization. 

More studies need to prevent some of the negative qualities of dry bean flour in food 

applications. Further studies can be done in black bean and other market classes’ milled fractions 

to produce wide range of food and non-food applications.  
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APPENDIX  

Table A1. Analysis of variance for effect of boiling time and drying temperature on black bean 

grain quality.  

Variable Source df MS F value Pr>F 

L 

Rep 2 0.728 0.27 0.7658 

Drying Temperature (DT) 1 29.526 57.64 0.0169 

Error a (DT*Rep) 2 0.512 0.19 0.8277 

Boiling Time (BT) 3 13.666 5.13 0.0164 

DT*BT 3 1.246 0.47 0.7106 

Error b 12 2.666   

      

a 

Rep 2 0.559 2.03 0.1744 

Drying Temperature (DT) 1 0.499 3.66 0.1957 

Error a (DT*Rep) 2 0.136 0.49 0.6221 

Boiling Time (BT) 3 4.333 15.72 0.0002 

DT*BT 3 0.132 0.48 0.7027 

Error b 12 0.276   

      

b 

Rep 2 1.972 8.28 0.0055 

Drying Temperature (DT) 1 1.238 1.17 0.3925 

Error a (DT*Rep) 2 1.058 4.44 0.0359 

Boiling Time (BT) 3 0.558 2.34 0.1247 

DT*BT 3 0.126 0.53 0.6702 

Error b 12 0.238   

      

100-KWT 

Rep 2 0.287 1.66 0.2309 

Drying Temperature (DT) 1 0.238 0.46 0.5659 

Error a (DT*Rep) 2 0.513 2.96 0.0901 

Boiling Time (BT) 3 0.419 2.42 0.1168 

DT*BT 3 0.141 0.81 0.5116 

Error b 12 0.173   
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Table A1. Analysis of variance for effect of boiling time and drying temperature on black bean 

grain quality (continued). 

Variable Source df MS F value Pr>F 

Length 

Rep 2 0.741 8.95 0.0042 

Drying Temperature (DT) 1 1.893 23.00 0.0408 

Error a (DT*Rep) 2 0.082 0.99 0.3984 

Boiling Time (BT) 3 2.142 25.88 <.0001 

DT*BT 3 0.248 2.99 0.0731 

Error b  12 0.083   

      

Width 

Rep 2 0.132 5.46 0.0206 

Drying Temperature (DT) 1 0.100 4.49 0.1684 

Error a (DT*Rep) 2 0.022 0.92 0.4241 

Boiling Time (BT) 3 0.138 5.70 0.0116 

DT*BT 3 0.024 1.00 0.4270 

Error b  12 0.024   

      

Thickness 

Rep 2 0.087 9.41 0.0035 

Drying Temperature (DT) 1 0.308 159.79 0.0062 

Error a (DT*Rep) 2 0.002 0.21 0.8146 

Boiling Time (BT) 3 0.106 11.49 0.0008 

DT*BT 3 0.018 1.90 0.1840 

Error b  12 0.009   

      

Volume 

Rep 2 2931.478 10.55 0.0023 

Drying Temperature (DT) 1 8024.555 77.51 0.0127 

Error a (DT*Rep) 2 103.531 0.37 0.6967 

Boiling Time (BT) 3 5927.037 21.33 <.0001 

DT*BT 3 893.390 3.21 0.0616 

Error b  12 277.912   
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Table A2. Analysis of variance for effect of boiling time and drying temperature on black bean 

milling.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

Variable Source df MS F value Pr>F 

Fracture 

point 

Rep 2 2741.542 7.73 0.0070 

Drying Temperature 

(DT) 
1 287.042 0.46 0.5677 

Error a (DT*Rep) 2 624.542 1.76 0.2135 

Boiling Time (BT) 3 12072.153 34.03 <.0001 

DT*BT 3 1100.931 3.10 0.0671 

Error b  12 354.708   

      

Peak force 

Rep 2 2043.375 10.97 0.0020 

Drying Temperature 

(DT) 
1 3504.167 103.70 0.0095 

Error a (DT*Rep) 2 33.792 0.18 0.8364 

Boiling Time (BT) 3 3182.833 17.08 0.0001 

DT*BT 3 2193.944 11.78 0.0007 

Error b  12 186.306   

      

Whole bean 

flour L 

Rep 2 4.940 1.73 0.2193 

Drying Temperature 

(DT) 
1 0.001 0.00 0.9864 

Error a (DT*Rep) 2 1.628 0.57 0.5806 

Boiling Time (BT) 3 12.597 4.40 0.0262 

DT*BT 3 3.216 1.12 0.3781 

Error b  12 2.861   

      

Whole bean 

flour a 

Rep 2 0.044 5.88 0.0166 

Drying Temperature 

(DT) 
1 0.111 77.46 0.0127 

Error a (DT*Rep) 2 0.001 0.19 0.8281 

Boiling Time (BT) 3 0.105 14.12 0.0003 

DT*BT 3 0.031 4.12 0.0317 

Error b  12 0.007   
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Table A2. Analysis of variance for effect of boiling time and drying temperature on black bean 

milling (continued).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variable Source df MS F value Pr>F 

Whole bean 

flour b 

Rep 2 0.187 4.50 0.0348 

Drying Temperature 

(DT) 
1 0.047 6.76 0.1216 

Error a (DT*Rep) 2 0.007 0.17 0.8485 

Boiling Time (BT) 3 1.158 27.82 <.0001 

DT*BT 3 0.031 0.75 0.5442 

Error b  12 0.042   

      

Cotyledon 

flour L 

Rep 2 3.686 1.40 0.2849 

Drying Temperature 

(DT) 
1 0.897 0.18 0.7095 

Error a (DT*Rep) 2 4.866 1.84 0.2003 

Boiling Time (BT) 3 1.411 0.53 0.6673 

DT*BT 3 2.867 1.09 0.3921 

Error b  12 2.639   

      

Cotyledon 

flour a 

Rep 2 0.124 3.97 0.0474 

Drying Temperature 

(DT) 
1 0.051 0.95 0.4319 

Error a (DT*Rep) 2 0.054 1.73 0.2190 

Boiling Time (BT) 3 0.354 11.35 0.0008 

DT*BT 3 0.012 0.39 0.7640 

Error b  12 0.031   

      

Cotyledon 

flour b 

Rep 2 0.053 0.59 0.5695 

Drying Temperature 

(DT) 
1 0.473 7.26 0.1146 

Error a (DT*Rep) 2 0.065 0.73 0.5019 

Boiling Time (BT) 3 0.064 0.72 0.5585 

DT*BT 3 0.270 3.03 0.0710 

Error b  12 0.089   
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Table A3. Analysis of variance for effect of boiling time and drying temperature on black bean 

chemistry.   

Variable Source df MS F value Pr>F 

Whole 

bean flour 

moisture 

Rep 2 4.630 39.48 <.0001 

Drying Temperature (DT) 1 0.403 11.09 0.0796 

Error a (DT*Rep) 2 0.036 0.31 0.7391 

Boiling Time (BT) 3 0.339 2.89 0.0796 

DT*BT 3 0.098 0.84 0.4990 

Error b  12 0.117   

     

Cotyledon 

flour 

moisture 

Rep 2 0.691 29.66 <.0001 

Drying Temperature (DT) 1 1.038 9.90 0.0879 

Error a (DT*Rep) 2 0.105 4.49 0.0350 

Boiling Time (BT) 3 0.118 5.07 0.0170 

DT*BT 3 0.103 4.42 0.0259 

Error b  12 0.023   

     

Whole 

bean flour 

protein 

Rep 2 15.203 64.89 <.0001 

Drying Temperature (DT) 1 0.667 3.36 0.2082 

Error a (DT*Rep) 2 0.198 0.85 0.4530 

Boiling Time (BT) 3 0.276 1.18 0.3586 

DT*BT 3 0.146 0.62 0.6132 

 Error b  12 0.234   

      

Cotyledon 

flour 

protein 

Rep 2 21.065 169.97 <.0001 

Drying Temperature (DT) 1 0.000 0.01 0.9228 

Error a (DT*Rep) 2 0.022 0.18 0.8378 

 Boiling Time (BT) 3 1.310 10.57 0.0011 

 DT*BT 3 0.118 0.95 0.4469 

 Error b  12 0.124   
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Table A3. Analysis of variance for effect of boiling time and drying temperature on black bean 

chemistry (continued).   

Variable Source df MS F value Pr>F 

Seed coat 

flour 

protein 

Rep 2 9.460 181.00 <.0001 

Drying Temperature (DT) 1 0.150 0.06 0.8317 

Error a (DT*Rep) 2 2.581 49.38 <.0001 

Boiling Time (BT) 3 3.417 65.38 <.0001 

DT*BT 3 0.474 9.06 0.0021 

Error b  12 0.052   

      

Whole 

bean flour 

ash 

Rep 2 0.007 0.64 0.5434 

Drying Temperature (DT) 1 0.000 0.04 0.8674 

Error a (DT*Rep) 2 0.007 0.67 0.5296 

Boiling Time (BT) 3 0.573 51.55 <.0001 

DT*BT 3 0.000 0.03 0.9923 

Error b  12 0.011   

      

Cotyledon 

flour ash 

Rep 2 0.164 85.43 <.0001 

Drying Temperature (DT) 1 0.009 3.60 0.1981 

Error a (DT*Rep) 2 0.003 1.33 0.3013 

Boiling Time (BT) 3 0.547 284.58 <.0001 

DT*BT 3 0.002 0.92 0.4603 

Error b  12 0.002   

      

Whole 

bean flour 

starch 

Rep 2 26.384 8.87 0.0043 

Drying Temperature (DT) 1 0.592 0.29 0.6444 

Error a (DT*Rep) 2 2.046 0.69 0.5216 

Boiling Time (BT) 3 3.907 1.31 0.3156 

DT*BT 3 5.254 1.77 0.2071 

Error b  12 2.975   

      

Cotyledon 

flour starch 

Rep 2 7.674 2.55 0.1196 

Drying Temperature (DT) 1 0.115 0.02 0.9056 

Error a (DT*Rep) 2 6.384 2.12 0.1627 

Boiling Time (BT) 3 9.107 3.02 0.0714 

DT*BT 3 4.901 1.63 0.2350 

 Error b  12 3.011   
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Table A3. Analysis of variance for effect of boiling time and drying temperature on black bean 

chemistry (continued).   

Variable Source df MS F value Pr>F 

Whole 

bean flour 

starch 

damage 

Rep 2 0.010 6.67 0.0113 

Drying Temperature (DT) 1 0.054 15.53 0.0588 

Error a (DT*Rep) 2 0.003 2.35 0.1378 

Boiling Time (BT) 3 0.417 280.87 <.0001 

DT*BT 3 0.020 13.46 0.0004 

Error b  12 0.001   

      

Cotyledon 

flour starch 

damage 

Rep 2 0.006 1.64 0.2344 

Drying Temperature (DT) 1 0.073 19.30 0.0481 

Error a (DT*Rep) 2 0.004 1.02 0.3913 

Boiling Time (BT) 3 0.399 107.85 <.0001 

DT*BT 3 0.032 8.69 0.0025 

Error b  12 0.004   

      

 

 

 

 

 

 

 

 

 

 

 

 



 

85 
 

Table A4. Analysis of variance for effect of boiling time and drying temperature on black bean 

pasting quality. 

Variable Source df MS F value Pr>F 

Whole 

bean flour 

peak 

Rep 2 2389.486 29.37 <.0001 

Drying Temperature (DT) 1 18.113 0.27 0.6570 

Error a (DT*Rep) 2 67.906 0.83 0.4577 

Boiling Time (BT) 3 6191.892 76.11 <.0001 

DT*BT 3 40.400 0.50 0.6915 

Error b  12 81.356   

      

Whole 

bean flour 

trough 

     

Rep 2 2337.683 27.05 <.0001 

Drying Temperature (DT) 1 10.895 0.15 0.7322 

Error a (DT*Rep) 2 70.505 0.82 0.4653 

Boiling Time (BT) 3 6183.461 71.55 <.0001 

DT*BT 3 47.011 0.54 0.6614 

Error b  12 86.416   

      

Whole 

bean flour 

break 

Rep 2 0.682 0.88 0.4390 

Drying Temperature (DT) 1 0.905 6.50 0.1255 

Error a (DT*Rep) 2 0.139 0.18 0.8374 

Boiling Time (BT) 3 7.444 9.63 0.0016 

DT*BT 3 0.653 0.84 0.4954 

Error b  12 0.773   

      

Whole 

bean flour 

final 

Rep 2 5517.378 30.26 <.0001 

Drying Temperature (DT) 1 289.259 1.71 0.3210 

Error a (DT*Rep) 2 169.066 0.93 0.4222 

Boiling Time (BT) 3 13700.121 75.15 <.0001 

DT*BT 3 170.709 0.94 0.4533 

Error b  12 182.309   
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Table A4. Analysis of variance for effect of boiling time and drying temperature on black bean 

pasting quality (continued). 

Variable Source df MS F value Pr>F 

Whole 

bean flour 

set 

Rep 2 675.570 19.50 0.0002 

Drying Temperature (DT) 1 187.992 8.87 0.0967 

Error a (DT*Rep) 2 21.198 0.61 0.5584 

Boiling Time (BT) 3 2682.313 77.44 <.0001 

DT*BT 3 45.099 1.30 0.3189 

Error b  12 34.638   

      

Cotyledon 

flour peak 

Rep 2 3206.591 23.53 <.0001 

Drying Temperature (DT) 1 7.482 0.19 0.7080 

Error a (DT*Rep) 2 40.130 0.29 0.7501 

Boiling Time (BT) 3 5660.646 41.54 <.0001 

DT*BT 3 10.390 0.08 0.9716 

Error b  12 136.270   

      

Cotyledon 

flour 

control 

Rep 2 2938.087 19.17 0.0002 

Drying Temperature (DT) 1 2.184 0.05 0.8451 

Error a (DT*Rep) 2 44.398 0.29 0.7536 

Boiling Time (BT) 3 5514.069 35.98 <.0001 

DT*BT 3 5.643 0.04 0.9901 

 Error b  12 153.261   

      

Cotyledon 

flour break 

Rep 2 6.244 5.36 0.0217 

Drying Temperature (DT) 1 1.576 5.45 0.1446 

Error a (DT*Rep) 2 0.289 0.25 0.7843 

Boiling Time (BT) 3 2.583 2.22 0.1389 

DT*BT 3 1.684 1.44 0.2786 

Error b  12 1.165   
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Table A4. Analysis of variance for effect of boiling time and drying temperature on black bean 

pasting quality (continued). 

Variable Source df MS F value Pr>F 

Cotyledon 

flour final 

Rep 2 7335.936 30.18 <.0001 

Drying Temperature (DT) 1 61.248 0.33 0.6244 

Error a (DT*Rep) 2 186.459 0.77 0.4858 

Boiling Time (BT) 3 15085.626 62.06 <.0001 

DT*BT 3 60.411 0.25 0.8608 

Error b  12 243.078   

      

Cotyledon 

flour set 

Rep 2 989.449 31.34 <.0001 

Drying Temperature (DT) 1 86.716 1.76 0.3160 

Error a (DT*Rep) 2 49.327 1.56 0.2494 

Boiling Time (BT) 3 3567.425 112.99 <.0001 

DT*BT 3 37.217 1.18 0.3587 

Error b  12 31.573   
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Table A5. Analysis of variance for effect of temper and drying temperature on black bean grain 

quality.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variable Source df MS F value Pr>F 

L 

Rep 2 2.052 3.33 0.0567 

Drying Temperature 

(DT) 
1 1.117 8.60 0.0993 

Error a (DT*Rep) 2 0.130 0.21 0.8121 

Temper Level (TL) 5 15.085 24.44 <0.0001 

DT*TL 5 0.204 0.33 0.8884 

Error b  20 0.617   

      

a 

Rep 2 0.146 8.80 0.0018 

Drying Temperature 

(DT) 
1 0.046 168.91 0.0059 

Error a (DT*Rep) 2 0.000 0.02 0.9839 

Temper Level (TL) 5 0.393 23.72 <.0001 

DT*TL 5 0.015 0.89 0.5064 

Error b  20 0.017   

      

b 

Rep 2 0.565 5.03 0.0170 

Drying Temperature 

(DT) 
1 0.006 0.24 0.6724 

Error a (DT*Rep) 2 0.027 0.24 0.7914 

Temper Level (TL) 5 0.278 2.47 0.0671 

DT*TL 5 0.192 1.71 0.1779 

Error b  20 0.112   

      

100-KWT Rep 2 1.382 5.90 0.0097 

 

Drying Temperature 

(DT) 
1 2.285 11.37 0.0778 

 Error a (DT*Rep) 2 0.201 0.86 0.4390 

 Temper Level (TL) 5 0.516 2.20 0.0945 

 DT*TL 5 0.235 1.00 0.4416 

 
Error b  20 0.234   
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Table A5. Analysis of variance for effect of temper and drying temperature on black bean grain 

quality (continued).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variable Source df MS F value Pr>F 

Length 

Rep 2 0.433 8.10 0.0027 

Drying Temperature 

(DT) 
1 0.096 5.32 0.1476 

Error a (DT*Rep) 2 0.018 0.34 0.7172 

Temper Level (TL) 5 1.839 34.38 <.0001 

DT*TL 5 0.078 1.45 0.2492 

Error b  20 0.053   

      

Width 

Rep 2 0.023 0.89 0.4257 

Drying Temperature 

(DT) 
1 0.092 13.04 0.0688 

Error a (DT*Rep) 2 0.007 0.28 0.7592 

Temper Level (TL) 5 0.283 11.16 <.0001 

DT*TL 5 0.058 2.27 0.0866 

Error b  20 0.025   

      

Thickness 

Rep 2 0.001 0.06 0.9431 

Drying Temperature 

(DT) 
1 0.007 0.25 0.6667 

Error a (DT*Rep) 2 0.026 1.33 0.2870 

Temper Level (TL) 5 0.161 8.17 0.0002 

DT*TL 5 0.035 1.79 0.1599 

Error b  20 0.020   

      

Volume 

Rep 2 373.406 1.02 0.3798 

Drying Temperature 

(DT) 
1 1000.668 5.40 0.1458 

Error a (DT*Rep) 2 185.367 0.50 0.6112 

Temper Level (TL) 5 5927.141 16.14 <.0001 

DT*TL 5 834.476 2.27 0.0865 

Error b  20 367.296   
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Table A6. Analysis of variance for effect of temper and drying temperature on black bean 

milling quality.  

Variable Source df MS F value Pr>F 

Fracture 

point 

Rep 2 979.361 2.48 0.1091 

Drying Temperature (DT) 1 1722.250 7.02 0.1178 

Error a (DT*Rep) 2 245.250 0.62 0.5474 

Temper Level (TL) 5 20700.361 52.42 <.0001 

DT*TL 5 595.117 1.51 0.2322 

Error b  20 394.906   

      

Peak force 

Rep 2 2056.361 4.89 0.0187 

Drying Temperature (DT) 1 12731.361 36.88 0.0261 

Error a (DT*Rep) 2 345.194 0.82 0.4546 

Temper Level (TL) 5 5104.894 12.13 <.0001 

DT*TL 5 4631.294 11.00 <.0001 

Error b  20 420.844   

      

Whole 

bean flour 

L 

Rep 2 0.764 2.82 0.0833 

Drying Temperature (DT) 1 8.362 7.67 0.1095 

Error a (DT*Rep) 2 1.091 4.03 0.0339 

Temper Level (TL) 5 17.242 63.68 <.0001 

DT*TL 5 0.549 2.03 0.1183 

Error b  20 0.271   

      

Whole 

bean flour 

a 

Rep 2 0.083 5.48 0.0127 

Drying Temperature (DT) 1 0.028 0.85 0.4547 

Error a (DT*Rep) 2 0.033 2.18 0.1397 

Temper Level (TL) 5 0.058 3.87 0.0128 

DT*TL 5 0.027 1.78 0.1622 

Error b  20 0.015   
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Table A6. Analysis of variance for effect of temper and drying temperature on black bean 

milling quality (continued).  

Variable Source df MS F value Pr>F 

Whole 

bean flour 

b 

Rep 2 1.220 31.33 <.0001 

Drying Temperature (DT) 1 2.045 14.13 0.0640 

Error a (DT*Rep) 2 0.145 3.72 0.0424 

Temper Level (TL) 5 2.970 76.28 <.0001 

DT*TL 5 1.663 42.71 <.0001 

Error b  20 0.039   

      

Cotyledon 

flour L 

Rep 2 0.119 0.18 0.8333 

Drying Temperature (DT) 1 10.433 3.87 0.1882 

Error a (DT*Rep) 2 2.699 4.16 0.0309 

Temper Level (TL) 5 4.854 7.48 0.0004 

DT*TL 5 2.472 3.81 0.0138 

Error b  20 0.649   

      

Cotyledon 

flour a 

Rep 2 0.047 14.20 0.0001 

Drying Temperature (DT) 1 1.240 19.01 0.0488 

Error a (DT*Rep) 2 0.065 19.87 <.0001 

Temper Level (TL) 5 0.531 161.81 <.0001 

DT*TL 5 0.215 65.43 <.0001 

Error b  20 0.003   

      

Cotyledon 

flour b 

Rep 2 0.118 1.59 0.2278 

Drying Temperature (DT) 1 26.027 44.24 0.0219 

Error a (DT*Rep) 2 0.588 7.93 0.0029 

Temper Level (TL) 5 4.477 60.36 <.0001 

DT*TL 5 7.524 101.43 <.0001 

Error b  20 0.074   
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Table A7. Analysis of variance for effect of temper and drying temperature on black bean grain 

chemistry.  

Variable Source df MS F value Pr>F 

Whole 

bean flour 

moisture 

Rep 2 6.656 99.48 <.0001 

Drying Temperature (DT) 1 9.507 27.63 0.0343 

Error a (DT*Rep) 2 0.344 5.14 0.0158 

Temper Level (TL) 5 0.480 7.17 0.0005 

DT*TL 5 0.525 7.84 0.0003 

Error b  20 0.067   

      

Cotyledon 

flour 

moisture 

Rep 2 0.235 8.19 0.0025 

Drying Temperature (DT) 1 8.742 40.71 0.0237 

Error a (DT*Rep) 2 0.215 7.49 0.0037 

Temper Level (TL) 5 0.535 18.66 <.0001 

DT*TL 5 0.403 14.06 <.0001 

Error b  20 0.029   

      

Whole 

bean flour 

protein 

Rep 2 19.822 112.65 <.0001 

Drying Temperature (DT) 1 0.146 0.15 0.7345 

Error a (DT*Rep) 2 0.960 5.46 0.0128 

Temper Level (TL) 5 0.022 0.12 0.9853 

DT*TL 5 0.140 0.80 0.5644 

Error b  20 0.176   

      

Cotyledon 

flour 

protein 

Rep 2 27.368 86.15 <.0001 

Drying Temperature (DT) 1 0.535 1.22 0.3846 

Error a (DT*Rep) 2 0.439 1.38 0.2740 

Temper Level (TL) 5 0.613 1.93 0.1340 

DT*TL 5 0.357 1.12 0.3800 

Error b  20 0.318   
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Table A7. Analysis of variance for effect of temper and drying temperature on black bean grain 

chemistry (continued).  

Variable Source df MS F value Pr>F 

Seed coat 

flour 

protein 

Rep 2 7.379 11.02 0.0006 

Drying Temperature (DT) 1 29.322 13.94 0.0649 

Error a (DT*Rep) 2 2.104 3.14 0.0651 

Temper Level (TL) 5 4.209 6.28 0.0012 

DT*TL 5 1.527 2.28 0.0857 

Error b  20 0.670   

      

Whole 

bean flour 

ash 

Rep 2 0.380 3.64 0.0449 

Drying Temperature (DT) 1 0.093 5.69 0.1399 

Error a (DT*Rep) 2 0.016 0.16 0.8559 

Temper Level (TL) 5 0.149 1.43 0.2567 

DT*TL 5 0.108 1.03 0.4261 

Error b  20 0.104   

      

Cotyledon 

flour ash 

Rep 2 0.025 1.95 0.1686 

Drying Temperature (DT) 1 0.001 0.04 0.8645 

Error a (DT*Rep) 2 0.036 2.83 0.0830 

Temper Level (TL) 5 0.015 1.20 0.3453 

DT*TL 5 0.008 0.63 0.6815 

Error b  20 0.013   

     

Whole 

bean starch 

Rep 2 22.937 13.85 0.0002 

Drying Temperature (DT) 1 3.139 0.78 0.4699 

Error a (DT*Rep) 2 4.015 2.42 0.1141 

Temper Level (TL) 5 7.691 4.64 0.0056 

DT*TL 5 1.732 1.05 0.4185 

Error b  20 1.656   

      

Cotyledon 

flour starch 

Rep 2 13.780 5.94 0.0094 

Drying Temperature (DT) 1 3.560 3.96 0.1848 

Error a (DT*Rep) 2 0.898 0.39 0.6839 

Temper Level (TL) 5 6.831 2.94 0.0376 

DT*TL 5 2.323 1.00 0.4423 

Error b  20 2.320   
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Table A7. Analysis of variance for effect of temper and drying temperature on black bean grain 

chemistry (continued).  

Variable Source df MS F value Pr>F 

Whole 

bean flour 

starch 

damage 

Rep 2 0.000 0.75 0.4868 

Drying Temperature (DT) 1 0.000 6.26 0.1295 

Error a (DT*Rep) 2 0.000 1.07 0.3611 

Temper Level (TL) 5 0.001 9.42 <.0001 

DT*TL 5 0.000 0.97 0.4580 

Error b  20 0.000   

      

Cotyledon 

flour starch 

damage 

Rep 2 0.000 0.81 0.4576 

Drying Temperature (DT) 1 0.002 38.60 0.0249 

Error a (DT*Rep) 2 0.000 1.96 0.1666 

Temper Level (TL) 5 0.001 44.82 <.0001 

DT*TL 5 0.000 14.51 <.0001 

Error b  20 0.000   
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Table A8. Analysis of variance for effect of temper and drying temperature on black bean 

pasting quality.  

Variable Source df MS F value Pr>F 

Whole 

bean flour 

peak 

Rep 2 3306.420 164.06 <.0001 

Drying Temperature (DT) 1 94.284 0.39 0.5941 

Error a (DT*Rep) 2 238.935 11.86 0.0004 

Temper Level (TL) 5 261.239 12.96 <.0001 

DT*TL 5 78.186 3.88 0.0128 

Error b  20 20.154   

      

Whole 

bean flour 

trough 

Rep 2 3385.214 119.21 <.0001 

Drying Temperature (DT) 1 62.068 0.31 0.6339 

Error a (DT*Rep) 2 200.523 7.06 0.0048 

Temper Level (TL) 5 361.336 12.72 <.0001 

DT*TL 5 57.236 2.02 0.1201 

Error b  20 28.397   

      

Whole 

bean flour 

break 

Rep 2 1.388 0.41 0.6722 

Drying Temperature (DT) 1 3.331 1.89 0.3028 

Error a (DT*Rep) 2 1.760 0.51 0.6059 

Temper Level (TL) 5 10.161 2.97 0.0367 

DT*TL 5 1.789 0.52 0.7567 

Error b  20 3.426   

      

Whole 

bean flour 

final 

Rep 2 7362.973 159.14 <.0001 

Drying Temperature (DT) 1 278.334 0.34 0.6186 

Error a (DT*Rep) 2 817.657 17.67 <.0001 

Temper Level (TL) 5 173.691 3.75 0.0147 

DT*TL 5 258.351 5.58 0.0022 

Error b  20 46.266   
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Table A8. Analysis of variance for effect of temper and drying temperature on black bean 

pasting quality (continued).  

Variable Source df MS F value Pr>F 

Whole 

bean flour 

set 

Rep 2 807.685 37.12 <.0001 

Drying Temperature (DT) 1 602.948 2.83 0.2346 

Error a (DT*Rep) 2 213.081 9.79 0.0011 

Temper Level (TL) 5 256.648 11.79 <.0001 

DT*TL 5 181.328 8.33 0.0002 

Error b  20 21.761   

      

Cotyledon 

flour peak 

Rep 2 5319.664 264.17 <.0001 

Drying Temperature (DT) 1 8.028 0.03 0.8820 

Error a (DT*Rep) 2 284.066 14.11 0.0002 

Temper Level (TL) 5 42.765 2.12 0.1045 

DT*TL 5 53.517 2.66 0.0534 

Error b  20 20.137   

      

Cotyledon 

flour 

trough 

Rep 2 4914.288 184.41 <.0001 

Drying Temperature (DT) 1 69.945 0.35 0.6147 

Error a (DT*Rep) 2 200.546 7.53 0.0037 

Temper Level (TL) 5 79.557 2.99 0.0358 

DT*TL 5 43.722 1.64 0.1951 

Error b  20 26.649   

      

Cotyledon 

flour break 

Rep 2 10.023 3.87 0.0380 

Drying Temperature (DT) 1 30.618 4.19 0.1772 

Error a (DT*Rep) 2 7.304 2.82 0.0834 

Temper Level (TL) 5 10.459 4.04 0.0107 

DT*TL 5 7.789 3.01 0.0349 

Error b  20 2.591   
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Table A8. Analysis of variance for effect of temper and drying temperature on black bean 

pasting quality (continued).  

Variable Source df MS F value Pr>F 

Cotyledon 

flour final 

Rep 2 13746.901 259.70 <.0001 

Drying Temperature (DT) 1 1832.411 1.27 0.3763 

Error a (DT*Rep) 2 1439.257 27.19 <.0001 

Temper Level (TL) 5 327.375 6.18 0.0013 

DT*TL 5 350.732 6.63 0.0009 

Error b  20 52.935   

      

Cotyledon 

flour set 

Rep 2 2240.115 73.19 <.0001 

Drying Temperature (DT) 1 1186.688 2.10 0.2845 

Error a (DT*Rep) 2 565.515 18.48 <.0001 

Temper Level (TL) 5 641.622 20.96 <.0001 

DT*TL 5 266.799 8.72 0.0002 

Error b  20 30.607   
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                                                 A                                                                                                             B 

Figure A1. Cooked (0-20 min) oven dried (A) whole bean flour and (B) cotyledon flour pasting profiles 
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Figure A2. Tempered (as is to 50%) oven dried (A) whole bean flour and (B) cotyledon flour pasting profiles 
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