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ABSTRACT

Nanoparticles have attracted much attention because of their unusual physical properties,

which allow them to be used in many practical applications. The self-assembly of nanocrystals

into crystalline arrays can be facilitated by functionalizing the nanocrystals with ligand brushes,

allowing for bulk dispersions to be sterically stabilized against aggregation. Studies have been

conducted to study the clustering of gold nanoparticle dispersions. To study the self-assembly

of gold nanoparticle dispersions based on nanocrystal volume fraction and ligand coverage, we

performed Monte Carlo simulations and characterized the ability of the nanoparticle dispersions

to self-assemble into crystalline arrays. Experiments have shown that silver nanoparticles can self-

assemble into equilibrium superlattices in the presence of free ligands. To better understand the role

of adsorbed and free ligands in self-assembly, we extracted the effective pressure between two flat,

ligated plates through molecular dynamics simulations. Our results are compared to the theoretical

prediction and discrepancies are discussed.

iii



ACKNOWLEDGEMENTS

First off, a huge thank you to Professor Alan Denton for everything these past 4 years. He

has been an amazing academic and research adviser and got me interested in the field of condensed

matter physics. I had no programming experience when I started conducting research back in

October 2014, but because of his guidance, I was able to learn Java and about the physics of soft

materials. Since then, my long-term career goal has become much clearer to me, and I plan to

continue conducting research because of my experiences as a part of his research group. I hope

that one day, I can become a professor and inspire students as much as he has.

Thank you to Samuel Brown and Professor Erik Hobbie for helping to guide our research and

collaborating with our group. The input and guidance that they gave through the experiments that

they conducted have helped to motivate the research presented in this thesis and given direction

on which values to use for different parameters.

Thank you to all of my current and past professors for their guidance and unyielding patience

during the courses that they instructed, and to my friends and family for their support. The

professors at North Dakota State University have given me a sound background that allowed me to

apply what I have learned in my research experiences and teach others about physics. As a student

in a STEM field, having a great group of peers to study with and explain physics to has helped me

grow immensely. In addition, my family has supported every opportunity that I have taken and

helped me become a successful person.

A big thank you to Professor Erik Hobbie, Professor Alexander Wagner, and Professor

Dmitri Kilin for being willing to be a part of the committee for my Master’s Thesis, as well.

Finally, I would like to thank the National Science Foundation for supporting this research

(Grant No. CBET-1603445) and the North Dakota State University Center for Computationally

Assisted Science and Technology (CCAST) for the computing resources.

iv



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

LIST OF SYMBOLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1. Physical Properties of Nanoparticles . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2. Interparticle Interactions and Self-Assembly . . . . . . . . . . . . . . . . . . . . . . . 7

2.3. Practical Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3. MODEL AND METHODS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1. Nanoparticle Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.1. Model: Explicit Ligands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2. Effective Interparticle Pair Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.1. Theoretical Effective Interactions between Flat Plates . . . . . . . . . . . . . 21

3.2.2. Theoretical Effective Interactions between Similar Spheres . . . . . . . . . . . 29

3.3. Computational Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.1. Monte Carlo Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3.2. Molecular Dynamics Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4. Structural Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4.1. Radial Distribution Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4.2. Static Structure Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4. RESULTS AND DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1. Gold Nanocrystals: Equilibrium Structures . . . . . . . . . . . . . . . . . . . . . . . 48

v



4.1.1. Comparison with the Literature . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2. Silver Nanocrystals: Equilibrium Structures . . . . . . . . . . . . . . . . . . . . . . . 53

4.3. Molecular Dynamics Simulations: Effective Interactions . . . . . . . . . . . . . . . . 58

4.3.1. Effect of Fixed Bead Configurations on Effective Interactions . . . . . . . . . 59

4.3.2. Effect of Varying Temperature on the Effective Interactions . . . . . . . . . . 61

5. SUMMARY AND OUTLOOK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.1. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.3. Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

APPENDIX. CODE USED FOR THE DESCRIBED WORK . . . . . . . . . . . . . . . . . . 74

vi



LIST OF TABLES

Table Page

3.1. A list of fixed parameters used to generate the plots in Figure 3.6 in Lennard-Jones units. 30

3.2. Input parameters for AuNCs with dodecanethiol ligands in toluene [10, 22]. . . . . . . . 36

3.3. Input parameters for AgNCs with oleylamine ligands in toluene [10, 62, 63, 64]. De-
pletion interactions are present in this system due to the ligands being adsorbed rather
than grafted. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

vii



LIST OF FIGURES

Figure Page

1.1. A snapshot of a gold nanoparticle dispersion from Brownian dynamics simulations where
the volume fraction of nanoparticles was φ = 0.005 [10]. Reprinted with permission from
S. J. Khan, F. Pierce, C. M. Sorenson, and A. Chakrabarti. Self-Assembly of Ligated
Gold Nanoparticles: Phenomenological Modeling and Computer Simulations. Langmuir,
25(24):13861–13868, 2009. Copyright 2009 American Chemical Society. . . . . . . . . . 3

1.2. A TEM image of a silver nanoparticle dispersion in a stable equilibrium superlattice.
Credit to Samuel Brown and Professor Erik Hobbie. . . . . . . . . . . . . . . . . . . . . 4

2.1. An experimental setup used to measure PL of cadmium selenide nanocrystals [11].
Reprinted with permission from N. Zaitseva, Z. R. Dai, F. R. Leon, and D. Krol. Optical
properties of cdse superlattices. J. Am. Chem. Soc., 127:10221–10226, 2005. Copyright
2005 American Chemical Society. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.1. An illustration of two NPs with fully extended and compressed ligands. . . . . . . . . . 15

3.2. Two flat plates (both parallel to the xy-plane) coated with ligand chains modeled using
the bead-spring model, where the pink beads are fixed beads on the flat plates and the
green beads are able to move. The two plates can be close together by initializing the
ligands as folded chains. Alternatively, the ligand chains are initialized as fully extended
chains if the desired separation distance between the plates is large enough. . . . . . . . 17

3.3. The potential energy from Equation (3.3) with ε = 1, σ = 1, and rc = 2.5σ. . . . . . . . 18

3.4. The potential energy from Equation (3.4) (shifted to ensure continuity at the cutoff)
with εw = 5, σw = 1, and rc,w = 0.85σw. . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.5. The potential energy from Equation (3.5) with ε = 1, σ = 1, and rc = 2.5σ. Note that
the depth of the potential well is no longer equal to ε, due to the last term in Equation
(3.5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.6. The effective pressures between two flat, ligated plates given from Equations (3.33),
(3.34), and (3.35) with the fixed parameters listed in Table 3.1 at reduced temperature
T ∗ = 3.0kBT/ε, where the Flory chi parameter is (a) χ = 0.35; (b) χ = 0.40; (c)
χ = 0.55; and (d) χ = 0.60. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.7. A representation of the Derjaguin approximation, used to derive the effective potential
between two ligated spheres of equal size [24]. Note that we represent d as s and d0 as
D in the formulas in this section because d in this figure is not the contour length of
the ligands. Reprinted by permission from RightsLink Permissions Springer Customer
Service Centre GmbH: Springer Nature Kolloid-Z. u. Z. Polymere, R. Evans and D. H.
Napper, Steric Stabilization II: A generalization to Fischer’s solvency theory, Copyright
1973. https://link.springer.com/journal/396 . . . . . . . . . . . . . . . . . . . . . 32

viii

https://link.springer.com/journal/396


3.8. The effective pair potential (no depletion interactions) from Equation (3.36) where the

ligand coverage is (a) v = 0.03 Å
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−2

. There was not
a significant change in the structure, so we concluded that the nanoparticle dispersion
had reached the metastable state of an amorphous cluster. . . . . . . . . . . . . . . . . . 53

4.5. (a) g(r) and (b) S(q) from a Monte Carlo simulation of an AuNP dispersion with

φ = 0.005 and v = 0.0465 Å
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1. INTRODUCTION

Soft condensed matter appears everywhere in our lives. Items such as shampoo, soap,

and paints as well as foods such as ketchup are considered to be neither crystalline arrays nor

simple liquids [1]. The classification of “soft condensed matter” encompasses these items and

foods. Scientists study the physics of these materials, which are composed of macromolecules such

as colloids and nanoparticles, due to the very interesting properties that they exhibit. Surprisingly,

one does not need quantum mechanics to describe the physics of macromolecules, which have sizes

between those of atoms and macroscopic objects; instead, classical statistical mechanics becomes

very important due to the fluctuations that occur in soft matter [1]. Materials that are classified

as soft matter also have large response functions: a small change to the system leads to vastly

different behavior in the system from the state before the change.

Nanoparticles (NPs) are particles that are smaller than macroscopic objects and cells (cells

are on the order of 10−6 m) and larger than electrons and nuclei (which are smaller than 10−12

m), and are therefore classified as macromolecules [2]. As the name suggests, NPs have sizes on

the order of 10−9 m, also called the “nanometer” and denoted “nm” [3]. In the literature [4], an

NP is often defined as an inorganic core (in other words, the core is not made up of hydrogen,

carbon, phosphorus, nitrogen, oxygen, or sulfur atoms) along with a surrounding layer of ligands

or agents. The inorganic core is often made up of atoms arranged in a lattice, though they need

not form a crystal structure [4]. In the work presented here, however, we will consider an inorganic

crystalline core, called a nanocrystal (NC). The NCs can be coated with a layer of ligands which

are either grafted (chemically bonded to the NC so that one end is fixed to the surface unless the

bond is broken) or adsorbed (the ligands can detach and re-attach to the surface depending on

the amount of energy they have). The ligand layers stabilize NP dispersions against aggregation

due to attraction between the NCs, induced by van der Waals (vdW) interactions [5, 6, 7, 8, 9],

and they allow the NP dispersions to self-assemble into crystalline arrays (superlattices) due to the

interactions between the ligands and the solvent molecules [7, 8, 10]. Nanoparticles consisting of

an NC and a layer of ligands are referred to as “functionalized nanoparticles”.
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Nanoparticles have many unusual optical, magnetic, and electronic properties between those

of molecular structures and bulk structures [5, 11, 12, 13, 14, 15, 16, 17]. In addition, NPs have been

used in many practical applications [1, 2, 3, 15, 16, 17, 18, 19, 20, 21]. These physical properties

and practical applications will be discussed in more detail in the following chapter.

There have been many experimental and computational studies of gold nanoparticle (AuNP)

dispersions [10, 22, 23]. The computational study given in Khan et al. [10] focuses heavily on

the clustering of AuNPs (see Figure 1.1), while experimental studies have focused on both the

clustering and the self-assembly of AuNPs into equilibrium superlattices. Khan et al. utilized an

effective pair potential derived in a series of papers by Evans, Napper, and Smitham [24, 25, 26,

27] to model the interactions between nanoparticles. The series of papers gave a new approach

to describe the interactions between two ligated surfaces. First, Evans et al. [24] derived the

effective interactions for two flat, ligated plates and they then extended the interactions to two

curved surfaces. Smitham et al. [25] made the effective interactions more concrete by stepping

through the mathematical steps for particular ligand density distributions. Finally, Evans et al.

[27] incorporated an entropic component to the effective interactions between two ligated surfaces

and worked through the mathematical steps for particular distributions.

Although it has been shown that the effective pair potential describing interactions between

silicon nanoparticles (SiNPs) consists of vdW interactions that depend on the size and density of

the ligands and NC materials [5], it is still a challenge to get NPs to self-assemble into a superlattice

in the laboratory. Experiments must be run for long periods of time and are often costly in both

money and materials needed to synthesize the NPs, and the cause of self-assembly in the labora-

tory is not fully understood. For example, nanoparticle dispersions of silver nanocrystals coated

with oleylamine ligands have been shown in experiments by Professor Erik Hobbie and Samuel

Brown to self-assemble into equilibrium superlattices in the presence of free ligands (ligands that

are present in the solvent rather than attached to the surface of an NC), as shown in Figure 1.2.

However, the interplay between the repulsive steric (short-range) interactions and attractive deple-

tion interactions caused by the presence of the free ligands is not well understood. The equilibrium

structures can change drastically with small changes to parameters such as the volume fraction of

the NCs and the length and density of the ligands, and free ligands can increase the strength of

depletion interactions, causing the NP dispersions to self-assemble into stable superlattices when
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Figure 1.1. A snapshot of a gold nanoparticle dispersion from Brownian dynamics simulations
where the volume fraction of nanoparticles was φ = 0.005 [10]. Reprinted with permission from S.
J. Khan, F. Pierce, C. M. Sorenson, and A. Chakrabarti. Self-Assembly of Ligated Gold Nanopar-
ticles: Phenomenological Modeling and Computer Simulations. Langmuir, 25(24):13861–13868,
2009. Copyright 2009 American Chemical Society.

they would not have done so in the absence of free ligands. Because of these challenges and uncer-

tainties, we have developed computational methods to characterize the structures of self-assembling

nanoparticle dispersions based on changes in system parameters, as well as computational methods

to determine the effective pressure (force per unit area) between two nanoparticles.

By running Monte Carlo simulations of gold nanoparticle dispersions and silver nanopar-

ticle dispersions and determining the radial distribution functions and static structure factors, we

characterized the ability of the nanoparticles to self-assemble into equilibrium superlattices and

witnessed the clustering of nanoparticles at low volume fractions. By running molecular dynamics

simulations, we calculated the pressures from ligand-ligand and ligand-surface interactions between

two flat plates and compared our results with the theory presented in Evans et al. [24, 27] and

Smitham et al. [25]. Our molecular dynamics methods will allow for a better description of the

self-assembly of AgNP dispersions. These methods could also be extended to model SiNP disper-

sions and could potentially be used to raise the efficiency of photovoltaic cells due to the increased

understanding of nanoparticle self-assembly and therefore increased guidance in the fabrication of

equilibrium superlattices. In particular, our methods for calculating the effective pressure between
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Figure 1.2. A TEM image of a silver nanoparticle dispersion in a stable equilibrium superlattice.
Credit to Samuel Brown and Professor Erik Hobbie.

two ligated surfaces could be extended to two spherical surfaces in the future, allowing for the

validation of the effective pair potential used in our model for nanoparticle dispersions.

The rest of the thesis is structured as follows. We first summarize work that has been con-

ducted in the field to give the reader a sound understanding of nanoparticles and the self-assembly

of nanoparticle dispersions. Next, we describe the models of our systems, including the nanopar-

ticle model and the components for our model to determine the effective pressure between two

flat plates. We then describe the components of the effective interparticle pair potential used to

extend work found in the literature [10] and compare with results found in experiments. Next, we

describe the computational methods used to simulate the nanoparticle dispersions, along with the

structural properties of the nanoparticle dispersions that were used to analyze the equilibrium struc-

tures. In addition, we present our computational methods to extract the effective pressure between

two ligated surfaces. We then present the results that we obtained using Monte Carlo methods

to characterize the equilibrium structures of gold nanoparticle dispersions and silver nanoparticle

dispersions and the results that we obtained using molecular dynamics methods to extract the

effective interactions between two flat, ligated plates. Finally, we summarize the work presented

in this thesis and the outlook for the future. The Appendix contains scripts and Java classes that

were created and used for the presented research.
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2. BACKGROUND

Scientists have released several thousands of publications on “nanoparticles” ever since the

term first appeared in the literature [17]. Even before the term “nanoparticle” first appeared, much

work was done to determine interactions between particles of different geometries and different

functionalization properties such as grafting density. The goal of this chapter is to inform the

reader of the work that has been completed to study NPs and their interactions with one another,

as well as their practical applications. However, we are unable to cover the entire field and instead

focus on the topics relevant for the work described in this thesis.

2.1. Physical Properties of Nanoparticles

Nanoparticles have a relatively high surface-to-volume ratio, which is something that is

commonly seen for macromolecules [1, 17, 28]. In the case of spherical nanoparticles, this is because

the radius of an NP is on the nanometer scale and because there are a very large number of atoms

making up the surface of the nanoparticle compared to the number of atoms making up its interior.

Because the sizes of nanoparticles are intermediate between molecular and bulk scales, nanoparticles

have many unusual properties, which has led to several studies in an attempt to characterize these

properties. These properties are size-dependent at the nanometer scale [29], and it is important to

characterize which properties could be used for practical applications and how they vary with size.

Nanoparticles have many unusual optical properties. Cadmium selenide (CdSe) superlat-

tices have been shown to exhibit photoluminescence (PL) [11]. This was done by synthesizing

CdSe NCs of a desired size before using the experimental setup in Figure 2.1 to measure PL. Sil-

icon nanoparticles have also been shown to exhibit PL [14]. Brown et al. [14] used molecular

dynamics simulations, density functional theory, and experimental techniques to show that the PL

spectrum for SiNCs is dependent on temperature and nanocrystal size. Finally, smaller clusters of

gold nanoparticles (AuNPs) show an increase in the intensity of PL. [29].

Nanoparticles made from certain transition metals, such as gold and silver, also exhibit

strong surface plasmon absorption [29]. Surface plasmon absorption occurs when there is resonance

between the incident electromagnetic wave and the coherent electron motion of the NCs [29]. In

other words, the frequencies of oscillation of the electron motion and the electromagnetic wave are
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Figure 2.1. An experimental setup used to measure PL of cadmium selenide nanocrystals [11].
Reprinted with permission from N. Zaitseva, Z. R. Dai, F. R. Leon, and D. Krol. Optical properties
of cdse superlattices. J. Am. Chem. Soc., 127:10221–10226, 2005. Copyright 2005 American
Chemical Society.

very close to each other. A net charge difference arises at the nanoparticle surface due to polarization

of the electrons by incoming light, causing dipolar oscillations [29]. It has been found that the color

exhibited actually depends on the shape of the NCs: for spherical gold nanoparticles, the solution

appeared to be red; and for triangular-branched gold nanoparticles, the solution appeared to be

blue [29]. The size of the NCs also affects the exhibited color: experimentally, the absorption

spectra shift such that the peak occurs at larger wavelengths (red shifting) and over a larger range

of wavelengths as the NC size increases [29].

The shape of the nanoparticle affects the electronic properties as well: plasmon bands

can split into degenerate energy levels (different bands yielding the same energy) if the NCs are

asymmetric [29]. Finally, while metallic NCs conduct electricity well, functionalizing the NCs with

organic ligand chains such as thiol groups hinders the conductivity of the nanoparticles because

the chains themselves are poor electrical conductors [30], which could potentially be an issue for

practical applications; however, Kovalenko et al. [30] describes a type of functionalization which

reduces this hinderance.

CdSe nanoparticles and nanorods have been the focus of studies for several years. Indeed,

many publications aside from Zaitseva et al. [11] have studied properties of CdSe nanomaterials.

Cadmium sulfide (CdS) has also been of interest, and the structure of chains that functionalize CdSe

and CdS nanorods has been studied [31]. For CdSe, increasing the ligand chain length corresponds

to an increase in the ordering tempertature, which is the temperature at which the orientation of
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the ligand chains switches from ordered (pointing in the same direction) to disordered (pointing in

random directions). Using molecular dynamics simulations, Widmer-Cooper et al. [31] considered

ligand-solvent interactions using a unified-atom potential and the ligand-ligand and ligand-particle

interactions using the Lennard-Jones potential (see Section 3.1). By varying the ligand coverage,

dimensions of the nanorods, and temperature of the system, the authors characterized the order of

the ligand chains and determined whether this would cause interactions between the nanorods to

be repulsive or attractive. Due to the toxicity of materials such as cadmium selenide to humans,

however, more recent studies have turned towards less toxic materials such as silicon and alloys

of different metals [32]. Silicon has low toxicity even compared to metallic nanoparticles and is

abundant [5, 12, 14]. Practical applications of nanoparticles will be described in more detail in

Section 2.3, but it should be noted that silicon nanoparticles are used in many applications because

of their low toxicity and abundance.

2.2. Interparticle Interactions and Self-Assembly

It has been shown that van der Waals (vdW) interactions play a large role in the aggregation

of small materials such as nanoparticles [1, 5, 6, 9, 33]. The vdW interactions consist partially of

dispersion forces (a classification of weak forces which act between all atoms and molecules) [33],

which arise from considering instantaneous dipoles in a nonpolar atom. In particular, an attractive

force arises between the nonpolar atom and another nearby atom due to the interaction between

the instantaneous dipoles in both atoms [33].

Nanoparticles under the influence of only vdW interactions would aggregate because they

would always feel attraction toward each other, if they are composed of the same material. How-

ever, nanoparticle dispersions can be stabilized into superlattices by functionalizing the particles

with ligand brushes. These ligand brushes are often made of one molecule, such as n-decane, do-

decanethiol (C12H26S) [10, 22], or oleylamine [21]. In addition, the ligand brushes can be either

grafted or adsorbed to the surface of an NC. “Adsorbed” means that the ligands are physically or

chemically attached to the surface of the NC because they do not have enough energy to detach

from the surface. Grafted ligands are often considered to be irreversibly bonded due to the strength

of the chemical bonds [1], whereas adsorbed ligands can detach or reattach to the surfaces: the

amount of energy needed to physically detach from a surface is much less than the amount of energy

needed to break a chemical bond. In computational methods, the adsorption and desorption of
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ligands are often modeled by considering probabilities and certain criteria according to distribution

functions (this concept is the basis of Monte Carlo simulations, and will be elaborated upon more

in Section 3.3.1).

The interactions governing the structure and the self-assembly of nanoparticle dispersions

are studied by immersing the dispersions in a solvent (often toluene or hexane). The term “self-

assembly” refers to the assembly of the nanoparticle dispersions without external fields or forces.

In other words, the NPs assemble into a stable structure only through the interactions between

themselves (hence the “self” in “self-assembly”). The work described in Ouhenia-Ouadahi et al.

[34] studies the self-assembly of silver nanoparticles with dodecanethiol or decanethiol ligands in

hexane by considering the removal of a coating agent from the solution. Ouhenia-Ouadahi et al.

[34] found that the superlattice was larger in size in toluene than in hexane, though the same

shape was observed in both solutions. In addition, increasing the chain length in hexane caused

the superlattices to shrink in size.

Much work has been done to study the structure of self–assembled monolayers (SAMs) on

gold nanoparticles [35]. The term “self–assembled monolayers” should not be confused with “self–

assembly”: in the context of our work, SAMs is a term that refers to ordered ligand chains formed

by the adsorption of one end of the ligand chains with a surface [35]. Similar to “self–assembly”,

the adsorption must occur spontaneously. Thiol groups, such as decanethiol and dodecanethiol,

are considered to be SAMs. The phases and orientation of decanethiol on gold substrates have

been studied by varying temperature and ligand coverage of the surface, and it was found that for

low temperatures (below 100oC), the thiol groups were oriented parallel to the substrate when the

ligand coverage was low and perpendicular (and completely straight) when the ligand coverage was

high [35]. These results make sense because the ligands would have more room to fully extend if

they are oriented perpendicular to the substrate at high ligand coverage. Because of the concrete

characterization of thiol groups on gold surfaces, gold nanoparticles with functionalized thiol groups

are often used to study the self-assembly of metallic nanoparticle dispersions.

Depletion interactions have also been characterized for many systems of nanoparticles

[1, 23, 36, 37, 38, 39, 40, 41]. These interactions arise only if there are free ligands or polymer

chains in solution with larger colloidal particles. As NPs get close together, free ligands in solution

are excluded from the region between the NPs because they are unable to fit in the gap between
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the surfaces of the two NPs. This creates a difference in osmotic pressure which causes the two

NPs to move closer together [1, 42]. Many studies have been done to study the depletion interac-

tions between different shapes of nanocrystals, such as cubes and octahedra [38] and between two

spherical nanoparticles and two nanorods. We will outline some of this work below.

As stated in the previous section, Cd-based semiconducting nanoparticles and nanorods

have been a very popular choice used to study the properties of nanoparticles. Zanella et al. [41]

describes a study in which the authors fabricated nanorod superlattices by considering Cd-based

nanorods and copper-based nanorods with oleylamine and oleic acid chains. By using magnetic

properties of the system, the effects of depletion interactions could be characterized in the self-

assembly of superlattices [41]. It was found that copper-based rods clustered when in a solution

with Cd-based nanorods [41]. In addition, the authors considered tetrapods, and observed that

these tetrapods formed structures with only short-range order [41]. Another study [40] better

characterized the depletion interactions between two spheres by considering the depletants to be

thin, hard rods. The authors’ goal was accomplished by using second-order perturbation theory, in

which a small change is introduced into a system for which the solution is analytically solveable.

The authors noted that a repulsive barrier arose in the second-order approximation, though their

results are only formally valid in the regime of low depletant concentration [40].

In addition, Lau et al. [23] characterized how depletion interactions from excess ligand in

solution affected the self-assembly of gold nanoparticles with adsorbed oleylamine ligands in hexane

and toluene. The authors observed disk-like droplets in contrast to the expected large superlattices

[23]. Due to the weak bonds between animes and gold nanoparticles [23], the ligands desorbed

from the surface of the gold nanoparticles in toluene, causing aggregation of the nanoparticles due

to the destabilization of the nanoparticle dispersions as the amount of ligand on the surface of

the gold nanocrystals decreased and the vdW and depletion interactions began to dominate. An

interesting observation from the study described in Lau et al. [23] is that if the solvent was evap-

orated, then excess oleylamine ligands in the solution could actually recrystallize disordered gold

nanoparticles. This signifies that the gold nanoparticles could form metastable superlattices due to

depletion interactions, making these interactions an important concept in the field of nanoparticles,

especially when the ligand-solvent interactions cause repulsion between nanoparticles, as in the case

of oleylamine and toluene (discussed in Section 3.2.2).
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Wang and Denton [43] determined the effective pair potential governing the interactions

between star–branched polyelectrolytes using Monte Carlo simulations and density functional the-

ory. Wang and Denton [43] considered the polyelectrolytes to consist of a fixed core with rigid

rod-like arms that were allowed to freely rotate around the core. Charged monomers were placed

on these rod-like arms, and counterions in the solution caused the screening of electrostatic in-

teractions between the charged monomers (modeled using the Yukawa potential, which describes

attraction/repulsion between charged particles but also accounts for the screening of interactions

by including an exponentially decaying factor) and the reduction of the effective charge (valence

number) [43]. By considering two cores at a fixed separation distance (varied between simulations

but not during simulations), the effective pair potential between polyelectrolytes was calculated

using the various methods described in the publication and compared to the theory. It was found

that considering a high valence number yielded agreement between theory and the simulations for

all separation distances of the polyelectrolytes [43].

The effective forces between two flat, ligated plates have been studied theoretically [26],

computationally [44], and experimentally [45, 46, 47, 48]. Evans et al. [26] evaluates previous

theories to describe steric stabilization of surfaces coated with polymer chains and describes the

shortcomings of these theories, setting the stage for an extension of one of the most accurate

solvency theories at the time. For example, some theories fail to take into account (either implicitly

or explicitly) the solvent that the surfaces and chains are immersed in [26], even though the solvent

can play an extremely important role in the stability and equilibrium structures of nanoparticle

dispersions, especially when one is interested in the dynamics of the nanoparticle dispersions [8, 49].

Yethiraj et al. [44] describes Monte Carlo simulations where the volume of the system, temperature,

and number of molecules are held constant, which allowed for the calculation of segment density

profiles and the effective forces between two flat plates. The chain segments were modeled as hard

spheres rather than bead-springs, meaning that two segments could not experience overlap. In this

work, the pores on the flat plates in which the fixed chain segments resided in were described and

the polymers were treated as a confined fluid [44].

Experimentally, surface force apparatus (SFA) and atomic force microscopy (AFM) are of-

ten the methods of choice to determine the effective forces between two ligated surfaces. By using

AFM, one can determine both the polymer configurations and the force profiles of the system simul-
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taneously [45]. O’Shea et al. [45] studied block copolymers chemically bonded to a mica substrate

and considered three different types of solvent. The authors found that the forces obtained using

AFM were of a lower order of magnitude than those obtained from an SFA, though the two force

profiles were qualitatively the same in the case of a “good solvent” (in which it is more energeti-

cally favorable for the ligands to interact with the solvent molecules than with other ligands): both

methods yielded exponential repulsion between the plates [45]. In other words, the force decreased

exponentially as the separation distance between the two plates was increased. The authors also

found that a change in the ligand coverage caused a change in the force profiles, as expected: as

the ligands got closer to one another, the ligands interacted more with each other (attraction if the

substrate and ligands were immersed in a “poor solvent” or repulsion if the substrate and ligands

were immersed in a “good solvent”). This contributed to a larger force if the ligands on one sub-

strate were closer to those on another substrate, therefore causing a change in the force profiles.

Finally, the authors described how the SFA force profiles matched with the Alexander-de Gennes

expression, which describes the pressure P on a substrate as a function of the substrate separation

distance D and the mean distance s between fixed segments that are chemically bonded to the

substrate in the regime where D < 2d, where d is the brush thickness (i.e., interpenetration and

slight compression of the ligand layers of the two substrates occurs) [45]:

P (D) =
kBT

s3

[(
2d

D

)9/4

−
(
D

2d

)3/4
]
. (2.1)

Bridging interactions can cause a net attraction to arise between polymer chains and surfaces

[46]. Bridging occurs when two surfaces are close enough together that a polymer which is adsorbed

on one of the two surfaces can adsorb onto the second surface. If the ligand coverage of the surfaces

is too high, however, then there is a lower probability of bridging due to the lack of adsorption

sites on the second surface [46]. Goodman et al. experimentally studied the interactions between

spherical polymer brushes and a silicon nitrate tip in aqueous media in order to characterize the

brush properties that contributed to bridging [46]. At short separation distances, they observed that

steric and electrostatic interactions were dominant and that the magnitude of the steric interactions

decreased as the ligand coverage of the surfaces decreased, as expected. This decrease caused a
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potential well of considerable depth to form at larger separation distances, but as the two surfaces

approached contact, steric repulsion still dominated due to the overcrowding of the ligands.

Yamamoto et al. [47, 48] considered silicon substrates covered by end-grafted poly(methyl

methacrylate) (PMMA, for short) chains in toluene. By varying the chain length and coverage

of the substrates and using AFM to analyze the results, the authors determined the equilibrium

length Le, or the separation at which repulsion between the two substrates was first detectable, to

describe how the interactions between substrates varied. It was observed that [48]

Le ∝ dv1/3, (2.2)

where d is the contour (fully extended) length of the ligands and v is the ligand coverage of the

substrates. At higher ligand coverage, the separation between graft points of the ligands decreases.

Since toluene was a “good solvent” for PMMA, the ligands extended away from the surface to

minimize the ligand-ligand interactions, therefore increasing the equilibrium length [47, 48]. From

this analysis, it follows that the ligands would be more difficult to compress at high ligand coverage,

and therefore if the ligand contour length increased, then it would be more difficult for the two

substrates to approach contact [47]. This can be seen in Equation (2.2) because the repulsion

between two surfaces would be detectable at a larger separation distance if d increased.

Marla and Meredith [50, 51, 52] have computed the effective force between two fixed spher-

ical nanoparticles by running Monte Carlo simulations in the grand canonical ensemble (fixed

chemical potential, system volume, and temperature) using the expanded ensemble method. The

authors calculated the chemical potential after several Monte Carlo steps by considering the inser-

tion/deletion of polymer chains and keeping the number of chain segments, volume of the system,

and temperature fixed. Once the system had reached chemical equilibrium, the forces and segment

densities were calculated. The authors considered three cases: one spherical nanoparticle, in which

they introduced their model [50]; two spherical nanoparticles where the ligand chains were adsorbed

to the surfaces of the nanocrystals [51]; and two spherical nanoparticles where the ligand chains

were grafted to the NC surfaces [52]. Though the authors did not consider an explicit solvent or

concretely describe the materials that their simulations represented, their work provided a charac-
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terization of the effective forces between two spherical nanoparticles and helped to motivate our

model of two ligated surfaces.

2.3. Practical Applications

The many different materials used for NPs allow them to be utilized in a plethora of prac-

tical applications, such as for renewable energy sources, commercial products, and in the medical

industry. Semiconductors are of large interest in the solar cell industry [53]. Silicon, an extremely

well-known semiconductor, is one particular material of interest due to the properties of SiNPs

described in Section 2.1 [14]. It is well-known that solar energy is not very efficient compared to

other energy sources, despite being a promising renewable energy source due to the cost (a high

cost of installation but a low cost for regular maintenance) and ability to store energy for use at a

later time. Coating a photovoltaic cell with a thin film composed of SiNP superlattices could help

to raise the efficiency of solar cells, allowing for a more sustainable renewable energy source [41].

In order to be useful, however, the superlattices must be stable so that the thin film does not break

apart and cause the photovoltaic cell to lose the ability to function as an energy storage device.

Semiconducting materials are not the only materials with practical applications. Metallic

nanoparticle dispersions are much easier to stabilize than most semiconducting nanoparticle dis-

persions due to the large dispersion forces between metallic materials [1, 33]. Indeed, van der Waals

and electrostatic forces can be very important in the stabilization of NP dispersions, allowing for

their use in many practical applications such as in food technology and paints [17, 54]. In particu-

lar, silver nanoparticles are important in many applications such as filtering the air or disinfecting

water because AgNPs can slow the growth of bacteria and fungi [15]. Given that less than 1% of the

water on Earth is safe to drink [15], the ability for AgNPs to be used as a water disinfectant is very

important. AgNPs are not only used to inhibit microbial strain growth: they have also been used

in paints and creams, and for food preservation [15]. Certain metals can be toxic to humans and

to the environment, so while metallic nanoparticles are relatively easy to stabilize, semiconducting

materials are often used in practical applications whenever possible in order to maximize the safety

of consumers.

Finally, nanoparticles have many applications to drug delivery [19, 28]. Nanoparticles can

be used to carry drugs to a part of the body and release the drug at a certain time, causing the drug

to act only when it has reached a specific part of the body. It is therefore important to understand
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the toxicity of different materials: without a clear understanding of how a nanoparticle may harm

humans, it cannot be used for drug delivery [28].
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3. MODEL AND METHODS

In this chapter, we describe the models of our system and the interactions between NPs, as

well as the methods that we used to simulate the NP dispersions. After we describe our model and

methods, we introduce the radial distribution function and static structure factor, which are two

functions that allowed us to determine the structure of the NP dispersions after each simulation

reached completion.

3.1. Nanoparticle Model

We modeled interactions between NPs, which consisted of inorganic cores of radius a with

ligands of length d attached to the surface of the nanocrystals, as a function of the center-center

distance r between the NPs. The NPs were immersed in toluene. The NPs were assumed to be

spherical in shape using a coarse-grained model (we consider the overall shape of the nanoparticle

and differentiate between materials using parameters instead of considering the atoms that make

up the NC).

r

a

d

Figure 3.1. An illustration of two NPs with fully extended and compressed ligands.
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Figure 3.1 shows an illustration of the NPs used in our research. As shown in the illus-

tration, the ligand layers of two NPs can overlap (they interpenetrate). If two NCs are extremely

close to each other, the ligands between the two NCs also undergo compression. The role of the

interpenetration and compression of the ligand layers will be described more in Section 3.2. The

ligands and solvent were implicit in our Monte Carlo simulations, and different materials were taken

into account by varying parameters in the effective interparticle pair potential. We first considered

the case where the ligands were modeled by considering their contribution to the effective pair po-

tential without explicitly modeling them (Section 3.3.1). However, before describing the effective

pair potential this case, we will first describe our model for our molecular dynamics simulations in

which we computed the effective pressure between ligated surfaces.

3.1.1. Model: Explicit Ligands

We later modeled the ligands on a more molecular scale than our initial model by considering

a bead-spring model (Section 3.3.2). In other words, we considered the ligands to consist of several

beads, which were bonded together and could stretch, compress, and rotate via harmonic potentials

[55]:

EH(s) = K1(s− s0)2 (3.1)

and

EH(θ) = K2(θ − θ0)2. (3.2)

In Equation (3.1), s is the separation distance of two beads, K1 is a constant determining

how “stiff” the bond between the beads is, and s0 is the equilibrium separation between two beads.

K1 is related to the spring constant k in the well-known equation for the potential energy of a

spring Ep = (1/2)k∆x2. Indeed, any specified value for K1 takes into account the missing factor

of 1/2 (K1 = k/2). Similarly in Equation (3.2) where θ is the bond angle, K2 is a constant that

determines how rigid the overall chain is (analogous to k), and θ0 is the equilibrium angle between

two bonds.

The subscripts of the prefactors in Equations (3.1) and (3.2) are included to signify that

although K1 and K2 both determine how rigid the chain is, they are actually two different values.

When the bond length is equal to s0 and the angle between two bonds is θ0, the harmonic energy

is at a minimum value. Figure 3.2 shows an example of two flat plates coated with ligand chains,
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which were implemented using the bead-spring model described above. Note that so far we have

only considered the case where the ligands are grafted to the two flat plates. In addition, the

solvent was still implicitly modeled.

Figure 3.2. Two flat plates (both parallel to the xy-plane) coated with ligand chains modeled using
the bead-spring model, where the pink beads are fixed beads on the flat plates and the green beads
are able to move. The two plates can be close together by initializing the ligands as folded chains.
Alternatively, the ligand chains are initialized as fully extended chains if the desired separation
distance between the plates is large enough.

To determine the effective pressure between two ligated surfaces, we model the interactions

between surfaces by considering the truncated Lennard-Jones (LJ) 12-6 (referring to the powers of

the σ/r terms) potential between segments of the chains (also called “beads of the ligands”) that

are attached to the surfaces, given by [33, 50, 51, 52]

uLJ,s−s(r) =


4ε

[(
σ
r

)12 −
(
σ
r

)6 − ( σrc)12
+
(
σ
rc

)6
]

if r < rc

0 if r > rc,

(3.3)

where ε is the LJ energy parameter (representing the depth of the potential well in Equation (3.3)),

σ is the LJ length parameter chosen such that the potential energy is at a minimum at r = 21/6σ,

and rc is the distance at which the pair potential is cut off. Graphically, rc is the value of r such

that u(r) = 0 if two particles are a distance r > rc from each other. In other words, there is
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no repulsion and no attraction between two particles that are farther than rc apart from each

other. At r = 2.5σ, the value of the full LJ 12-6 potential is very small compared to ε, and it is

more computationally efficient to cut off the potential, as one only sacrifices a negligible amount

of accuracy by doing so. If we consider the full potential, the last two terms for the first case in

Equation (3.3) vanish because rc →∞. While there is no strict requirement to set rc > 21/6σ, we

only considered rc ≥ 2.5σ in this thesis in order to model the attractive interactions between beads.

Figure 3.3 summarizes the interpretation of the parameters from Equation (3.3) by considering a

very common set of values for ε, σ, and rc.

1.0 1.5 2.0 2.5 3.0
r [σ]

-2

-1

0

1

2

3
vLJ(r) [ϵ]

Figure 3.3. The potential energy from Equation (3.3) with ε = 1, σ = 1, and rc = 2.5σ.

Note that segments do not interact with their neighbors through the LJ potential, but

rather only through the harmonic bonds and angles, as given in Equations (3.1) and (3.2). However,

the excluded chain volume effects between bonded beads are still taken into account because the

harmonic potentials yield both attractive and repulsive forces between beads. Along with the

bead-bead interactions, we also considered the bead-wall interactions. The expression for these

interactions differs depending on whether we consider flat plates or spherical surfaces, but both

are modeled using a type of LJ potential. In the case of two flat plates, the bead-wall interactions

are given by the LJ 9-3 potential (below), which can be obtained by integrating over a spherical

surface:

us−w(r) =


εw

[
2
15

(
σw
r

)9 − (σwr )3] if r < rc,w

0 if r > rc,w.

(3.4)
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The parameters εw, σw, and rc,w need not be the same as those defined in Equation (3.3), so

we added the subscript w to make the distinction clear. Note, however, that Equation (3.4)

is not continuous at r = rc,w: this is because there is currently not a way for us to specify a

shift in the bead-wall interactions. The minimum of the full LJ 9-3 potential is located at r =

(2/5)1/6σw. Currently, the bead-wall potential is excluded, and we instead consider reflecting walls

that represent a “hard wall” potential (in which the velocity of a bead is reversed if the center of

the bead overlaps with or goes past the wall) in an attempt to reconstruct the effective interactions

presented in Evans et al. [24, 27] and Smitham et al. [25].

1.0 1.5 2.0 2.5 3.0
r [σ]

-1

0

1

2

3

4

5
vs-w(r) [ϵ]

Figure 3.4. The potential energy from Equation (3.4) (shifted to ensure continuity at the cutoff)
with εw = 5, σw = 1, and rc,w = 0.85σw.

It is important to note that the derivative of Equation (3.3) with respect to r (the negative of

the force between two beads) is actually discontinuous: the shift in the effective pair potential given

by the final two terms vanishes during differentiation, so differentiating the shifted pair potential

yields the same result as differentiating the pair potential before the shift. Therefore, we also

considered another modification to the LJ 12-6 pair potential between beads, which was defined in

order to ensure continuity in both the effective pair potential and the force when two beads were

a distance rc away from each other:

us−s,shifted(r) = uLJ,s−s(r)− (r − rc)
duLJ,s−s

dr

∣∣∣∣
r=rc

, (3.5)

where uLJ refers to the unshifted LJ potential from Equation (3.3).
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Figure 3.5 shows a plot for the pair potential given in Equation (3.5). One problem with

using Equation (3.5) to model the bead-bead interactions is that the bead-wall interactions from

Equation (3.4) (both the pair potential and the force) are not shifted and therefore not continuous.

If the pair potential is discontinuous, a bead that is distance rc,w away from the wall will experience

an impulse, which is not consistent with the bead-bead interactions if the force at r = rc is defined

to be 0 ε/σ. Therefore, we extend the cutoff distances of all of the pair potentials, rather than

shifting the pair potentials to ensure that the forces are continuous at the cutoff.

1.0 1.5 2.0 2.5 3.0
r [σ]
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3
vLJ(r) [ϵ]

Figure 3.5. The potential energy from Equation (3.5) with ε = 1, σ = 1, and rc = 2.5σ. Note that
the depth of the potential well is no longer equal to ε, due to the last term in Equation (3.5).

While we have not completed simulations for the case of spherical surfaces coated with lig-

ands using the bead-spring model, we succeeded in generating the model for two spherical surfaces.

The ligand chains were initialized using a Python script (instead of using a C++ script like the

case of two flat plates due to the available functions in Python), and the bead-surface interactions

would be different than they are in the case of two flat plates.

3.2. Effective Interparticle Pair Potential

The Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) [55] contains

many pair potentials which are already coded and ready for scientists to use in their research,

such as the LJ potential. We will describe LAMMPS in more detail in Section 3.3. We note here

that in order to validate our Monte Carlo methods and consider effective pair potentials that more

accurately describe the interactions between NPs, we first considered an effective pair potential
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veff(r) of the following form:

veff(r) = vvdW(r) + vsteric(r), (3.6)

where vvdW(r) represents the van der Waals (vdW) interactions [1, 33] between two NPs and

vsteric(r) represents the short-range repulsion between the NPs, given by the truncated Lennard-

Jones (LJ) 12-6 pair potential from Equation (3.3). The vdW interactions were described in Chapter

2. Since the validation of our Monte Carlo methods was not a part of the research conducted for

this thesis, we will not describe the details here.

3.2.1. Theoretical Effective Interactions between Flat Plates

After we validated our Monte Carlo methods, we considered an effective interparticle pair

potential between two spheres of equal size, given to be

veff(r) = vvdW(r) + vmix(r) + vel(r) + vdep(r),

where vvdW(r) represents the van der Waals interactions, vmix(r) represents the free energy

of mixing, vel(r) represents the elastic potential, and vdep(r) represents the depletion interactions

(Chapter 2). Before we can present the equations for each term in our effective pair potential

between two spheres, we must first consider the case of two flat plates. The derivation of the effective

pair potential between two flat plates will allow us to then derive the effective pair potential between

two spheres. In addition, we compared the results obtained using molecular dynamics methods with

the theoretical effective pair potential between two flat plates. There are many approximations that

are made and the derivations given in the literature [24, 25, 26, 27] for vmix(r) and vel(r) rely on

topics from several other papers. While it is not feasible for us to include every small detail or all

of the background in the derivations, we will outline the important points and steps.

The free energy of mixing arises from a change in the Gibbs free energy, whereas the elastic

potential arises out of a change in configurational entropy of the ligands [10, 24, 27]. The Gibbs

free energy ∆G is a quantity that allows us to determine whether or not a process can happen

spontaneously: if ∆G < 0 for a process, then the system has the ability to arrive in the final state

of the process spontaneously. Entropy is a quantity that measures how many possible configurations

are available for a system, though it is often referred to as the amount of “disorder” of a system. As
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mentioned in Chapter 2, many theories [26] attempted to describe steric stabilization of molecules

in a solvent; however, it was shown that nearly all of theories were inconsistent in one or more ways

with experiments [26]. The goal of Evans et al. [24] was to extend an already existing theory and

more accurately describe the steric stabilization due to the interactions between the solvent and

chains attached to a surface in the regimes where two surfaces are approaching contact and the

chains undergo compression. For the derivations, we will draw freely from References [24, 25, 27, 56].

Consider an infinitesimal volume element δV inside a solution containing ligated colloids

and solvent. The change in the total Gibbs free energy (∆G) inside this volume element is then

δ(∆G) = δ(∆GM ) + δ(∆GSP), (3.7)

where ∆GM denotes the change in the Gibbs free energy due to the mixing of chain segments and

solvent inside the volume element and ∆GSP is the change in the Gibbs free energy due to all other

mixing considerations. By applying Flory-Krigbaum Theory [57], Equation (3.7) can be rewritten

as

δ(∆G) = kBT [ln(1− v2) + χv2]δn1, (3.8)

where v2 is the volume fraction of the chains, χ is the Flory chi interaction parameter which

describes the solvent quality [10, 22, 58], and δn1 is the number of solvent molecules in the volume

element, given by

δn1 =
1− ρ2VS

V1
δV, (3.9)

where VS is the volume of a chain segment, ρ2 is the number density of the segments, and V1 is the

volume of a solvent molecule.

Substitution of Equation (3.9) into Equation (3.8) implies that the change in total Gibbs

free energy is then

δ(∆G) = kBT

(
1− ρ2VS

V1

)
δV [ln(1− v2) + χv2]. (3.10)

We now need to represent the logarithmic term as a Taylor series. A Taylor series of a

function f(x) is an infinite sum of polynomials that can be used to estimate f(x) around some
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value x = a. In general, a Taylor series has the form

f(x)|x=a = f(a) +
f ′(a)

1!
(x− a) +

f ′′(a)

2!
(x− a)2 +

f ′′′(a)

3!
(x− a)3 + · · · , (3.11)

where the numerators of the fractions denote the derivatives of f with respect to x evaluated at

x = a. By Taylor series expansion around v2 = 0, the logarithmic term in Equation (3.10) becomes

ln(1− v2) = ln(1)− v2

1− v2
− v2

2

2(1− v2)2
+O(v3

2). (3.12)

Because v2 << 1 and ignoring all terms of order v3
2 and higher, Equation (3.12) becomes

ln(1− v2) ≈ −v2 −
v2

2

2
. (3.13)

Therefore, we have

δ(∆G) ≈ kBT
(

1− ρ2VS
V1

)
δV [−v2 −

v2
2

2
+ χv2]

= kBT
ρ2VSv2

V1
δV − kBT

v2

V1
δV + kBT

ρ2VSv
2
2

2V1
δV − kBT

v2
2

2V1
δV

+ kBT
χv2

V1
δV − kBT

ρ2Vsχv2

V1
δS.

(3.14)

Note, however, that ρ2VS = v2: by definition of the number density and the volume of a

segment, multiplication yields the volume of polymer chains over the total volume, therefore giving

us the volume fraction of the polymer chains. Making this substitution into Equation (3.14) and

ignoring terms of order (ρ2VS)3 and higher,

δ(∆G) ≈
kBTρ

2
2V

2
S

V1
δV − kBTρ2VS

V1
δV −

kBTρ
2
2V

2
S

2V1
δV

+
kBTχρ2VS

V1
δV −

kBTχρ
2
2V

2
S

V1
δV

= kBT
ρ2

2V
2
S

V1

(
1

2
− χ

)
δV − 2

(
kBT

ρ2VS
2V1

δV

)
+ kBTχ

ρ2VS
V1

δV.

(3.15)

Simplification yields the result we are looking for:

δ(∆G) ≈ kBT
ρ2

2V
2
S

V1

(
1

2
− χ

)
δV − kBT

ρ2VS
V1

(
1

2
− χ

)
δV − 1

2
kBT

ρ2VS
V1

δV. (3.16)
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Equation (3.16) applies to polymer chains that are attached to colloids. Let us assume that

our colloids are two flat plates. If the chains are irreversibly attached to the plates, and if the

segment density ρ2 is assumed to be continuous and constant normal to the surface, we can derive

a theoretical prediction that describes the interactions between two flat plates. We will denote v

as the number of chains per unit area normal to the surface (also called “ligand coverage”), and i

as the number of segments in one polymer chain. Integration of Equation (3.16) over the distance

away from the flat plates x yields

∫∞
0 δ(∆G)dx

kBT
=

∆G∞
kBT

=
V 2
S

V1

(
1

2
− χ

)∫ ∞
0

ρ2
∞dV −

VS
V1

(
1

2
− χ

)∫ ∞
0

ρ∞dV −
VS
2V1

∫ ∞
0

ρ∞dV,

(3.17)

where the subscript x =∞ refers to the two flat plates being separated by an infinite distance.

It is convenient to normalize the segment density ρ2 = ρx such that
∫
ρ̂dx = 1 [56]. Because

ρ is a function of x and is independent of the y− and z−coordinates (without loss of generality, x is

the direction normal to the plates), dV = A dx [24], and it is more convenient to consider one unit

of area. Then we have that
∫∞

0 ρ∞dx = vi. Using this relation and the definition of normalization,

Equation (3.17) becomes (now free energy per unit area)

∆G∞
kBT

=
V 2
S

V1

(
1

2
− χ

)
v2i2

∫ ∞
0

ρ̂2
∞dx−

VS
V1
vi

[(
1

2
− χ

)
+

1

2

]
. (3.18)

The wall separation was unspecified until we integrated the infinitesimal change in Gibbs

free energy in Equation (3.17), so it follows that when the walls are separated by a finite distance

D,

∆GD
kBT

=
V 2
S

V1

(
1

2
− χ

)
v2i2

∫ D

0
ρ̂2
Ddx−

VS
V1
vi

[(
1

2
− χ

)
+

1

2

]
. (3.19)

However, Equations (3.18) and (3.19) are for one plate alone, so in order to determine the

change in the total Gibbs free energy when two plates are interacting, we have that [57]

∆G

kBT
=

∆GC + ∆GI
kBT

= 2

(
∆GD −∆G∞

kBT

)
+ 2

V 2
S

V1

(
1

2
− χ

)
v2i2

∫ D

0
ρ̂Dρ̂

′
Ddx, (3.20)
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where ρ̂′ indicates a translation of ρ̂ by x = D and a rotation about the yz−plane (in other words,

it is the segment density of the second flat plate), ∆GC indicates the change in free energy due to

compression of the ligands, and ∆GI indicates the change in free energy due to the interpenetration

of two ligand layers (one from each flat plate). Using Equations (3.18) and (3.19), we get

∆G

kBT
=

2V 2
S

V1

(
1

2
− χ

)
v2i2

[∫ D

0
ρ̂2
Ddx−

∫ ∞
0

ρ̂2
∞dx+

∫ D

0
ρ̂Dρ̂

′
Ddx

]
. (3.21)

Equation (3.21) is the equation for the change in Gibbs free energy per unit area between two flat

plates due to mixing. We use this equation to determine the concrete expression for the free energy

of mixing of ligands and solvent if the ligands are attached to two flat plates which are separated

by the distance D. Note that the ρ̂′x must be non-negative for any x.

In our system, the ligand chains have a finite length d, and when 2d < D it must be that

the free energy of mixing is 0. When d < D < 2d, we assume there is no compression of the ligands.

This implies that the first two integrals in Equation (3.21) are 0. Therefore,

∆G

kBT
=

2V 2
S

V1

(
1

2
− χ

)
v2i2

∫ D

0
ρ̂Dρ̂

′
Ddx. (3.22)

The quantity in Equation (3.22) is clearly positive if χ < 1/2, 0 if χ = 1/2, and negative

if χ > 1/2. When χ < 1/2, this implies that the solvent in which the two flat plates with ligand

chains is immersed is a “good solvent”. Recall that a “good solvent” is a solvent that the ligand

chains would rather interact with over themselves, signifying that it is more energetically favorable

for the ligands to be as far away from each other as possible and causing an increase in the Gibbs

free energy due to mixing to produce a repulsive force between the walls. On the other hand,

χ > 1/2 means that the solvent is a “poor solvent”. This means that the ligands would rather

interact with themselves than with the solvent, producing a negative change in the Gibbs free

energy due to mixing and providing an attractive force between the walls to minimize the ligand-

solvent interactions. If χ = 1/2, the solvent is called a “θ-solvent”. In a “θ-solvent”, the ligands do

not care if they interact with themselves or with the solvent and there is no change in the Gibbs

free energy due to the mixing of ligands with solvent.
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If 0 < D < d, we cannot immediately set any of the integrals in Equation (3.21) to 0.

However, the segment density ρ̂′D must be greater than or equal to ρ̂′∞, so by positivity of the

integrals the free energy of mixing is still positive if we have a “good solvent”, negative if we have

a “poor solvent”, and 0 (trivially) if we have a “θ-solvent”.

Before we move on to the calculation of ∆G for our particular work, we derive the general

formula for vel between two flat plates [27]. As stated earlier in this section, vel arises from a loss

of configurational entropy of the ligand chains because they are trying to fit into a space that is

too small for them. Similarly to people in an overcrowded room, the ligands have very little space

to move and therefore fewer possible configurations in this space. This generates a repulsive force

between the two flat plates so that the ligands can regain a higher number of possible configurations.

While vel realistically is non-zero in the regime where d < D < 2d because there is still a possibility

for the ligands to compress, it is set to zero because the segment densities are much lower than in

the regime where D < d and the free energy of mixing dominates the effective interactions [27].

Here we will only consider the regime where D < d and draw freely on Evans et al. [27].

Given one flat plate coated with ligand chains, we use the Planck-Boltzmann relationship

[27]

∆Gel = −kBT ln
Ωf

Ωi
, (3.23)

where Ωf and Ωi stand for the number of accessible microstates when the ligands are compressed

and uncompressed, respectively, given by

ln Ωf =
∑
f

vf ln

(
wfv

vf

)
, (3.24)

where wf denotes the probability of the ligand being perfectly straight and normal to the flat plate

in the range ∆x given by wf = ρ̂xf ∆x and vf is the volume fraction of the chains that satisfies this

condition. Clearly then, v =
∑

f vf .

Plugging Equation (3.24) into Equation (3.23) and taking into account the presence of two

flat plates, we have

∆Gel

kBT
= −2

∑
f

vf ln

[
ρ̂xf δ∆x

ρ̂xf/δ∆x

]
= −2

∑
f

vf ln

[
δρ̂xf
ρ̂xi

]
, (3.25)
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where δ ≡ xf/xi. Note that ∆Gel is always non-negative because the argument of the logarithmic

term is never larger than 1.

Using Equations (3.21) and (3.25), we will now present the steps used to determine the

theoretical effective interactions between two ligated flat plates [25]. Following the literature [10],

we considered a uniform segment density, represented by

ρD(x) = Θ(d− x). (3.26)

The Heaviside function (also known as the step function) Θ(x) is defined such that when

the argument of the function is less than 0, Θ = 0, and when the argument is greater than 0, Θ = 1.

Put more formally, for any real number z,

Θ(z) =


0, if z < 0

1, if z > 0.

First, we evaluate Equation (3.21) to obtain the free energy of mixing, so consider the

regime where d < D < 2d. We must normalize our segment density, and note that in this regime,

∫ D

0
ρD(x)dx =

∫ d

0
dx = d.

Therefore, our normalized segment density is

ρ̂D = ρ̂∞ =
1

d
Θ(d− x). (3.27)

The integrals in Equation (3.21) then evaluate to

∫ D

0
ρ̂2
Ddx =

1

d2

∫ d

0
dx =

1

d
;∫ ∞

0
ρ̂2
∞dx =

1

d
;

and

∫ D

0
ρ̂Dρ̂

′
Ddx =

1

d2

∫ D

0
Θ(d− x)Θ(x+ d−D)dx =

1

d2

∫ d

D−d
dx =

1

d2
(2d−D).

(3.28)
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As shown in Equation (3.22), the first two integrals in Equation (3.21) cancel by subtraction.

Therefore,

∆G

kBT
=

2V 2
S

d2V1

(
1

2
− χ

)
v2i2(2d−D) =

4V 2
S

dV1

(
1

2
− χ

)
v2i2

[
1−

(
D

2d

)]
. (3.29)

Now, consider the regime where D < d. We then have to compute both the free energy of

mixing from Equation (3.21) and the elastic energy from Equation (3.25). ρ̂′∞ is still the same in

this regime as for the previous regime, but we have to now (crudely) approxmiate ρ̂D. In order to

ensure that the expressions for the segment densities match up at D = d, we take

ρ̂D =
1

D
. (3.30)

Equation (3.30) is a simple approximation that clearly matches Equation (3.27) at D = d.

We cannot use a more accurate formula for the segment density in this case because, to our

knowledge, there is no exact expression to describe the segment density when the chains compress.

One argument for why Equation (3.30) may be an invalid approximation to use is that the segment

density is undefined at D = 0. However, if enough ligands are present (in other words, if the ligand

coverage v is high), the repulsive elastic potential term from Equation (3.25) will not allow the two

flat walls to make contact at D = 0 due to the potential barrier that is created. Therefore, we

believe that our approximation is still valid to use. To see that our approximation is normalized,

note that as required, ∫ D

0
ρ̂Ddx =

∫ D

0

1

D
dx = 1.

Equation (3.21) then becomes

∆G

kBT
=

2V 2
s

V1

(
1

2
− χ

)
v2i2

[∫ D

0

1

D2
dx−

∫ d

0

1

d2
dx+

∫ D

0

(
1

D

)2

dx

]

=
2V 2

s

V1

(
1

2
− χ

)
v2i2

[
2

D
− 1

d

]
.

(3.31)
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Note that the free energy of mixing matches up at D = d in Equations (3.29) and (3.31), as required.

In addition, Equation (3.25) becomes

∆Gel

kBT
= −2

∑
f

vf ln δ = −2v ln

(
D

d

)
. (3.32)

Using Equations (3.29), (3.31), and (3.32), we have formulated an expectation for our

molecular dynamics simulations where the ligand chains are modeled using the bead-spring model,

and we can also derive the effective interactions between two spheres. The latter will be done in

the next section.

Differentiating Equations (3.29), (3.31), and (3.32) with respect to D to compute the pres-

sure between two flat plates from the free energy of mixing and the elastic potential, we find that

for d < D < 2d,

Fmix(D)

A
= Pmix(D) =

2V 2
S

d2V1

(
1

2
− χ

)
v2i2, (3.33)

and for D < d,

Pmix(D) =
4V 2

S

V1D2

(
1

2
− χ

)
v2i2 (3.34)

and

Pel(D) =
2v

D
. (3.35)

Table 3.1 shows the fixed parameters that we used for our effective interactions between

two ligated flat plates. Note that each bead had a radius of 0.85σ. Figure 3.6 shows the effective

pressure (force per unit area) between two flat plates, as predicted from [24, 25, 27]. Note that the

pressures are discontinuous when D = d: while we could introduce a shift in the derived effective

pressures, we are unsure on to how to justify this shift physically. Note that in Figure 3.6(c) and (d)

that the pressure becomes negative at low surface separations due to χ > 0.5 (the “poor solvent”

regime). This indicates that the two flat plates undergo attraction at low separations.

3.2.2. Theoretical Effective Interactions between Similar Spheres

By extending the model found in the literature [10, 24, 25], we considered an isotropic

effective pair potential to model the interactions between NPs. The effective pair potential was
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Table 3.1. A list of fixed parameters used to generate the plots in Figure 3.6 in Lennard-Jones
units.

System Parameter Value

Bead radius 0.85σ

Ligand coverage v 0.022σ−2

Contour ligand length d 8σ

Number of segments per chains i 8

Volume of solvent molecule vs 0.84σ3

Ligand molecular vol. vligand 2.572σ3

Figure 3.6. The effective pressures between two flat, ligated plates given from Equations (3.33),
(3.34), and (3.35) with the fixed parameters listed in Table 3.1 at reduced temperature T ∗ =
3.0kBT/ε, where the Flory chi parameter is (a) χ = 0.35; (b) χ = 0.40; (c) χ = 0.55; and (d)
χ = 0.60.

given to be

veff(r) = vvdW(r) + vmix(r) + vel(r) + vdep(r), (3.36)

where vdep(r) represents the depletion interactions between two NPs. The vdW interactions are

given by [1, 10, 22, 33]

vvdW(r) = −H
12

[
1

r2 − 1
+

1

r2
+ 2 ln

(
1− 1

r2

)]
, (3.37)

30



where H is the effective Hamaker constant. Note that in the limit of r →∞, we get that

vvdW(r) = − H

36r6
,

therefore recovering the well-known 1/r6 dependence [1, 33].

It turns out that vmix(r) and vel(r) for the case of two similar spheres are actually derived

from Equations (3.21) and (3.25) by considering the Derjaguin Approximation [24, 33, 59]. This

approximation allows one to relate the force between two spheres of radii R1, R2 (which need not

be equal) and surface separation D with the potential energy between two flat plates with the same

surface separation D using [33]

FS(D) = 2π
R1R2

R1 +R2
U(D), (3.38)

where FS(D) is the force between the two spheres and U(D) is the potential energy between two

flat plates. Note that if R1 = R2 = a (in the case of our system),

FS(D) = 2π
a2

2a
U(D) = πaU(D).

In order to use the Derjaguin approximation to derive the change in Gibbs free energy for

two equal spheres, we must consider the case where d << a, for a reason that will become clear

soon. By considering the contributions to the change in Gibbs free energy from rings around the

spheres (see Figure 3.7), we have that [24]

∆Gspheres
D = 2π

∫ ∞
0

h∆GFP
D dh, (3.39)

where ∆GiD refers to the change in Gibbs free energy for two spherical or planar surfaces with

separation distance D. By geometry (Figure 3.7), we have that

s−D
2

= a−
√
a2 − h2.
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Figure 3.7. A representation of the Derjaguin approximation, used to derive the effective potential
between two ligated spheres of equal size [24]. Note that we represent d as s and d0 as D in the
formulas in this section because d in this figure is not the contour length of the ligands. Reprinted by
permission from RightsLink Permissions Springer Customer Service Centre GmbH: Springer Nature
Kolloid-Z. u. Z. Polymere, R. Evans and D. H. Napper, Steric Stabilization II: A generalization to
Fischer’s solvency theory, Copyright 1973. https://link.springer.com/journal/396

Differentiating both sides (noting that D and a are constant when we flatten or widen the trapezoid)

implies that

1

2
ds =

2h

2
√
a2 − h2

dh

or equivalently,

a

√
1− h2

a2
ds ≈ ads = 2hdh,

where we have used the approximation that a >> h from the Derjaguin approximation [24]. Using

Equation (3.21), Equation (3.39) then becomes

∆Gspheres
D

kBT
= πa

∫ ∞
0

∆GFB
D

kBT
ds = 2πa

V 2
S

V1

(
1

2
− χ

)
v2i2

∫ ∞
δ0

Idδ, (3.40)

where we have introduced the dimensionless variable δ = D/〈r2〉1/2 (〈r2〉1/2 is the root-mean-square

length of the ligands in free solution) and the letter I ≡ 〈r2〉1/2[
∫ D

0 ρ̂2
Ddx+

∫ D
0 ρ̂Dρ̂

′
Ddx−

∫ D
0 ρ̂2

∞dx].

We can now take the terms that we calculated in the case of two flat plates and derive the

free energy of mixing for two equal spheres. For d < D < 2d, we use Equation (3.29):

∆GSD
kBT

= 2πa
V 2
S v

2i2

V1

(
1

2
− χ

)∫ ∞
δ

2〈r2〉1/2

d

[
1− D

2d

]
dδ. (3.41)
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Note that since the free energy of mixing vanishes when D > 2d, the upper bound of the

integral is replaced with 2d/〈r2〉1/2, or δ2d = δ∞. Equation (3.41) then becomes

∆GSD
kBT

= 2πa
V 2
S v

2i2

V1

(
1

2
− χ

)∫ δ2d

δ

4

δ2d

[
1− δ

δ2d

]
dδ

= 2πa
V 2
S v

2i2

V1

(
1

2
− χ

)[
4δ

δ2d
− 2δ2

δ2
2d

]δ2d
δ

= 2πa
V 2
S v

2i2

V1

(
1

2
− χ

)
2− 4δ

δ2d
+

2δ2

δ2
2d

= 2πa
V 2
S v

2i2

V1

(
1

2
− χ

)
2

(
δ2

δ2
2d

− 2
δ

δ2d
+ 1

)
= 2πa

V 2
S v

2i2

V1

(
1

2
− χ

)
2

(
δ

δ2d
− 1

)2

= 2πa
V 2
S v

2i2

V1

(
1

2
− χ

)
2

(
D

2d
− 1

)2

= 4πa
V 2
S v

2i2

V1

(
1

2
− χ

)(
1− D

2d

)2

.

(3.42)

Using the center-center distance r = 2a+D in SI units, we have that D = r − 2a. Then Equation

(3.42) simplifies further to

∆GSD
kBT

= 4πa
V 2
S v

2i2

V1

(
1

2
− χ

)(
1− r − 2a

2d

)2

= πa3V
2
S v

2i2

2d2V1

(
1

2
− χ

)
(2d+ 1− r)2 (now in units of particle diameter 2a)

=
πa3

2V1
φ2

av

(
1

2
− χ

)
(r − (1 + 2d))2 ,

(3.43)

where φav ∝ Vsvi/d if d << a.

For D < d, we use Equations (3.31) and (3.32). For the free energy of mixing, we have that

∆GSD
kBT

= 2πa
V 2
S v

2i2

V1

(
1

2
− χ

)
〈r2〉1/2

∫ ∞
δ

[
2

D
− 1

d

]
dδ. (3.44)
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Noting that the highest value for D is d in this regime, it follows that we have

∆GSD
kBT

= 2πa
V 2
S v

2i2

V1

(
1

2
− χ

)∫ δd

δ

[
2

δ
− 1

δd

]
dδ

= 2πa
V 2
S v

2i2

V1

(
1

2
− χ

)[
2 ln δ − δ

δd

]δd
δ

= 2πa
V 2
S v

2i2

V1

(
1

2
− χ

)[
2 ln δd − 2 ln δ − 1 +

δ

δd

]
= 2πa

V 2
S v

2i2

V1

(
1

2
− χ

)[
2 ln

δd
δ

+
δ

δd
− 1

]
= 2πa

φ2
avd

2

V1

(
1

2
− χ

)[
2 ln

d

D
+
D

d
− 1

]
.

(3.45)

We once again substitute D = r − 2a in order to find vmix(r):

∆GSD
kBT

= 2πa
φ2

avd
2

V1

(
1

2
− χ

)[
2 ln

d

D
+
D

d
− 1

]
= 2πa

φ2
avd

2

V1

(
1

2
− χ

)[
2 ln

d

r − 2a
+
r − 2a

d
− 1

]
= πa3φ

2
avd

2

V1

(
1

2
− χ

)[
2 ln

d

r − 1
+
r − 1

d
− 1

]
(units of particle diameter)

(3.46)

In order to obtain continuity with Equation (3.43) at r = 1+d, we add a constant, which is included

in Equation (3.50).

For the elastic potential, Equation (3.32) yields (δ∞ = δd = d/d = 1)

∆Gel

kBT
= −2vπad

∫ δ∞

δ
ln

(
δ

δ∞

)
dδ

= −2vπad [δ ln δ − δ]1δ

= −2vπad [−1− δ ln δ + δ]

= 2vaπ

[
D ln

D

d
−D + d

]
= 2vaπ

[
D

(
ln
D

d
− 1

)
+ d

]
.

(3.47)
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This implies that

∆Gel

kBT
= 2vaπ

[
D

(
ln
D

d
− 1

)
+ d

]
= 2vaπ

[
(r − 2a)

(
ln
r − 2a

d
− 1

)
+ d

]
→ va2π

[
(r − 1)

(
ln
r − 1

d
− 1

)
+ d

]
(units to particle diameter).

(3.48)

We summarize the equations that we obtained from the derivation below, using the notation

found in Khan et al. [10] and that which is used for our simulations. For the first regime 1 + d <

r < 1 + 2d we use Equation (3.43) and have

vmix

kBT
=
πa3

2vm
φ2

av

(
1

2
− χ

)
[r − (1 + 2d)]2, (3.49)

and the second regime (r < 1 + d) is given by

vmix

kBT
=
πa3

vm
φ2

av

(
1

2
− χ

)
d2

[
2 ln

d

r − 1
+
r − 1

d
− 1

2

]
, (3.50)

where vm is the molecular volume of a toluene molecule in Å
3

(V1 from the derivation), φav is the

volume fraction of ligands in the ligand layer (1 < r < 1 +d), and χ is the Flory χ parameter given

by [10, 58, 60]

χ =
vsNA(δs − δm)2

RT
+ 0.34, (3.51)

where vs is the molecular volume of the toluene molecules in m3, and δs and δm are the Hildebrand

solubility parameters (HSP) for the solvent and ligands (respectively) in Pa1/2, given by [61]

δi =

√
ρ

∆Hv −RT
M

, (3.52)

where ρ is the density of the molecule, ∆Hv is the heat of vaporization, R is the ideal gas constant,

and M is the molar mass of the molecule.
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The change in free energy due to the loss of configurational entropy vel is nonzero when the

ligands of two NPs are undergoing compression (r < 1 + d), and is given to be [10, 22, 27]

vel

kBT
= πva2

[
(r − 1)

(
ln
r − 1

d
− 1

)
+ d

]
. (3.53)

Table 3.2. Input parameters for AuNCs with dodecanethiol ligands in toluene [10, 22].

System Parameter Value

Particle radius a 25 Å

Contour ligand length d 17.74 Å

Hamaker constant H 75.5 kBT

HSP of solvent δs 1.82× 104 Pa1/2

HSP of ligand δm 1.60× 104 Pa1/2

Volume of solvent molecule vs 1.78× 10−28 m3

Ligand molecular vol. vligand 3.98× 10−28 m3

Table 3.2 shows the parameters used for our simulations of AuNCs with dodecanethiol

ligands in toluene. The effective Hamaker constant H was estimated to be the Hamaker constant

of two AuNCs across a dodecanethiol medium [10]. We did not consider toluene when calculating

the effective Hamaker constant because the ligand layers were assumed to affect the interactions

more than the solvent molecules due to the proximity of the ligands to the NCs [10]. One may

argue that when v is low (corresponding to fewer ligands attached to the surface of the NC), our

estimate for H is not accurate. While this may be true, we determined that the change in H would

not have a large effect on the effective pair potential. In addition, the gold-gold Hamaker constant

is fairly large due to the high polarizability of gold [49], and it is therefore unnecessary to consider

the solvent when calculating the effective Hamaker constant due to the negligible change induced

by it. In order to calculate H for two NCs of the same material acting across a medium, we use

the approximation [33, 62]

H = H131 ' (
√
H11 −

√
H33)2, (3.54)

where H11 is the NC-NC Hamaker constant in vacuum and H33 is the ligand-ligand Hamaker

constant in vacuum. The Hamaker constant of AuNPs has been found to change with the size of
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the NPs and with temperature [63], but both of these values are fixed across our simulations, so

we do not have to consider the effects of changing the NC radius or the temperature.

To simulate AuNP dispersions, we varied v and the NC volume fraction φ. By varying v,

parameters such as the average volume fraction of ligands in the spherical shell around the NC of

thickness d (denoted by φav) also varied. By varying φ, the dimensions of our system varied, as the

volume of the system was given to be

V =
π

6

N

φ
, (3.55)

where V is the volume of the system (a cube) and N is the number of nanoparticles. We will now

briefly discuss the calculations involved for determining values for the parameters in our simulations.

The surface area of a spherical NC is ANC = 4πa2. Using the value of a from Table 3.2,

we find that ANC = 7.8 × 103 Å
2
. We can then approximate the number of ligands per NP to be

Nligand = ANCv, which is on the order of 102 ligands per NP [10].

The molecular volume of toluene vmol is calculated using the molar mass and density via

vmol =
molar mass, g/mol

density, g/m3

1

NA
, (3.56)

where NA is Avogadro’s number. The values of Nligand and vmol are then used to estimate φav by

[10]

φav = Nligand
vmol

Vshell
= Nligand

vmol
4
3π [(a+ d)3 − a3]

, (3.57)

where Vshell is the volume of the spherical shell of thickness d around the NC.

For all of our simulations of AgNP dispersions and about half of our simulations of AuNP

dispersions, we actually used the incorrect equation for vmix(r) in the regime where 1 < r < 1 + d:

vmix

kBT
=
πa3

vm
φ2

av

(
1

2
− χ

)
d2

[
3 ln

d

r − 1
+ 2

r − 1

d
− 3

2

]
. (3.58)

Equation (3.58) is the formula for vmix that was found in Khan et al. and Smitham et al. [10, 25].

However, upon working through the derivation and reading Evans et al. [27], it was discovered that

Smitham and coworkers had added an extra factor of 2 in one of their steps. Figure 3.9 shows the

difference in the effective pair potential when we consider the incorrect and the correct expressions
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Figure 3.8. The effective pair potential (no depletion interactions) from Equation (3.36) where the

ligand coverage is (a) v = 0.03 Å
−2

, (b) v = 0.0465 Å
−2

, and (c) v = 0.06 Å
−2

.

for the free energy of mixing in the regime where the ligands can undergo compression. The

difference becomes apparent when the NCs are very close to contact. However, the change in the

expression for vmix had a negligible effect on our results, and for systems with a low average volume

fraction φ, the repulsive force prevents the NCs from becoming close enough for the difference to

play a large role in the equilibrium structures. Note that the blue (correct) curve is steeper than the

red (incorrect) curve, signifying that there is a higher repulsive force between NCs at low separation

distance. This is consistent with our observations as we ran simulations to verify that the change

in the expression for vmix would be negligible.

The depletion interactions were not considered for the model of AuNP dispersions. This is

because the ligands were grafted to the surface of the AuNCs and there was assumed to be no free

ligand in the system. However, in our model for AgNP dispersions, the oleylamine ligands were

adsorbed to the surface of the AgNCs. In addition, toluene is a “good solvent” for oleylamine, and

if depletion interactions are not included, then the NP dispersions could not self-assemble into a

stable superlattice when the initial NC volume fraction was no more than φ = 0.15. Therefore, in

order to accurately model the system, we believe that depletion interactions are needed in order to

account for the presence of free ligand in the system. While the amount of free ligand could change
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Figure 3.9. The effective pair potential from Equation (3.36) without depletion interactions. The
plots show the change in veff between the incorrect (Equation (3.58)) and correct (Equation (3.50))
free energy of mixing terms in the regime of 1 < r < 1 + d, where the ligand coverage is (a)

v = 0.02 Å
−2

and (b) v = 0.08 Å
−2

.

as ligands adsorb and desorb to the surface of the NCs, we kept the concentration of free ligand

fixed in our simulations for simplicity.

The term for the depletion interactions depends on parameters such as the number of free

ligands per unit volume of solution (the number density) n (which represents the osmotic pressure

if energy is in units of kBT ) and the thickness of the exclusion region L, and is given by the formula

[1]

vdep

kBT
= −nVdep, (3.59)

where Vdep is the volume of overlap between the exclusion regions around two NPs, given to be

[1, 24, 25, 42]

Vdep =
4π

3
(a+ d+ L)3

(
1− 3r

4(a+ d+ L)
+

r3

16(a+ d+ L)3

)
. (3.60)

We approximate each free ligand as a sphere of radius L = d/2 (a coarse-grained model). The

bounds of the depletion interactions were taken to be 2a < r < 2(a+ d+L), though the literature

uses the bounds 2a < r < 2(a+ L) and takes d = 0 for hard spheres.

Because the NPs consisted of an NC and a ligand layer, one may argue that the bounds

for the depletion interactions should be 2(a + d) < r < 2(a + d + L). However, the bounds 2a <

r < 2(a+ d+L) suggest that the ligands are flexible rather than rigid brushes, which is consistent

with the experimental observations. If the bounds were taken to be 2(a + d) < r < 2(a + d + L),

then the depletion interactions would not compete with the elastic pair potential and the free
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ligands therefore would not contribute to the self-assembly of the NPs, which is inconsistent with

experimental observations. By considering the bounds 2a < r < 2(a + d + L), we were able to

generate a potential well with a depth of several kBT at a center-center separation of about 87

Å. As two NCs approach contact, the adsorbed ligand brushes may repel the free ligands away

from the NPs because toluene is a “good solvent” in the presence of oleylamine. This is why our

upper bound is taken to be 2(a + d + L). As the AgNCs approach contact, the ligands may also

desorb from the surface of the NCs to avoid interactions with other ligands, therefore maximizing

interactions with the toluene molecules. This is another reason why we took the lower bound to

be 2a instead of 2(a+ d). We hope that our molecular dynamics simulations will help to verify our

reasoning for choosing the bounds as we did.

Table 3.3. Input parameters for AgNCs with oleylamine ligands in toluene [10, 62, 63, 64]. Depletion
interactions are present in this system due to the ligands being adsorbed rather than grafted.

System Parameter Value

Particle radius a 30 Å

Ligand coverage v 0.0465 Å
−2

Contour ligand length d 27.72 Å

Hamaker constant H 16.29 kBT

HSP of solvent δs 1.82× 104 Pa1/2

HSP of ligand δm 1.66× 104 Pa1/2

Volume of solvent molecule vs 1.78× 10−28 m3

Ligand molecular vol. vligand 5.46× 10−28 m3

Radius of depletant sphere L d/2

Table 3.3 displays the fixed values used to generate the plots in Figure 3.10. Note that

the Hamaker constant was calculated using Equation (3.54) by estimating the Hamaker constant

of oleylamine using the Hamaker constant of hexane [65]. Figure 3.10 shows different scenarios

for the effective pair potential by ignoring different terms in the effective pair potential. For the

reasons stated above, we settled on using the effective pair potential in Figure 3.10(d). Although

we initially varied the ligand coverage and the free ligand concentration of the nanoparticles across

our simulations (of course, the initial NC volume fraction was varied as well), we later varied only

the free ligand concentration and the initial NC volume fraction because the ligand coverage was
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Figure 3.10. (a) The effective pair potential from Equation (3.36) without depletion interactions
for AgNP dispersions at T = 298 K. The repulsive free energy of mixing implies that stable
superlattices cannot form unless φ > 0.22 with the three components shown. (b) The effective
pair potential without the free energy of mixing and depletion interactions. (c) The effective pair
potential without the free energy of mixing but with the depletion interactions (purple curve) using
φdep = 0.112. Note that the bounds of the depletion interactions are 2a < r < 2(a+L) for this plot,
showing that the exclusion of free ligands by only the bare nanocrystals does not yield a significant
attractive interaction. (d) The effective pair potential from Equation (3.36) where φdep = 0.446.
The bounds of the depletion potential in this plot are 2a < r < 2(a+ d+ L).

unknown in the experiments that we compared our results with. The volume fraction of the free

ligands in the simulation box is given to be

φdep =
4

3
πL3n. (3.61)

3.3. Computational Methods

There are many open source packages which have been developed and maintained for many

years, and these packages can be used for a myriad of research topics. Density functional theory,

molecular dynamics (MD) methods, and Monte Carlo (MC) methods are just a few of the tools

available to a computational physicist. We used both MC and MD methods for our work, and in

this section we will describe the basics of both approaches and the methods that we developed.
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3.3.1. Monte Carlo Methods

Monte Carlo methods consist of trial moves which are rejected or accepted based on proba-

bility. Since we are only interested in the equilibrium structure and stability of the NP dispersions,

Monte Carlo methods provide a valid approach to analyzing equilibrium structures without gen-

erating large (tens or hundreds megabytes in size) output files or solving Newton’s equations at

every step, as done in classical molecular dynamics. Hence, Monte Carlo methods are not able

to describe the actual dynamics of NP dispersions. Indeed, the state at each Monte Carlo step is

independent of the velocities of the NPs, which are never stored in our methods.

Monte Carlo methods allow researchers to solve problems (not restricted to science) by

simulating random variables and considering probability distribution functions [66]. The general

flow of a basic Monte Carlo code is to [66]

1. Make a trial move;

2. Using a probability distribution function, accept or reject the trial move;

3. Update the state of the system;

4. Repeat.

Monte Carlo methods have a lot of applications. For example, they can be used to describe

collisions of particles and the mean free path length, scattering of particles, and the equilibrium

state of nanoparticle dispersions.

Our methods were created in the Open Source Physics Library [67]. The Open Source

Physics Library is a free-to-use library containing many different simulations of numerical methods

and physical systems written in the programming language of Java. By using an already-existing

package, we did not have to create our own visualization package for our simulations. In addition,

many necessary calculations for our methods have already been created in the Open Source Physics

Library. This includes calculating the distance between two NPs given periodic boundary condi-

tions (PBCs), which were implemented in all of our Monte Carlo simulations. Periodic boundary

conditions are used so that if a particle goes past one face of the simulation box, it re-appears near

the opposite face of the box. Particles are therefore able to interact with each other from opposite

sides of the simulation box. For example, we have to consider the interactions between particles on
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the far left-hand-side of the box and particles on the far right-hand-side of the box. While PBCs

allow us to determine the equilibrium structures of very large NP dispersions using around N = 500

NPs, we also have to be careful with the number of NPs used. When N < 250, finite size effects

can begin to influence the structure of the NP dispersions. In addition, 500 NPs is not enough to

see phase separation in our systems.

We used the Metropolis algorithm in the canonical ensemble (fixedNV T ) for our simulations

[68, 69]. For each step in a simulation, a trial displacement was attempted for one NP. This was done

by using random numbers to generate a change in the x−, y−, and z−coordinates of the NP and

then calculating the difference of the total energy ∆E after the trial displacement and the energy

of the system before the trial displacement was attempted. If exp[−β∆E] (where β ≡ 1/(kBT ))

was less than a random number chosen between 0 and 1 or if the trial displacement caused overlap

of two NCs, then the trial displacement was rejected and we moved on to the next NP. If the

trial displacement was accepted, then the energy of the system was updated and another particle

underwent trial displacement. After a specified amount of MC steps known as the “equilibration

time” have passed in the simulation, the simulation updated the plots for the radial distribution

function and the static structure factor (see Section 3.4). The equilibration time is a period in which

the plots are not updated so that the initial configuration of the structure does not contribute to

the calculations. This is because the equilibrium structure could be vastly different from the initial

configuration of the system. It is also important to note that any equilibrium structure can only

be classified as metastable or unstable: it is always possible that if a simulation is run for a larger

number of MC steps, then the NP dispersion will leave a metastable state.

3.3.2. Molecular Dynamics Methods

Molecular dynamics simulations can be used if one is interested in the actual dynamics of the

system. As stated in Section 3.3.1, “classical molecular dynamics” means that Newton’s equations

of motion are solved during each timestep of the simulation, and the velocities and positions of the

particles are updated accordingly. Molecular dynamics methods can be used to simulate a large

variety of systems at the nanoscale.

We used LAMMPS [55] (http://lammps.sandia.gov) to run our simulations of surfaces

covered with ligand chains. LAMMPS uses the Verlet algorithm to update the trajectories of the

particles in each timestep. As in our MC methods, we ran our simulations in the canonical ensemble

43

http://lammps.sandia.gov


Figure 3.11. A snapshot of our MC simulation. The visualization updated as the simulations
progressed.

and imposed PBCs in the x-direction and the y-direction. However, we imposed a fixed boundary

in the z-direction. This is because the two flat plates were parallel to the xy-plane and the segments

of the ligand chains were bounded between the two flat plates.

Before we actually started a simulation, we initialized the chains on the correct surfaces and

bonded neighboring atoms in a chain together. As stated in Section 3.1, the initialization of the

chains was done using scripts that we wrote in C++ (flat plates) and Python (spherical surfaces).

These scripts output the atom types (fixed or moving) and the Cartesian coordinates of each atom.

The bonding of the atoms was accomplished by using a .tcl script with Visual Molecular Dynamics

(VMD) [70], adapted by Professor Alan Denton from a tutorial written by Axel Kohlmeyer. The

.tcl script generated a data file with atom, bonding, and angle information along with information

about the boundaries of the simulation box. This data file allowed the system to be initialized in

LAMMPS, while a separate input script was used to run the simulation. All of these scripts are

included in the Appendix.

During the simulation (every 1×104 timesteps out of 1.1×106 total steps), LAMMPS wrote

the coordinates of each atom (along with the atom numbers) to one file, and the total energy,

temperature, and pressure into another file. The first 1× 105 steps of each simulation were used as

the equilibration time, allowing for the temperature of the system to reach a nearly constant value.

An observant reader may wonder why the temperature needed time to reach a “nearly constant”

value when it should be fixed in the canonical ensemble. The temperature actually varies slightly

around the temperature specified in the input script: in order to keep the temperature “constant”,
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LAMMPS rescales the velocities of the particles using the Nosé-Hoover thermostat. Therefore, the

temperature fluctuates around the equilibrium temperature.

After a simulation reached completion, we used VMD and the Open Visualization Tool

(OVITO) [71] (http://ovito.org/) to generate videos and snapshots of our system at various

timesteps. Using OVITO also allowed us to make sure that we were setting the boundaries of our

box correctly, that the chains initialized correctly (without overlap of 2 chains, for example), and to

get a visualization on whether or not the effective force between two surfaces might be attractive or

repulsive (qualitatively). In addition, we created Python scripts to calculate the effective pressure

between the two surfaces. The forces were calculated directly (i.e. by using the coordinates of each

bead and the derivative of Equation (3.3) with respect to r) at each timestep that the segment

coordinates were output from the simulation and the x−, y−, and z−components of the force were

calculated. The bead-bead forces were then added up to determine the components of the effective

force. Finally, the returned value of the effective force (divided by the area of the flat plates in our

simulation) was averaged over all timesteps. The effective pressures during the equilibration time

were not calculated or included in the time-average.

Mathematically, the effective force was given to be [50, 51, 52]

Feff(D) =

〈
1

2
(Fz,left−right − Fz,right−left)

〉
timesteps

, (3.62)

where the subscript z refers to the z-component of the force at a specific timestep (the two surfaces

were separated in the z-direction), i − j means “the force on surface i from surface j”, and the

angular brackets denote an ensemble average (in the canonical ensemble, the ensemble average

corresponds to an average over timesteps). A positive value for Feff implies that the force between

two surfaces is repulsive and a negative value implies that the force is attractive. We have included

our Python script in the Appendix.

3.4. Structural Properties

3.4.1. Radial Distribution Function

The radial distribution function g(r) was used to determine the equilibrium structure of

the NP dispersions by plotting the number of NPs at a distance r away from another NP. In other

words, it allowed us to determine the probability of finding one NP at our location if we were a

45

http://ovito.org/


distance r away from the center of some other NP. We computed g(r) by using the average position

of each NP and the formula

g(r) =
N(r)

4πr2ρ∆r
, (3.63)

where N(r) is the number of particles in a spherical shell of thickness ∆r with center-center distance

r from a NP at the “origin” (r = 0 at the center of this NP) and ρ is the average number density

of the NPs. Note that as r → ∞, g(r) → 1, signifying that at any large r away from an NP, we

should find another NP. However, this is not obvious from our plots shown in Section 4: due to the

PBC, we are unable to plot g(r) for very large r, and it is not computationally feasible to run a

simulation with hundreds of thousands of atoms in order to obtain g(r) plots which show r >> 1.

The process for calculating g(r) started off by taking a pair of NPs and calculating the

center-center distance r between them. If this distance was greater than a fixed value (which we

set to half of the simulation box length), we did nothing and moved on to the next pair of NPs.

If the distance was smaller than the fixed value, we calculated n = r/∆r and rounded up to the

nearest integer. We then stored the number of pairs of NPs for which we obtained the value n in

the bin for a histogram given by N(r). g(r) was then obtained by normalizing the function N(r)

using the denominator of Equation (3.63).

By analyzing the positions and heights of the peaks in g(r) at the end of the simulations,

we determined if the structure was that of a fluid or the type of crystalline lattice that was present.

In particular, if the first three peaks of g(r) for a “perfect” crystalline structure were present in the

simulation results, then it was possible that the equilibrium structure was that of a crystal. The

theoretical g(r) functions for SC, BCC, and FCC lattices are easy to determine by computing the

coordination numbers and positions of atoms in the lattice and then creating a data file containing

these positions and coordination numbers. The Appendix contains the class that we used in the

Open Source Physics Library to calculate g(r) in our MC simulations.

3.4.2. Static Structure Factor

In addition to computing g(r), we also computed the static structure factor S(q), which

allowed us to characterize the order of the nanoparticle dispersions on average over a simulation.

The static structure factor is a function of the magnitude q of the scattered wave vector q and is

proportional to the intensity of scattered light from the NP dispersion. It is well-known that this
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function can be obtained by taking the Fourier Transform of g(r) [1, 72]. In practice, we computed

S(q) following the simulation directly from the particle coordinates using the equation [72]:

S(q) = 1 +
2

N

N∑
i<j=1

〈
sin(qrij)

qrij

〉
, (3.64)

where rij is the center-center distance between particles i and j and the angular brackets denote an

average over configurations. Equation (3.64) is equivalent to taking the Fourier Transform of g(r).

The Appendix contains the class that we created to calculate S(q) in our Monte Carlo simulations.

The static structure factor helped us analyze the structure and stability of the NP disper-

sions at the end of a simulation. The Hansen-Verlet freezing criterion states that if the height of

the first peak of S(q) is greater than 2.85, then the equilibrium structure is that of a superlattice

[73]. This was a rough estimate for our effective pair potential, but when combined together with

the criterion set for g(r), we could classify the equilibrium structures as crystals or fluids.
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4. RESULTS AND DISCUSSION

In this chapter, we present the results that we obtained using both MC and MD methods.

In our previous work, we validated our MC methods by comparing our results with results obtained

from MD simulations. After validating our methods, we implemented the effective pair potential

in Equation (3.36) [74], setting the stage for us to characterize the structures of AuNP and AgNP

dispersions to extend the work found in the literature [10] and compare with experimental results,

respectively. As stated in Chapter 1, our MD simulations were motivated by our results for AgNP

dispersions, and we will therefore end this chapter by presenting and discussing our MD results.

4.1. Gold Nanocrystals: Equilibrium Structures
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Figure 4.1. Radial distribution function g(r) for different values of hard core volume fraction φ and

ligand coverage v: (a) φ = 0.02; (b) φ = 0.26; (c) φ = 0.29; (d) v = 0.0465 Å
−2

.
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ligand coverage v: (a) φ = 0.02; (b) φ = 0.26; (c) φ = 0.29; (d) v = 0.0465 Å
−2
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Figures 4.1 and 4.2 show plots for g(r) and S(q), respectively, given different values for

ligand coverage and hard core volume fraction. For φ = 0.02 (Figure 4.1(a)), it can be seen that

the heights of the peaks increase with ligand coverage, therefore implying that there is a higher

probability of finding an NP at a certain distance from another NP. The first peak in both cases is

very high, signifying that we have a very high probability of finding one NP close to a second NP.

As r increases, we see that there are a couple of distinct peaks and g(r) levels off to 1. This implies

that the structures are those of fluids, which is further backed up by the static structure factors in

Figure 4.2(a) where the main peak heights are well below a 2.85. Because the heights of the first

peaks are large and near contact of the NCs, it is likely that the NP dispersions assembled into

amorphous clusters. The snapshots of the NP dispersions seemed to verify this conclusion. The

narrower peaks in Figure 4.1(a) where v = 0.08 Å
−2

suggest that the clusters were better defined

at higher values of ligand coverage.
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In Figure 4.1(b), we see g(r) for the cases where the ligand coverage is v = 0.03 Å
−2

and

v = 0.0465 Å
−2

and the hard core volume fraction is φ = 0.26. The g(r) plot for v = 0.03 Å
−2

looks like that of a fluid, and we can see that the height of the peak closest to contact is very low

compared to that for the v = 0.03 Å
−2

case when φ = 0.02 in Figure 4.1(a). Because of this low

peak height, the structure may have been that of a disordered fluid (no or very little evident short-

range or long-range order) rather than an amorphous cluster. In the case where v = 0.0465 Å
−2

,

g(r) in Figure 4.1(b) seems to imply that the structure is that of an FCC superlattice. This is

because the peaks that are present in g(r) are well-defined, and a comparison with the theoretical

g(r) for an FCC array showed that most of the positions of the peaks for the computational g(r)

matched with the positions of the peaks for the theoretical g(r). When we look at Figure 4.2(b),

however, we see that the height of the main peak for the v = 0.03 Å
−2

case is slightly higher than

that for the v = 0.0465 Å
−2

case, and the peaks (including the first peak) have also split into two.

The heights of the main peaks suggest that both structures are superlattices, and after considering

all aspects of the plots, we classified both structures as superlattices.

The reader may have noticed that g(r) in Figure 4.1(c) (φ = 0.29) when v = 0.02 Å
−2

is

very noisy and looks like that of a fluid, with a sharp line at r = 1. The sharp line at r = 1 is

actually something that appears in every g(r) for v = 0.02 Å
−2

that we obtained, regardless of the

value of φ. The noise may signify that there are enhanced fluctuations near the freezing transition,

but further analyses should be conducted to verify this hypothesis. One may argue that g(r) could

be accurately describing a fluid phase, but the peak at r = 1 is too narrow for the curve to be

that of an amorphous cluster and too high for the curve to be that of a disordered fluid. Indeed,

even S(q) in Figure 4.2(c) looks like that of a crystalline array in shape; however, the peak heights

are very low, and if we were to use the Hansen-Verlet Freezing Criterion, the structure would be

classified as a disordered fluid. We see in Figure 4.1(c) that g(r) for v = 0.03 Å
−2

looks like that

of a crystalline array, which is something that is backed up by S(q) in Figure 4.2(c).

Finally, in Figure 4.1(d), the ligand coverage was kept fixed at v = 0.0465 Å
−2

and φ was

varied across four simulations. Here, we see that as φ increases, the structure changes from that

of an amorphous cluster to a disordered fluid to a superlattice, as expected. The progression from

fluid to superlattice can also be seen in Figure 4.2(d), where the height of the main peak increases

with increasing φ and the single peaks split into multiple peaks.
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Figure 4.3. Phase diagram of ligand coverage vs. average volume fraction for AuNP dispersions.
“Fluid” here means disordered fluid or amorphous cluster. “Crystal” here means superlattice.

Figure 4.3 shows final structures for AuNP dispersions given various average volume fraction

and ligand coverage values. Note that the volume fractions shown are those of the hard cores, and

the effective nanoparticle volume fractions would be larger than the hard core volume fractions due

to the grafted ligands. It can be seen that at low φ, the structures were those of fluids, regardless of

the value of v. According to our snapshots and our plots in Figures 4.1 and 4.2, however, φ = 0.02

was capable of producing what looked like amorphous clusters rather than disordered fluids. For

points closer to the phase boundary, we obtained what looked like disordered fluids instead of

amorphous clusters. Around φ ∈ [0.20, 0.30], we see the expected trend that an increase in v can

lead to a final structure of a superlattice instead of a disordered fluid. Starting at φ << 1, increasing

φ first leads to a disordered fluid phase, as the strength of attraction between NPs increases with φ.

However, the final structures tend to become closer to superlattices instead of amorphous clusters

given the large initial attraction between NPs, whereas the NPs tend to form amorphous clusters

at φ << 1 due to the low attraction between NPs which are not very close together. Note that as v

increases near φ = 0.25, the phase boundary is not exactly vertical. This could signify that at high

ligand coverage, there was not enough room for ligands to compress between two NCs, implying

that steric repulsion dominated and caused the NP dispersions to form a fluid instead of a stable

superlattice.
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Some points in the phase diagram, such as (φ = 0.23, v = 0.065 Å
−2

), are right on the

boundary between being classified as crystalline arrays and fluids. An example of the corresponding

g(r) and S(q) plots can be seen in Figure 4.1(b) and Figure 4.2(b). In order to distinguish between

the two, we continued to analyze the radial distribution functions and static structure factors by

comparing our data with a theoretical g(r) and S(q) for an FCC lattice, but we also sometimes

ran simulations for a longer period of time (5 or 10 times as long as usual) to check if the system

would dissolve into a disordered fluid. The results from the longer simulations are the ones that

are included in Figure 4.3.

4.1.1. Comparison with the Literature

Khan et al. [10] considered the cases where φ = 0.005 and φ ≈ 0.02 using Brownian

dynamics with nearly 105 nanoparticles, whereas we considered N = 500 NPs. Although the

authors of the publication computed the dynamic structure factor (a function that models the

order of a system and is proportional to the intensity of scattered light, but can change with time)

rather than the radial distribution function and static structure factor in their simulations, we

were still able to qualitatively compare the morphologies of the nanoparticle dispersions that we

simulated with the morphologies that they obtained by using the snapshots of the NP dispersions

and further characterizing our morphologies using the plots for g(r) and S(q).

Figure 1.1 shows a snapshot of an AuNP dispersion from Khan et al. [10] where φ = 0.005.

It can be seen that the Brownian dynamics simulations yielded amorphous cluster formations,

which seemed to grow in size as the simulations progressed [10]. In Figure 4.3, both of the results

that we compared with Khan et al. [10] were classified as fluids. Based on the snapshots that we

generated (such as in Figure 4.4) and the analysis given above for the φ = 0.02 case (see Figures

4.1(a) and 4.2(a)), we believe that our results (which were generated using Monte Carlo methods

but using the same effective pair potential and parameters as Khan et al. [10]) are consistent with

those previously obtained.

Figure 4.5 shows g(r) and S(q) for the case where φ = 0.005 and v = 0.0465 Å
−2

. It can

be seen once again that the height of the first peak in g(r) is very large compared to, say, those

in Figure 4.1(b). Because most of the peaks are poorly defined, we conclude that the structure is

possibly an amorphous cluster. This conclusion is backed up further by the plot for S(q), which

looks similar to those shown in Figure 4.2(a) in that the structure is not a crystalline array. The
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Figure 4.4. The final structure for the Monte Carlo simulation where φ = 0.02 (approximately

equal to the volume fraction studied in the literature) and v = 0.0465 Å
−2

. There was not a
significant change in the structure, so we concluded that the nanoparticle dispersion had reached
the metastable state of an amorphous cluster.
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Figure 4.5. (a) g(r) and (b) S(q) from a Monte Carlo simulation of an AuNP dispersion with

φ = 0.005 and v = 0.0465 Å
−2

.

snapshots were actually not very helpful with comparing to the results in the literature because we

only used 500 NPs in a very large box (yielding the low volume fraction). However, the particles

still seemed to form clusters in the snapshots. In conclusion, the results from our Monte Carlo

simulations seem to qualitatively match those presented in Khan et al. [10], which were obtained

using Brownian dynamics methods.

4.2. Silver Nanocrystals: Equilibrium Structures

For my senior project in Spring 2017 [74], we attempted to describe the self-assembly of

stable superlattices for silver nanoparticles with oleylamine ligands in toluene using Equation (3.36)

without considering depletion interactions at all. However, due to the lack of a potential well in our

effective pair potential it seemed that we had failed to do so, and we questioned whether the model
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we were using was accurate for nanoparticle suspensions where the ligands were adsorbed rather

than grafted to the surface of the NCs. We eventually turned to considering depletion interactions,

though we just barely scratched the surface of exploring the effects of the depletion interactions

on the effective pair potential and structures of the nanoparticle dispersions. For this thesis, we

explored the effect of adding depletion interactions to the model that we used for AuNP dispersions

in greater detail and report the results here.

Figure 4.6. (a) g(r) for silver nanoparticle dispersions where the ligand coverage is fixed at v =

0.0465 Å
−2

(about 41% surface coverage) and the initial NC volume fraction is φ = 0.15. (b) S(q)
for the runs shown in panel (a). (c) A comparison between g(r) for the run where φ = 0.15 and
φdep = 0.446 and a perfect FCC lattice where φ = 0.236.

Figure 4.6(a) shows four radial distribution functions that we obtained from our MC simula-

tions when the ligand coverage was fixed at v = 0.0465 Å
−2

and the initial NC volume fraction was

φ = 0.15, for varying free ligand concentration values, and Figure 4.6(b) shows the corresponding

static structure factors. There is barely any difference in g(r) and S(q) between the two simulations

where there is no free ligand in the solution and where some free ligand (filling less than 15% of the
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system volume) exists. This is likely because there is not a significant potential well in the effective

pair potential with a free ligand volume fraction of φdep = 0.11: the potential well has a depth of

only about 1 kBT and the minimum appears when two nanoparticles are at a center-center sepa-

ration of about 105 Å (1.75 particle diameters), implying that the nanoparticles would not attract

towards one another (if the initial NC volume fraction is φ = 0.15) because the free energy would

then increase. However, as the free ligand concentration increases, the equilibrium structures seem

to show more order in the sense that more peaks are visible in g(r) when the free ligand volume

fraction rose from 0.112 to 0.279 (2.5 times as much free ligand per unit volume). When the free

ligand volume fraction rises to 0.446, the equilibrium structure turned into that of an FCC lattice,

as shown more explicitly in Figure 4.6(c) (we will discuss this plot in more detail below). It was a

bit surprising to see that the height of the main peak in S(q) decreased when the free ligand volume

fraction rose from 0.112 to 0.279, as seen in Figure 4.6(b). This may imply that the equilibrium

structure changed from a disordered fluid (for φdep = 0 and φdep = 0.112) to an amorphous cluster

(for φdep = 0.279) to an superlattice (φdep = 0.446). In conclusion, the results shown in Figure 4.6

show that depletion interactions are important in aiding the self-assembly of silver nanoparticles

into equilibrium superlattices.

Figure 4.7(a) shows the dependence of the equilibrium structures on the free ligand con-

centration and the ligand coverage of the nanoparticles, given an initial NC volume fraction of

φ = 0.22. We expected that for lower values of ligand coverage, the NPs would start to aggregate

due to there being very little stabilization against the van der Waals and (depending on the free

ligand concentration) depletion interactions. It was indeed observed that the initial FCC lattice

“melted”, and we believe that our prediction was correct and that aggregation was starting to occur

when v = 0.005 Å
−2

because the energy per particle was on the order of −103 kBT at the end of

the simulations.

In addition, we expected that the equilibrium structures of the nanoparticle dispersions

would not be those of superlattices at low free ligand concentration (less than 2.16 (2a)−3, or a

free ligand volume fraction of about φdep = 0.11 and lower). However, for all values of free ligand

concentration that were tested where v > 0.01 Å
−2

(about 9% surface coverage), we observed

equilibrium superlattices. One reason as to why these equilibrium structures were FCC lattices is

because an initial NC volume fraction of φ = 0.22 places the nearest neighbors of the FCC lattice
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Figure 4.7. Three different phase diagrams for silver nanoparticle dispersions, showing (a) the final
structures of simulations given an initial NC volume fraction of φ = 0.22 where the free ligand
concentration and ligand coverage could vary; (b) the final structures of simulations where the

ligand coverage was fixed at v = 0.0465 Å
−2

; and (c) the final structures of simulations where

the ligand coverage was fixed at v = 0.0465 Å
−2

. Two overlapping points means that the final
NC volume fraction was obtained by one system in an equilibrium fluid and one system in an
equilibrium crystal, implying that phase coexistence may appear in larger systems.

at a center-center distance of about 8.7 nm. When there is no free ligand in the solution and the

surfaces of the NCs are about 41% covered in ligands, Figure 3.10(a) shows that two nanoparticles

undergo repulsion whenever their ligand layers are overlapping (as in the case of φ = 0.22), and if a

trial displacement were to move one nanoparticle closer to any other nanoparticle, there would be a

very large increase in the total free energy of the system and therefore the trial displacements would

have a very low probability of being accepted. Therefore, we conclude that an initial NC volume

fraction of φ = 0.22 is past the freezing transition when more than about 10% of the NC surfaces

are covered in ligands, and therefore the equilibrium structures will be superlattices. Similarly,

56



Figure 3.10(d) implies that when free ligand is present, the center-center distance between two

nanoparticles coincides with the minimum of the pair potential, and any trial displacement would

again increase the free energy per particle. In connection to Figure 1.2, Figure 4.7(a) seems to

suggest that the experimentally observed superlattice started out at a lower NC volume fraction,

as the observed superlattice had a volume fraction of φ = 0.22, and depletion interactions were

important in the self-assembly of this superlattice.

In our simulations, it was found that it may have actually been possible for the nanoparticles

to self-assemble into a superlattice of higher volume fraction as the solvent was evaporated if the

nanoparticle dispersion started off in a superlattice with an NC volume fraction of, say, φ = 0.15.

Indeed, Figures 4.7(b) and (c) (which show phase diagrams for simulations where the free ligand

concentration and the initial NC volume fraction were varied) seem to suggest that free ligands and

depletion interactions are still important in the self-assembly of the silver nanoparticle dispersions

into equilibrium superlattices, given initial volume fractions below about φ = 0.22.

For an initial NC volume fraction of φ = 0.15 and no free ligand, g(r) and S(q) (Figure 4.6(a)

and (b)) implied that the equilibrium structure was that of a fluid. For similar reasons to those given

for Figure 4.7(a), it was expected that the nanoparticle dispersion would “melt” from an initial FCC

lattice into a fluid when there was very little or no free ligand in the solution. However, when about

44% of the volume of the system was occupied by free ligands, the nanoparticle dispersions actually

formed an equilibrium FCC lattice where the hard core volume fraction was about φ = 0.236 (see

Figure 4.6(c)). This signifies that the nanoparticles moved closer to one another in order to minimize

the free energy, eventually reaching a lattice where the nearest neighbor center-center distance was

about 87 Å. We are currently running simulations where the nanoparticles start in different initial

configurations (with all other parameters fixed) to determine whether this equilibrium “compressed

FCC lattice” is dependent on the initial configuration. A comparison between Figures 4.7(b) and

4.7(c) (the latter shows the final NC volume fraction, which was calculated by comparing g(r) to

that of a perfect FCC lattice, instead of the initial NC volume fraction) shows that the compressed

FCC lattice is not unique to the system where φ = 0.15 and φdep = 0.446, but rather that it also

appears given a higher free ligand concentration for φ = 0.15 and for runs where the initial NC

volume fraction is φ = 0.18 as well.
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In summary, depletion interactions could be the correct approach to describe the self-

assembly observed in the experiments. However, as stated in Section 3.2.2, we have not yet verified

that our bounds for the depletion interactions are indeed the correct ones or that depletion interac-

tions work to describe the self-assembly of NP dispersions with adsorbed ligands in all cases. Our

results in the following section have set the stage for our hypotheses to be tested.

4.3. Molecular Dynamics Simulations: Effective Interactions

Unless otherwise stated, all results are for chains of length 8σ (8 beads per chain) with

64 chains per plate. We attempted to fit the theoretical prediction to our simulation results by

varying χ > 0 in the theory, as χ was unspecified in our simulations. In general, we qualitatively

estimated what a good fit would be between the simulation and theory by taking into account the

values of pressure at each wall separation distance from the simulations. We used ε = 1, σ = 1, and

T ∗ = 3.0kBT/ε. The parameters from Equations (3.1) and (3.2) were K1 = 100ε/σ2 and s0 = 1σ,

and K2 = 10ε and θ0 = 120o, respectively. Future work could include determining the dependence

of effective pressures on θ0, as this parameter determines how rigid the ligands are.
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Figure 4.8. Pressures between two flat, ligated plates (the ligands were initialized on rectangular
lattices as shown in Figure 4.9(c)) with rc = 2.5σ where (a) v varied with separation distance
of the plates and (b) the LJ force between non-bonded beads was and was not shifted to ensure
well-definedness at rc and v = 0.022σ−2 for all separation distances (χ = 0.15 in the theoretical
curve).

Figure 4.8(a) shows the first results we obtained from our MD simulations. Here, we see

that the trend is fairly similar with the theory in that the pressure is almost always increasing

as wall separation decreases. If the plates were closer than D = d apart, then the ligands would

“fold” over to make sure that the beads did not go outside of the volume enclosed by the two
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flat plates. An issue with the plot shown in Figure 4.8(a) is that we only specified the number

of chains attached to one plate as well as the separation distance between the two plates. This

was a big problem: the ligand coverage of the two flat plates varied with the separation distance,

even though the ligands were grafted to the two flat plates. This can be seen because the number

of ligands on each flat plate remained constant while the area of the two flat plates increased as

surface separation decreased. We fixed this issue by allowing the user of the script that initialized

the ligands to specify a ligand coverage so that both the area and the number of ligands per flat

plate would remain fixed as the wall separation was varied.

As discussed in Section 3.1, the force between two beads was ill-defined at the cutoff distance

of the LJ 12-6 potential rc. Figure 4.8(b) shows the change in the effective pressure between two

flat plates if we introduce a shift in the LJ forces between non-bonded beads. It can be seen that

the difference in the effective pressures between two flat plates was significant when a shift was

introduced. This may be due to the pair potential changing faster with r when a shift in the force

is introduced, as shown in Figure 3.5, so we should expect for there to be a large difference between

the two data sets plotted in Figure 4.8(b), and our expectations held true.

4.3.1. Effect of Fixed Bead Configurations on Effective Interactions

Figure 4.10(a) shows the pressures for different configurations of the ligand chains: snap-

shots of the different lattices are shown in Figure 4.9(a), (c), and (e), and the different names for

the lattices refer to the layout of the blue beads, which represent the fixed beads. The data points

represent the mean values of the pressure when the plates were separated by a distance D over three

independent runs, and the error bars show one standard deviation away from the means. While

the plot of the pressure for the square lattice is clearly different from those of the rectangular and

hexagonal lattices, the differences between the profiles for the rectangular and hexagonal lattices

are very small. This could be because the hexagonal lattice is essentially the rectangular lattice,

except half of the ligands are translated in two directions and the entire lattice is more closely

packed in the x-direction than the rectangular lattice.

In addition, Figure 4.10(b) shows the effective pressures given two different square lattices:

the one without the label “no offset” refers to the lattice shown in Figure 4.9(a), whereas the

data with the label “no offset” were generated for a configuration in which the square lattices on

opposing walls were not shifted (i.e., the fixed beads were only separated in the z-direction, but
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Figure 4.9. Different initial and final configurations of the ligands on the two flat plates, with
v = 0.0222σ−2 and rc = D. We used 1024 beads in our systems. It can be seen that the ligand
layers are offset between the two walls, ensuring that there is no overlap of the ligands. (a) Ligands
initialized on square lattices. (b) The final configuration of the ligands on square lattices. (c)
Ligands initialized on rectangular lattices. (d) The final configuration of the ligands on rectangular
lattices. (e) Ligands initialized on hexagonal lattices. (f) The final configuration of the ligands on
hexagonal lattices.

not in the x- or y-directions. Note that the minimum wall separation is D = 5.5σ if the lattices on

the two flat plates are not offset from each other: this is because the ligands from one wall would

overlap or bond with the ligands from the second wall at shorter wall separations.

One can see that there is not a large difference in the pressure between two flat plates

regardless of if the offset is present or not. This may be because the dimensions of the flat plates

are unchanging when we introduce an offset in the square lattices from opposing plates. On average,

one might expect for there to be more beads closer to any given bead. However, it seems that there

is cancellation between most added repulsive terms and most added attractive terms for the beads

that are within the cutoff range.
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Figure 4.10. The effects of the initial configurations of the ligands (Figure 4.9(a), (c), and (e)) on
the effective pressure between two walls, with v = 0.0222σ−2 and rc = D. The solid line shows the
theoretical prediction with χ = 0.15, set to fit the data given square lattices. (a) The pressure as
a function of separation distance between the two flat, ligated plates for the configurations shown
in Figure 4.9 as well as a theoretical prediction from Evans et al. [24] and Smitham et al. [25]. (b)
The effective pressure for square lattices that are offset from each other and square lattices that
are not offset from each other. (c) Two spherical, ligated surfaces generated using our methods.

Figure 4.10(c) shows the initial configuration of the beads in a spherical lattice. As stated

earlier, we have not obtained results for the case of two spherical, ligated surfaces (representing

two nanoparticles).

4.3.2. Effect of Varying Temperature on the Effective Interactions

Finally, Figure 4.11 shows comparison between theory and simulation for varying the tem-

perature of the system. Theoretically, Equation (3.51) predicts that if the temperature of our

system is lowered, then χ should increase and therefore the solvent quality would decrease, causing

the forces between two ligated surfaces to become more attractive. This is shown graphically in

Figure 4.11 by the solid and dashed lines. However, our simulations showed that the opposite

happened: a decrease in temperature implied a more repulsive force between two flat plates. This

result contradicts the results predicted by the theoretical pair potential that we are using. Chang-

ing the temperature does not change the LJ 12-6 potential, but the average velocity of the beads
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Figure 4.11. The effective pressures between two flat, ligated plates (square lattices with an offset
of 2σ from each other) with rc = D and v = 0.0222σ−2 in which we studied the dependence of the
pressure on the temperature of the system, and comparison to the trend observed in the theory.
Note that the solid blue line is the theoretical prediction at the higher temperature, while the
dashed line shows that the effective forces become more attractive as temperature decreases in the
theory.

should be lower at a lower temperature. This means that the effective forces between two walls

should be, at most, equal to the forces between two walls at a higher temperature. This implies

that the theory indeed predicts an opposite trend from our results. The dashed line shows the

theoretical prediction for χ = 0.005, which was chosen in an attempt to match with the results for

the simulations where T ∗ = 1.5. However, it can be seen that this low of a value for χ does not

yield a good fit for the simulation data. On the other hand, χ = 0.15 (the solid line) seems to yield

a good fit for the data obtained for the simulations where T ∗ = 3.0.

One possible explanation for why our simulation results do not match with the theory is that

the theory assumed a continuous, uniform step distribution of beads for ligands of length d; however,

the ligands are much more explicit in our simulations than they are in the theory. In addition, we

do not calculate the segment densities from our simulations. However, the segment density at the

final timestep of the simulation could be calculated in order to compare with the approximation

used in the theory. It was shown in Smitham et al. [25] that the theoretical prediction that we

are comparing with actually overestimated experimental results for D < 5 nm. While this would

not explain the increasing pressure with decreasing temperature, it may explain the quantitative

difference between the theory and our simulations.
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Another possible explanation for the inconsistency of our results may be that our ligand

chains are too short. Chains with 8 beads are considered to be short polymers, and therefore Flory

theory may not apply to our chains. Longer chains could be simulated in the future, as this may

determine whether or not Flory theory can apply to our system. Overall, however, there are still

many simulations and analyses that need to be completed in order to understand the effective

interactions between two flat, ligated plates.
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5. SUMMARY AND OUTLOOK

5.1. Summary

Nanoparticles have many interesting properties due to their size, which is between those of

molecular and bulk structures. These properties have allowed for many useful practical applications,

as nanoparticles have been utilized in drug delivery, photovoltaic cells, and lotions and shampoo.

However, despite all of the research that has been conducted, the self-assembly of nanoparticle dis-

persions into equilibrium superlattices is not something that is well understood. There have been

theoretical attempts to describe the ligand-solvent interactions and the ligand-ligand interactions,

as well as computational and experimental studies to model the self-assembly of gold nanoparticles

dispersions into equilibrium superlattices and the clustering of gold nanoparticles. Our collabora-

tors (Samuel Brown and Professor Erik Hobbie) have also obtained stable superlattices of silver

nanoparticle dispersions in the laboratory, though the cause of this self-assembly is not completely

understood.

In this thesis, we have presented the Monte Carlo methods that we developed for deter-

mining the equilibrium structures for self-assembling nanoparticle dispersions. These methods

were used to extend the work found in the literature by characterizing the equilibrium struc-

tures of nanoparticle dispersions consisting of gold nanocrystals covered by dodecanethiol ligands,

immersed in toluene. In addition, we characterized the equilibrium structures of nanoparticle dis-

persions consisting of silver nanocrystals covered by oleylamine ligands in toluene by considering

depletion interactions caused by free ligand present in the solution and compared our results with

those obtained in the laboratory. The model that we used for the gold nanoparticle dispersions was

only able to describe the self-assembly of silver nanoparticle dispersions at volume fractions above

about φ = 0.22 due to the effective volume fraction being high enough that the nanoparticles could

not break out of their initial lattice. However, by considering depletion interactions we were able

to observe the self-assembly of nanoparticle dispersions into equilibrium superlattices at an initial

NC volume fraction of φ = 0.15. Motivated by our results for silver nanoparticle dispersions, we

developed molecular dynamics methods and used LAMMPS to model the ligands using a bead-
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spring model. These ligands were attached to two flat plates, though we also developed a model

for ligands that are chemically bonded to two spherical surfaces.

Our work is very important because it allows for better characterization of systems that have

already been studied extensively (gold nanoparticle dispersions) and it allows for the description

of the self-assembly of silver nanoparticle dispersions, for which equilibrium superlattices were

obtained in the laboratory recently. In addition, our methods can easily be extended to model

other systems such as silicon nanoparticle dispersions, therefore helping to guide the fabrication of

superlattices and potentially improving the usability of nanoparticles for practical applications. In

particular, understanding the self-assembly of silicon nanoparticle dispersions could help to increase

the efficiency of photovoltaic cells if the cells are coated by a thin film of silicon nanoparticle

dispersions.

5.2. Conclusions

As the average volume fraction increased, the gold nanoparticle dispersions formed crys-

talline arrays instead of fluids, and as the ligand coverage increased, we saw that the nanoparticle

dispersions crystallized at lower average volume fractions before this threshold increased once more

at high coverage, possibly due to the inability of the ligands to compress any further. In the case of

silver nanoparticle dispersions, the depletion interactions allowed for a potential well of several kBT

to appear, and this caused the nanoparticle dispersions to self-assemble into equilibrium superlat-

tices with final NC volume fractions higher than the initial NC volume fractions. We obtained

results consistent with experimental results when we considered depletion interactions, although

there is still uncertainty in the interplay between depletion and steric interactions.

In the case of two flat, ligated plates, we found that the results from our molecular dynamics

simulations qualitatively matched the theory for a “good solvent” in that the pressure between two

plates was positive and increased as the flat plates drew closer together, therefore indicating that

the force between the two plates was repulsive and increasing in magnitude as wall separation

decreased. As expected, we found that the initial configuration of the ligands affects the effective

pressures: when we considered the ligands to be on square lattices, we obtained smaller pressures

than we obtained for rectangular and hexagonal lattices. However, lowering the temperature of

our system by a factor of 50% corresponded to a more repulsive force than in the case of a higher

temperature and therefore a “better solvent”. This is contradictory to the theoretical prediction of
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our effective pair potential, and one possible explanation could be that our ligands are too short to

follow Flory’s theory for polymer chains.

5.3. Future Work

We are writing journal articles on our work for gold and silver nanoparticle dispersions and

plan to finalize and submit these articles for review so they can be published in scientific journals. In

the future, the analyses for the molecular dynamics simulations of the ligands on a more molecular

scale will need to be completed. This can be accomplished by first considering the case where the

ligands are grafted to two spherical surfaces. Next, the cases where the ligands are adsorbed (both

in the case of two flat walls and the case of two spherical surfaces) can be considered. The latter

case would allow for the accurate characterization of the interplay between the steric repulsion

and depletion attraction between silver nanoparticles coated with adsorbed oleylamine ligands in

toluene. The analyses of these results could verify that the depletion interactions are contributing

to the self-assembly of the silver nanoparticle dispersions as thought or they would pave the way

for a new explanation to describe the self-assembly. By using the concept of “pipeline modeling”

to simulate many nanoparticles with the effective interactions obtained from the MD simulations,

it can be determined whether or not depletion interactions may be an accurate description for

self-assembly of the silver nanoparticle dispersions. Finally, additions could be made to our Monte

Carlo code so that the sizes of amorphous clusters can be better characterized.
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APPENDIX. CODE USED FOR THE DESCRIBED WORK

This Appendix contains Java classes that we created for our Monte Carlo simulations and

scripts that we created and used for our molecular dynamics simulations, mainly to generate the

input for LAMMPS and analyze the results.

The Java class RDF was used to compute the radial distribution function in our

Monte Carlo simulations of nanoparticle dispersions with effective pair interactions.

This was developed by Professor Alan Denton, Department of Physics, North Dakota

State University.

package org . opensourcephys i c s . s i p . l j ;

import java . u t i l . ArrayList ;

import org . opensourcephys i c s . numerics .PBC;

pub l i c c l a s s RDF {

pr i va t e i n t N;

p r i va t e double [ ] x , y , z ;

p r i va t e i n t [ ] nr ;

p r i va t e double [ ] gr ;

p r i va t e double s i d e ;

p r i va t e double deltaR = 0 . 0 0 5 ;

// p r i va t e double deltaR = 0 . 0 5 ;

p r i va t e i n t n s h e l l ;

p r i va t e double maxR;

p r i va t e i n t count = 0 ;

pub l i c RDF( double x [ ] , double y [ ] , double z [ ] , double s i d e ) {

N = x . l ength ;

t h i s . x = x ;

t h i s . y = y ;

t h i s . z = z ;

t h i s . s i d e = s i d e ;

74



maxR = s id e /2 ;

n s h e l l = ( i n t ) Math . c e i l (maxR/deltaR ) + 1 ;

nr = new in t [ n s h e l l ] ;

gr = new double [ n s h e l l ] ;

}

pub l i c void update ( ) {

count++;

f o r ( i n t i = 0 ; i < N; i++){

f o r ( i n t j = 0 ; j < N; j++){

i f ( i != j ) {

double rx = PBC. s epa ra t i on (Math . abs ( x [ i ]−x [ j

] ) , s i d e ) ;

double ry = PBC. s epa ra t i on (Math . abs ( y [ i ]−y [ j

] ) , s i d e ) ;

double rz = PBC. s epa ra t i on (Math . abs ( z [ i ]−z [ j

] ) , s i d e ) ;

// double rx = x [ i ]−x [ j ] ;

// double ry = y [ i ]−y [ j ] ;

// double rz = z [ i ]−z [ j ] ;

double r2=rx∗ rx+ry∗ ry+rz ∗ rz ;

i f ( r2 <= maxR∗maxR) {

double r = Math . s q r t ( r2 ) ;

i n t n = ( i n t ) Math . c e i l ( r / deltaR ) ;

// nth histogram bin

nr [ n]++;

}

}

}

}

}

pub l i c double [ ] c a l cD i s t r i b u t i o n ( ) {

double rho = ( double )N/Math . pow( s ide , 3) ; // number dens i ty

double norm = 4∗Math . PI∗ rho∗Math . pow( deltaR , 3) ∗N∗ count ; //

norma l i za t i on
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f o r ( i n t n = 1 ; n < gr . l ength ; n++){

double r = deltaR∗n ;

i f ( r <= maxR) {

gr [ n ] = nr [ n ] / (norm∗n∗n) ;

}

}

double [ ] grClone = new double [ gr . l ength ] ;

System . arraycopy ( gr , 0 , grClone , 0 , gr . l ength ) ;

r e turn grClone ;

}

pub l i c S t r ing d i s t r i bu t i onData ( ) {

St r i ngBu f f e r data = new St r i ngBu f f e r ( ) ;

gr = c a l cD i s t r i b u t i o n ( ) ;

f o r ( i n t i =0; i < gr . l ength ; i++){

data . append ( i ∗deltaR + ” ” + gr [ i ] + ”\n”) ;

}

St r ing f ina lData = data . t oS t r i ng ( ) ;

r e turn f ina lData ;

}

pub l i c S t r ing nrData ( ) {

St r i ngBu f f e r data = new St r i ngBu f f e r ( ) ;

f o r ( i n t i =0; i < nr . l ength ; i++){

data . append ( i ∗deltaR + ” ” + nr [ i ] + ”\n”) ;

}

St r ing f ina lData = data . t oS t r i ng ( ) ;

r e turn f ina lData ;

}

}
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The Java class SSF was used to compute the static structure factor in our Monte

Carlo simulations of nanoparticle dispersions with effective pair interactions.

package org . opensourcephys i c s . s i p . l j ;

import java . u t i l . ArrayList ;

import org . opensourcephys i c s . numerics .PBC;

pub l i c c l a s s SSF{

pr i va t e i n t i , j , k ;

p r i va t e i n t N; // number o f p a r t i c l e s

p r i va t e double [ ] x , y , z ;

p r i va t e double s i d e ;

p r i va t e i n t kMax = 5000 ; // Number o f wave ve c t o r s computed

p r i va t e double Sq , q ;

p r i va t e double dq = 0 . 0 0 5 ;

p r i va t e double sum ;

p r i va t e i n t count = 0 ;

p r i va t e double diameter ;

p r i va t e double [ ] Sqterms ;

p r i va t e double [ ] Sqvalues ;

pub l i c SSF( double x [ ] , double y [ ] , double z [ ] , double s i d e ) {

N = x . l ength ;

t h i s . x = x ;

t h i s . y = y ;

t h i s . z = z ;

t h i s . s i d e = s i d e ;

Sqterms = new double [N ] ;

sum = 0 . 0 0 ;

Sqvalues = new double [ kMax ] ;

}

pub l i c void updateSQ ( ) {

count++;
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f o r ( k=10; k<kMax ; k++){

Sq = 0 ;

q = k ∗ dq ;

f o r ( i =0; i<N; ++i ) {

f o r ( j=( i +1) ; j<N; ++j ) {

double rx = x [ i ]−x [ j ] ;

double ry = y [ i ]−y [ j ] ;

double rz = z [ i ]−z [ j ] ;

double r2 = rx∗ rx+ry∗ ry+rz ∗ rz ;

double r = Math . s q r t ( r2 ) ;

Sq += Math . s i n (q∗ r ) / (q∗ r ) ;

}

} // End o f the i loop

Sq ∗= (2 . / ( double ) N) ;

Sqvalues [ k ] += Sq ;

}

}

pub l i c S t r ing outputData ( ) {

St r i ngBu f f e r data = new St r i ngBu f f e r ( ) ;

updateSQ ( ) ;

f o r ( i n t k=10; k<kMax ; k++){

Sqvalues [ k ] /= count ;

Sqvalues [ k ] += 1 ;

data . append (k∗dq + ” ” + Sqvalues [ k ] + ”\n”) ;

}

St r ing f ina lData = data . t oS t r i ng ( ) ;

r e turn f ina lData ;

}

}
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The C++ code below initializes the chains on rectangular lattices on two flat

plates (with an offset between lattices on opposing plates), at fixed ligand coverage.

#inc lude <cmath>

#inc lude <f stream>

#inc lude <iostream>

#inc lude <c s t d l i b>

#inc lude <s t r i ng>

us ing namespace std ;

/∗

This s c r i p t gene ra t e s cha ins on two f l a t p l a t e s which are p a r a l l e l to the xy−plane .

The two p l a t e s can have a minimum su r f a c e s epa ra t i on o f approximately 2 . 0 ,

r e g a r d l e s s o f the number o f segments per chain . The cha ins w i l l loop around ,

t h e r e f o r e not pas s ing through the wa l l s . ” cha ins . xyz” i s the output f i l e

conta in ing p a r t i c l e types and coord inate s , and the t o t a l number o f atoms .

Vers ion 3 . 0 : an extens i on o f Vers ion 2 .0 that a l l ows the user to s p e c i f y a l i gand

coverage value which i s f i x ed over a l l s epa ra t i on d i s t an c e s . As o f now , the user

should use 2 c h a i n s i n i t . cpp to determine what the maxmimum v should be f o r the

system : f o r 64 cha ins per wa l l ( assuming 8 rows and 8 columns ) with 8 segments

per chain , the minimum x , y−dimensions must be 32 , 90 sigma ( r e s p e c t i v e l y ) .

Theo r e t i c a l c a l c u l a t i o n f o r a rb i t a ry nPerChain and nChain to be determined .

∗/

# de f i n e nPerChain 8 // Number o f monomers per chain

# de f i n e nChain 64 // number o f cha ins per wa l l

# de f i n e R 8 .25 // su r f a c e s epa ra t i on

# de f i n e v 0.022222222222 // l i gand coverage

# de f i n e xMax 32.00000 // maximum x coord ina te

# de f i n e dx 4.000000 // d i s t ance between columns o f cha ins attached to one wa l l .

Changeable , but i t i s recommended to have xMax = nPerChain∗dx f o r easy s e t t i n g o f

the PBC in the data f i l e

i n t N = 2∗nPerChain∗nChain ; // number o f monomers

f l o a t s epa ra t i on = ( nChain/v ) /xMax ; // determines the s epa ra t i on between rows in the

y−d i r e c t i o n

f l o a t dy = sepa ra t i on / sq r t ( nChain ) ; // determines the d i s t anc e between rows o f

cha ins in the y−d i r e c t i o n
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i n t main ( ) {

ofstream f ;

f . open (” cha ins . xyz ”) ;

f << N << endl ;

f << ” l i n e a r cha ins o f atoms” << endl ;

i n t types [N/ 2 ] ;

f l o a t p o s i t i o n s [N/ 2 ] [ 3 ] ;

f l o a t x = 0 .000000 ;

i n t i = 0 ; // keeps t rack o f the monomer index

f o r ( i n t l = 0 ; l < s q r t ( nChain ) ; l++){ // loop over one dimension o f cha ins on a

wal l

f l o a t y = 0 .000000 ;

f l o a t yPrev = 0 .0000000 ; // s t o r e s the po s i t i o n o f the s t a r t o f the prev ious

chain in the column

f o r ( i n t j =0; j<s q r t ( nChain ) ; j++){ // loop over second dimension o f cha ins

on a wal l

f l o a t z = 0 .000000 ;

f o r ( i n t k = 0 ; k<nPerChain ; k++){ // loop over beads in one chain

i f ( k==0){

yPrev = y ; // s t o r e s the po s i t i o n o f the s t a r t o f the chain

}

po s i t i o n s [ i ] [ 0 ] = x ;

p o s i t i o n s [ i ] [ 1 ] = y ;

p o s i t i o n s [ i ] [ 2 ] = z ;

i f ( k % nPerChain == 0) { // f i x ed atom

types [ i ] = 2 ;

}

e l s e {

types [ i ] = 1 ;

}

i f ( ( i n t (y−yPrev ) % 4) == 0) {

z += 1 .0000000 ;

}
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e l s e i f ( ( i n t (y−yPrev ) % 4) == 2) {

z −= 1.0000000 ;

}

e l s e {

y += 1.0000000 ;

}

i f ( z>=R) { // next p a r t i c l e w i l l over lap the wa l l on the r i gh t s i d e

z −= 1.0000000 ;

y += 1.0000000 ;

}

e l s e i f ( z<=0.000000){

z += 1 .0000000 ;

y += 1.0000000 ;

}

i += 1 ;

}

y = yPrev+dy ; // determines the y−coord ina te o f the f i x e d atom f o r the

next chain in the column us ing the l i gand coverage value and the s t a r t o f the

prev ious chain

}

x += dx ; // s t a r t a second column

}

f o r ( i n t i = 0 ; i<N/2 ; i++){ // l e f t wa l l

f << types [ i ] << ’\ t ’ << po s i t i o n s [ i ] [ 0 ] << ’\ t ’ << po s i t i o n s [ i ] [ 1 ] << ’\ t ’

<< ( p o s i t i o n s [ i ] [ 2 ] −R/2 . ) << endl ;

}

f o r ( i n t i = 0 ; i<N/2 ; i++){ // r i gh t wal l , t r a n s l a t e x−po s i t i o n s by 2 .0

f << types [ i ] << ’\ t ’ << ( p o s i t i o n s [ i ] [ 0 ]+2 . 000000 ) << ’\ t ’ << po s i t i o n s [ i

] [ 1 ] << ’\ t ’ << (−1.∗ po s i t i o n s [ i ] [ 2 ]+R/2 . ) << endl ;

}

f . c l o s e ( ) ;

}
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The C++ code below initializes the chains on rectangular lattices on two flat

plates (with no offset between lattices on opposing plates), at fixed ligand coverage.

#inc lude <cmath>

#inc lude <f stream>

#inc lude <iostream>

#inc lude <c s t d l i b>

#inc lude <s t r i ng>

us ing namespace std ;

/∗

This s c r i p t gene ra t e s cha ins on two f l a t p l a t e s which are p a r a l l e l to the xy−plane .

The two p l a t e s can have a minimum su r f a c e s epa ra t i on o f approximately 5 . 5 ,

r e g a r d l e s s o f the number o f segments per chain . The cha ins w i l l loop around ,

t h e r e f o r e not pas s ing through the wa l l s . ” cha ins . xyz” i s the output f i l e

conta in ing p a r t i c l e types and coord inate s , and the t o t a l number o f atoms .

Vers ion 4 . 0 : An extens i on o f Vers ion 3 . 0 . This v e r s i on i n i t i a l i z e s the cha ins so

that there i s no o f f s e t between the cha ins on the two f l a t p l a t e s .

∗/

# de f i n e nPerChain 8 // Number o f monomers per chain

# de f i n e nChain 64 // number o f cha ins per wa l l

# de f i n e R 10 .5 // su r f a c e s epa ra t i on

# de f i n e v 0.022222222222 // l i gand coverage

# de f i n e xMax 32.00000 // maximum x coord ina te

# de f i n e dx 4.000000 // d i s t ance between columns o f cha ins attached to one wa l l .

Changeable , but i t i s recommended to have xMax = nPerChain∗dx f o r easy s e t t i n g o f

the PBC in the data f i l e

i n t N = 2∗nPerChain∗nChain ; // number o f monomers

f l o a t s epa ra t i on = ( nChain/v ) /xMax ; // determines the s epa ra t i on between rows in the

y−d i r e c t i o n

f l o a t dy = sepa ra t i on / sq r t ( nChain ) ; // determines the d i s t anc e between rows o f

cha ins in the y−d i r e c t i o n

i n t main ( ) {

ofstream f ;

f . open (” cha ins . xyz ”) ;
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f << N << endl ;

f << ” l i n e a r cha ins o f atoms” << endl ;

i n t types [N/ 2 ] ;

f l o a t p o s i t i o n s [N/ 2 ] [ 3 ] ;

f l o a t x = 0 .000000 ;

i n t i = 0 ; // keeps t rack o f the monomer index

f o r ( i n t l = 0 ; l < s q r t ( nChain ) ; l++){ // loop over one dimension o f cha ins on a

wal l

f l o a t y = 0 .000000 ;

f l o a t yPrev = 0 .0000000 ; // s t o r e s the po s i t i o n o f the s t a r t o f the prev ious

chain in the column

f o r ( i n t j =0; j<s q r t ( nChain ) ; j++){ // loop over second dimension o f cha ins

on a wal l

f l o a t z = 0 .000000 ;

f o r ( i n t k = 0 ; k<nPerChain ; k++){ // loop over beads in one chain

i f ( k==0){

yPrev = y ; // s t o r e s the po s i t i o n o f the s t a r t o f the chain

}

po s i t i o n s [ i ] [ 0 ] = x ;

p o s i t i o n s [ i ] [ 1 ] = y ;

p o s i t i o n s [ i ] [ 2 ] = z ;

i f ( k % nPerChain == 0) { // f i x ed atom

types [ i ] = 2 ;

}

e l s e {

types [ i ] = 1 ;

}

i f ( ( i n t (y−yPrev ) % 4) == 0) {

z += 1 .0000000 ;

}

e l s e i f ( ( i n t (y−yPrev ) % 4) == 2) {

z −= 1.0000000 ;

}

e l s e {
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y += 1.0000000 ;

}

i f ( z>=((R/2 . ) −1.5) ) { // next p a r t i c l e w i l l over lap the wa l l on the

r i g h t s i d e

z −= 1.0000000 ;

y += 1.0000000 ;

}

e l s e i f ( z<=0.000000){

z += 1 .0000000 ;

y += 1.0000000 ;

}

i += 1 ;

}

y = yPrev+dy ; // determines the y−coord ina te o f the f i x e d atom f o r the

next chain in the column us ing the l i gand coverage value and the s t a r t o f the

prev ious chain

}

x += dx ; // s t a r t a second column

}

f o r ( i n t i = 0 ; i<N/2 ; i++){ // l e f t wa l l

f << types [ i ] << ’\ t ’ << po s i t i o n s [ i ] [ 0 ] << ’\ t ’ << po s i t i o n s [ i ] [ 1 ] << ’\ t ’

<< ( p o s i t i o n s [ i ] [ 2 ] −R/2 . ) << endl ;

}

f o r ( i n t i = 0 ; i<N/2 ; i++){ // r i gh t wal l , t r a n s l a t e x−po s i t i o n s by 2 .0

f << types [ i ] << ’\ t ’ << po s i t i o n s [ i ] [ 0 ] << ’\ t ’ << po s i t i o n s [ i ] [ 1 ] << ’\ t ’

<< (−1.∗ po s i t i o n s [ i ] [ 2 ]+R/2 . ) << endl ;

}

f . c l o s e ( ) ;

}

The C++ code below initializes the chains on hexagonal lattices on two flat

plates (with an offset between lattices on opposing plates), at fixed ligand coverage.

#inc lude <cmath>

#inc lude <f stream>

#inc lude <iostream>
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#inc lude <c s t d l i b>

#inc lude <s t r i ng>

us ing namespace std ;

/∗

This s c r i p t gene ra t e s cha ins on two f l a t p l a t e s which are p a r a l l e l to the xy−plane .

The two p l a t e s can have a minimum su r f a c e s epa ra t i on o f approximately 2 . 0 ,

r e g a r d l e s s o f the number o f segments per chain . The cha ins w i l l loop around ,

t h e r e f o r e not pas s ing through the wa l l s . ” cha ins . xyz” i s the output f i l e

conta in ing p a r t i c l e types and coord inate s , and the t o t a l number o f atoms .

Vers ion 5 . 0 : an extens i on o f Vers ion 3 .0 that a l l ows the user to i n i t i a l i z e the

cha ins on a hexagonal l a t t i c e . Users should use 2 c h a i n s i n i t . cpp to determine what

the maxmimum v should be f o r the system : f o r 64 cha ins per wa l l ( assuming 8 rows

and 8 columns ) with 8 segments per chain , the minimum x , y−dimensions must be 32 ,

90 sigma ( r e s p e c t i v e l y ) . Theo r e t i c a l c a l c u l a t i o n f o r a rb i t a ry nPerChain and

nChain to be determined .

∗/

# de f i n e nPerChain 8 // Number o f monomers per chain

# de f i n e nChain 64 // number o f cha ins per wa l l

# de f i n e R 10 . // su r f a c e s epa ra t i on

# de f i n e v 0.022222222222 // l i gand coverage

# de f i n e xMax 32.00000 // maximum x coord ina te

# de f i n e dx 4.000000 // d i s t ance between columns o f cha ins attached to one wa l l .

Changeable , but i t i s recommended to have xMax = nPerChain∗dx f o r easy s e t t i n g o f

the PBC in the data f i l e

i n t N = 2∗nPerChain∗nChain ; // number o f monomers

f l o a t s epa ra t i on = ( nChain/v ) /xMax ; // determines the s epa ra t i on between rows in the

y−d i r e c t i o n

f l o a t dy = sepa ra t i on / sq r t ( nChain ) ; // determines the d i s t anc e between rows o f

cha ins in the y−d i r e c t i o n

i n t main ( ) {

ofstream f ;

f . open (” cha ins . xyz ”) ;

f << N << endl ;
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f << ” l i n e a r cha ins o f atoms” << endl ;

i n t types [N/ 2 ] ;

f l o a t p o s i t i o n s [N/ 2 ] [ 3 ] ;

f l o a t x = 0 .000000 ;

i n t i = 0 ; // keeps t rack o f the monomer index

f o r ( i n t l = 0 ; l < i n t ( s q r t ( nChain ) /2) ; l++){ // loop over one dimension o f

cha ins on a wal l

f l o a t y = 0 .000000 ;

f l o a t yPrev = 0 .0000000 ; // s t o r e s the po s i t i o n o f the s t a r t o f the prev ious

chain in the column

f o r ( i n t j =0; j<s q r t ( nChain ) ; j++){ // loop over second dimension o f cha ins

on a wal l

f l o a t z = 0 .000000 ;

f o r ( i n t k = 0 ; k<nPerChain ; k++){ // loop over beads in one chain

i f ( k==0){

yPrev = y ; // s t o r e s the po s i t i o n o f the s t a r t o f the chain

}

po s i t i o n s [ i ] [ 0 ] = x ;

p o s i t i o n s [ i ] [ 1 ] = y ;

p o s i t i o n s [ i ] [ 2 ] = z ;

i f ( k % nPerChain == 0) { // f i x ed atom

types [ i ] = 2 ;

}

e l s e {

types [ i ] = 1 ;

}

i f ( ( i n t (y−yPrev ) % 4) == 0) {

z += 1 .0000000 ;

}

e l s e i f ( ( i n t (y−yPrev ) % 4) == 2) {

z −= 1.0000000 ;

}

e l s e {

y += 1.0000000 ;
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}

i f ( z>=R) { // next p a r t i c l e w i l l over lap the wa l l on the r i gh t s i d e

z −= 1.0000000 ;

y += 1.0000000 ;

}

e l s e i f ( z<=0.000000){

z += 1 .0000000 ;

y += 1.0000000 ;

}

i += 1 ;

}

y = yPrev+2∗dy ; // determines the y−coord ina te o f the f i x e d atom f o r the

next chain in the column us ing the l i gand coverage value and the s t a r t o f the

prev ious chain

}

x += dx ; // s t a r t a second column

}

f o r ( i n t i = 0 ; i<N/4 ; i++){ // l e f t wa l l f i r s t row

f << types [ i ] << ’\ t ’ << po s i t i o n s [ i ] [ 0 ] << ’\ t ’ << po s i t i o n s [ i ] [ 1 ] << ’\ t ’

<< ( p o s i t i o n s [ i ] [ 2 ] −R/2 . ) << endl ;

}

f o r ( i n t i = 0 ; i<N/4 ; i++){ // l e f t wal l , second row

f << types [ i ] << ’\ t ’ << ( p o s i t i o n s [ i ] [ 0 ]+ dx /2 . ) << ’\ t ’ << ( p o s i t i o n s [ i

] [ 1 ]+ dy ) << ’\ t ’ << ( p o s i t i o n s [ i ] [ 2 ] −R/2 . ) << endl ;

}

f o r ( i n t i = 0 ; i<N/4 ; i++){ // r i gh t wal l , t r a n s l a t e x−po s i t i o n s by 2 . 0 , f i r s t

row

f << types [ i ] << ’\ t ’ << ( p o s i t i o n s [ i ] [ 0 ]+ dx /2 . ) << ’\ t ’ << po s i t i o n s [ i ] [ 1 ]

<< ’\ t ’ << (−1.∗ po s i t i o n s [ i ] [ 2 ]+R/2 . ) << endl ;

}

f o r ( i n t i = 0 ; i<N/4 ; i++){ // r i gh t wal l , t r a n s l a t e x−po s i t i o n s by 2 . 0 , second

row

f << types [ i ] << ’\ t ’ << po s i t i o n s [ i ] [ 0 ] << ’\ t ’ << ( p o s i t i o n s [ i ] [ 1 ]+ dy ) <<

’\ t ’ << (−1.∗ po s i t i o n s [ i ] [ 2 ]+R/2 . ) << endl ;
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}

f . c l o s e ( ) ;

}

The C++ code below initializes the chains on square lattices on two flat plates

(with an offset between lattices on opposing plates), at fixed ligand coverage.

#inc lude <cmath>

#inc lude <f stream>

#inc lude <iostream>

#inc lude <c s t d l i b>

#inc lude <s t r i ng>

us ing namespace std ;

/∗

This s c r i p t gene ra t e s cha ins on two f l a t p l a t e s which are p a r a l l e l to the xy−plane .

The two p l a t e s can have a minimum su r f a c e s epa ra t i on o f approximately 2 . 0 ,

r e g a r d l e s s o f the number o f segments per chain . The cha ins w i l l loop around ,

t h e r e f o r e not pas s ing through the wa l l s . ” cha ins . xyz” i s the output f i l e

conta in ing p a r t i c l e types and coord inate s , and the t o t a l number o f atoms .

Vers ion 5 . 0 : an extens i on o f Vers ion 3 .0 that a l l ows the user to s p e c i f y a l i gand

coverage value which i s f i x ed over a l l s epa ra t i on d i s t an c e s . The cha ins are

i n i t i a l i z e d in a square l a t t i c e on one wal l , and another ( o f f s e t ) square l a t t i c e

on the second wal l .

∗/

# de f i n e nPerChain 8 // Number o f monomers per chain

# de f i n e nChain 64 // number o f cha ins per wa l l

# de f i n e R 10 . // su r f a c e s epa ra t i on

# de f i n e v 0.022222222222 // l i gand coverage

i n t N = 2∗nPerChain∗nChain ; // number o f monomers

f l o a t s epa ra t i on = sq r t ( nChain/v ) ; // determines the s i d e l ength ( both x and y )

f l o a t ds = sepa ra t i on / sq r t ( nChain ) ; // determines the d i s t anc e between rows o f

cha ins in the y−d i r e c t i o n

i n t main ( ) {

cout << ” Separat ion ” << s epa ra t i on << endl ;
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cout << ”ds ” << ds << endl ;

o f s tream f ;

f . open (” cha ins . xyz ”) ;

f << N << endl ;

f << ” l i n e a r cha ins o f atoms” << endl ;

i n t types [N/ 2 ] ;

f l o a t p o s i t i o n s [N/ 2 ] [ 3 ] ;

f l o a t x = 0 .000000 ;

i n t i = 0 ; // keeps t rack o f the monomer index

f o r ( i n t l = 0 ; l < s q r t ( nChain ) ; l++){ // loop over one dimension o f cha ins on a

wal l

f l o a t y = 0 .000000 ;

f l o a t yPrev = 0 .0000000 ; // s t o r e s the po s i t i o n o f the s t a r t o f the prev ious

chain in the column

f o r ( i n t j =0; j<s q r t ( nChain ) ; j++){ // loop over second dimension o f cha ins

on a wal l

f l o a t z = 0 .000000 ;

f o r ( i n t k = 0 ; k<nPerChain ; k++){ // loop over beads in one chain

i f ( k==0){

yPrev = y ; // s t o r e s the po s i t i o n o f the s t a r t o f the chain

}

po s i t i o n s [ i ] [ 0 ] = x ;

p o s i t i o n s [ i ] [ 1 ] = y ;

p o s i t i o n s [ i ] [ 2 ] = z ;

i f ( k % nPerChain == 0) { // f i x ed atom

types [ i ] = 2 ;

}

e l s e {

types [ i ] = 1 ;

}

i f ( ( i n t (y−yPrev ) % 4) == 0) {

z += 1 .0000000 ;

}

e l s e i f ( ( i n t (y−yPrev ) % 4) == 2) {
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z −= 1.0000000 ;

}

e l s e {

y += 1.0000000 ;

}

i f ( z>=R) { // next p a r t i c l e w i l l over lap the wa l l on the r i gh t s i d e

z −= 1.0000000 ;

y += 1.0000000 ;

}

e l s e i f ( z<=0.000000){

z += 1 .0000000 ;

y += 1.0000000 ;

}

i += 1 ;

}

y = yPrev+ds ; // determines the y−coord ina te o f the f i x e d atom f o r the

next chain in the column us ing the l i gand coverage value and the s t a r t o f the

prev ious chain

}

x += 2.∗ ds ; // s t a r t a second column

}

f o r ( i n t i = 0 ; i<N/2 ; i++){ // l e f t wa l l

f << types [ i ] << ’\ t ’ << po s i t i o n s [ i ] [ 0 ] << ’\ t ’ << po s i t i o n s [ i ] [ 1 ] << ’\ t ’

<< ( p o s i t i o n s [ i ] [ 2 ] −R/2 . ) << endl ;

}

f o r ( i n t i = 0 ; i<N/2 ; i++){ // r i gh t wal l , t r a n s l a t e x−po s i t i o n s by 2 .0

f << types [ i ] << ’\ t ’ << ( p o s i t i o n s [ i ] [ 0 ]+ ( 0 . 5 ∗ ds ) ) << ’\ t ’ << po s i t i o n s [ i

] [ 1 ] << ’\ t ’ << (−1.∗ po s i t i o n s [ i ] [ 2 ]+R/2 . ) << endl ;

}

f . c l o s e ( ) ;

}
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The C++ code below initializes the chains on square lattices on two flat plates

(with no offset between lattices on opposing plates), at fixed ligand coverage.

#inc lude <cmath>

#inc lude <f stream>

#inc lude <iostream>

#inc lude <c s t d l i b>

#inc lude <s t r i ng>

us ing namespace std ;

/∗

This s c r i p t gene ra t e s cha ins on two f l a t p l a t e s which are p a r a l l e l to the xy−plane .

The two p l a t e s can have a minimum su r f a c e s epa ra t i on o f approximately 5 . 5 ,

r e g a r d l e s s o f the number o f segments per chain . The cha ins w i l l loop around ,

t h e r e f o r e not pas s ing through the wa l l s . ” cha ins . xyz” i s the output f i l e

conta in ing p a r t i c l e types and coord inate s , and the t o t a l number o f atoms .

Vers ion 6 . 0 : An extens i on o f Vers ion 5 . 0 . This v e r s i on i n i t i a l i z e s the cha ins so

that there i s no o f f s e t between the cha ins on the two f l a t p l a t e s .

∗/

# de f i n e nPerChain 8 // Number o f monomers per chain

# de f i n e nChain 64 // number o f cha ins per wa l l

# de f i n e R 10 . // su r f a c e s epa ra t i on

# de f i n e v 0.022222222222 // l i gand coverage

i n t N = 2∗nPerChain∗nChain ; // number o f monomers

f l o a t s epa ra t i on = sq r t ( nChain/v ) ; // determines the s i d e l ength o f the l a t t i c e

f l o a t ds = sepa ra t i on / sq r t ( nChain ) ; // determines the d i s t anc e between rows and

columns o f cha ins

i n t main ( ) {

cout << ” Separat ion ” << s epa ra t i on << endl ;

cout << ”ds ” << ds << endl ;

o f s tream f ;

f . open (” cha ins . xyz ”) ;

f << N << endl ;

f << ” l i n e a r cha ins o f atoms” << endl ;
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i n t types [N/ 2 ] ;

f l o a t p o s i t i o n s [N/ 2 ] [ 3 ] ;

f l o a t x = 0 .000000 ;

i n t i = 0 ; // keeps t rack o f the monomer index

f o r ( i n t l = 0 ; l < s q r t ( nChain ) ; l++){ // loop over one dimension o f cha ins on a

wal l

f l o a t y = 0 .000000 ;

f l o a t yPrev = 0 .0000000 ; // s t o r e s the po s i t i o n o f the s t a r t o f the prev ious

chain in the column

f o r ( i n t j =0; j<s q r t ( nChain ) ; j++){ // loop over second dimension o f cha ins

on a wal l

f l o a t z = 0 .000000 ;

f o r ( i n t k = 0 ; k<nPerChain ; k++){ // loop over beads in one chain

i f ( k==0){

yPrev = y ; // s t o r e s the po s i t i o n o f the s t a r t o f the chain

}

po s i t i o n s [ i ] [ 0 ] = x ;

p o s i t i o n s [ i ] [ 1 ] = y ;

p o s i t i o n s [ i ] [ 2 ] = z ;

i f ( k % nPerChain == 0) { // f i x ed atom

types [ i ] = 2 ;

}

e l s e {

types [ i ] = 1 ;

}

i f ( ( i n t (y−yPrev ) % 4) == 0) {

z += 1 .0000000 ;

}

e l s e i f ( ( i n t (y−yPrev ) % 4) == 2) {

z −= 1.0000000 ;

}

e l s e {

y += 1.0000000 ;

}
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i f ( z>=((R/2 . ) −1.5) ) { // next p a r t i c l e w i l l over lap the wa l l on the

r i g h t s i d e

z −= 1.0000000 ;

y += 1.0000000 ;

}

e l s e i f ( z<=0.000000){

z += 1 .0000000 ;

y += 1.0000000 ;

}

i += 1 ;

}

y = yPrev+ds ; // determines the y−coord ina te o f the f i x e d atom f o r the

next chain in the column us ing the l i gand coverage value and the s t a r t o f the

prev ious chain

}

x += ds ; // s t a r t a second column

}

f o r ( i n t i = 0 ; i<N/2 ; i++){ // l e f t wa l l

f << types [ i ] << ’\ t ’ << po s i t i o n s [ i ] [ 0 ] << ’\ t ’ << po s i t i o n s [ i ] [ 1 ] << ’\ t ’

<< ( p o s i t i o n s [ i ] [ 2 ] −R/2 . ) << endl ;

}

f o r ( i n t i = 0 ; i<N/2 ; i++){ // r i gh t wal l , t r a n s l a t e x−po s i t i o n s by 2 .0

f << types [ i ] << ’\ t ’ << po s i t i o n s [ i ] [ 0 ] << ’\ t ’ << po s i t i o n s [ i ] [ 1 ] << ’\ t ’

<< (−1.∗ po s i t i o n s [ i ] [ 2 ]+R/2 . ) << endl ;

}

f . c l o s e ( ) ;

}

The TCL script below was used to create the bonds between beads that were

closer than a certain threshold value. This script was adapted by Professor Alan

Denton from a tutorial written by Axel Kohlmeyer that explains the use of LAMMPS

and VMD to build bead-spring models of polymers.

#!/usr /bin / t c l s h

# use topo too l s to generate topology data from coord ina te data
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# fo r l i n e a r cha ins o f model p a r t i c l e s .

##############################################

# load coord inate s , but don ’ t automat i ca l l y compute bonds .

mol new cha ins . xyz autobonds no wa i t f o r a l l

# s e t atom name , type and rad iu s f o r a l l atoms

s e t s e l [ a tomse l ec t top a l l ]

$ s e l s e t rad iu s 0 .85

$ s e l s e t name A

$ s e l s e t type A

$ s e l s e t mass 1 .0

# bonds are computed based on d i s t ance c r i t e r i o n : 0 . 6 ∗ ( r A + r B ) > r AB .

# with rad iu s 0 .85 the c u t o f f i s 1 . 02 , so p a r t i c l e s 1 . 0 un i t apart w i l l be bonded .

mol bondsreca l c top

# now recompute bond types .

# by de f au l t a s t r i n g l a b e l : <atom type 1>−<atom type 2>

# we have a l l atoms o f type A, so the re should be only

# one bond type , A−A

topo retypebonds

vmdcon − i n f o ” as s i gned [ topo numbondtypes ] bond types to [ topo numbonds ] bonds : ”

vmdcon − i n f o ”bondtypes : [ topo bondtypenames ] ”

# now der i v e ang le d e f i n i t i o n s from bond topology .

# every two bonds that share an atom y i e l d an ang le .

topo gue s sang l e s

vmdcon − i n f o ” as s i gned [ topo numangletypes ] ang le types to [ topo numangles ] ang l e s : ”

vmdcon − i n f o ” ang l e types : [ topo angletypenames ] ”

# now l e t VMD reana lyze the molecu lar s t r u c tu r e

# th i s i s needed to de t e c t fragments /molecu le s

# a f t e r we have recomputed the bonds

mol r eana lyze top
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# now se t box dimensions and wr i t e out the r e s u l t as a lammps data f i l e .

pbc s e t {100 .0 100 .0 100 .0 90 .0 90 .0 90 .0}

topo writelammpsdata data . cha ins ang le

# done . now ex i t vmd

qu i t

The Python code below was used to change the types of the beads that were

fixed to the walls to distinguish them from beads that could move. It generated a

data file that was used in place of the one generated by the above TCL script.

# This code changes the types o f the f i x ed atoms to 2 from 1 , f o r cha ins cover ing 2

s u r f a c e s

# Users must take the ”Atoms” part o f the data . cha ins f i l e and copy a l l o f the atom

numbers , types , and coo rd ina t e s in to a f i l e c a l l e d ’ cha i n spo s i t i on s ’ . S ta r t from

the f i r s t l i n e conta in ing atom data .

# This code somehow produces atom 1 twice in the new data . cha ins f i l e , be sure to

d e l e t e the extra one be f o r e running your s imu la t i on !

import numpy as np

nPerChain = 8 # number o f atoms per l i gand

N = 1024 # number o f atoms

f = open ( ’ cha i n spo s i t i on s ’ , ’ r ’ ) # read in the f i l e f o r coo rd ina t e s and atom types

data = f . r e a d l i n e s ( )

f . c l o s e ( )

p o s i t i o n s = l i s t ( )

f o r l i n e in data :

p o s i t i o n s . append ( l i n e . s p l i t ( ) )

f o r i in range ( l en ( p o s i t i o n s ) ) :

i f ( i n t ( p o s i t i o n s [ i ] [ 0 ] ) −1)%nPerChain == 0 :

p o s i t i o n s [ i ] [ 2 ] = ’2 ’ # change the atom types o f the r e s p e c t i v e atoms

f = open ( ’ data . chains ’ , ’ r ’ ) # open the f i l e f o r read ing
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datacha ins = f . r e a d l i n e s ( )

f . c l o s e ( )

c ha i n sF i l e = l i s t ( )

f o r l i n e in datacha ins : # take the o r i g i n a l data . cha ins f i l e and copy the data

cha i n sF i l e . append ( l i n e . s p l i t ( ) )

counter = 1

f o r i in range (34 , l en ( cha i n sF i l e ) ) : # Append the coo rd ina t e s with new atom types

cha i n sF i l e [ i ] = po s i t i o n s [ counter −1]

counter += 1

i f ( counter > N) :

break

f = open ( ’ data2 . chains ’ , ’w’ ) # Write data . cha ins with c o r r e c t atom types to a new

f i l e

f o r i in range ( l en ( cha i n sF i l e ) ) :

f o r j in range ( l en ( cha i n sF i l e [ i ] ) ) :

f . wr i t e ( s t r ( c ha i n sF i l e [ i ] [ j ] ) + ” ”)

f . wr i t e ( ’\n ’ )

f . c l o s e ( )

The script below is a sample LAMMPS input script, used to run the simulation.

Using this particular input script, we are able to run 4 simulations sequentially without

having to submit the input script 4 times. Because of how large one data file (needed

to initialize the system) is, we have not included one in this thesis. However, these

data files are generated using the TCL script, so one can easily generate their own

data file.

# input s c r i p t f o r bead−sp r ing cha ins

un i t s l j

boundary p p f

atom sty l e ang le

v a r i a b l e r index 2 .5 3 . 3 . 5 4 .

v a r i a b l e w index 1 .25 1 .5 1 .75 2 .

l og l og . $r

read data data . cha in s$ r

# i n t e r a c t i o n s t y l e s
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p a i r s t y l e l j / cut $r

bond s ty l e harmonic

a n g l e s t y l e harmonic

group 1 type 1 # atoms not at ends o f cha ins w i l l be a l lowed to move

group 2 type 2 # atoms at ends o f cha ins w i l l be he ld f i x ed

# don ’ t compute non−bonded i n t e r a c t i o n s where we have bonded po t e n t i a l s

s p e c i a l bond s l j / cou l 0 . 0 0 . 0 1 .0

# f o r c e f i e l d parameters

p a i r c o e f f ∗ ∗ 1 . 1 .

bond coe f f 1 100 . 1 .

a n g l e c o e f f 1 10 . 120 .

# run a few s t ep s o f MD to break symmetries .

v e l o c i t y a l l c r e a t e 3 . 0 4324324 ro t yes

compute 1 a l l temp # computes temperature

compute 2 a l l pa i r l j / cut

f i x 1 1 nvt temp 3 .0 3 .0 100 .0 # move atoms o f type 1 ( a l l atoms except end atoms )

#f i x 2 1 wal l / l j 9 3 z l o −3.0 0 .5 1 . 0 0 .50 zh i 3 . 0 0 .5 1 .0 0 .50 # wa l l s with l j 9 3

po t e n t i a l ( t e s t i n g )

#f i x mod i f y 2 energy yes

f i x 2 1 wa l l / r e f l e c t z l o −$w zh i $w

f i x 4 a l l ave/ time 10000 100 1100000 c 1 c 2 f i l e avg$r . out mode s c a l a r

# dump data f i l e o f atomic coo rd ina t e s

#dump 1 a l l atom 10000 dump$r . cha ins

dump 1 a l l custom 10000 dump2$r . cha ins id type x y z

the rmo s ty l e custom step temp pre s s pe e t o t a l epa i r emol

thermo 10000
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run 1100000

c l e a r

next r

jump in . cha ins

Finally, the Python script below is used to calculate the force per unit area

between each wall and take the ensemble average over a simulation.

import math

import numpy as np

# Computes the f o r c e d i r e c t l y us ing the exact equat ions f o r the LJ f o r c e between

beads and the s t e r i c p o t e n t i a l between a bead and the wa l l

# Vers ion 2 . 0 : accounts f o r e q u i l i b r a t i o n time , not used to compute f o r c e s anymore

# Update l a t e Feb . 5 , 2018 : f i x ed the atom numbering i s s u e

# Update Feb . 6 , 2018 : Fixed the x/y component c a l c u l a t i o n s : the azimuthal ang le was

de f ined i n c o r r e c t l y in the update from Feb . 5

# bead−bead i n t e r a c t i o n parameters

R = 4 .

sigma = 1 .0 # LJ sigma

rcut = R # cu t o f f d i s t anc e

ep s i l o n = 1 . # LJ−ep s i l o n parameter

# LJ bead−wal l i n t e r a c t i o n parameters

sigmaW = 1.0

rcW = R

epsilonW = 1.0

# System parameters

wa l lPosLe f t = R/2 . # abso lu t e va lue o f the z−po s i t i o n o f the l e f t wa l l

wal lPosRight = R/2 .

N = 1024 # number o f beads
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nPerChain = 8 # number o f atoms per chain

nChains = 128 # number o f cha ins

nt = 111 # number o f t imes teps output to the dump f i l e s

nt2 = 11 # number o f t imes teps used f o r e q u i l i b r a t i o n

# box dimensions , taken from data . cha ins

xMin = 0 .0

xMax = 53.6656 # xMax from data f i l e

yMin = 0 .0

yMax = 53.6656 # yMax from data f i l e

t o l e r an c e = R # determines whether or not to check the i n t e r a c t i o n between a

p a r t i c l e and a p e r i o d i c image o f another p a r t i c l e

t imeStep = np . z e ro s ( nt , dtype=in t )

startOfData = np . z e r o s ( nt , dtype=in t )

wa l lLe f t = np . z e r o s ( ( nt ,N/2 ,4) ) # s t o r e s bead in fo rmat ion f o r each chain f o r each

t imestep on the l e f thand wal l

wal lRight = np . z e ro s ( ( nt ,N/2 ,4) ) # same as wa l lLe f t but f o r the r ighthand wal l

f o r c e s = np . z e r o s ( ( nt , 2 , 4 ) ) # s t o r e s the f o r c e va lue s f o r each t imestep : the middle

index has 0 f o r i n t e r a c t i o n s on the l e f t wa l l from the r i g h t wal l , 1 on r i gh t

from l e f t

F = 0 .0 # THE TOTAL FORCE AVERAGED OVER TIMESTEPS TO BE OUTPUT

# Temporari ly s t o r e s x , y−po s i t i o n s f o r the p a r t i c l e s

# on the l e f t wa l l and the r i g h t wal l , to account f o r PBC

xL = 0.0 # xPos f o r bead on the l e f t −hand wal l

yL = 0 .0 # yPos f o r bead on the l e f t −hand wal l

xR = 0 .0 # xPos f o r bead on the r ight−hand wal l

yR = 0 .0 # yPos f o r bead on the r ight−hand wal l

# METHODS

# ca l c u l a t e bead−wal l i n t e r a c t i o n s

de f l e f tCa lcu lateBeadWal lForce (k , atomIndex ) : # beads on the l e f t wa l l

f z = 0 .

99



rw = np . abs ( wa l lL e f t [ k ] [ atomIndex ] [ 3 ] − wallPosRight ) # r i gh t wa l l

i f rw < rcW:

f z += 3 .∗ epsilonW/rw ∗ ( 0 . 4∗ ( sigmaW/rw) ∗∗9−(sigmaW/rw) ∗∗3)

re turn f z

# c a l c u l a t e wal l−bead i n t e r a c t i o n s

de f l e f tCa lcu lateWal lBeadForce (k , atomIndex ) :

f z = 0 .

rw = np . abs ( wal lPosRight − wa l lLe f t [ k ] [ atomIndex ] [ 3 ] )

i f rw < rcW:

f z −= 3.∗ epsilonW/rw ∗ ( 0 . 4∗ ( sigmaW/rw) ∗∗9−(sigmaW/rw) ∗∗3)

re turn f z

# c a l c u l a t e bead−wal l i n t e r a c t i o n s

de f r ightCalcu lateBeadWal lForce (k , atomIndex ) : # beads on the r i g h t wa l l

f z = 0 .

rw = np . abs ( wal lRight [ k ] [ atomIndex ] [ 3 ]+ wal lPosLe f t )

i f rw < rcW:

f z −= 3.∗ epsilonW/rw ∗ ( 0 . 4∗ ( sigmaW/rw) ∗∗9−(sigmaW/rw) ∗∗3)

re turn f z

# c a l c u l a t e wal l−bead i n t e r a c t i o n s

de f r ightCalcu lateWal lBeadForce (k , atomIndex ) :

f z = 0 .

rw = np . abs (−1.∗wal lPosLe f t − wal lRight [ k ] [ atomIndex ] [ 3 ] )

i f rw < rcW:

f z += 3 .∗ epsilonW/rw ∗ ( 0 . 4∗ ( sigmaW/rw) ∗∗9−(sigmaW/rw) ∗∗3)

re turn f z

de f oppos i teBeadsInteract ionsLR ( timeNumber , fixedAtom , variableAtom , xRight , yRight ) :

# f o r c e s between beads on oppos i t e wa l l s

bForce = 0 .

fn = [ 0 . , 0 . , 0 . ]

rx = xRight−wa l lLe f t [ timeNumber ] [ fixedAtom ] [ 1 ]

ry = yRight−wa l lLe f t [ timeNumber ] [ fixedAtom ] [ 2 ]

rz = wal lRight [ timeNumber ] [ variableAtom ] [3 ] − wa l lLe f t [ timeNumber ] [ fixedAtom ] [ 3 ]
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r = np . sq r t ( rx∗ rx+ry∗ ry+rz ∗ rz )

i f r < rcut :

bForce = 24 .∗ ep s i l o n / r ∗ ( 2 .∗ ( sigma/ r ) ∗∗12−( sigma/ r ) ∗∗6)

i f ( bForce == 0 . ) :

r e turn fn # don ’ t compute components

cosTheta = np . dot ( [ rx , ry , rz ] , [ 0 . , 0 . , 1 . ] ) / r

fn [ 2 ] = bForce∗ cosTheta # f z

theta = np . a r c co s ( cosTheta )

phi = np . arctan2 ( ry , rx )

fn [ 0 ] = bForce ∗ np . s i n ( theta ) ∗ np . cos ( phi )

fn [ 1 ] = bForce ∗ np . s i n ( theta ) ∗ np . s i n ( phi )

i f r > 2 ∗ ∗ ( 1 . / 6 . ) ∗ sigma :

fn [ 0 ] ∗= −1.

fn [ 1 ] ∗= −1.

fn [ 2 ] ∗= −1.

re turn fn

de f oppos i teBeadsInteract ionsRL ( timeNumber , fixedAtom , variableAtom , xLeft , yLeft ) : #

f o r c e s between beads on oppos i t e wal l s , by swi tch ing the order o f the beads

bForce = 0 .

fn = [ 0 . , 0 . , 0 . ]

rx = xLeft−wal lRight [ timeNumber ] [ fixedAtom ] [ 1 ]

ry = yLeft−wal lRight [ timeNumber ] [ fixedAtom ] [ 2 ]

rz = wa l lLe f t [ timeNumber ] [ variableAtom ] [3 ] − wal lRight [ timeNumber ] [ fixedAtom ] [ 3 ]

r = np . sq r t ( rx∗ rx+ry∗ ry+rz ∗ rz )

i f r < rcut :

bForce += 24 .∗ ep s i l o n / r ∗ ( 2 .∗ ( sigma/ r ) ∗∗12−( sigma/ r ) ∗∗6)

i f bForce == 0 . :

r e turn fn

cosTheta = np . dot ( [ rx , ry , rz ] , [ 0 . , 0 . , 1 . ] ) / r

fn [ 2 ] = bForce∗ cosTheta # f z

theta = np . a r c co s ( cosTheta )

phi = np . arctan2 ( ry , rx )

fn [ 0 ] = bForce ∗ np . s i n ( theta ) ∗ np . cos ( phi )

fn [ 1 ] = bForce ∗ np . s i n ( theta ) ∗ np . s i n ( phi )

i f r > 2 ∗ ∗ ( 1 . / 6 . ) ∗ sigma : # a t t r a c t i v e f o r c e
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fn [ 0 ] ∗= −1.

fn [ 1 ] ∗= −1.

fn [ 2 ] ∗= −1.

re turn fn

# the execut ion o f the program

f = open ( ’dump . chains ’ , ’ r ’ )

dump = f . r e a d l i n e s ( )

f . c l o s e ( )

j = 0 # index f o r timeStep array when determining s t a r t o f data f o r each t imestep

f o r i in range ( l en (dump) ) :

i f dump [ i ] . f i nd ( ’NUMBER OF ATOMS’ ) != −1:

t imeStep [ j ] = in t (dump [ i −1])

startOfData [ j ] = i+7 # s t o r e s index o f s t a r t o f the data f o r the t imestep

j += 1

# Extract data o f the beads and p lace them in ar rays accord ing to which wal l they

are attached to

f o r i in range ( nt2 , nt ) :

l e f tCount = 0

rightCount = 0

k = startOfData [ i ]

whi l e dump [ k ] . f i nd ( ’ITEM’ ) == −1:

atomInfo = dump [ k ] . s p l i t ( ’ ’ )

numberOfAtom = in t ( atomInfo [ 0 ] )

i f numberOfAtom <= (N/2) :

wa l lL e f t [ i ] [ l e f tCount ] [ 0 ] = f l o a t ( atomInfo [ 0 ] ) # atom number

wa l lLe f t [ i ] [ l e f tCount ] [ 1 ] = f l o a t ( atomInfo [ 2 ] ) # x po s i t i o n s

wa l lLe f t [ i ] [ l e f tCount ] [ 2 ] = f l o a t ( atomInfo [ 3 ] ) # y po s i t i o n s

wa l lLe f t [ i ] [ l e f tCount ] [ 3 ] = f l o a t ( atomInfo [ 4 ] ) # z po s i t i o n s

l e f tCount += 1

e l s e :

wal lRight [ i ] [ r ightCount ] [ 0 ] = f l o a t ( atomInfo [ 0 ] ) # atom number

wal lRight [ i ] [ r ightCount ] [ 1 ] = f l o a t ( atomInfo [ 2 ] ) # x po s i t i o n s

wal lRight [ i ] [ r ightCount ] [ 2 ] = f l o a t ( atomInfo [ 3 ] ) # y po s i t i o n s
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wal lRight [ i ] [ r ightCount ] [ 3 ] = f l o a t ( atomInfo [ 4 ] ) # z po s i t i o n s

r ightCount += 1

k += 1

i f k == len (dump) :

break

p r in t (” Extracted p a r t i c l e coord inate s , now computing f o r c e s ” + ’\n ’ )

average = 0 .0

g = open ( ’ f o r c e s ’ + s t r (R) , ’w’ )

f o r k in range ( nt2 , nt ) : # loop over t imes teps computed

f o r i in range (N/2) : # loop over p a r t i c l e s on the l e f t −hand wal l

#i f i n t ( wa l lLe f t [ k ] [ i ] [ 0 ] ) % nPerChain != 1 : # not a f i x ed bead on the l e f t −

hand wal l

#f o r c e s [ k ] [ 1 ] [ 2 ] += le f tCa lcu lateBeadWal lForce (k , i )

#f o r c e s [ k ] [ 0 ] [ 2 ] += le f tCa lcu lateWal lBeadForce (k , i )

f o r j in range (N/2) :

xR = wal lRight [ k ] [ j ] [ 1 ]

yR = wal lRight [ k ] [ j ] [ 2 ]

oppBeadsForces = oppos i teBeadsInteract ionsLR (k , i , j , xR ,yR)

f o r l in range (3 ) :

f o r c e s [ k ] [ 0 ] [ l ] += oppBeadsForces [ l ]

i f ( np . abs (xR−xMax)<t o l e r an c e ) : # check whether p a r t i c l e j i s near the

p lus x boundary

oppBeadsForces = oppos i teBeadsInteract ionsLR (k , i , j , xR−xMax ,yR)

f o r l in range (3 ) :

f o r c e s [ k ] [ 0 ] [ l ] += oppBeadsForces [ l ]

e l i f (np . abs (xR−xMin)<t o l e r an c e ) : # check near the minus x boundary

oppBeadsForces = oppos i teBeadsInteract ionsLR (k , i , j , xR+xMax ,yR)

f o r l in range (3 ) :

f o r c e s [ k ] [ 0 ] [ l ] += oppBeadsForces [ l ]

i f ( np . abs (yR−yMax)<t o l e r an c e ) : # check whether p a r t i c l e j i s near the

p lus y boundary

oppBeadsForces = oppos i teBeadsInteract ionsLR (k , i , j , xR , yR−yMax)

f o r l in range (3 ) :

f o r c e s [ k ] [ 0 ] [ l ] += oppBeadsForces [ l ]
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e l i f (np . abs (yR−yMin)<t o l e r an c e ) : # check near the minus y boundary

oppBeadsForces = oppos i teBeadsInteract ionsLR (k , i , j , xR ,yR+yMax)

f o r l in range (3 ) :

f o r c e s [ k ] [ 0 ] [ l ] += oppBeadsForces [ l ]

f o r i in range (N/2) : # cons id e r i n t e r a c t i o n s on the atoms on the r i g h t hand wal l

from the l e f t hand wal l

#i f i n t ( wal lRight [ k ] [ i ] [ 0 ] ) % nPerChain != 1 : # not a f i x ed bead on the

r ight−hand wall , DIFFERENT FROM THE ORIGINAL WALL CHAINS (WAS 0)

#f o r c e s [ k ] [ 0 ] [ 2 ] += rightCalcu lateBeadWal lForce (k , i )

#f o r c e s [ k ] [ 1 ] [ 2 ] += rightCalcu lateWal lBeadForce (k , i )

f o r j in range (N/2) :

xL = wa l lLe f t [ k ] [ j ] [ 1 ]

yL = wa l lLe f t [ k ] [ j ] [ 2 ]

oppBeadsForces2 = oppos i teBeadsInteract ionsRL (k , i , j , xL , yL)

f o r l in range (3 ) :

f o r c e s [ k ] [ 1 ] [ l ] += oppBeadsForces2 [ l ]

i f ( np . abs (xL−xMax)<t o l e r an c e ) : # check whether p a r t i c l e j i s near the

p lus x boundary

oppBeadsForces2 = oppos i teBeadsInteract ionsRL (k , i , j , xL−xMax , yL)

f o r l in range (3 ) :

f o r c e s [ k ] [ 1 ] [ l ] += oppBeadsForces2 [ l ]

e l i f (np . abs (xL−xMin)<t o l e r an c e ) : # check near the minus x boundary

oppBeadsForces2 = oppos i teBeadsInteract ionsRL (k , i , j , xL+xMax , yL)

f o r l in range (3 ) :

f o r c e s [ k ] [ 1 ] [ l ] += oppBeadsForces2 [ l ]

i f ( np . abs (yL−yMax)<t o l e r an c e ) : # check whether p a r t i c l e j i s near the

p lus y boundary

oppBeadsForces2 = oppos i teBeadsInteract ionsRL (k , i , j , xL , yL−yMax)

f o r l in range (3 ) :

f o r c e s [ k ] [ 1 ] [ l ] += oppBeadsForces2 [ l ]

e l i f (np . abs (yL−yMin)<t o l e r an c e ) : # check near the minus y boundary

oppBeadsForces2 = oppos i teBeadsInteract ionsRL (k , i , j , xL , yL+yMax)

f o r l in range (3 ) :

f o r c e s [ k ] [ 1 ] [ l ] += oppBeadsForces2 [ l ]

forceMag = 0 .0

forceMag2 = 0 .0

104



f o r l in range (3 ) :

forceMag += ( f o r c e s [ k ] [ 0 ] [ l ] ) ∗∗2

forceMag2 += ( f o r c e s [ k ] [ 0 ] [ l ] ) ∗∗2

f o r c e s [ k ] [ 0 ] [ 3 ] = np . sq r t ( forceMag )

f o r c e s [ k ] [ 1 ] [ 3 ] = np . sq r t ( forceMag2 )

i f f o r c e s [ k ] [ 0 ] [ 2 ] < 0 . : # s i g n i f i e s f z away from the r i g h t wa l l a . k . a .

r e pu l s i v e

f o r c e s [ k ] [ 0 ] [ 3 ] ∗= −1. # keep d i r e c t i o n s c on s i s t e n t with the coord ina te

system used in the s imu la t i on

i f f o r c e s [ k ] [ 1 ] [ 2 ] < 0 . : # a t t r a c t i v e f o r c e on the r i gh t wa l l from the l e f t wal l

, po in t ing in the negat ive−z d i r e c t i o n

f o r c e s [ k ] [ 1 ] [ 3 ] ∗= −1.

p r i n t ( ’ t imestep ’ + s t r ( k ) + ’ on the l e f t wa l l ’ + s t r ( f o r c e s [ k ] [ 0 ] ) )

p r i n t ( ’ t imestep ’ + s t r ( k ) + ’ on the r i g h t wa l l ’ + s t r ( f o r c e s [ k ] [ 1 ] ) )

average += f o r c e s [ k ] [ 0 ] [ 3 ]

g . wr i t e ( s t r ( t imeStep [ k ] ) + ’ ’ + s t r ( f o r c e s [ k ] [ 0 ] [ 3 ] ) + ’\n ’ )

F += 0 .5∗ ( f o r c e s [ k ] [ 0 ] [ 3 ] − f o r c e s [ k ] [ 1 ] [ 3 ] ) # as g iven in Marla et . a l . 2005

average /= f l o a t ( nt−nt2 )

F /= f l o a t ( nt−nt2 )

F /= ( (xMax−xMin) ∗(yMax−yMin) ) # f o r c e per un i t area

p r i n t ( ’ Force ’ + s t r (F) )

g . wr i t e ( ’ Force ’ + s t r (F) )

g . c l o s e ( )
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