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ABSTRACT

The structure and function of polymers in confined environments, e.g., biopolymers in the

cytoplasm, are affected by macromolecular crowding. To explore the influence of solvent qual-

ity and dimensionality on conformations of crowded polymers, polymers are modeled as penetra-

ble ellipsoids/ellipses, whose shapes are governed by the statistics of random walks. Within this

coarse-grained model, Monte Carlo simulations of two and three-dimensional polymer-nanoparticle

mixtures, including trial changes in polymer size and shape, are performed. Penetration of poly-

mers by nanoparticles is incorporated via a free energy cost predicted by polymer field theory.

Simulation results of polymer conformation are compared with predictions of free-volume/area

theory for polymers in good and theta solvents. Results indicate that dimensionality and solvent

quality significantly affect crowded conformation, especially in the limit of small crowders. This

approach may help to motivate future experimental studies of polymers in crowded environments,

with relevance for drug delivery.
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1. INTRODUCTION

Macromolecular crowding occurs when the space available to a macromolecule in solution is

reduced by the presence of other macromolecules or boundaries. Over the last several decades, this

phenomenon has attracted strong interest within the biophysical community due to its ubiquity

and influence in cellular and other biological environments [4]. The cellular interior is known to

contain a dense population of macromolecules, occupying ∼20-40% of the available volume [5].

The resulting excluded volume effects alter the diffusional [6] and conformational behavior of larger

biopolymers.

Crowded constraints in the cellular interior significantly modify biopolymer processes, such

as protein folding, therein [7]. The impact of this crowded environment on polymer behavior has

been investigated over the past several decades through various theoretical/computational, and

experimental studies. In a computational study, the functionality of human telomerase RNA was

found to be influenced by crowded conditions [8]. The results of a recent experimental study [9]

indicate that crowding influences actin folding reactions. In an experimental study [1] DNA was

subjected to crowding by dextran to replicate the crowded conditions inside the cytoplasm, it was

found that not only the conformation responded but that DNA was well suited to diffuse easily

though the crowded medium (see Fig. 1.1 for experimental images). Excluded volume interactions

between macromolecules likely play a role in biopolymer organization within cellular interiors [10].

Macromolecular crowding has also been indicated as part of the pathogenesis of neurodegenerative

diseases such as Alzheimer’s [5].

Understanding how confinement of polymers in quasi-two dimensional environments like

cell membranes impacts polymer conformation is key to gaining insight on their behavior in such

environments. Cellular membranes are comprised of a lipid bilayer and embedded proteins. It is

likely that the high areal fractions (30-55% [11]) of proteins in this assembly alter the free energies

associated with protein (e.g. ion channel) conformations via a crowding effect [11]. In a recent

experimental study [2], DNA was absorbed onto a cationic lipid membrane and it was found that

the density of lipids influenced the conformation of the DNA molecules (see figure 1.2 for diagram

of experimental setup). This experimental study partly inspired this investigation.
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Figure 1.1. Fluorescently labeled DNA is shown to change conformation under the influence of
crowding by dextran. Reproduced in part from [1] with permission of The Royal Society of Chem-
istry

Figure 1.2. Experimental setup of fluorescently labeled DNA electrostatically bound to a freestand-
ing fluid cationic lipid membrane. Conformations of DNA were observed to change with respect to
the lipid headgroup concentration. Reproduced from [2] with permission of the American Physical
Society.
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It is well understood how solvent quality impacts the radius of gyration of linear homopoly-

mers [12]. Solvent quality is a parameter that not only dictates polymer conformation [13], but

also the thermodynamic behavior of polymer solutions [14], and the dielectric properties of poly-

electrolyte solutions [15]. What is not as well understood is how solvent quality influences polymer

size and shape in crowded environments.

Kuhn realized the aspherical nature of polymers when viewed from their principal axes

frame, rather than the lab frame [16]. Mathematical studies of fluctuating random walk polymers

have revealed that polymers are indeed aspherical and fluctuate in shape and size [17, 18, 19, 20, 21,

22]. By considering averages over random-walk shape polymers can be approximated as effective

ellipsoids/ellipses. The coarse-grained ellipsoidal/elliptical model of a polymer used in these studies

ties the conformation to random walk gyration-tensor eigenvalues. This study expands on previous

works [3, 23, 24] to the analysis of the influence of solvent quality and dimensionality on the

conformation of crowded polymers.

By comparing predictions from free-volume theory to results from molecular simulation,

the importance of solvent quality, and solution dimensionality for the shape and size of crowded

polymers is demonstrated. These parameters are probed using a simple coarse-grained model of

hard nanosphere crowders plus ellipsoidal polymers in 3D and hard nanodisk crowders plus elliptical

polymers in 2D.

In the next section, the details of the coarse-grained model are outlined. In the third section,

the penetration model is discussed. Simulation methods and free volume theory are summarized

in the fourth section. Finally, the theoretical and simulation results are discussed and conclusions

are drawn in the last two sections.
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2. MODELS

2.1. Coarse-Grained Model of a Polymer

2.1.1. 3D Model

A coarse-grained model of a polymer as a fluctuating ellipsoid is used to study the influence

of crowding on polymer conformation. The coarse-grained approach used in this study is draws

from previous works on crowding and depletion-induced effects [3, 23, 24].

The shape distribution of the polymer is governed by the gyration tensor of a random-walk:

T =
1

N

N
∑

i=1

ri ri , (2.1)

where ri is the position relative to the center of mass of segment (step) i of N total segments. When

viewed from the principal axis frame, the randomly walking coil takes on an average shape that

can be characterized well by an ellipsoid. The surface of the ellipsoid can be expressed in terms of

the gyration tensor eigenvalues

x2

Λ1
+

y2

Λ2
+

z2

Λ3
= 3 , (2.2)

where the first, second, and third eigenvalues correspond to the longest, second longest, and shortest

principal axis of the ellipsoid. These eigenvalues determine the shape and size of the polymer.

The size of the polymer can be characterized by the radius of gyration:

Rp =

(

1

N

N
∑

i=1

r2i

)1/2

=
√

Λ1 + Λ2 + Λ3 . (2.3)

(the gyration tensor relates to the moment of inertia tensor I via T = R2
p1− I, with unit tensor 1.)

The root-mean-square (rms) radius of gyration, which can be measured in scattering experiments,

is given by

Rgrms =
√

〈R2
p〉 =

√

〈Λ1 + Λ2 + Λ3〉 . (2.4)

If the ensemble average in Eq. (2.4) is defined relative to a frame of reference that rotates

with the polymer’s principal axes and, furthermore, the principal axes are labelled to preserve the

4



Figure 2.1. Model of a polymer crowded by nanoparticles. The polymer is represented as an
ellipsoid that can fluctuate in size and shape and is penetrable by hard-sphere nanoparticles [3].
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Figure 2.2. 3D polymer eigenvalue distributions for (a) random walk polymers and (b) self-avoiding
walk polymers.
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order of the eigenvalues from largest to smallest (Λ1 > Λ2 > Λ3), then the average tensor describes

an anisotropic object [25, 26].

A three-dimensional SAW, which models conformations of a linear, nonideal polymer in a

good solvent, has an average shape determined by Monte Carlo simulations [27, 28] to be accurately

described by a normalized probability distribution,

P0(Λ1,Λ2,Λ3) =

3
∏

i=1

Pi0(Λi) , (2.5)

where for a SAW polymer,

Pi0(Λi) =
1

Γ(νi)

νi
αi

(

νiΛi

αi

)νi−1

exp

(

−νiΛi

αi

)

(2.6)

and αi and νi are fitting parameters. The factorized form assumed in Eq. (2.5) implies independent

eigenvalues. Although not exact, this assumption proves accurate, except for rare conformations in

which an extreme extension in one direction affects the probability of an extension in an orthogonal

direction. In the presence of nanosphere crowders, the shape distribution and the rms radius of

gyration Rg(φc) depend on the volume fraction φc of the crowders. In the absence of crowders

(φc = 0), a SAW polymer of N segments, each of length l, has rms radius of gyration Rg(0) = CNν l

with Flory exponent ν = 0.588 and amplitude C = 0.44108 [28]. In a θ-solvent, ν = 0.5, and C = 1√
6

[28].Since the gyration tensor eigenvalues increase with N in proportion to N2ν , it is convenient to

define scaled eigenvalues, λi ≡ Λi/(N
ν l)2. The shape distribution then can be expressed as

Pi0(λi) = aiλ
bi
i exp(−ciλi) , (2.7)

where the fitting parameters ai, bi, and ci, derived from αi and νi, are given in Table 2.

For a RW polymer, the uncrowded eigenvalue probability distributions take the form

Pi(λi) =
(aidi)

n1−1λ−ni

i

2Ki
exp

(

− λi

ai
− d2i

ai
λi

)

(2.8)

[29]. In terms of the scaled eigenvalues, the rms radius of gyration and the principal radii may be

6



Table 2.1. RW parameters for shape distribution in Eq. (2.8).

eigenvalue i Ki ai di ni

1 0.094551 0.08065 1.096 1/2

2 0.0144146 0.01813 1.998 5/2

3 0.0052767 0.006031 2.684 4

Table 2.2. SAW parameters for shape distribution in Eq. (2.7).

eigenvalue i ai bi ci

1 11847.9 2.35505 22.3563

2 1.11669×109 3.71698 148.715

3 1.06899×1014 4.84822 543.619

expressed as

Rg(φc) =
Rg(0)

C

√

λ1 + λ2 + λ3 (2.9)

and the principal radii may be expressed as

Ri(φc) =
Rg(0)

C

√

3λi . (2.10)

For an ellipsoidal polymer with principal radii R1, R2, R3, volume can be expressed exactly as

V =
4π

3
R1R2R3 (2.11)

or, in terms of scaled gyration tensor eigenvalues:

V (φ) =
4π

3

(

Rg(0)

C

)3
√

27λ1λ2λ3 (2.12)

The deviation of a polymer’s average shape from spherical can be quantified by an aspheric-

ity parameter [25, 26], defined as

A = 1− 3
λ1λ2 + λ1λ3 + λ2λ3

(λ1 + λ2 + λ3)2
. (2.13)

A perfect sphere has all eigenvalues equal and A = 0, while an elongated object with one eigenvalue

much larger than the others has A ≃ 1. Crowding agents modify polymer size and shape.

7



As in previous studies of crowding of ideal polymers in a θ-solvent [3, 24, 23], this model

extends the classic Asakura-Oosawa-Vrij (AOV) model of colloid-polymer mixtures [30, 31], which

idealizes nonadsorbing polymers as effective spheres of fixed size (radius of gyration). Although

qualitatively describing depletion-induced demixing of colloid-polymer mixtures, the AOV model

completely neglects polymer conformational fluctuations and the influence of crowding on polymer

size and shape. The AOV model also assumes that the polymers are impenetrable to the colloids.

2.1.2. 2D Model

The coarse-grained model for polymers confined to two dimensions is analogous to the model

in 3D. The lowered dimensionality will not change the underlying scaling approach. Polymers are

still modeled as random walks.

Within the 2D model, a polymer is treated as a coil of N identical connected segments.

The coil has a size and shape characterized by it’s gyration tensor T with components

Tki =
1

N

N
∑

k=1

rkirkj (2.14)

where rki is the ith component of it’s position vector rk of the kth segment relative to the center

of mass.

When viewed from the principal axis frame, the randomly walking coil takes on an average

shape best characterized by an ellipse. Because of this, an ideal 2D random walk polymer coil can

be modeled as a soft ellipse whose perimeter is expressed in cartesian coordinates as

x2

Λ1
+

y2

Λ2
= 2 (2.15)

where the first and second eigenvalues of this gyration tensor correspond to the longer and shorter

principal axes of the ellipse representation of the polymer (which, in the case of equation 2.15,

happen to lie on the x and y axes, respectively). The probability density function of an uncrowded

conformation corresponding to dimensionless scaled eigenvalues

λi =
Λi

Nl2
, (2.16)
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Table 2.3. Parameters for ideal (RW) shape distribution in Eq. (2.19).

eigenvalue i ai bi ci

1 139.2615 0.8769 13.5312

2 1.0176× 106 2.1012 111.5845

Table 2.4. Parameters for non-ideal (SAW) shape distribution in Eq. (2.19).

eigenvalue i ai bi ci

1 4.8519× 106 3.62054 49.3780

2 2.5501× 108 2.75939 256.564

where l is the length of each individual segment, is given by

P0(λ1, λ2) = P1(λ1)P2(λ2) (2.17)

under the assumption that fluctuations of each axis are independent. The individual reservoir

distributions of these eigenvalues are equivalent to

Pi0(Λi) =
1

Γ(νi)

νi
αi

(

νiΛi

αi

)νi−1

exp

(

−νiΛi

αi

)

. (2.18)

This distribution can be recast in terms of the scaled eigenvalues using the form

Pi0(λi) = aiλ
bi
i exp(−ciλi) (2.19)

The principal radii of the polymer can be expressed in terms of the scaled eigenvalues

Ri

Rr
g

=

√
2

C

√

λi (2.20)

where C= 1√
6
for a RW polymer and C=.328862 for a SAW polymer. The size of the coil can be

characterized by its radius of gyration

Rp =

(

1

N

N
∑

i=1

r2i

)
1
2

=
(

Λ1 + Λ2

)
1
2 (2.21)

which can be expressed, as above, in terms of the gyration tensor eigenvalues Λ1 and Λ2 (two

9
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Figure 2.3. 2D polymer eigenvalue distributions for (a) random walk polymers and (b) self-avoiding
walk polymers.

eigenvales for two dimensions). The root mean squared (rms) value of Rp

Rg =
√

〈

R2
p

〉

=
〈

Λ1 + Λ2

〉
1
2 (2.22)

can be found experimentally. 〈Rg〉 can be expressed in terms of the scaled gyration tensor eigen-

values,

〈Rg〉 =
1

C
〈λ1 + λ2〉1/2 (2.23)

The size of the polymer can also be characterized by the area

〈Area〉 = π〈R1R2〉 =
2

C2
〈
√

λ1λ2〉. (2.24)

The shape of the polymer is characterized by the asphericity. A 2D polymer with an

asphericity of 0 is a perfect circle, and a polymer with an asphericity of 1 is conformed as an

elongated chain. asphericity can be expressed in terms of the scaled eigenvalues

〈A〉 = 〈(λ1 − λ2)
2〉

〈(λ1 + λ2)2〉
. (2.25)
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2.2. Polymer-Nanoparticle Interaction

2.2.1. 3D Interaction

Penetration is allowed for with a penetration free-energy cost predicted by polymer-field

theory and scaling theory. Following previous work [3, 23, 24, 32], the free energy cost of a spherical

crowder of radius Rc penetrating the polymer, averaged over the surface of the polymer, is denoted

as ε. The penetration free energy cost for a SAW (good solvent) polymer is predicted by polymer

field theory [33, 34, 35, 36] as

βε ∝ 1

q1.29932
, (2.26)

where the polymer size ratio q = Rg/Rc ≫ 1, β = 1/(kBT ), and kB is the Boltzmann constant.

For a RW polymer, the free energy cost is predicted to be

βε ∝ 1

q

(

1 +
2

q
√
π
+

1

3q2

)

, (2.27)

The dependence of βε on q can be justified by a scaling argument [12]. Assuming that βε is

proportional to the fraction of polymer volume occupied by nanosphere in addition to the number

of polymer segments(N), a scaling ansatz is made

βε ∼ (Rc/Rg)
3Y (q) , (2.28)

where Y (q) is proportional toN . For a Flory exponent, ν, N ∼ R
1/ν
g . This implies that Y (q) ∼ q1/ν ,

therefore

βε ∼ (Rc/Rg)
3q1/ν ∼ q1/ν−3 , (2.29)

where ν=.5 for a θ-solvent and .588 for a good solvent.

The penetration-free energy profile is a step function. In the limit of small polymers (q ≈ 1),

the insertions of crowders becomes so energetically costly that polymers become virtually impen-

etrable and crowding occurs from outside of the polymer. In the limit of large polymers (q ≫ 1)

penetration is more likely to occur and crowding occurs from both the inside and outside of poly-

mers.

11



2.2.2. 2D Interaction

Similarly to 3D, penetration of polymers is allowed in 2D following from polymer-field theory

and scaling theory [12]. The penetration free energy cost for a disk penetrating a 2D SAW (good

solvent) polymer is

βε ∝ 1

q2/3
(q ≫ 1), (2.30)

and the penetration free energy for a RW (θ solvent) polymer is derived from polymer field theory:

βε ∝ 1 +
4

q
√
π
+

1

q2
. (2.31)

The dependence of ǫ on q can be justified by a simple scaling argument. Assuming that βε

is proportional to the fraction of the polymer area occupied by the nanodisk and the number of

polymer segments (N), a scaling ansatz is made

βε ∼ (Rc/Rp)
2Y (q) (2.32)

where Y (q) is proportional toN . For a Flory exponent, ν, N ∼ R
1/ν
g . This implies that Y (q) ∼ q1/ν ,

therefore

βǫ ∼ (Rc/Rp)
2q1/ν ∼ q1/ν−2 (2.33)

The penetration-free energy profile is a step function. In the limit of small q (q ≈ 1) the polymer

becomes virtually impenetrable and crowding is likely to occur from its outside. In the limit of

large q (q ≫ 1) the polymer becomes softer and susceptible to crowding from both its inside and

outside.
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3. COMPUTATIONAL METHODS

3.1. Monte Carlo Simulation

3.1.1. 3D Simulation

Figure 3.1. Snapshot of a simulation of Nn = 216 nanospheres (blue spheres) and one polymer (red
ellipsoid) in a cubic simulation cell. The polymer rms radius of gyration in the reservoir equals five
times the nanosphere radius (q=5).

Metropolis Monte Carlo (MC) simulation is used to calculate ensemble averages of crowded

polymer geometric properties. The simulation is performed within a cubic cell with periodic bound-

ary conditions. The volume of the cell, temperature, and number of particles in the cell are all

fixed (canonical ensemble). Every trial move consists of a trial displacement of every nanosphere,

a polymer displacement, polymer rotation, and polymer shape deformation. The tolerance for a

nanosphere and polymer displacement is chosen to be .01 the nanosphere radius, the rotation toler-
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ance is chosen to be .01 radians, and for the eigenvalues tolerances of ∆λ1 = .01, ∆λ2 = .003, ∆λ3

= .001 are used. The simulation was developed using the Open Source Physics Library in Java.

The acceptance probability for a trial change in configuration of the mixture is

Pconfig(old → new) = min

{

P0(λnew)

P0(λold)
e−β∆F , 1

}

(3.1)

where ∆F is the change in free energy associated with the configurational change, P0 is the shape

distribution of the uncrowded polymer, and λ represents a set of the three scaled gyration tensor

eigenvalues. Hard spheres interact via a hard sphere potential, meaning no overlap is allowed.

Consequently, any ∆F will be the result of a nanosphere overlapping or exiting the volume enclosed

by a soft, ellipsoidal polymer. A move that creates/eliminates an overlap will result in a change in

free energy equivalent to +/- βε (see section 2.2.1.). Within the simulation, determining whether

a nanosphere overlaps a polymer involves calculating the roots of a 6th-order polynomial in order

to find the closest point between a sphere and an ellipsoid.

By trial changes in the eigenvalues, and configuration of the hard-nanosphere fluid, the

polymer is allowed to evolve towards a new ensemble average shape and size. See figure 3.1 for a

snapshot of the simulation.

3.1.2. 2D Simulation

Metropolis Monte Carlo (MC) simulation is used to calculate ensemble averages of crowded

polymer geometric properties. The simulation is performed within a square cell with periodic

boundary conditions. The area of the cell, temperature, and number of particles in the cell are

all fixed (canonical ensemble). Every trial move consists of a trial displacement of every nanodisk,

a polymer displacement, polymer rotation, and polymer shape deformation. The tolerance for a

nanodisk and polymer displacement is chosen to be .01 the nanodisk radius, the rotation tolerance

is chosen to be .01 radians, and for the eigenvalues tolerances of ∆λ1 = .01, ∆λ2 = .001 are used.

The simulation was developed using the Open Source Physics Library in Java.

The acceptance probability for a trial change in configuration of the mixture is the same as

in eq. 3.1. where ∆F is the change in free energy associated with the configurational change, P0

is the shape distribution of the uncrowded polymer, and λ represents a pair of the scaled gyration

tensor eigenvalues. Hard disks interact via a hard-disk potential, meaning no overlap is allowed.
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Figure 3.2. Snapshot of a simulation of Nn = 216 nanodisks (blue disks) and one polymer (red
ellipse) in a square simulation cell. The polymer rms radius of gyration in the reservoir equals five
times the nanodisk radius (q=5).

Consequently, any ∆F will be the result of a nanodisk overlapping or exiting the area enclosed

by a soft, elliptical polymer. A move that creates/eliminates an overlap will result in a change in

free-energy equivalent to +/- βε (see section 2.2.2.). Within the simulation, determining whether

a nanodisk overlaps a polymer involves calculating the roots of a 4th-order polynomial in order to

find the closest point between a disk and an ellipse.

By trial changes in the eigenvalues, and configuration of the hard-disk fluid, the polymer is

allowed to evolve towards a new ensemble average shape and size. See figure 3.2 for a snapshot of

the simulation.
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3.2. Free-Volume Theory

3.2.1. 3D Theory

Free-volume theory of crowding is a generalization of the theory of Lekkerkerker et al. [37]

from ensembles of hard, spherical polymers to soft, aspherical polymers. This mean-field theory is

used to guide the choice of simulation parameters and for theoretical predictions to compare with

simulation results of the model described in Sec. 2.1.1. and 2.2.1.. The following is a summary of

the free-volume theory used in recent relevant studies [3, 24, 23].

The key value in the theory is the effective free volume fraction, αeff(φc), defined as the

average free volume fraction available to a polymer amid a hard sphere fluid of volume fraction φc.

The effective free volume fraction can be used to predict the crowded-polymer shape distribution

P (λ;φc) = Pr(λ)
α(λ;φc)

αeff(λ;φc)
(3.2)

where λ is a set of scaled gyration tensor eigenvalues(λ1, λ2, λ3) characterizing a unique conforma-

tion of the polymer, Pr(λ) is the uncrowded shape distribution of the polymer, and α(λ;φc) is the

free volume fraction available to a polymer with a conformation characterized by λ in a hard sphere

fluid of volume fraction φc.

αeff(φn) is taken as an average of α(λ;φc) over uncrowded polymer shapes

αeff(φc) =

∫

dλPr(λ)α(λ;φc). (3.3)

α(λ;φc) is determined via generalized scaled-particle theory (see appendix for details on this cal-

culation). P(λi), as described in sec. 2.1.1., is used to determine the shape distributions. The

probability of each eigenvalue is determined by integrating over the other eigenvalues. As opposed

to previous studies [24, 3, 23], a strict ordering of eigenvalues(λ3 < λ2 < λ1) is imposed. For

example, consider finding the probability of some λ1 value:

P1(λ1;φc) =

∫ λ1

λ3

dλ2

∫ λ2

0

dλ3P (λ;φc). (3.4)

To find the ensemble average of some crowded polymer geometric property B, it is taken as an
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integral over crowded polymer shape

〈B〉 =
∫

dλB(λ)P (λ;φc) (3.5)

or, more explicitly

〈B〉 =
∫ ∞

λ2

dλ1

∫ λ1

λ3

dλ2

∫ λ2

0

dλ3B(λ1, λ2, λ3)P (λ1, λ2, λ3;φc) (3.6)

3.2.2. 2D Theory (Free-Area Theory)

Free-volume theory (outlined in the last section) can be scaled down to a free-area theory

of crowding based on the same assumptions. This mean-field theory is used to guide choices of

simulation parameters and for theoretical predictions to compare with simulation results of the

model described in sec. 2.1.1 and 2.2.2.

Analogous to free-volume theory, the key value in free-area theory is the effective free-area

fraction, αeff (φc), which is defined as the average free area fraction available to a polymer immersed

in a hard-disk fluid of area fraction φc. The effective free-area fraction can be used to calculate the

crowded shape distributions

P (λ;φc) = Pr(λ)
α(λ;φc)

αeff(λ;φc)
(3.7)

where λ represents a unique pair of gyration tensor eigenvalues (λ1,λ2) that characterize the polymer

conformation, Pr(λ) is the uncrowded probability of that conformation, and α(λ;φc) is the free-area

fraction available to the polymer.

The effective free-area fraction is taken as an integral over polymer conformations while

immersed in the hard disk fluid

αeff(φc) =

∫

dλPr(λ)α(λ;φc). (3.8)

α(λ;φc) is calculated via generalized scaled particle theory (see the appendix for the details of this

calculation). The probability for each scaled eigenvalue is determined by integrating over the other

eigenvalue probabilities while maintaining a strict ordering of eigenvalues (λ2 < λ1). For example,
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when calculating the probability of λ1 value:

P1(λ1;φc) =

∫ λ1

0

dλ2P (λ;φc). (3.9)

Ensemble average crowded polymer geometric properties (A) are taken as an integral over

polymer conformation

〈A〉 =
∫

dλA(λ)P (λ;φc) (3.10)

or, more explicitly

〈A〉 =
∫ ∞

λ2

dλ1

∫ λ1

0

dλ2A(λ1, λ2)P (λ1, λ2;φc) (3.11)
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4. RESULTS

4.1. The Influence of Solvent Quality and Polymer Size on Conformation

Five independent MC simulations were run for each combination of crowder volume fraction

and polymer size ratio (q). They consisted of Nn=216 nanoparticles initialized in a square lattice,

and one soft ellipsoidal polymer (dilute polymer limit). Following 5 × 104 MC steps to reach

equilibrium, the values of the three gyration tensor eigenvalues were collected 104 times at intervals

of 103 MC steps. Using the eigenvalue data, ensemble averages of polymer gyration tensor eigenvalue

distributions (Fig. 4.1), rms radius of gyration, effective volume, and asphericity (Fig. 4.2) are

computed for SAW polymers. The error bars represent the standard deviation computed between

the five independent runs.

Figure 4.1 shows simulation eigenvalue distribution data compared to free-volume theory

for q=5 and q=10 respectively. Both simulation and theory display ensemble average eigenvalues

shifting to smaller values, and a narrowing of distributions with increasing nanosphere volume

fraction. The shifts in the distributions for q=10 are more substantial than those for q=5. This

is clear from the changes in scale. These results indicate not only a tendency for the polymer

to decrease in length along each axis, but also undergo smaller size fluctuations with increasing

φc. Increasing deviation between simulation and mean field theory is expected with increasing

φc as correlations between the polymer and nanospheres become more significant. The larger the

polymer, the more severe the crowding effect on size and shape for a given φ.

Fig. 4.2, sub-figures a and b, show how polymer radius of gyration and volume (measures

of size) change with respect to φc. Both radius of gyration and volume decrease with increasing

φc. Polymers whose uncrowded size is the same as nanospheres (q=1) are relatively unaffected,

experiencing a 15% decrease in radius of gyration at most. Polymers whose uncrowded sizes are

substantially larger than nanospheres (q=5, and 10) experience a size change significantly larger

than the smaller polymers at the same φc. The results are in good agreement with free-volume

theory, with increasing deviation at higher φc and q where correlations are more severe. While

the response of ideal polymers and nonideal polymers to crowding is similar in general trend, they

differ quantitatively. Within the range of φc and q explored, larger nonideal polymers radius of
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Figure 4.1. Probability distributions for the eigenvalues of the gyration tensor of a crowded polymer
modeled as a self-avoiding walk: (a,d) λ1, (b,e) λ2, (c,f) λ3. Simulation data (symbols) are compared
with predictions of free-volume theory (solid curves) for a single ellipsoidal polymer, with uncrowded
rms radius of gyration equal to 5 (a,b,c) and 10 (d,e,f) times the nanoparticle radius (q = 5,10),
amidst Nn = 216 hard nanospheres with volume fraction φc = 0.1 (triangles), 0.2 (squares), and
0.3 (circles). Dashed curves show uncrowded distributions (φc = 0).
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Figure 4.2. Geometric properties of polymers are shown. Some are with respect to φ and some are
with respect to q. Simulation data are represented by points and free-volume theory is represented
by solid/dashed curves.
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gyration are less compressed at smaller φc when compared to their ideal counterparts, and are

more compressed after some φc. The q=1 nonideal polymer is less compressed over the range of

φc. These results indicate not only that the relative crowding impact on polymer size is dependent

on the density of crowders, but also on the uncrowded size of the polymers.

To elucidate the influence of uncrowded polymer size on its crowded size, Fig. 4.2, sub-

figures d and f, show how polymer radius of gyration and volume change with respect to q for each

φc. Both polymer radius of gyration and volume decrease with increasing q. At q=1, the difference

in radius of gyration and volume values at different φc is small compared to the larger q values,

consistent with the observations in the previous paragraph. As q gets larger the difference between

radius of gyration values for different φc increases, indicating that larger polymer size responds

more drastically to changes in crowder concentration.

Polymer shape was characterized with asphericity. In Fig. 4.2c, the asphericity for different

q polymer with respect to crowder density φc is displayed. At the same q, compaction is more severe

for the RW polymer than for the SAW polymer. RW polymer than it is for the SAW polymer.

With increasing crowder volume fraction, both SAW and RW polymers become less aspherical, or

more compact and spherical. At larger q, polymers compact more with increasing crowder volume

fraction than at smaller q.

To make the relationship between uncrowded polymer size and crowded shape clearer, Fig.

4.2f. shows how polymer asphericity depends on the uncrowded size. The trend is similar for each

constant φc value; the larger the polymer, the more its shape is deformed. At larger φc values, the

more deformed the polymer; these results are consistent with the asphericity results displayed in

figure 4.2c. So, not only does the asphericity of polymers depend on the crowder volume fraction,

but also on the uncrowded size of the polymers. Furthermore, for similar values of φc and q,

polymers in a good solvent are less crowded than those in a theta solvent, suggesting that they are

more resilient to changes in shape under crowded conditions.

The observed influence of polymer size (q) on the crowding effect is consistent with the

scaling relations outlined in section 2.2.1.. The volume of the polymer goes as q3 (V ∝ q3).

Using the SAW polymer as an example, the free energy cost of nanoparticle insertion goes as

1
q1.29932

(

βε ∝ 1
q1.29932

)

. It follows that the overall energetic contribution of crowding goes as q1.7

(∆F ∝ q1.7) indicating that the crowding effect increases significantly with q.
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4.2. Constant Number of Segments
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Figure 4.3. Predictions for PEG conformations crowded by Ficoll 70. Comparison is made between
crowded SAW and RW PEG, each comprised of the same number of segments (N ≈ 6000).

Up until this point polymers in a theta solvent (RW) have been compared to those in good

solvent (SAW) at fixed q. Polymer radii of gyration scale differently with number of segments

depending on the solvent quality [12]. So, the comparison up until now has been between polymers

of different numbers of segments in different solvent qualities. Using the scaling relations outlined

in section 2.1.1 to vary q, the crowded conformation of a polymer with an equal number of segments

is compared between a good and theta solvent.

Given the persistence length (segment length) of a linear polymer, the radius of a spherical

crowder, and q for a polymer in a theta solvent, it is possible to calculate q for a polymer of

equal segment length in a good solvent. A system of polyethylene glycol (PEG) and Ficoll 70 is

considered. The persistence length of PEG in water at room temperature is 3.8 Å [38], and the
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radius of ficoll 70 is 55 Å [39]. qθ is chosen to be 3, roughly the size of polymer used in a recent

experimental crowding study [40]. For this choice of qθ, qgood = 7.18 is obtained. Following from

the scaling of q with N , this polymer is ≈ 6000 segments in length. Fig. 4.3 compares geometric

properties between this crowded polymer in the presence of a good solvent and theta solvent.

As in the previous subsection, polymer size is characterized by the radius of gyration. As the

crowder volume fraction is increased, the relative crowding effect on size on the polymer immersed

in a good solvent is greater than that on the polymer immersed in a theta solvent. This is not

surprising. This is consistent with the understanding that the crowding effect scales proportionately

with q in general; qgood is over a factor of two larger than qθ.

As in Sec. 4.1, the shape of the polymer is characterized with asphericity. As the crowder

volume fraction is increased, the relative crowding effect on size on the polymer immersed in a good

solvent is greater than that on the polymer immersed in a theta solvent. This is not surprising as

the crowding effect on shape is proportional to q. What is interesting is how close the asphericities

are. This good solvent resistance to shape change with crowder volume fraction is consistent with

the results from the previous subsection.

Because we assume the polymer shape to be guided by equilibrium gyration tensor eigen-

value distributions, this model is only valid if the polymer has enough time to sample a reasonable

number of microstates before a crowder diffuses too far. Let us assume that the polymer has time

to equilibrate (visit a sizable region of its phase space) in the time it takes for one segment to

diffuse a persistence length, and that to maintain equilibrium a spherical crowder shouldn’t diffuse

more than its own diameter in the same amount of time. This constraint puts a lower limit on the

crowder diameter (of one persistence length) for which our equilibrium model is physically valid.

In terms of our model, this translates to an upper limit of q dependant on the segment number and

solvent quality. Consider the upper limit of q in the case of PEG (N≈6000) in water at its theta

temperature in water (≈ 330 K [41]). Given Rg(0) = l

(

N
6

)
1
2

, we can conclude that the upper

limit of q is 30. This upper limit of q puts the case of q=3 well within reasonable q values for this

system.
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Figure 4.4. Geometric properties of 2D RW (a,b) and SAW (c,d) polymers are shown. The dots
represent simulation data for q=1, 5, 10, 50 and solid curves represent theory.
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Figure 4.5. Eigenvalue distributions for crowded 2D RW polymers. The dashed curve represents
the uncrowded distribution, the solid lines represent the free-area theory predictions, and the data
points represent simulation data.
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Figure 4.6. Eigenvalue distributions for crowded 2D SAW polymers. The dashed curve represents
the uncrowded distribution, the solid lines represent the free-area theory predictions, and the data
points represent simulation data.
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4.3. Two-Dimensional Crowding

Five independent MC simulations were run for each combination of crowder area fraction

and polymer size ratio (q). They consisted of Nn=216 nanodisks initialized in a hexagonal lattice,

and one soft elliptical polymer (dilute polymer limit) initialized in a random interstitial location

while not overlaping with any disks. Following 5 × 104 MC steps to reach equilibrium, the values of

the three gyration tensor eigenvalues were collected 104 times at intervals of 103 MC steps. Using

the eigenvalue data, the geometric properties of the polymer were determined. These geometric

properties included area, and radius of gyration.

Figures 4.4 and 4.6 show the theoretical and simulation results for the crowded eigenvalue

distributions for the random walk and self-avoiding walk polymers respectively. Similarly to 3D,

both the theoretical and simulation distributions shift to smaller eigenvalues with increasing crowder

area fraction. In addition, the distributions get less wide, indicating that polymers assume a

smaller range of size when crowded more. The change in distributions is greater for the larger

polymer (q=10), this is clear by the scale of the distributions when compared to (q=5). The

discrepancy between the theoretical and simulation distributions is much larger in 2D than in 3D.

P (λ1) is consistently underpredicted while P (λ2) is consistently overpredicted. Noteworthy also

is the limited influence of crowding on SAW q = 5 P (λ2) at φc = 0.1. The theory for this curve

doesn’t deviate much from the uncrowded curve, even more extreme is the simulation data which

seems to exactly reproduce the uncrowded distribution. Currently, there is no explanation for this

odd behavior of P (λ2) for that case. The likely culprits for these large discrepancies are outlined

at the end of this section.

Figure 4.4 displays the radius of gyration results for polymers confined to two dimensions

scaled to the uncrowded radius of gyration. Fig. 4.4 (a) displays results for the RW case and (c)

displays the results for the SAW case. As with crowding in 3D, the radius of gyration decreases

with increasing crowder concentration for both solvent qualities. The crowding affect on radius of

gyration is relatively small for polymers of q=1, which decrease by less than 10% between φc = 0

to φ = 0.3. As the size q increases, so does the crowding affect, this is apparent for both RW and

SAW polymers. For a given q, the SAW polymer is more resistant to changes in radius of gyration

against crowding than its RW counterpart. This is a rather complex comparison, however, as for
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fixed q a RW polymer has more segments than a SAW polymer(assuming equal segment length).

The free-area theory agrees well with simulation, especially at larger q.

Figure 4.4 displays the area results for polymers confined to two dimensions scaled to the

radius of gyration squared. 4.4b displays results for the RW case and (d) displays the results for

the SAW case. Like with the radius of gyration results, the area was observed to decrease with

increasing crowder area fraction for RW and SAW polymers alike. The crowding affect on polymer

area is small for polymers of q = 1, at least when compared with larger q. For a given q, just like

with radius of gyration, the SAW polymer is more resistant to changes in area against crowding than

its RW counterpart. Again, this comparison is difficult to make because, given that the segments

lengths are the same, the RW of equal q to the SAW will have a larger number of segments. The

free-area theory agrees well with simulation, especially at larger q.

The asphericity results are omitted for the 2D section. Due to large discrepancies between

free volume theory and simulation results, the comparison was not deemed useful. There are a

couple of potential culprits for this large discrepancy.

It is well known that the higher the spatial dimension, the less correlations influence results

due to the larger configurational space. It follows that correlations would matter more in lower

spatial dimensions. As with the radius of gyration and area results, the discrepancy between mean

field theory and simulation is larger in 2D than it is in 3D. It may be the case that asphericity is more

sensitive to these correlations than the area and radius of gyration, particularly because asphericity

is the only geometric property measured that depends on differences between eigenvalues.

The thermodynamic properties of the hard-disk fluid are less well understood than the

hard-sphere fluid. In the mean field theory, the approach to evaluate the interfacial tension was to

expand in terms of the polymer curvature with coefficients dependent on the area fraction of the

hard-disk fluid. It it not currently known at which term this expansion can be reasonably truncated.

Monte Carlo simulations of hard disk fluids at hard curved interfaces were run to extract some of

the coefficients with some limited success [42]. The theoretical asphericity exhibited high sensitivity

to the values of these expansion coefficients, so even minor errors in coefficient values could result

in significantly large errors for asphericity. See appendix for more details on this expansion of the

interfacial tension for free-area theory.
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5. CONCLUSIONS

To summarize, in this study the dependence of crowded polymer conformation on solvent

quality and dimensionality was investigated. Taking advantage of the aspherical shape of random

walks, polymers were modeled as effective ellipsoids. Polymers were allowed to fluctuate in shape

and size according to random walk gyration tensor eigenvalue distributions. Hard nanoparticles

interact mutually via a hard sphere potential, and are allowed to penetrate the volume enclosed

by polymers with a free energy cost predicted by polymer field theory. Results from Monte Carlo

simulations were compared with predictions from free-volume theory for ideal and nonideal poly-

mers. Results indicate that polymers become smaller and more compact with increasing crowder

volume fraction and uncrowded polymer size q, displaying good statistical agreement with free-

volume theory. While there were similar qualitative trends in conformation between ideal and

nonideal polymers, they differed quantitatively. When holding the number of segments constant,

the crowding effects were stronger for polymers in a good solvent than in a theta solvent. This

was likely a result of their swollen size and was especially evident for larger q. When the polymer-

nanoparticle mixture was confined to two dimensions, the effects of crowding were qualitatively

similar to 3D. The discrepancies between the free-volume theory and simulation results are larger

in two dimensions. A likely contriubutor to these larger discrepancies is correlations, which are more

pronounced in lower spatial dimensions. Another culprit could be an incomplete understanding of

how the interfacial tension between the hard disk fluid and polymer depends on area fraction.

The model used in this study can be used and modified in order to explore specific polymers

or other aspects of polymer-nanoparticle mixtures. It is possible to compute the shape distributions

of individual biopolymers using molecular-scale simulation. These size distributions can then be

mapped to the coarse-grained model and one could measure the effect of nanoparticle-crowding on

the conformation of specific biopolymers. Using these simulation methods, one could probe the

phase behavior of polymer-nanoparticle mixtures. Rather than using a simple step penetration free

energy profile, one could use a profile that decreases radially, consistent with the monomer density

profile of a real polymer. For comparison to the results of this paper, MD simulations could be

run using a more explicit bead-spring polymer model. MD simulations could also be used to probe
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the dynamical properties of polymers under similar conditions, something the methods used in this

study cannot do.
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APPENDIX

A.1. Free-Volume Theory

In section 2.2.1 the free-volume theory of crowding is summarized. This appendix details a

more rigorous calculation of the free volume fraction (α(λ;φc)) available to the polymer in a hard

sphere fluid of volume fraction φc. The following derivation is based on previous works [3, 23, 24].

Following from the theory of Lekkerkerker et al. describing mixtures of colloids and spherical

incompressible polymers, the Helmholtz free energy density, f = fid + fint, can be separated

into the ideal gas contribution (fid) and the excess interparticle contribution (fint). The latter

contribution can be further separated into the hard nanoparticle-nanoparticle contribution (fc(φc))

and the polymer-nanoparticle contribution (fp). By way of a mean-field approximation, fp can be

equated to the free energy density of ideal polymers confined to a free volume. In practice, this

approximation works well in the dilute polymer limit, especially for polymers in a good solvent

where polymer segement-segment interaction is significant.

For the model including shape-fluctuating polymers, the free energy needs to be averaged

over the shape degrees of freedom of polymers confined to the nanoparticle mixture. With the

assumption that the polymer conformational entropy in the hard-nanoparticle mixture is the same

as when it is uncrowded (kB lnPr(λ)), fp is expressed by

βfp(φc, φp) = −np

∫

dλP (λ;φc) ln(Pr(λ)α(λ;φc)) (A.1)

where P (λ;φc) is the crowded probability for a polymer conformation characterized by a unique

set of scaled gyration tensor eigenvalues (λ ≡ (λ1, λ2, λ3)), amidst a hard-sphere fluid of volume

fraction φc ≡ (4π/3)ncR
3
c . The total ideal-gas free energy density is given by

βfid(φc, φp) = np

∫

dλP (λ;φc)ln(Pr(λ)α(λ;φc))− 1 + nn(ln(φc)− 1) (A.2)

where φp ≡ (4π/3)np(R
r
g)

2 is the volume fraction occupied by the polymer in the system and Rr
g is

the uncrowded polymer rms radius of gyration.
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For a canonical ensemble of polymers and nanoparticles, the chemical potential of poly-

mers of a given conformation within the system equals the chemical potential in the reservoir.

Consequently,

np(φc)P (λ;φc) = nr
pPr(λ)α(λ;φn). (A.3)

Integrating over polymer conformations (λ) while remembering the normalization of the distribution

P (λ;φc) yields

np(φc) = nr
pPr(λ)αeff(φc) (A.4)

where the effective free-volume fraction is defined as the average free-volume fraction taken as an

integral over uncrowded polymer conformation

αeff(φc) ≡
∫

dλPr(λ)α(λ;φc). (A.5)

In the limiting case of φc → 0, α(λ) → 1, therefore αeff(φc) → 1. The crowded probability shape

distribution can be expressed as

P (λ;φc) = Pr(λ)
α(λ;φc)

αeff(φc)
. (A.6)

The complete free energy density can now be constructed using the system configurational contri-

bution (fc), the nanosphere-nanosphere interaction contribution (fhs), and the polymer-nanosphere

interaction (fp)

βf(φc, φ
r
p) = β(fc + fhs + fp) =

nn(lnφc − 1) + βfhs + nr
pαeff(φn)(lnφ

r
p − 1)

(A.7)

In order to calculate the free volume fraction, we utilize the geometry based approximation

of Oversteegen and Roth [43] which generalizes scaled particle theory from hard spheres to arbitrary

shapes. This generaliztion is done by way of fundamental-measures theory [44] to separate the

thermodynamic properties of the crowders from the geometric properties of the depletant. This

produces

α(λ;φc) = (1− φc) exp[−β(pvp + γap + κcp)] (A.8)

where vp, ap, and cp are the volume, surface area, and integrated mean curvature of an ellipsoidal
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polymer, and p, γ, and κ are the bulk pressure, surface tension at a hard planar wall, and bending

rigidity of a hard-sphere fluid. For the ellipsoidal model of a polymer, ap and cp are numerically

evaluated using the principal radii, while the volume can be evaluated exactly from the princi-

pal radii: vp = (4π/3)R1R2R3. The thermodynamic properties of the hard-nanosphere fluid are

approximated by the Carnahan-Starling expressions [45]:

βfhs = nn
φc(4− 3φc)

(1− φc)2

βp =
3φc

4πR3
n

1 + φc + φ2
c − φ3

c

(1− φc)3

βγ =
3

4πR3
n

[

φc(2− φc)

(1− φc)2
+ ln (1− φc)

]

βκ =
3φc

Rn(1− φc)

(A.9)
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A.2. Free-Area Theory

Free-area theory was briefly discussed in section 2.2.2. This appendix lays free-area theory

out in more detail. The effective free-area fraction is taken as an integral over polymer shapes

amidst a hard-disk fluid of area fraction φc can be expressed as

αeff(φc) =

∫ ∞

λ2

dλ1

∫ λ1

0

dλ2α(λ1, λ2) (A.10)

Following from the Widom particle insertion theorem [46], the free-area fraction can be expressed

as

α(λ;φc) = exp[−βW (λ;φc)] (A.11)

where W is the average work required to insert a polymer of shape λ into a sea of hard disks of

area fraction φc. The average work takes the form of the Helfrich free energy required to distort

the hard-disk fluid and create the area and surface needed to accommodate the polymer. W can

be expressed as

W (λ;φc) = p(φ)ap(λ) +

∮

C
dsγ(φc; s) (A.12)

where p and γ are the pressure and interfacial tension respectively. The integral is taken over

the closed curve C, where s is the elliptical perimiter parameter of the polymer. Similarly to

the approach in 3D, the geometric properties of the polymer are conveniently separated from the

thermodynamic properties of the hard-disk fluid.

Moving forward, it is assumed that the interfacial tension depends on the curvature of the

interface between the polymer and hard-disk fluid and can be expanded in powers of the curvature

1/R (where R is the radius of curvature):

γ(φc;R(s)) = γ∞(φc) + c1(φc)
σ

R(s)
+ c2(φc)

(

σ

R(s)

)2

+ c3(φc)

(

σ

R(s)

)3

+ ... (A.13)

where γ∞ is the interfacial tension of a hard disk fluid at a flat interface (R → ∞), where R(s) is

the local radius of curvature at some point along the elliptial circumference. The coefficients c1(φc),

c2(φc), and c3(φc), are proportional to the Tolman length and hard-disk fluid bending rigidities.
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Substituting A.12 into A.13 gives us the relation

W (λ;φc) = p(φc)ap(λ) + γ∞(φc)lp(λ) + 2πσc1(φc) + c2(φc)κ2(λ) + c3(φc)κ3(λ) + ... (A.14)

where lp(λ) is the perimeter of the polymer. Using the Gauss-Bonnet theorem, the linear term in

the expansion is evaluated exactly, with Euler characteristic of the ellipse χ = 1, and

κ2(λ) ≡
∮

C
ds

(

σ

R(s)

)2

κ3(λ) ≡
∮

C
ds

(

σ

R(s)

)3
(A.15)

are the integrated-squared and -cubed curvatures of the polymer. Using A.11 and A.14, the free-

area fraction can be constructed as

lim
λ→0

[c2(φc)κ2(λ) + c3(φc)κ3(λ) + ...] = −kBT ln(1− φc)− 2πσc1(φc). (A.16)

We assume that the LHS disappears in this limit, so we can solve for c1(φc):

c1(φc) = −kBT

2πσ
ln(1− φc) (A.17)
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A.3. Disk-Ellipse Overlap Algorithm

θ

α
x’

y

y’

x

Figure 5.1. Overlap algorithm coordinate system and naming conventions.

To successfully simulate the crowding of elliptical polymers by hard disks, an accurate and

efficient disk-ellipse overlap determination algorithm (ODA) was developed. For a given ellipse-

disk pair, the goal of the ODA is to first determine the point along the circumference of the ellipse

closest to the disk and then determine whether that disk is overlapping that point. The following

appendix will cover the derivation and implementation of the ODA.

Consider a disk of radius d located at the cartesian coordinate (x0 , y0) and an ellipse of

principal radii a and b located at the origin where a and b lie on the x and y axis respectively.

Consider θ, a rotation of the polymer following polar coordinate conventions. Using a standard

two-dimensional rotation matrix

R(θ) =







cos θ sin θ

− sin θ cos θ






(A.18)
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the coordinates of the disk can be expressed in a new rotated coordinate system (x′,y′) via







x′0

y′0






= R(θ)







x0

y0






(A.19)

or,

x′0 = x0 cos θ − y0 sin θ

y′0 = −x0 sin θ + y0 cos θ.

(A.20)

This convenient rotated reference frame, with the center of ellipse at the origin, will be used for

the rest of the ODA derivation.

Any point along the perimeter of the ellipse whose tangent d~r = dx′

dy′ is perpendicular to the

vector (~α) pointing towards the disk from that point is one of two contenders for closest perimeter

point to the disk, this condition is expressed as

~α · d~r = αxdx
′ + αydy

′ = 0

⇒ dx′

dy′
= −αy

αx

(A.21)

We can express the tangent line in terms of the elliptical equation

dx′

dy′ = −a2

b2
y′

x′
(A.22)

and the components of ~α as

αx = x′0 − x′

αy = y′0 − y′.

(A.23)

Combining equations A.21, A.22, A.23, and utilizing the elliptical equation, we are left with a

relation

−a2

b2
y′

x′
= − y0 − y

x0 − x

⇒ y′ =
b2

a2
y′0x

′

x′0 +
(

b2

a2
− 1
)

x′

(A.24)

or,

x′2

a2
+

b2

a4
y′20

(x′

0

x′ +
b2

a2
− 1
)2

= 1. (A.25)
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This condition can be re-cast as

A

u2
+

B

(u+ c)2
= 1

⇒ A(u+ c)2 +Bu2 = u2(u+ c)2
(A.26)

where u ≡ x0

x , A ≡ x′2
0

a2
, B ≡ b2

a4
y′20 , and C ≡ b2

a2
.

Equation A.26 represents a forth-order polynomial equation in u that will yield two real

and two imaginary roots. The two real roots are associated (x′ =
x′

0

u ) with the two contenders for

closest x′ along the polymer’s perimeter to the disk. The respective y′ components can be extracted

from the x′ values using the elliptical equation. After solving for both coordinates, we can exactly

determine two ~α. An overlap occurs if |~α| < d.

Due to the non-trivial nature of root finding beyond 2nd-order polynomials, I opt for an

eigenvalue algorithm to numerically determine the roots in the simulation. For the polynomial

expressed in A.26, the respective companion matrix will take the form

A =

























0 0 0 0 −AC2

1 0 0 0 −2AC

0 1 0 0 C2 −B −A

0 0 1 0 2C

0 0 0 1 1

























. (A.27)

The eigenvalues of the companion matrix are the roots of the fourth order polynomial. The eigen-

values are extracted with a numerical eigenvalue solver.
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A.4. 2D Monte-Carlo Simulation Code

package org . opensourcephys i c s . s i p . ch15 ;

import java . awt . ∗ ;

import java . awt . geom . El l ipse2D ;

import java . awt . geom . Aff ineTransform ;

import org . opensourcephys i c s . d i sp l ay . ∗ ;

import org . opensourcephys i c s . frames . ∗ ;

import org . opensourcephys i c s . numerics . ∗ ;

import java . u t i l . stream . ∗ ;

import java . u t i l . Arrays ;

/∗∗

∗ DPM5App conducts a monte c a r l o s imu la t i on o f a 2D polymer hard d i sk system based

on user input .

∗

∗@author Wyatt Davis & Alan Denton based on MD code ch08/hd/HardDisksApp . java by

Jan Tobochnik , Wolfgang Chr i s t ian , Harvey Gould

∗@version 1 .5 r e v i s ed 04/18

∗ Started as copy o f DPM4. java

∗/

pub l i c c l a s s DPM5 implements Drawable {

pub l i c double x [ ] , y [ ] ;

pub l i c double xp [ ] , yp [ ] ;

pub l i c double a [ ] , b [ ] ;

pub l i c double l 1 [ ] , l 2 [ ] ;

pub l i c double theta [ ] ;

pub l i c double s i z eRa t i o ;

pub l i c double penet rat ionCost ;

pub l i c double a l 1 = 1.3690∗10001/10000/Math . PI/Math . PI ;

pub l i c double a l 2 = 1.0972∗10001/10000/2/2/Math . PI/Math . PI ;

pub l i c double v1 = 1 . 8769 ;

pub l i c double v2 = 3 . 1012 ;

pub l i c double b1 = 3 . 62051 ;
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pub l i c double b2 = 2 . 75939 ;

pub l i c double c1 = 49 . 3780 ;

pub l i c double c2 = 256 . 564 ;

pub l i c i n t over [ ] [ ] ;

pub l i c i n t ov e r t e s t [ ] [ ] ;

pub l i c double prob ;

pub l i c i n t Nd ;

pub l i c i n t Np ;

S t r ing so lven tQua l i t y ;

pub l i c double phi ;

pub l i c double Lx , Ly ;

pub l i c double keSum = 0 , v i r ia lSum = 0 ;

pub l i c double s t ep s = 0 ;

pub l i c double t o l e r an c e ;

pub l i c double th e t o l e r an c e = . 0 5 ;

pub l i c double l 1 t o l e r a n c e = . 0 0 5 ;

pub l i c double l 2 t o l e r a n c e = . 0 0 1 ;

pub l i c boolean cond i t i on = f a l s e ;

pub l i c boolean tworoots = true ;

pub l i c void i n i t i a l i z e ( S t r ing c on f i g u r a t i o n ) {

r e se tAverages ( ) ;

x = new double [Nd ] ;

y = new double [Nd ] ;

xp = new double [Np ] ;

yp = new double [Np ] ;

a = new double [Np ] ;

b = new double [Np ] ;

l 1 = new double [Np ] ;

l 2 = new double [Np ] ;

over = new in t [Np ] [ Nd ] ;

o v e r t e s t = new in t [Np ] [ Nd ] ;

theta = new double [Np ] ;

theta [ 0 ] = 0 . ;

i f ( c on f i g u r a t i o n . equa l s (” r e gu l a r ”) ) {

s e tRegu l a rPo s i t i on s ( ) ;

}
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e l s e {

setRandomPosit ions ( ) ;

}

}

pub l i c void re se tAverages ( ) {

s t ep s = 0 ;

v i r ia lSum = 0 ;

}

pub l i c void setRandomPosit ions ( ) {

boolean over lap ;

f o r ( i n t i = 0 ; i<Nd;++ i ) {

do {

over lap = f a l s e ;

x [ i ] = Lx∗Math . random ( ) ;

y [ i ] = Ly∗Math . random ( ) ;

i n t j = 0 ;

whi l e ( ( j<i )&&!over lap ) {

double dx = PBC. s epa ra t i on (x [ i ]−x [ j ] , Lx) ;

double dy = PBC. s epa ra t i on (y [ i ]−y [ j ] , Ly) ;

i f ( dx∗dx+dy∗dy<1.0) {

over lap = true ;

}

j++;

}

} whi le ( over lap ) ;

}

}

// Set the i n i t i a l p o s i t i o n s o f the d i s k s and e l l i p s e

pub l i c void s e tRegu l a rPo s i t i on s ( ) {

double dnx = Math . s q r t (Nd) ;

i n t nx = ( i n t ) dnx ;

i f ( dnx−nx>0.00001) {
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nx++; // N i s not a p e r f e c t square

}

double ax = Lx/nx ; // d i s t anc e between columns o f d i s k s

double ay = Ly/nx ; // d i s t anc e between rows

i n t i = 0 ;

i n t i y = 0 ;

whi l e ( i<Nd) {

f o r ( i n t i x = 0 ; ix<nx;++ix ) { // loops through d i s k s in a row

i f ( i<Nd) {

y [ i ] = ay ∗( i y +0.5) ;

i f ( i y%2==0) { // even rows

d i sp l a c ed from odd rows

x [ i ] = ax ∗( i x +0.25) ;

}

e l s e {

x [ i ] = ax ∗( i x +0.75) ;

}

i++;

}

}

i y++;

}

boolean over lap ;

f o r ( i n t j = 0 ; j<Np; ++j ) {

do{

over lap = f a l s e ;

xp [ j ] = Lx∗Math . random ( ) ;

yp [ j ] = Ly∗Math . random ( ) ;

a [ j ] = . 5 ;

b [ j ] = . 5 ;

i f ( s o l v en tQua l i t y . equa l s (” theta ”) ) {

l 1 [ j ] = Math . pow( a [ j ] / s i z eRa t i o / . 5 , 2 ) /12 ;

l 2 [ j ] = Math . pow(b [ j ] / s i z eRa t i o / . 5 , 2 ) /12 ;

}
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e l s e {

l 1 [ j ] = Math . pow( a [ j ] / s i z eRa t i o /2 .1506 ,2 ) ;

l 2 [ j ] = Math . pow(b [ j ] / s i z eRa t i o /2 .1506 ,2 ) ;

}

i n t k = 0 ;

whi l e ( over lap==f a l s e&&k<Nd) {

double dx=PBC. s epa ra t i on ( xp [ j ]−x [ k ] , Lx) ;

double dy=PBC. s epa ra t i on ( yp [ j ]−y [ k ] , Ly) ;

i f ( dx∗dx+dy∗dy<(Math . pow( . 5+ .5 , 2 ) ) ) {

over lap = true ;

}

k++;

}

} whi le ( over lap ) ;

}

//Continue with random placement

}

// Probab i l i t y d i s t r i b u t i o n f o r theta−s o l v en t

pub l i c void s c i u t t o t h ( i n t p , double dl1 , double d l2 ) {

double L1O = 0 ; double L2O = 0 ;

double L1N = 0 ; double L2N = 0 ;

i f ( l 1 [ p]>=l2 [ p ] ) {

L1O = l1 [ p ] ; L1N = L1O + dl1 ;

L2O = l2 [ p ] ; L2N = L2O + dl2 ;

}

e l s e i f ( l 1 [ p]< l 2 [ p ] ) {

L1O = l2 [ p ] ; L1N = L1O + dl2 ;

L2O = l1 [ p ] ; L2N = L2O + dl1 ;

}
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prob = Math . pow( (L1N) /L1O, v1−1)∗Math . pow( (L2N) /L2O, v2−1)∗Math . exp(−(

v1 ∗(L1N−L1O) / a l1 )−(v2 ∗(L2N−L2O) / a l2 ) ) ;

}

// Probab i l i t y d i s t r i b u t i o n f o r good−s o l v en t

pub l i c void s c i u t t o g o ( i n t p , double dl1 , double d l2 ) {

double L1O = 0 ; double L2O = 0 ;

double L1N = 0 ; double L2N = 0 ;

i f ( l 1 [ p]>=l2 [ p ] ) {

L1O = l1 [ p ] ; L1N = L1O + dl1 ;

L2O = l2 [ p ] ; L2N = L2O + dl2 ;

}

e l s e i f ( l 1 [ p]< l 2 [ p ] ) {

L1O = l2 [ p ] ; L1N = L1O + dl2 ;

L2O = l1 [ p ] ; L2N = L2O + dl1 ;

}

prob = Math . pow( (L1N) /L1O, b1 ) ∗Math . pow( (L2N) /L2O, b2 ) ∗Math . exp(−c1 ∗(

L1N−L1O)−c2 ∗(L2N−L2O) ) ;

}

//Make B a copy o f array A (A and B must be o f the same dimensions )

pub l i c void arrayCopy ( i n t A [ ] [ ] , i n t B [ ] [ ] ) {

f o r ( i n t i =0; i<A. length ; i++)

f o r ( i n t j =0; j<A[ i ] . l ength ; j++)

B[ i ] [ j ]=A[ i ] [ j ] ;

}

//Determines whether over lap occurs between e l l i p t i c a l polymer and d i sk

pub l i c void Overcond ( i n t d , i n t p) {

// Step 1 : Coordinate Transform

tworoots = true ;

cond i t i on = f a l s e ;

double Txa = PBC. s epa ra t i on (x [ d]−xp [ p ] , Lx) ;

double Tya = PBC. s epa ra t i on (y [ d]−yp [ p ] , Ly) ;

double Tx = Math . cos ( theta [ p ] ) ∗Txa−Math . s i n ( theta [ p ] ) ∗Tya ;
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double Ty = Math . s i n ( theta [ p ] ) ∗Txa+Math . cos ( theta [ p ] ) ∗Tya ;

// Step 2 : Ca l cua l t e C o e f f i c i e n t s o f Polynomial

double A = Tx∗Tx/a [ p ] / a [ p ] ;

double B = b [ p ]∗b [ p ]∗Ty∗Ty/a [ p ] / a [ p ] / a [ p ] / a [ p ] ;

double C = (b [ p ]∗b [ p ] / a [ p ] / a [ p ] ) − 1 ;

// Step 3 : Find Roots o f Polynomial

double c o e f [ ] = new double [ 5 ] ;

c o e f [ 0 ] = A∗C∗C;

co e f [ 1 ] = 2∗A∗C;

co e f [ 2 ] = A+B−(C∗C) ;

c o e f [ 3 ] = −2∗C;

co e f [ 4 ] = −1;

double r oo t s [ ] [ ] = Root . polynomial ( c o e f ) ;

double r e a l r o o t 1 = 0 ;

double r e a l r o o t 2 = 0 ;

// s t a r t o f Alan ’ s e d i t s

double r e a l r o o t s [ ] = new double [ 4 ] ;

i n t nReal = 0 ;

f o r ( i n t i = 0 ; i < 4 ; i++){

i f ( r oo t s [ 1 ] [ i ]∗ r oo t s [ 1 ] [ i ] < 1 . e−40){

r e a l r o o t s [ nReal ] = roo t s [ 0 ] [ i ] ;

nReal++;

}

}

i f ( nReal != 2) {

tworoots = f a l s e ;

}

e l s e {

r e a l r o o t 1 = r e a l r o o t s [ 0 ] ;

r e a l r o o t 2 = r e a l r o o t s [ 1 ] ;

double xone = (Tx/ r e a l r o o t 1 ) ;

double xtwo = (Tx/ r e a l r o o t 2 ) ;

double yone = b [ p ]∗b [ p ]∗Ty∗xone/a [ p ] / a [ p ] / (Tx+((b [ p ]∗b [ p ] / a [

p ] / a [ p ] )−1)∗xone ) ;
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double ytwo = b [ p ]∗b [ p ]∗Ty∗xtwo/a [ p ] / a [ p ] / (Tx+((b [ p ]∗b [ p ] / a [

p ] / a [ p ] )−1)∗xtwo ) ;

i f ( ( xone−Tx) ∗( xone−Tx)+(yone−Ty) ∗( yone−Ty) < . 2 5 ) {

cond i t i on = true ;

}

e l s e i f ( ( xtwo−Tx) ∗( xtwo−Tx)+(ytwo−Ty) ∗( ytwo−Ty) < . 2 5 ) {

cond i t i on = true ;

}

}

// end o f Alan ’ s e d i t s

}

//Conducts monte−c a r l o s tep o f a system o f hard−d i s k s and s o f t e l l i p t i c a l

polymer

pub l i c void s tep ( ) {

// make t r i a l d i sp lacements and check f o r over lap

tworoots = true ;

boolean over lap ;

double dx t r i a l , d y t r i a l ;

double l 1 t r i a l , l 2 t r i a l ;

double L ;

double dtheta ;

f o r ( i n t i = 0 ; i<Nd;++ i ) {

over lap = f a l s e ;

tworoots = true ;

d x t r i a l = to l e r an c e ∗2 .∗ (Math . random ( ) −0.5) ;

d y t r i a l = to l e r an c e ∗2 .∗ (Math . random ( ) −0.5) ;

x [ i ] = PBC. po s i t i o n (x [ i ]+ dx t r i a l , Lx) ;

y [ i ] = PBC. po s i t i o n (y [ i ]+ dy t r i a l , Ly) ;

f o r ( i n t j = 0 ; j<Nd;++j ) {

i f ( ( j != i )&&!over lap ) {

double dx = PBC. s epa ra t i on (x [ i ]−x [ j ] , Lx) ;

double dy = PBC. s epa ra t i on (y [ i ]−y [ j ] , Ly) ;

i f ( dx∗dx+dy∗dy<1.0) {

over lap = true ;
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x [ i ] = PBC. po s i t i o n (x [ i ]− dx t r i a l , Lx

) ; // r e j e c t d i sp lacement

y [ i ] = PBC. po s i t i o n (y [ i ]− dy t r i a l , Ly

) ;

}

}

}

cond i t i on = f a l s e ;

tworoots = true ;

f o r ( i n t k = 0 ; k<Np; k++){

i f ( over lap != true && tworoots != f a l s e ) {

L = a [ k ] ;

i f (b [ k]>=a [ k ] ) {

L = b [ k ] ;

}

i f ( over [ k ] [ i ]==1){

Overcond ( i , k ) ;

i f ( tworoots==true && cond i t i on==f a l s e ) {

ov e r t e s t [ k ] [ i ] = 0 ;

}

}

double Txa = PBC. s epa ra t i on (x [ i ]−xp [ k ] , Lx) ;

double Tya = PBC. s epa ra t i on (y [ i ]−yp [ k ] , Ly) ;

double dxp = Math . cos ( theta [ k ] ) ∗Txa−Math . s i n ( theta [ k

] ) ∗Tya ;

double dyp = Math . s i n ( theta [ k ] ) ∗Txa+Math . cos ( theta [ k

] ) ∗Tya ;

i f ( dxp∗dxp + dyp∗dyp<(L+.5) ∗(L+.5) ) {

Overcond ( i , k ) ;

i f ( tworoots==f a l s e ) {

x [ i ] = PBC. po s i t i o n (x [ i ]− dx t r i a l , Lx

) ; // r e j e c t d i sp lacement

y [ i ] = PBC. po s i t i o n (y [ i ]− dy t r i a l , Ly

) ;

}

i f ( c ond i t i on == true && tworoots==true ) {
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ov e r t e s t [ k ] [ i ] = 1 ;

}

i f ( c ond i t i on == f a l s e && tworoots==true ) {

ov e r t e s t [ k ] [ i ]=0;

}

i f ( ( dxp∗dxp/a [ k ] / a [ k ] ) +(dyp∗dyp/b [ k ] / b [ k ] )

<1){

ov e r t e s t [ k ] [ i ]=1;

}

}

}

}

double rand = Math . random ( ) ;

i f ( tworoots ) {

i f ( rand<Math . exp(−penet rat ionCost ∗( IntStream . o f ( o v e r t e s t [ 0 ] )

. sum( )−IntStream . o f ( over [ 0 ] ) . sum( ) ) ) && tworoots==true ) {

arrayCopy ( ove r t e s t , over ) ;

}

e l s e i f ( rand>Math . exp(−penet rat ionCost ∗( IntStream . o f (

o v e r t e s t [ 0 ] ) . sum( )−IntStream . o f ( over [ 0 ] ) . sum( ) ) ) && tworoots==true ) {

arrayCopy ( over , o v e r t e s t ) ;

x [ i ] = PBC. po s i t i o n (x [ i ]− dx t r i a l , Lx) ; // r e j e c t

d i sp lacement

y [ i ] = PBC. po s i t i o n (y [ i ]− dy t r i a l , Ly) ;

}

}

}

cond i t i on = f a l s e ;

f o r ( i n t k = 0 ; k<Np; k++){

cond i t i on = f a l s e ;

tworoots = true ;

d x t r i a l = to l e r an c e ∗2 .∗ (Math . random ( ) −0.5) ;

d y t r i a l = to l e r an c e ∗2 .∗ (Math . random ( ) −0.5) ;

l 1 t r i a l = l 1 t o l e r a n c e ∗2 .∗ (Math . random ( ) −0.5) ;

l 2 t r i a l = l 2 t o l e r a n c e ∗2 .∗ (Math . random ( ) −0.5) ;
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dtheta = the t o l e r an c e ∗2 .∗ (Math . random ( ) −0.5) ;

i f ( s o l v en tQua l i t y . equa l s (” theta ”) ) {

s c i u t t o t h (k , l 1 t r i a l , l 2 t r i a l ) ;

}

e l s e {

s c i u t t o g o (k , l 1 t r i a l , l 2 t r i a l ) ;

}

l 1 [ k ] = l 1 [ k]+ l 1 t r i a l ;

l 2 [ k ] = l 2 [ k]+ l 2 t r i a l ;

i f ( l 1 [ k]<0 | | l 2 [ k ]<0){

cond i t i on = true ;

}

i f ( s o l v en tQua l i t y . equa l s (” theta ”) ) {

a [ k ] = .5∗ s i z eRa t i o ∗Math . pow( l 1 [ k ] ∗ 1 2 , . 5 ) ;

b [ k ] = .5∗ s i z eRa t i o ∗Math . pow( l 2 [ k ] ∗ 1 2 , . 5 ) ;

}

e l s e {

a [ k ] = 2.15016∗ s i z eRa t i o ∗Math . pow( l 1 [ k ] , . 5 ) ;

b [ k ] = 2.15016∗ s i z eRa t i o ∗Math . pow( l 2 [ k ] , . 5 ) ;

}

xp [ k ] = PBC. po s i t i o n ( xp [ k]+ dx t r i a l , Lx) ;

yp [ k ] = PBC. po s i t i o n ( yp [ k]+ dy t r i a l , Ly) ;

theta [ k ] += dtheta ;

i f ( c ond i t i on == true ) {

l 1 [ k ] = l 1 [ k]− l 1 t r i a l ;

l 2 [ k ] = l 2 [ k]− l 2 t r i a l ;

i f ( s o l v en tQua l i t y . equa l s (” theta ”) ) {

a [ k ] = .5∗ s i z eRa t i o ∗Math . pow( l 1 [ k ] ∗ 1 2 , . 5 ) ;

b [ k ] = .5∗ s i z eRa t i o ∗Math . pow( l 2 [ k ] ∗ 1 2 , . 5 ) ;

}

e l s e {

a [ k ] = 2.15016∗ s i z eRa t i o ∗Math . pow( l 1 [ k ] , . 5 ) ;

b [ k ] = 2.15016∗ s i z eRa t i o ∗Math . pow( l 2 [ k ] , . 5 ) ;

}

xp [ k ] = PBC. po s i t i o n ( xp [ k]− dx t r i a l , Lx) ; // r e j e c t

d i sp lacement
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yp [ k ] = PBC. po s i t i o n ( yp [ k]− dy t r i a l , Ly) ;

theta [ k ] −= dtheta ;

cont inue ;

}

L = a [ k ] ;

i f (b [ k]>a [ k ] ) {

L = b [ k ] ;

}

f o r ( i n t j = 0 ; j<Nd;++j ) {

i f ( tworoots==true ) {

double Txa = PBC. s epa ra t i on (x [ j ]−xp [ k ] , Lx) ;

double Tya = PBC. s epa ra t i on (y [ j ]−yp [ k ] , Ly) ;

double dxp = Math . cos ( theta [ k ] ) ∗Txa−Math . s i n

( theta [ k ] ) ∗Tya ;

double dyp = Math . s i n ( theta [ k ] ) ∗Txa+Math . cos

( theta [ k ] ) ∗Tya ;

i f ( over [ k ] [ j ]==1){

Overcond ( j , k ) ;

i f ( ! tworoots ) {

cont inue ;

}

i f ( tworoots==true ) {

i f ( c ond i t i on==f a l s e ) {

ov e r t e s t [ k ] [ j ]=0;

}

i f ( c ond i t i on==true ) {

ov e r t e s t [ k ] [ j ]=1;

}

}

}

i f ( dxp∗dxp+dyp∗dyp<(L+.5) ∗(L+.5) ) {

Overcond ( j , k ) ;

i f ( tworoots==f a l s e ) {

cont inue ;

}

i f ( c ond i t i on==true ) {
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ov e r t e s t [ k ] [ j ]=1;

}

i f ( c ond i t i on == f a l s e ) {

ov e r t e s t [ k ] [ j ]=0;

}

i f ( ( dxp∗dxp/a [ k ] / a [ k ] ) +(dyp∗dyp/b [ k

] / b [ k ] )<1){

ov e r t e s t [ k ] [ j ]=1;

}

}

}

}

i f ( tworoots ) {

double rand = Math . random ( ) ;

i f ( rand<prob∗Math . exp(−penet rat ionCost ∗( IntStream . o f (

o v e r t e s t [ 0 ] ) . sum( )−IntStream . o f ( over [ 0 ] ) . sum( ) ) ) && tworoots==true ) {

arrayCopy ( ove r t e s t , over ) ;

}

e l s e i f ( rand>prob∗Math . exp(−penet rat ionCost ∗( IntStream . o f (

o v e r t e s t [ 0 ] ) . sum( )−IntStream . o f ( over [ 0 ] ) . sum( ) ) ) && tworoots==true ) {

l 1 [ k ] = l 1 [ k]− l 1 t r i a l ;

l 2 [ k ] = l 2 [ k]− l 2 t r i a l ;

arrayCopy ( over , o v e r t e s t ) ;

i f ( s o l v en tQua l i t y . equa l s (” theta ”) ) {

a [ k ] = .5∗ s i z eRa t i o ∗Math . pow( l 1 [ k ] ∗ 1 2 , . 5 ) ;

b [ k ] = .5∗ s i z eRa t i o ∗Math . pow( l 2 [ k ] ∗ 1 2 , . 5 ) ;

}

e l s e {

a [ k ] = 2.15016∗ s i z eRa t i o ∗Math . pow( l 1 [ k ] , . 5 ) ;

b [ k ] = 2.15016∗ s i z eRa t i o ∗Math . pow( l 2 [ k ] , . 5 ) ;

}

xp [ k ] = PBC. po s i t i o n ( xp [ k]− dx t r i a l , Lx) ; // r e j e c t

d i sp lacement

yp [ k ] = PBC. po s i t i o n ( yp [ k]− dy t r i a l , Ly) ;

theta [ k ] −= dtheta ;
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}

}

i f ( ! tworoots ) {

l 1 [ k ] = l 1 [ k]− l 1 t r i a l ;

l 2 [ k ] = l 2 [ k]− l 2 t r i a l ;

arrayCopy ( over , o v e r t e s t ) ;

i f ( s o l v en tQua l i t y . equa l s (” theta ”) ) {

a [ k ] = .5∗ s i z eRa t i o ∗Math . pow( l 1 [ k ] ∗ 1 2 , . 5 ) ;

b [ k ] = .5∗ s i z eRa t i o ∗Math . pow( l 2 [ k ] ∗ 1 2 , . 5 ) ;

}

e l s e {

a [ k ] = 2.15016∗ s i z eRa t i o ∗Math . pow( l 1 [ k ] , . 5 ) ;

b [ k ] = 2.15016∗ s i z eRa t i o ∗Math . pow( l 2 [ k ] , . 5 ) ;

}

xp [ k ] = PBC. po s i t i o n ( xp [ k]− dx t r i a l , Lx) ; // r e j e c t

d i sp lacement

yp [ k ] = PBC. po s i t i o n ( yp [ k]− dy t r i a l , Ly) ;

theta [ k ] −= dtheta ;

}

}

}

//Draw the polymer−nanopa r t i c l e mixture

pub l i c void draw (DrawingPanel drawingPanel , Graphics g ) {

double rad iu s = 0 . 5 ;

i n t pxRadiusP [ ] = new in t [Np ] ;

i n t pyRadiusP [ ] = new in t [Np ] ;

Graphics2D g2 = (Graphics2D ) g ; //New

i f ( x==nu l l ) {

r e turn ;

}

i n t pxRadius = Math . abs ( drawingPanel . xToPix ( rad iu s )−drawingPanel .

xToPix (0 ) ) ;

i n t pyRadius = Math . abs ( drawingPanel . yToPix ( rad iu s )−drawingPanel .

yToPix (0 ) ) ;
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g . s e tCo lo r ( Color . b lue ) ;

f o r ( i n t i = 0 ; i<Nd; i++) {

i n t xpix = drawingPanel . xToPix (x [ i ] )−pxRadius ;

i n t ypix = drawingPanel . yToPix (y [ i ] )−pyRadius ;

g . f i l l O v a l ( xpix , ypix , 2∗pxRadius , 2∗pyRadius ) ;

}

g . s e tCo lo r ( Color . red ) ;

f o r ( i n t i = 0 ; i<Np; i++) {

pxRadiusP [ i ] = Math . abs ( drawingPanel . xToPix ( a [ i ] )−

drawingPanel . xToPix (0 ) ) ; // Alan

pyRadiusP [ i ] = Math . abs ( drawingPanel . yToPix (b [ i ] )−

drawingPanel . yToPix (0 ) ) ; // Alan

i n t xpixP = drawingPanel . xToPix ( xp [ i ] )−pxRadiusP [ i ] ;

i n t ypixP = drawingPanel . yToPix ( yp [ i ] )−pyRadiusP [ i ] ;

E l l ip se2D e = new El l ipse2D . Double ( xpixP , ypixP , 2∗pxRadiusP

[ i ] , 2∗pyRadiusP [ i ] ) ;

Af f ineTransform at = Aff ineTransform . getRotate Ins tance ( theta

[ i ] , xpixP+pxRadiusP [ i ] , ypixP+pyRadiusP [ i ] ) ;

g2 . f i l l ( at . createTransformedShape ( e ) ) ;

}

g . s e tCo lo r ( Color . b lack ) ;

i n t xpix = drawingPanel . xToPix (0 ) ;

i n t ypix = drawingPanel . yToPix (Ly) ;

i n t l x = drawingPanel . xToPix (Lx)−drawingPanel . xToPix (0 ) ;

i n t l y = drawingPanel . yToPix (0 )−drawingPanel . yToPix (Ly) ;

g . drawRect ( xpix , ypix , lx , l y ) ;

}

}
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A.5. 2D Monte-Carlo Simulation Main() Code

package org . opensourcephys i c s . s i p . ch15 ;

import java . awt . ∗ ;

import java . awt . geom . El l ipse2D ;

import java . awt . geom . Aff ineTransform ;

import org . opensourcephys i c s . d i sp l ay . ∗ ;

import org . opensourcephys i c s . frames . ∗ ;

import org . opensourcephys i c s . numerics . ∗ ;

import java . u t i l . stream . ∗ ;

import org . opensourcephys i c s . c o n t r o l s . ∗ ;

import org . opensourcephys i c s . d i sp l ay . GUIUtils ;

import java . i o . ∗ ;

import java . i o . F i l eWr i t e r ;

import java . u t i l . L i s t ;

import java . u t i l . ArrayList ;

import java . u t i l . Calendar ;

/∗∗

∗ HardDisksApp does a Monte Carlo s imu la t i on f o r a 2D system o f uncharged hard

d i s k s crowding an e l l i p t i c a l polymer

∗

∗ @author Wyatt Davis & Alan Denton based on MD code ch08/hd/HardDisksApp . java by

Jan Tobochnik , Wolfgang Chr i s t ian , Harvey Gould

∗ @version 1 .5 r e v i s ed 4/18

∗

∗/

pub l i c c l a s s DPM5App extends AbstractS imulat ion {

DPM5 hd = new DPM5( ) ;

DisplayFrame d i sp l ay = new DisplayFrame (”x” , ”y” , ”Hard Disk Pa r t i c l e s ”) ;

i n t i = 0 ; // Wil l t rack number o f s t ep s taken

i n t j = 0 ; // Wil l t rack number o f data po in t s wr i t t en

i n t k = 0 ; // Wil l t rack number o f independant runs

Calendar c a l = Calendar . g e t In s tance ( ) ;
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ArrayList<Double> L1dat = new ArrayList<Double>(10000) ;

ArrayList<Double> L2dat = new ArrayList<Double>(10000) ;

/∗∗

∗ I n i t i a l i z e s the s imu la t i on

∗/

pub l i c void i n i t i a l i z e ( ) {

hd .Nd = con t r o l . g e t In t (”Nd”) ;

hd .Np = con t r o l . g e t In t (”Np”) ;

hd . phi = con t r o l . getDouble (” phi ”) ;

hd . Lx = .5∗Math . s q r t (hd .Nd∗Math . PI/hd . phi ) ;

hd . Ly = .5∗Math . s q r t (hd .Nd∗Math . PI/hd . phi ) ;

hd . cond i t i on=f a l s e ;

hd . t o l e r an c e = con t r o l . getDouble (” t o l e r an c e ”) ;

S t r ing c on f i g u r a t i o n = con t r o l . g e tS t r i ng (” i n i t i a l c on f i g u r a t i o n ”) ;

hd . s i z eRa t i o = con t r o l . getDouble (” s i z eRa t i o ”) ;

hd . penet rat ionCost= con t r o l . getDouble (” penet rat ionCost ”) ;

hd . s o l v en tQua l i t y = con t r o l . g e tS t r i ng (” so lven tQua l i t y ”) ;

hd . i n i t i a l i z e ( c on f i g u r a t i o n ) ;

d i sp l ay . addDrawable (hd ) ;

d i sp l ay . setPreferredMinMax (0 , hd . Lx , 0 , hd . Ly) ;

d i sp l ay . setSquareAspect ( t rue ) ;

}

//Used step method from how data i s taken over durat ion o f s imu la t i on

pub l i c void doStep ( ) {

i f ( k<6){

i f ( k==0 && i==0){

F i l e d i r 1 = new F i l e (” data/phiN=”+hd . phi+”,q=”+hd . s i z eRa t i o

+” ”) ;

boolean s u c c e s s f u l 1 = d i r1 . mkdir ( ) ;

i f ( s u c c e s s f u l 1 ) {

System . out . p r i n t l n (” d i r e c t o r y was c rea ted

s u c c e s s f u l l y ”) ;

}
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e l s e {

System . out . p r i n t l n (” f a i l e d t ry ing to c r e a t e the

d i r e c t o r y ”) ;

}

f o r ( i n t i =1; i <6; i++){

F i l e d i r 2 = new F i l e (” data/phiN=”+hd . phi+”,q=”+hd .

s i z eRa t i o+” ” +”/” + i ) ;

boolean s u c c e s s f u l 2 = d i r2 . mkdir ( ) ;

i f ( s u c c e s s f u l 2 ) {

System . out . p r i n t l n (” d i r e c t o r y was c rea ted

s u c c e s s f u l l y ”) ;

}

e l s e {

System . out . p r i n t l n (” f a i l e d t ry ing to c r e a t e

the d i r e c t o r y ”) ;

}

t ry {

Fi l eWr i t e r fw=new Fi l eWr i t e r (” data/phiN=”+hd

. phi+”,q=”+hd . s i z eRa t i o+” ” +”/” + i +”/”+”phiN=”+hd . phi+”,q=”+hd . s i z eRa t i o+” eX .

dat ”) ;

} catch ( Exception e ) {System . out . p r i n t l n ( e ) ;}

System . out . p r i n t l n (” Success . . . ” ) ;

t ry {

Fi l eWr i t e r fw=new Fi l eWr i t e r (” data/phiN=”+hd

. phi+”,q=”+hd . s i z eRa t i o+” ” +”/” + i +”/”+”phiN=”+hd . phi+”,q=”+hd . s i z eRa t i o+” eY .

dat ”) ;

} catch ( Exception e ) {System . out . p r i n t l n ( e ) ;}

System . out . p r i n t l n (” Success . . . ” ) ;

}

k++;

}

// check i f enough datapo int s have been taken

i f ( j <10000){

// a l low s t ep s f o r e q u i l i b r i a t i o n

i f ( i <10000){

hd . s tep ( ) ;
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i++;

}

// a f t e r steps , s t a r t data c o l l e c t i o n procedure

e l s e {

hd . s tep ( ) ;

i++;

i f ( i %1000 == 0) {

i f ( hd . l 1 [0]>=hd . l 2 [ 0 ] ) {

L1dat . add (hd . l 1 [ 0 ] ) ;

L2dat . add (hd . l 2 [ 0 ] ) ;

}

e l s e {

L1dat . add (hd . l 2 [ 0 ] ) ;

L2dat . add (hd . l 1 [ 0 ] ) ;

}

j++;

//System . out . p r i n t ( j ) ;

}

}

}

//WRITE DATA

e l s e {

St r ing strFi lePathX = ”data/phiN=”+hd . phi+”,q=”+hd . s i z eRa t i o

+” ” +”/” + k +”/”+”phiN=”+hd . phi+”,q=”+hd . s i z eRa t i o+” eX . dat ” ;

S t r ing strFi lePathY = ”data/phiN=”+hd . phi+”,q=”+hd . s i z eRa t i o

+” ” +”/” + k +”/”+”phiN=”+hd . phi+”,q=”+hd . s i z eRa t i o+” eY . dat ” ;

System . out . p r i n t l n ( strFi lePathX ) ;

t ry {

Fi l eWr i t e r fwX = new Fi l eWr i t e r ( strFi lePathX ) ;

Buf feredWriter bw = new Buf feredWriter ( fwX) ;

f o r ( double dat : L1dat ) {

bw. wr i t e ( dat+””) ;

bw . newLine ( ) ;

}

bw. c l o s e ( ) ;

} catch ( Exception e ) {System . out . p r i n t l n ( e ) ;}
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t ry {

Fi l eWr i t e r fwY = new Fi l eWr i t e r ( strFi lePathY ) ;

Buf feredWriter bw = new Buf feredWriter ( fwY) ;

f o r ( double dat : L2dat ) {

bw. wr i t e ( dat+””) ;

bw . newLine ( ) ;

}

bw. c l o s e ( ) ;

} catch ( Exception e ) {System . out . p r i n t l n ( e ) ;}

k++;

L1dat . c l e a r ( ) ;

L2dat . c l e a r ( ) ;

i =0;

j =0;

i n i t i a l i z e ( ) ;

}

}

}

/∗∗

∗ Resets the hard d i s k s model to i t s d e f au l t s t a t e .

∗/

pub l i c void r e s e t ( ) {

enab leStepsPerDisp lay ( t rue ) ;

c on t r o l . setValue (”Nd” , 36) ;

c on t r o l . setValue (”Np” ,1) ;

c on t r o l . setValue (” phi ” , . 2 ) ;

c on t r o l . setValue (” t o l e r an c e ” , 0 . 1 ) ;

c on t r o l . setValue (” i n i t i a l c on f i g u r a t i o n ” , ” r e gu l a r ”) ;

c on t r o l . setValue (” s i z eRa t i o ” ,1) ;

c on t r o l . setValue (” penet rat ionCost ” , . 5 ) ;

c on t r o l . setValue (” so lven tQua l i t y ” , ” theta ”) ;

i n i t i a l i z e ( ) ;

}

/∗∗
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∗ Resets the hard d i s k s model and the data graphs .

∗

∗ This method i s invoked us ing a custom button .

∗/

pub l i c void resetData ( ) {

hd . r e se tAverages ( ) ;

GUIUtils . clearDrawingFrameData ( f a l s e ) ; // c l e a r s o ld data from the

p l o t frames

}

/∗∗

∗ S ta r t s the Java app l i c a t i o n .

∗ @param args command l i n e parameters

∗/

pub l i c s t a t i c void main ( S t r ing [ ] a rgs ) { // s e t up animation con t r o l

s t r u c tu r e us ing t h i s c l a s s

S imulat ionContro l c on t r o l = Simulat ionContro l . createApp (new DPM5App

( ) ) ;

c on t r o l . addButton (” resetData ” , ”Reset Data ”) ;

}

}
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A.6. Data Analysis Script for 2D RW

#!/ usr / bin /env python

import sys

import argparse

from math import sqrt , pow , fabs , p i

from os import l i s t d i r , getcwd

from os . path import i s d i r , abspath , j o i n

#−−−−−−−−−−−−−−−−−Functions−−−−−−−−−−−−−−−−−−−−−

de f is number (n) :

t ry :

f l o a t (n)

re turn True

except ValueError :

r e turn Fa l se

# Read data from s imu la t i on d a t a f i l e , and parse i t i n to a l i s t

de f read ( path ) :

with open ( path , ’ r ’ ) as f :

r e t = [ ]

f o r l i n e in f :

token = l i n e . r s t r i p ( )

i f ( is number ( token ) ) :

r e t . append ( f l o a t ( token ) )

re turn r e t

de f histogram ( data , bins , end ) :

width = f l o a t ( end ) / f l o a t ( b ins )

h i s t = d i c t ( )

data = sor t ed ( data )

x = 0

f o r i in range (0 , b ins+1) :

count = 0

# Putting data po in t s i n to b ins
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whi le x < l en ( data ) and data [ x ] <= width∗ i :

count += 1

x += 1

h i s t [ width∗ i ] = count

# Normal iz ing histogram

area = 0

f o r k , v in h i s t . i t e r i t em s ( ) :

area += width∗v

normal ize = 1 / f l o a t ( area ) # normal i z ing constant

f o r k in h i s t . i t e r k e y s ( ) :

h i s t [ k ] ∗= normal ize

re turn h i s t

de f min (x , y ) :

i f ( x > y ) :

r e turn y

e l s e :

r e turn x

#rede f i n ed f o r 2D (RW)

de f Vol (eX , eY) :

mlen = min ( l en (eX) , l en (eY) )

i = 0

t o t a l = 0

f o r i in range (mlen ) :

t o t a l += sq r t ( f l o a t (eX [ i ] ) ∗ f l o a t (eY [ i ] ) )

#return 4∗ pi ∗ (1 .9634∗∗3) ∗ t o t a l /3/ f l o a t (mlen )

re turn p i ∗ t o t a l ∗12 .0/ f l o a t (mlen )

#rede f i n ed f o r 2D (RW) )

de f rgOverRgr (eX , eY) :

mlen = min ( l en (eX) , l en (eY) )

i = 0

t o t a l = 0
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f o r i in range (mlen ) :

t o t a l += f l o a t (eX [ i ] ) + f l o a t (eY [ i ] )

#return sq r t ( t o t a l / f l o a t (mlen ) ) / .44108

return sq r t (6∗ t o t a l / f l o a t (mlen ) )

#Continue

de f a s ph e r i c i t y (eX , eY) :

mlen = min ( l en (eX) , l en (eY) )

i = 0

term1 = 0

#term2 = 0

#term3 = 0

denom = 0

f o r i in range (mlen ) :

term1 += pow(eY [ i ] − eX [ i ] , 2)

#term2 += pow( eZ [ i ] − eX [ i ] ,

#term3 += pow( eZ [ i ] − eY [ i ] , 2)

denom += pow(eX [ i ]+eY [ i ] , 2)

numerator = term1/ f l o a t (mlen )

denom = denom / f l o a t (mlen )

re turn numerator / denom

def average ( l i s t ) :

t o t a l = 0

f o r a in l i s t :

i f ( is number ( a ) ) :

t o t a l += a

return t o t a l / f l o a t ( l en ( l i s t ) )

de f stddev ( l i s t ) :

r e turn sq r t ( average (map( lambda x : x∗∗2 , l i s t ) ) − pow( average ( l i s t ) , 2 ) ) #

Note : x∗∗2 = xˆ2 , x squared

de f analyzeRun ( runDirectory , g r oup ing d i s t ) :

d i r e c t o r y = runDirectory # Ful l f i l e d i r e c t o r y eg . phiN=0.8 ,q=0.5 12

−21−6−2015 11 :34
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p r e f i x = d i r e c t o r y . s p l i t (” ”) [ 0 ] # Pre f i x s p e c i f y i n g phiN and q , eg . phiN

=0.8 ,q=0.5

phiN = ( p r e f i x . s p l i t ( ” , ” ) [ 0 ] ) . s p l i t (”=”) [ 1 ]

datapo int s = 5 # Number o f data v a r i a b l e s we ’ re i n t e r e s t e d in

ba s ed i r = abspath ( j o i n ( getcwd ( ) , d i r e c t o r y ) )

da tad i r s = [ abspath ( j o i n ( based i r , f ) ) f o r f in l i s t d i r ( ba s ed i r ) i f i s d i r (

abspath ( j o i n ( based i r , f ) ) ) ]

r e s u l t s = [ [ ] f o r x in range ( datapo int s ) ] # Create a l i s t f o r each datapo int

runs = len ( da tad i r s )

# Read a l l data from the runs , append i t to r e s u l t s l i s t .

# Ind i c e s 0 ,1 ,2 w i l l s t o r e eX , eY , eZ and 3 ,4 w i l l s t o r e rad iu s o f gyrat ion ,

a s ph e r i c i t y .

f o r d in da tad i r s :

eXdata = read ( j o i n (d , ’{} eX . dat ’ . format ( p r e f i x ) ) )

eYdata = read ( j o i n (d , ’{} eY . dat ’ . format ( p r e f i x ) ) )

#eZdata = read ( j o i n (d , ’{} eZ . dat ’ . format ( p r e f i x ) ) )

#s izeData = read ( j o i n (d , ’{} Rˆ3 . dat ’ . format ( p r e f i x ) ) )

r e s u l t s [ 0 ] . append ( histogram ( eXdata , 400 , 0 . 7 ) )

r e s u l t s [ 1 ] . append ( histogram ( eYdata , 200 , 0 . 1 5 ) )

#r e s u l t s [ 2 ] . append ( histogram ( eZdata , 200 , 0 . 0 2 ) )

r e s u l t s [ 2 ] . append ( rgOverRgr ( eXdata , eYdata ) )

r e s u l t s [ 3 ] . append ( a s ph e r i c i t y ( eXdata , eYdata ) )

r e s u l t s [ 4 ] . append (Vol ( eXdata , eYdata ) )

i = 0

f o r i in range ( datapo int s ) :

i f i == 0 :

f = open ( j o i n ( based i r , ’ eX . dat ’ ) , ’w’ )

e l i f i == 1 :

f = open ( j o i n ( based i r , ’ eY . dat ’ ) , ’w’ )

#e l i f i == 2 :

# f = open ( j o i n ( based i r , ’ eZ . dat ’ ) , ’w’ )

e l i f i == 2 : # Rg c a l c u l a t i o n

f = open ( j o i n ( based i r , ’ rg . dat ’ ) , ’w’ )

rg r = r e s u l t s [ 2 ]
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f . wr i t e (”{}\ t { : . 5 f }\ t { : . 5 f }” . format ( phiN , average ( rg r ) ,

stddev ( rg r ) ) )

e l i f i == 3 : # Aspher i c i ty c a l c u l a t i o n

f = open ( j o i n ( based i r , ’ aspher . dat ’ ) , ’w’ )

aspher = r e s u l t s [ 3 ]

f . wr i t e (”{}\ t { : . 5 f }\ t { : . 5 f }” . format ( phiN , average ( aspher ) ,

stddev ( aspher ) ) )

e l s e :

f = open ( j o i n ( based i r , ’ volume . dat ’ ) , ’w’ )

#vo l = map( lambda x : 4 .1887∗x , r e s u l t s [ 5 ] )

vo l = r e s u l t s [ 4 ]

f . wr i t e (”{}\ t { : . 5 f }\ t { : . 5 f }” . format ( phiN , average ( vo l ) ,

stddev ( vo l ) ) )

# Ca lcu la t e average o f h istograms f o r eX , eY

i f i < 2 :

avgd h i s t = d i c t ( ) # to s t o r e averaged histogram a f t e r 5

runs

h i s t = r e s u l t s [ i ] [ 0 ] # get the keys (x−va lue s ) f i r s t

# average the histograms

f o r k in so r t ed ( h i s t . keys ( ) ) : # f o r each bin

t o t a l = 0

s q r t o t a l = 0

f o r j in range ( runs ) :

t o t a l += r e s u l t s [ i ] [ j ] [ k ]

s q r t o t a l += r e s u l t s [ i ] [ j ] [ k ]∗ r e s u l t s [ i ] [ j ] [

k ]

avg = t o t a l / f l o a t ( runs )

sqr avg = s q r t o t a l / f l o a t ( runs )

avg sqrd = avg ∗ avg

std = sq r t ( abs ( sqr avg−avg sqrd ) )

avgd h i s t [ k ] = [ avg , std ]

# con s o l i d a t i n g b ins as nece s sa ry
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keyL i s t = sor t ed ( avgd h i s t . keys ( ) )

j = 0

# the grouping d i s t anc e i s ad justed based on the eX , eY , eZ

curves

i f i == 0 :

gd i s t = g roup ing d i s t

e l i f i == 1 :

gd i s t = 4 ∗ g r oup ing d i s t

#e l i f i == 2 :

# gd i s t = 10 ∗ g r oup ing d i s t

whi l e j < l en ( keyL i s t ) :

i n i t y = avgd h i s t [ keyL i s t [ j ] ] [ 0 ]

count = 1

t o t a l y = i n i t y

t o t a l s t d = avgd h i s t [ keyL i s t [ j ] ] [ 1 ]

t o t a l x = keyL i s t [ j ]

whi l e ( j < l en ( keyL i s t ) and fabs ( avgd h i s t [ keyL i s t [ j

] ] [ 0 ] − i n i t y ) < gd i s t ) : # a l l b ins that have t h e i r y−va lue s separated with l e s s

than s p e c i f i e d un i t d i s t anc e are grouped

t o t a l y += avgd h i s t [ keyL i s t [ j ] ] [ 0 ]

t o t a l s t d += avgd h i s t [ keyL i s t [ j ] ] [ 1 ]

t o t a l x += keyLi s t [ j ]

count += 1

j +=1

con so l i d a t ed y = t o t a l y / f l o a t ( count )

c on s o l i d a t ed s t d = t o t a l s t d / f l o a t ( count )

c on so l i d a t ed x = t o t a l x / f l o a t ( count )

f . wr i t e ( ” { : . 4 f }\ t { : . 5 f }\ t { : . 5 f }\n ” . format (

conso l i da t ed x , conso l i da t ed y , c on s o l i d a t ed s t d ) )

j += 1

f . c l o s e ( )

de f r e a d i n t o d i c t ( f i l e p a t h , i n s e r t d i c t ) :

f = open ( f i l e p a t h , ’ r ’ )

l i n e = f . r e ad l i n e ( )

71



tokens = l i n e . s p l i t (”\ t ”)

key = tokens [ 0 ]

va lue = tokens [ 1 ] + ”\ t ” + tokens [ 2 ]

i n s e r t d i c t [ f l o a t ( key ) ] = value

f . c l o s e ( )

de f w r i t e s o r t e d ( wr i te path , d i c t t o w r i t e ) :

f = open ( wr i te path , ”w”)

f o r key in so r t ed ( d i c t t o w r i t e ) :

f . wr i t e ( ” { : . 5 f }\ t {}\n ” . format ( key , d i c t t o w r i t e [ key ] ) )

f . c l o s e ( )

#−−−−−−−−−−−−−−−Main−−−−−−−−−−−−−−−−

i f name == ’ main ’ :

pa r s e r = argparse . ArgumentParser ( )

pa r s e r . add argument(”− r ” , ”−−run ” , he lp=”Analyze only s p e c i f i c run d i r e c t o r y

. ” )

pa r s e r . add argument (” g roup d i s t ” , type=f l o a t , he lp=”Minimum histogram y−

grouping d i s t anc e . ” )

args = par s e r . p a r s e a r g s ( )

i f a rgs . run :

analyzeRun ( args . run , args . g r oup d i s t )

e l s e :

r un d i r s = [ f f o r f in l i s t d i r ( getcwd ( ) ) i f i s d i r ( abspath ( j o i n (

getcwd ( ) , f ) ) ) ]

aspher = {}

rg = {}

vo l = {}

f o r run d i r in r un d i r s :

# Perform ana l y s i s

analyzeRun ( run d i r , a rgs . g r oup d i s t )

# Combine data

r e a d i n t o d i c t ( j o i n ( run d i r , ” rg . dat ”) , rg )

r e a d i n t o d i c t ( j o i n ( run d i r , ” aspher . dat ”) , aspher )
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r e a d i n t o d i c t ( j o i n ( run d i r , ”volume . dat ”) , vo l )

# Write combined data

w r i t e s o r t e d (” rg . dat ” , rg )

w r i t e s o r t e d (” aspher . dat ” , aspher )

w r i t e s o r t e d (” vo l . dat ” , vo l )
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A.7. Data Analysis Script for 2D SAW

#!/ usr / bin /env python

import sys

import argparse

from math import sqrt , pow , fabs , p i

from os import l i s t d i r , getcwd

from os . path import i s d i r , abspath , j o i n

#−−−−−−−−−−−−−−−−−Functions−−−−−−−−−−−−−−−−−−−−−

de f is number (n) :

t ry :

f l o a t (n)

re turn True

except ValueError :

r e turn Fa l se

# Read data from s imu la t i on d a t a f i l e , and parse i t i n to a l i s t

de f read ( path ) :

with open ( path , ’ r ’ ) as f :

r e t = [ ]

f o r l i n e in f :

token = l i n e . r s t r i p ( )

i f ( is number ( token ) ) :

r e t . append ( f l o a t ( token ) )

re turn r e t

de f histogram ( data , bins , end ) :

width = f l o a t ( end ) / f l o a t ( b ins )

h i s t = d i c t ( )

data = sor t ed ( data )

x = 0

f o r i in range (0 , b ins+1) :

count = 0

# Putting data po in t s i n to b ins
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whi le x < l en ( data ) and data [ x ] <= width∗ i :

count += 1

x += 1

h i s t [ width∗ i ] = count

# Normal iz ing histogram

area = 0

f o r k , v in h i s t . i t e r i t em s ( ) :

area += width∗v

normal ize = 1 / f l o a t ( area ) # normal i z ing constant

f o r k in h i s t . i t e r k e y s ( ) :

h i s t [ k ] ∗= normal ize

re turn h i s t

de f min (x , y ) :

i f ( x > y ) :

r e turn y

e l s e :

r e turn x

#rede f i n ed f o r 2D (SAW)

def Vol (eX , eY) :

mlen = min ( l en (eX) , l en (eY) )

i = 0

t o t a l = 0

f o r i in range (mlen ) :

t o t a l += sq r t ( f l o a t (eX [ i ] ) ∗ f l o a t (eY [ i ] ) )

#return 4∗ pi ∗ (1 .9634∗∗3) ∗ t o t a l /3/ f l o a t (mlen )

#return p i ∗ t o t a l ∗12 .0/ f l o a t (mlen )

re turn p i ∗ t o t a l ∗18.492797256/ f l o a t (mlen )

#rede f i n ed f o r 2D (RW) )

de f rgOverRgr (eX , eY) :

mlen = min ( l en (eX) , l en (eY) )

i = 0

t o t a l = 0
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f o r i in range (mlen ) :

t o t a l += f l o a t (eX [ i ] ) + f l o a t (eY [ i ] )

#return sq r t ( t o t a l / f l o a t (mlen ) ) / .44108

return (1/ .328862) ∗ s q r t ( t o t a l / f l o a t (mlen ) )

#Continue

de f a s ph e r i c i t y (eX , eY) :

mlen = min ( l en (eX) , l en (eY) )

i = 0

term1 = 0

#term2 = 0

#term3 = 0

denom = 0

f o r i in range (mlen ) :

term1 += pow(eY [ i ] − eX [ i ] , 2)

#term2 += pow( eZ [ i ] − eX [ i ] ,

#term3 += pow( eZ [ i ] − eY [ i ] , 2)

denom += pow(eX [ i ]+eY [ i ] , 2)

numerator = term1/ f l o a t (mlen )

denom = denom / f l o a t (mlen )

re turn numerator / denom

def average ( l i s t ) :

t o t a l = 0

f o r a in l i s t :

i f ( is number ( a ) ) :

t o t a l += a

return t o t a l / f l o a t ( l en ( l i s t ) )

de f stddev ( l i s t ) :

r e turn sq r t ( average (map( lambda x : x∗∗2 , l i s t ) ) − pow( average ( l i s t ) , 2 ) ) #

Note : x∗∗2 = xˆ2 , x squared

de f analyzeRun ( runDirectory , g r oup ing d i s t ) :

d i r e c t o r y = runDirectory # Ful l f i l e d i r e c t o r y eg . phiN=0.8 ,q=0.5 12

−21−6−2015 11 :34

76



p r e f i x = d i r e c t o r y . s p l i t (” ”) [ 0 ] # Pre f i x s p e c i f y i n g phiN and q , eg . phiN

=0.8 ,q=0.5

phiN = ( p r e f i x . s p l i t ( ” , ” ) [ 0 ] ) . s p l i t (”=”) [ 1 ]

datapo int s = 5 # Number o f data v a r i a b l e s we ’ re i n t e r e s t e d in

ba s ed i r = abspath ( j o i n ( getcwd ( ) , d i r e c t o r y ) )

da tad i r s = [ abspath ( j o i n ( based i r , f ) ) f o r f in l i s t d i r ( ba s ed i r ) i f i s d i r (

abspath ( j o i n ( based i r , f ) ) ) ]

r e s u l t s = [ [ ] f o r x in range ( datapo int s ) ] # Create a l i s t f o r each datapo int

runs = len ( da tad i r s )

# Read a l l data from the runs , append i t to r e s u l t s l i s t .

# Ind i c e s 0 ,1 ,2 w i l l s t o r e eX , eY , eZ and 3 ,4 w i l l s t o r e rad iu s o f gyrat ion ,

a s ph e r i c i t y .

f o r d in da tad i r s :

eXdata = read ( j o i n (d , ’{} eX . dat ’ . format ( p r e f i x ) ) )

eYdata = read ( j o i n (d , ’{} eY . dat ’ . format ( p r e f i x ) ) )

#eZdata = read ( j o i n (d , ’{} eZ . dat ’ . format ( p r e f i x ) ) )

#s izeData = read ( j o i n (d , ’{} Rˆ3 . dat ’ . format ( p r e f i x ) ) )

r e s u l t s [ 0 ] . append ( histogram ( eXdata , 400 , 0 . 7 ) )

r e s u l t s [ 1 ] . append ( histogram ( eYdata , 200 , 0 . 1 5 ) )

#r e s u l t s [ 2 ] . append ( histogram ( eZdata , 200 , 0 . 0 2 ) )

r e s u l t s [ 2 ] . append ( rgOverRgr ( eXdata , eYdata ) )

r e s u l t s [ 3 ] . append ( a s ph e r i c i t y ( eXdata , eYdata ) )

r e s u l t s [ 4 ] . append (Vol ( eXdata , eYdata ) )

i = 0

f o r i in range ( datapo int s ) :

i f i == 0 :

f = open ( j o i n ( based i r , ’ eX . dat ’ ) , ’w’ )

e l i f i == 1 :

f = open ( j o i n ( based i r , ’ eY . dat ’ ) , ’w’ )

#e l i f i == 2 :

# f = open ( j o i n ( based i r , ’ eZ . dat ’ ) , ’w’ )

e l i f i == 2 : # Rg c a l c u l a t i o n

f = open ( j o i n ( based i r , ’ rg . dat ’ ) , ’w’ )

rg r = r e s u l t s [ 2 ]
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f . wr i t e (”{}\ t { : . 5 f }\ t { : . 5 f }” . format ( phiN , average ( rg r ) ,

stddev ( rg r ) ) )

e l i f i == 3 : # Aspher i c i ty c a l c u l a t i o n

f = open ( j o i n ( based i r , ’ aspher . dat ’ ) , ’w’ )

aspher = r e s u l t s [ 3 ]

f . wr i t e (”{}\ t { : . 5 f }\ t { : . 5 f }” . format ( phiN , average ( aspher ) ,

stddev ( aspher ) ) )

e l s e :

f = open ( j o i n ( based i r , ’ volume . dat ’ ) , ’w’ )

#vo l = map( lambda x : 4 .1887∗x , r e s u l t s [ 5 ] )

vo l = r e s u l t s [ 4 ]

f . wr i t e (”{}\ t { : . 5 f }\ t { : . 5 f }” . format ( phiN , average ( vo l ) ,

stddev ( vo l ) ) )

# Ca lcu la t e average o f h istograms f o r eX , eY

i f i < 2 :

avgd h i s t = d i c t ( ) # to s t o r e averaged histogram a f t e r 5

runs

h i s t = r e s u l t s [ i ] [ 0 ] # get the keys (x−va lue s ) f i r s t

# average the histograms

f o r k in so r t ed ( h i s t . keys ( ) ) : # f o r each bin

t o t a l = 0

s q r t o t a l = 0

f o r j in range ( runs ) :

t o t a l += r e s u l t s [ i ] [ j ] [ k ]

s q r t o t a l += r e s u l t s [ i ] [ j ] [ k ]∗ r e s u l t s [ i ] [ j ] [

k ]

avg = t o t a l / f l o a t ( runs )

sqr avg = s q r t o t a l / f l o a t ( runs )

avg sqrd = avg ∗ avg

std = sq r t ( abs ( sqr avg−avg sqrd ) )

avgd h i s t [ k ] = [ avg , std ]

# con s o l i d a t i n g b ins as nece s sa ry
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keyL i s t = sor t ed ( avgd h i s t . keys ( ) )

j = 0

# the grouping d i s t anc e i s ad justed based on the eX , eY , eZ

curves

i f i == 0 :

gd i s t = g roup ing d i s t

e l i f i == 1 :

gd i s t = 4 ∗ g r oup ing d i s t

#e l i f i == 2 :

# gd i s t = 10 ∗ g r oup ing d i s t

whi l e j < l en ( keyL i s t ) :

i n i t y = avgd h i s t [ keyL i s t [ j ] ] [ 0 ]

count = 1

t o t a l y = i n i t y

t o t a l s t d = avgd h i s t [ keyL i s t [ j ] ] [ 1 ]

t o t a l x = keyL i s t [ j ]

whi l e ( j < l en ( keyL i s t ) and fabs ( avgd h i s t [ keyL i s t [ j

] ] [ 0 ] − i n i t y ) < gd i s t ) : # a l l b ins that have t h e i r y−va lue s separated with l e s s

than s p e c i f i e d un i t d i s t anc e are grouped

t o t a l y += avgd h i s t [ keyL i s t [ j ] ] [ 0 ]

t o t a l s t d += avgd h i s t [ keyL i s t [ j ] ] [ 1 ]

t o t a l x += keyLi s t [ j ]

count += 1

j +=1

con so l i d a t ed y = t o t a l y / f l o a t ( count )

c on s o l i d a t ed s t d = t o t a l s t d / f l o a t ( count )

c on so l i d a t ed x = t o t a l x / f l o a t ( count )

f . wr i t e ( ” { : . 4 f }\ t { : . 5 f }\ t { : . 5 f }\n ” . format (

conso l i da t ed x , conso l i da t ed y , c on s o l i d a t ed s t d ) )

j += 1

f . c l o s e ( )

de f r e a d i n t o d i c t ( f i l e p a t h , i n s e r t d i c t ) :

f = open ( f i l e p a t h , ’ r ’ )

l i n e = f . r e ad l i n e ( )
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tokens = l i n e . s p l i t (”\ t ”)

key = tokens [ 0 ]

va lue = tokens [ 1 ] + ”\ t ” + tokens [ 2 ]

i n s e r t d i c t [ f l o a t ( key ) ] = value

f . c l o s e ( )

de f w r i t e s o r t e d ( wr i te path , d i c t t o w r i t e ) :

f = open ( wr i te path , ”w”)

f o r key in so r t ed ( d i c t t o w r i t e ) :

f . wr i t e ( ” { : . 5 f }\ t {}\n ” . format ( key , d i c t t o w r i t e [ key ] ) )

f . c l o s e ( )

#−−−−−−−−−−−−−−−Main−−−−−−−−−−−−−−−−

i f name == ’ main ’ :

pa r s e r = argparse . ArgumentParser ( )

pa r s e r . add argument(”− r ” , ”−−run ” , he lp=”Analyze only s p e c i f i c run d i r e c t o r y

. ” )

pa r s e r . add argument (” g roup d i s t ” , type=f l o a t , he lp=”Minimum histogram y−

grouping d i s t anc e . ” )

args = par s e r . p a r s e a r g s ( )

i f a rgs . run :

analyzeRun ( args . run , args . g r oup d i s t )

e l s e :

r un d i r s = [ f f o r f in l i s t d i r ( getcwd ( ) ) i f i s d i r ( abspath ( j o i n (

getcwd ( ) , f ) ) ) ]

aspher = {}

rg = {}

vo l = {}

f o r run d i r in r un d i r s :

# Perform ana l y s i s

analyzeRun ( run d i r , a rgs . g r oup d i s t )

# Combine data

r e a d i n t o d i c t ( j o i n ( run d i r , ” rg . dat ”) , rg )

r e a d i n t o d i c t ( j o i n ( run d i r , ” aspher . dat ”) , aspher )
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r e a d i n t o d i c t ( j o i n ( run d i r , ”volume . dat ”) , vo l )

# Write combined data

w r i t e s o r t e d (” rg . dat ” , rg )

w r i t e s o r t e d (” aspher . dat ” , aspher )

w r i t e s o r t e d (” vo l . dat ” , vo l )
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