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ABSTRACT

We provide a set of semantically secure achievable rates for the fast fading wiretap channel.

In particular, we do so for the cases where there is channel state information at the transmitter

(CSIT) for both the main and eavesdropper channels (full CSIT), for only the main channel (partial

CSIT), and for neither channel (statistical CSIT).

In the case of partial CSIT and statistical CSIT fast-fading channels, we show that this

coding scheme can achieve the best known achievable rates. In the case of full CSIT fast-fading

wiretap channels, we show that this coding scheme can actually achieve the secrecy capacity. In

particular, this implies that the semantic secrecy capacity for these channels is equivalent to the

weak and strong secrecy capacities. Moreover, we achieve these rates in a way that is non-invasive

to existing systems and also happens to be explicitly given as well as efficient in implementation.
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1. INTRODUCTION

The goal of any security system is to provide a way for a transmitter and legitimate receiver

to communicate while a third party, known as an adversary or eavesdropper, who also receives

the transmitted signals, remains ignorant of their meaning. Most modern communication systems

employ various security measures when transferring data from a transmitter to a legitimate receiver

and these systems mostly obtain security via computational based cryptographic methods. This

has been a suitable security solution for the past century but it relies on a large assumption which is

being seriously challenged by the rise of quantum computers (and potentially other new computer

architectures). The assumption made in the field of computational based cryptology is that the

adversary (eavesdropper) is computationally bounded. This means that it is theoretically possible

to break a cryptographic system, but it is not feasible to do so in any practical amount of time or

with any practical amount of computing power.

Many cryptographic schemes are based on the assumption that integer factorization is a

hard problem, that is, a problem whose solution is inefficient to find, and thus computationally

bounded adversaries will not be able to break the scheme. However, this assumption is made

using the further assumption that the factoring is being done on a classical computer. Integer

factorization is not a hard problem for a quantum computer using quantum algorithms. It was

shown in [22] that Shor’s Algorithm can factor large integers in polynomial time on a quantum

computer, rendering many cryptographic algorithms ineffective. Furthermore, to date, there has

been no mathematical proof showing that integer factorization (and similar problems) is actually

hard for classical computers as well. In other words, there is nothing precluding the discovery of an

efficient algorithm for classical computers. Due to these risks, it is desirable to implement a new

form of security on our communication systems. A leading candidate for this new form of security

is information-theoretic security, also known as physical-layer security.

Information-theoretic security exploits the inherent randomness present in a communication

channel due to ambient noise and interference. This form of security does not make the assumption

that the adversary is computationally bounded; it is still provably unbreakable regardless of the

adversary’s computational capabilities. In an information-theoretic secure system, an adversary just
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simply does not have enough information available to ever deduce the original message with a high

probability. This idea of information-theoretic security was first formulated and put forth in 1949

by Claude Shannon in his seminal paper “Communication Theory of Secrecy Systems” [21]. After

putting forth the idea, Shannon proved that it was indeed possible to realize information-theoretic

security in real-world applications. However, information-theoretic security was soon abandoned

by the security community as it was deemed impractical.

Although information-theoretic security offers many potential advantages over traditional

cryptography, it has been largely ignored for decades and has been thought of mainly as a theoretical

peculiarity. Shortly after Wyner revived the field of information-theoretic security in the seventies

by formulating the mathematical model (the wiretap channel) for which we now rely, Diffie and

Hellman introduced the world to public-key cryptography to which the attention of the security

community soon shifted due to its readiness in applicability. Although Wyner’s result was important

in bringing back the field of information-theoretic secrecy, it was still highly theoretic - there were

no practical ways to achieve it, further pushing the security community to tried and true (at the

time) cryptographic methods. Focus on information-theoretic security has grown substantially since

the turn of the century and continues to grow as researchers are realizing its potential. Further

potential of the subject is being shown in a newly blossoming field known as quantum information

theory which has a secrecy component to it as well.

As with most technologies, there are admittedly some down sides to information-theoretic

security. To date, there are not many schemes in existence that can actually be implemented in

a practical setting to provide this kind of security; most proposed schemes are too impractical.

The impracticality of these proposed schemes comes in two forms. The first being the lack of a

concrete method to implement the scheme, which we refer to as a scheme’s lack of explicitness.

Computational based cryptographic methods can be easily implemented in practice due to the fact

that most of them can be coded in a programming language by a modest student of computer science

and put to use immediately. In contrast, many existing techniques to ensure information-theoretic

security rely on random coding arguments which have no way of being coded or implemented

directly. The other form of impracticality is that of super-polynomial time complexity, which we will

refer to as a scheme’s lack of efficiency. Explicit techniques have been given that ensure information-

theoretic security but the time or space complexity of the operations necessary to achieve it are
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such that it is infeasible in practice. The simplest example of this is that of Shannon’s one-time

pad (although Shannon was not the original inventor of the one-time pad, that credit belongs to

Frank Miller [18], he was the first to show its capabilities in an information-theoretic sense). This

scheme ensures the best information-theoretic secrecy possible (this is given in more detail later

in the thesis) and is explicitly given, but it has the downfall that it requires keys which are the

same size as that of the message [21]. Furthermore, a new independent key must be generated for

each message. Obviously, when working with gigabytes (or larger) of data such as are common in

modern communication systems, generating and distributing keys of equal size is quite impractical.

Another deterrent to information-theoretic security being widely adopted in practice is that

many proposed schemes (impractical or practical) do not provide a sufficient amount of security

to be trusted with sensitive data. As will be shown in forthcoming chapters, there exist metrics to

measure “how secure” a certain scheme is; many of the current schemes proposed in literature only

provide security on the low end of this spectrum. So low, in fact, that in some cases an infinite

amount of information can still be deduced by the adversary when using the proposed scheme. In

order for information-theoretic security to become widely adopted, practical schemes which provide

a large amount of security must be developed.

An additional assumption upon which many results in information-theoretic security rest

is that of the adversary having a physically worse channel than the legitimate communicating

parties. A precise definition of a channel and what it means to be “worse” are given in subsequent

chapters but for now it suffices to interpret this assumption as meaning that the adversary is placed

physically farther away from the legitimate receiver or suffers from more physical interference than

that of the legitimate receiver. In many settings, this is quite a feasible assumption. One such

suitable setting is that of wireless communications.

Wireless communication has become ubiquitous in modern society over the past century. A

copious amount of data is being transmitted wirelessly every second; from social interactions and

financial information, to military communications, data is traveling through our atmosphere like

never before. With much of this data being highly sensitive, security measures must be devised to

protect this data from malicious parties during transmission.

The goal of this thesis is to bring information-theoretic security for wireless communications

from the realm of the theoretical to the realm of the practical. However, much more happens. We
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do not just take what the current theoretical results are for wireless communications and make them

practical; we first improve those theoretical results and then make those improved results practical.

In other words, we prove that a higher level of information-theoretic security is possible in wireless

communications than anything currently known and show how to attain it in a completely explicit

and efficient way. What exactly is meant by all of this will become clear in the forthcoming chapters.

The remainder of the thesis is as follows. Chapter 2 introduces the reader to general

information theory as well as information-theoretic secrecy. This chapter also lays some of the

mathematical groundwork needed to progress through the thesis. The goal of Chapter 2 is to not

only give the reader the tools needed for the remainder of the thesis but also attempts to give the

reader intuition for many of the concepts used. With the needed background in hand, Chapter 3

gives the three-part problem statement in more specific detail as well an outline for the solution to

it. Chapters 4, 5, and 6 are the actual solutions to the problem described in Chapter 3. Finally

the thesis is concluded in Chapter 7 with a discussion.
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2. BACKGROUND

2.1. Notation

We shall write an to denote an n-dimensional vector where ai denotes the ith component;

i.e., an = (a1, . . . , an). We use the usual notation ‖an‖ to denote the Euclidean norm. We shall

denote the indicator (or characteristic) function by 1 (x ∈ A) and will take all logarithms in this

paper to be base 2 unless specified otherwise. With a slight abuse of notation, we will write R+ to

denote the set of non-negative reals.

Basic knowledge of probability theory is assumed throughout the thesis. We will denote

random variables by capital letters, a realization of that random variable by lowercase letters, and

will denote the spaces for which a random variable is defined by a respective scripted letter; e.g.,

A is a random variable with values in A and a is a realization of A. We write A⊥B when random

variable A is independent of B and write E [A] to denote the expected value of random variable A.

We denote all probability densities by ω(·) unless otherwise noted and we define the con-

ditional probability density in an analogous way and denote it by ω(·|·) where each is taken with

respect to the random variable corresponding to the obvious choice; e.g., ω(b|a) will denote the

conditional probability density of the random variable B given A = a.

2.2. Information Theory

Originally proposed and formulated by Claude Shannon in his seminal 1948 paper “A Math-

ematical Theory of Communication” [20], the field of information theory explores the fundamental

limits of data storage and the communication of information. All of information theory can be

thought of as answering two fundamental questions: What is the ultimate data compression and

what is the ultimate transmission rate of communication [7]. In this paper, we do not concern

ourselves with the question of data storage or compression and solely focus on the latter question.

Although these two questions seem to be only related to communication theory, information the-

ory plays an intricate role in many fields such as computer science, physics, and probability and

statistics.

Abstractly, information can be thought of as a reduction in uncertainty of an event or

random variable. More formally, information is typically measured by entropy which quantifies the
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amount of uncertainty of a random variable. As an intuitive example, communicating the outcome

of the flip of a fair coin toss gives less information and therefore has a lower entropy than that of

a roll of a fair die since there was more uncertainty in the outcome of the latter case.

Definition. The entropy H(X) of a discrete random variable X with alphabet X is defined by

H(X) = −
∑
x∈X

p(x) log p(x)

where p(x) is the probability mass function of X and H(X) is given in bits when the log is taken

to be base two or given in nats when the log is taken to be the natural logarithm.

From this definition, we can immediately notice that deterministic events (X follows a

deterministic distribution with p(x) = 1) have zero entropy, H(X) = 0, and thus communicating

the realization of the random variable X carries no information. Consider now the example of the

roll of a fair six sided die. Let X be the random variable representing the outcome of the roll.

Then X takes any value from the set {1, 2, 3, 4, 5, 6} with equal probability of 1
6 . The entropy is

then calculated to be:

H(X) = −
∑
x

1

6
log

1

6
= − log

1

6
≈ 2.58 bits.

Now suppose we wish to determine the output of the fair roll via a series of yes-no questions. A

good first question to ask would be “Was the outcome an even number?” The next question could

be “Was the outcome strictly smaller than four?” Depending on the actual outcome, after asking

these questions we will have determined the actual value or we will have at most one more remaining

question that needs to be asked. In other words, to determine the outcome we need to ask either

two or three yes-no questions. By examining the value we calculated for H(X), we can see that it

roughly describes how many yes-no questions one needs to ask to determine the realization of X.

This is not coincidental to this example; this example was meant to illustrate that another way to

think of entropy (when measured in bits) is to think of it as giving the minimum expected number

of binary questions required to determine the value of X. It turns out that the minimum expected

number of binary questions needed to determine X is indeed between H(X) and H(X) + 1 [7].
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2.2.1. Mutual Information

An fundamental quantity necessary for the study of the rate of communication is that of

mutual information.

Definition. Let X and Y be random variables with joint probability mass function p(x, y) and

marginals p(x) and p(y) respectively. The mutual information I(X ∧ Y ) is given by:

I(X ∧ Y ) =
∑
x,y

p(x, y) log
p(x, y)

p(x)p(y)

Mutual information can be thought of as answering the question of how much information

one random variable carries about another. Phrasing it another way, it is a measure of how much

the uncertainty of X is reduced by having knowledge of Y . It is easily seen that if X and Y are

independent random variables then I(X ∧ Y ) = 0 since knowing Y does not help to determine

X in any way. In the other extreme case, if X is a deterministic function of Y , then knowledge

of Y will surely determine X and therefore the mutual information is just the entropy of X, i.e.,

I(X ∧ Y ) = H(X).

The two previous definitions for discrete entropy and discrete mutual information also have

analogs for the case of continuous random variables.

Definition. Let X be a continuous random variable with probability density ω(x) with support S.

The differential entropy h(X) is defined as

h(X) = −
∫
S
ω(X) logω(X)dx

Definition. Let X and Y be two continuous random variables with joint probability density ω(x, y)

and marginals ω(x) and ω(y) respectively. The mutual information I(X ∧ Y ) is defined as

I(X ∧ Y ) =

∫
S
ω(x, y) log

ω(x, y)

ω(x)ω(y)
dxdy

where S is the support of the random variables.
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2.2.2. Capacity

As mentioned above, one of the goals of information theory is to find the optimal rate of

communication from a transmitter A to a receiver B. Before addressing that goal, we need to first

understand what it means for A to communicate with B. Communication can be defined as the

process by which a desired physical state is induced at B due to some physical operation of A.

Communication happens in our physical world and is therefore subject to external noise (in the

form of electromagnetic interference, movement, physical objects blocking the line of sight from

A to B, etc.) and flawed physical signaling by the parties themselves. We say a communication

process was successful if the receiving party B and the transmitting party A agree on what physical

state was meant to be induced at B. Informally, we can think of a communication channel as the

physical path a signal takes from A to B and we say that A is using a communication channel to

induce the desired physical state at B. Each time this is done constitutes one use of the channel.

Message

M
Encoder

Xn Noisy
Channel

Y n

Decoder
M̂

Message
Estimate

Figure 2.1. General communication system.

In more detail, as illustrated in Figure 2.1, a transmitter takes a message M from some finite

set M and maps it to a sequence of n channel symbols Xn known as a codeword. These n channel

symbols are then sent through the channel and are possibly altered according to the channel’s noise

and other characteristics to create an output sequence Y n. The receiver then attempts to recover the

transmitted message from that output. If one is not careful when choosing the sequence of channel

symbols Xn, it is possible that due to the noise of the channel, two different input sequences, Xn
1

and Xn
2 (coming from different messages) may produce the same output sequence Y n which would

then only map to one message estimate. In this case, at least one of the messages was transmitted in

error due to Xn
1 and Xn

2 being confusable. Information theory gives the tools to choose a subset of

input sequences Xn for a channel such that with high probability, there is only one input sequence

that could have produced a given output sequence. By doing this, even in the presence of noise,
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we can recover the original input sequence and therefore the original message at the receiver with

low probability of error.

It has been shown that the number of distinguishable messages able to be communicated

successfully via n uses of the communication channel grows exponentially with n. In other words,

suppose the size of the set of possible messages is α. Then α grows exponentially as n grows. The

logarithm of the number of distinguishable messages divided by n is known as the channel capacity.

Arguably the most prominent result of information theory is that this channel capacity has been

characterized as the maximum amount of mutual information between the source and output.

Definition. A discrete channel is a system consisting of an input alphabet X and output alphabet

Y and a conditional probability mass function known as a probability transition, p(y|x), which gives

the probability of observing the output y given that the input x was sent. In other words, p(y|x)

is characterizing the noise of a channel. The channel is said to be memoryless if the probability

distribution of the output depends only on the current input and is independent of all others.

Definition. The channel capacity of a discrete memoryless channel is defined as:

C = max
p(x)

I(X ∧ Y )

where the maximum is taken over all possible input distributions p(x).

Intuitively, the mutual information between X and Y , I(X ∧Y ), expresses how much infor-

mation the output Y of a channel contains about the input X. Thus, for accurate communication,

we desire that the output contains a large amount or all of the information about the input and

thus would have a large value. The capacity as given above is in bits of information per channel

use, and is known as the “information” channel capacity. There is also an operational definition of

channel capacity which express the highest rate in bits per channel use where information can be

transmitted with arbitrarily low probability of error. In his seminal paper, Shannon showed that

these two definition are equivalent and thus we make no distinction between the two.

As one can see above, capacity is finding the upper limit of the mutual information between

the input and output of a channel. Obviously, how we distribute X does not change the capacity
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and since the only other factor affecting the output is the noise of the channel, we see that capacity

is an intrinsic physical property of a communication channel.

Many of the above concepts were in terms of the discrete memoryless channel as a means

to help garner intuition about the concepts. We now move into the continuous realm and begin to

make rigorous many of the concepts described above.

2.3. Channel

Definition. We define a channel as a stochastic mapping

T : A → B.

If A is a random variable on A then we let B be the random variable B = T (A) on B. We then

associate the transition density ω(b|a) with T as a characterization of how the stochastic mapping

is taking place. That is, given that A = a was sent across the channel, the probability that B is in

some U ⊂ B is given by ∫
U

ω(b|a)db

where the above integral is the Lebesgue integral. Note that the channel T is completely characterized

by the tuple (A, ω(b|a),B). When the channel is to be used n times it will be denoted as Tn.

Unless specified, for the remainder of the thesis we will be considering continuous channels

where the input and output alphabets are both uncountable. Furthermore, we will be considering

subnormalized channels; i.e., channels with transition densities such that

∫
B

ω(b|a)db ≤ 1.

For a subset T ⊂ A× B, define a restricted conditional density by

ωT (b|a) =


ω(b|a), (a, b) ∈ T

0, Otherwise

.
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This induces a new channel TT : A → B with transition density ωT (b|a). That is, given that A = a

was sent across channel TT , the probability that B is in some U ⊂ B is given by

∫
U

ωT (b|a)db =

∫
U

ω(b|a)1 ((a, b) ∈ T ) db.

2.3.1. Gaussian Channel

The most common continuous input alphabet channel is the Additive White Gaussian Noise

(AWGN) channel, or just the Gaussian channel given in Figure 2.2. This models real-world com-

munication channels such as wired telephone, radio channels, and satellite links. For this thesis,

we will only consider discrete-time channels where there is one input to the channel at each time

instant. We let the input at time i be denoted by Xi ∈ R and the noise at time i be denoted by Ui

and take the sum of the two to be the output Yi:

Yi = Xi + Ui.

We assume the noise component Ui is drawn i.i.d from a Gaussian distribution having zero mean

and variance σ2 and is independent of the input signal Xi.

Xi + Yi

Ui

Figure 2.2. Gaussian channel.

Fact 1. [7] The capacity of a Gaussian channel with input satisfying E[X2
i ] ≤ P and noise variance

σ2 is

C =
1

2
log

(
1 +

P

σ2

)
bits per transmission.
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2.3.2. Fading Channel

The general channel model used to model wireless communication environments is that

of the fading channel, where the output signal is an attenuation of the input signal layered with

additive white Gaussian noise. The attenuation, input, and noise are represented using the complex

random variables H, X, and U respectively. The output of this channel at time i is then given as

Yi = HiXi + Ui

where Xi ∈ C, Hi ∈ C, and Ui ∼ CN (0, σ2) and is illustrated in Figure 2.3. Here, CN (0, σ2) is

a circularly-symmetric normal distribution with 0 mean and variance σ2. We shall refer to the

random variable representing attenuation, H, as the channel coefficient.

Xi × + Yi

Hi Ui

Figure 2.3. Fading channel.

For the purposes of this paper, we will be considering what is known as the fast fading

channel. This is a channel model where the fading coefficient is sampled i.i.d. for each use of the

channel and is commonly used to model wireless communications (cf. [24]).

2.4. Error Correcting Codes

In order to transmit information with a low probability of error, proper encoding of the

source symbols is required so as not to confuse two inputs at the output. For the time being,

we assume for ease that both the message alphabet and the channel symbol alphabet are binary

alphabets and thus we are operating on a discrete channel for the moment. Error control coding is

the process of encoding a k-bit message into an n-bit codeword to be sent over the channel where

k ≤ n. The set of all codewords constitutes a codebook and this codebook is assumed to be known

at both the transmitter and receiver. Redundancy is purposely added to the message so that errors

in the codeword during transmission do not hinder the receiver from deducing which message was

12



sent from the received codeword. For example, one of the simplest error correction codes (ECC) is

repetition coding, where one bit is transformed into multiple copies of itself and that sequence is

then sent across the channel. Suppose we wished to send the sequence

1011

across the channel as our message. Using (3) repetition coding we encode that sequence into

111000111111

where each bit in the message is repeated three times. Using this scheme, we can use majority

decoding to deduce the original message. In other words, we observe three bits at a time and take

which value occurs most often as the corresponding bit of the message. If the first three bits were

received as 110 instead of 111, this would still be mapped to a 1 due to 1 being the majority. In

this way, we can see that this code can always correct one error per message bit. If there happen

to be two or three errors within a group of three bits, this scheme will fail and will decode the

received codeword incorrectly.

One can say that the goal of error control coding is that of “spacing” codewords “far enough”

apart from one another in order to distinguish one from another after they have been disturbed

by the channel. The metric used to determine the distance between two codewords and what

constitutes “far enough” is specific to each devised ECC and also by what values are contained in

the input alphabet. In the above example, distance would be defined by Hamming distance which

is the number of bits in which the received vector differs from one of the possible input vectors.

The codeword giving the smallest Hamming distance from the received vector is taken to be the

input codeword which was sent. In the case where the input and output alphabets are continuous,

Euclidean distance is often the metric used to determine distance between codewords.

The ratio R = k/n is known as the code rate, or just rate, of the ECC and n is referred

to as the block length of the code. The rate can be interpreted as the number of information bits

being transferred over the channel per channel use. In the above example, the rate is 4/12 = 1/3.

In Shannon’s original paper he showed that for any rate R which is smaller than or equal to the
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capacity of the channel being operated on, there will exist an ECC that such that the probability

of error at the output can be made arbitrarily small with sufficiently large block length. This result

is known as Shannon’s noisy channel coding theorem. Furthermore, if one uses an ECC that is

operating at a rate above capacity, the probability of error at the receiver will be bounded away

from 0 as the block length goes to infinity. We now make all these concepts rigorous.

Definition. [7] Suppose we are given a channel T : X → Y for any alphabets X ,Y. We call Cn an

error correction code (ECC) for T of length n if it consists of:

1. A finite index set M.

2. An encoder en :M→ X n (we assume en is injective).

3. A decoder dn : Yn →M.

The rate of an ECC Cn is defined to be

RCn =
log(|M|)

n
.

We define a coding scheme for T as a set of codes

C = {Cn}n∈N

and the rate of the coding scheme C to be

RC = lim
n→∞

RCn

when this exists. The image of the encoder en will be called the codebook and shall be denoted by

Cn = {xn ∈ X n |xn = en(m) , m ∈M}.

We say the encoder en has power constraint P if:

1

n

n∑
i=1

x2
i ≤ P ∀xn ∈ Cn.
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For a coding scheme to be useful in transmitting error free data across communication

channels, we need to guarantee that it is reliable.

Definition. Let M ∈M be the message input to the encoder, en(M) = Xn and take Y n to be the

output of the channel Tn given that Xn was sent. We define the probability of error of an ECC as

Pe(Cn) = P[M 6= dn(Y n)].

We say a coding scheme C = {Cn} is reliable if

lim
n→∞

Pe(Cn) = 0.

Finally, we need one more definition to characterize at what rates we can successfully

communicate across the channel.

Definition. We say that rate RC is achievable across the channel T if there exists a reliable coding

scheme C = {Cn} such that RCn → RC as n→∞.

2.5. Wiretap Channel

The wiretap channel was originally posed and formulated by Wyner in 1975 [26]. Although

he originally only considered what the information theory community now considers a special case

of the general wiretap channel, he still put forth the concept we use today. A wiretap channel

consists of a transmitter A, commonly referred to as Alice, a legitimate receiver B, commonly

referred to as Bob, and a passive eavesdropper E, commonly referred to as Eve. Between Alice

and Bob, there exists a channel commonly referred to as the main channel T ; between Alice and

Eve, there exists a channel commonly referred to as the eavesdropper channel A (A for adversary ;

whether A is referring to the channel or to the transmitter will be clear from context) as illustrated

in Figure 2.4. For the remainder of this thesis, the output of the transmission through the channel

at Bob and Eve will be denoted as Y n and Zn respectively. Finally, we will denote a wiretap

channel by its pair of point-to-point channels W = (T,A).

When operating on a wiretap channel, we employ the use of wiretap codes which are codes

that provide two necessary utilities simultaneously - reliability and security. Reliability ensures

error free communication between the transmitter and legitimate receiver in the same way that
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Alice (Xn)

T Bob (Y n)

A

Eve (Zn)

Figure 2.4. General wiretap channel.

an ECC provides reliability on a point-to-point channel. Security ensures that the message being

transmitted is kept secret from the eavesdropper. The reliability of a wiretap code is measured

in the same manner as that of an ECC, that being its probability of error Pe. The security of a

wiretap code is measured via various security metrics as described in the next subsection.

2.5.1. Security Metrics

To measure the amount of security provided by a wiretap code, we must first provide a

metric by which that measurement is based. Shannon originally proposed what is known as perfect

secrecy which states that given an encrypted message from a perfectly secure encryption scheme,

precisely nothing will be revealed about the original message, i.e.,

I(M ∧ Zn) = 0.

This is ideally what all information theorists and cryptographers would like to happen, but achieving

this is often impractical in real-world scenarios as it requires large random keys such as in Shannon’s

one-time pad. Due to this restriction, other security metrics were proposed to offer potentially less

security, but in a way that is more practical.

Table 2.1. Security metrics

Security Metric

Weak 1
nI(M ∧ Zn), M ∼ unif(M)

Strong I(M ∧ Zn), M ∼ unif(M)

Semantic max
M

I(M ∧ Zn)

16



In Wyner’s original paper [26], he provided what is now known as the weak secrecy metric

(also known as the Wyner metric). This metric measures the average information rate leaked to

the eavesdropper for uniformly distributed messages and a scheme measured under this metric is

said to be weakly secure if this rate goes to 0 as n goes to infinity, i.e.,

1

n
I(M ∧ Zn)→ 0 as n→∞, M ∼ unif(M).

This metric was soon shown to be too weak for practical purposes as it potentially allows an

unbounded amount of information to leak to the eavesdropper over a long period of time. Another

metric was soon developed known as the strong secrecy metric which measures the average amount

of information leaked to the eavesdropper (note the difference with weak secrecy which measures

the rate). Thus a scheme under this metric is deemed strongly secure if the average information

leaked to the eavesdropper for uniformly distributed messages goes to 0 with n, i.e.,

I(M ∧ Zn)→ 0 as n→∞, M ∼ unif(M).

For a long period of time, the strong security metric was held to be the gold standard for

measuring information-theoretic secrecy. Recently, this was called into question by those in the

cryptography community as again being too weak of a security metric, leading to the development

of what is known as semantic secrecy (or mutual-information secrecy) [2]. Strong secrecy requires a

uniform distribution of the message space, but this is not always a practical assumption for real-life

applications. As such, might it be possible that a transmitter could leak more information to an

eavesdropper if the message distribution were not uniform? To ensure that this does not happen,

semantic security removes the assumption that the message is uniformly distributed and instead

computes the largest amount of leakage over any message distribution. If this value tends to 0 as

n goes to infinity, we say that the scheme is semantically secure, i.e.,

max
M

I(M ∧ Zn)→ 0 as n→∞.

Originally defined for computational based security [10], semantic security was later extended

into an information-theoretic context as given above and is now held to be the gold standard
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of information-theoretic security by information theorists and cryptographers alike. At its core, a

semantically secure system is one where the message and the eavesdropper’s output are statistically

independent (asymptotically with block length). The careful reader may note that semantic secu-

rity and mutual-information security are not technically the same and that the above definition is

actually the definition for mutual-information security. However, they are equivalent as n → ∞

and thus we refer to the metric given above as the semantic security metric as this matches up with

a cryptographer’s definition of semantic security [2, 17].

We say that under a certain metric, κ, a rate R is an achievable secrecy rate if there exists

some coding scheme for the wiretap channel, known as a wiretap code, that satisfies both the

reliability and secrecy constraints. We call the supremum of all achievable secrecy rates under

security metric κ the κ secrecy capacity CS . When the metric is clear from context, we will only

refer to the secrecy capacity as CS .

Fact 2. [1] Let (CS)weak denote the weak secrecy capacity of a channel and (CS)semantic denote

the semantic secrecy capacity of a channel. If all secure rates Rs achievable under the weak secrecy

metric are also achievable under the semantic secrecy metric, then:

(CS)weak = (CS)semantic.

2.5.2. Fast Fading Wiretap Channel

We wish to consider the case of the fast fading wiretap channel thus we take channels T

and A to both be fast fading channels as described in Section 2.3.2 and refer to them as the main

channel and eavesdropper channel respectively. More specifically, during the ith symbol of the

codeword, the outputs at Bob from channel T and at Eve from channel A are given respectively as

Yi = Hm,iXi + Um,i

Zi = He,iXi + Ue,i,

where Um,i and Ue,i are i.i.d. CN (0, σ2
m) and CN (0, σ2

e) additive noise, Xi ∈ C is subject to the

power constraint E
[
|X|2

]
≤ P ′, and the coefficients Hm,i, He,i ∈ C are also i.i.d. In the fading

channel we use complex random variables to capture the fact that we have two degrees of freedom
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when transmitting on a wireless channel. For technical reasons we assume that the second order

moment of He exists; i.e., E[H2
e ] < ∞. We note that this is not a very limiting constraint since

it can be interpreted as the eavesdropper channel having an attenuation with finite energy. Apart

from this, we do not assume which distribution the channel coefficients follow so as to remain as

general as possible.

Achievability results for fading channels depend on which parties have instantaneous access

to the realizations of Hm,i and He,i, or rather, which parties have full channel state information.

If a party only has access to the statistics of Hm,i or He,i we say that party has statistical channel

state information.

Proposition 1. Consider a complex fast fading channel. If the receiver has full channel state

information (CSIR) then this complex channel can be decomposed into two real parallel channels.

Proof. Without loss of generality, consider the intended receiver’s channel given above and drop the

index i for simplicity. Therefore, we are working with the complex fading channel Y = HmX+Um.

Since Hm ∈ C we can write Hm = |Hm|eiθ and thus, the receiver will receive the random variable

Y = |Hm|eiθX + Um. However, since we are assuming channel state information is available at

the receiver, the receiver actually knows the realization of Hm and hence knows the value eiθ. The

receiver thus adjusts his output Y accordingly: Y e−iθ = |Hm|X+Ume
−iθ. Also, the additive white

Gaussian noise is assumed to be circularly symmetric, so that Ume
−iθ is actually distributed the

same way as was Um. Therefore, if we define Ỹ = Y e−iθ as the new output and Ũm = Ume
−iθ as

the rotated noise, under the assumption of CSIR, the receiver can convert the original channel into

the new channel: Ỹ = |Hm|X + Ũm. Now we can break up this channel into its real and imaginary

parts:

ỸR + iỸI = (|Hm|XR + i|Hm|XI) +
(

(Ũm)R + i(Ũm)I

)
.

Combining the real and imaginary parts respectively yields two parallel channels

ỸR = |Hm|XR + (Ũm)R

ỸI = |Hm|XI + (Ũm)I .
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Here each output is identically given as

Y ′ = |Hm|X ′ + U ′m

where |Hm| ∈ R+, X
′ ∈ R, U ′m ∼ N (0, σ2

m), and E
[
(X ′)2

]
≤ P .

Note that this proposition also holds for the eavesdropper’s channel when the eavesdropper

also has full channel state information. It is in fact very reasonable to assume that a receiver has

channel state information as it can be accomplished by means of training the channel (cf. [24]).

Xi

× + Yi

Hm,i Um,i

× + Zi

He,i Ue,i

Figure 2.5. Fading wiretap channel model.

For the remainder of this thesis, we will focus on fast fading channels where both receivers

have full channel state information (CSIR) about their respective channels. In particular, this means

that we will only be considering the real fast fading channels given at time i as Yi = |Hm,i|Xi+Um,i

and Zi = |He,i|Xi + Ue,i due to Proposition 1. Since carrying around the modulus on the channel

coefficients is cumbersome, we shall simply write Hm and He for the remainder of the paper where

it will be clear that both are non-negative real random variables instead of complex as previously

mentioned. Finally, we will denote the capacity of the main channel T as CT , and that of the

eavesdropper channel A as CA. We will refer to both of these as the point-to-point capacity of their

respective channels. An illustration of our setup is given in Figure 2.5.
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We also assume that not only does the eavesdropper know the instantaneous realizations

of her channel, but also the statistics of the main channel’s fading coefficient. The main channel’s

fading statistics being public knowledge is a very plausible scenario and thus we take that extra

knowledge given to eavesdropper into account. For the remainder of this thesis we also assume that

the channel coefficients are not correlated, i.e., Hm,i⊥He,j for all i, j.

Thus far, we have made no assumptions as to what information the transmitter has about

the channel coefficients Hm and He (channel state information at the transmitter will be denoted

as CSIT). As will become clear in the coming chapters, the amount of information present at the

transmitter regarding the channel states plays a major role in determining an achievable rate for a

fast fading wiretap channel. In particular, we will focus on three separate cases: that of statistical

CSIT (S-CSIT) where the transmitter only has knowledge of the main channel and eavesdropper

channel statistics. That which we will refer to as partial CSIT where the transmitter has knowledge

of the main channel’s instantaneous realizations of Hm at each time i but no knowledge of the

eavesdropper’s instantaneous channel coefficient - only its statistics. Finally, that of full CSIT where

the transmitter has knowledge of both the main channel’s and eavesdropper channel’s instantaneous

realizations of Hm and He respectively.

2.6. Further Mathematical Background

This section introduces some of the more complicated or important mathematical tools

which will be used throughout the proofs in the remainder of the paper. These have no dependence

on the above concepts and stand independently. They are presented here for the completeness and

ease of the reader.

2.6.1. Hoeffding Bounds

Developed in 1963 by Wassily Hoeffding, Hoeffding’s inequality gives an upper bound on

the probability that the sum of independent random variables diverges from the expected value.

In [12], Hoeffding first gives the bound for when the random variables are bounded between 0

and 1. He then generalizes this result for when the random variables are bounded by arbitrary

finite bounds, which is the one we will focus on here. More clearly, take X1, . . . , Xi, . . . , Xn to be

independent random variables bounded by ai ≤ Xi ≤ bi where ai, bi < ∞. Define the empirical
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mean of the random variables by

X̄ =
1

n
(X1 + · · ·+Xn) .

Then [12, Theorem 2] gives us that:

P
(
X̄ − E

[
X̄
]
≥ t
)
≤ exp

(
− 2n2t2∑n

i=1(bi − ai)2

)

for t > 0, where E[X̄] is the expected value of X̄. More simply, this bound is showing the probability

by which the empirical mean deviates from its expected value. It is generalized further to the case

of unbounded random variables in Lemma 2 which is the bound that will be used in the proof of

Lemma 3.

2.6.2. Fréchet Inequalities

Originally explicitly expressed by Maurice Fréchet [8], the Fréchet inequalities (also known

as the Boole-Fréchet inequalities due to the fact that Boole’s work inherently contained these

bounds) give bounds for calculating probabilities of logical propositions with no need to assume

independence or dependence of the propositions or events in question. Usually given as inequalities

for logical conjunctions and disjunctions for logical propositions, the forms we will be using in this

paper are that of set intersection and Cartesian products of sets. Let A and B be subsets of a set

U and take P(A) to mean the probability that some element, x ∈ U is in set A, i.e., P[x ∈ A]. The

Fréchet inequalities are then given as:

Fréchet Inequality for intersections: max(0,P(A) + P(B)− 1) ≤ P(A ∩B)

Fréchet Inequality for Cartesian products: max(0,P(A) + P(B)− 1) ≤ P(A×B)

Notice that these can be used repeatedly in order to bound probabilities involving more than two

sets (or events).

2.6.3. Typical Sets

Often times while working with random variables, we do not wish to consider the whole

space upon which a random variable can take values; rather, we are more (or only) concerned with
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the realizations of that random variable which have a sufficiently high chance of happening. Only

focusing on the sets of realizations which have a sufficiently high probability of occurring greatly

simplifies mathematical calculations without sacrificing much accuracy. This leads to our definition

of a typical set.

Definition. Let A be the support of random variable A. For ε ≥ 0, we call a subset T ⊂ A a

(1− ε)-typical set if

P [A ∈ T ] ≥ 1− ε.

Typical sets intuitively contain almost all that there is to know about our space up to some

ε. We will sometimes refer to ε as the threshold probability.
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3. PROBLEM STATEMENT

3.1. Literature Review

Information-theoretic security for fading channels is a relatively new field, arguably starting

in 2006 when Gopala et al. [11] determined the secrecy capacity of the slow fading channel with full

CSIT at the transmitter. Slow fading channels are fading channels where the channel coefficients

vary at asymptotically long time intervals, rather than changing with each time instant as is the

case in fast fading. In other words, on a slow fading channel, the channel is constant for long periods

of time before changing and staying constant again. This result was found using the weak secrecy

metric. In the same work, the weak secrecy capacity was also found for the case of slow fading

channels with partial CSIT. This paper was the first to show that fading is actually beneficial to

secrecy as it allows a transmitter to take advantage of additional randomness that is not present in

the case of a Gaussian channel. A year later, Liang, Poor, and Shamai upgraded this result in the

sense that they no longer considered slow fading channels but rather that of fast fading channels

as described above. They found the weak secrecy capacity of the fast fading wiretap channel but

only with the assumption of full CSIT [15]. This was again later improved by Bloch and Laneman

in [5] where they determined the secrecy capacity of this channel under strong secrecy; however,

they did not provide an explicit means of doing so.

The field was further extended again by Bloch and Laneman to the case of fast fading

channels with partial CSIT, where an achievable secrecy rate was given under a secrecy constraint

that is stronger than weak secrecy, yet weaker than strong secrecy known as variational distance

[3]. Their solution relies on an optimization problem that has no closed form solution and thus

it represents the best known secrecy rate on the fast fading channel with partial CSIT although

further work needs to be done to determine if this actually represents the secrecy capacity. In

the case of fast fading channels with statistical CSIT, it was only recently shown in [16, 19] that

positive rates are actually achievable and an upper bound for the secrecy capacity is also derived.

For a special class of fast fading statistical CSIT channels, [16] actually finds the secrecy capacity

of these channels under the weak secrecy constraint. A summary of where the current state of the

art stands for fast fading channels is given in Table 3.1.
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Table 3.1. Current state of the art

Current State of the Fast Fading Wiretap Channel

CSIT Secrecy Capacity Security Metric Explicit

Full Yes Strong No

Partial No Variational Distance No

Statistical No Weak No

3.2. Motivation

As seen in the previous subsection, the current results for the fast fading wiretap channel

are insufficient for security in real world systems. Furthermore, few of the results include practical

ways to actually achieve said security. For information-theoretic security to be used in wireless

communications, it is necessary to improve the security metric in every case above to that of

semantic, as well as give an explicit method to actually achieve that security in each case. This

thesis intends to do just that.

3.3. Problem Statement

We wish to find a scheme that will provide semantically secure achievable rates on the fast

fading wiretap channel in the cases of full CSIT, partial CSIT, and S-CSIT. Furthermore, we wish

to do so in a way that is explicit and efficient so as to be implementable in practice.

In [13], a procedure was provided based on [25] which converts the problem of finding a

semantically secure wiretap code into the problem of just finding an ECC for the main channel of

the wiretap in question. We omit the details of why this procedure works as it is out of the scope

of this thesis. The procedure given is general enough to be applied to any channel, but this thesis

is only focused on fast fading channels and thus we will apply it in that setting. The first step in

the procedure is calculating a parameter of the wiretap channel known as ξ.

3.4. Max-information

The parameter ξ mentioned above is directly related to a term known as “max-information.”

Intuitively, max-information measures the maximum amount of “information” that can be sent over

the channel using a specific channel code. Thinking of it this way is only for intuitive purposes

as it does not necessarily coincide with mutual information mathematically. Characterizing the

relationship between these two quantities is an interesting future line of work.
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Definition. Let Hm and He be the random variables with alphabet H corresponding to the channel

coefficients of the main channel and eavesdropper channel respectively. With respect to an n length

ECC with codebook Cn used over channel Tn, we define max-information by

In = log

EHn
mH

n
e

∫
Zn

max
xn∈Cn

ω(zn|xn, Hn
m, H

n
e )dzn

 .

In general, ω(zn|xn, hnm, hne ) finds the relative likelihood that an output zn occurs given

that xn ∈ Cn and channel coefficients hnm, h
n
e ∈ Hn occurred. Therefore max

xn∈Cn
ω(zn|xn, hnm, hne )

measures the highest likelihood a particular eavesdropper output zn could have over all codewords

with channel coefficients hnm and hne . Integrating with respect to zn converts this likelihood into a

conditional “probability”; however, it is not a true probability due to the fact that it is taking only

the highest likelihood at each point. Taking the expected value with respect to both Hm and He

normalizes the “probability” with respect to how likely these channel coefficients were to happen.

Taking the log further normalizes the “probability” between 0 and log |Cn|.

Max-information is thus concerned with the space of events Cn×Hn×Hn×Zn; however, as

mentioned in Section 2.6.3, it is intractable to work with this whole space and thus we wish to only

consider the space of tuples that have a sufficiently high probability of occurring. In other words,

we want to consider input-output pairs such that an output has a sufficiently high probability of

occurring with a given input. With this motivation we restate our typical set definition as follows:

Definition. For ε ≥ 0, we call a subset T ⊂ Cn ×Hn ×Hn ×Zn a (1− ε)-typical set if

P [(Xn, Hn
m, H

n
e , Z

n) ∈ T |Xn = xn] ≥ 1− ε, ∀xn ∈ Cn.

Furthermore, we will denote the set of all (1− ε)-typical sets by Tε.

Using (1 − ε)-typical sets, we can define another max-information over this reduced space

that will be crucial to our proofs later on.

Definition. Given ε ≥ 0 and T ∈ Tε, consider

In(AnT ) = log

EHn
mH

n
e

∫
Zn

max
xn∈Cn

ωT (zn|xn, Hn
m, H

n
e )dzn

 .
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We define ε-smooth max-information by

Iεn = inf
T ∈Tε

In(AnT ).

That is, given some threshold ε, we find the smallest value that max-information could

possibly be when defined on the subnormalized channels corresponding to those sets that contain

enough probability with respect to our threshold. In this paper we will only be concerned with ε

as a function of n and will mainly be concerned with the cases for which ε→ 0 as n→∞. We now

give a lemma due to [13] which gives the relationship between ξ and max-information.

Lemma 1. [13] Suppose that an asymptotic upper bound ξ can be found:

lim
n→∞
ε→0

(
Iεn
n

)
≤ ξ,

that holds for any sequence of codes {Cn} each with rate RCn having asymptotic rate RC ≤ CT . It

is then possible to achieve an asymptotic overall transmission rate Rs under semantic security so

long as

Rs < RC − ξ.

In particular, suppose ξ = CA and RC = CT ; then, it is possible to achieve an overall secrecy

rate R = CT − CA under semantic secrecy.

The preceding lemma gives a set of achievable rates under semantic security as a function

of the error correcting code rate so long as we can find a proper asymptotic upper bound on the

max-information per channel use. In order to achieve a positive secrecy rate, it is necessary to find

an error correcting coding scheme such that RC > ξ. Step two of the procedure is exactly that,

one must next find an error correcting coding scheme which operates successfully over the point-

to-point main channel and satisfies the previous inequality. By Shannon’s noisy channel coding

theorem, we know a coding scheme does exist which will satisfy that inequality so long as CT > ξ

and CT ≥ RC .
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3.5. Transmission Scheme

With an ECC scheme in hand which satisfies the inequality of step 2, the last step of the

procedure is to concatenate a Universal Hash Family (UHF) based “preprocessing” scheme with

that ECC to produce the full coding scheme for the wiretap channel. Therefore, the wiretap coding

scheme of [13] is a modular scheme that concatenates a preprocessing layer (to provide security)

with any error correcting code (to provide reliability). Since no constraints have been imposed on

the ECC apart from it needing to have a large enough rate, this preprocessing scheme can be added

on to any existing scheme non-invasively. For completeness of the reader, we give a description of

the preprocessing scheme next.

Let M = {0, 1}k and M′ = {0, 1}l be the sets of all k-length and l-length bit strings

respectively, where k < l < ∞. We will refer to these finite sets as the message set and the

pseudo-message set respectively, and an element M ∈ M as the actual message and an element

M ′ ∈M′ as the pseudo-message. The actual message is the information the transmitter wishes to

transmit to the legitimate receiver, and the pseudo-message is a randomly chosen variation of the

actual message. Also, let {0, 1}l correspond to elements of the Galois Field GF (2l) and define S as

S = {0, 1}l \ 0l × {0, 1}l, where 0l represents the all 0 bit string.

A UHF, first given in [6], is a tool generally found in computer science applications and is

defined as a family of functions F = {f | f :M′ →M} such that for all m′ 6= m′′ it follows that

1

|F|
|{f ∈ F | f(m′) = f(m′′)}| ≤ 1

2k
.

It is shown in [13] that any UHF satisfying certain additional properties will work as a preprocessing

layer. These properties are omitted here for brevity and also they are not very enlightening for the

purposes of this thesis as they are mostly mathematical technicalities. For ease, there is also given

an explicit instance of a UHF with quadratic time complexity that meets the required properties:

F ′ = {fs,t(m′) = (s�m′ + t)k | (s, t) ∈ S}

where a� b and a+ b are multiplication and addition defined on the finite field GF (2l) respectively

and the operator (·)k selects the k most significant bits. For the remainder of the paper, we will
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employ this as our UHF, but note that the results of this paper hold for any UHF satisfying the

requirements given in [13].

To start a transmission, the transmitter first uniformly chooses random seeds (s, t) ∈ S and

shares them publicly. The seeds themselves are not transmitting any secret information, they are

just required to set up the scheme. It is shown in [13] that sending these across the channel does

not affect the rate of transmission. Next, the transmitter encodes a chosen message m ∈M via the

inverse universal hash function fs,t(m
′)−1. Using this specific UHF, this is given as φ :M→M′,

defined by

φs,t(m,R) = s−1 � ((m,R)− t) = m′

where R is a randomly chosen l − k bit string, (m,R) is the concatenation of the bit strings m

and R, s−1 is the inverse of s in GF (2l), and once again all multiplication and addition is done in

GF (2l). This l-length pseudo-message m′ is then passed to the encoder en of the error correcting

code to be coded into an n-length channel code xn which is then sent over the channels.

On the receiving end, the legitimate receiver will “undo” this process. He will receive an

output vector yn which is an altered version of xn due to the channel attenuation and additive noise.

yn is passed to the decoding function dn to produce an estimate m̂′ of the pseudo-message. Recall

that the error correcting code is chosen to operate successfully over the point-to-point channel from

the transmitter to legitimate receiver and therefore the estimate m̂′ does indeed equal m′ with high

probability. Finally, the receiver undoes the preprocessing layer by inputting the pseudo-message

estimate into the UHF function fs,t to produce a message estimate m̂. If, in fact, m̂′ = m′ then the

UHF guarantees m̂ = m. This scheme is summarized in the following tables as well as illustrated

in Figure 3.1.

Table 3.2. Transmission procedure

Transmission Procedure

Seeds (s, t) ∈ S are chosen uniformly and publicly shared.

Choose actual message m ∈M.

Generate pseudo-message m′ = s−1 � ((m,R)− t).

Generate channel codeword xn = en(m′) and send over channel.
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Table 3.3. Receiving procedure

Receiving Procedure

Receive channel codeword yn.

Decode channel codeword into an estimate of the pseudo-message m̂′ = dn(m′).

Obtain estimate of the actual message m̂ = (s�m′ + t)k.

M M ′ Xn Y n M̂ ′ M̂

Eavesdropper

Legitimate
Receiver

Zn

φs,t en Tn dn fs,t

An

Figure 3.1. Transmission scheme.

Let’s now consider what happens at the eavesdropper. Suppose we chose an ECC with a

rate that was above the point-to-point capacity of the eavesdropper channel as the ECC of this

scheme. Then we know that zn will be decoded in error by the eavesdropper with probability

bounded away from 0. In other words, let m̃′ = dn(zn) be the estimate of the pseudo-message at

the eavesdropper. Then m̃′ will be in error with high probability and there is no possible way to

rectify this as per Shannon’s capacity results. The eavesdropper now must decide how to make an

estimate of m from m̃′. The UHF has the property that passing an erroneous version of m̃′ into

fs,t will yield the correct message m with a probability smaller than a uniform probability over the

message space. Put another way, the eavesdropper has a higher probability of choosing the sent

message by choosing a message uniformly from the message space a priori than to use the UHF.

The eavesdropper is certainly not limited to only these two methods for decoding; [13] shows that

no matter how she does her decoding the leakage information will still go to 0. Note that this

argument relies on the fact that the transmitter was transmitting higher than the capacity of the

eavesdropper channel. Thus when the main channel capacity is higher than that of the eavesdropper

we can always ensure secrecy. If the eavesdropper channel capacity is always larger than that of the
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main channel capacity, the secrecy rate will indeed be zero. However, if the eavesdropper channel

capacity is just larger than that of the main channel on the average, a positive secrecy rate can

still be achieved. What rates are actually possible given a fast fading wiretap channel are explicitly

given in Chapters 4,5, and 6.

3.6. Discussion

As a summary, the procedure given in [13] to achieve positive semantically secure rates on

the fast fading wiretap channel is as follows:

1. Find an asymptotic upper bound ξ to Iεn
n for the wiretap channel in question.

2. Find an error correcting scheme C of rate RC such that RC > ξ.

3. Concatenate a UHF based preprocessing scheme as outlined above with C.

In other words, given any wiretap channel, all one needs to do is find an asymptotic upper

bound to Iεn
n for the wiretap channel in question to guarantee semantically secure achievable rates

using the above transmission scheme so long as Rs < RC − ξ. The remainder of the paper is

dedicated to doing just that. Chapter 4 finds an asymptotic upper bound to Iεn
n for the S-CSIT fast

fading wiretap channel, Chapter 5 does so for the partial CSIT fast fading wiretap channel, and

Chapter 6 does so for the case of full CSIT. With these bounds, we have successfully converted the

problem of finding a wiretap code into that of just finding an ECC for the main channel in each

of these three cases. Design of error correction codes is already a major subfield of communication

theory and thus we have brought the problem of security for the fast fading wiretap channel into

the world of coding theory.
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4. S-CSIT

The case of S-CSIT, where the transmitter only knows the channel statistics of both the

main and eavesdropper channels, is arguably the most realistic scenario of a modern wireless com-

munication environment. It requires no special real-time feedback implementation for the main

channel to give the instantaneous channel states and can assume that the eavesdropper is purely

a malicious party (although still passive). Under this assumption, in this chapter we give a set

of semantically secure achievable rates for the fast fading wiretap channel. To do so, we find an

asymptotic upper bound, ξ, to Iεn
n for any choice of code so as to use Lemma 1 which will provide the

achievable rates. In particular, we will be focused on ξ = CA, where CA denotes the point-to-point

channel capacity of the eavesdropper’s channel.

We start by first simplifying the expression for max-information in the case of S-CSIT.

Proposition 2. On the S-CSIT real fast fading channel, max-information can be simplified as

In(AnT ) = log

EHn
e

∫
Rn

max
xn∈Cn

ωT (zn|xn, Hn
e )dzn

 .

Proof. See Appendix.

With codeword power constraint P and noise variance σ2, we denote the signal to noise

ratio by SNR = P
σ2 .

Fact 3. [24] The point-to-point capacity of a real fast fading channel with S-CSIT is given by

C =
1

2
EH
[
log(1 +H2SNR)

]
.

where H is the random variable representing the channel coefficient.

To this end, our goal for the remainder of this chapter will be to show (for any code)

lim
n→∞
ε→0

(
Iεn
n

)
≤ 1

2
EHe

[
log(1 +H2

eSNR)
]
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where SNR now represents the eavesdropper’s SNR: P
σ2
e
.

4.1. Typical Set Motivation

In the next section, we will construct a typical set R+×Tn where Tn ⊂ Cn×Rn+×Rn which

contains probabilistically enough content about our space. However, in this section, we will first

provide motivation for choosing such a set.

The capacity expression for an additive white Gaussian noise channel (AWGN) is motivated

by an intuitive argument called sphere packing (cf. [7, 24]). The argument asserts that due to

properties of Gaussian random variables, a received output vector should be contained in some

small n-dimensional ball around the transmitted codeword with high probability. In other words,

the noise of the channel will only disturb the input vector by a certain amount (the radius of the

small ball) with high probability. Furthermore, all received outputs should be contained in some

larger ball with high probability since we are assuming that all the codewords are being transmitted

while obeying the power constraint. If we use maximum likelihood decoding, given an output that

resides in one of the small balls, the receiver assumes it came from the codeword that generated said

ball. Therefore, the maximum number of small spheres we can pack into the larger ball roughly

corresponds to how many codewords we can transmit reliably. This technique is called sphere

packing since we are attempting to pack the larger ball with smaller spheres. Exact calculation is

quite challenging; however, simply dividing the volume of the large ball by the volume in a small

sphere gives an upper bound. What is perhaps surprising is that as the block length approaches

infinity, this upper bound is actually achievable and is exactly the capacity of the AWGN channel.

We will provide a symmetric argument for the fast fading channel as justification for how

and why we choose our typical sets the way we do in the next section. Given an input xn and

channel coefficient hne (for the remainder of this subsection we will drop the subscript and refer to

he as just h for ease), we know the output zn will reside in some small ball about the point hnxn

with high probability since we assume the noise follows a Gaussian random variable. In fact, such

a ball will have radius
√
nσ2

e(1 + δ) for every δ > 0 sufficiently small.

In the case of the AWGN channel, the larger ball’s dimensions were derived using the fact

that we expect our channel to obey the law of conservation of energy; that is, the maximum output

energy should be equal to the summation of the maximum input energy and noise energy. We

expect a similar phenomenon to hold on the fast fading channel; however, the input energy will
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also depend on the channel coefficient realization. During the ith symbol transmission, suppose hi

is the realized channel coefficient; then the effective maximum input power is given by h2
iP so that

the effective maximum average output power 1
nZ

2
i is given by h2

iP + σ2
e . Therefore we expect the

realization z2
i to be less than n(h2

iP + σ2
e)(1 + δ).

Since i is a dimension of the vector zn, we should then expect zn to be found in some

volume where each component zi is bounded by ±
√
n(h2

iP + σ2
e)(1 + δ). Because hi is changing

for each use of the channel, each of these bounds will be different. Therefore, in contrast to the

AWGN channel where each upper bound was constant, the volume we expect to contain most

output vectors zn is actually an n-dimensional ellipsoid with radii
√
n(h2

iP + σ2
e)(1 + δ). Thus, if

we try to pack as many spheres into this ellipsoid as possible as illustrated in the (2-dimensional)

Figure 4.1, we should come up with the maximum number of codewords we can transmit reliably,

i.e., an expression for capacity.

Using the same technique as [7], we simply divide the volume of the ellipsoid by the volume

of the small balls. That is, since the volume of an ellipsoid with radii ri is given by ηn
∏n
i=1 ri

where ηn is the same constant factor used to calculate the volume of an n-ball, it follows that an

upper bound to the max number of codewords is given by:

ηn
n∏
i=1

√
n(h2

iP + σ2
e)(1 + δ)

ηn
√
nσ2

e(1 + δ)
n =

n∏
i=1

√
nσ2

e(1 + h2
i SNR)(1 + δ)√

nσ2
e(1 + δ)

n

=
n∏
i=1

√
1 + h2

i SNR.

Since rate is usually defined as the logarithm of the number of codewords normalized by n,

an upper bound to the max achievable rate is given by:

1

n
log

n∏
i=1

√
1 + h2

i SNR =
1

2

(
1

n
log

n∏
i=1

(1 + h2
i SNR)

)

=
1

2

(
1

n

n∑
i=1

log(1 + h2
i SNR)

)
n→∞−−−→ 1

2
E
[
log(1 +H2

eSNR)
]

= CA,
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where the convergence in the penultimate line follows from the law of large numbers.

Since the above characterizations correctly estimated the asymptotic upper bound for the

fading channel using the same sphere packing argument as in the AWGN case, we are confident

moving forward that these bounds will produce sets that are typical in the proper sense. We will

define these sets more rigorously in the forthcoming section.

√
n(h2

1P + σ2
e)(1 + δ)

√
n(h2

2P + σ2
e)(1 + δ) √

nσ2
e(1 + δ)

Figure 4.1. Sphere packing for the fading channel.

4.2. Constructing a Typical Set

In this section, we will be constructing a set and showing that it is typical by our definition.

The set is made up of four constituent sets; one each concerning the output power, noise power,

main channel coefficient power, and eavesdropper channel coefficient power. We begin by stating

a lemma due to [23] where we have modified its form so as to be easily utilized in the following

proofs. It can be considered a generalization of Hoeffding’s inequality [12] to the case of unbounded

random variables.

Lemma 2. [23, Theorem 2.1] Let {Wi}ni=1 be a sequence of independent random variables. Suppose

for all i there exists a γi > 0 such that E
[
eγi|Wi|

]
<∞. Then for any sufficiently small α > 0,

P

[∣∣∣∣∣ 1n
n∑
i=1

(Wi − E[Wi])

∣∣∣∣∣ ≤ α
]
≥ 1− 2e−

nα2

4K∗

where Ki = 2(E
[
W 4
i

]
)
1
2E
[
eα|Wi|

]
and K∗ = max

i
Ki.

Definition. Define the following sets where δn, δ
′
n, δ
′′
n > 0:
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• P1
n as the set of tuples (hne , z

n) ∈ Rn+ × Rn such that

1

n

n∑
i=1

z2
i

σ2
e + h2

e,iP
− 1 ≤ δn,

• P2
n as the set of zn ∈ Rn that satisfy

‖zn − xnhne ‖
2 ≥ nσ2

e(1− δ′n)

for a fixed xn ∈ Cn and hne ∈ Rn+,

• P3
n as the set of hne ∈ Rn+ that satisfy

∣∣∣∣∣ 1n
n∑
i=1

log
(
1 + h2

e,iSNR
)
− EHe

[
1 +H2

eSNR
]∣∣∣∣∣ ≤ δ′′n.

These sets each correspond exactly to what we motivated in the previous section. P1
n

corresponds to the set of eavesdropper output powers and channel coefficients we wish to consider.

P2
n is essentially describing the least amount of noise added to hnex

n during transmission. We wish

to only consider those channel coefficients that have a sufficiently high probability of occurring and

not necessarily the entire space, which P3
n is describing as will be proved in the following lemma.

Lemma 3.

1. Let ε1n = 2e−
nδ2n
4K∗ . For any xn ∈ Cn,

P
[
(Hn

e , Z
n) ∈ P1

n

∣∣∣∣Xn = xn
]
≥ 1− ε1n.

2. Let ε2n = e−
nδ′n

2

4 . For any xn ∈ Cn and hne ∈ Rn+,

P
[
Zn ∈ P2

n

∣∣∣∣Xn = xn, Hn
e = hne

]
≥ 1− ε2n.

3. Let ε3n = 2e−
nδ′′n

2

4K . Then,

P
[
Hn
e ∈ P3

n

]
≥ 1− ε3n.
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Proof. See Appendix.

4.3. Typical Set

We now use the sets constructed above to create our typical set. Define each of the following

sets:

T 1
n = {(xn, hne , zn) : xn ∈ Cn and (hne , z

n) ∈ P1
n},

T 2
n = {(xn, hne , zn) : for each choice of xn ∈ Cn and hne ∈ Rn+, zn ∈ P2

n},

T 3
n = {(xn, hne , zn) ∈ Cn × P3

n × Rn}.

We can think of each of these three sets as the expansion set that corresponds to each of the

previous three sets P1
n, P2

n, and P3
n but lives in the entire space Cn × Rn+ × Rn.

We now take the intersection of these sets to construct one final set

Tn = T 1
n ∩ T 2

n ∩ T 3
n .

The following proposition shows that Rn+×Tn is typical for any n (with a change of Cartesian

ordering from the above definition of typical set).

Proposition 3. Let εn = ε1n + ε2n + ε3n then

P
[
(Hn

m, X
n, Hn

e , Z
n) ∈ Rn+ × Tn|Xn = xn

]
≥ 1− εn

for any xn ∈ Cn. That is, Rn+ × Tn is a (1− εn)-typical set.

Proof.

P
[
(Hn

m, X
n, Hn

e , Z
n) ∈ Rn+ × Tn|Xn = xn

]
1
≥ P

[
(Hn

m) ∈ Rn+|Xn = xn
]

+ P [(Xn, Hn
e , Z

n) ∈ Tn|Xn = xn]− 1

= P [(Xn, Hn
e , Z

n) ∈ Tn|Xn = xn]

= P
[
(Xn, Hn

e , Z
n) ∈ T 1

n ∩ T 2
n ∩ T 3

n |Xn = xn
]

2
≥ P

[
(Xn, Hn

e , Z
n) ∈ T 1

n |Xn = xn
]

+ · · ·
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· · ·+ P
[
(Xn, Hn

e , Z
n) ∈ T 2

n |Xn = xn
]

+ P
[
(Xn, Hn

e , Z
n) ∈ T 3

n |Xn = xn
]
− 2

3
= P

[
(Hn

e , Z
n) ∈ P1

n

∣∣∣∣Xn = xn
]

+ EHn
e

(
P
[
Zn ∈ P2

n

∣∣∣∣Hn
e = hn, Xn = xn

])
+ P

[
Hn
e ∈ P3

n

]
− 2

4
≥ (1− ε1n) + (1− ε2n) + (1− ε3n)− 2

= 1− (ε1n + ε2n + ε3n)

= 1− εn

Justification.

1. Fréchet inequality for Cartesian products.

2. Fréchet inequality for intersections.

3. The first, third, and fourth terms of the sum follow immediately. The second term is explained

here:

P
[
(Xn, Hn

e , Z
n) ∈ T 2

n |Xn = xn
]

=

∫
Hn

∫
Zn
ω(zn, hne |xn)1((xn, hne , z

n) ∈ T 2
n )dzndhne

=

∫
Hn

∫
Zn

ω(zn|hne , xn)ω(hnex
n)

ω(xn)
1((xn, hne , z

n) ∈ T 2
n )dzndhne

=

∫
Hn

ω(hne )

∫
Zn
ω(zn|hne , xn)1((xn, hne , z

n) ∈ T 2
n )dzndhne

= EHn
e

(
P
[
Zn ∈ P2

n

∣∣∣∣Hn
e = hn, Xn = xn

])

4. Lemma 3.

With our typical set R+×Tn in hand, we are ready to prove the main result of this section

and determine a characterization for semantically secure achievable rates for the fast fading wiretap

channel with S-CSIT.
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4.4. Set of Achievable Rates Under Semantic Security

Theorem 1. Consider the fast fading wiretap channel with S-CSIT and let Tn and εn be as defined

in Proposition 3. It follows that:

lim
n→∞
ε→0

(
Iεn
n

)
≤ 1

2
EHe

[
log(1 +H2

eSNR)
]
.

Proof.

2I
ε
n

1
≤ 2In(AnTn )

2
= EHn

e

∫
Rn

max
xn∈Cn

ωTn(zn|xn, Hn
e )dzn

3
= EHn

e

∫
Rn

max
xn∈Cn

[(
n∏
i=1

1√
2πσ2

e

e
−

(zi−He,ixi)
2

2σ2e

)
1((xn, Hn

e , z
n) ∈ Tn)

]
dzn

=
1

(2πσ2
e)

n
2

EHn
e

∫
Rn

max
xn∈Cn

(
e
−‖z

n−Hne x
n‖2

2σ2e 1((xn, Hn
e , z

n) ∈ Tn)

)
dzn

4
≤ e−

n
2

(1−δ′n)

(2πσ2
e)

n
2

· EHn
e

∫
Rn

max
xn∈Cn

1((xn, Hn
e , z

n) ∈ Tn)dzn

5
=
e−

n
2

(1−δ′n)

(2πσ2
e)

n
2

· EHn
e

∫
Rn

max
xn∈Cn

1((xn, Hn
e , z

n) ∈ T 1
n ∩ T 2

n )1((xn, Hn
e , z

n) ∈ T 3
n )dzn

=
e−

n
2

(1−δ′n)

(2πσ2
e)

n
2

· EHn
e

1(Hn
e ∈ P3

n)

∫
Rn

max
xn∈Cn

1((xn, Hn
e , z

n) ∈ T 1
n ∩ T 2

n )dzn

 . (E1)

Justification.

1. Rn+×Tn is a (1−εn) typical set; however, it may not be the set corresponding to the “smallest”

εn smooth max-information. Note that here we are labeling our typical set as just Tn for ease

and dropping the subscript on εn.

2. Proposition 2. Since we no longer have any dependencies on Hm, we will henceforth write

our typical set as just Tn.

3. Each output, given Xi = xi and He,i = he,i, is Zi = he,ixi + Ue,i. This is simply a normal

random variable that is shifted in mean by he,ixi with variance σ2
e . Thus, the density for each
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transmission is given as

ω(zi|xi, he,i) =
1√

2πσ2
e

e
−

(zi−he,ixi)
2

2σ2e .

Since we assume the channel is memoryless, we can split this density simply into a product.

4. We are working on Tn and thus P2
n; thus, ‖zn − hnexn‖

2 ≥ nσ2
e(1− δ′n).

5. T 1
n , T 2

n , T 3
n are defined in Section 4.3.

Let us gain some intuition of what is happening at this point. In eq. (E1), suppose T ?n =

T 1
n ∩ T 2

n and let us understand the term

max
xn∈Cn

1((xn, hne , z
n) ∈ T ?n ).

If we temporarily fix zn and hne , then this maximization is simply asking if there exists some

codeword xn ∈ Cn that makes the sequence (xn, hne , z
n) an element of the set T ?n . If there does

exist such an xn then this function returns 1; otherwise, it returns 0. If we now relax zn and only

fix hne , T ?n can be thought of as a typical set as well: it is the set of typical input-output pairs.

Thus the above function takes some output zn and asks if there is possibly any codewords that

could have generated such an output knowing the channel coefficient is hne . It follows then, that

the integral ∫
Rn

max
xn∈Cn

1((xn, hne , z
n) ∈ T ?n )dzn,

roughly “counts” the number of valid input-output pairs given some hne .

To calculate such an integral, we need to know the shape of T ?n and it is clear that T ?n =

T 1
n ∩ T 2

n ⊂ T 1
n so that we can replace the T ?n with a T 1

n in the above integral at the expense of an

inequality. However, this has removed the maximization since T 1
n has no dependence on codewords.

Therefore the above integration is less than or equal to

∫
Rn

1((hne , z
n) ∈ P1

n)dzn.
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Now given some hne , P1
n is actually an ellipsoid with radii:

√
nσ2

e(1 + h2
e,iSNR)(1 + δn). Therefore,

this integration is actually calculating the volume of such an ellipsoid, which is calculated to be

π
n
2

Γ(n2 + 1)

n∏
i=1

√
nσ2

e(1 + h2
e,iSNR)(1 + δn),

where Γ is the usual gamma function of analysis.

Let us return to Equation (E1); using the aforementioned reasoning above we have:

(E1) ≤ e−
n
2

(1−δ′n)

(2πσ2
e)

n
2

· EHn
e

[(
π
n
2

Γ(n2 + 1)
1(Hn

e ∈ P3
n)

n∏
i=1

√
nσ2

e(1 +H2
e,iSNR)(1 + δn)

)]

=
e−

n
2

(1−δ′n)

(2πσ2
e)

n
2

π
n
2

Γ(n2 + 1)
(nσ2

e(1 + δn))
n
2 EHn

e

[(
1(Hn

e ∈ P3
n)

n∏
i=1

√
(1 +H2

e,iSNR)

)]

=

(
(1 + δn)eδ

′
n

n

2e · Γ(n2 + 1)
2
n

)n
2 ∫
P3
n

ω(hne )
n∏
i=1

√
(1 + h2

e,iSNR)dhne

6
≤

(
(1 + δn)eδ

′
n

n

2e · Γ(n2 + 1)
2
n

)n
2 ∫
P3
n

ω(hne )2
n
2 (δ′′n+EHe [1+H2

eSNR])dhne

=

(
(1 + δn)eδ

′
n

n

2e · Γ(n2 + 1)
2
n

)n
2

2
n
2 (δ′′n+EHe [1+H2

eSNR])
∫
P3
n

ω(hne )dhne

=

(
(1 + δn)eδ

′
n

n

2e · Γ(n2 + 1)
2
n

)n
2

2
n
2 (δ′′n+EHe [1+H2

eSNR])

Justification.

6. Due to the bounds of integration we know that every value of he will satisfy the definition of

P3
n, thus it satisfies:

1

n

n∑
i=1

log(1 + h2
e,iSNR)− EHe [1 +H2

eSNR] ≤ δ′′n

⇒ 1

n
log

(
n∏
i=1

(1 + h2
e,iSNR)

)
≤ δ′′n + EHe [1 +H2

eSNR]
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Multiplying by n and exponentiating both sides:

⇒
n∏
i=1

(1 + h2
e,iSNR) ≤ 2n(δ

′′
n+EHe [1+H2

eSNR])

⇒
n∏
i=1

√
(1 + h2

e,iSNR) ≤ 2
n
2 (δ′′n+EHe [1+H2

eSNR])

Taking the logarithm of the beginning and end, and dividing by n, we continue as:

Iεn
n
≤ 1

n
log

((1 + δn)eδ
′
n

n

2e · Γ(n2 + 1)
2
n

)n
2

2
n
2 (δ′′n+EHe [1+H2

eSNR])


=

1

2
log

(
(1 + δn)eδ

′
n

n

2e · Γ(n2 + 1)
2
n

)
+

1

2

(
δ′′n + EHe [1 +H2

eSNR]
)

=
1

2
log
(

(1 + δn)eδ
′
n

)
︸ ︷︷ ︸

A1

+
1

2
log

(
n

2e · Γ(n2 + 1)
2
n

)
︸ ︷︷ ︸

A2

+
1

2

(
δ′′n + EHe [1 +H2

eSNR]
)
.

Let us see the asymptotic behavior of these first two terms.

A1. If we choose δn → 0 and δ′n → 0 as n→∞ at rates sufficiently slow (so as to allow 1− ε1n → 1

and 1− ε2n → 1 resp.), then A1→ 0 as n→∞.

A2. It can be shown that n

2e·Γ(n
2

+1)
2
n
→ 1 as n→∞ so that A2→ 0 as n→∞.

Since we can choose δn, δ
′
n, δ
′′
n in such a way so that δ′′n → 0 and ε1n, ε

2
n, ε

3
n → 0 as n→∞, it

follows that εn → 0 as n→∞. Combing these previous steps yields our claim:

lim
n→∞
ε→0

(
Iεn
n

)
≤ 1

2
EHe

[
log(1 +H2

eSNR)
]
.

We have now completed step one of the procedure given in Chapter 3. The following

corollary then tells us what semantically secure rates we can achieve given this bound.

Corollary 1. The transmission scheme of Section 3.5 can achieve an overall semantic secrecy

rate of CT − CA on the S-CSIT fast fading wiretap channel when CT > CA and RC = CT .
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Proof. We can combine the previous theorem with Lemma 1 and note that δn, δ
′
n, δ
′′
n can be chosen

in such a way that εn → 0 as n→∞ and the claim follows.

Reiterating the significance of this result, we have found an achievable secrecy rate for

the S-CSIT fast fading wiretap channel where we have not made any restrictive assumptions on

how the channel fading is distributed, and we have used the semantic security metric. Thus, this

result applies to any S-CSIT fast fading wiretap channel that exists. Furthermore, the achievability

scheme is modular so as to be placed in existing systems not designed for security and when the

error correcting code is efficient and explicit, the entire system is efficient and explicit. All one

needs to do is concatenate the UHF preprocessing scheme with an ECC satisfying the rates in

Lemma 1 and they are guaranteed that their data transmissions will be semantically secure!

While Corollary 1 shows that we can achieve a positive semantically secure secrecy rate on

any fast fading wiretap channel (and gives what that rate is), we actually have a stronger result for

a certain class of fast fading channels. For the class of fast fading channels where the eavesdropper

channel is stochastically degraded with respect to the main channel, which includes the case of

when both channels are Rayleigh faded, we can actually achieve the best rate possible - the secrecy

capacity!

4.4.1. Special Cases

Definition. [4] We say that channel (X , ω(z|x),Z) is stochastically degraded with respect to channel

(X , ω(y|x),Y) if

w(z|x) =
∑
y∈Y

ω(z|y)ω(y|x) ∀(x, z) ∈ X × Z.

Intuitively, a stochastically degraded channel is a channel where the eavesdropper’s channel

is a “noisy” version of the main channels output.

Fact 4. [16] The weak secrecy capacity of a stochastically degraded fast fading wiretap channel with

S-CSIT and i.i.d. channel coefficients is given by

CS = CT − CA.
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Proposition 4. Using the UHF based transmission scheme of Section 3.5 on any fast fading

stochastically degraded wiretap channel,

1. It is possible to achieve the semantic secrecy capacity.

2. (CS)weak = (CS)semantic.

Proof. Follows directly from combining Fact 4 with Corollary 1 and Fact 2.

As a result of this, we have determined the semantic secrecy capacity of the popular Rayleigh

fast faded wiretap channel (since it falls into the category of stochastically degraded [16]). This

is a complex fast fading wiretap channel where each channel coefficient is distributed i.i.d. as

CN (0, σ2
h,m) and CN (0, σ2

h,e) respectively.

To the extent of the author’s knowledge, this is the first time any semantically secure

achievable rate has been given for the S-CSIT fast fading channel. Furthermore, this is the first

time the semantic secrecy capacity has been determined for stochastically degraded fast fading

channels.

44



5. PARTIAL CSIT

We now turn to the case of partial CSIT, where the transmitter only has access to full CSI

about the main channel but only has statistical CSI about the eavesdropper’s channel. Our goal in

this chapter is the same as in the previous chapter - we wish to characterize a set of semantically

secure rates for the channel at hand. To do so, we find an asymptotic upper bound, ξ, to Iεn
n for

any choice of code so as to use Lemma 1 which will provide the achievable rates. Note that the

transmitter could choose to not use the extra information available to it (that being the knowledge

of the main channel’s instantaneous channel coefficients), in which case we are back to the case of

S-CSIT and the results of Chapter 4 hold. The transmitter can still achieve those rates by ignoring

the extra information. However, we do not want to restrict ourselves to that case but instead

we wish to find out the extent to which that extra information can benefit the legitimate parties.

Therefore, our goal for the remainder of this chapter is to take advantage of that extra information

at the transmitter’s disposal. To do this, we devise a power allocation scheme similar to that of

[4, 9] and show its reliability, security, and the rates achievable by its use.

5.1. Intuition

In this section, we try to develop some intuition to assist in the reader’s understanding

of the power allocation scheme we are using to achieve security as well as that of the proof of

Theorem 2. We do so by first considering a very simplified example of what will be generalized

and made mathematically rigorous in later sections. Let Wn = (Tn, An) be a fast fading wiretap

channel with partial CSIT. We wish to find a set of semantically secure achievable rates for V n. We

accomplish this by decomposing Wn into multiple simpler channels and analyze those individually.

5.1.1. Channel Decomposition

Suppose for the sake of simplicity that the main channel coefficient Hm ever only takes

two possible values: h1 and h2, while the eavesdropper channel is still left arbitrary. From the

transmitter’s point of view, since she knows instantaneously which of these two realizations is

present on the main channel, she sees the main channel as a Gaussian channel with input weighted

by a constant ; in other words she knows the main channel, T , at that instant is represented by

hαXi + Um,i where α ∈ {1, 2} and Xi, Um,i are the input and noise as usual. From here, she can

45



redefine the input to be X̄i = hαXi making the main channel into the Gaussian channel X̄i +Um,i.

On the other hand, the transmitter is still completely oblivious to what the realizations of He are

for the eavesdropper channel A. Thus, that channel will always be represented as He,iXi + Ue,i to

her.

Since ECC’s are individually tailored to the channel upon which they will be operating,

given a channel model h1Xi + Um,i for all i ≤ n, the transmitter will certainly use a different

ECC than if she had been given h2Xi + Um,i for all i ≤ n since one of the channels may have

a higher capacity and thus can support larger rates. However, we are assuming that the main

channel coefficient is not being held constant for all n channel uses but rather varies back and forth

randomly between h1 and h2. Suppose now that the transmitter knew before the transmission

started that out of the n channel uses about to occur, n1 of them would realize the channel gain

h1, while h2 would be realized n2 times such that n1 + n2 = n. Further suppose that the first n1

channel uses all had the realization h1 and the remaining n2 channel uses all had the realization h2.

Knowing all of this a priori, the transmitter could design two ECC’s, C1
n1

(with encoder/decoder

en1 , dn1) and C2
n2

(with encoder/decoder en2 , dn2), designed to operate reliably over the point-to-

point weighted Gaussian channels h1X + Um and h2X + Um respectively. If the transmitter has

to satisfy a power constraint P (as is usually the case) over n channel uses, the ECCs must have

their own power constraints such that their sum does not violate the original power constraint. In

other words, we must impose a power constraint γ1 on C1
n1

and power constraint γ2 on C2
n2

, such

that γ1 + γ2 ≤ P . Furthermore, these power constraints along with C1
n1

and C2
n2

are assumed to be

public knowledge as usual to ensure successful decoding by the receiver. To successfully transmit

n symbols, the transmitter would then use C1
n1

for the first n1 channel uses before switching to C2
n2

for the remaining n2 channel uses. Note that we have made no claims about security as of yet.

Let’s take a step back and look at what we now have. We now essentially have two wiretap

channels (separated in time) as shown in Figure 5.1: one which we are using n1 times, whose

main channel is given by h1Xi + Um,i and eavesdropper channel He,iXi + Ue,i for 1 ≤ i ≤ n1,

call this wiretap channel Wn1
1 , and one which we are using n2 times, whose main channel is given

by h2Xi + Um,i for n1 < i ≤ n2 and eavesdropper channel the same as before, call this Wn2
2 .

This technique of breaking the one channel into multiple parallel channels across time is known as

demultiplexing.
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A
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He
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E

A

h2
B

He

E

Figure 5.1. Decomposition of the fading wiretap channel with two channel coefficients.

5.1.2. Achievable Rates

Similarly to Chapter 4, we wish to bound Iεn
n for the original channel Wn in order to invoke

Lemma 1. Every wiretap channel in existence has its own max-information characterization and

thus instead of trying to calculate a bound for the max-information of the original channel as a

whole, we instead consider the max-information of each of the individual wiretap channels, Wn1
1

and Wn2
2 , and find bounds on

Iεn1
n1

and
Iεn2
n2

respectively. Note that the bounds are being calculated

over n1 and n2 channel uses respectively instead of the original n channel uses, hence the change

in subscript. Combining the two yields a bound on Iεn
n for the original channel. How they are

combined exactly will come out in the calculations of Section 5.4. With the bound on Iεn
n for Wn

in hand, we can then invoke Lemma 1 to give us a set of achievable rates.

The results of Theorem 1 only required that the eavesdropper channel be a fast fading

channel modeled by a random variable He and that the input Xn to the channel is independent

of the channel coefficients (for Proposition 2 to hold). No restrictions were made as to what the

main channel had to be distributed as. Indeed, in Theorem 1 and Proposition 2, the main channel

coefficient Hm was kept arbitrary to produce the most general result possible. Letting Hm be a

deterministic constant random variable (i.e. its realizations only take one value) allows the main

channel to be a weighted Gaussian channel, exactly as we have here, one on each wiretap channel.

Therefore, the results of Theorem 1 hold for both Wn1
1 and Wn2

2 giving us bounds on
Iεn1
n1

and
Iεn2
n2

!

Note that the input Xn1 for wiretap channel Wn1
1 is indeed independent of the channel coefficients

since although C1
n1

was generated for a constant gain Gaussian channel with gain h1, Xn1 is chosen
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before transmission across the channel even begins. Thus current values of the channel coefficients

play no part in the values of Xn1 . The analogous case holds for Xn2 on wiretap Wn2
2 . Since we

now have bounds on
Iεn1
n1

and
Iεn2
n2

thanks to Theorem 1, we have a bound, ξ, on Iεn
n for the original

wiretap channel Wn. Then Lemma 1 tells us that by using the transmission scheme of Section 3.5

we can achieve semantically secure rates on this fast fading wiretap channel when RC > ξ. However,

we still have two technicalities to take care of.

In Lemma 1, RC represented the asymptotic rate of one coding scheme. Here, we have two

ECCs being used consecutively. Thus the overall rate of the ECCs in this scheme is just the sum

of the rates of the ECCs weighted by the fraction of channel uses that ECC was being used. In

this case it would be

RCn =
n1

n
R1 +

n2

n
R2

where R1 and R2 are the rates of C1
n1

and C2
n2

respectively. RC is then taken to be the asymptotic

limit of this rate instead. The other technicality is that the preprocessing scheme cannot be applied

directly due to our decomposition of the wiretap channel.

5.1.3. Transmission Scheme

Recall that the transmission scheme of Section 3.5 assumes that a k-bit message is prepro-

cessed into an l-length pseudo-message which in turn is then encoded by an ECC into an n-symbol

length codeword. In other words, the transmission scheme required an ECC of block length n be

used to transmit data over the channel. The coding schemes above, C1
n1

and C2
n2

, are obviously

ECCs with block lengths n1 and n2 thus we cannot use the transmission scheme directly. The

rectification of this is as follows: still preprocess the k-bit message into an l-length pseudo-message

m′. Instead of encoding m′ into an n-length codeword directly as before, we break apart m′ into

two bit strings, b1 and b2. b1 is of length n1R1 and b2 is of length n2R2, where R1 and R2 are the

rates of C1
n1

and C2
n2

respectively, chosen in such a way that

l = n1R1 + n2R2

and R1, R2 are each less than or equal to the capacity of their respective channels. ECCs satisfying

these rates can always be found due to Shannon’s noisy channel coding theorem since we are
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assuming they are each under capacity of their respective channels. We then pass as input b1 and

b2 to their respective ECC encoders en1() and en2() to each be reliably transmitted. After the n1-

length output Y n1 and n2-length output Y n2 are decoded at the receiver into n1R1-length message

estimate b̂1 and n2R2-length message estimate b̂2 respectively, b̂1 and b̂2 are concatenated to form

the pseudo-message estimate m̂′. In this fashion, we can indeed use the preprocessor as before with

a slight modification.

5.1.4. Removing Assumptions

Admittedly, the above paragraphs made many strong assumptions, most of which are com-

pletely unrealistic outside of a theoretical setting. As a recap, those unrealistic assumptions were:

1. The first n1 channel uses all had channel coefficient h1; the last n2 channel uses all had

channel coefficient h2.

2. The transmitter knows a priori how many times a certain channel coefficient will occur.

3. Hm only takes two values: h1 and h2.

We now show how one can remove all of these assumptions. We will do so in the order they are

presented above, but this is not necessary; we just remove them this way to keep the simplified

example as long as possible.

5.1.4.1. Removing Assumption (1)

For now, we will assume that Hm still only takes values h1 and h2; however, we make

no restrictions on when each occurs. Since the transmitter still knows how many times each

coefficient will occur, she still uses C1
n1

and C2
n2

to generate codewords Xn1 and Xn2 . At each time

i, the transmitter observes the channel coefficient hα and transmits one symbol from the codeword

corresponding to that realized channel coefficient. For example, at time 1 suppose the transmitter

observed the main channel having coefficient h2. Then she will send the first symbol of Xn2 . At

time 2, suppose the coefficient was again h2, the transmitter then transmits the second symbol of

Xn2 . At time 3 suppose the coefficient was h1, she then transmits the first symbol of Xn1 and so

on. It is easy to see that proceeding in this fashion, the transmitter will have transmitted every

symbol of both codewords, just in a mixed order. Since Xn1 is coming from a code with power

constraint γ1 and Xn2 is coming from a code with power constraint γ2, we see that throughout the
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transmission, we are sending inputs with (potentially) different powers dependent on the current

channel coefficient. In essence, we are taking advantage of our extra knowledge of the channel

coefficients by altering our power dynamically. This is what we will refer to as power allocation.

We have always assumed that the receiving parties know the instantaneous realizations of

the channel coefficient belonging to their channel. Thus at time i the receiver knows which channel

coefficient hα occurred. With this knowledge the receiver can sort and store the received signals into

those that belong to h1 and those that belong to h2 producing outputs Y n1 and Y n2 respectively.

This technique is known as code interleaving and allows us to ignore in what order the channel

coefficients occur thus removing assumption (1).

5.1.4.2. Removing Assumption (2)

The second assumption is obviously very unrealistic as it would imply that the transmitter

has future knowledge of the channel. Dropping this assumption, the best a transmitter can do is

make use of the channel statistics to try to predict how often the channel coefficients will occur.

From the distribution of Hm, the transmitter can determine the probability each coefficient has of

occurring, more specifically:

p1 = P[Hm = h1]

p2 = P[Hm = h2].

From this, the transmitter can estimate that np1 channel uses will have channel coefficient h1 and

np2 channel uses will have channel coefficient h2. Suppose we redefined n1 and n2 from above as

n1 = np1 and n2 = np1. Once again, before transmission across the channel, two codewords Xn1

and Xn2 are generated by C1
n1

and C2
n2

respectively. Since we now do not know exactly how many

times a channel coefficient will occur, we must design our ECCs such that they probabilistically

satisfy the overall power constraint P . In other words, C1
n1

and C2
n2

must have respective power

constraints γ1 and γ2 such that p1γ1 + p2γ2 ≤ P . As before, the transmitter sends symbols one at

a time from the respective codeword depending on the current channel coefficient. However, since

n1 and n2 are now just estimates of how many times the respective channel coefficients will appear

on the channel, there are no guarantees that h1 will appear n1 times for example. Let N1 be the

number of times h1 actually occurred and N2 the number of times h2 actually occurred. Note that

we capitalize N1 and N2 since we do not know beforehand what values they will take and thus they
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are random variables. One of three scenarios can then happen. The first possibility is the estimates

being correct: N1 = n1 and N2 = n2. This is the case already considered above where we know

that both codewords are sent over completely and thus successfully.

The second scenario being that of N1 < n1 and N2 > n2. In this case, we see that there

were not enough occurrences of h1 for the transmitter to send the entire n1-length codeword Xn1 .

By only sending part of the codeword, the transmitter is inherently sending a less or equal amount

of information across the channel than if an entire codeword had been sent. A side effect of this is

that similarly, only a smaller or equal amount of information can be leaked to the eavesdropper if

only part of the codeword was sent rather than the entire codeword. At the same time, we see that

there were more than enough occurrences of h2 to send the entire n2-length codeword Xn2 . Since

in this case all of the information we wished to transmit via Xn2 has been transmitted in the first

n2 channel uses, we instruct the transmitter to not send any information through the channel for

the remaining N2 − n2 time instances when channel coefficient h2 appears. The third scenario is

just the reverse of this one and thus follows similarly.

We see that by estimating via n1 and n2 as defined above will potentially lead to the

transmitter not transmitting as much information as we would like, thus we must redefine n1 and

n2 yet again to ensure that with high probability, both codewords will be fully sent across the

channel. To this end, we redefine n1 and n2 as n1 = np1− ε1 and n1 = np2− ε2 respectively, where

ε1, ε2 are chosen large enough such that the number of times h1 and h2 actually occur (N1 and N2

respectively) is larger than n1 and n2 with high probability. Furthermore, due to the law of large

numbers, we know that as n grows, N1 → np1 and N2 → np2 thus we take ε1, ε2 to go to 0 as

n → ∞. By defining n1 and n2 in this fashion, we see that with high probability, Xn1 and Xn2

will be fully sent across the channel. We once again instruct the transmitter to not transmit any

information on the remaining N1 − n1 time instances when h1 is the channel coefficient after Xn1

has been fully sent. Similarly for the N2−n2 time instances with channel coefficient h2. Therefore,

the transmitter does not know a priori how many times a certain channel coefficient occurs, but

rather uses estimates.

5.1.4.3. Removing Assumption (3)

We now assume Hm is no longer restricted to two values, but can take any real number

from R+. As is standard in literature [4], we assume that the channel coefficient Hm is bounded
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and thus we take a value hmax to be a “probabilistic” upper bound for the realizations of Hm. In

other words, we take hmax to be a large enough value such that all of the realizations of Hm will be

smaller than hmax with high probability. From here, we partition the range of Hm, [0, hmax), into

d smaller intervals [hm,i, hm,i+1) for 1 ≤ i ≤ d (i here is not the same as the time instant i). Note

that both the transmitting party as well as the legitimate receiver and eavesdropper are assumed

to know these partitions. With these partitions in hand, we extend all of the concepts above for d

possible channel coefficients instead of just two. Thus we now define

pi = P [Hm ∈ [hm,i, hm,i+1 )] .

and

ni = npi − εi.

Above, we designed ECCs C1
n1

and C2
n2

for Gaussian channels with constant channel gains

meaning that we expected h1 and h2 to occur more than once. However, since Hm ∈ R+ we know

that the main channel coefficient will take the same value twice with probability 0 and thus we

cannot directly make ECC’s based on the exact values of the channel coefficients otherwise they

would all have length 1 (furthermore, since Hm is now coming from an uncountable set and we

don’t know a priori which n values will be realized, we would have to create an uncountable amount

of ECCs - obviously not practical). To remedy this, we create d ECCs, {Cini}d, where each ECC is

again designed for a Gaussian channel with constant gain, where the constant gain is given by the

lower end of each of the d intervals described above, that being hm,i (we choose the first interval,

where hm,1 = 0, to be arbitrarily small and choose to just not transmit when realizations fall into

this interval). The block lengths of each of these ECCs is given by ni respectively and each has

power constraint γi such that the sum of the power constraints weighted by their probabilities of

occurring is less than or equal to P .

The reason the lower end of each interval is chosen as the constant gain for the channel

is to ensure the transmitter is not operating above the main channel’s capacity. Consider all the

realized channel coefficients that fall into the interval [hm,i, hm,i+1). The main channel will have

an actual physical capacity, call it Ca, which is determined by the exact values of hm. On the
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other hand, before transmission, we can calculate a value for the capacity of a Gaussian channel

with constant gain hm,i, call it Cr. Since each of the actual realized values of hm will be greater

than or equal to the lower end of their respective interval, hm,i, we know that Cr ≤ Ca. Thus by

always operating at a rate less than or equal to Cr, we are ensuring we are never operating above

the channels true capacity Ca. By partitioning the main channel coefficients this way, we see that

we have now demultiplexed the original channel Wn into d parallel wiretap channels as shown in

Figure 5.2.

A

Hm
B

He

E

⇒

A

hm,1 B

He

E
·
·
·
·
·

A

hm,d B

He

E

Figure 5.2. Decomposition of the fast fading wiretap channel with partial CSIT.

As before, at each time instant, the transmitter observes the channel coefficient hm and

transmits one symbol from the codeword corresponding to the interval hm is contained in. For

example, suppose at a certain time instant, hm ∈ [hm,7, hm,8), the transmitter would then send

one symbol from codeword Xn7 which was generated by C7
n7

which in turn was designed for the

Gaussian channel with constant gain hm,7. In this way, code interleaving as illustrated in Figure 5.3

is still used to ensure that the order in which the channel coefficients appears does not matter. With

this, we have now removed assumption (3) and hence all assumptions.
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Codewords:
xn1

x1
1x

1
2 . . . x

1
n1︸ ︷︷ ︸

xn2

x2
1x

2
2 . . . x

2
n2︸ ︷︷ ︸

xnd

xd1x
d
2 . . . x

d
nd︸ ︷︷ ︸

Symbol string Xn sent: xd1x
3
1x

1
1x

d
2x

d
3x

1
2x

2
1 . . .

Figure 5.3. Code interleaving.

In Section 5.2 we restate the entire power allocation scheme in more succinct mathematical

terms to make clear all of the assumptions being made. In Section 5.3 we then address this scheme’s

reliability, followed by its security in Section 5.4.

5.2. Power Allocation Scheme

Since the transmitter has access to CSI about the main channel, each party can demulti-

plex the fast fading wiretap channel into a set of d parallel channels by partitioning the channel

coefficients of the main channel into d intervals. Each parallel wiretap channel is then composed of

a time-invariant Gaussian main channel with a fast fading eavesdropper channel characterized by

He as depicted in Figure 5.2. More specifically, we assume the fading gain of the main channel is

bounded and divide the possible realizations of Hm into intervals [hm,i, hm,i+1) with i ∈ [1, d]. Let

pi = P [Hm ∈ [hm,i, hm,i+1 )] .

Let Ni be the number of times channel i is actually used and let ni = pin− εi, where εi is chosen

sufficiently large such that the realization of Ni is greater than ni with high probability and εi → 0

as n → ∞. For every index i, the transmitter and legitimate receiver will publicly agree on a

transmit power γi(Hm) where {γi}d is chosen such that

d∑
i=1

piγi ≤ P.

For 1 ≤ i ≤ d, the transmitter and legitimate receiver also publicly agree upon an ECC

Cini (with codebook C i
ni) designed to operate on the Gaussian point-to-point channel with constant

channel gain hm,i. We denote by Ri the rate of Cini and the overall rate over the main channel to
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be

RCn =
d∑
i=1

piRi.

The full coding scheme is then outlined as follows: a message m ∈ M is chosen which passes

through the preprocessing layer to produce an l-length pseudo-message m′ ∈ M′. These l bits are

then divided into sets of niRi bits such that

l =
∑
i

niRi.

A codeword is then generated for each of these sets by their respective Cini and the multiplexing

strategy outlined above is then employed to transmit the ith codeword when the channel state is in

the ith interval as illustrated in Figure 5.4. In more detail, at each time instant i the multiplexer

will determine what the channel state is and send one symbol from the codeword associated with

that channel gain.

m′

∗∗∗∗∗∗
∗∗∗∗

...
∗∗∗∗∗

en1()

en2()

end()

x1x2 . . . xn1

x1x2 . . . xn2

x1x2 . . . xnd

Input to
channel

Multiplexer

Figure 5.4. Multiplexing scheme.

5.3. Reliability

The reliability of this scheme comes from the aggregate reliability of all the ECC’s being

employed on the d parallel channels. Since we are assuming an ECC Cini is chosen to operate

successfully over the ith point-to-point main channel, we know that Ri ≤ Ci where Ci here denotes
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the point-to-point channel capacity between the transmitter and legitimate receiver. Since we are

operating less than or equal to capacity, we know that the probability of error will be negligible,

i.e., for any ε > 0:

Pe(Cini) ≤ ε.

In other words, the receiver will be able to recover each ni-length codeword with high probability.

Thus the probability of error for the entire n-length transmission is just probability of error for

each individual ni-length codeword weighted by the probability that that code is used:

Pe(Cn) =

d∑
i

piPe(Cini) ≤
d∑
i

piε = ε

for any ε > 0. Now that this scheme has been shown to be reliable, we now address its security.

5.4. Security

We wish to bound Iεn
n of this demultiplexed fast fading channel by considering the set of d

parallel wiretap channels outlined above and each of their individual associated max-information

terms for which we already know the bound found in Theorem 1. Again, the only way this differs

from that of Chapter 4 is that in the case of S-CSIT, we are not allowed to vary the power we are

transmitting at due to our lack of knowledge of instantaneous CSIT, whereas in the case of partial

CSIT, we can vary our power to align with what the current channel gain is.

Definition. Define the following sets:

T ′ni = {(xni , hnim , hnie , zni) : hnim ∈ Rni+ , (x
ni , hnie , z

ni) ∈ Tni}

T ′n =
⊗
i

T ′ni

where Tni is defined in Section 4.3.

Similarly to the case of S-CSIT, we do not wish to consider the entire space from which

inputs, outputs, and channel coefficients can take values; rather, we only wish to consider those

tuples which have a high probability of occurring. Therefore, we create a typical set which will

characterize the tuples we would “typically” expect to occur for the wiretap channel Wn. On

each of the d parallel wiretap channels, we are using codewords from different codebooks, and thus
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each parallel channel will have its own typical set characterizing the inputs, outputs, and channel

coefficients that occur with high probability which is exactly given by T ′ni . The Cartesian product

of {T ′ni} defined above gives us a set with all high probability tuples from each channel. In other

words, the typical set for the entire wiretap channel Wn is made up of the typical sets of its

constituent d wiretap channels as proved next.

Lemma 4. T ′n as defined above is a (1− εn) typical set.

Proof. We first see that T ′ni is (1− εni) typical directly from Proposition 3. Then:

P
[
(Xn, Hn

m, H
n
e , Z

n) ∈ T ′n|Xn = xn
]

= P
[
(Xn, Hn

m, H
n
e , Z

n) ∈ T ′n1
× · · · × T ′nd |X

n = xn
]

1
≥ P

[
(Xn1 , Hn1

m , Hn1
e , Zn1) ∈ T ′n1

|Xn1 = xn1
]

+ · · ·

· · ·+ P
[
(Xnd , Hnd

m , Hnd
e , Znd) ∈ T ′nd |X

nd = xnd
]
− d+ 1

2
≥

d∑
i=1

(1− εni)− d+ 1

= d− d+ 1−
d∑
i=1

εni

Let ε∗ be the largest εni over all i

≥ 1− dε∗

Since ε∗ is going to 0 with n→∞ and we are free to choose d, we see that T ′n is a (1− εn) typical

set.

Justification.

1. Fréchet inequality for Cartesian products.

2. We know that T ′ni is a (1− εni) typical set for all i thus:

P
[
(Xni , Hni

m , H
ni
e , Z

ni) ∈ T ′ni |X
ni = xni

]
≥ 1− εni
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and we sum over all i.

With the typical set T ′n in hand, we now aim to accomplish step 1 of the procedure outlined

in Chapter 3 by finding the bound ξ for Wn. We do so by breaking up the wiretap channel into

d parallel wiretap channels as described above. Finding an asymptotic bound for max-information

on each of these channels using their respective typical sets yields us our bound ξ for the overall

channel.

Theorem 2. Consider a fast fading wiretap channel where the transmitter has partial CSIT with T ′n

and εn as defined in Lemma 4. Using the power allocation scheme above, it follows that (dropping

the subscript on ε):

lim
n→∞
ε→0

(
Iεn
n

)
≤ 1

2
EHeHm

[
log

(
1 +

γ(Hm)H2
e

σ2
e

)]
.

Proof.

2I
ε
n

1
≤ 2

In(AnT ′n
)

= EHn
mH

n
e

∫
Rn

max
xn∈Cn

ωT ′n(zn|xn, Hn
m, H

n
e )dzn

= EHn
mH

n
e

∫
Rn

max
xn∈Cn

ω(zn|xn, Hn
m, H

n
e )1((xn, Hn

m, z
n) ∈ T ′n)dzn

=

∫
ω(hnm, h

n
e )

∫
Rn

max
xn∈Cn

ω(zn|xn, hnm, hne )1((xn, hnm, h
n
e , z

n) ∈ T ′n)dzndhnmdh
n
e

2
≤
∏
i

∫
ω(hnim , h

ni
e )

∫
Rni

max
xni∈C ini

ω(zni |xni , hnim , hnie )1((xni , hnim , h
ni
e , z

ni) ∈ T ′ni)dz
nidhnimdh

ni
e

Let J = [hm,i, hm,i+1)ni × Rni+

3
=
∏
i

∫
J

ω(hnim , h
ni
e )

∫
Rni

max
xni∈C ini

ω(zni |xni , hnim , hnie )1((xni , hnim , h
ni
e , z

ni) ∈ T ′ni)dz
nidhnimdh

ni
e

Justification.

58



1. T ′n is a (1− εn) typical set; however, it may not be the set corresponding to the “smallest” ε

smooth max-information.

2. We wish to integrate over all n and to do so, we break up the integral into integrals over each

ni.

(a) Suppose Ni ≥ ni. In this case, we have transmitted a full ni length codeword over the

ith channel and choose to not send information over the channel during the remaining

Ni − ni channel uses. Then:

∫
RNi−ni

max
xNi−ni

ω(zNi−ni |xNi−ni , hNi−nim , hNi−nie )dzNi−ni

=

∫
RNi−ni

ω(zNi−ni |hNi−nim , hNi−nie )dzNi−ni

= 1

Thus, if Ni ≥ ni ∀i then we obtain equality at this line.

(b) Suppose Ni < ni. In this case, the ith channel did not appear often enough for the

transmitter to send an entire ni length codeword. By not sending the full codeword, we

are inherently limiting the amount of information sent across the channel and therefore

the amount of information that can be leaked to the eavesdropper. Hence, sending the

full ni length codeword allows more information (or equal amount of information) to be

leaked to the eavesdropper and therefore serves as an upper bound to the actual value.

More clearly:

∫
RNi

ω(zNi |xNi , hNim , hNie )1((xNi , hNim , hNie , zNi) ∈ T ′Ni)dz
Ni

≤
∫
Rni

ω(zni |xni , hnim , hnie )1((xni , hnim , h
ni
e , z

ni) ∈ T ′ni)dz
ni

3. Due to the partitioning of the channel coefficients, we know that for each i, Hm ∈ [hm,i, hm,i+1).
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4
=
∏
i

EHni
e

∫
Rni

max
xni∈C ini

ωTni (z
ni |xni , Hni

e )dzni

5
=
∏
i

2
Ini (A

ni
Tni

)

Taking the logarithm of each side and dividing by n:

Iεn
n
≤ 1

n
log

(∏
i

2
Ini (A

ni
Tni

)

)

=
1

n

∑
i

log

(
2
Ini (A

ni
Tni

)
)

6
≤ 1

n

∑
i

ni
1

2
EHe

[
log

(
1 +H2

e

γi(hm,i)

σ2
e

)]
=

1

2n

∑
i

(pin− εi)EHe
[
log

(
1 +H2

e

γi(hm,i)

σ2
e

)]
=

1

2

∑
i

piEHe
[
log

(
1 +H2

e

γi(hm,i)

σ2
e

)]
− 1

2n

∑
i

εiEHe
[
log

(
1 +H2

e

γi(hm,i)

σ2
e

)]
7
=

1

2
EHe,Hm

[
log

(
1 +

γ(Hm)H2
e

σ2
e

)]

as n→∞ and ε→ 0.

Justification.

4. We can split up the conditional density as

ω(zni |xni , hnim , hnie ) =
ω(zni , xni , hnie )ω(hnim )

ω(xni , hnie )ω(hnim )

= ω(zni |xni , hnie )

where the first equality follows from the fact that hnim is independent of zni , xni , and hnie .

Note that hnim was indeed used to determine which codebook to use on this channel, but at this

point that has been determined and we have restricted the integration of hnim to take this into
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account, i.e. xni is independent of hnim . Thus the multiplicand becomes:

∫
J

ω(hnie )ω(hnim )

∫
Rni

max
xni∈C ini

ωT i(z
ni |xni , hnie )dznidhnie dh

ni
m

=

∫
Rni+

ω(hnie )

∫
Rni

max
xni∈C ini

ωT i(z
ni |xni , hnie )dznidhnie

Where the equality follows from the fact that we know hm ∈ [hm,i, hm,i+1) for each component

of the ni length vector for every i. Therefore integrating ω(him) over the whole space where

hm is guaranteed to be will yield 1 for each of the
∑

i ni integrals. We then rewrite the integral

over hnie in the form of expected value.

5. Definition of Ini(A
ni
Tni

) and Proposition 2.

6. Upper bound as found in Theorem 1.

7. d can be made arbitrarily large and thus the channel coefficient intervals can be made arbi-

trarily small, hence the convergence of the first term to the expected value. For the second

term:

lim
n→∞

1

2n

∑
i

εiEHe
[
log

(
1 +H2

e

γi(hm,i)

σ2
e

)]
= 0

Since EHe
[
log
(

1 +H2
e
γi(hm,i)
σ2
e

)]
is constant with respect to n and εi → 0. Also, δn, δ

′
n, δ
′′
n

(from Theorem 1) can be chosen in such a way that ε→ 0 as n→∞.

5.5. Set of Secure Rates

Now that we have our bound, ξ, we have completed step 1 of the procedure. Lemma

1 immediately tells us that by using the UHF based preprocessing scheme we can achieve any

positive rate, Rs, with semantic security satisfying Rs < RC − ξ. Let’s see how this compares to

previous results.
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Fact 5. [4] For the fast fading wiretap channel where the CSI of the main channel but not the CSI

of the eavesdropper channel is known at the transmitter, all rates Rs such that

Rs < max
γ

(
1

2
EHm

[
log

(
1 +

γ(Hm)H2
m

σ2
m

)]
− 1

2
EHmHe

[
log

(
1 +

γ(Hm)H2
e

σ2
m

)])

where γ : R+ → R+ obeys the constraint E [γ(Hm)] ≤ P are achievable secrecy rates under the

variational distance secrecy metric.

Corollary 2. The transmission scheme of Section 3.5 can achieve all rates given in Fact 5 with

semantic security on the partial CSIT fast fading wiretap channel when the main channel rate is

taken as

RC =
1

2
EHm

[
log

(
1 +

γ(Hm)H2
m

σ2
m

)]
for any power γ(Hm).

Proof. The result follows immediately after combining Lemma 1 with Theorem 2 and noting that

there does exist some ECC which can achieve this rate due to the fact that the above expression is

the point-to-point capacity of the fast fading channel with power γ(Hm).

In summary, we have completed step 1 of the procedure of Chapter 3 for all fast fading

channels with partial CSIT. With this result, we have shown which rates can be achieved with

semantic security using the UHF based preprocessing scheme. In particular, Corollary 2 shows

that we can achieve the best known secrecy rate with semantic security. Thus all a user has to

do is concatenate the UHF based preprocessing scheme with their existing ECC system and they

will achieve semantic security with rates given in the above corollary. If they wish to achieve the

optimal known secure rate, they just need to find an optimal ECC for the point-to-point fast fading

channel. The problem of security on the fast fading wiretap channel with partial CSIT has now

been converted into the problem of finding an ECC.
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6. FULL CSIT

In this subsection, we shall assume full CSIT; that is, we assume the transmitter knows

instantaneously the realizations at time instance i of both the main and eavesdropper coefficients.

The assumption of reliable feedback in a timely manner from the legitimate receiver is once

again a valid assumption due to different channel testing and training techniques. However, it

may not be very plausible that an eavesdropper will be feeding back reliable information about

her channel to the transmitter. Real-world examples where this could be a valid assumption

include situations where a superior wishes to speak to another superior while keeping a subordinate

employee ignorant of the message. In this case, the eavesdropper is not malicious and thus the

technology could be set up in such a way that the subordinate’s communication equipment will

feedback to his superior’s equipment. Pathological examples aside, the case of full CSIT still carries

theoretical importance. The results of this chapter carry further importance in the sense that for

the first time known to the author, we have determined the semantic secrecy capacity of the fast

fading wiretap channel with full CSIT. Not only have we determined it, but we also provide an

explicit scheme by which one may achieve it!

To find an achievable rate with semantic security for this channel, we follow an almost

identical power allocation scheme as presented in Chapter 5 and similar to that in [4, 9] and derive

a bound for Iεn
n of this channel. Due to the similarities with that of Chapter 5, we omit redundant

explanations here. In short, the strategy is the same as that of Chapter 5 except instead of

decomposing the wiretap channel into parallel channels according to the main channel coefficients,

we decompose it according to both channel coefficients. This yields parallel Gaussian wiretap

channels where both the main and eavesdropper channels are Gaussian wiretap channels instead of

just the main being so as in Chapter 5.

Since full CSI is available at the transmitter, intended receiver, and eavesdropper, they each

can demultiplex the fast-fading wiretap channel into d2 parallel time-invariant Gaussian wiretap

channels. This is accomplished by dividing the ranges of the channel coefficients into d intervals

each. More specifically, we assume the fading gains are bounded and divide Hm into intervals

[hm,i, hm,i+1) with i ∈ [1, d], and He into intervals [he,j , he,j+1) with j ∈ [1, d]. Note that the ith
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interval of the main channel coefficients does not have to contain the same values as the ith interval

of the eavesdropper channel coefficients. Let

pi = P [Hm ∈ [hm,i, hm,i+1 )]

qj = P [He ∈ [he,j , he,j+1 )] .

Each subchannel is composed of a main Gaussian channel with constant gain hm,i and eavesdropper

channel with constant gain he,j+1. Again we take the lower bound of each interval to assume worst

case for the main channel, and take the upper bound of each interval for the eavesdropper channel

to assume best case scenario for the eavesdropper. In this way we are assuming worst case scenario

for the legitimate parties which is the standard assumption in security.

Let Ni,j be the number of times channel i, j is used. Let nij = piqjn − εij , where εij is

chosen sufficiently large such that the realization of Ni,j is greater than nij with high probability

and εij → 0 as n→∞. For every pair of indices (i, j), the transmitter and legitimate receiver will

publicly agree on a transmit power γi,j(Hm, He) where {γi,j}d,d is chosen such that

d∑
i=1

d∑
j=1

piqjγi,j ≤ P.

Furthermore, for each i, j, the transmitter and legitimate receiver publicly agree upon an ECC Cijnij

(with codebook C ij
nij ) designed to operate on the Gaussian point-to-point channel with constant

channel gain hm,i. We denote by Rij the rate of Cijnij . The full coding scheme is then outlined as

follows: a message m ∈ M is chosen which passes through the preprocessing layer to produce an

l-length pseudo-message m′ ∈M′. These l bits are then divided into sets of nijRij bits such that

l =
∑
i,j

nijRij .

A codeword is then generated for each of these sets by their respective Cijnij and the multiplexing

strategy outlined above is then employed to transmit the i, jth codeword when the channel state

is in the i, jth interval.
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We now wish to bound Iεn
n of this fast fading channel by considering the set of parallel

Gaussian wiretap channels outlined above and each of their associated max-information terms for

which we already know the bound as given in [25].

Let

IAWGN
nij (A

nij
T ) = log

∫
Znij

max
xnij∈Cnij

ωT (znij |xnij )dznij

where T here is the typical set for the Gaussian channel given in [25]. In other words, IAWGN
nij is

the max-information of the Gaussian channel over nij channel uses for the codebook Cnij . This

definition is equivalent to the definition of max-information given in Chapter 3 if the channel

coefficients Hm and He are taken to be independent of the input Xn and output Zn. Furthermore,

if the eavesdropper channel A is a constant gain Gaussian channel then T = T 1
nij ∩ T

2
nij where T 1

nij

and T 2
nij are given in Section 4.3.

Similar to Chapter 5, we wish to construct a typical set for the wiretap channel as a whole.

To do so, we construct it out of the typical sets for each of the d2 parallel wiretap channels.

Definition. Define the following sets:

?T 1
nij = {(xnij , hnijm , h

nij
e , znij ) : h

nij
m ∈ Rnij+ , (xnij , h

nij
e , znij ) ∈ T 1

nij}
?T 2
nij = {(xnij , hnijm , h

nij
e , znij ) : h

nij
m ∈ Rnij+ , (xnij , h

nij
e , znij ) ∈ T 2

nij}

T ′nij =
?T 1
nij ∩

?T 2
nij

T ′n =
⊗
i,j

T ′nij

where T 1
nij and T 2

nij are defined in Section 4.3.

Lemma 5. T ′n as defined above is a (1− εn) typical set.

Proof. We see in the proof of Proposition 3 that
?T 1
nij and

?T 2
nij are directly (1− ε1n) and (1− ε2n)

typical respectively, where ε1n and ε2n are given in Lemma 3. Now consider:

P
[
(Xnij , H

nij
m , H

nij
e , Znij ) ∈ T ′nij |X

nij = xnij
]

= P
[
(Xnij , H

nij
m , H

nij
e , Znij ) ∈ ?T 1

nij ∩
?T 2
nij |X

nij = xnij
]
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1
≥ P

[
(Xnij , H

nij
m , H

nij
e , Znij ) ∈ ?T 1

nij |X
nij = xnij

]
+ · · ·

· · ·+ P
[
(Xnij , H

nij
m , H

nij
e , Znij ) ∈ ?T 2

nij |X
nij = xnij

]
− 1

≥ (1− ε1nij ) + (1− ε2nij )− 1

= 1− (ε1nij + ε2nij )

Therefore T ′nij is a (1− εnij ) typical set. The proof of T ′n being typical then follows exactly as that

of the proof of Lemma 4 and is thus omitted here.

Justification.

1. Fréchet inequality for intersections.

With the typical set T ′n now in hand, we proceed to accomplish step one of the procedure

given in Chapter 3 by finding an asymptotic upper bound to max-information for this channel. We

do so by splitting the channel up into the d2 parallel wiretap channels as described above and find

a bound for max-information on each of those individual channels.

Theorem 3. Consider the fast fading wiretap channel with full CSIT at the transmitter with T ′n

and εn be as defined in Lemma 5. Using power allocation scheme above, it follows that (dropping

the subscript on ε):

lim
n→∞
ε→0

(
Iεn
n

)
≤ 1

2
EHe,Hm

[
log

(
1 +

γ(Hm, He)H
2
e

σ2
e

)]
.

Proof.

2I
ε
n

1
≤ 2

In(AnT ′n
)

= EHn
mH

n
e

∫
Rn

max
xn∈Cn

ωT ′n(zn|xn, Hn
m, H

n
e )dzn

= EHn
mH

n
e

 ∫
Rn

max
xn∈Cn

ω(zn|xn, Hn
m, H

n
e )1((xn, Hn

m, H
n
e , z

n) ∈ T ′n)dzn
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=

∫
Rn+

ω(hnm, h
n
e )

∫
Rn

max
xn∈Cn

ω(zn|xn, hnm, hne )1((xn, hnm, h
n
e , z

n) ∈ T ′n)dzndhnmdh
n
e

2
≤
∏
i,j

∫
R
nij
+

ω(h
nij
m , h

nij
e )

∫
Rnij

max
xnij∈C i,jnij

ω(znij |xnij , hnijm , h
nij
e ) · · ·

· · ·1((xnij , h
nij
m , h

nij
e , znij ) ∈ T ′nij )dz

nijdh
nij
m dh

nij
e

Let J = [hm,i, hm,i+1 )nij × [he,j , he,j+1 )nij

3
=
∏
i,j

∫
J

ω(h
nij
m , h

nij
e )

∫
Rnij

max
xnij∈C i,jnij

ωT ′nij
(znij |xnij , hnijm , h

nij
e )dznijdh

nij
m dh

nij
e

4
=
∏
i,j

∫
J

ω(h
nij
m , h

nij
e )

∫
Rnij

max
xnij∈C i,jnij

ω(znij |xnij , hnije ) · · ·

· · ·1((xnij , h
nij
e , znij ) ∈ T 1

nij ∩ T
2
nij )dz

nijdh
nij
m dh

nij
e

5
=
∏
i,j

∫
J

ω(h
nij
m , h

nij
e )

∫
Rnij

max
x̄nij∈h

nij
e C i,jnij

ω(znij |x̄nij ) · · ·

· · ·1((xnij , h
nij
e , znij ) ∈ T 1

nij ∩ T
2
nij )dz

nijdh
nij
m dh

nij
e

6
=
∏
i,j

∫
J

ω(h
nij
m , h

nij
m )2

IAWGN
nij

(
A
nij

T 1,2
nij

)
dh

nij
m dh

nij
e (E2)

Justification.

1. T ′n is a (1− εn) typical set; however, it may not be the set corresponding to the “smallest” ε

smooth max-information.

2. See justification (2) given in the proof of Theorem 2.

3. The n length transmission was split into nij length constituent parts based on the values of

he and hm at a given moment. In other words, during each entire nij length transmission,

we know that he ∈ [he,j , he,j+1) and hm ∈ [hm,i, hm,i+1) since the coding schemed determined

nij that way, thus we can rewrite the bounds of integration for h
nij
m and h

nij
e to consider only

this space and not the entire space as that is unneeded.
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4.

ω(znij |xnij , hnijm , h
nij
e ) =

ω(znijxnij , h
nij
e )ω(h

nij
m )

ω(xnij , h
nij
e )ω(h

nij
m )

= ω(znij |xnij , hnije )

where the first equality follows from the fact that h
nij
m is independent of znij , xnij , and h

nij
e .

Note that h
nij
m was indeed used to determine which codebook to use on this channel, but at

this point that has been determined and we have restricted the integration of h
nij
m to take this

into account, i.e. xnij is independent of h
nij
m . Finally, since the maximization no longer has

any dependence on hm, we then only need to consider tuples (xnij , h
nij
e , znij ) ∈ T 1

nij ∩ T
2
nij .

5. Let x̄nij = h
nij
e xnij . Then the codebook of x̄nij becomes h

nij
e C i,j

nij , i.e. the original codebook of

xnij , C i,j
nij where each codeword is multiplied by h

nij
e .

6. Definition of IAWGN
nij for a constant weight Gaussian channel.

We know that the power constraint of codebook C i,j
nij is γi,j , thus:

1

nij

nij∑
ι=1

x2
ι ≤ γi,j .

Therefore the power constraint of codebook h
nij
e C i,j

nij is given by:

1

nij

nij∑
ι=1

heι
2x2
ι ≤ γ′i,j .

for some finite γ′i,j . From [25] we know that IAWGN
nij

(
A
nij

T 1,2
nij

)
corresponding to the codebook h

nij
e C i,j

nij

has an upper bound given as:

IAWGN
nij

(
A
nij

T 1,2
nij

)
≤ nij

2
log

(
1 +

γ′i,j
σ2
e

)
+ nijδ log e+ o(nij)

for any sufficiently small δ > 0. We can then upper bound each component of h
nij
e by the largest

value of the interval containing each component, that being the constant he,j+1. This produces a
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new codebook h
nij
e,j+1C

i,j
nij having power constraint

1

nij

nij∑
ι=1

he,j+1ι
2x2
ι =

he,j+1
2

nij

nij∑
ι=1

x2
ι ≤ he,j+1

2γi,j .

Combining, we see that

IAWGN
nij

(
A
nij

T 1,2
nij

)
≤ nij

2
log

(
1 +

γ′i,j
σ2
e

)
+ nijδ log e+ o(nij)

≤ nij
2

log

(
1 +

he,j+1
2γi,j

σ2
e

)
+ nijδ log e+ o(nij)

= nijβnij

Continuing on from (E2):

(E2) ≤
∏
i,j

∫
J

ω(h
nij
m , h

nij
e )2nijβnij dh

nij
m dh

nij
e

=
∏
i,j

2nijβnij
∫
J

ω(h
nij
m , h

nij
e )dh

nij
m dh

nij
e

7
=
∏
i,j

2nijβnij

Taking the logarithm of each side and dividing by n we have:

Iεn
n
≤ 1

n
log

∏
i,j

2nijβnij


=

1

n

∑
i,j

log
(

2nijβnij
)

=
1

n

∑
i,j

nijβnij

=
1

n

∑
i,j

(piqjn− εn)βnij

=
∑
i,j

piqjβnij −
εn
n

∑
i,j

βnij

8
=

1

2
EHeHm

[
log

(
1 +

γ(Hm, He)H
2
e

σ2
e

)]
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as n→∞ and ε→ 0.

Justification.

7. For each of the nij components, we know that hm and he will surely be found in J due to our

choice of coding scheme.

8. d can be chosen arbitrarily large thus making each channel coefficient interval arbitrarily small,

hence the convergence of the first term to the expected value. The second term goes to 0 with

n as the summand only grows with o(nij) while n→∞ and εn → 0. Also, δ (from the bound

taken from [25]) can be chosen in such a way that ε→ 0 as n→∞.

Now that we have completed step one of the procedure given in Chapter 3, let’s see what

semantically secure rates we can achieve with this UHF scheme and compare this with previous

work.

Fact 6. [15] With full CSI for both the main channel and the eavesdropper channels available at

the transmitter, the weak secrecy capacity of the ergodic fading channel is:

Cs = max
γ

(
1

2
EHmHe

[
log

(
1 +

γ(Hm, He)H
2
m

σ2
m

)]
− 1

2
EHmHe

[
log

(
1 +

γ(Hm, He)H
2
e

σ2
e

)])

where γ : R2
+ → R+ obeys the power constraint E [γ(Hm, He)] ≤ P .

Corollary 3. The semantic secrecy capacity of the fading channel with Full CSIT is given by:

Cs = max
γ

(
1

2
EHmHe

[
log

(
1 +

γ(Hm, He)H
2
m

σ2
m

)]
− 1

2
EHmHe

[
log

(
1 +

γ(Hm, He)H
2
e

σ2
e

)])

Furthermore, the transmission scheme of Section 3.5 can achieve the semantic secrecy capacity of

the fast fading wiretap channel with full CSIT.

Proof. Let γ∗ be the power allocation function that maximizes the expression in Fact 6 as found

in [15]. Let the main channel rate be

RC =
1

2
EHmHe

[
log

(
1 +

γ∗(Hm, He)H
2
m

σ2
m

)]
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We know by Shannon’s noisy channel coding theorem that some ECC will exist which satisfies this

rate due to the above expression being the point-to-point capacity of the fast fading channel under

power allocation function γ∗. Since the bound found in Theorem 3 holds for any power allocation

function γ, it holds for γ∗ in particular. In Theorem 3 we found an upper bound to the right hand

term of the difference in Fact 6, thus invoking Lemma 1 we know we can achieve any rate arbitrarily

close to the secrecy capacity given in Fact 6. Therefore the semantic secrecy capacity is equal to

the weak secrecy capacity by Fact 2 in the case of full CSIT and the given scheme achieves it.

In summary, we have shown that with the UHF preprocessing scheme provided in [13],

we can achieve all rates up to and including the weak secrecy capacity which implies that the

semantic secrecy capacity is also given by the expression for weak secrecy. To the extent of the

author’s knowledge, this is the first time the semantic secrecy capacity has been characterized for

this fading channel. Doing so in an explicit manner gives communication system designers all the

tools they may ever need to ensure the best semantically secure rate possible in their system.
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7. CONCLUSION

In the preceding chapters, we have determined rates which can be achieved on a fast fading

wiretap channel with semantic security. In particular, these can be achieved by an explicit and

efficient UHF based preprocessing scheme which can be concatenated with any error correcting

code. This differs substantially from the majority of current literature which has primarily aimed

at designing “all-in-one” wiretap codes. In other words, they have focused on coming up with a

scheme that provides reliability and security all at once. The scheme presented in [13] which we

use here, separates the wiretap code into two distinct components - one to provide security and one

to provide reliability. We have found the security component for the fast fading wiretap channels

given in this thesis; therefore, all that remains is to find an explicit and efficient error correcting

code for the main channel in question. Put another way, we have converted the problem of finding

a good wiretap code into one of just finding a good error correcting code which is already an entire

field of study in its own right and has considerable attention and resources devoted to it.

To date, in the case of S-CSIT, a general characterization of the secrecy capacity has not

been determined under any secrecy metric. The weak secrecy capacity has indeed been characterized

for certain subsets of the S-CSIT case which this thesis has now determined to be equivalent to the

semantic secrecy capacity. However, a general expression for any fast fading channel with S-CSIT

has eluded us. It could be the case that there exist fast fading channels with S-CSIT which do not

fall into one of those special subsets and thus may have a different secrecy capacity. All we can say

due to the work in this thesis is that on those channels, we can still achieve rates up to CT − CA

with semantic security and thus the secrecy capacity for those channels must be lower bounded

by that value. It is an interesting and important line of future work to characterize the secrecy

capacity of the fast fading channel with S-CSIT in general.

Although in the case of partial CSIT, we have not determined the secrecy capacity, we

have shown that the best known rates achievable under the variational distance metric can also be

achieved under the semantic security metric as well using the power allocation scheme described

in Chapter 5 with the UHF based preprocessing layer. It is again of considerable future interest to

characterize the actual secrecy capacity in the case of partial CSIT under any metric. In [4] a very
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similar power allocation scheme is presented to achieve that previously best known rate (under a

weaker secrecy metric); however, it differs from the scheme presented here at a crucial point. In

[4], they demultiplex the channel as we do, after which they proceed to design d wiretap codes to

operate on each of the parallel wiretap channels. This is in contrast to our scheme which requires

the design of d error correcting codes which are connected together to only 1 preprocessor. Thus

once again, we have converted the problem of designing wiretap codes to that of designing error

correcting codes which is significantly easier.

Similarly, in the case of full CSIT, we have once again converted the problem of design-

ing wiretap codes into that of designing good error correcting codes. However, in this case, the

expression for the weak secrecy capacity of any fast fading channel with full CSIT had already

been determined and we show that we can also achieve that rate with semantic security, therefore

determining the semantic secrecy capacity for the first time.

The UHF based preprocessing scheme used here has also been shown to achieve the semantic

secrecy capacity of both the Gaussian wiretap channel and any discrete memoryless channel [13].

By further providing an explicit means of achieving semantically secure rates for the first time on

any fast fading channel, the author is confident that UHF based preprocessing schemes are one of

the best candidates for implementing information-theoretic security in our modern communication

systems.
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APPENDIX

A.1 Proof of Proposition 2

Proof. From the definition of In(AnT ) we have:

2In(AnT ) = EHn
mH

n
e

∫
Rn

max
xn∈Cn

ωT (zn|xn, Hn
mH

n
e )dzn

=

∫
Rn+

∫
Rn+

ω(hne , h
n
m)

∫
Rn

max
xn∈Cn

ωT (zn|xn, hne , hnm)dzndhnmdh
n
e

1
=

∫
Rn+

ω(hne )

∫
Rn+

ω(hnm)

∫
Rn

max
xn∈Cn

ωT (zn|xn, hne )dzndhnmdh
n
e

=

∫
Rn+

ω(hne )

∫
Rn

max
xn∈Cn

ωT (zn|xn, hne )dzndhne

= EHn
e

∫
Rn

max
xn∈Cn

ωT (zn|m′, Hn
e )dzn.

Justification.

1. Independence of Hn
e and Hn

m. Also, Zi = He,iXi +Ui and Xi is not a function of the channel

coefficients since we have S-CSIT; therefore, Zn is independent of Hn
m.

A.2 Proof of Lemma 3

We need the following lemma for technical reasons.

Lemma 6.

E

[
1

n

n∑
i=1

Z2
i

σ2
e +H2

e,iP

∣∣∣∣Xn = xn

]
≤ 1.

Proof.

E

[
1

n

n∑
i=1

Z2
i

σ2
e +H2

e,iP

∣∣∣∣Xn = xn

]

=
1

n

n∑
i=1

E

[
H2
e,ix

2
i + U2

e,i + 2He,ixiUe,i

σ2
e +H2

e,iP

]
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1
=

1

n

n∑
i=1

x2
i · E

[
H2
e,i

σ2
e +H2

e,iP

]
+ EU2

e,i · E

[
1

σ2
e +H2

e,iP

]
+ EUe,i · E

[
2x2

iHe,i

σ2
e +H2

e,iP

]
2
=

(
1

n

n∑
i=1

x2
i

)
· E
[

H2
e

σ2
e +H2

eP

]
+ E

[
σ2
e

σ2
e +H2

eP

]
3
≤ E

[
H2
eP

σ2
e +H2

eP

]
+ E

[
σ2
e

σ2
e +H2

eP

]
= 1

Justification.

1) Follows from independence of He, Ue.

2) Ue is i.i.d. and ∼ N (0, σ2
e).

3) Follows from the power constraint on all codewords.

Proof of Lemma 3

1. Proof. Let µ = E
[

1
n

∑n
i=1

Z2
i

σ2
e+H2

e,iP

∣∣∣∣Xn = xn
]
. Then,

P
[
(Hn

e , Z
n) ∈ P1

n

∣∣∣∣Xn = xn
]

= P

[
1

n

n∑
i=1

Z2
i

σ2
e +H2

i P
− 1 ≤ δn

∣∣∣∣Xn = xn

]

≥ P

[
1

n

n∑
i=1

Z2
i

σ2
e +H2

e,iP
− µ ≤ δn

∣∣∣∣Xn = xn

]

= P

[
1

n

n∑
i=1

x2
iH

2
e,i + U2

i + 2xiHe,iUi

σ2
e +H2

e,iP
− µ ≤ δn

]
, (E3)

where the inequality follows from Lemma 6.

Since xn is a constant and {He,i} and {Ue,i} are each mutually independent, the term

x2iH
2
e,i+U

2
i +2xiHe,iUi

σ2
e+H2

e,iP
is an independent random variable. Let us show that it also satisfies

the main condition of Lemma 2 (dropping the subscript e of He,i and σ2
e to remove clutter).
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E

[
e
γ
x2i H

2
i +U

2
i +2xiHiUi

σ2+H2
i
P

]

= E

[
e
γ

(
x2i H

2
i

σ2+H2
i
P

+
U2
i

σ2+H2
i
P

+
2xiHiUi
σ2+H2

i
P

)
1 (Hi > 1)

]
+ E

[
e
γ

(
x2i H

2
i

σ2+H2
i
P

+
U2
i

σ2+H2
i
P

+
2xiHiUi
σ2+H2

i
P

)
1 (Hi ≤ 1)

]
1
≤ E

[
e
γ

(
x2i H

2
i

H2
i
P

+
U2
i
σ2

+
2xiH

2
i Ui

H2
i
P

)
1 (Hi > 1)

]
+ E

[
e
γ

(
x2i H

2
i

H2
i
P

+
U2
i
σ2

+
2xiUi
σ2

)
1 (Hi ≤ 1)

]

= E

[
e
γ

(
x2i
P

+
U2
i
σ2

+
2xiUi
P

)]
+ E

[
e
γ

(
x2i
P

+
U2
i
σ2

+
2xiUi
σ2

)]

≤ E

[
e

2γ
(
Ui
σ

+xi
P+σ2

2Pσ

)2]
2
≤ E

[
e2γ(Gi)

2
]

3
<∞.

Justification.

1) Hi > 1 implies Hi ≤ H2
i .

2) Gi ∼ N (xi
P+σ2

2Pσ , 1) implies that G2
i is a non-central χ2 random variable.

3) Choosing γ appropriately ensures the moment generating function is finite.

Since a finite moment generating function implies every moment is finite, Ki exists for all i

so that K∗ is well defined. Therefore, using Lemma 2, it follows immediately that

(E3) ≥ 1− 2e−
nδ2n
4K∗ .

2. Proof.

P
[
Zn ∈ P2

n

∣∣∣∣Xn = xn, Hn
e = hn

]
= P

[
‖Zn − xnhn‖2 ≥ nσ2

e(1− δ′n)

∣∣∣∣Xn = xn, Hn
e = hn

]
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= P

[
n∑
i=1

(Zi − xihi)2 ≥ nσ2
e(1− δ′n)

∣∣∣∣Xn = xn, Hn
e = hn

]

= P

[
n∑
i=1

(Ui + xihi − xihi)2 ≥ nσ2
e(1− δ′n)

]

= P

[
1

σ2
e

n∑
i=1

U2
i ≥ n(1− δ′n)

]
1
≥ 1− e−

nδ′n
2

4 .

Justification.

1) Chi-squared tail bounds [14, Lemma 1].

3. Proof. To prove this, we will use Lemma 2 reduced to the i.i.d. case. We have that {log(1 +

H2
i SNR)} is a sequence of i.i.d. random variables; to employ Lemma 2 it remains to prove

that E
[
eγ| log(1+H2

eSNR)|
]
<∞ for some γ > 0.

E
[
eγ| log(1+H2

eSNR)|
]

= E
[
e
γ

ln(1+H2
e SNR)

ln(2)

]
= E

[
(1 +H2

eSNR)
γ

ln(2)

]
= E

[
(1 +H2

eSNR)
]

(letting γ = ln 2)

= 1 + E[H2
e ]SNR

<∞.

Then Lemma 2 gives us:

P
[
Hn
e ∈ P3

n

]
= P

[∣∣∣∣∣ 1n
n∑
i=1

log
(
1 +H2

i SNR
)
− E

[
1 +H2

eSNR
]∣∣∣∣∣ ≤ δ′′n

]

≥ 1− 2e−
nδ′′n

2

4K ,
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where

K = 2
(
E
[
log(1 +H2

eSNR)4
]) 1

2 E
[
eγ log(1+H2

eSNR)
]
.
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