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ABSTRACT 

Achieving and maintaining public transportation rolling stocks in a state of good repair is 

very crucial to provide safe and reliable services to riders. Besides, transit agencies who seek 

federal grants must keep their transit assets in a state of good repair. Therefore, transit agencies 

need an intelligent predictive model for analyzing their transportation rolling stocks, finding out 

the current condition, and predicting when they need to be replaced or rehabilitated. Since many 

transit agencies do not have good analytical tools for predicting the service life of vehicles, this 

simple predictive model would be a valuable resource for their state of good repair needs and 

their prioritization of capital needs for replacement and rehabilitation. 

The ability to accurately predict the service life of revenue vehicles is crucial achieving 

the state of good repair. In this dissertation, three unique tree-based ensemble learning methods 

have been applied to build three predictive models. The machine learning methods used in this 

dissertation are random forest regression, gradient boosting regression, and decision tree 

regression. After evaluation and comparison of the performance results amongst all models, the 

gradient boosting regression model with the top 30 most important features was found to be the 

best fit for predicting the service life of transit vehicles. This model can be used to predict the 

projected retired year for all nationwide vehicles in operation, the single transit agency’s transit 

vehicle, and any single vehicle.  

The revenue vehicle inventory data from National Transit Database (NTD) has been used 

to build the machine learning predictive model. Before feeding the data into the model, a variety 

of new features were created, missing data were fixed, and extreme values or outliers were 

handled for the machine learning algorithm.  
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CHAPTER 1. INTRODUCTION 

The United States public transportation agencies are experiencing an increase in public 

transportation use and facing challenges maintaining their existing transit assets. These agencies 

have a variety of transit assets such as buses, trains, track, rights of way, facilities, and other 

assets in operation. Most of the transit assets have either aged or are beyond their recommended 

useful life. These assets need to be rehabilitated or replaced to maintain the state of good repair 

(SGR) to keep up with increased ridership. But due to lack of funding, the transit agencies expect 

their systems will suffer a significant reduction in service reliability, which will cause restricted 

transit services (Cambridge Systematics, 2009). Therefore, transit agencies need an intelligent 

predictive model that will help them to accurately predict when a transit asset needs to be 

rehabilitated and replaced; this will enable agencies to make decisions on investment and 

prioritize to maintain SGR needs. 

1.1. Background 

The “Moving Ahead for Progress in the 21st Century” or MAP21 law passed in 2012 was 

the Federal Transit Administration's (FTA) first and only standalone initiative for the state of 

good repair program. The MAP21 granted $2.14 billion in the fiscal year (FY) 2012 and $2.17 

billion in the fiscal year 2013 for repairing and upgrading nation's transit rail and bus services to 

provide reliable, efficient, and safe services to riders (FTA, 2012). Then, the “Fixing America’s 

Surface Transportation Act” or FAST Act law passed in 2015 was built upon continuing most of 

MAP21’s provisions, along with other federal programs. The FTA estimated that there was about 

25 percent of U.S. rail transit and 40 percent of buses that were in a marginal or poor condition 

in 2015. Therefore, the FTA prioritized maintaining bus and rail systems in a state of good 
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repair, so the FAST Act program increased annual funding from $2.1 billion to $2.5 billion for 

the FTA’s state of good repair (5337) program (FTA, 2017).  

Section 5326 of MAP21 requires the FTA to establish a definition for “State of Good 

Repair” that will have objective standards to measure the condition of various capital assets such 

as rolling stock, equipment, facilities, and infrastructure (Cevallos, 2016). However, there are no 

universal definitions of “State of Good Repair” adopted for public transit (Cohen & Barr, 2012). 

For example, according to “Transit Asset Management Practices,” SGR is defined as “an asset or 

system is in a state of good repair when no backlog of capital needs exists – hence all asset life-

cycle investment needs (e.g., preventive maintenance and rehabilitation) have been addressed 

and no capital asset exceeds its useful life” (FTA, 2010b, pp. Sec. 2-2). On the other hand, the 

American Public Transportation Association (APTA) Transit Asset Management Working 

Group defines SGR as “a condition in which assets are fit for the purpose for which they were 

intended” (APTA, 2013, p. 1). Both agency and its stakeholders accept this definition as it is 

comparatively easy. The Department of Transportation defined SGR as “a condition in which the 

existing physical assets, both individual and as a system, (a) are functioning within their ‘useful 

lives,’ and (b) are sustained through regular maintenance and replacement program” (Amtrak, 

2009, p. 9). The state of good repair does not ensure the growth of service, but it provides a solid 

foundation so that transit agencies are reliable as ridership grows. Under normal conditions, 

certain transit assets reach at the end of their useful lives. These assets would be either replaced 

or renewed by creating annualized funding referred as normalized replacement cost. Since many 

transit assets have been deferred in the past and those assets have not been allotted funding for 

replacement, a significant backlog has been accumulated which is known as SOGR backlog 

(Amtrak, 2009). 
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Most transit agencies defined state of good repair in some ways so that they could keep 

their transit assets in ideal conditions. However, they defined it in the more of the same manner 

and concepts as (a) maintaining a transit agency’s rolling stock and transit infrastructure in a 

specific level, (b) performing maintenance, repair, and rehabilitation, and (c) eliminating the 

agency’s backlog (FTA, 2010b). The definition of SGR by transit agencies are listed below 

(FTA, 2008): 

 The Massachusetts Bay Transportation Authority (MBTA) defines SGR as a standard 

where all transit assets are in an ideal condition within their design life. 

 The New York City Transit Authority (NYCT) defines SGR as investments which 

cover depreciated asset conditions. 

 The Southeastern Pennsylvania Transportation Authority (SEPTA) defines SGR in 

transit asset when no backlog exists, and each asset maintains its useful life. It also 

adjusts past deferred maintenance and replaces assets which exceed their useful life. 

 The New Jersey Transit (NJT) defines SGR by achieving infrastructure components 

with replacing in scheduled maintenance within their life expectancy. 

 The Cleveland Regional Transit Authority (RTA) defines SGR as a system where it 

maintains a consistent and high-quality condition system-wide. 

1.2. Problem Statement 

Public transportation is a critical transportation mode in the United States for a wide 

range of riders and is crucial to the nation’s transportation system. There are about 1500 transit 

agencies in the United States that provide bus services and about 80 agencies that provide rail 

services. These transit agencies provide services to tens of millions of Americans every day, 

especially in large metropolitan areas. However, some of the major transit systems are more than 
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one hundred years old. Most of the transit assets are either suffering from underinvestment or 

lack of optimal transit asset management practices (APTA, 2007; US DOT, 2013). Thus, 

insufficient investment in capital transit assets is deteriorating much of the nation’s transit assets. 

In addition, operating costs for maintaining transit assets beyond their original service 

expectancy are getting higher. This means that the reliability of service decreases as more transit 

assets breakdown during service. Overall, the quality of the stations and shelters, as well as the 

public safety, decline as aging assets fail to perform properly. As a result, the transit agencies 

become unreliable and less attractive for potential passengers (McCollom & Berrang, 2011). 

Furthermore, according to the FTA in its “National State of Good Repair Assessment,” 

approximately one-third of the nation’s transit assets are not in good shape. And, another 

analysis conducted with Transit Economic Requirements Model (TERM) on current physical and 

service condition shows that about one-third of the transit rail and bus are exceeding their useful 

life and reinvestments are needed to bring nation’s transit vehicles to the state of good repair 

(FTA, 2008). 

Concurrently, ridership of public transportation is increasing over time. For example, as 

reported by the APTA, public transportation ridership expanded by 34% from 1995 through 

2012, which is higher than the 17% increase in the United States population over the same period 

(APTA, 2017). Another result from the National Household Travel Survey (NHTS) also shows 

that transit ridership increased by 16 percent from 2001 to 2009 which exceeds the population 

growth forecast during that period (FHWA, 2010). In addition is a report of increased ridership 

by the Metropolitan Planning Organizations (MPOs), who projects a low growth scenario for 

transit, predicting the overall ridership will grow 1.7 % per year from 2012 to 2032. In the same 

report by the MPOs, the high growth scenario is based on the historical trend of ridership over 



5 
 

the last 15 years and predicts that the future ridership will grow about 2.2 percent per year from 

2012 to 2032. Both growth scenarios assess the level of investment needed for SGR. In fact, 

TERM estimates the average annual level of investment for the nation would be $24.5 billion, 

including $17.4 billion for replacing and rebuilding assets and $7.1 billion for expansion to keep 

up with ridership growth (FHWA, 2010). 

In 2009, the FTA estimated that nearly $78 billion is needed to bring the nation’s transit 

assets into a state of good repair (US GAO, 2013). The FTA used TERM to estimate normal 

replacement expenditures and estimated that an average of $14.4 billion per year was needed to 

maintain the state of good repair (FTA, 2010a). The FTA also calculated with the TERM model 

that an annual investment of $18.3 billion was needed to achieve a state of good repair over a 20-

year period while maintaining the normal replacement needs. The potential consequences of 

keeping the above reinvestment rate suggests that the continued reinvestment may deteriorate the 

overall condition on the nation’s transit assets and the rate of transit assets which already 

exceeded their useful life will increase to more than 30% by 2029 (FTA, 2010a). Moreover, if 

transit assets currently in acceptable condition are not replaced or rehabilitated on time, the 

transit service will result in increased operating costs, reduced safety, disrupted on-time service, 

and reduced ridership (US GAO, 2013). Therefore, it is imperative that the FTA and transit 

agencies look for ways to solve these critical issues in order to sustain the state of good repair. 

However, in order to implement plans to sustain that state of good repair, the tools used 

to analyze the state of good repair must also be credible, reliable, and accurate. In 2010, the FTA 

assessed the accuracy of TERM’s projections, which was published in ‘2004 Conditions and 

Performance’ report. This assessment compared the projections made by the TERM model and 

the agencies’ experiences. The comparison showed that the transit agencies total expenditures 
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were $10.5 billion from the year 2003 to 2009, whereas the TERM’s projection was $12.1 

billion. This comparison result indicated TERM was projecting 14 percent above the actual 

expenditure in the 2004 Condition & Performance report. The FTA also examined the condition 

rating reported by agencies over the period between 2003 and 2009. They found that if the actual 

agency expenditure is below the TERM’s projections, the condition rating declines, whereas if 

the agency expenditure is above the TERM’s projections, the condition rating improves (TRB, 

2013). More specifically, in order to access the accuracy, the FTA’s TERM tool forecasts the 

yearly replacement needs based on decay curves derived from data from selected transit systems. 

However, estimating an overall decay curve based on data from a single transit system, and then 

projecting replacement needs for all based on that single decay curve, may not correctly estimate 

the backlog by the TERM model because the decay curve is based on single transit system in a 

single transit environment. 

A second assessment was performed by the FTA committee on the accuracy of the 

TERM’s backlog estimation by comparing it with the 20-year capital spending requirements of 

three major agencies: MARTA, NYCT, and MBTA. The comparison results showed that the 

NYCT had 40% less than the TERM forecast for rail vehicles because they increased their 

rolling stock replacement age to 40 years while TERM kept it 28 to 29 years. It appears that the 

NYCT changed their backlog definition to a condition-based replacement criterion rather than an 

age-based replacement criterion. In addition, the MARTA found a discrepancy of $1.64 billion 

(52%) between the two forecasts in the revenue vehicle category. Again, this discrepancy is due 

to the difference in condition-based replacement rather than the TERM’s age-based approach. 

Furthermore, the MBTA found a disparity of agency forecast of $0.53 billion (16%) higher than 

the TERM forecast in revenue vehicle category. This difference between these two forecasts is 
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due to the difference in the definitions of replacement conditions. Table 1 below shows the 

discrepancies between all three agencies’ forecasts and the TERM forecast in the revenue vehicle 

category (Zarembski, 2013; TRB, 2013). 

Table 1. TERM vs. Agencies’ 20 Year Capital Needs Forecasts by Revenue Vehicle Category 
(in millions of $) 

Category NYCT MARTA MBTA 
TERM Agency Diff TERM Agency Diff TERM Agency Diff 

Revenue 
Vehicles 

18,729 11,278 40% 3,127 1,488 52% 3398 3925 -16% 

Source: Adapted from Zarembski, Allan M. 2013. Analysis of Transit 20 Year Capital Forecasts: 
FTA TERM Model vs. Transit Estimates. Washington, D.C.: Transportation Research Board of 
the National Academies. 
http://onlinepubs.trb.org/onlinepubs/reports/TERM_March_2013Zarembski.pdf. 

The FTA committee recommended refining the TERM model and developing simple 

methods to project capital spending more accurately (TRB, 2013). Therefore, in order to reduce 

the discrepancies between the TERM forecast and agency forecasts, the FTA should reexamine 

its asset life criterion and should improve the TERM model to include a condition-based 

replacement approach (Zarembski, 2013). Thus, a simple predictive model is needed to 

supplement the TERM tool used to estimate the conditions of the revenue vehicles and project 

capital expenditure needs. 

In conclusion, the problem statement of this research summarizes that the FTA’s current 

TERM tool may have shortcomings in predicting the service life of transit vehicles. Furthermore, 

there is a problem with aging infrastructure, including the transit vehicles. Since the ridership in 

public transit has been increasing and is projected to grow, and in light of ongoing funding 

issues, both the FTA and transit agencies need an alternative way to accurately forecast the 

service life of transit vehicles. Therefore, this research involves building a predictive model by a 

machine learning algorithm that will more accurately predict the service life of transit vehicles 
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and perform statistical data analysis. This predictive tool will be useful to national, state, and 

local transit agencies, as well as researchers in transit asset management. 

1.3. Objective 

Maintaining transit rolling stocks in a state of good repair has become a strategic goal for 

transit agencies and the FTA. The challenge that transit agencies face maintaining assets in a 

state of good repair is that most agencies do not have an effective way to manage their physical 

transit assets (FTA, 2010b). The objective of this research is to develop a predictive model with 

machine learning algorithms for transit agencies to obtain a state of good repair so they can 

effectively prioritize capital investment for rehabilitation and replacement of transit vehicles. 

Although, transit agencies are aware of the consequences of the underinvestment of their assets, 

they have limited resources to predict the outcomes of various funding scenarios. Because the 

tools they currently use are not reliable, transit agencies cannot project accurate timelines for 

replacing assets when needed. These limitations prohibit transit agencies from addressing 

ongoing backlog replacement and rehabilitation issues when funding is insufficient (McCollom 

& Berrang, 2011). In order to address this problem, this research will develop a predictive model 

using machine learning techniques to help transit agencies to predict the service life of transit 

vehicles and calculate investment needs for rehabilitation and replacement needs of revenue 

vehicles. To do this, the research will investigate the transit state of good repair, asset 

management practices, fundamental concepts of transit asset management (TAM), and 

application of machine learning algorithms. 

1.4. Organization 

The research begins with the abstract that highlights the overall summary of the 

dissertation. The main thesis is organized into five chapters. In Chapter 1, the background of the 
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state of good repair problem, the problem statement, and the objectives of this research are 

discussed. In Chapter 2, the previous study on the state of good repair and asset management 

practices are presented. This chapter also includes early research on the state of good repair, an 

overview of the transit asset management system, the current condition of the United States 

transportation system, analytical tools used for the state of good repair, and a review of transit 

state of good repair practices in the United States. In Chapter 3, the methodology developed for 

service life prediction is presented, and three machine learning algorithms are introduced. 

Chapter 4 presents the proposed predictive models by building, evaluating, and comparing three 

regression models: gradient boosting regression, random forest regression, and decision tree 

regression. Chapter 4 also presents the preprocessing of data, data analysis, and challenges. 

Chapter 5 concludes the study and sets out goals for further research. 
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CHAPTER 2. LITERATURE REVIEW 

This chapter provides an overview of the related literature on the state of good repair, 

existing asset management practices, and support tools that are currently used by many transit 

agencies and other relevant published articles. The review will focus on how the FTA maintains 

its current minimum service life policy, how transit authorities approach asset management, how 

they define and practice the state of good repair for transit assets, and how they identify the best 

practices to maintain the state of good repair. The sources of the literature review are from 

Federal Transit Agency (FTA) publications, Transportation Research Board (TRB) proceedings, 

Transit Cooperative Research Program (TCRP) publications, National Cooperative Highway 

Research Program (NCHRP) publications, and other published articles. The following key 

concepts from the above resources are summarized below. 

2.1. Overview of Early Research on the State of Good Repair 

The “NCHRP Report 545: Analytical Tools for Asset Management, Reviewed Asset 

Management Tools and Systems” published in 2005, provided two software tools, which are 

AssetManager NT and AssetManager PT (Cambridge Systematics, 2005). These tools were 

intended for the state departments of transportation and transit agencies to support tradeoff 

analysis for transportation asset management. The tools were developed to integrate with 

existing systems to help agencies to analyze and predict investment decisions for their transit 

assets. The report provided a snapshot of how existing tools were being used, what capabilities 

and limitations existed in the available asset management tools, and what kind of new tools were 

needed (Cambridge Systematics, 2005). 

Then, the “NCHRP Report 551: Performance Measures and Targets for Transportation 

Asset Management” published in 2006, provided concepts of performance management for 
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transit agencies used for transit asset management (Cambridge Systematics, 2006). This report 

described how performance measures could be used for decision-making processes and resource 

optimization. It presented a framework for performance measure development and target values 

for use in asset management. In addition, it also provided best practices on how to set the 

performance target and what factors need to be considered when setting the performance target 

(Cambridge Systematics, 2006). 

The “Useful Life of Transit Buses and Vans” research published in 2007 by the FTA 

assessed the policy on existing minimum service life for transit buses and vans (Laver, Schneck, 

Skorupski, & Cham, 2007). The study team interviewed transit agencies and performed 

engineering and economic analysis to evaluate the minimum service-life policy. The engineering 

analysis showed that the bus lifespan was restricted by the bus structure, while the economic 

analysis showed that the optimal replacement points for various bus types were at or later than 

the FTA’s minimum service life. The study provided details on the useful life of buses and vans, 

the minimum service life policy by the FTA, the impact of the vehicle life expectancies, 

agency’s decision on retirement, vehicle maintenance, and replacement best practices. The study 

also showed that the actual ages at which agencies were retiring buses from service exceeded 

FTA’s minimum service life and suggested that the minimum service life policy needed to be 

changed (Laver, Schneck, Skorupski, & Cham, 2007). 

Another 2007 report, “NCHRP 20-68: Domestic Scan Pilot Program Best Practices in 

Transportation Asset Management,” identified the best-case practices and the asset management 

principles for transit agencies (Meyer & Cambridge Systematics, Inc., 2007). The Federal 

Highway Administration (FHWA), the American Association of State Highway and 

Transportation Officials (AASHTO), and the National Cooperative Highway Research Program 
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(NCHRP) sponsored this program. This research report was organized into four segments: a) 

case studies of some state transit agencies, b) case studies of local agencies and metropolitan 

planning organizations, c) observations of scan trips, and d) suggestions for further actions and 

research (Meyer & Cambridge Systematics, Inc., 2007). 

Then, in 2008, the FTA published “Transit State of Good Repair: Beginning the 

Dialogue,” the first step to collaborate transit asset management practices and provide strategies 

to address the state of good repair needs and transit asset management for the nation’s transit rail 

and bus rolling stock (FTA, 2008). To do this, the FTA first convened a workshop in the summer 

of 2008, bringing together diverse stakeholders from 14 public transit providers and state 

departments of transportation to address the state of good repair for the nation’s transit inventory. 

The objective of the workshop was to encourage stakeholders to be proactive by raising 

awareness regarding the scope of the problem and exploring creative approaches for funding of 

replacement and rehabilitation of aging transit assets. In the workshop, the FTA discussed the 

condition of transit capital assets, asset management practices, preventative maintenance 

practices, maintenance issues, and innovative financing strategies. The FTA also discussed 

related research work and supporting tools for transit agencies for coping with the state of good 

repair problems. The FTA further explained potential public-private partnership opportunities 

with manufacturers, engineering firms, and private equity firms for long-term capital asset 

management to make sure that the legacy assets are maintained and replaced when needed. 

While this workshop was successful in starting a useful dialogue among transit professionals, 

unfortunately the published report coming out of the round table workshop failed to define the 

state of good repair. The result of this omission is the FTA could not articulate how condition 

ratings, instead of age ratings, could be used effectively (FTA, 2008). 



13 
 

The “Rail Modernization Study,” published in 2009 by the FTA, focused on capital 

expenditure and reinvestment needs for the nation’s top seven transit agencies: Massachusetts 

Bay Transportation Authority (MBTA), Chicago Transit Authority (CTA), New Jersey Transit 

Corporation (NJ Transit), Metropolitan Transportation Authority of New York (MTA), 

Washington Metropolitan Area Transit Authority (WMATA), Southern Pennsylvania 

Transportation Authority (SEPTA), and San Francisco Bay Area Rapid Transit (BART) 

(Welbes, 2009). The study examined the asset management practices of the seven agencies and 

found that a backlog of $50 billion in 2008 would be needed to bring the seven agencies to the 

state of good repair, and an additional $5.9 billion would be required per year to maintain the 

state of good repair after that time. The FTA found that even though these agencies maintained 

their comprehensive asset inventories for capital funding, they lacked other asset management 

practices; relatively few transit agencies developed complete capital planning asset inventories to 

support long-term capital planning. Furthermore, the study found that, while only some of the 

largest transit agencies were making progress to improve their asset inventories, the relatively 

small and medium agencies had already developed these inventories. The shortcoming of this 

study was that the model did not consider future capacity expansion and other transit agency 

improvements (Welbes, 2009). 

The 2010 “National State of Good Repair Assessment” study by the FTA was an 

expansion of the original 2009 “Rail Modernization Study” and evaluated the level of investment 

required to bring all agencies in the United States to a state of good repair (FTA, 2010a). This 

study showed that in 2009 an estimated SGR backlog of $77.7 billion would be needed to 

achieve the state of good repair and an additional $14.4 billion per year would be needed to 

maintain the normal replacement investment for a state of good repair. The study assessed the 
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national reinvestment needs considering the condition of the existing transit assets. The study 

found that about one-third of the nation’s overall transit assets were either in marginal or poor 

condition, which meant these assets were either near or already exceeding their expected useful 

lives. However, when just bus and rail data were analyzed, 41% of bus assets and 26% of rail 

assets were either in marginal or poor condition. The report also described the methods for 

estimating the amount of investment, data sources, useful life assumptions, and type of 

investments required for the state of good repair needs. Furthermore, the study team also 

documented the processes, methods, and asset management practices of the study’s 23 transit 

agencies that provided capital planning asset inventory data for long-term capital planning in 

support of both “National State of Good Repair Assessment” study and the earlier “Rail 

Modernization Study” (FTA, 2010a).  

The 2011 synthesis, “TCRP Synthesis 92: Transit Asset Condition Reporting – A 

Synthesis for Transit Practice,” documented the current transit asset management system 

practices for transit agencies as well as the local, state, and federal funding partners (McCollom 

& Berrang, 2011). This synthesis showed that large transit agencies use elementary asset 

management systems to fight against the consequences of underinvestment. Even though most 

large transit agencies had asset management systems that recorded all their assets, their systems 

were not able to make predictions about asset replacement under various funding scenarios. 

Finally, this synthesis provided several suggestions for improving the design and structure of the 

database, analysis techniques, and the SGR based tools for prioritizing funds (McCollom & 

Berrang, 2011). 

The “Transit Cooperative Research Program (TCRP) Report 157: State of Good Repair - 

Prioritizing the Rehabilitation and Replacement of Existing Capital Assets and Evaluating the 
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Implications for Transit,” report published in 2012 provided an SGR framework to evaluate and 

prioritize the rehabilitation and replacement investment decision for transit assets (Cohen & 

Barr, 2012). This SGR framework helps decision makers to answer questions regarding transit 

asset replacement and rehabilitation investment decisions. The report supported the framework 

by presenting an analytical approach along with a set of spreadsheet tools. The tools are intended 

for evaluating rehabilitation and replacement investments in specific transit assets and for 

prioritizing them. In conclusion, transit agencies will find these models a valuable resource to 

plan or finance public transportation (Cohen & Barr, 2012). 

The “Moving Ahead for Progress in the 21st Century (MAP-21),” law was passed in July 

6, 2012 and authorized $10.6 billion in the fiscal year 2013 and $10.7 billion in the fiscal year 

2014 for federally funded transit agencies and highway programs (US Congress, 2012). Under 

the MAP-21 law, most of the funding was distributed through the core formula programs. MAP-

21 created a state of good repair program and authorized at $2.1 billion in the fiscal year 2013 

and $2.2 billion in the fiscal year 2014 for this program. Furthermore, the program also 

established new asset management systems and performance measurements for transit agencies 

(US Congress, 2012). 

Thus, by 2014 the industry had published several research studies on state of good repair. 

Several studies were successful in addressing the problems of the state of good repair; however, 

more studies still needed to be completed. So, then in 2014 the “TCRP Project E-09: Guidance 

for Applying the State of Good Repair Prioritization Framework and Tools,” provided guidance 

on how the framework and tools from 2012 TCRP Report 157 could be applied to evaluate and 

prioritize investment decisions in order to achieve a state of good repair. This research report 
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improved the framework and tools and then demonstrated their applications through a set of pilot 

programs and workshops (Robert, William; Reeder, Virginia; Lauren, Katherine, 2014).  

A concurrent report, the 2014 “TCRP Report 172: Guidance for Developing a Transit 

Asset Management Plan,” provided a system of how a transit asset management plan (TAMP) 

could be developed for use by transit agencies to achieve a state of good repair in accordance 

with the requirements of MAP-21 (Robert, Reeder, Lawren, Cohen, & O'Neil, 2014). This 

research was an expansion of the 2012 TCRP Report 157 and was intended to develop tools for 

transit agencies for the state of good repair. This TCRP 172 research introduced transit asset 

prioritization tool (TAPT), which consists of four spreadsheets tools for all types of transit assets 

(Robert, Reeder, Lawren, Cohen, & O'Neil, 2014). Although these tools were not as successful 

as expected, nevertheless these TAPT models were available to transit agencies to use for 

forecasting the future condition of transit assets and prioritizing rehabilitation and replacement 

investments. 

This ten years of reports, research studies, round tables, workshops, and the MAP-21 

provision culminated in the 2015 “Fixing America’s Surface Transportation Act” or the FAST 

Act. This law reauthorized the public transportation and federal highway programs for the fiscal 

years 2016 to 2020 (APTA, 2016). The SGR saw a 23.9% increase by 2020 fiscal year beginning 

at $2.507 billion in 2016 fiscal year and rose to $2.684 billion by 2020 fiscal year. However, the 

FAST Act did not make significant changes in the SGR program to maintain the state of good 

repair on public transportation systems. In another case, the FAST Act incorporated about 2.85% 

of the total program funds for a High-Intensity Motorbus Vehicle State of Good Repair program. 

The FAST Act also suggested a maximum of 80% federal share for this program (APTA, 2016). 
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This dissertation focuses on the following aspects of the state of good repair development 

timeline. The early research from 2005 to 2006 on the state of good repair stated analytical tools 

for asset management, performance measures for transit asset management, and best practices to 

set the performance target. In 2007, the early research assessed the policy on existing minimum 

service life for transit buses and vans, and it suggested the minimum service life policy needed to 

be changed. Another report provided asset management principles for transit agencies. In 2008, 

the roundtable report provided strategies to address the state of good repair and transit asset 

management. In 2009, the study examined transit asset management practices of the seven 

agencies, and their capital expenditure and reinvestment needs. In 2010, the study assessed the 

reinvestment needs and evaluated the level of investment to bring all agencies to state of good 

repair. In 2011, the synthesis reviewed the current transit asset management system practices and 

provided suggestions to improve them. In 2012, the report provided a framework to prioritize the 

rehabilitation and replacement investment needs for transit assets. In 2014, the research reports 

provided guidelines to evaluate and prioritize investment decisions and provided a system to 

develop a transit asset management plan to achieve state of good repair. And finally, in 2015, 

FAST Act law authorized $2.507 billion in 2016 fiscal year and rose to $2.684 billion by 2020 

fiscal year for the state of good repair program. 

2.2. Overview of Transit Asset Management 

According to section 1103 of MAP-21, asset management is defined as a set of “actions 

that will achieve and sustain a desired state of good repair over the lifecycle of the assets at 

minimum practicable cost” (Cevallos, 2016, p. 3). The FTA defines transit asset management as 

“Transportation asset management as a strategic and systematic process through which an 

organization procures, operates, maintains, rehabilitates, and replaces transit assets to manage 
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their performance, risks, costs over their lifecycle to provide cost-effective, reliable and safe 

service to current and future customers” (Lauren & Rose, 2012, p. 10). The FTA definition 

shows that asset management not only manages cost, it also handles risk and the performance 

across the lifecycle of transit assets (Lauren & Rose, 2012). Figure 1 shows how the ongoing 

asset management processes are related to cost, risk and system performance over the lifecycle 

of assets. The objective of asset management is to minimize the total cost as well as maximizing 

the performance (Rose, Lauren, Shah, Blake, & Parsons Brinckerhoff, 2012). 

 

Figure 1. Asset Management Processes (Adapted from Rose, David, Isaac Lauren, Keyur Shah, 
Tagan Blake, and Inc. Parsons Brinckerhoff. 2012. Asset Management Guide: Focusing on the 
Management of Our Transit Investments. FTA Report No. 0027, U.S. Department of 
Transportation, Washington, D.C.: Federal Transit Administration. 
https://www.transit.dot.gov/about/research) 

The FTA provides financial assistance to transit agencies to maintain their transit 

infrastructure and assets in a state of good repair. But the task is not easy for transit agencies 

because of the costs involved in other transportation assets such as bridges, highways, and 

transportation facilities. This is the reason transit agencies put more emphasis on asset 

management systems to manage their assets accurately (FTA, 2010b). Thus, MAP-21 requires 
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transit agencies to establish a transit asset management system. The development of an asset 

management system helps transit agencies to request needed funds for investments and attain a 

state of good repair (Cevallos, 2016). In addition, asset management systems can help transit 

agencies monitor their current assets’ conditions and redistribute their existing resources to more 

effective uses (Meyer & Cambridge Systematics, Inc., 2007). Again, asset management can help 

agencies to prioritize capital investment, allocate limited resources to maintain current transit 

assets, and plan for replacement and rehabilitation of existing assets. In addition, asset 

management can help transit agencies optimize limited funding, estimate a state of good repair 

backlog, and set spending priorities (US GAO, 2013). 

2.2.1. Key components of transit agencies’ strategic management processes 

Transit agencies need to manage their transit assets on a regular basis. Therefore, along 

with performance management and risk management, asset management has become an essential 

part of an agency’s strategic management to achieve effective, high-level performance. Figure 2 

shows the interaction among the agency’s strategic management and its components. Transit 

agencies can accomplish their goals and objectives by combining and practicing these 

management processes. Individually, these management processes cannot be effective; they must 

be used in conjunction with the other management processes (APTA, 2013b; Cevallos, 2016). 
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Figure 2. Components of an Agency’s Strategic Management Processes (Adapted from APTA. 
2013b. Creating a Transit Asset Management Program: Recommended Practice. APTA-SGR-
TAM-RP-001-13, Washington, DC: American Public Transportation Association, Working 
Group: Transit Asset Management) 

2.2.2. Transit asset inventory development 

As per the federal requirement for funding, transit agencies need to focus on the data-

driven approach to measure the state of good repair and they need to require a transit asset 

inventory as the primary source of data (Cevallos, 2016). The asset inventory should include 

detailed information on the agency’s assets and the assets’ key attributes, such as asset type, 

asset age, expected useful life, and lifecycle costs. Figure 3 shows key steps of asset inventory 

development. The first step is to establish the organizational high-level class hierarchy for transit 

agencies to develop an asset inventory. The second step is to determine the asset inventory fields 

based on data requirements. The third step is to collect data, making sure that the data collection 

is consistent and accurate. After obtaining the necessary data, transit agencies must set the useful 

life and cost factors. The fourth step is to perform the quality check to ensure data accuracy. The 
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final step is to implement continuous improvement for data maintenance and constant evaluation 

(Cevallos, 2016). 

 
 

 

 

 

 

 

 

 

 

 

Figure 3. Asset Inventory Development Key Steps (Adapted from APTA. 2013b. Creating a 
Transit Asset Management Program: Recommended Practice. APTA-SGR-TAM-RP-001-13, 
Washington, DC: American Public Transportation Association, Working Group: Transit Asset 
Management) 

2.2.3. Service life of transit asset 

The FTA established a minimum useful life policy for transit vehicles funded with 

federal grants (Laver, Schneck, Skorupski, & Cham, 2007). The policy is to ensure that federally 

funded vehicles have a significant service life serving transit riders. The service life starts when 

the vehicle begins service and ends when it finishes service. The FTA’s minimum service life 

varies by vehicle categories. Table 2 provides the vehicle categories and their minimum service 

life schedules. The service life of vehicles within different categories differs significantly. The 

12-year bus category accounts for more than 25% of the nation’s transit vehicles, while 4-year 

vehicle category accounts for 20% of the nation’s transit vehicles. The analysis on 12-year 

category vehicles shows that the average age is 15.1 years which means most transit agencies 

operate buses above the minimum service life (Laver, Schneck, Skorupski, & Cham, 2007).  
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Table 2. Transit Vehicle Minimum Service Life  

Category Typical Characteristics Minimum Life 
Whichever comes 

first 
Length Approximate 

Gross Vehicle 
Weight 

Seats Average 
Cost 

Years Miles 
Heavy Duty 
Large Bus 

35 - 48 feet 
and 60 feet 
Articulated 

33,000 to 
40,000 

27 to 40 $325,000 to 
over 

$600,000 

12 500,000 

Heavy Duty 
Small Bus 

30 feet 26,000 to 
33,000 

26 to 35 $200,000 to 
$325,000 

10 350,000 

Medium Duty 
and Purpose-
Built Bus 

30 feet 16,000 to 
26,000 

22 to 30 $75,000 to 
$175,000 

7 200,000 

Light Duty Mid-
Sized Bus 

25 to 35 
feet 

10,000 to 
16,000 

16 to 25 $50,000 to 
$65,000 

5 150,000 

Light Duty 
Small Bus, 
Cutaways, and 
Modified Van 

16 to 28 
feet 

6,000 to 
14,000 

10 to 22 $30,000 to 
$40,000 

4 100,000 

Source: Adapted from Laver, Richard, Donald Schneck, Douglas Skorupski, and Laura Cham. 
2007. Useful life of transit buses and vans. No. FTA-VA-26-7229-07.1, U.S. Department of 
Transportation, Washington, D.C.: Federal Transit Administration. 

Based on an analysis of the average retirement age of transit assets on NTD data, the 

FTA found that the average retirement age was longer than the minimum required age in practice 

(Edrington, et al., 2014). The NTD database contains the statistics of national transit vehicles. 

Table 3 provides the average vehicle retirement age by vehicle category. The average retirement 

age of 4-year van is 5.6 years with 29% of the vehicle retired one or more years after the FTA 

minimum retirement age. Table 3 also shows that about 20% of 5 and 12-year vehicles exceed 

one or more year past the minimum retirement age. Besides, 10% of 4-year vehicles exceed three 

or four years past the minimum retirement age (Edrington, et al., 2014). 
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Table 3. Actual Average Vehicle Retirement Age 

Vehicle Category 
with Minimum 
Retirement Age 

Average Retirement 
Age (Years) 

Share of Active Vehicles That Are: 
One or more years 
past the minimum 

service life 

Three or more years 
past the minimum 

service life 
12 – Year Bus 15.1 19% 9% 

10 – Year Bus 8.4 7% 4% 

7 – Year Bus 8.2 12% 3% 

5 – Year Bus/Van 5.9 23% 5% 

4 – Year Van 5.6 29% 10% 

Source: Table adapted from Laver, Richard, Donald Schneck, Douglas Skorupski, and Laura 
Cham. 2007. Useful life of transit buses and vans. No. FTA-VA-26-7229-07.1, U.S. Department 
of Transportation, Washington, D.C.: Federal Transit Administration. 

2.3. Condition of the United States Transportation System 

There are about 850 urban transit agencies, and 1700 rural and tribal transit agencies 

provide transportation services by transit bus, commuter rail, light rail, ferryboat, and subway. 

Table 4 below shows that public transit provided about 10.5 billion unlinked trips in 2014 which 

is an increase of 20.5% over 2000 (BTS, 2016).  

Table 4. Transit Vehicles and Ridership: Unlinked Passenger Trips  

Fiscal Year 2000 2010 2013 2014 
Unlinked Passenger Trips (Billions)     
Heavy Rail 2.63 3.55 3.82 3.93 
Commuter Rail 0.41 0.46 0.48 0.49 
Light Rail 0.32 0.46 0.52 0.48 
TOTAL, Rail Transit UPT 3.36 4.47 4.81 4.90 
Motor Bus 5.16 5.24 5.33 5.04 
Demand Response 0.07 0.10 0.11 0.10 
Ferry Boat 0.05 0.06 0.06 0.06 
Other  0.08 0.10 0.09 0.40 
TOTAL, Non-Rail Transit UPT 5.36 5.49 5.60 5.61 
TOTAL, Transit UPT 8.72 9.96 10.41 10.51 

Source: Table adapted from BTS. 2016. Transportation Statistics Annual Report. U.S. 
Department of Transportation, Washington, D.C.: Bureau of Transportation Statistics. 
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Table 5 shows the average age of vehicles from 2000 to 2014 (BTS, 2016). The average 

age of commuter rail passenger coaches increased over that period. The average age of the 

heavy-rail passenger car fleet was 20.4 years old in 2014 but decreased by 2.5 years between 

2000 and 2014. The average age of the transit buses was 7 to 8 years, and the average age of 

light-rail vehicles was near 17 years. The bus fleet stayed comparatively newer than the transit 

rail fleet as many transit agencies either retired, replaced or added new vehicles to the fleet and 

the rail cars lasted longer than buses (BTS, 2016). 

Table 5. Transit Vehicles and Ridership: Average Age of Vehicles  

Fiscal Year 2000 2010 2013 2014 
Average Age of Vehicles 
Heavy Rail Passenger Cars 22.9 18.7 20.2 20.4 
Commuter Rail Passenger Coaches 16.9 18.9 20.8 18.8 
Full Size Transit Buses 8.1 7.9 8.1 7.2 
Light Rail Vehicles 16.1 16.8 16.4 16.7 
Transit Vans 3.1 3.4 3.5 3.5 
Ferry Boats 25.6 20.5 21.4 23.8 

Source: Table adapted from BTS. 2016. Transportation Statistics Annual Report. U.S. 
Department of Transportation, Washington, D.C.: Bureau of Transportation Statistics. 

In 2014, transit riders made about 10.5 billion trips which were 5.5% increases from 2010 

(BTS, 2016). Table 6 shows that the transit riders traveled about 57.0 billion miles in 2014 which 

were 8.2% travel increases since 2010. The light rail, commuter rail, and heavy rail made up the 

nation’s rail transit with 15.3% of the total transit vehicles. The rail transit made 46.6% of the 

total trips, and 57.2% of the total person-miles traveled. The bus transit produced 47.9% of total 

transit trips and 37.9% of the total person-miles (BTS, 2016). 
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Table 6. Transit Vehicles and Ridership: Person-Miles Travelled  

Fiscal Year 2000 2010 2013 2014 
 Number of Transit Vehicles 
Heavy Rail Cars 10,311 11,510 10,380 10,551 
Commuter Rail Cars and Locomotives 5,497 6,768 7,150 7,177 
Light Rail Cars 1,306 2,096 2,842 2,444 
TOTAL, Rail Transit Vehicles 17,114 20,374 20,372 20,173 
Motor Bus 59,230 63,679 66,823 62,449 
Demand Response 22,087 33,555 31,433 31,359 
Ferry Boat 98 134 156 144 
Other 7,607 18,066 17,793 17,850 
TOTAL, Non-Rail Transit Vehicles 89,022 115,434 116,205 111,802 
TOTAL, Transit Vehicles 106,136 135,808 136,577 131,974 
 Person Miles (Millions) 
Heavy Rail 13,844 16,407 18,005 18,339 
Commuter Rail 9,400 10,774 11,736 11,600 
Light Rail 1,339 2,173 2,565 2,675 
TOTAL, Rail Transit PMT 24,583 29,353 32,305 32,614 
Motor Bus 18,999 20,739 21,414 21,587 
Demand Response 588 874 852 864 
Ferry Boat 298 389 402 414 
Other 632 1,315 1,449 1,534 
TOTAL, Non-Rail Transit PMT 20,517 23,317 24,117 24,399 
TOTAL, Transit PMT 45,100 52,670 56,422 57,013 

Source: Adapted from BTS. 2016. Transportation Statistics Annual Report. U.S. Department of 
Transportation, Washington, D.C.: Bureau of Transportation Statistics. 

2.4. Analytical Tools for State of Good Repair 

The Map-21 authorized, and the FAST Act reauthorized FTA to develop a rule for the 

state of good repair program. This rule establishes a system to monitor performance, manage 

transit assets, increase safety and reliability, and estimate performance measures (WSDOT, 

2016). Therefore, transit agencies need to develop a TAMP process per MAP-21 and FAST Act 

requirements to achieve a state of good repair. FTA also developed TAPT tool for transit 

agencies to support the TAMP process. This TAPT tool includes four spreadsheet models which 

help transit agencies to predict the future conditions of their transit assets and help prioritize 

rehabilitation and replacement needs. The FTA’s TERM Lite can be used along with TAPT or 
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without TAPT to support analysis of different investment scenarios. Furthermore, many agencies 

developed their decision support tools and an asset management system which can be used to 

support TAMP processes (Robert, William; Reeder, Virginia; Lauren, Katherine, 2014).  

2.4.1. FTA’s transit economic requirements model (TERM Lite) 

The FTA developed Transit Economic Requirements Model (TERM Lite) tool in 1995 to 

estimate transit capital needs and spent about $5 million in development and update until 2013. 

The TERM model measures asset condition on a 5-point scale and considers a revenue vehicle to 

be in a state of good repair if the condition of the vehicle reaches or above the condition rating of 

2.5 (FTA, 2013; Zarembski, 2013). It estimates the state of good repair backlog, determines the 

capital funding levels required to achieve the state of good repair, analyze the impact of 

projected future investment on capital performance, and prioritize long-term investment 

(Cevallos, 2016). By using TERM, the transit agencies can forecast the trend of asset 

maintenance, replacement, and rehabilitation costs for the next 20-year period as well as the FTA 

can estimate the capital needs and develop various reports. The TERM model uses information 

obtained from NTD database. The asset age and physical condition for each asset category are 

considered as the predictor for determining the condition (Cevallos, 2016). 

The TERM model can predict a current and future asset condition based on a five-point 

rating system as shown in Table 7 (FTA, 2010a). It uses the numerical method to rate transit 

asset condition based on a scale of 5.0 for excellent, 4.0 for good, 3.0 for adequate, 2.0 for 

marginal, and 1.0 for poor for evaluating a transit asset condition based on their age, replacement 

or rehabilitation history, and other factors. If the rating of the asset is at or above the condition 

rating of 2.5, TERM model considers it a state of good repair. Similarly, if the condition value of 
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all transit assets is 2.5 or higher in a transit agency, it will be considered in a state of good repair 

(FTA, 2010a). 

Table 7. TERM Condition Ratings  

Condition Ratings Description 
Excellent 5.0 to 4.8 New or like new asset 
Good 4.7 to 4.0 Asset showing minimal signs of wear 
Adequate 3.9 to 3.0 Asset has reached mid-life 
Marginal 2.9 to 2.0 Asset reaching or just past its useful life 
Poor 1.9 to 1.0 Asset past its useful life 

Source: Adapted from FTA. 2010. National State of Good Repair Assessment. Report to 
Congress, U.S. Department of Transportation, Washington, D.C.: Federal Transit 
Administration. 

2.4.2. Other analytical tools for state of good repair 

Along with the TERM tool, the FTA also developed four analytical tools for transit 

agencies to support the TAMP process. These tools are (1) prioritization modeling tool, (2) 

vehicle modeling tool, (3) age-based modeling tool, and (4) condition-based modeling tool. They 

are described below. 

1. Prioritization Modeling Tool  

This tool prioritizes a series of asset rehabilitation or replacement funds and simulates the 

funds for ten years (Cohen & Barr, 2012). This tool provides a set of recommendations for the 

investment plan based on the allocated budget and prioritization index (PI) results. Even though 

the tool provides the straightforward approach for allocating funds for replacement and 

rehabilitation based on PI, in practice higher-ranked projects with available budgets may need to 

be rescoped, and smaller projects need to be combined. Also, there might be a limitation of 

maximum and minimum spending by asset category to get a reliable solution (Cohen & Barr, 

2012). 
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2. Vehicle Modeling Tool  

The vehicle modeling tool estimates the cost minimizing point that a bus or rail vehicle 

should be replaced and predicts the annual costs and prioritizes replacement of transit vehicles 

based on age (Cohen & Barr, 2012). It considers energy or fuel costs, rehabilitation costs, and 

delay costs for calculating the need for replacement or rehabilitation. Transit agencies should use 

this tool multiple times as the calculations are fleet specific. Therefore, the transit agencies need 

to develop various models for different vehicle types (Cohen & Barr, 2012). 

3. Age-Based Modeling Tool  

The age-based modeling tool assesses deteriorations on transit asset other than a transit 

vehicle over time and forecasts the annual costs of the transit agency as well as user costs of the 

transit asset (Cohen & Barr, 2012). It also prioritizes asset replacement based on a function of 

age. This tool calculates asset replacement cost and predicts when the asset will fail if it is not 

replaced. It is intended to use for different asset types other than vehicles. Therefore, the transit 

agencies should use this tool multiple times for different asset types. The age-based model may 

not be preferable in some complicated situation where age might be a poor predictor of an asset. 

However, the age-based model requires comparatively less data than the other models (Cohen & 

Barr, 2012). 

4. Condition-Based Modeling Tool  

The condition-based modeling tool uses on non-vehicle assets that deteriorate as a 

function of condition (Cohen & Barr, 2012). It predicts the annualized user costs of the assets to 

the transit agency. Using this tool, the rehabilitation or replacement actions are performed on the 

transit asset based on priority, and condition. This tool is intended to use for specific multiple 

non-vehicle assets, therefore transit agencies need to run it multiple times for multiple asset 
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types. Guideway, facilities, systems, and stations are modeled using the tool. The condition-

based model is preferable in a complex situation where the condition is a good predictor rather 

its age (Cohen & Barr, 2012). 

2.5. Review of Transit State of Good Repair Practices in the United States 

Most of the transit agencies use TERM Lite as their leading practices for a state of good 

repair. They also use TERM Lite to collect data and develop information inventories to manage 

transit assets and prioritize capital investment. However, some of the transit agencies are using 

in-house assessment tools to estimate a state of good repair needs, make capital investment 

decisions on the state of good repair backlogs, prioritize rehabilitation and replacement needs 

(US GAO, 2013). A review of transit state of good repair practices and asset management 

practices in selected transit agencies are summarized below: 

2.5.1. MARTA state of good repair 

The Metropolitan Atlanta Rapid Transit Authority (MARTA) provides rail rapid transit 

and bus service to Atlanta area. In the 1990’s, MARTA developed an integrated maintenance 

management information system (MMIS) which has a standalone asset database to track its 

assets but its limitation in functionality led to poor quality asset data. The asset condition reports 

are stored in the database which is collected through testing of preventive maintenance and field 

inspection. MARTA analyzes the data to determine its rehabilitation and replacement needs 

(Cohen & Barr, 2012). In 2006, it obtained an enterprise asset management(EAM) system and 

utilized the life cycle asset rehabilitation enhancement (LCARE) system to establish and improve 

its asset management system. In 2010, efforts were made to complete information on assets on 

an existing database and added missing assets in the database. However, the budget cuts 

increased the MARTA's SGR backlog (Springstead, 2011). 
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2.5.2. MBTA state of good repair 

The Massachusetts Bay Transportation Authority (MBTA) developed an SGR database 

that includes its asset inventory and an application for predicting future asset replacement needs. 

The MBTA uses the database to prioritize the rehabilitation needs based on the age of the transit 

asset representing as the percent of useful life, operation impact, and cost-effectiveness. They 

also use the SGR database to describe the scale and scope of the state of good repair and 

backlog. MBTA prepares annual capital investment program (CIP) which includes a 5-year 

capital investment plan to maintain a state of good repair (Cohen & Barr, 2012; Waaramaa, 

2010). 

2.5.3. MTC state of good repair 

The Metropolitan Transportation Commission (MTC) developed a comprehensive 

regional transit capital investment (RTCI) database for the Bay Area Transit. This database 

tracks all the transit assets on different transit agencies in the Bay Area. The database is also used 

to allocate the limited funding to the agencies in a consistent manner to replace the assets and 

make sure that the assets maintain its state of good repair. The RTCI built a classification on 

assets and included analysis tool for replacement needs. The tool provides the average lifespan 

for each asset category for replacing the assets. The RTCI provides the projection of the 25 

years’ transportation funding plan among nine counties in the Bay Area. The funding for each 

transit agency depends on the average age of assets as a percentage of their useful life 

(AAAPUL), a measurement of asset conditions and objectives to reach a state of good repair 

(Cohen & Barr, 2012). 
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2.5.4. NJDOT state of good repair 

The New Jersey Department of Transportation (NJDOT) coordinates with New Jersey 

Transit (NJT), South New Jersey Transportation Authority (SJTA) and New Jersey Turnpike 

Authority (NJTA) and produces its capital investment strategy (CIS). The CIS allocates the 

transportation funding for the next ten years for transit assets. NJDOT categorizes its total assets 

into nine classes and assigns a set of goals in each category. The CIS monitors how the system 

performance varies over time with different funding scenarios and performs trade-off analysis 

with different investment strategies (Cohen & Barr, 2012). The CIS developed an asset 

management decision support model. The model assists NJDOT to use asset data and systems to 

make high-level resource allocation decisions. It also helps to use available data to prioritize 

problems (Louch, Robert, Gurenich, & Hoffman, 2009). 

2.5.5. RTA state of good repair 

The Regional Transportation Authority (RTA) supervises all public transportation in 

Northern Illinois. RTA also provides planning and allocates funding to Pace Suburban Bus, 

Chicago Transit Authority (CTA), and Metra Commuter Rail. RTA’s asset management system 

has the SGR needs-assessment process which is based on an ongoing inventory condition 

assessment program. The system contains a capital plan development process which links to 

ongoing performance measurement so that the authority can analyze and prioritize investment 

funding. In addition to this program, RTA includes an integrated decision support tool along with 

the FTA’s TERM model (FTA, 2011). 

2.5.6. CalTrain state of good repair 

The Peninsula Corridor Joint Powers Board (JPB) operates the CalTrain which is a 

commuter railroad servicing the community from San Francisco to Gilroy since 1992. The JPB 
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developed the CalTrain asset management system (CTAMS) to bring CalTrain rails into a state 

of good repair. The CTAMS tracks the condition of transit assets and keeps maintenance records. 

It also helps to make a decision on prioritizing and coordinating replacement and rehabilitation 

needs within existing budgets. It considers factors such as the age of transit assets, standard 

requirements of Federal Railroad Administration (FRA), and the SGR standard requirement of 

CalTrain to measure transit asset conditions (FTA, 2011). 

2.5.7. NYCT state of good repair 

The New York City Transit (NYCT) initiated its SGR program by developing a database 

which tracks its asset and prioritize its capital investment needs. A detail information about an 

asset in input in the database which enables NYCT to identify the specific assets which require 

capital investment. This information helped NYCT to plan 5 years for capital investment and 20 

years for needs planning and acquire significant progress in restoring the agency’s assets to a 

state of good repair. NYCT also initiated a new condition-based approach to replace or 

rehabilitate their transit assets. In this approach, they determine the asset condition based on the 

asset’s condition ranking its age versus the remaining usage life, and the actual asset 

performance (McCollom & Berrang, 2011). In its capital investment program, it allocates SGR 

reinvestment needs to correct past maintenance or replace equipment which have no useful life 

(FTA, 2010b).  

2.5.8. VDOT state of good repair 

The Virginia Transportation system consists of Virginia Department of Transportation 

(VDOT), Department of Rail and Public Transit (DRPT), Department of Aviation (DOAV), and 

Virginia Port Authority (VPA). VDOT and DRPT both have developed a performance dashboard 

while VDOT measures asset condition, DRPT measures its ridership. DRPT developed a transit 
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asset management system (Trans-AM) which helps the FTA to facilitate the state of good repair 

practices throughout the transit agency. Virginia took a leadership role in transit asset 

management with the recent development of program guidance and grant evaluation system 

(PROGGRES). DRPT implemented PROGGRES that effectively address the capital needs and 

policy for the state of good repair programs (Cambridge Systematics, 2009). To support and in 

accordance with fulfilling state and federal requirements as asset management, VDOT 

established a detailed asset management method which measures the performance and manages 

transit assets based on life cycle approaches and allocate funds to different transit agencies based 

on needs-based budget approach (VDOT, 2006). 

2.5.9. WMATA state of good repair 

The years of underfunding and the tremendous regional growth caused underinvestment 

in Washington Metrorail’s Area Transit Assets and created unreliable services for riders. 

Therefore, WMATA created momentum which is a strategic 10-year capital investment plan to 

bring their transit assets into a state of good repair. Momentum planned Metro 2025 with $6 

billion of critical capital investment to maximize the existing rail system, improve the rail 

stations and pedestrian connection, enhance bus service, upgrade communication systems, 

expand maintenance facilities, and improve the transit infrastructure. With the first capital 

investment, WMATA estimates a capacity increase of 36000 passengers per hour during rush 

hour. With its second investment which is a “quick win,” WMATA relieves crowding in its 

largest bottlenecks and brings the system to a state of good repair (MTA, 2014). 

  



34 
 

2.6. Summary of Best Practices of SGR on Selected Transit Agencies 

Here are some highlights of best practices from each agency in the Table 8: 

Table 8. SGR Best Practices 

Agency Business Process Best Practices 
CTA (Chicago)  Strategy 

 Condition Assessment 
 Performance Monitoring 
 Capital Programming 

 Set up performance measures for each 
category 
 Evaluate asset condition consistently across 
all assets 
 Align condition & performance 
 Apply formal process for capital projects for 
asset life-cycle 

MARTA 
(Atlanta) 

 Inventory 
 Lifecycle Management 
 Capital Programming 
 Predictive modeling 

 Develop formal asset management plans 
 Apply capital programming process 
considering asset conditions, remaining service 
life, and lifecycle costs 
 Evaluate state of good repair analysis and the 
SGR backlog 

MBTA 
(Massachusetts) 

 Capital Programming 
 SGR Database 

 Establish the annual CIP for 5-year 
investment plan 
 Build the SGR database which estimated 
SGR backlog, and prioritize the rehabilitation 
needs 

MTC (Bay 
Area) 

 Capital Programming 
 Lifecycle Management  

 The RTCI database tracks transit assets and 
allocate the funding to the transit agencies. 
 The tool provides the average lifespan for 
each asset category, projects costs for replacing 
the assets. 

NJDOT (New 
Jersey) 

 Strategy 
 Asset Management 

 The CIS allocates the transportation funding 
for the next ten years for transit assets. 
 The NJDOT categorizes its total assets into 
nine classes and assigns a set of goals in each 
category. 
 The asset management decision support 
model assists NJDOT to use asset data and 
systems to make high-level resource allocation 
decisions and prioritize problems. 

CalTrain (San 
Francisco) 

 Inventory 
 Asset Management 

 The CTAMS use Microsoft Excel to track the 
condition of transit assets, helps to decide on 
prioritizing and coordinating replacement and 
rehabilitation needs within existing budgets. 
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Table 8. SGR Best Practices (continued) 

Agency Business Process Best Practices 
NYCT (New 
York City) 

 Asset Management 
 Condition assessment 
 Capital investment 
programming 
 

 The SGR database tracks its asset and 
prioritizes its capital investment needs. 
 The capital investment program allocates 
SGR reinvestment needs to correct past 
maintenance or replace equipment which has 
no useful life 

VDOT 
(Virginia) 

 Condition Measurement 
 Asset management 
 Policy 
 Lifecycle management 

 Developed the PROGGRES which helps the 
FTA to facilitate the state of good repair 
practices throughout the transit industry. 
 PROGGRES address the capital needs and 
policy issues associated with the state of good 
repair programs. 
 VDOT established an asset management 
method which measures the performance and 
manages transit assets based on life cycle 
approaches and allocate funds to different 
transit agencies based on needs-based budget 
approach. 

WMATA 
(Washington) 

 Capital programming  WMATA created momentum which is a 
strategic 10-year CIP plan to maximize the 
existing rail system, improve the rail stations 
and pedestrian connection, enhance bus 
service, upgrade communication systems, 
expand maintenance facilities, and improve the 
transit infrastructure. 

Source: Adapted from APTA. 2013. Defining a Transit Asset Management Framework to 
Achieve a State of Good Repair: Recommended Practice. APTA SGR-TAM-RP-002-13, 
Washington, D.C.: APTA Standards Development Program Working Group: Transit Asset 
Management; FTA. 2010b. Transit Asset Management Practices: A National and International 
Review. FTA Report, U.S. Department of Transportation, Washington, D.C.: Federal Transit 
Administration. 

2.7. Summary of Literature Review 

The literature review conducted in this research found that the Federal Transit 

Administration was trying to find an intelligent way to solve the transit state of good repair that 

nation’s transit agencies were facing. Per Map-21 requirements, transit agencies require a 

predictive model for prioritizing capital investment for replacement and rehabilitation of transit 
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vehicles. The FTA conducted case studies on several transit agencies and found that most of the 

transit agencies were lacking asset management practices and didn’t have complete transit asset 

inventories. Another study by the FTA on the useful life of transit buses and vans showed that 

the minimum service life policy by the FTA might need to be changed. The NCHRP report 

indicated that two analytical tools could be used along with existing systems to make the 

investment decision on transit vehicles. Another report by NCHRP showed that how well a 

performance measure could be used for decision-making process for capital investment. The 

TCRP report 157 provided a framework for the state of good repair and developed tools for 

evaluating and prioritizing investment. The TCRP project E-09 improved the state of good repair 

framework which was developed in TCRP report 157. The TCRP project E-09 provided 

guidance on how the framework and tools can be used to achieve the state of good repair. As a 

continuation of TCRP report 157, the TCRP report 172 developed a transit asset management 

plan in accordance with the Map-21 requirements and further improved the prioritization tools 

for transit agencies. The TCRP synthesis 92 showed that most transit agencies were not able to 

make replacement decisions under different funding scenarios. Another NCHRP 20-68 pilot 

program provided best practices in transportation asset management for transit agencies.  

The literature review also discussed on transit asset management system and how it helps 

transit agencies to maximize system performance. The transit asset management is very 

important for transit agencies as the Map-21 requires them to build transit asset management 

system to get the federal funds. Therefore, transit agencies need to develop transit asset inventory 

and asset management recommended several key steps to develop the asset inventory.  

As per Map-21 and FAST Act, transit agencies are required to develop a transit asset 

management plan to achieve the state of good repair. Therefore, the FTA developed TAPT tools 
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as well as TERM tool to predict the condition of transit assets and prioritize the investment 

needs. 

The literature review also reviewed the current state of good repair practices and asset 

management practices on nation’s major transit agencies. The reviews showed that most of the 

agencies use their in-house analytical tool to estimate the state of good repair needs. However, 

most transit agencies do not have comprehensive transit inventories for asset management 

purposes. The MBTA uses their own SGR database and an application to predict future 

replacement and rehabilitation needs. The NYCT also uses their own SGR database to prioritize 

its capital investment needs. The WMATA uses 10-year capital investment plan to achieve the 

state of good repair. Finally, this chapter concludes by presenting several best practices for the 

state of good repair on nation’s top transit agencies. 
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CHAPTER 3. METHODOLOGY 

Based on the information from the SGR practices of the transit agencies as well as 

literature review, three predictive models were developed to address the state of good repair. In 

this research, the predictive models were developed by applying machine learning algorithms 

which predict the projected service life of transit vehicles and help decision-makers to evaluate 

replacement and rehabilitation needs for transit vehicles and allocate available funds across 

overall transit assets. Furthermore, this will also help to evaluate the long-term capital funding 

and its impact on the future condition as the performance of transit assets.  

3.1. Basic Concept of Machine Learning Techniques  

The field of machine learning builds a computer program which can automatically 

improve with experience (Jordan & Mitchell, 2015). It is one of the rapidly growing 

technologies, which uses the core concept of Artificial Intelligent (AI), data science, computer 

science, and statistics. The development of new machine learning algorithms and the availability 

of online data made the machine learning techniques more effective. Since machine learning 

methods are data intensive, the application of machine learning is an evidence-based decision-

making process across science, technology, medical, education, manufacturing, financial, and 

marketing (Jordan & Mitchell, 2015). 

Machine learning algorithms have been developed to solve data and machine learning 

related problems (Jordan & Mitchell, 2015). In the past decade, the scientists and engineers 

collected a vast amount of data through networking and mobile computing systems that are 

referred to as ‘big data.’ They used machine learning to convert these data for a solution to the 

problem. Machine learning algorithms learn from large amounts of data and customize the output 

based on business requirements. The trend of capturing and mining large amounts of diverse data 
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sets can improve services and productivity across many fields of science. For example, historical 

medical records can be used to identify a patient with similar symptoms and provide the best 

treatment; historical traffic data can be used to control traffic perfectly and reduce congestion; 

historical crime data can be used to allocate police to a specific location and reduce the crime 

rate. Therefore, many organizations are capturing large data sets and analyzing them through 

machine learning techniques to automate decision making processes across many aspects of data-

intensive sciences (Jordan & Mitchell, 2015). 

In general, there are three types of machine learning called supervised learning, 

unsupervised learning, and reinforcement learning (Raschka, 2015). In this methodology, the 

supervised learning would be utilized for the problem and described below. 

3.1.1. Supervised learning 

Supervised learning uses inductive methodologies and learns from input-output pairs 

(Shen & Chouchoulas, 2001). The supervised learning learns from labeled training data and 

makes the prediction to unseen data. Supervised learning is useful when systems under the 

training data are intended to perform as learning with real results. In this case, the results are 

known, but the rules to perform the tasks are not known. Therefore, the system needs to be 

trained by learning algorithms and examples, then apply the learning knowledge to the entire 

domain (Shen & Chouchoulas, 2001). One sub-category of supervised learning is the regression. 

In regression analysis, many predictor variables along with a continuous response variable are 

used to find a relationship between these variables to predict an outcome (Raschka, 2015). Figure 

4 shows the workflow diagram of how supervised learning makes the prediction. 
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Figure 4. Making Prediction about the Future with Supervised Learning (Adapted from Raschka, 
Sebastian. 2015. Python machine learning. First Edition. Edited by Roshni Banerjee. 
Birmingham: Packt Publishing Ltd.) 

3.2. Machine Learning Algorithms 

In this research, three machine learning techniques have been used for estimating the 

service life of revenue vehicles and the best method has been selected to solve the state of good 

repair problem. For machine learning algorithms, a training set has been created with the revenue 

vehicle inventory data from the fiscal year 2008 to the fiscal year 2016 from NTD legacy 

database. The training data set has vehicles which had already been retired and stored training 

instances in the memory for prediction of the service life of non-retired vehicles and solve the 

state of good repair needs. 

There are many methods of machine learning available for building predictive models. In 

this problem, the ensemble method had been used to build the SGR predictive model. In order to 

choose the best model for the problem, three kinds of comparative analysis of machine learning 

algorithms had been conducted. They are random forest regression, gradient boosting regression, 

and decision tree regression (Lee & Min, 2017). At first, the random forest regression had been 

applied, followed by gradient boosting regression, and finally, decision tree regression method. 

Labels
Training Data 

New Data Predictive Model Prediction 

Machine Learning Algorithm 
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After comparing the performance measurements amongst the model, the best predictive model 

had been chosen for the problem. 

3.2.1. Ensemble methods 

Ensemble methods are very powerful techniques, and the basic idea is to train multiple 

learners to solve the same problem and then combine them by averaging the output of models to 

calculate the final prediction. Therefore, ensemble methods are significantly more accurate than 

a single learner (Zhou, 2012). The idea of ensemble methods is used in many decision-making 

situations in our daily lives (Zhang & Haghani, 2015). For example, when we have problems, we 

seek others’ opinions. By combining the weighted ideas, we can get a better decision. Therefore, 

the success of the ensemble method depends on the combination of base models. If individual 

base models generate different outputs, then combining several base models is useful. The 

ensemble methods minimize errors on the predictions by correcting mistakes on the predictions 

made by the individual base model. If individual base models produce similar mistakes, then 

combining base models is worthless. There are two techniques such as bagging and boosting 

which uses various resampling methods to achieve diverse base models (Zhang & Haghani, 

2015). 

Ensemble methods can handle extremely complicated behavior, but they are very simple 

to use and can rank features based on the predictive performance. Ensemble methods became 

successful in many real-world problems and provided nearly optimum performance among all 

major predictive analytics (Bowles, 2015; Zhou, 2012). The most popular ensemble algorithms 

are adaBoost, boosting, bootstrapped aggregation (Bagging), gradient boosting machines 

(GBM), stacked generalization (blending), gradient boosted regression trees (GBRT), and 

random forest (Brownlee, 2013). 
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Figure 5 outlines a common ensemble architecture. There are numerous learners in an 

ensemble which are called base learners. The training data generates base learners using the base 

learning algorithms such as neural networks, decision tree or other learning algorithms. In most 

of the cases, ensemble methods apply single base learning algorithm; however, some of the 

ensembles use multiple learning algorithms (Zhou, 2012). 

 

Figure 5. A Common Ensemble Architecture (Adapted from Zhou, Zhi-Hua. 2012. Ensemble 
Methods: Foundations and Algorithms. Edited by Ralf Herbrich and Thore Graepel. Boca Raton, 
FL: Chapman & Hall/CRC.) 

The ensemble tree uses the averaging technique to reduce the variance. Both ensemble 

tree-based algorithms use a single regression tree as their base model. The random forest uses the 

bagging technique while the gradient boosting uses the boosting technique. In the boosting 

method, the base model appears sequentially, and the examples which are difficult to estimate in 

the previous base model appears in the training data more often than the ones which are correctly 

estimated. The additional base models will correct mistakes which were made in the previous 

base models. The gradient boosting regression method uses a forward stage-wise modeling 

approach which fits additional models to minimize the gap between the prediction value and the 
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true value by using the loss function such as squared error or an absolute error. In the regression 

problems, the boosting method uses a gradient descent optimization technique which minimizes 

specific loss function by adding a base model at each step to reduce the loss function accurately. 

The performance of the model can be optimized by the best combination of the parameters 

(Zhang & Haghani, 2015). 

3.2.1.1. Random forest regression 

Random forest is a predictive algorithm which is a representative of ensemble methods 

(Kumar, 2016). The algorithm creates predictions on individual trees randomly and then 

averages predictions of all trees. The random forest does not use the cross-validation process; 

instead, the method uses bagging. Suppose there are m number of variables, and n number of 

observations in training data set T. S number of trees need to be grown in the forest, and each 

tree will be grown from the separate training data set. Each training data set from S number of 

training data sets is created from sampling n observation randomly; therefore, some data sets 

might get duplicate observations, and some observations might be missing from all the S training 

data sets. These data sets are called bootstrap samples or bagging. The observations that are not 

part of the bag are “out of the bag” (Kumar, 2016). A random forest model has better 

generalization performance than an individual decision tree because of its randomness, and it 

helps the model to decrease the variance. Another advantage of random forest is that they are 

good at handling outliers in the data set and do not need much parameter optimization (Raschka, 

2015).  

3.2.1.2. Gradient boosting regression 

Gradient boosting regression trees are stage-wise ensemble trees where weak models are 

fit sequentially to minimize the errors on the training set and predictions are made by the 
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previous model in the sequence (Gagne, McGovern, Haupt, & Williams, 2017). These weak 

models are considered as decision trees in gradient boosting trees. In the beginning, the initial 

model is fit directly to the training labels, and the additional weak models are fit sequentially to 

the negative gradient of the loss function to optimize the predictive model. The difference 

between the actual observation and the prediction from the previous model is called a residual, 

which is also the mean squared error of the loss function. The predicted residual is added to the 

sum of the previous residuals. A learning rate is multiplied by each tree’s prediction to minimize 

the residual of the prediction, and a smaller learning rate can be used to correct the prediction 

and minimize the risk to fit to noise. The base gradient boosting regression model uses the 

default parameters of learning rate 0.1, 500 trees, a maximum depth of 5, and least absolute 

deviance loss function (Gagne, McGovern, Haupt, & Williams, 2017). 

Several parameters can be tuned by the grid search method to optimize the performance 

of the predictive model (Johnson, et al., 2017). One of the parameters is the number of trees that 

grows sequentially, and another parameter is the depth of the tree that indicates the depth of 

interaction between features. The learning rate, which is another important parameter of the 

model, can be tuned to determine how much each tree contributes to the overall performance of 

the model (Johnson, et al., 2017). 

3.2.1.3. Decision tree regression 

The decision tree regression is a regression model built on a form of tree-based 

structures. The model generates predictions on the dependent variable in numeric form (Rathore 

& Kumar, 2016). The decision tree method can build models with complex variables without 

having many assumptions on the modeling (Zhao & Zhang, 2008). The method can isolate 

important independent features by basis function when many variables are used in the model. 



45 
 

The decision tree regression can be unstable, for example a change in the training data can 

change the output and different attributes for the model need to be selected (Zhao & Zhang, 

2008). In this research, the decision tree regression was also applied as it could handle data sets 

with high dimensionality and could predict a dependent variable in a numeric form (Rathore & 

Kumar, 2016).  

3.4. A Roadmap for Building Machine Learning Predictive Model 

Previously, the basic concepts of machine learning, supervised learning, and learning 

algorithms were discussed. In this section, Figure 6 depicts a workflow diagram for a machine 

learning predictive modeling which will be discussed below. After acquiring the revenue vehicle 

inventory data from the NTD database, the initial raw data from the fiscal year 2008 to 2016 

were combined and preprocessed for the machine learning algorithm. The preprocessed data 

were separated into training data with retired vehicles to build the predictive model and 

deployment data for predictions for retirement. The training data set was split into the training set 

and the test set. The learning algorithms were applied to the training set to build the predictive 

model, and various performance measures were applied to the testing set to evaluate the model. 

After getting the best predictive model, the model was deployed on deployment data for 

predictions. 
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Figure 6. Roadmap for Machine Learning Predictive Model (Adapted from Raschka, Sebastian. 
2015. Python machine learning. First Edition. Edited by Roshni Banerjee. Birmingham: Packt 
Publishing Ltd.) 

3.5. Preprocessing of Data 

The quality of data and the information it contains are key factors of how well a machine 

learning algorithm can learn. Most of the time, raw data from the source does not come in the 

form and shape to use in the machine learning algorithm. Therefore, the preprocessing of the 

data is a critical step before feeding the data to any machine learning application (Raschka, 

2015). The NTD databases contain the revenue vehicle inventory data in excel format, which 

have many general problems related to how transit agencies entered their data and maintained the 

data structures. In this research, the revenue vehicle inventory data from the fiscal year 2008 to 

2016 were processed for a machine learning predictive model to solve the transit state of good 

repair. The example in Table 9 represents sample data from the vehicle inventory data that were 

used to build the training data for machine learning algorithms. The columns designate attributes 

or features which were used to make predictions and the rows designate instances or 

observations. The first column is called Revenue Vehicle Inventory ID which is unique for each 

row. The Revenue Vehicle Inventory ID was not used for prediction as it was too specific and 

pertained to only a single observation (Bowles, 2015). 

Label
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The attributes shown in Table 9 include numerical and categorical variables. In this 

example, the numerical variables, Vehicle Length, Manufacture Year, Retired Year, and Service 

Life, are the most usual type of attributes, whereas Mode, TOS, Vehicle Type, and Fuel Type are 

categorical variables. These categorical variables were converted to numerical values with either 

“1,” if the category exists, or “0,” if it does not exist (Bowles, 2015). Alternatively, the 

categorical variables could be converted to True or False. 

Table 9. Sample Revenue Vehicle Inventory Data 

Revenue 
Vehicle 
Inventory 
ID 

Mode TOS Vehicle 
Type 

Mfr 
Year 

Fuel Type Vehicle 
Length 

Retired 
Year 

Service 
Life 

53849 VP DO Van 2009 Gasoline 17 2014 5 

45948 MB DO Bus 1995 Diesel Fuel 40 2014 19 

24446 DR PT Bus 2001 Diesel Fuel 22 2015 14 

13756 TB DO Trolley 
Bus 

1996 Electric 
propulsion 

37 2013 17 

 
It is common in the real-world application that there might be errors in the data collection 

process. Therefore, the following items such as data quality, missing records, misspelling of 

different fuel types or vehicle types, extra whitespaces at the end of the columns, inconsistencies 

of a column naming in the legacy data sets were taken into consideration to ensure the accuracy 

of the data. The most common problem is missing values. The missing values were handled 

either by removing missing entries from the unique vehicle inventory ID or filling missing values 

in the non-unique attributes with the value calculated by different methods based on data types. 

In addition, there were misspelling of categorical names or alternate names present in the Fuel 

Type or Vehicle Type categories. These categorical names were replaced with a normalized form 

of name to maintain data consistency throughout all the historical data. All of the other issues of 
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the column names in the historical data were fixed either by replacing or renaming with correct 

attribute names.  

If the Retired column had a Flag Y present, a new column, Retired Year, was created 

with the value of the year the vehicle was retired. Another new column of Service Life was 

created with the historical data for training the model. The value of Service Life was generated 

by subtracting Manufacturing Year from the Retired Year. Since Revenue Vehicle Inventory ID 

was unique for vehicle identification, it was used for indexing the data sets and in that way, 

duplication was avoided. The retired vehicles data were used for training and evaluating the 

model, and the data with the current vehicles in operation were used for predicting the projected 

service life of the transit vehicles. 

3.6. Development of Training Data 

In the methodology, the revenue vehicle inventory data sets from the NTD database were 

used to train the predictive model. The retired revenue vehicles data from 2008 to 2016 that were 

used as observational data to train and test the predictive model are shown in Figure 7, and the 

non-retired vehicles’ data that are shown in Table 10 were used for predicting the service life of 

the transit vehicles. At first, the Service Life was calculated from the observational data and was 

used as target data. Then, the observational data from which the model will learn were split into 

two separate data sets: the training set, and the testing set. The training set was used for building 

the model and the testing set was used for evaluation purposes. Here the algorithm or the model 

will learn from the training data by understanding some correlations to make the prediction, then 

the models will be evaluated on the testing data.  
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Figure 7. Sample Initial Training Set on Revenue Vehicles Data 

Table 10. Sample Predictions on Deployment Data After Applying the Predictive Model 

Revenue 
Vehicle 
Inventory ID 

Manufacture 
Year 

Rebuild 
Year 

Vehicle 
Length 

Seating 
Capacity 

- - - - - Predicted 
Service 
Life 

54985 2010 - 22 14 - - - - - 12 
54986 2009 2014 16 13 - - - - - 14 
54987 2014 - 24 50 - - - - - 10 
54988 2013 - 30 50 - - - - - 13 
54989 2012 - 22 42 - - - -  11 
- - - - - - - - - - - 
- - - - - - - - - - - 

3.7. Parameter Optimization 

The regression algorithm requires parameter values to be set up before applying the 

algorithm. Appropriate parameter settings in the algorithm will provide the best model while bad 

parameter settings will produce poor results. The best model with the tuned parameter will 

provide good performance on making predictions on new data with previously unseen values 

(Ma, 2012). The random forest model works very well without optimizing parameters. However, 

Revenue 
Vehicle 
Inventory 
ID 

Vehicle 
Type 
Bus 

Rebuild 
Year 

Vehicle 
Length 

Seating 
Capacity 

- - - - - Service 
Life 

24371 False 2012 22 14 - - - - - 13 
24372 False 2009 22 13 - - - - - 10 
38543 False - 16 3 - - - - - 9 
52840 True 2010 24 13 - - - - - 14 
345232 True - 60 42 - - - -  10 
- - - - - - - - - - - 
- - - - - - - - - - - 
- - - - - - - - - - - 
349823 False 2008 24 42 - - - - - 14 
349824 False - 16 30 - - - - - 11 
349826 False - 24 40 - - - - - 13 
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the performance of the model can be improved by removing redundant variables, fixing a 

minimum leaf size, and defining a random state number (Mueller & Massaron, 2015).  

In this research, a simple parameter optimization method was used to find the optimal 

parameters for the random forest regression model. In addition, the grid search methodology was 

used in the gradient boosting and decision tree regression models to find the optimal parameter 

values where the points are situated on the grid within the parameter space. The grid search does 

a complete search starting from the minimum point of the grid in the parameter space to the 

maximum points and finds the optimal parameters. In short, the grid search chooses the best 

point after evaluating every point in the grid, and the best value on the best point is considered to 

be the optimum solution (Ma, 2012). 

3.8. Evaluation of Predictive Model 

After setting the best parameter values in the model, training the model with regression 

objects, and fitting the model with the training set of data, the test data set was used to calculate 

the performance of the model on the unseen data. The performance of the machine learning 

model was tested by measuring the R2 score, root mean squared error (RMSE), and mean 

absolute error (MAE) (Raschka, 2015). Once the evaluation of each model was complete, the 

performance of each model was compared to each other, and the best performing predictive 

model was chosen to predict on new data. 

RMSE calculates the measure of the model’s performance which is simply the square 

root of the average of the sum of squared error function. In regression problems, RMSE is the 

primary performance indicator than the other measures for regression problems (Aurlien, 2017). 

Another performance measure is called mean absolute error (MAE) which was used to check the 

accuracy of the model's predictions. MAE looks at every prediction the model makes, and it 
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provides an average mistake across all the predictions (Geitgey, 2017). Another performance 

measure, the coefficient of determination (R2) which is the fraction of the response variance, was 

also used to measure the model performance. The value of R2 is between 0 and 1, and the model 

fits the data perfectly if the value is equal to 1. 

Figure 8 shows the diagram of machine learning predictive models on the state of good 

repair which was used to predict the service life of the transit vehicles on the most up-to-date 

data that the transit agencies had. Using the model, transit agencies will have a clear picture of 

the condition of their transit vehicles when they will have to retire their revenue vehicles and will 

help decision makers plan for their SGR estimations.  

 

Figure 8. Machine Learning Predictive Model on State of Good Repair 

3.9. Summary of Methodology 

The methodology involved introducing machine learning techniques to develop a 

predictive model for the state of good repair to predict the service life of transit vehicles. The 

methodology discussed on the basic concept of machine learning, the type of machine learning, 



52 
 

and ensemble methods. The regression analysis of the supervised learning was utilized for the 

problem. The ensemble methods, which are very powerful techniques for machine learning 

model, were discussed. There are three different machine learning techniques, which were 

introduced in the methodology; they are random forest regression, gradient boosting regression, 

and decision tree regression. The random forest regression algorithms create predictions on the 

individual tree randomly and average them on all trees. The gradient boosting regression trees fit 

weak models sequentially to the negative gradient of the loss function to minimize the errors on 

the training set and optimize the predictive model. The decision tree regression is a tree-based 

structure which generates predictions in a numeric form.  

The revenue vehicle inventory data from the NTD database was used to build the 

predictive model. The preprocessing steps of the data were discussed to format the raw data for 

machine learning algorithms. Data with retired vehicles were used to train and evaluate the 

model, and data with non-retired vehicles were used to deploy the trained model for predictions. 

The regression analysis requires optimized parameters for the model for the best 

performance. A grid search method was discussed to find the best parameters. After selecting the 

best parameters value for each of the three predictive models, three predictive models were built, 

their performance evaluated, and then compared to each other. Based on the best performance, 

the gradient boosting regression predictive model was chosen to predict the service life of transit 

vehicles. 
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CHAPTER 4. DATA ANALYSIS AND RESULTS 

4.1. Exploring the Revenue Vehicle Inventory Data Set 

The revenue vehicle inventory data from the NTD database was used for building the 

predictive model and for performing exploratory data analysis. The NTD is the primary source of 

information on the transit vehicle systems in the United States. Transit agencies report their 

transit asset data to the NTD database as a requirement for receiving federal funds from the FTA 

(FTA, 2017d). Revenue vehicle inventory data sets can be found in XLS format in the NTD 

database and contain information about revenue vehicles from transit agencies published at the 

end of each fiscal year. The data sets are available to download from the United States 

Department of Transportation site at https://www.transit.dot.gov/ntd/ntd-data. 

The FTA requires all transit agencies who receive Chapter 53 funds, and use them for 

public transportation services, to report all transit asset information to the NTD per the FTA’s 

TAM regulation. All transit agencies who also receive 5310 funding for public transportation 

services must begin reporting to the NTD at the beginning of the 2018 reporting year (FTA, 

2017b).  

4.2. Tools for Processing the Revenue Vehicle Inventory Data Set for Machine Learning 

Algorithms 

The Python programming language was used to analyze the revenue vehicle inventory 

data from the NTD database and develop predictive models with machine learning algorithms. 

Python can be accessed by installing the Anaconda distribution package, which includes the 

Jupyter Notebook for Python. In this analysis, the older reliable Python 2.7 version was used 

instead of the latest version (Grus, 2015).  
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Some additional packages were also used for the analysis, computation, and data 

visualizations (Grus, 2015). Pandas is a tool that has lot more functionality and provides better 

performance working and manipulating data sets than Python does. NumPy, a building block of 

Python that performs the scientific computation, was used for computation. Matplotlib was used 

to visualize data in the form of bar charts, line charts, and scatterplots. Scikit-learn is a machine 

learning library in Python. Instead of writing an optimization algorithm, the Scikit-learn library 

was implemented to build the predictive model (Grus, 2015). 

4.3. Data Preprocessing for Initial Training and Deployment Data for Machine Learning 

Model 

The performance of the machine learning model depends on the quality of the data and 

the information the data set contains. Therefore, it is crucial that the data need to be examined 

and preprocessed before it can be fed to a learning algorithm. 

In order to preprocess the revenue vehicles inventory data sets, a few basic packages for 

Python were loaded as shown below. 

# Import file package 

import sys 

# Import data science packages 

import numpy as np 

import pandas as pd 

In addition, the matplotlib and seaborn packages were also imported to visualize the data. The 

seaborn was used to improve default plot formatting. The inline command %matplotlib was used 

to display all the plots in the iPython Notebook (Hunter, Dale, Firing, & Droettboom, 2017). The 

block of code is as follows: 

# Plot pretty figures 

import matplotlib.pyplot as plt 

import seaborn as sns 
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# Plot figures inline 

%matplotlib inline 

The following block of code below was used to change the default values and customize 

the behavior for every plot. The labelsize parameters of the axes, as well as the labelsize of the 

xtick and ytick were set a value to adjust the layout (Hunter, Dale, Firing, & Droettboom, 2017). 

# Set matplotlib parameters in the script 

plt.rcParams['axes.labelsize'] = 14 

plt.rcParams['xtick.labelsize'] = 12 

plt.rcParams['ytick.labelsize'] = 12 

The default setting of max_columns displays 20 columns, and the default setting of 

max_info_columns displays 100 rows per column. If the data frame contains more objects or data 

points per column, the default setting will truncate the display. Therefore, the settings of the 

display were changed to ‘2000’ to show all columns and column information in this training data 

frame (McKinney, Wes; PyData Development Team, 2017). The block of code is as follows: 

# Set pandas to show all columns and column information in Data Frame 

pd.set_option("display.max_columns", 2000) 

pd.set_option("display.max_info_columns", 2000) 

The following block of codes works as a function, was used to save all the figures as 

PNG format in the root directory under ‘images’ folder. 

# Save the figures to a path 

ROOT_DIR = "." 

IMAGES_PATH = os.path.join(ROOT_DIR, "images") 

# Define the function 

def save_image(image_name, tight_layout = True, image_extension = 

"png", resolution = 300): 

path = os.path.join(IMAGES_PATH, image_name + "." + 

image_extension) 

  if tight_layout: 

   plt.tight_layout() 

plt.savefig(path, format = image_extension, dpi = resolution) 
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The revenue vehicle inventory data sets from fiscal year 2008 to fiscal year 2016 were 

downloaded from the FTA’s NTD database website at https://www.transit.dot.gov/ntd/ntd-data. 

After downloading data sets to the local drive, the pandas’s read_excel() function was applied to 

all the data. The individual revenue vehicle inventory data was stored in the individual data 

frame object. A sample block of code is shown below that used 2016 inventory data to read and 

store data to the data frame, revenue_vehicle_inventory_16. The other data frames from years 

2008 to the 2015 data were created in a similar way to that of the year 2016 data set. 

# Read annual revenue vehicle inventory data of the fiscal year 2016 

revenue_vehicle_inventory_16 = pd.read_excel('..//NTD/2016/Revenue 

Vehicle Inventory_0.xlsx') 

A data frame is a rectangular table of data which contains columns of different value 

types such as numeric, string, or Boolean, etc. The data in the data frame is stored as one or more 

two-dimensional blocks rather than a list or some other collection of one-dimensional arrays 

(McKinney, 2017). A new data frame was created that indicated what columns needed to be 

included in the data frame for further feature engineering.  

 # Select columns for models 

df_all = pd.DataFrame(columns = ['NTD ID', 'Agency Name', 'Mode', 

'TOS', 'Revenue Vehicle Inventory ID', 'Total Fleet Vehicles', 

'Dedicated Fleet', 'Vehicle Type', 'Ownership Type', 'Funding 

Source', 'Manufacture Year', 'Rebuild Year', 'Manufacturer', 

'Model', 'Active Fleet Vehicles', 'ADA Fleet Vehicles', 

'Emergency Contingency Vehicles', 'Fuel Type', 'Vehicle Length', 

'Seating Capacity', 'Standing Capacity', 'Total Miles on Active 

Vehicles During Period', 'Average Lifetime Miles per Active 

Vehicles', 'Supports Mode', 'Supports Service', 'Retired', 

'Retired Year']) 

A function append_to_frame() was defined that added data from previous years to the 

existing data. The code is as follows: 
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 # Define a function which add data from previous years 

def append_to_frame(appendee, appender, match): 

 add_to = appender.loc[~appender[match].isin(appendee[match]), :] 

 return appendee.append(add_to) 

The individual data frame for each year needed to be cleaned up individually before 

combined into a single data frame. Since data were entered into the spreadsheet without 

following any guidelines, the data sets were not consistent from year to year. For example, 

column names were mismatched in many data sets from year to year. Therefore, the column 

names were fixed by renaming or removing some unnecessary columns. Some data points were 

dropped because they had a null inventory ID. There were also whitespaces that existed in the 

categorical columns, which were fixed by removing extra whitespaces. The following examples 

show how the block of codes was used to rename columns and drop unnecessary columns.  

 # Rename columns 

revenue_vehicle_inventory_16 = 

revenue_vehicle_inventory_16.rename(columns = {'5 Digit NTD ID': 

'NTD ID'}) 

# Drop unnecessary columns 

revenue_vehicle_inventory_16 = 

revenue_vehicle_inventory_16.drop(['Legacy NTD ID', 'Reporting 

Module', 'Reporter Type', 'Other Manufacturer Description'], axis 

= 1) 

A new column Retired Year was added to each data frame based on the information on 

column Retired = Y. The following block of code was used to create the Retired Year column 

and added value by inserting 2016. 

# Created new columns 'Retired Year' 

revenue_vehicle_inventory_16['Retired Year'] = 

np.where(revenue_vehicle_inventory_16['Retired'] == 'Y', '2016', 

'') 

# Fill NaN with 'N' in 'Retired' field 



58 
 

revenue_vehicle_inventory_16['Retired'].fillna('N', inplace = True) 

After the initial cleanup of individual data, the following code was used to add data to the 

previous data frame. Since Revenue Vehicle Inventory ID is unique, it prevents duplicating data. 

The code below was used to add the 2016 inventory data to the initial blank data frame. 

 # Add revenue vehicle inventory data for 2016 to the blank Data Frame 

df_all = append_to_frame(df_all, revenue_vehicle_inventory_16, 'Revenue 

Vehicle Inventory ID') 

Since the revenue vehicle inventory data from 2008 to 2016 were used, each data set 

needed to be cleaned up separately before adding it to the combined data frame. In this analysis, 

only the data cleaning procedure on 2016 revenue vehicle inventory data is demonstrated here. 

For the remaining data sets, additional cleaning procedures may have been required depending 

on the quality of the data. After the initial cleanup of all the data sets, the remaining data sets 

from the years 2008 to 2015 were combined to the 2016 data set and stored into a data frame. 

The following example shows how the sample block of codes was used to combine 2015 data set 

with the 2016 data frame. 

# Add inventory data from 2015 to the previous Data Frame (2016) 

df_all = append_to_frame(df_all, revenue_vehicle_inventory_15, 'Revenue 

Vehicle Inventory ID') 

The following code shows the number of rows and columns in the combined data frame. 

 # Check the number of rows and columns 

df_all.shape 

The above code showed 42440 rows and 27 columns in the initial combined data frame. 

Four categorical data types, called Fuel Type, Vehicle Type, Funding Source, and 

Ownership Type, had categorical names. These categorical names contained whitespaces at the 
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end of the names. The following code was used to clean whitespaces from the Fuel Type 

categorical name. The other categorical names mentioned above were cleaned in a similar way. 

 # Remove whitespaces from the categorical name 

df_all['Fuel Type'] = df_all['Fuel Type'].str.rstrip() 

Initially, some data cleaning and manipulation were performed before combining all the 

data frames. Then, the info() method was used in order to see important information about the 

full inventory data frame, such as the number of data points, data columns, and data type stored 

in each column. This information indicated which columns were numeric or strings and whether 

or not all columns had complete data points in them. The df_all.info() command displayed the 

basic information about the data frame, which is listed in Table 11. The information below in 

Table 11 shows that there is missing information in the data set that might have caused problems 

if not fixed before the model was built.  

  



60 
 

Table 11. Data Columns Information Table 

Data Columns Data Points Data Value Data Type 
ADA Fleet Vehicles 41104 non-null float64 
Active Fleet Vehicles  42401 non-null float64 
Agency Name 42440 non-null object 
Average Lifetime Miles per Active Vehicles 24177 non-null float64 
Dedicated Fleet 42422 non-null object 
Emergency Contingency Vehicles 17579 non-null float64 
Fuel Type 27616 non-null object 
Funding Source 42416 non-null object 
Manufacture Year 39251 non-null float64 
Manufacturer 25539 non-null object 
Mode 42440 non-null object 
Model 25401 non-null object 
NTD ID 42440 non-null object 
Ownership Type 42418 non-null object 
Rebuild Year 2201 non-null float64 
Retired 32106 non-null object 
Retired Year 42440 non-null object 
Revenue Vehicle Inventory ID 42422 non-null object 
Seating Capacity 42406 non-null float64 
Standing Capacity 23176 non-null float64 
Supports Mode 5983 non-null object 
Supports Service 6087 non-null object 
TOS 42440 non-null object 
Total Fleet Vehicles  42419 non-null object 
Total Miles on Active Vehicles During Period 24147 non-null float64 
Vehicle Length  39287 non-null float64 
Vehicle Type  42421 non-null object 

The following block of code calculated the missing information in each column. 

 # Calculate total missing values 

total = df_all.isnull().sum().sort_values(ascending = False) 

# Convert missing values to percentage 

percent = 

(df_all.isnull().sum()/df_all.isnull().count()).sort_values(ascen

ding = False)*100 

missing_data = pd.concat([total, percent], axis = 1, keys = ['Total 

Missing Data', 'Percent of Missing Data']) 
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The output is shown in Table 12. The table below shows that the data were missing in different 

data types. Therefore, different approaches were initiated to fill in the missing data. 

Table 12. Missing Data Information 

Columns Total Missing Data Percent of Missing 
Rebuild Year 40239 94.813855 
Supports Mode 36457 85.902451 
Supports Service 36353 85.657399 
Emergency Contingency Vehicles 24861 58.579171 
Standing Capacity 19264 45.391140 
Total Miles on Active Vehicles During Period 18293 43.103205 
Average Lifetime Miles per Active Vehicles 18263 43.032516 
Model 17039 40.148445 
Manufacturer 16901 39.823280 
Fuel Type 14824 34.929312 
Manufacture Year 3189 7.514138 
Vehicle Length 3153 7.429312 
ADA Fleet Vehicles 1336 3.147974 
Active Fleet Vehicles 39 0.091894 
Seating Capacity 34 0.080113 
Funding Source 24 0.056550 
Ownership Type 22 0.051838 
Total Fleet Vehicles 21 0.049482 
Vehicle Type 19 0.044769 
Revenue Vehicle Inventory ID 18 0.042413 
Dedicated Fleet 18 0.042413 
Mode 0 0.000000 
NTD ID 0 0.000000 
Retired 0 0.000000 
Retired Year 0 0.000000 
TOS 0 0.000000 
Agency Name 0 0.000000 

At this point, for further analysis a copy of the combined data was saved as a CSV file by 

executing the following code: 

 # Save all data to a comma separated (CSV) file 

df_all.to_csv('Revenue_Vehicle_Inventory_all_years.csv', sep = ',') 
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In a pandas data frame, the index is a special column that contains the row labels 

(Downey, 2014). Since the Revenue Vehicle Inventory ID column was unique, the column was 

set as the index. The code is as follows: 

 # Set 'Revenue Vehicle Inventory ID' as index 

df_all = df_all.set_index('Revenue Vehicle Inventory ID') 

Since the Manufacture Year is vital for calculating the service life of the vehicle, it is 

important that the data must include the Manufacture Year. However, the calculation of missing 

data estimated that the Manufacture Year data showed 3189 null data points. Since interpolation 

techniques cannot fill these missing values in the Manufacture Year, this huge number of 

important data points were removed by running the following code: 

 # Drop rows if Manufacture Year is missing 

df_all.dropna(subset = ['Manufacture Year'], inplace = True) 

4.3.1. Removing unnecessary columns 

Some variables from the data sets were not required for either data analysis or modeling. 

Therefore, the drop() method was applied to remove unnecessary columns using the following 

code (Mueller & Massaron, 2015): 

 # Remove columns 

df_all = df_all.drop(['Agency Name', 'NTD ID', 'Manufacturer', 'Model', 

'Retired', 'Supports Service'], axis = 1) 

4.3.2. Dealing with missing data 

There could have been many reasons that the real-world applications may have had 

missing values during the data collection process. Sometimes, some fields are left blank as NaN 

(Not a Number) in the database. Unfortunately, machine learning algorithms cannot handle 

missing values. Thus, it is very important to take care of the missing values before analyzing and 
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modeling. Since the inventory data frame is large, it would be tedious to look for missing values. 

Therefore, the isnull() method was used in the data frame to see if the column contained missing 

values with True and numeric values with False. Finally, the sum() method was used to calculate 

the total number of missing values per column. The code is as follows: 

 # Check number of nulls 

df_all.isnull().sum() 

The output is shown in Table 13. 

Table 13. Number of Null Points in the Columns 

Column Names Number of Null Points 
ADA Fleet Vehicles 1207 
Active Fleet Vehicles 10 
Average Lifetime Miles per Active Vehicles 15121 
Dedicated Fleet 0 
Emergency Contingency Vehicles 21719 
Fuel Type 14100 
Funding Source 5 
Manufacture Year 0 
Mode 0 
Ownership Type 3 
Rebuild Year 37050 
Retired Year 0 
Seating Capacity 9 
Standing Capacity 16118 
Supports Mode 33523 
TOS 0 
Total Fleet Vehicles 2 
Total Miles on Active Vehicles During Period 15151 
Vehicle Length 3 
Vehicle Type 0 

4.3.3. Filling in missing data 

Missing data is common in most of the data analysis. Rather than filtering out missing 

data, it can be filled in many ways. However, in this case, the missing values (NaN) in arithmetic 

operation were filled in with either applying the constant value of “0” or applying an appropriate 
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function. On the other hand, the categorical values were filled with prefixing “Unknown” 

followed by the category name (McKinney, 2017). The block of codes for arithmetic filling and 

categorical filling are as follows (only one of each sample column was shown here): 

For arithmetic filling: 

# Fill NaN values with zero (0) 

df_all['ADA Fleet Vehicles'] = df_all['ADA Fleet Vehicles'].fillna(0) 

For categorical filling: 

# Fill NaN values with 'Unknown' followed by category name 

df_all['Fuel Type'] = df_all['Fuel Type'].fillna('Unknown Fuel') 

Furthermore, the Vehicle Length and the Seating Capacity categorical fields were filled by 

averaging with the mean() function as follows. 

# Fill NaN values with mean() function 

df_all['Vehicle Length'].fillna(value = df_all['Vehicle 

Length'].mean(), inplace = True) 

df_all['Seating Capacity'].fillna(value = df_all['Seating 

Capacity'].mean(), inplace = True ) 

And finally, the missing values in Support Mode was filled by Mode by the following code: 

# Fill NaN with values from 'Supports Mode' 

df_all['Supports Mode'].fillna(value = df_all['Mode'], inplace = True) 

Once missing values were filled, the following code verified whether there were any missing 

values remain in the data frame. 

# Check number of null data points in each column 

df_all.isnull().sum() 

The output is shown in Table 14. A zero (0) in each column indicates no missing values. The 

table shows the number of missing values.  
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Table 14. Number of Data Points in Each Column 

Column Names Number of Null Data Points 
ADA Fleet Vehicles 0 
Active Fleet Vehicles 0 
Average Lifetime Miles per Active Vehicles 0 
Dedicated Fleet 0 
Emergency Contingency Vehicles 0 
Fuel Type 0 
Funding Source 0 
Manufacture Year 0 
Mode 0 
Ownership Type 0 
Rebuild Year 0 
Retired Year 0 
Seating Capacity 0 
Standing Capacity 0 
Supports Mode 0 
TOS 0 
Total Fleet Vehicles 0 
Total Miles on Active Vehicles During Period 0 
Vehicle Length 0 
Vehicle Type 0 

4.3.4. Clean up of categorical names 

Since legacy data from 2008 through 2016 were used in the data set, there were naming 

inconsistencies in categorical columns called Fuel Type, Vehicle Type, Funding Source, and 

Ownership Type. Therefore, the replace() function was applied to rename the inconsistent names 

of those categorical columns. The following is a sample code of renaming categorical names in 

Fuel Type: 

 # Rename fuel type for consistencies 

df_all['Fuel Type'].replace({'Bio-diesel(BD)': 'Diesel Fuel', 'Bunker 

fuel': 'Diesel Fuel', 'Compressed natural gas (CNG)': 'Compressed 

Natural Gas', 'Diesel fuel': 'Diesel Fuel', 'Diesel 

Fuel/Liquefied Petroleum Gas': 'Diesel Fuel', 'Dual fuel': 

'Diesel Fuel/Compressed Natural Gas', 'Electric battery': 

'Electric Battery', 'Electric propulsion': 'Electric Propulsion 

Power', ‘Gasoline/Compressed Natural Gas': 'Gasoline', 



66 
 

'Gasoline/Ethanol': 'Gasoline', 'Hybrid diesel': 'Hybrid Diesel', 

'Hybrid gasoline': 'Hybrid Gasoline', 'Hybird gasonline': 'Hybrid 

Gasoline', 'Hybrid Gasoline/Ethanol': 'Gasoline', 'Hybrid 

Gasoline/Liquefied Petroleum Gas': 'Gasoline', 'hydrogen (HY)': 

'Hydrogen Cell', 'Liquefied natural gas (LNG)': 'Liquefied 

Natural Gas', 'Liquefied petroleum gas (LPG)': 'Liquefied 

Petroleum Gas', 'Other (specify in box below)': 'Other'}, inplace 

= True) 

The renaming of categorical names from Vehicle Type, Funding Source, and Ownership Type 

were renamed in a similar manner. 

4.3.5. Create the initial training data 

The development of algorithms starts with building training sets. The training set consists 

of the two types of data, such as the target data and the features for making the prediction 

(Bowles, 2015). In order to create the training set, retired vehicles were filtered out of the data 

from 2008 to 2016. The following code generated the training set: 

 # Filter data which have been retired since 2008 until 2016 

df = df_all.loc[df_all['Retired Year'].isin(['2016', '2015', '2014', 

'2013', '2012', '2011', '2010', '2009', '2008'])] 

The above code indicated that the training data with Retired Year were stored in a new data 

frame df. The target column Service Life was created by subtracting Manufacture Year from 

Retired Year by executing the following code: 

 # Create new column by subtracting 'Manufacture Year' from 'Retired  

# Year' 

df['Service Life'] = df[['Retired 

Year']].astype(float).sub(df['Manufacture Year'], axis = 0) 

Since the target column was created from Retired Year, which was no longer needed in the 

training set, the column was removed from the training set by executing the following code: 
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 # Drop column 'Retired Year' 

df = df.drop(['Retired Year'], axis = 1) 

After initial analysis of the newly created column Service Life, some very low service 

life figures were found, and in some cases, negative service life figures were found. These 

negative service life or low service life figures were caused by inaccurate inputting in either the 

manufactured year or the retired year. Therefore, the training data was further removed from the 

data that had the service life field with either 0 or -1 values by the following code: 

df = df.drop(df[df['Service Life'] == -1].index) 

df = df.drop(df[df['Service Life'] == 0].index) 

df.shape 

After the drop function removed 330 data points from the training data, the shape attribute 

showed 7772 total data points in the training data.  

At this stage, the initial training data were saved for further preprocessing for machine 

learning algorithms. The data were saved in a CSV format in the same folder as the iPython 

Notebook by executing the following code: 

 # Save initial training data for further processing 

df.to_csv('initial_training.csv', sep= ',') 

4.3.6. Create the initial deployment data 

Since the training data were created based on the Retired Year column from 2008 to 

2016, the rest of the data points did not have any values in the Retired Year column. Therefore, 

the initial deployment data set was created by filtering out data that were not retired; this 

operation was performed by logically negating the training data frame. The following code 

filtered out non-retired vehicles data and stored them in a new data frame: 

 # Filter data which have not been retired since 2008 until 2016 

df_not_retired = df_all.loc[~df_all['Retired Year'].isin(['2016', 

'2015', '2014', '2013', ‘2012’, '2011', '2010', '2009', '2008'])] 
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Since there was no need to create a target column in the deployment data, the Retired 

Year was no longer needed and was removed from the deployment data by executing the 

following code: 

 # Drop unnecessary column 'Retired Year' 

df_not_retired = df_not_retired.drop(['Retired Year'], axis = 1) 

The following code showed the number of data points in the deployment data: 

 # Check the number of rows and columns of the non-retired vehicles data 

df_not_retired.shape 

The above code showed 31149 vehicles in the deployment set for which the predictive model 

was used to predict when the vehicles needed to be retired from service. At this stage, the initial 

deployment data set was saved in a CSV format in the same folder as the current iPython 

Notebook by executing the following code: 

 # Save the non-retired vehicle data for further processing 

df_not_retired.to_csv('NonRetired_Revenue_Vehicle_Data_from_2008_to_201

6.csv', sep = ',') 

4.4. Analyzing Important Characteristics of Revenue Vehicle Inventory Training Data Set 

Exploratory data analysis is the first step of analysis before creating a training data set for 

a machine learning model (McKinney, 2017). Because the revenue vehicle inventory data were 

used to build the training set for the predictive model, it was also important to analyze this data 

to see the significant value of the model. The following code created a new data frame called 

df_analysis by renaming two columns for easy manipulation to analyze the training data: 

 # Rename columns for easy manipulation 

df_analysis = df.rename(columns = {'Vehicle Type': 'Vehicle_Type', 

'Service Life': 'Service_Life'}) 
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Previously, there were 7772 vehicles data were found in the training data. Now, the 

value_counts() function was used to calculate the number of vehicles in the training data in each 

vehicle type. 

 # Count the number of vehicles by vehicle type 

df_analysis.Vehicle_Type.value_counts() 

The output is shown in Table 15. The information about the training data set showed that there 

was a large number of buses and vans available to train the model compared to other vehicle 

types. The Double Decker Bus and Inclined Plane Vehicle each have a single data point, which 

may not be a good fit for the model for these vehicle types. 

Table 15. Number of Vehicles by Vehicle Type 

Vehicle Type Number of Vehicle 
Bus 3992 
Van 2236 
Cutaway 719 
Automobile 232 
Minivan 93 
Commuter Rail Passenger Coach 89 
Over-the-road Bus 84 
Articulated Bus 72 
Ferryboat 55 
Commuter Rail Locomotive 45 
Commuter Rail Self-Propelled Passenger Car 40 
Heavy Rail Passenger Car 33 
Sports Utility Vehicle 21 
Light Rail Vehicle 15 
Vintage Trolley 10 
School Bus 7 
Cable Car 4 
Trolleybus 3 
Inclined Plane Vehicle 1 
Double Decker Bus 1 

The vehicle type group data was further visualized by plotting a bar graph by executing 

the following code: 
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 # Count number of vehicles 

df_analysis.Vehicle_Type.value_counts().sort_values().plot(kind = 

'barh', figsize = (14,5)) 

plt.title('Number of Vehicles per Vehicle Type') 

plt.xlabel('Number of Vehicles') 

plt.ylabel('Vehicle Type') 

The above code plotted the number of vehicles by vehicle type as a bar plot shown in Figure 9. 

 
Figure 9. Bar Plot of Number of Vehicles by Vehicle Type 

Summarizing target values in the training data can be very useful. The agg() function was 

used to view some typical summary statistics of the mean, standard deviation, minimum value, 

maximum value, and element counts on the target variable by category. The code is as follows: 

 # Statistical Analysis of Service Life by vehicle type 

df_analysis.groupby('Vehicle_Type').Service_Life.agg(['count', 'min', 

'max', 'mean', 'std']) 

The output of the statistical summary is shown in Table 16. The statistical analysis showed a 

clear picture of the training data. 
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Table 16. Statistical Analysis of Service Life by Vehicle Type 

Vehicle Type count min max mean std 
Articulated Bus 72 5 22 12.361 3.358 
Automobile 232 5 19 8.495 2.727 
Bus 3992 8 29 12.759 3.229 
Cable Car 4 49 105 87.25 25.747 
Commuter Rail Locomotive 45 18 44 30.511 8.988 
Commuter Rail Passenger Coach 89 18 65 41.898 10.037 
Commuter Rail Self-Propelled Passenger Car 40 24 51 37.625 6.739 
Cutaway 719 7 21 9.965 2.142 
Double Decker Bus 1 63 63 63 - 
Ferryboat 55 18 94 40.09 13.502 
Heavy Rail Passenger Car 33 18 47 29.151 6.562 
Inclined Plane Vehicle 1 135 135 135 - 
Light Rail Vehicle 21 24 84 41.857 18.65 
Minivan 93 5 18 7.946 2.810 
Over-the-road Bus 84 5 22 12.476 4.105 
School Bus 7 9 22 16.571 5.028 
Sports Utility Vehicle 15 5 24 9.733 5.391 
Trolleybus 3 13 22 16.666 4.725 
Van 2236 6 16 8.482 1.875 
Vintage Trolley 10 9 99 59 26.284 

Sometimes, the data can be more useful for analysis if it can be visualized it in a plot. 

Therefore, a horizontal bar plot was drawn by vehicle type on the mean value of the Service Life 

target feature. The code is as follows: 

 # Plot Statistical Analysis of service life by vehicle type 

df_analysis.groupby('Vehicle_Type').Service_Life.agg(['mean']).plot(kin

d = 'barh', figsize = (14, 5)); 

plt.title("Mean Service Life by Vehicle Type") 

plt.xlabel("Service Life") 

plt.ylabel("Vehicle Type") 

The bar plot with the mean value of Service Life is shown in Figure 10. 
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Figure 10. Bar Plot with the Mean Value of Service Life 

The contingency Table 17 displays a relationship between qualitative variables by 

matching two different categorical distributions. The crosstab() function in pandas matches 

variables and identify relationships (Mueller & Massaron, 2015). A contingency table was 

created between Fuel Type and Mode by executing the following code: 

 # Create cross tabulation on fuel type by vehicle mode 

pd.crosstab(df_analysis['Fuel Type'], df_analysis.Mode, margins = True) 

The contingency table between Fuel Type and Mode is shown in Table 17. The contingency 

table shows us the tally of how many vehicles belong to each combination of fuel type and mode 

and that particular fuel types and modes never appear together.
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Table 17. Contingency Table Between Fuel Type and Mode 

Fuel Type 
Mode 

All 
AR CB CC CR DR DT FB HR IP LR MB RB SR TB VP YR 

Compressed 
Natural Gas 

0 12 0 0 54 0 0 0 0 0 146 1 0 0 5 0 218 

Diesel Fuel 3 127 0 33 1063 0 51 0 0 0 2119 0 0 0 9 1 3406 

Diesel 
Fuel/Compressed 
Natural Gas 

0 0 0 2 13 0 0 0 0 0 51 0 0 0 1 0 67 

Diesel 
Fuel/Electric 
Propulsion Power 

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 

Dual Fuel 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 2 

Electric Battery 0 0 0 0 0 0 0 0 0 0 15 0 0 0 0 0 15 

Electric Propulsion 
Power 

0 0 4 48 0 0 0 33 1 22 0 0 9 3 0 0 120 

Ethanol 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 2 

Gasoline 0 16 0 0 1662 0 4 0 0 0 325 0 0 0 801 0 2808 

Gasoline/Liquefied 
Petroleum Gas 

0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 4 

Hybrid Diesel 0 0 0 0 1 0 0 0 0 0 30 1 0 0 0 0 32 

Hybrid Gasoline 0 0 0 0 9 0 0 0 0 0 3 0 0 0 0 0 12 

Hydrogen Cell 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 2 

Liquefied Natural 
Gas 

0 0 0 0 0 0 0 0 0 0 32 0 0 0 0 0 32 
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Table 17. Contingency Table Between Fuel Type and Mode (continued) 

Fuel Type 
Mode 

All 
AR CB CC CR DR DT FB HR IP LR MB RB SR TB VP YR 

Liquefied 
Petroleum Gas 

0 0 0 0 5 0 0 0 0 0 16 0 0 0 0 0 21 

Other 0 0 0 0 1 0 0 0 0 0 3 0 0 0 0 0 4 

Unknown Fuel 2 61 0 85 600 5 0 0 0 0 241 3 0 0 9 0 1006 

All 5 216 4 168 3415 5 55 33 1 22 2984 6 9 3 825 1 7752 
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4.5. Visualizing Important Characteristics of Revenue Vehicle Inventory Training Data Set 

Before training a machine learning model, it is very important to perform an exploratory 

data analysis on training data to visually detect outliers, distribution of the data, and relationships 

between features. A scatterplot matrix was plotted to visualize the correlations between features. 

A pairplot() function was used to plot scatterplot from python’s seaborn library based on 

matplotlib (Mirjalili & Raschka, 2017). The code is as follows: 

 # Rename columns for easy manipulation 

df_scatter = df_analysis.rename(columns = {'Vehicle Length': 'VL', 

'Seating Capacity': 'SC', ‘Standing Capacity': 'STC', 

'Service_Life': 'SL'}) 

import matplotlib.pyplot as plt 

%matplotlib inline 

import seaborn as sns 

sns.set(font_scale = 1.3) 

cols = ['VL', 'SC', 'STC', 'SL'] 

g = sns.PairGrid(df_scatter[cols], size = 3, aspect = 1.5) 

g.map(plt.scatter) 

save_image('scatterplot') 

plt.show() 

The scatterplot matrix provided a graphical summary of feature relationships in the training data 

set (Mirjalili & Raschka, 2017) and is shown in Figure 11. 
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Figure 11. Scatterplot to Visualize the Correlation Amongst Internal Features 

Due to readability, a few of the columns from the training data set were used to plot 

scatterplot. They are Vehicle Length (VL), Standing Capacity (STC), Seating Capacity (SC), and 

Service Life (SL). By visualizing this scatterplot matrix, data distribution can be analyzed, and 

outliers can be detected very easily. The above scatterplot showed that even though it had 

outliers, it distributed normally. However, there is no strong linear relationship between any two 

features.  

Furthermore, visualizing interrelationships between variables and a target feature using 

scatter plot can be a very useful way to explore the relationship between two attributes. It can 

show patterns in the data and so data belong to certain groups and data outside of the expected 

range can be easily visualized (Mueller & Massaron, 2015). The block of code created a scatter 

plot between target feature (Service Life) and a numerical feature (Vehicle Length).  
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In the below scatter plot, most of the points lie in a group and tend to form a straight line, 

but some of the points scatter around the plot. Therefore, these two variables are somehow 

linearly, but not strongly, correlated. While visualizing the graphs can help explore the data for 

patterns, some outliers in the data upon further analysis can be explained. For example, after 

further analysis, it seemed these seemingly outlier points were actually for the Ferry Boat 

category, which had a longer service life. 

 # Scatter plot of Vehicle Length vs. Service Life 

var = 'Vehicle Length' 

data = pd.concat([df_analysis['Service_Life'], df_analysis[var]], axis 

= 1) 

data.plot.scatter(y = var, x = 'Service_Life', ylim = (0, 1650), 

figsize = (12, 5)) 

plt.xlabel('Service Life') 

plt.title('Service Life vs. Vehicle Lenght') 

save_image('service_life_hist') 

plt.show() 

The above code plotted the scatter plot shown in Figure 12. 

 

Figure 12. Scatter Plot of Service Life vs. Vehicle Length 
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Two additional scatter plots were created in the same general procedure described above 

in order to visualize relationships. One of the scatter plots was created with the target variable 

Service Life and numerical variable Seating Capacity, as shown in Figure 13. The other scatter 

plot was created with Service Life and Standing Capacity shown in Figure 14. In the below 

scatter plots, there are no strong linear correlations between Service Life versus either Seating 

Capacity or Standing Capacity. Therefore, the data would be a good fit for the nonlinear 

regression model instead of the linear regression model. 

 

Figure 13. Scatter Plot of Service Life vs. Seating Capacity 

 

Figure 14. Scatter plot of Service Life vs. Standing Capacity 
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4.6. Visualizing Relationships Between a Target Feature and Categorical Features 

Box plots are an effective way to visualize a numeric column across several categories 

and to provide statistical summaries. Box plots use rectangles with internal lines that show the 

median value (also called 50th percentile) for the column. In addition, each rectangle also has 

two horizontal external lines attached by a vertical line to the top and bottom of the box, which 

indicate the 75th percentiles and 25th percentiles, respectively. The box, or the rectangle itself, 

contains the values in the interquartile range between the 75th and the 25th percentile of the data. 

The data points below and above the limit indicate outliers (Downey, 2014). The following block 

of code was used to create a box plot on target variable Service Life by the categorical variable 

Vehicle Type. 

 # Boxplot of service life by vehicle type 

var = 'Vehicle_Type' 

data = pd.concat([df_analysis['Service_Life'], df_analysis[var]], axis 

= 1) 

f, ax = plt.subplots(figsize = (18, 11)) 

fig = sns.boxplot(x = var, y = "Service_Life", data = data, palette = 

"Set3") 

ax.set_title('Service Life vs Vehicle Type') 

plt.xlabel('Vehicle Type') 

plt.ylabel('Service Life') 

fig.axis(ymin = 0, ymax = 140) 

plt.xticks(rotation = 45); 

save_image('boxplot_vt') 

Figure 15 shows a box plot of Service Life versus Vehicle Type. The dots in the box plot 

indicate service life outliers in each vehicle type. These outliers may reduce the performance of 

the model. However, some machine learning algorithms can handle these outliers effectively and 

provide a good predictive model. However, the performance of the predictive model can be 

optimized by eliminating outliers from the training data set.  
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Figure 15. Box Plot of Service Life by Vehicle Type 

The corrcoef() function was applied to the six feature columns that was visualized in the 

scatter plot matrix. Then, the heatmap() function was applied to the correlation matrix that was 

plotted as a heat map. The code block is as follows: 

 # Service Life correlation matrix 

k = 10 

# Matrix form for correlation data 

corrmat = df_analysis.corr() 

cols = corrmat.nlargest(k, 'Service_Life')['Service_Life'].index 

cm = np.corrcoef(df_analysis[cols].values.T) 

sns.set(font_scale = 1.25) 

f, ax = plt.subplots(figsize = (11, 9)) 

hm = sns.heatmap(cm, cbar = True, annot = True, square = True, fmt = 

'.2f', annot_kws = {'size': 12}, yticklabels = cols.values, 

xticklabels = cols.values, linecolor = 'white', linewidths = 1) 

save_image('heatmap') 
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The above code generated the correlation matrix provides a summary with graphic 

representation as shown in Figure 16. This graphic summary was analyzed for features 

correlations (Mirjalili & Raschka, 2017). This heat map indicates that the target variable Service 

Life does not have a strong correlation with any of the features; the strongest correlation is 0.42 

for the feature Seating Capacity. By analyzing the scatter plot and correlation matrix, a non-

linear relationship between target variable and other features was found. Therefore, the linear 

regression model was not a good choice for this problem. Thus, a non-linear regression model 

was applied. 

 

Figure 16. Heat map of Correlation Matrix with Features 
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4.7. Preprocessing the Training Data 

Features of the training data set needed to be engineered before building a machine 

learning model. In order to engineer the training data, the previously preprocessed training data 

were loaded and stored into a data frame by executing the following code: 

 # Read cleaned training data 

df = pd.read_csv('..//NTD/initial_training.csv') 

4.7.1. Create new features 

The feature engineering process involves determining which features need to be used, 

what iterative processes need to be required for feature selection, and what combination of 

features need to be added for making predictions (Downey, 2014). In this problem, eight new 

features were created by combining different numerical features. The following sample block of 

code created the feature StandingCap_SeatingCap dividing 'Standing Capacity' by 'Seating 

Capacity'. The code also replaced null values with zero in the column. 

 # Create new feature 

df['StandingCap_SeatingCap'] = df['Standing Capacity']/df['Seating 

Capacity'] 

df['StandingCap_SeatingCap'].replace(np.inf, 0, inplace = True) 

Similarly, the other new features VehicleLength_SeatingCapacity, 

VehicleLength_StandingCapacity, TMOAVDP_TFV, TMOAVDP_AFV, ALMPAV_TFV, 

ALMPAV_AFV, and RebuildYear_ManufactureYear, were created following the same pattern 

in which the first variable (before underscore) was divided by the second variable (after 

underscore). 
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4.7.2. Create additional features from categorical features 

Scikit-learn supports binary encoding by using the LabelBinarizer class that is available 

in the Scikit-learn’s preprocessing package. It converts multiple labels to binary labels. The fit() 

method picks the parameters from the data and the transform() method applies the parameters to 

the new data (Massaron & Boschetti, 2016). The LabelBinarizer method was applied on Fuel 

Type, Vehicle Type, Funding Source, Mode, and Ownership Type. The new features using 

LabelBinarizer were renamed by prefixing the category name. The block of codes on Fuel Type 

using LabelBinarizer is shown below. Codes on other types were written in the similar manner. 

 # Import class 

from sklearn import preprocessing 

# Binarize columns 

lb = preprocessing.LabelBinarizer(pos_label = 1, neg_label = 0, 

sparse_output = False) 

# Fit label binarizer 

lb.fit(['Compressed Natural Gas', 'Diesel Fuel', 'Diesel 

Fuel/Compressed Natural Gas', 'Diesel Fuel/Electric Propulsion 

Power', 'Electric Battery', 'Electric Propulsion Power', 

'Ethanol', 'Gasoline', 'Gasoline/Liquefied Petroleum Gas', 

'Hybrid Diesel', 'Hybrid Gasoline', 'Hydrogen Cell', 'Liquefied 

Natural Gas', 'Liquefied Petroleum Gas', 'Other', 'Unknown 

Fuel']) 

# Join the categorical features with the numerical features 

df = df.join(pd.DataFrame(data = lb.transform(df['Fuel Type']), columns 

= [lb.classes_]).applymap(func = bool)) 

# Rename binarized columns 

df.rename(columns = {'Compressed Natural Gas': 'Fuel Type_Compressed 

Natural Gas', 'Diesel Fuel': 'Fuel Type_Diesel Fuel', 'Diesel 

Fuel/Compressed Natural Gas': 'Fuel Type_Diesel Fuel/Compressed 

Natural Gas', 'Diesel Fuel/Electric Propulsion Power': 'Fuel 

Type_Diesel Fuel/Electric Propulsion Power', 'Electric Battery': 

'Fuel Type_Electric Battery', 'Electric Propulsion Power': 'Fuel 
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Type_Electric Propulsion Power', 'Ethanol': 'Fuel Type_Ethanol', 

'Gasoline': 'Fuel Type_Gasoline', 'Gasoline/Liquefied Petroleum 

Gas': 'Fuel Type_Gasoline/Liquefied Petroleum Gas', 'Hybrid 

Diesel': 'Fuel Type_Hybrid Diesel', 'Hybrid Gasoline': 'Fuel 

Type_Hybrid Gasoline', 'Hydrogen Cell': 'Fuel Type_Hydrogen 

Cell', 'Liquefied Natural Gas': 'Fuel Type_Liquefied Natural 

Gas', 'Liquefied Petroleum Gas': 'Fuel Type_Liquefied Petroleum 

Gas', 'Other': 'Fuel Type_Other', 'Unknown Fuel': 'Fuel 

Type_Unknown Fuel'}, inplace = True) 

4.7.3. Create features with dummy variables 

A convenient way to create dummy features for machine learning applications is to 

transform a categorical variable into a dummy matrix. If a string column in a data frame has n 

values, the get_dummies() function will convert n columns into 1’s or 0’s (McKinney, 2017). In 

this training data, the categorical string columns TOS and Dedicated Fleet were converted into 

dummy variables using the get_dummies() function. The code is as follows: 

 # Replace categorical data with one-hot encoded data 

df = pd.get_dummies(data = df, columns = ['TOS', 'Dedicated Fleet']) 

4.7.4. Create features by analyzing the histogram of various categorical features 

Histograms categorize data into bins. Although each bin contains a default data range of 

10, the data range can be set by the user. Histogram plots the items in each bin and the 

distribution of data can be visualized from bin to a bin (Mueller & Massaron, 2015). Five 

additional features were created through analyzing histograms on Service Life against five 

categorical features called Fuel Type, Vehicle Type, Mode, Funding Source, and Ownership 

Type. Values for the newly created features were chosen based on the patterns of the histograms 
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and the mean values of Service Life in each category. The following code plotted histograms on 

Service Life by Fuel Type. 

 # plot histograms 

df_stats.loc[:, ['Fuel_Type', 

'Service_Life']].groupby('Fuel_Type').hist() 

The above code generated a series of histograms. Due to space constraint, only the 

histogram for Service Life by Compressed Natural Gas is included in Figure 17. The below 

histogram showed that the service life of most of the vehicles fell between 14 and 15 years. 

 

Figure 17. Histogram of Service Life vs. Number of Vehicles with Compressed Natural Gas 

The following code calculated the average service life, the maximum service life, and the 

standard deviation of vehicles in each fuel category. 

 # Calculate mean, max and standard dev. of Service Life by Fuel Type 

df_stats.groupby('Fuel_Type').Service_Life.agg(['max', 'mean', 'std']) 
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The mean, the max, and the standard deviation of service life by Fuel Type are shown in Table 

18. The average service life of vehicles in the compressed natural gas category was 12 years, the 

maximum service life was 19 years, and a standard deviation of about three years. Therefore, 

after visualizing the above histogram as well as the statistical analysis of service life, the Service 

Life by Compressed Natural Gas was mapped by 15 years. Similarly, all other service life was 

calculated and mapped accordingly. 

Table 18. Statistical Analysis of Service Life by Fuel Type 

Fuel Type Max Mean STD 
Compressed Natural Gas 19 12.041 2.744 
Diesel Fuel 94 12.943 5.680 
Diesel Fuel/Compressed Natural Gas 39 13.671 5.478 
Diesel Fuel/Electric Propulsion Power 11 11 - 
Dual Fuel 15 11.5 4.949 
Electric Battery 22 14.733 4.131 
Electric Propulsion Power 135 38.5 20.246 
Ethanol 14 14 0 
Gasoline 42 9.608 3.018 
Gasoline/Liquefied Petroleum Gas 14 10.5 4.041 
Hybrid Diesel 14 11.093 3.165 
Hybrid Gasoline 14 12.583 2.574 
Hydrogen Cell 14 14 0 
Liquefied Natural Gas 21 12.312 2.889 
Liquefied Petroleum Gas 14 10.904 2.527 
Other 14 10.75 2.217 
Unknown Fuel 65 12.985 9.881 

The following block of code showed the mapping of service life by fuel type: 

# Map fuel type with the service life 

df['Fuel Type_Service Life'] = df['Fuel Type'].map({'Compressed Natural 

Gas': 15, 'Diesel Fuel': 16, 'Diesel Fuel/Compressed Natural 

Gas': 17, 'Diesel Fuel/Electric Propulsion Power': 11, 'Electric 

Battery': 19, 'Electric Propulsion Power': 56, 'Ethanol': 14, 

'Gasoline': 10, 'Gasoline/Liquefied Petroleum Gas': 7, 'Hybrid 

Diesel': 10, 'Hybrid Gasoline': 7, 'Hydrogen Cell': 3, 'Liquefied 

Natural Gas': 15, 'Liquefied Petroleum Gas': 12, 'Other': 10, 

'Unknown Fuel': 32}) 
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Similarly, four other additional features, Service Life_Vehicle Type, Service Life_Funding 

Source, Service Life_Mode, and Service Life_Ownership Type, were created by mapping service 

life values. 

 4.7.5. Remove unnecessary columns 

Since the creation of new features was done with the Manufacture Year column and other 

categorical feature columns, those columns were no longer needed and removed from the 

training data set by executing the following code: 

 # Remove the unnecessary fields from the data set 

df.drop(['Manufacture Year', 'Fuel Type', 'Vehicle Type', 'Funding 

Source', 'Mode', 'Supports Mode', 'Ownership Type'], axis = 

'columns', inplace = True) 

4.7.6. Check null values in the training data 

The following code checked whether there were any null values in the training data set: 

 # Checking Null values in the data set 

df.isnull().sum() 

The output is listed in Table 19 (only 10 of the features out of 120 are shown). In the output 

window, the number in the right column of each feature indicated how many null values existed 

in the data. If any null values existed, the data set needed to be fixed by removing null values; 

otherwise, it would fail to build a model using the machine learning algorithm. The value 0 

(zero) indicated the data set was ready for training the predictive model. 
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Table 19. Null Values in the Data Set 

Features Name Number of Null Points 
Revenue Vehicle Inventory ID 0 
ADA Fleet Vehicles 0 
Active Fleet Vehicles 0 
Average Lifetime Miles per Active Vehicles 0 
Emergency Contingency Vehicles 0 
Rebuild Year 0 
Seating Capacity 0 
Standing Capacity 0 
Total Fleet Vehicles 0 
Total Miles on Active Vehicles During Period 0 

4.7.7. Set index 

The following code was used to set the index of the training data as the Revenue Vehicle 

Inventory ID field: 

 # Set index to Revenue Vehicle Inventory ID 

df = df.set_index('Revenue Vehicle Inventory ID') 

4.7.8. Check the number of rows and columns in training data set 

The following code was used to check the number of data points and features in the 

training set to train the predictive model: 

 # Checking the number of rows and columns in the training data set 

df.shape 

The output showed a tuple of (7745, 119), which meant there were 7745 rows with 119 columns 

in the training data set. 

4.7.9. Save the training data 

Finally, the following code was used to save the training data in the training.csv file in 

the same directory in the iPython Notebook. 

 # Save the training data 

df.to_csv('training.csv', sep = ',') 



 

89 
 

4.8. Create Deployment Data Set for Prediction 

The revenue vehicle deployment data set consisted of data of vehicles in operation. After 

building the model with the training data set, the model was applied to the deployment data set to 

predict the service life of vehicles. There were 31149 data points in the deployment data set, 

which indicated 31149 vehicles were in operation nationwide based on revenue vehicle data 

from 2008 to 2016. The deployment data were separated from total vehicles from 2008 to 2016 

based on the N flag in the Retired column. The main purpose of creating the deployment data set 

was to predict the service life of vehicles still in operation. Since the machine learning method 

works only when the X features in the training data set match the X features in the deployment 

data set exactly, the processing of the deployment data set was done in the same way as 

processing the training data set was done. Finally, the processed deployment data set was saved 

in a CSV file by executing the below code: 

 # Save data to .csv file 

X_deploy.to_csv('Final Deployment Data.csv', sep = ',') 

4.9. Develop Simple Linear Regression Model using SAS 

A simple linear regression model was developed using the Statistical Analysis System 

(SAS) software to see whether the predictive model could be useful for this problem. The simple 

linear regression model using the full training set with the top 23 important features produced the 

performance results shown in Table 20. The value of R2 in the full training set is 0.7184, which 

indicates that the model explains 72% of the variance in the data set. The RMSE score of 

3.77945 indicates the prediction falls within 3.78 years below or above the standard deviation 

with a 72% accuracy. Therefore, the below results indicate that the simple linear regression was 

not a good fit for this problem; thus it was not considered as a viable model for this problem. 
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Table 20. Performance Measures with Simple Linear Regression by SAS 

Performance Measures Performance Scores 
Root Mean Squared Error (RMSE) 3.77945 
Dependent Mean 12.10471 
The Coefficient of Variation (Coeff Var) 31.22299 
R2 Score 0.7184 
Adjusted R2 Score 0.7175 

4.10. Develop Predictive Model 

After outlining the initial parameters for each module (as detailed above), the training.csv 

file was loaded into a data frame called training. The code is as follows: 

 # Load training data 

training = pd.read_csv('..//NTD/training.csv') 

After loading, the training data was split to separate the target variable Service Life from 

predictor variables. The following block of code loaded the predictor variables into an object 

called X, and the Service Life variable into an object called y:  

 # Create the X arrays 

X = training.set_index('Revenue Vehicle Inventory ID') 

# Create the y arrays 

y = X.pop('Service Life') 

The shape attribute checks the number of rows and columns in the data frame X and the y series.  

 # Check the shape of the X features 

X.shape 

# Check the shape of the y response 

y.shape 

The above codes showed 7745 rows and 118 columns in the X data frame and 7745 rows in the y 

series in a single column.  
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4.10.1. Random forest regression model 

The random forest regression is an ensemble technique that combines multiple decision 

trees. Because it can randomize, the random forest regression handles generalization better than 

an individual decision tree; thus, the variance of the model decreases (Mirjalili & Raschka, 

2017). Before building the predictive model with the training data, the hyperparameters for 

RandomForestRegressor class were tuned to train a random forest model. 

4.10.1.1. Tuning hyperparameters for random forest regression model 

The hyperparameters, n_estimators, max_features, and min_sample_leaf, were tuned to 

the training data to increase the predictive performance. The default value of the n_estimators 

was 10; this default value needed to be tuned for the best results. Therefore, a series of the 

number of trees were selected to find the best value for n_estimators. The following block of 

code assigned a series of number of estimators to ascertain which value returned the best root 

mean squared error (RMSE) on the training data set:  

 # Empty tree list 

tree_results = [] 

n_estimator_options = [25, 50, 75 ,100, 125, 150, 175, 200, 300, 400, 

500, 600, 700, 800, 900, 1000] 

for trees in n_estimator_options: 

 model = RandomForestRegressor(trees, oob_score = True, n_jobs = -

1, random_state = 42) 

model.fit(X, y) 

rmse = np.sqrt(mean_squared_error(y, model.predict(X))) 

tree_results.append(rmse) 

The above results were made into a graph using the following code: 

 # Set plot style 

plt.style.use('ggplot') 

colors = ['lightcoral' if c == min(tree_results) else 'cornflowerblue' 

for c in tree_results] 
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ax = pd.Series(tree_results, n_estimator_options).plot(kind = 'barh', 

color = colors, xlim = [min(tree_results)-0.5, max(tree_results) 

+ 0.5], figsize = (12,5) ) 

ax.set_ylabel('Number of Trees') 

ax.set_xlabel('Root Mean Squared Error') 

The above code generated the graph shown in Figure 18 showed that the lowest RMSE value 

was achieved while the number of trees (n_estimators) was 500. 

 

Figure 18. A Bar Plot of Number of Trees vs. Root Mean Squared Error 

The parameter max_features needed to be optimized because it originally defaulted to 

‘None’. The number of features to be considered was based on the number features in the 

training data and the problem. The maximum features were preconfigured with parameter 

options such as ‘auto’ for all features, ‘sqrt’ or ‘log’ functions on the number of features, as well 

as the percent of all features. The following block of code was set to produce the best 

max_features parameter making sure to set n_estimators with 500: 

 # Empty list for max_features 

 max_features_results = [] 

max_feature_options = ['auto', None, 'sqrt', 'log2', 0.9, 0.8, 0.7, 

0.6, 0.5, 0.4, 0.3, 0.2, 0.1] 

for max_features in max_feature_options: 
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 model = RandomForestRegressor(n_estimators = 500, oob_score = 

True, n_jobs = -1, random_state = 42, max_features = 

max_features) 

model.fit(X, y) 

rmse = np.sqrt(mean_squared_error(y, model.predict(X))) 

max_features_results.append(rmse) 

 # Set plot style 

plt.style.use('ggplot') 

colors = ['lightcoral' if c == min(max_features_results) else 

'cornflowerblue' for c in max_features_results] 

ax = pd.Series(max_features_results, max_feature_options).plot(kind = 

'barh', color = colors, xlim = [min(max_features_results) - 0.5, 

max(max_features_results) + 0.5], figsize = (12, 5)); 

ax.set_ylabel('max_features') 

ax.set_xlabel('Root Mean Squared Error') 

save_image('max_features_rmse') 

The above block of code generated the plot shown in Figure 19 that shows that the model 

produced the best result when the maximum number of features was set to 70% of all features 

(max_features = 0.7). 

 

Figure 19. A Bar Plot of Maximum Features vs. Root Mean Squared Error 

The min_samples_leaf parameter was run by setting max_features = 0.7 and n_estimators 

= 500. The default value for this parameter is 1, which is good for a first few training-runs on the 
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data set. Assigning a series of values from 1 to 10 for this parameter and running the below code 

will produce the best performance. 

 # Create empty sample leap 

min_sample_leaf_results = [] 

min_sample_leaf_options = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] 

for min_samples in min_sample_leaf_options: 

model = RandomForestRegressor(n_estimators = 500, oob_score = 

True, n_jobs = -1, random_state = 42, max_features = 0.7, 

min_samples_leaf = min_samples) 

model.fit(X, y) 

rmse = np.sqrt(mean_squared_error(y, model.predict(X))) 

min_sample_leaf_results.append(rmse) 

 # Set pandas series 

ax = pd.Series(min_sample_leaf_results, 

min_sample_leaf_options).plot(figsize = (12, 5), color = 

'cornflowerblue'); 

ax.set_xlabel('min sample leaf') 

ax.set_ylabel('Root Mean Squared Error') 

save_image('sample_leaf_rmse') 

The above code plotted the graph below in Figure 20 showing that the default value (1) of min 

sample leaf produced the best result. 

 

Figure 20. A line Plot of min_sample_leaf vs. Root Mean Squared Error (RMSE) 
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After tuning the hyperparameters for the random forest regression predictive model, the 

following hyperparameters were selected to optimize the state of good repair predictive model. 

 # Parameters for RFR 

RandomForestRegressor(n_estimators = 500, oob_score = True, n_jobs = -

1, random_state = 42, max_features = 0.7, min_samples_leaf = 1) 

4.10.1.2. Building a random forest model to predict the service life of vehicles 

The machine learning model was built using the Scikit-learn four-step modeling pattern. 

In step one, the random forest regression class was imported. In step two, the model was 

instantiated with the estimator by setting hyper-parameters that were tuned earlier. The tuned 

parameters were instantiated by setting the max_features to 0.7, the n_estimators to 500, and the 

min_samples_leaf to 1 in the RandomForestRegressor object. In step three, the model was fit on 

the training data and then the patterns that were learned from the data were stored in the memory. 

In step four, the fitted model was applied to predict the response variable to the test set for 

evaluation (Inyang, Ozuomba, & Ezenkwu, 2017). 

Before building any predictive model, it is important to test the model on unseen data to 

evaluate its performance. Therefore, first the training data were split into the train set and the test 

set; the model was fit to the train set and evaluated on the test set (Raschka, 2015). The following 

code showed the train_test_split() function that was used to split the training data into the train 

set, 70% of the data, and the test set, 30% of the data.  

 # Import the class 

from sklearn.model_selection import train_test_split 

# Split the data set in a training set (2/3) and a test set (1/3) 

X_train, X_test, y_train, y_test = train_test_split(X, y, random_state 

= 42, test_size = 0.30) 
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The shape attribute provided the number of rows and number of columns in a tuple. The 

following block of codes showed the number of rows that were split into the train set and the test 

set by running shape attribute in the data frame: 

 X_train.shape 

Output: (5421, 118) 

y_train.shape 

Output: (5421L,) 

X_test.shape 

Output: (2324, 118) 

y_test.shape 

Output: (2324L,) 

The above output showed that 5421 data points were allotted for training and 2324 data points 

for testing the model. 

First, the RandomForestRegressor object with tuned hyperparameters was instantiated, 

and then the fit() method was applied on the X_train and y_train sets. After that, the predict() 

method was invoked on the X_test set, which then generated predictions (Mirjalili & Raschka, 

2017). In addition, the predict() method was invoked on X_train set for comparing performance 

measures with the test set. The block of codes is as follows: 

 # Instantiate Random Forest Regressor with tuned hyperparameters 

rfr_eval = RandomForestRegressor(n_jobs = -1, n_estimators = 500, 

oob_score = True, random_state = 42, max_features = 0.7, 

min_samples_leaf = 1) 

# Fit the model to the training data 

rfr_eval.fit(X_train, y_train) 

# Make the predictions on the train set 

y_pred_train = rfr_eval.predict(X_train) 

# Make the predictions on the test set 

y_pred_test = rfr_eval.predict(X_test) 
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After having fitted the model with the training data, the model was evaluated on the test 

set as well as on the train set by applying the performance measures of RMSE, MAE, and R2 

score to see how well the model worked on the unseen data. If the performance results were 

satisfactory for generalization errors, the model could be used to predict future data. If the 

performance results are not acceptable, the model needed to be tuned further for optimal 

performance (Mirjalili & Raschka, 2017). The block of codes on the train set with results is as 

follows: 

 # Find the error rate on the train set 

rms_train = np.sqrt(mean_squared_error(y_train, y_pred_train)) 

mae_train = mean_absolute_error(y_train, y_pred_train) 

r2_train = r2_score(y_train,y_pred_train) 

print('Root Mean Squared Error:\t\t%0.2f' % rms_train) 

print('Mean Absolute Error:\t\t\t%0.2f' % mae_train)  

print('R2 Score:\t\t%0.2f' % r2_train) 

The performance results of random forest regression model on the train set are listed below in 

Table 21. 

Table 21. The Performance Measures with Random Forest Regression on Training Set 

Performance Measures Performance Scores 
Root Mean Squared Error (RMSE) 1.27 
Root Mean Squared Error (MAE) 0.72 
R2 Score 0.97 

The block of codes on the test set with performance results is as follows: 

  # Find the error rate on test data 

rms_test = np.sqrt(mean_squared_error(y_test, y_pred_test)) 

mae_test = mean_absolute_error(y_test, y_pred_test) 

r2_test = r2_score(y_test,y_pred_test) 

print('Root Mean Squared Error:\t\t%0.2f' % rms_test) 

print('Mean Absolute Error:\t\t\t%0.2f' % mae_test) 

print('R2 Score:\t\t%0.2f' % r2_test) 
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The performance results of the predictive model on the test set are listed below in Table 22. 

Table 22. The Performance Measures with Random Forest Regression on Test Set 

Performance Measures Performance Scores 
Root Mean Squared Error (RMSE) 3.39 
Root Mean Squared Error (MAE) 1.94 
R2 Score 0.78 

The performance results in Table 21 and Table 22 were shown in Table 23 side by side 

and compare the results on the train set to the test set. The comparison results between the train 

set and the test set showed that the RMSE value of 3.39 on the test set was much larger than the 

RMSE value of 1.27 on the train set. This difference was an indicator that the current model was 

overfitting the train data. In machine learning problems, overfitting is common when the model 

performs well on the train data but does not generalize well on the test or unseen data. The model 

may have a high variance due to overfitting. In addition, many parameters in the model may 

cause the model to be too complex. Therefore, the noise can be filtered out from the data by 

tuning parameters and removing non-important features from the model (Mirjalili & Raschka, 

2017). 

Table 23. Comparison of Performance Results on the Training Set and the Test Set using the 
Random Forest Regression Method 

Method Train Set Hold-Out Set (Test Set) 
RMSE MAE R2 Score RMSE MAE R2 Score 

RFR 1.27 0.72 0.97 3.39 1.94 0.78 

4.10.1.3 Building a random forest model with full data set as the training set 

The following block of code illustrates the 4 steps random forest regression model: 

 # Import the class 

from sklearn.ensemble import RandomForestRegressor 

# Instantiate Random Forest Regressor 
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rfr = RandomForestRegressor(n_jobs = -1, n_estimators = 500, oob_score = 

True, random_state = 42, max_features = 0.7, min_samples_leaf = 

1) 

# Fit regression model 

rfr.fit(X,y) 

#Make the predictions on the training set 

y_pred = rfr.predict(X) 

After building a machine learning model, it needs to be measured for performance. The 

following block of code was used for performance measure: 

 # Find the error rate on the full set of training data 

rmse = np.sqrt(mean_squared_error(y, y_pred)) 

mae = mean_absolute_error(y, y_pred) 

r2 = r2_score(y, y_pred) 

print('Root Mean Squared Error:\t\t%0.2f' % rmse) 

print('Mean Absolute Error:\t\t\t%0.2f' % mae) 

print('R2 Score:\t\t%0.2f'% r2) 

The performance results of the predictive model on the full data set are listed in Table 24. 

The RMSE result of 1.23 in the random forest regression model performed well because the 

prediction error is up to 1 year or above. The MAE of 0.71 is acceptable. The value of R2 in the 

train set is 0.97, which indicates that the model explains 97% of the variance in the training set. 

The below results suggested a good result, but not the best result. Since the evaluation results of 

the random forest regression model do not seem to generalize well enough to deploy for 

prediction, few more regression algorithms were applied before choosing the best model. 

Table 24. Performance Measures with Random Forest Regression on Full Training Set 

Performance Measures Performance Scores 
Root Mean Squared Error (RMSE) 1.23 
Root Mean Squared Error (MAE) 0.71 
R2 Score 0.97 
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4.10.2. Gradient boosting regression model 

Tree-based ensemble methods combine simple regression trees with poor results, fit 

complex non-linear relationships, and produce high-performance predictions. The gradient 

boosting regression method corrects the prediction made by previous base models in order to 

improve prediction accuracy. In this problem, the gradient boosting regression tree method was 

applied to build the model for service life on revenue vehicle inventory data in order to improve 

prediction accuracy as compared to the random forest regression model (Zhang & Haghani, 

2015).  

4.10.2.1. Tuning hyperparameters for gradient boosting regression model 

In scikit-learn, hyperparameters are parameters that are passed as arguments to the 

constructor of the classes (Pedregosa, et al., 2011). The gradient boosting regression has many 

parameters that can be tuned, such as learning_rate, n_features, max_features, 

min_samples_split, max_depth, and min_samples_leaf. Before tuning hyperparameters using 

GridSearchCV, a few required scikit-learn’s libraries were imported. The following block of 

code loaded the training data and created X variables and y variable: 

 # Import classes 

from sklearn.ensemble import GradientBoostingRegressor 

from sklearn.model_selection import GridSearchCV 

from sklearn.metrics import mean_squared_error 

from sklearn.model_selection import train_test_split 

# Import data science package 

import pandas as pd 

# Load training data 

training = pd.read_csv('..//NTD/training.csv') 

# Create the X arrays 

X = training.set_index('Revenue Vehicle Inventory ID') 

# Create the y arrays 

y = X.pop('Service Life') 
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The train_test_split() utility function was applied to split the data into a train set and a 

test set. The train set was fed to the GridSearchCV instance and the test set was used to compute 

performance metrics. The GridSearchCV instance provided a grid search in the parameters of 

‘param_grid’ and generated the best parameters from a grid of parameters (Pedregosa, et al., 

2011). The parameters were set as follows: 

 # Set a dictionary of parameters 

param_grid = {'learning_rate': [0.1, 0.01, 0.001], 'max_depth': [2, 4, 

6, 8, 10], 'min_samples_leaf': [2, 3, 4, 5, 6], 

'min_samples_split': [2, 3, 4, 5, 6], 'max_features': [1.0, 0.8, 

0.7, 0.6, 0.5]} 

The parameter grid was set with a wide range of parameters for the grid search. The 

learning_rate parameter controls the output of each tree and determines how fast or how slow it 

can converge to the optimal result. The max_depth defines maximum depth of a tree controls 

overfitting and allows the model to learn relations. The min_samples_leaf parameter defines 

minimum samples in a leaf and it also controls overfitting. The max_features defines the number 

of features and the min_samples_split parameter defines the minimum number of observations 

that will be considered for splitting (Jain, 2016). 

Now, after instantiating the GradientBoostingRegressor model with 3000 trees, the model 

was fit with the training set and was run with GridSearchCV instance. Since a wide range of 

parameters and a higher number of trees were used in the grid search, the iterations took some 

time to finish. The block of codes was as follows: 

 # Instantiate the model 

est = GradientBoostingRegressor(n_estimators = 3000) 

# Grid Search 

gs_cv = GridSearchCV(est, param_grid, scoring = 'mean_squared_error', 

n_jobs = -1).fit(X_train, y_train) 
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After finishing up the grid search iterations, the following code found the best parameters: 

 # Get the best hyperparameters 

print('Best hyperparameters: %r' % gs_cv.best_params_) 

The above code generated the following output: 

Best hyperparameters: {'max_features': 0.8, 'min_samples_split': 5, 

'learning_rate': 0.01, 'max_depth': 10, 'min_samples_leaf': 5} 

After generating all the hyperparameters, the gradient boosting regression model was 

ready to build the predictive model with the revenue vehicle inventory training data to solve 

transit state of good repair issues. 

4.10.2.2. Building and evaluating a gradient boosting regression predictive model 

The gradient boosting regression model needed to be tested on unseen data set to 

ascertain its performance. This is because the model, even if all of revenue vehicle data are used 

and estimate the performance on the same data, the model may not provide an accurate picture of 

its performance on unseen data. For this reason, it is important to split the data into the train set 

and the test set, and then train the model with the train set by setting best hyperparameters. The 

following block of code provided the evaluation procedure on test data: 

 # Import class 

 from sklearn.ensemble import GradientBoostingRegressor   

from sklearn.model_selection import train_test_split 

# Split the data set in a training set (2/3) and a test set (1/3) 

X_train, X_test, y_train, y_test = train_test_split(X, y, random_state 

= 42, test_size = 0.30) 

# Instantiate regression model with tuned hyperparameters 

gbr_eval = GradientBoostingRegressor(n_estimators = 3000, max_features 

= 1.0, min_samples_split = 5, learning_rate = 0.01, max_depth = 

6, min_samples_leaf = 5, loss = 'ls') 

# Fit the model 

gbr_eval.fit(X_train,y_train) 
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# Make the predictions on the train set 

y_pred_train = gbr_eval.predict(X_train) 

# Make the predictions on the test set 

y_pred_test = gbr_eval.predict(X_test) 

The following block of code calculated the performance measures by gradient boosting 

regression model on the train set: 

 # Find the error rate on the train data set 

rms_train = np.sqrt(mean_squared_error(y_train, y_pred_train)) 

mae_train = mean_absolute_error(y_train, y_pred_train) 

r2_train = r2_score(y_train,y_pred_train) 

print('Root Mean Squared Error:\t\t%0.2f' % rms_train) 

print('Mean Absolute Error:\t\t\t%0.2f' % mae_train)  

print('R2 Score:\t\t%0.2f' % r2_train) 

The performance results of the predictive model on the train set are shown in Table 25. 

Table 25. The Performance Measures with Gradient Boosting Regression on Training Set 

Performance Measures Performance Scores 
Root Mean Squared Error (RMSE) 1.52 
Root Mean Squared Error (MAE) 1.05 
R2 Score 0.95 

The following block of code on the test set calculates performance measure: 

 # Find the error rate on test data set 

rms_test = np.sqrt(mean_squared_error(y_test, y_pred_test)) 

mae_test = mean_absolute_error(y_test, y_pred_test) 

r2_test = r2_score(y_test,y_pred_test) 

print('Root Mean Squared Error:\t\t%0.2f'% rms_test) 

print('Mean Absolute Error:\t\t\t%0.2f'% mae_test) 

print('R2 Score:\t\t%0.2f'% r2_test) 

The performance results of the predictive model on the train set are shown in Table 26. 
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Table 26. The Performance Measures with Gradient Boosting Regression on Test Set 

Performance Measures Performance Scores 
Root Mean Squared Error (RMSE) 1.37 
Root Mean Squared Error (MAE) 0.94 
R2 Score 0.96 

The performance results on the train set and the test set are shown below in Table 27 side 

by side and compared to the performance results. This table shows that the RMSE score on the 

train set is very close to RMSE score on the test set. Based on these figures, there is no indication 

of overfitting in the model; thus this table generalizes the model very well. Therefore, this model 

can be used for predictions. Furthermore, the full training set can be used to train the model; this 

will further improve the performance because the full training data set contains more training 

data. 

Table 27. Comparison of Performance Results on Training Set and Test Set with Gradient 
Boosting Regression Method 

Method Train Set Hold-Out Set (Test Set) 
RMSE MAE R2 Score RMSE MAE R2 Score 

GBR 1.52 1.05 0.95 1.37 0.94 0.96 

4.10.2.3. Building a gradient boosting regression model with full data as the training set 

Since the performance results indicate a good predictive model during evaluation, the 

training set was not split further for evaluation. Instead, the full training set was used to train the 

model before applying to the deployment set. Just like random forest regression model, the fit() 

and predict() methods in scikit-learn were used in the same way to build the model. The 

following block of codes was used to develop the gradient boosting regression model: 

 # Import the class 

from sklearn.ensemble import GradientBoostingRegressor 

# Instantiate regression model with tuned hyperparameters using least- 

# squares 
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gbr = GradientBoostingRegressor(n_estimators = 3000, max_features = 

0.8, min_samples_split = 5, learning_rate = 0.01, max_depth = 10, 

min_samples_leaf = 5, loss = 'ls') 

# Fit the Gradient Boosting Regression model 

gbr.fit(X, y) 

# Make predictions on the overall data set 

y_gbr_pred = gbr.predict(X) 

The following block of code calculated the performance measures by the gradient boosting 

regression model on the overall data set: 

 # Find the error rate on the full set 

rmse = np.sqrt(mean_squared_error(y, y_gbr_pred)) 

mae = mean_absolute_error(y, y_gbr_pred) 

r2 = r2_score(y, y_gbr_pred) 

print('Root Mean Squared Error:\t\t%0.2f' % rmse) 

print('Mean Absolute Error:\t\t\t%0.2f' % mae) 

print('R2 Score (Variance Score):\t\t%0.2f' % r2) 

The performance results of the predictive model on full data set are shown in Table 28. 

The performance results indicate a very good performance model with the gradient boosting 

regression. The R2 score suggested that the model can predict with a 98% accuracy about 1.04 

years above or below the mean year, with a minimum absolute error of 0.65. Therefore, the 

gradient boosting regression predictive model was a good fit for this problem of predicting the 

service life of transit vehicles.  

Table 28. The Performance Measures with Gradient Boosting Regression on Full Data Set 

Performance Measures Performance Scores 
Root Mean Squared Error (RMSE) 1.04 
Root Mean Squared Error (MAE) 0.65 
R2 Score 0.98 
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4.10.3. Decision tree regression predictive model 

Nevertheless, in order to fully explore this problem, another algorithm, the decision tree 

regression, was applied and the results were analyzed before choosing the best model for the 

problem. A decision tree builds a regression model in the form of a tree-like structure to solve 

regression problems and is a good fit to handle the complex nonlinear relationship between 

features variables and target variable. A decision tree is a top-down approach where the 

processing breaks down a data set into smaller subsets while at the same time the tree moves 

down until the leaf node. The basic idea is to break down complex decisions into smaller subsets 

of simpler decisions so that it is easier to arrive at a solution. In a regression problem, the 

decision tree considers features of data as predictor variables and the continuous variable as the 

target variable. The features with important information are chosen for the model, and features 

with no information are rejected automatically from the model, thus increasing the computational 

efficiency (Xu, Watanachaturaporn, Varshney, & Arora, 2005). 

4.10.3.1. Tuning hyperparameters for decision tree regression model 

A grid search algorithm was applied to find the optimal hyperparameters for the decision 

tree regression model. The following block of codes imported some required classes and data 

science packages for tuning hyperparameters: 

 # Import classes 

from sklearn.tree import DecisionTreeRegressor 

from sklearn.model_selection import GridSearchCV 

from sklearn.metrics import mean_squared_error 

from sklearn.model_selection import train_test_split 

# Import Data Science package 

import pandas as pd 

The training data set was loaded and split into the train set and the test set. The following block 

of code performed the grid search on the train set only: 
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 # Load the training data 

training = pd.read_csv('..//NTD/training.csv') 

# Create the X arrays 

X = training.set_index('Revenue Vehicle Inventory ID') 

# Create the y arrays 

y = X.pop('Service Life') 

# Split the training data into a train set (2/3) and a test set (1/3) 

X_train, X_test, y_train, y_test = train_test_split(X, y, random_state 

= 42, test_size = 0.3) 

A wide range of parameters was set in the dictionary ‘param_grid’. The code is as follows: 

 # Define the search parameter values 

param_grid = {'max_depth': [2, 3, 4, 5, 6], 'min_samples_leaf': [1, 2, 

3, 4], 'min_samples_split': [1.0, 2, 3, 4], 'max_features': [1.0, 

0.8, 0.6, 0.5, 0.4, 0.3, 0.1,'auto',None]} 

The parameter grid setting included parameters as keys and a list of parameter values as 

values. The parameter grid was searched to find the best values for the model. After setting the 

parameter values, the decision tree regression model was instantiated with the random_state 

number of 42, which meant every time it was run the output would remain the same. Next, the 

grid search method was instantiated with the required parameters and was fit with the train set. 

The code is as follows: 

 # Instantiate the model 

est = DecisionTreeRegressor(random_state = 42) 

# Instantiate and fit the grid search 

gs_cv = GridSearchCV(est, param_grid, scoring = 'mean_squared_error', 

n_jobs = -1).fit(X_train, y_train) 

Once the iterations were completed, the following code generated the optimal parameter values 

from the list of values: 

 # Best hyperparameter setting 

print('Best Hyperparameters for Train set: %r' % gs_cv.best_params_) 
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The output is listed below. 

Best Hyperparameters for train set: {'max_features': 0.8, 

'min_samples_split': 2, 'max_depth': 4, 'min_samples_leaf': 2} 

4.10.3.2. Developing and evaluating a decision tree regression predictive model 

The 4 steps scikit-learn modeling was used on the decision tree regression model in the 

same way the previous models were built with the training set. The following block of codes was 

used to develop the decision tree regression model: 

# Import classes 

from sklearn.tree import DecisionTreeRegressor 

from sklearn.model_selection import train_test_split 

# Split the data set in a training set (2/3) and a test set (1/3) 

X_train, X_test, y_train, y_test = train_test_split(X, y, random_state 

= 42, test_size = 0.3) 

# Instantiate the decision tree regressor model 

dtr_eval = DecisionTreeRegressor(random_state = 42, max_features = 0.8, 

min_samples_split = 2, max_depth = 4, min_samples_leaf = 2) 

# Fit the model 

dtr_eval.fit(X_train,y_train) 

# Make the predictions on the train set 

y_pred_train = dtr_eval.predict(X_train) 

# Make the predictions on the test set 

y_pred_test = dtr_eval.predict(X_test) 

The following block of code calculated the performance measures by decision tree regression 

model on the training set: 

# Find the error rate on the train set 

rms_train = np.sqrt(mean_squared_error(y_train, y_pred_train)) 

mae_train = mean_absolute_error(y_train, y_pred_train) 

r2_train = r2_score(y_train,y_pred_train) 

print('Root Mean Squared Error:\t\t%0.2f'% rms_train) 

print('Mean Absolute Error:\t\t\t%0.2f'% mae_train)  

print('R2 Score:\t\t%0.2f'% r2_train) 
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The performance results of predictive model on the training set are listed in Table 29. 

Table 29. The Performance Measures with Decision Tree Regression on Training Set 

Performance Measures Performance Scores 
Root Mean Squared Error (RMSE) 3.47 
Root Mean Squared Error (MAE) 2.17 
R2 Score 0.76 

Again, the following block of code calculated the performance measures by the decision 

tree regression model on the test set. 

# Find the error rate on test set 

rms_test = np.sqrt(mean_squared_error(y_test, y_pred_test)) 

mae_test = mean_absolute_error(y_test, y_pred_test) 

r2_test = r2_score(y_test, y_pred_test) 

print('Root Mean Squared Error:\t\t%0.2f' % rms_test) 

print('Mean Absolute Error:\t\t\t%0.2f' % mae_test) 

print('R2 Score:\t\t%0.2f' % r2_test) 

The performance results of predictive model on the test set are listed in Table 30. The 

high performance scores on the train and test sets indicated that the decision tree regression 

model was not a good fit for the problem on a revenue vehicle inventory data set and will not 

predict well on unseen data. Therefore, the decision tree regression model was not considered as 

our predictive model. 

Table 30. The Performance Measures with Decision Tree Regression on Test Set 

Performance Measures Performance Scores 
Root Mean Squared Error (RMSE) 3.48 
Root Mean Squared Error (MAE) 2.20 
R2 Score 0.77 

4.10.4. Comparison between random forest regression and gradient boosting regression model 

Since the decision tree regression model was not be considered due to poor performance 

scores, the other two methods described above were compared for selection of the best predictive 
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model for service life on revenue vehicle inventory data. Table 31 shows the performance metric 

for both models. 

Table 31. Comparisons of Performance Measures Between Random Forest Regression and 
Gradient Boosting Regression 

Method Full Training Data Set 
RMSE MAE R2 Score 

Random Forest Regression 1.23 0.71 0.97 
Gradient Boosting Regression 1.04 0.65 0.98 

The above comparison results indicated that the gradient boosting regression model was a 

better fit for this problem. The RMSE score of 1.04 indicated that the prediction would fall 

within 1.04 below or above the standard deviation at 98% accuracy with a mean absolute error of 

0.65 years of prediction difference from the actual service life of vehicles. 

4.11. Building Gradient Boosting Regression Model for Service Life Prediction 

Before applying the model on deployment data for predictions, the prediction of service 

life was compared with the actual service life of vehicles. The following code compared the 

vehicle’s actual service life and the predicted service life: 

 # Get predicted service life 

gbr_results = y.to_frame() 

gbr_results['Prediction'] = y_gbr_pred 

The output of the above code is listed below in Table 32. For simplicity, the output was shown 

with the first five values. The comparision between Service Life and Prediction shows that the 

model will perform well enough to deploy on unseen data. Futhermore, predictions could be 

even further improved by removing unnecessary features from the X variables. 
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Table 32. Comparison of Service Life vs. Predicted Service Life 

Revenue Vehicle Inventory ID Service Life Prediction 
24369.0 12.0 12.02986 
24446.0 14.0 13.20664 
48056.0 14.0 13.49888 
42667.0 5.0 5.576827 
48051.0 14.0 13.53025 

The following code plotted the comparison histogram that showed the predicted service 

life vs. the actual service life: 

 # Create a list of service life and prediction 

features_training = ['Service Life', 'Prediction'] 

ax = gbr_results.hist(column = features_training, figsize = (14, 6), 

bins = 50) 

save_image('hist_gbr') 

plt.show(); 

The above code produces the plots shown in Figure 21. The comparison histogram showed that 

the shape of the distribution of the data was normally distributed, and both were approximately 

bell-shaped. The range of the values was also same. Therefore, we could conclude that the model 

was performing well enough to predict the future service life of transit vehicles. 

 

Figure 21. Comparison Histogram of Predicted Service Life vs. The Actual Service Life 
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The following code plots a regression line: 

 # Import classes 

import seaborn as sns 

import matplotlib.pyplot as plt 

sns.set(color_codes = True) 

plt.subplots(figsize = (14, 7)) 

g = sns.regplot(x = gbr_results['Service Life'], y = y_gbr_pred, data = 

training) 

regline = g.get_lines()[0] 

regline.set_color('Cyan') 

plt.title('Regression plot of Predicted Service Life') 

plt.xlim(-5,150) 

plt.ylim(-5,150) 

The regression plot is shown in Figure 22. The regression line indicated the projected service life 

of transit vehicles. 

 

Figure 22. Regression Plot with a Regression Line of the Prediction of Service Life 
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4.11.1. Save the SGR predictive model 

Since the model was trained and tested as well as the test data set already provided a 

good estimate of predictions errors, the model can perform even better if larger training data set 

can be used. The model generalizes and performs better if it is trained on the combined large data 

set (Downey, 2014). Therefore, the following predictive model was created on overall training 

data set and saved for unseen revenue vehicle inventory data for prediction. The following code 

saved the model in a pickle format so that the model can be used on deployment data for 

predictions. 

 # Import the class 

from sklearn.externals import joblib 

# Save the trained model to a file 

joblib.dump(gbr, 'SGR_model_GBR.pkl') 

4.12. Building a Gradient Boosting Regression Model with Feature Importance 

In the previous gradient boosting regression predictive model, every useful features 

available in the data and some combined features were used in the training data set. It seemed 

reasonable to use as much information as available to build the model. However, sometimes 

some features may add redundant information which may lead poor generalization and some 

irrelevant features may cause overfitting the model. In addition, some poor features may return 

poor results. Sometimes, a large number of features may increase computation time without 

improving the regression model and may cause the problem on generalizing to train a model on a 

data set. As a result, a smaller set of most important features may produce better results. 

Therefore, in this model, 25% of the most important features were selected algorithmically. This 

process of selecting features is called feature selection, and this is very important to get better 

performance for any machine learning algorithms (Garreta & Moncecchi, 2013). 
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The gradient boosting regression can measure the feature importance by applying the 

feature_importances_ attribute after fitting the GradientBoostingRegressor. The following code 

ranks the top 30 most important features based on their respective importance measures: 

 # Display top 30 most important features 

importances = pd.DataFrame({'Top 30 Important Features': X.columns, 

'importance': gbr.feature_importances_}).sort_values(by = 

'importance', ascending = False).reset_index(drop = True) 

importances.head(30) 

The output is listed in Table 33. The gradient boosting regression generates rank among the 

important features on a scale between 0 and 1 (Downey, 2014). The feature, 

VehicleLength_SeatingCapacity, is the top most important features with 8.7% importance score 

amongst all features. 
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Table 33. Top 30 Most Important Features and their Importance Scores 

Index Top 30 Most Important Features Importance Scores 
0 VehicleLength_SeatingCapacity 0.08783 
1 ALMPAV_TFV 0.07824 
2 Average Lifetime Miles per Active Vehicles 0.07704 
3 Vehicle Length 0.06462 
4 Vehicle Type_Service Life 0.05748 
5 Total Miles on Active Vehicles During Period 0.05693 
6 Seating Capacity 0.05662 
7 ALMPAV_AFV 0.05176 
8 StandingCap_SeatingCap 0.0492 
9 Mode_Service Life 0.0468 
10 TMOAVDP_AFV 0.04657 
11 TMOAVDP_TFV 0.04514 
12 VehicleLength_StandingCapacity 0.04153 
13 Total Fleet Vehicles 0.03268 
14 Standing Capacity 0.02562 
15 Fuel Type_Service Life 0.01883 
16 ADA Fleet Vehicles 0.01591 
17 Active Fleet Vehicles 0.01472 
18 Fuel Type_Electric Propulsion Power 0.00988 
19 Funding Source_UA 0.00903 
20 RebuildYear_ManufactureYear 0.00814 
21 Fuel Type_Diesel Fuel 0.00746 
22 Emergency Contingency Vehicles 0.00696 
23 Funding Source_NFPA 0.00679 
24 Funding Source_OF 0.00658 
25 TOS_PT 0.00643 
26 TOS_DO 0.00617 
27 Vehicle Type_Bus 0.00457 
28 Ownership Type_OOPA 0.00405 
29 Rebuild Year 0.00386 

After ranking the top 30 most important features, a plot was created based on their 

relative importance with the top 30 most important features. The following code shows these top 

30 most important features in a bar chart: 

 # Display important features in bar graph 

importances.head(30).plot(kind = 'bar', figsize = (14, 8) ,use_index = 

'name', x = 'Top 30 Important Features') 

plt.title('Top 30 Important Features and importance score') 
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plt.ylabel('Importance Score') 

save_image('important_features') 

plt.show() 

The plot with top 30 most important features is shown in Figure 23 highlighted the top 

most 30 features which was ranked by the relative feature importance for gradient boosting 

regression predictive model. The relative importance of features indicates how much a feature 

can contribute predicting a target variable. The greater feature’s importance means the feature is 

being used more often. Since gradient boosting regression is an ensemble tree model, the scores 

are averaged for each feature across all trees, and the sum of all important features is equal to 1. 

In this gradient boosting regression predictive model, the relative feature importance for top ten 

features were most significant and accounted for about 60% of total feature importance. 

Similarly, the top five most important features contributed about 35% of relative feature 

importance. There were only two internal features ranked amongst the top five important 

features, and the most important feature is VehicleLength_SeatingCapacity used in this model 

(Johnson, et al., 2017). Therefore, we can conclude that the creation of new features by 

combining the different combination of features have the significant impact on the model. 
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Figure 23. Bar Plot with Top 30 Important Features and Importance Score 

Next, the top 30 features were listed in the variable object which were used to build the 

model. The below code listed the top 30 most important features. 

 # List of top 30 most important features 

important_features = ['Vehicle Length', 'Average Lifetime Miles per 

Active Vehicles', 'Total Miles on Active Vehicles During Period', 

'Seating Capacity', 'Standing Capacity', 'ADA Fleet Vehicles', 

'Active Fleet Vehicles', 'Emergency Contingency Vehicles', 'Total 

Fleet Vehicles', 'Fuel Type_Service Life', 'Mode_Service Life', 

'Vehicle Type_Service Life', 'VehicleLength_SeatingCapacity', 

'RebuildYear_ManufactureYear', 'VehicleLength_StandingCapacity', 

'StandingCap_SeatingCap', 'TMOAVDP_TFV', 'TMOAVDP_AFV', 

'ALMPAV_TFV', 'ALMPAV_AFV', 'TOS_DO', 'TOS_PT', 'Mode_CC', 

'Supports_Mode_MB', 'Fuel Type_Diesel Fuel', 'Vehicle Type_Bus', 

'Ownership Type_OOPA', 'Funding Source_NFPA', 'Funding 

Source_OF', 'Funding Source_UA'] 
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The following block of codes was used to build the predictive model using 30 most important 

features. At first, the top 30 most important features were stored in X variables on the revenue 

vehicle inventory data. Then, the Scikit-learn modeling patterns were applied to build the model.  

 # Store feature matrix in 'X' 

X_imp = X[important_features] 

# Store response vector in 'y' 

y_imp = y 

# Import class 

from sklearn.ensemble import GradientBoostingRegressor 

# Instantiate regression model with tuned hyperparameters using least- 

# squares 

gbr_imp = GradientBoostingRegressor(n_estimators = 3000, max_features = 

0.6, min_samples_split = 4, learning_rate = 0.01, max_depth = 10, 

min_samples_leaf = 3, loss = 'ls') 

# Fit regression model to the overall training data set 

gbr_imp.fit(X_imp, y_imp) 

# Make prediction on Overall training data set 

y_pred_imp = gbr_imp.predict(X_imp) 

In order to check the error rates and other performance measures on the split training set, the 

following block of code was used: 

 # Find the error rate on the full data set 

rms_imp = np.sqrt(mean_squared_error(y_imp, y_pred_imp)) 

mae_imp = mean_absolute_error(y_imp, y_pred_imp) 

r2_imp = r2_score(y_imp,y_pred_imp) 

print('Root Mean Squared Error:\t\t%0.2f'% rms_imp) 

print('Mean Absolute Error:\t\t\t%0.2f'% mae_imp) 

print('R2 Score:\t\t%0.2f'% r2_imp) 

Finally, the performance results of predictive model on the train set are listed in Table 34. In the 

result, the root mean squared error of 0.83 and the R2 score of 0.99 indicates that the predictions 

were fallen less than 1 year below or above the standard deviation with 99% accuracy rate and a 

mean absolute error of 0.45 for predictions. 
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Table 34. The Performance Measures by Gradient Boosting Regression with Top 30 Most 
Important Features on Full Data Set 

Performance Measures Performance Scores 
Root Mean Squared Error (RMSE) 0.83 
Root Mean Squared Error (MAE) 0.45 
R2 Score 0.99 

The performance results were compared between gradient boosting regression model 

with and without top 30 most important features shown in Table 35. The comparison results 

showed that the gradient boosting model with top 30 important features produced the better 

model.  

Table 35. Comparison of Performance Results Between Gradient Boosting Regression Model 
and Gradient Boosting Regression Model with Top 30 Important Features 

Method Full Training Data Set 
RMSE MAE R2 Score 

Gradient Boosting Regression 1.04 0.65 0.98 
Gradient Boosting Regression with Top 
30 Most Important Features 

0.83 0.45 0.99 

The following block of code was used to compare the predicted service life of vehicles 

with the actual service life of the same vehicles after applying only the 30 most important 

features of gradient boosting regression model (only 5 rows shown): 

 # Display predictions 

results_imp = y_imp.to_frame() 

results_imp['Prediction'] = y_pred_imp 

# Show first 5 rows 

results_imp.head() 

The output of the above code is shown in Table 36. The comparison showed a very close 

predicted service life with the actual service life of vehicles. 
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Table 36. Predicted Service Life vs. Actual Service Life by Top 30 Most Important Features 

Revenue Vehicle Inventory ID Service Life Prediction 
24369.0 12.0 12.13049 
24446.0 14.0 13.84231 
48056.0 14.0 13.73627 
42667.0 5.0 5.201973 
48051.0 14.0 13.84958 

The following block of code plots a comparison histogram that shows predicted service 

life versus the actual service life with the gradient boosting regression model using top 30 most 

important features: 

 # List features 

features = ['Service Life', 'Prediction'] 

results_imp.hist(column = features, figsize = (14, 6), bins = 50) 

save_image('hist_imp') 

plt.show(); 

The above code generates histograms shown in Figure 24. The comparison histogram showed 

that the shape of the distribution of the data in both plots is normally distributed. The range of 

the values was also same. Therefore, we could say that the model was performing well enough to 

predict the future service life of vehicles using gradient boosting regression model with top 30 

most important features. 
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Figure 24. Comparison Histogram of Prediction vs. Actual Service Life 

The following code was used on revenue vehicle inventory data in order to check the 

regression line with top 30 most important features:  

 # Import classes 

import seaborn as sns 

import matplotlib.pyplot as plt 

sns.set(color_codes = True) 

plt.subplots(figsize = (14,7)) 

g = sns.regplot(x = results_imp['Service Life'], y = y_gbr_pred, data = 

training) 

regline = g.get_lines()[0] 

regline.set_color('Cyan') 

plt.title('Regression plot of Predicted Service Life with top 30 

features') 

plt.xlim(-5,150) 

plt.ylim(-5,150) 

save_image('reg_imp') 

plt.show() 

The above code plotted a regression plot with a line which was a prediction for the service life of 

vehicles shown in Figure 25.  
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Figure 25. Regression Plot of Predicted Service Life vs. Actual Service Life with Top 30 Most 
Important Features 

4.13. Comparison Analysis of Predictions 

Since we got the comparison results of predicted service life and actual service life for 

both on gradient boosting regression model with all the features and with 30 most important 

features, the results are inserted in Table 37 for comparisons. The prediction results in the below 

table indicated the predictions were almost close in both cases. However, removing redundant 

features from the model improved the performance of the model. Therefore, the predictive model 

by gradient boosting regression model with top 30 most important features were chosen to solve 

the state of good repair problem. 
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Table 37. Comparison of Actual Service Life vs. Predicted Service Life with All Features and 
Top 30 Important Features 

RVI ID Service Life Prediction (With All Features) Prediction (With top 30 
important features) 

24369 12 12.0299 12.1305 
24446 14 13.2066 13.8423 
48056 14 13.4989 13.7363 
42667 5 5.57683 5.20197 
48051 14 13.5303 13.8496 

4.14. Save the Gradient Boosting Regression Model with Top 30 Important Features 

At this point, the model was saved in a pickle format for predictions to deployment data. 

 # Save the trained model with top 30 important features to a file 

joblib.dump(gbr_imp, 'SGR_model_imp.pkl') 

4.15. Make Predictions on Deployment Data 

Since the gradient boosting regression model was developed with top 30 most important 

features, the model was loaded to apply to the deployment data set for predictions. The following 

codes loaded the desired model and the necessary data set for predictions:  

 # Load the model that was trained previously 

SGR_model = joblib.load('SGR_model_imp.pkl') 

# Load cleaned deployment data for machine learning predictive model 

X_deploy = pd.read_csv('..//NTD/Final Deployment 

Data.csv').set_index('Revenue Vehicle Inventory ID') 

# Load non-retired revenue vehicle inventory data since 2008 for 

# prediction 

revenue_all_vehicles = 

pd.read_csv('..//NTD/Revenue_Vehicle_Inventory_all_years.csv').se

t_index('Revenue Vehicle Inventory ID').drop(['Unnamed: 0'], axis 

= 1) 

The shape attribute was applied on all data to see the total number of vehicles, and it was further 

applied on the deployment data to see the number of non-retired vehicles. The block of code is as 

follows: 
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 # Show number of rows and columns 

revenue_all_vehicles.shape 

# Show number of rows and columns 

X_deploy.shape 

The above code showed 42440 vehicles were in the revenue vehicle inventory database from 

2008 to 2016. Among them, 31146 vehicles were still in operation which needed to be predicted 

when their service life would be expired. The following code found the number of vehicles 

which were missing with Manufacture Year. 

# Find the number of vehicles which are missing with 'Manufacture Year' 

# data 

revenue_all_vehicles['Manufacture Year'].isnull().sum() 

The above code showed that 3189 vehicles were missing with ‘Manufacture Year’ information, 

and thus these data were not included in the deployment data set.  

The following code finds the number of vehicles with missing Fuel Type. 

# Find the number of vehicles which are missing with 'Fuel Type' 

# information 

revenue_all_vehicles['Fuel Type'].isnull().sum() 

The above code showed that 14824 vehicles did not have fuel type information. This information 

needs to be brought to attention to transit agencies so that they can update revenue vehicle 

inventory data with fuel type information. 

Now, the following code made the predictions on the deployment data set and created a 

new column Predicted Service Life in the data frame. 

 # Make the predictions on the non-retired data 

y_pred = SGR_model.predict(X_deploy) 

# Create a column 'Predicted Service Life' with the prediction 

X_deploy['Predicted Service Life'] = y_pred 
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Since the model generated the predicted service life value for deployment data, the newly created 

column was merged with all revenue inventory data by performing a join operation. The merged 

data frame was stored in a new data frame. The code is as follows: 

 # Merge two DataFrame by a join operation 

revenue_all = revenue_all_vehicles.join(X_deploy['Predicted Service 

Life'], how = 'right') 

Now, the following code created a new column of Projected Retired Year by adding Predicted 

Service Life with the Manufacture Year. The code is as follows: 

# Create a new column by adding Predicted Service Life with Manufacture 

# Year 

revenue_all['Projected Retired Year'] = (revenue_all['Manufacture 

Year'] + (revenue_all['Rebuild Year'] - revenue_all['Manufacture 

Year']).fillna(0) + revenue_all['Predicted Service Life'] + 

1.0).round() 

Finally, the model was saved in a comma separated CSV file as a final report for use as a guide 

for predictions by transit agencies and the FTA. The code is as follows: 

 # Save the result 

revenue_all.to_csv('Report_Non-Retired Revenue Vehicle Inventory 2008-

2016 Results.csv', sep = ',') 

4.16. The Deployment Data Analysis 

Before doing any data analysis with the deployment data, some column names were 

renamed by adding the underscore (_) between words for easy manipulation. The code is as 

follows: 

 # Rename columns 

df = revenue_all.rename(columns = {'Vehicle Type': 'Vehicle_Type', 

'Predicted Service Life': 'Predicted_Service_Life', 'Projected 

Retired Year': 'Projected_Retired_Year', 'Vehicle Length': 

'Vehicle_Length', 'Fuel Type': 'Fuel_Type'}) 
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The following code checked the number of vehicles in the deployment data based on each 

vehicle type by running value_counts() function: 

 # Count the number of vehicles by vehicle type 

df.Vehicle_Type.value_counts() 

The output is shown in Table 38. The resulting output is in descending order where the Cutaway 

is the most frequently occurring and the Inclined Plane Vehicle is the least frequently occurring 

vehicles. 

Table 38. Number of Vehicles in Deployment Data by Vehicle Type 

Vehicle Type Number of Vehicles 
Cutaway  11470 
Bus 8729 
Van 5419 
Minivan 2616 
Over-the-road Bus 692 
Automobile 526 
Articulated Bus 294 
Commuter Rail Passenger Coach 234 
Heavy Rail Passenger Car 210 
Sports Utility Vehicle 196 
Ferryboat 172 
Light Rail Vehicle 133 
Commuter Rail Locomotive 121 
Commuter Rail Self-Propelled Passenger Car 91 
School Bus 72 
Other 56 
Vintage Trolley 39 
Cable Car 16 
Streetcar Rail 16 
Trolleybus 12 
Double Decker Bus 12 
Automated Guideway Vehicle 9 
Aerial Tramway 8 
Inclined Plane Vehicle 3 

The following code can further visualize the above number in a horizontal bar plot: 

 # Plot the number of vehicles by vehicle type 
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df.Vehicle_Type.value_counts(ascending = True).plot(kind = 'barh', 

figsize = (12, 5)) 

plt.title('Number of Vehicles by Vehicle Type') 

plt.xlabel('Number of Vehicles') 

plt.ylabel('Vehicle Type') 

save_image('bar_vt') 

The bar plot of vehicle count by type is shown in Figure 26. 

 

Figure 26. Bar Plot of Vehicle Count by Vehicle Type 

Next, statistical analysis was performed on the predicted service life by vehicle type 

using agg() function to visualize the average service life by vehicle type. The following code 

plotted the statistical analysis: 

# Plot statistical analysis of average predicted service life by 

# vehicle type 

df.groupby('Vehicle_Type').Predicted_Service_Life.agg(['min', 'mean', 

'max']).plot(kind = 'barh', figsize = (14, 6)) 

plt.title('Average Predicted Service by Vehicle Type') 

plt.xlabel('Average Predicted Service Life') 

plt.ylabel('Vehicle Type'); 

save_image('mean_bar') 

The bar plot is as shown in Figure 27. 
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Figure 27. Bar Plot of Statistical Analysis of Predicted Service Life by Vehicle Type 

4.16.1. Cross Tabulation Analysis 

A cross-tabulation analysis, also known as contingency table analysis, is a table shows 

the frequency distribution of one variable in rows and another one in columns (Contingency 

table, 2018). A typical cross-tabulation table comparing the two variables Fuel Type with 

Vehicle Mode is shown below: 

 # Create cross tabulation on vehicle type by mode 

pd.crosstab(df.Vehicle_Type, df.Mode, margins = True) 

The output is shown in Table 39. The table showed the distribution of a Vehicle Type with 

Mode. A few vehicle type had a single mode, however; most of the vehicle type had multiple 

mode.
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Table 39. Contingency Table of Vehicle Type by Vehicle Model 

Vehicle Type 
Mode 

All 
AR CB CC CR DR DT FB HR IP LR MB MG RB SR TB TR VP YR

Aerial Tramway 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 8 

Articulated Bus 0 30 0 0 0 0 0 0 0 0 239 0 25 0 0 0 0 0 294 

Automated Guideway 
Vehicle 

0 0 0 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 9 

Automobile 0 0 0 0 499 10 0 0 0 0 17 0 0 0 0 0 0 0 526 

Bus 0 452 0 0 1700 0 0 0 0 0 6555 0 18 0 0 0 4 0 8729 

Cable Car 0 0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 

Commuter Rail 
Locomotive 

9 0 0 112 0 0 0 0 0 0 0 0 0 0 0 0 0 0 121 

Commuter Rail Passenger 
Coach 

20 0 0 213 0 0 0 0 0 0 0 0 0 0 0 0 0 1 234 

Commuter Rail Self-
Propelled Passenger Car 

0 0 0 86 0 0 0 0 0 0 0 0 0 0 0 0 0 5 91 

Cutaway 0 302 0 0 8266 0 0 0 0 0 2902 0 0 0 0 0 0 0 11470

Double Decker Bus 0 2 0 0 0 0 0 0 0 0 9 0 1 0 0 0 0 0 12 

Ferryboat 0 0 0 0 0 0 172 0 0 0 0 0 0 0 0 0 0 0 172 

Heavy Rail Passenger Car 0 0 0 0 0 0 0 210 0 0 0 0 0 0 0 0 0 0 210 

Inclined Plane Vehicle 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 3 

Light Rail Vehicle 0 0 0 0 0 0 0 0 0 98 0 0 0 33 0 0 0 2 133 

Minivan 0 0 0 0 2433 4 0 0 0 0 31 0 0 0 0 0 148 0 2616 

Other 0 23 0 0 5 0 1 0 0 0 9 0 7 0 0 0 11 0 56 

Over-the-road Bus 0 513 0 0 0 0 0 0 0 0 179 0 0 0 0 0 0 0 692 
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Table 39. Contingency Table of Vehicle Type by Vehicle Model (continued) 

Vehicle Type 
Mode 

All 
AR CB CC CR DR DT FB HR IP LR MB MG RB SR TB TR VP YR

School Bus 0 0 0 0 62 0 0 0 0 0 10 0 0 0 0 0 0 0 72 

Sports Utility 
Vehicle 

0 0 0 0 135 1 0 0 0 0 0 0 0 0 0 0 60 0 196 

Streetcar Rail 0 0 0 0 0 0 0 0 0 0 0 0 0 16 0 0 0 0 16 

Trolleybus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 0 0 0 12 

Van 0 0 0 0 3158 7 0 0 0 0 313 0 0 0 0 0 1941 0 5419 

Vintage Trolley 0 0 0 0 0 0 0 0 0 5 0 0 0 34 0 0 0 0 39 

All 29 1322 16 411 16258 22 173 210 3 103 10264 9 51 83 12 8 2164 8 31146
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4.17. Analysis on the Condition of Buses Based on Predicted Service Life 

The following code was used to analyze the predicted retirement years for buses. The 

code divided nationwide bus data into two sets. One set included bus data which predicted 

retirement years until 2017, and other set included bus data which predicted retirement after the 

year 2017. 

 # Set plot size 

fig, ax = plt.subplots(1, 2, figsize = (14, 5)) 

# Set first plot 

df_bus_ = df.loc[(df.Vehicle_Type == 'Bus') & 

(df.Projected_Retired_Year < = 2017)] 

df_bus_.Projected_Retired_Year.plot.hist(ax = ax[0], color = 'red') 

# Give the plot a main title 

ax[0].set_title('Buses already Retired by prediction by previous 

years')  

# Set text for the x axis 

ax[0].set_xlabel('Predicted Retired Years')  

# Set text for y axis 

ax[0].set_ylabel('Number of Buses') 

# Second plot 

df_bus = df.loc[(df.Vehicle_Type == 'Bus') & (df.Projected_Retired_Year 

> = 2018)] 

df_bus.Projected_Retired_Year.plot.hist(ax = ax[1]) 

# Give the plot a main title 

ax[1].set_title('Buses will be Retired in future Years')  

# Set text for the x axis 

ax[1].set_xlabel('Predicted Retired Years')  

# Set text for y axis 

ax[1].set_ylabel('Number of Buses'); 

save_image('bus_analysis') 

The above code produces the current conditions of buses shown in Figure 28. The plot showed 

that 1983 buses out of 8729 buses which were about 23% of buses nationally already predicted to 

be retired and needed immediate attention to either replace or rehabilitate. 
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Figure 28. The Condition of Buses Based on Predicted Service Life 

4.18. Data Analysis on Fargo Metropolitan Area Transit (MAT Bus) data 

Now, we will analyze the condition of transit vehicles in a small urban transit agency as 

an example of how the transit agency can get the benefit of using the model. For this purpose, the 

transit agency, Fargo Metropolitan Area Transit (MAT Bus), was chosen which had 19 vehicles 

in their fleet. The following code stores the Fargo Metropolitan Area Transit (MAT Bus) agency 

data to fargo_mat data frame. 

 # Filter data by agency name 

fargo_mat = df[(df['Agency Name'] == 'City of Fargo, DBA: Metropolitan 

Area Transit')] 

The following code shows the number of transit vehicles in MAT Bus. 

 # Count the vehicles 

fargo_mat.shape 

The shape attribute shows that 19 vehicles are in operation in Fargo, North Dakota area by 

Metropolitan Area Transit. The following code shows the number of each type of vehicles 

operated by the agency. 

 # Count the number of vehicles by vehicle type 

fargo_mat.Vehicle_Type.value_counts() 
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The output is shown in Table 40 showed the MAT Bus currently held 11 buses and 8 cutaways in 

their fleet. 

Table 40. Number of Vehicles by Vehicle Type at MAT Bus 

Type of Vehicles Number of Vehicles 
Bus  11 
Cutaway 8 

The following block of code shows the number of vehicles by vehicle type in a bar plot. 

 # Plot the number of vehicles by vehicle type 

f, ax = plt.subplots(figsize = (12, 4)) 

sns.countplot(y = 'Vehicle_Type', data = fargo_mat) 

ax.set_title('Number of Vehicles by Vehicle Type') 

ax.set_xlabel('Number of Vehicles') 

ax.set_ylabel('Vehicle Type'); 

save_image('mat_counts') 

The above code will plot a bar graph shown in Figure 29. 

 

Figure 29. Bar Plot of the Number of Vehicles by Vehicle Type at MAT Bus 

The statistical analysis was performed as well on the predicted service life by the 

following code: 

 # Statistical analysis of service life by vehicle type 

fargo_mat.groupby('Vehicle_Type').Predicted_Service_Life.agg(['count', 

'min', 'max', 'mean']) 
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The output is shown in Table 41. The statistical analysis showed the minimum, the maximum, 

and the average service life of the vehicle by vehicle type. The predicted average service life is 

very much close to the default useful life specified by the FTA which is 14 for bus and 10 for 

cutaways. 

Table 41. Statistical Analysis of Service Life by Vehicle Type on MAT Bus 

Vehicle Type count min max mean 
Bus 11 10.31104 16.362 12.85894
Cutaway 8 8.561481 10.85107 9.418001

The following code further visualizes the statistical analysis. 

 # Plot statistical analysis of predicted service life by vehicle type 

fargo_mat.groupby('Vehicle_Type').Predicted_Service_Life.agg(['mean', 

'min', 'max']).plot(kind = 'barh', figsize = (14, 4)) 

plt.title('Statistical Analysis of Predicted Service Life of Vehicles 

by Vehicle Type') 

plt.xlabel('Number of Vehicles') 

plt.ylabel('Vehicle Type'); 

save_image('mat_sa') 

The above code plotted the statistical analysis shown in Figure 30. 

 

Figure 30. Bar Plot of Statistical Analysis of Predicted Service Life by Vehicle Type on MAT 
Bus 

In order to see the overall condition of transit vehicles operated by Metropolitan Area 

Transit, the revenue vehicle data was filtered with predicted retired year until 2018 and predicted 

retired year after 2018. The following block of codes filters out data and plots into two subplots. 
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 # Set plot size 

fig, ax = plt.subplots(1, 2, figsize = (14, 5)) 

df_fargo_mat_ = fargo_mat.loc[fargo_mat.Projected_Retired_Year < = 

2017] 

df_fargo_mat_.Projected_Retired_Year.plot.hist(ax = ax[0], color = 

'red') 

ax[0].set_title('Fargo MAT Vehicles already Retired by prediction by 

previous years')  

ax[0].set_xlabel('Predicted Retired Years')  

ax[0].set_ylabel('Number of Vehicles') 

df_fargo_mat = fargo_mat.loc[fargo_mat.Projected_Retired_Year > = 2018] 

df_fargo_mat.Projected_Retired_Year.plot.hist(ax = ax[1]) 

ax[1].set_title('Fargo MAT Vehicles will be Retired in future Years')  

ax[1].set_xlabel('Predicted Retired Years')  

ax[1].set_ylabel('Number of Vehicles'); 

save_image('fargo_mat_analysis') 

The above block of code plots the condition of vehicles for MAT Bus shown in Figure 31. 

 

Figure 31. MAT Bus Projected Retired Year 

The following code calculates the number of vehicles which are predicted to be retired 

before the year 2018. 

 # Show number of rows and columns 

df_fargo_mat_.shape 
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The above code shows that 2 out of 19 vehicles which are about 11% vehicles need to be 

replaced or rehabilitated immediately. The following code shows the predicted retired year of 

each vehicle for MAT Bus. 

 # Projected retired year for MAT Bus by vehicle type 

 df_fargo_mat[['Projected_Retired_Year', 'Vehicle_Type']] 

The code prints the predicted retired year shown in Table 42. 

Table 42. The Projected Retired Year for MAT Bus 

Revenue Vehicle Inventory ID Projected Retired Year Vehicle Type 
13492 2018 Bus 
24444 2019 Bus 
30530 2021 Bus 
38184 2019 Cutaway 
38186 2020 Cutaway 
38188 2022 Bus 
43198 2024 Bus 
47932 2023 Bus 
47933 2022 Bus 
53628 2022 Cutaway 
59603 2022 Cutaway 
59604 2028 Bus 
337297 2024 Cutaway 
337314 2018 Cutaway 
343269 2025 Cutaway 
343303 2030 Bus 

The following block of code plots a pie chart and a table with projected retired year. 

 # Plot chart 

plt.figure(figsize = (14,6)) 

ax1 = plt.subplot(121, aspect = 'equal') 

fargo_mat_ret = df_fargo_mat.Projected_Retired_Year.astype 

(int).value_counts().plot (kind = 'pie', autopct = '%1.1f%%') 

fargo_mat_ret.set_title('Percentage of Vehicles will be Retired in 

Year') 

# Plot table 

fargo_mat_tbl = 

df_fargo_mat.Projected_Retired_Year.astype(int).value_counts() 
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# Import class 

from pandas.tools.plotting import table 

ax2 = plt.subplot(122) 

plt.axis('off') 

tbl = table(ax2, fargo_mat_tbl, loc = 'center', colWidths = [0.3]) 

tbl.auto_set_font_size(False) 

tbl.set_fontsize(14) 

save_image('fargo_mat_pie') 

plt.show(); 

The plot with table is shown in Figure 32. The pie chart showed the percentage of vehicles and 

the table showed the corresponding number of vehicles which will be retired in the future year. 

Therefore, the Metropolitan Area Transit (MAT Bus) should be aware of the condition of their 

transit vehicles and plan for replacement. 

 

Figure 32. Pie Chart and Table to Show the Projected Retired Year on MAT Bus 

4.19. Make Prediction on Any Single Vehicle 

The gradient boosting regression model with top 30 most important features was also 

used in order to predict any single vehicle. After the initial setup with parameters, the model and 

other necessary CSV files were loaded. The code for loading model and data is as follows: 

 # Load the predictive model 

model = joblib.load('SGR_model_imp.pkl') 
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# Load the model that was trained previously with only top 30 important 

# features 

revenue_all = pd.read_csv 

('..//NTD/Revenue_Vehicle_Inventory_all_years.csv').drop(['Unname

d: 0'], axis = 1) 

# Load the cleaned deployment data 

X_deploy = pd.read_csv('..//NTD/Final Deployment Data.csv') 

Since the data analysis on Metropolitan Area Transit (MAT Bus), Fargo, North Dakota 

was performed by gradient boosting regression predictive model, a single vehicle was chosen 

from the MAT Bus for further analysis by gradient boosting regression predictive model with the 

top 30 important features. For this analysis, a bus of vehicle inventory id of 24444 was chosen to 

predict its projected retired year and compare the result with the previous analysis. The following 

code was used to select the vehicle store it to a data frame: 

 # Select vehicle with RVI ID of 24444 

vehicle_24444 = X_deploy[X_deploy['Revenue Vehicle Inventory ID'] == 

24444] 

The selected vehicle is listed in Table 43. Since the processed data had 119 columns, a few 

columns were entered here for simplicity. 

Table 43. Processed Columns on Revenue Vehicle Data for Machine Learning Algorithm 

Revenue 
Vehicle 
Inventory 
ID 

Seating 
Capacity 

Standing 
Capacity 

Vehicle 
Length 

… Vehicle 
Type_Bus

TOS_PT Mode_Service 
Life 

24444.0 16 0 25 … True 1 11.0 

The following code was used to show the necessary vehicle information which needs to 

be inserted as follows: 

# Example Vehicle: the following data has been input from the vehicle 

# inventory Id of 24444 

SGR_Prediction = [ 

25, # Input the length of the Vehicle 
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220515, # Input the Average Lifetime Miles per Active Vehicles 

22380, # Input the Total Miles on Active Vehicles During Period 

 16, # Input the Seating Capacity of the vehicle 

 0, # Input the Standing Capacity of the vehicle 

 2, # Input ADA Fleet Vehicles 

 2, # Input the Active Fleet Vehicles 

 0, # Input the Emergency Contingency Vehicles 

 2, # Input Total Fleet Vehicle 

16, # Input the "number" based on Fuel Type of vehicle 

 11, # Input the "number" based on Mode of vehicle 

14, # Input the "number" based on Vehicle Type of vehicle 

1.5625, # Input the ratio of "Vehicle length" and "Seating 

Capacity of the vehicle" 

0, # Input the ratio of "Rebuild Year" and "Manufacture Year" 

0, # Input the ratio of "length of the Vehicle" and "Standing 

Capacity of the vehicle" 

0, # Input Ratio of "Standing Capacity of the vehicle" and 

"Seating Capacity of the vehicle" 

11190.0, # Input Ratio of "Total Miles on Active Vehicles During 

Period" and "Total Fleet Vehicles" 

11190.0, # Input Ratio of "Total Miles on Active Vehicles During 

Period" and "Active Fleet Vehicles" 

110257.5, # Input Ratio of "Average Lifetime Miles per Active 

Vehicles" and "Total Fleet Vehicles" 

441030.0, # Input Ratio of "Average Lifetime Miles per Active 

Vehicles" and "Active Fleet Vehicles" 

0, # TOS: if TOS = DO, then input 1; else input 0 

1, # TOS: if TOS = PT, then input 1; else input 0 

False, # Mode: if Mode = CC, input True; else input False 

False, # Support Mode: if Support Mode = MB, input True; else 

input False 

True, # Fuel Type: if Fuel Type = Diesel Fuel, input True; else 

input False 

True, # Vehicle Type: if Vehicle Type = Bus, input True; else 

input False 

True, # Ownership Type: if Ownership Type = OOPA, input True; 

else input False 
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False, # Funding Source: If Funding Source = NFPA, input True; 

else input False 

False, # Funding Source: if Funding Source = OF, input True; else 

input False 

True # Funding Source: if Funding Source = UA, input True; else 

input False 

] 

The following blocks of codes generates the prediction for a single vehicle: 

 # To predict the service life of a single vehicle 

vehicle_service_life = [SGR_Prediction] 

# Run the model and make a prediction for each vehicle 

predicted_service_life = model.predict(vehicle_service_life) 

# Predicting the single vehicle 

predicted_life = predicted_service_life[0] 

The following code prints the value of the predicted service life of the single vehicle: 

 # Predict the service life for the vehicle 

print ("The predicted service life of the vehicle would be {:, .0f} 

years".format(predicted_life)) 

And, the output is as follows: 

 The predicted service life of the vehicle would be 12 years 

Finally, the following block of code calculates the predicted retired year of the vehicle: 

# Add Predicted Service Life to the non-retired revenue vehicle 

# inventory data with only specific vehicle 

revenue_single_vehicle = revenue_all[revenue_all['Revenue Vehicle 

Inventory ID'] == 24444] 

revenue_single_vehicle['Predicted Service Life'] = predicted_life 

# Create a new column by adding predicted service life with Manufacture 

Year 

revenue_single_vehicle['Projected Retired Year'] = 

(revenue_single_vehicle['Manufacture Year'] + 

(revenue_single_vehicle ['Rebuild Year'] - 

revenue_single_vehicle['Manufacture Year']).fillna + 

revenue_single_vehicle['Predicted Service Life'] + 1.0).round() 
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# Print the result 

revenue_single_vehicle 

The above code printed the output of the vehicle with the predicted retired year. Since 

there were 29 columns in the output, a few important columns were inserted for simplicity shown 

in Table 44. The gradient boosting regression predictive model with top the 30 important 

features predicts that the vehicle with RVI ID of 24444 should be retired in the year of 2019. 

This model predicted the same projected retired year comparing with the prediction of the same 

vehicle made by the gradient boosting regression predictive model with all features. 

Table 44. The Predicted Retired Year for the Vehicle with RVI ID of 24444 

Revenue 
Vehicle 
Inventory 
ID 

Agency Name Fuel 
Type 

Man. 
Year 

… Vehicle 
Length 

Vehicle 
Type 

Projected 
Retired 
Year 

24444.0 City of Fargo, 
DBA: 
Metropolitan Area 
Transit 

Diesel 2006 … True Bus 2019 

4.20. Challenges 

Throughout the preprocessing of revenue vehicle inventory data for machine learning 

algorithms and exploratory data analysis, many challenges were encountered. For instance, the 

quality of the revenue vehicle inventory data was not good. In addition, there were many 

roadblocks during the feature engineering such as problems with missing data.  

Data are the most important part of developing any predictive model. Lack of good 

quality data or lack of sufficient data may not produce a good predictive model. In this model, 

the revenue vehicle inventory data from 2008 to 2016 from the NTD database were used. Due to 

poor quality of data, the available data from 1999 to 2007 were not used in the model. According 

to the FTA, the vehicle’s default useful life depends on the vehicle type (NTD, 2017). Therefore, 
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each vehicle type needs enough training data to train the model. The exploratory data analysis 

with the training data showed some of the vehicle types only had a few training data points. For 

example, the Inclined Plane Vehicle and Double Decker Bus vehicle types had only 1 data point, 

which was not enough to train these particular vehicle types.  

The tasks for data preparation of the machine learning algorithm were very challenging. 

The tasks involved cleaning bad data with missing information, creating new features, 

transforming them into useful features, and reorganizing data into suitable machine learning 

algorithms. The data preparation involved looking for data anomalies and making sure to fix 

anomalies by taking proper actions and transforming them to be consistent.  

Since the revenue vehicle inventory data sets were complex and there was no direct 

information on when a vehicle was retired, it was very challenging to split the data into the 

training set with retired vehicles and the deployment set with non-retired vehicles. In the revenue 

vehicle inventory data, the Retired column was an important attribute as it indicated whether a 

vehicle was retired or not by flagging ‘Y’ or ‘N’. This column exists in the data from 2014 

through 2016, but not in the data from 2013 and prior. In addition, there were many data points 

where the Retired column had null points in data from 2014 through 2016. Therefore, during the 

data cleaning process, the Retired column was added to data from 2008 to 2013 with ‘Y’ value 

and an extra column Retired Year was created to all data sets.  

The Manufacture Year was another important column used to calculate the service life of 

vehicles. There were 3189 data points with no value for Manufacture Year, which represented 

about 7.5% of the total data. These data were not considered for the predictive model and 

removed from the data set. Fuel Type was also an important categorical feature that impacted the 

accuracy of the predictive model. The exploratory analysis showed that there were 14100 data 
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points missing for the Fuel Type category, which represented 33% of total data points. However, 

in this case, the huge amount of data was not dropped from the data set. Instead, the missing 

category was replaced by a dummy type with Unknown Fuel type. It might impact the 

performance; however, it solved the problem. 

During data processing, creating some useful features by combining multiple features 

was another challenge. Since there was no strong correlation found between features with the 

target feature, a combination of different features was applied to the model to obtain the best 

performance. Therefore, a trial and error method was applied to the features selection using the 

feature importance function to see whether newly created features had any impact on the model. 

By following the trial and error method, some of the features were selected for the model, and 

the rest of them were rejected.  

After completing the initial exploratory data analysis, the selection of the best predictive 

model for this problem was another challenge. The analysis showed the target variable was a 

continuous variable and the regression analysis could solve the problem. Since there are many 

regression algorithms available for machine learning problems and there is no concrete 

methodology to choose the best model, this work was started with several popular methods to 

build the predictive model for this problem. The entire data set was split into three sets called the 

training set, the test set, and the deployment set. Once the process was done, three popular 

machine learning techniques were chosen for the model. They were random forest regression, 

gradient boosting regression, and decision tree regression. By using these three techniques, a 

separate predictive model was built, evaluated the performance of the results, and the 

performance results were compared across models. Even though the evaluation and the 
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comparison of the models took a significant amount of time, choosing the perfect algorithm for 

the problem was a bit of a challenge.  

Another challenge was to handle the outliers in the data set. After calculating the actual 

service life of the vehicle by subtracting the manufacture year from the retired year some 

vehicles were observed to have very low service life. This may be due to some consequences of 

human errors by incorrectly inputting data for manufacture year or retired during the data 

collection processes. These data were handled by removal from the training data set. 

4.21. Summary of Data Analysis and Results 

 This chapter explored revenue vehicle inventory data set from the NTD database where 

transit agencies publish their vehicle information at the end of each fiscal year. Python was used 

as a programming language in the Jupyter Notebook environment to analyze the revenue vehicle 

inventory data and develop the predictive model. Nine data sets were used, one from each year 

between 2008 to 2016; however, they were not consistent because data varied between years. 

Therefore, each data set needed to be cleaned up individually and be made consistent before 

combining them. A new column Retired Year was added and calculated the value based on the 

status of the vehicle’s retirement. There were many data issues in the initial combined data set. 

One of the main issues was missing information. The missing information was handled by filling 

missing values with either zero (0) or by applying a function. In some cases, the data points with 

missing values were removed. The categorical names with missing values were filled with 

‘Unknown’ as the keyword followed by underscore, and then category name. Finally, some 

unnecessary variables were removed from the data set as they were redundant for the model.  

After cleaning up the data, a new column Service Life was created, and values were 

generated by subtracting Manufacture Year from Retire Year. The entire data set was split into 
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two sets. The retired vehicles were used as the training set, while the non-retired vehicles were 

used as the deployment set. An exploratory data analysis was performed on the training set to see 

the significance value of data in the model as well as visualize outliers, data distribution, and 

relationships between features. 

The features of the training set were engineered prior to building a machine learning 

model. As part of the feature engineering process, several new features were created by 

combining different numerical features. In addition, binary features were created from 

categorical names, and a few additional features were created by analyzing the histogram from 

categorical features. A deployment set was created in the same manner. A model was built from 

the training set, then it was applied to the deployment set for predictions. 

Since the training data had the target variable, it was used to train the model. Three 

different machine learning algorithms called random forest regression, gradient boosting 

regression, and decision tree regression were applied to build three different predictive models. 

Before building the model, the parameters for each algorithm were tuned to optimize the 

performance of the model. During modeling, the training data was split into the training set and 

the test set in the ratio of 70% of data to train the model and 30% of data to evaluate the model. 

As part of the evaluation, three performance metrics called root mean squared error, mean 

absolute error, and R2 score were applied to see how accurately the models were performing. 

After comparing the performance results, the gradient boosting regression predictive model was 

selected because it provided better performance results for the problem.  

Sometimes, a large number of features may cause problems to generalize a model. 

Therefore, the feature importance ranking method was further applied to the gradient boosting 

regression model to get the top 30 most important features. After applying the top 30 most 
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important features and comparing the performance of the previous gradient boosting regression 

model, we found an even better performing predictive model. Finally, we applied the full data set 

as a training set to train the model that further improved the performance of the predictive model. 

We concluded the gradient boosting regression model using the full training data set with the top 

30 most important features would be our final predictive model.  

After developing the predictive model using the gradient boosting regression algorithm 

with the top 30 most important features, the model was applied on the deployment set for 

predictions. Results were saved in a CSV file for transit agencies, and further data analysis was 

performed to visualize the current conditions of the nation’s transit vehicles. Special data 

analysis was performed on the Fargo Metropolitan Area Transit (MAT Bus) agency as an 

example of how transit agencies could perform their own data analysis. By conducting similar 

analysis, transit agencies would be made aware of their vehicle conditions to determine 

replacement and rehabilitation needs.  

Finally, another supplementary model was built using the gradient boosting regression 

model with the top 30 most important features to make predictions for any given vehicle. Using 

this simple model, transit agencies could input the necessary vehicle information for a specific 

vehicle in the model and predict the condition of the vehicle. 
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CHAPTER 5. CONCLUSION AND FURTHER RESEARCH 

5.1. Conclusion 

This research developed a predictive model to evaluate the transit state of good repair 

using machine learning algorithms. This dissertation explored three machine learning techniques 

to predict the service life of vehicles. The random forest regression, gradient boosting regression, 

and decision tree regression were applied on revenue vehicle inventory data to build the 

predictive model and predict vehicle service life. After evaluating and comparing performance 

results, we found that the gradient boosting regression predictive model performed better than 

the other two predictive models. The gradient boosting regression algorithm was also used to 

identify the top most important features, and the predictive model with the top 30 most important 

features worked even better to predict vehicle service life.  

The predictive tool developed in this study allows transit agencies to predict the service 

life of their revenue vehicles. Furthermore, the FTA can use this tool to see the overall condition 

of the nation’s revenue vehicles. Even though, the performance of the predictive tool is very 

good, it could be further improved by implementing the following recommendations. 

5.2. Recommendation 

The author recommends to add additional data to the training set to train the model in 

future work. The other data can be found from the FTA or directly from the transit agencies. The 

analysis showed that if more training data can be added to the predictive model, the performance 

of the model will be improved. The FTA can also take an initiative to add few crucial columns in 

the revenue vehicles inventory database. For example, the FTA can instruct transit agencies to 

add ‘operating start date,’ ‘retired date,’ ‘cost of vehicles,’ and ‘agency zone’ columns in the 

database. The above information will improve the predictive performance for the model. 
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The exploratory data analysis also showed that some extreme values in the data were 

causing outliers in the data. For example, in some cases, the retired year was earlier than the 

manufacture year which was creating negative service life of vehicles. The author recommends 

that the FTA will take actions to improve the quality of the revenue vehicle inventory data by 

correcting manufacture year or retired year in the NTD database. The author suggests that further 

analysis of revenue vehicle inventory data should be an essential step to solve the issues in the 

state of good repair. 

5.3. Further Research 

The author suggests that the research of machine learning algorithms on the state of good 

repair problem has enormous potential for further analysis. Adding few features as suggested 

earlier and selecting better features for the model may produce perfect results. Therefore, feature 

engineering can be further processed by combining different features and further research can be 

done to choose various features selection processes.  

In this study, the backlog analysis was not done as cost related data were not available in 

the NTD database. However, the cost of the revenue vehicles can be collected by doing further 

research. Therefore, in future, the backlog analysis can be added to the method, and the backlog 

can be estimated to maintain the state of good repair. Further improvement of this predictive 

model will help transit agencies to predict the service life of their vehicles very well so that the 

agency can plan and prioritize to replace or rehabilitate their assets accordingly. 

  



 

149 
 

REFERENCES 

Amtrak. (2009). Northeast Corridor State of Good Repair Spend Plan. Washington, DC.: 
Amtrak. 

APTA. (2007). Public transportation: Benefits for the 21st century. Washington, D.C.: American 
Public Transportation Association. Retrieved from Public Transportation: 
http://www.apta.com/resources/reportsandpublications/Documents/twenty_first_century.
pdf 

APTA. (2013). Defining a Transit Asset Management Framework to Achieve a State of Good 
Repair: Recommended Practice. Washington, D.C.: APTA Standards Development 
Program Working Group: Transit Asset Management. 

APTA. (2013b). Creating a Transit Asset Management Program: Recommended Practice. 
Washington, DC: American Public Transportation Association, Working Group: Transit 
Asset Management. 

APTA. (2016). A Guide to Public Transportation and Rail-Related Provisions: Fixing America’s 
Surface Transportation Act (FAST ACT). Washington, D.C.: American Public 
Transportation Association. 

APTA. (2017). Transit Facts: Transit Lifestyle. Public Transportation. Washington, D.C.: 
American Public Transportation Association. Retrieved from Public Transportation: 
http://www.publictransportation.org/benefits/Pages/Transit-Lifestyle.aspx 

Aurlien, G. (2017). Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, 
Tools, and Techniques to Build Intelligent Systems. O'Reilly Media, Inc. 

Bowles, M. (2015). Machine Learning in Python: Essential Techniques for Predictive Analysis. 
Indianapolis, IN: John Wiley & Sons, Inc. 

Brownlee, J. (2013). A tour of machine learning algorithms: Machine Learning Mastery. 

BTS. (2016). Transportation Statistics Annual Report. U.S. Department of Transportation. 
Washington, D.C.: Bureau of Transportation Statistics. 

Cambridge Systematics. (2005). Analytical tools for Asset Management. Washington, D.C.: 
Transportation Research Board. 

Cambridge Systematics. (2006). Performance measures and targets for transportation asset 
management. Washington, D.C.: Transportation Research Board. 

Cambridge Systematics. (2009). Virginia’s Long-Range Multimodal Transportation Plan 2007-
2035. Office of Intermodal Planning and Investment. VTrans. 



 

150 
 

Cevallos, F. (2016). State of Good Repair Performance Measures: Assessing Asset Condition, 
Age, and Performance Data. National Center for Transit Research. 

Cohen, H., & Barr, J. (2012). State of Good Repair: Prioritizing the Rehabilitation and 
Replacement of Existing Capital Assets and Evaluating the Implications for Transit. 
Transportation Research Board. 

Contingency table. (2018). Retrieved from Wikipedia: 
https://en.wikipedia.org/wiki/Contingency_table 

Downey, A. B. (2014). Think stats: exploratory data analysis. O'Reilly Media, Inc. 

Edrington, S., Brooks, J., Cherrington, L., Hamilton, P., Hansen, T., Pourteau, C., & Sandidge, 
M. (2014). Guidebook: Managing Operating Costs for Rural and Small Urban Public 
Transit Systems. Texas A&M Transportation Institute. 

FHWA. (2010). Data Integration Primer. Office of Asset Management, U.S. Department of 
Transportation. Washington, D.C.: Federal Highway Administration. 

FTA. (2008). Transit State of Good Repair: Beginning the Dialogue. U.S. Department of 
Transportation. Washington, D.C: Federal Transit Administration. 

FTA. (2010a). National State of Good Repair Assessment. U.S. Department of Transportation. 
Washington, D.C.: Federal Transit Administration. 

FTA. (2010b). Transit Asset Management Practices: A National and International Review. U.S. 
Department of Transportation. Washington, D.C.: Federal Transit Administration. 

FTA. (2011). State of Good Repair Initiative Report to Congress. U.S. Department of 
Transportation. Washington, D.C.: Federal Transit Administration. 

FTA. (2012). MAP-21 Fact Sheet: State of Good Repair Grants. U.S. Department of 
Transportation. Washington, D.C.: Federal Transit Administration. 

FTA. (2013). Transit Economic Requirements Model. U.S. Department of Transportation. 
Washington, D.C.: Federal Transit Administration. 

FTA. (2017, February 22). FAST Act: State of Good Repair. (F. T. Administration, Editor) 
Retrieved 2017, from U.S. Department of Transportation: 
https://www.transit.dot.gov/FAST 

FTA. (2017b). National Transit Database: 2017-2018 Asset Inventory Module Reporting Guide. 
US Department of Transportation. Washington, D.C.: Federal Transit Administration. 
Retrieved from FTA Office of Budget and Policy. 



 

151 
 

FTA. (2017c). National Transit Database: Asset Inventory Module. Washington, D.C.: Federal 
Transit Administration. 

FTA. (2017d). National Transit Database: What is the National Transit Database (NTD) 
Program? Washington, D.C.: Federal Transit Administration. Retrieved 2018, from 
Federal Transit Administration: https://www.transit.dot.gov/ntd/what-national-transit-
database-ntd-program 

Gagne, D. J., McGovern, A., Haupt, S. E., & Williams, J. K. (2017). Evaluation of statistical 
learning configurations for gridded solar irradiance forecasting. Solar Energy 150, 383-
393. 

Garreta, R., & Moncecchi, G. (2013). Learning scikit-learn: Machine Learning in Python. 
Birmingham, UK: Packt Publishing Ltd. 

Geitgey, A. (2017). Machine Learning & AI Foundations: Value Estimations. Lynda.com. 
Lynda. Retrieved from https://www.lynda.com/Data-Science-tutorials/Machine-
Learning-Essential-Training-Value-Estimations/548594-2.html 

Grus, J. (2015). Data science from scratch: first principles with python. (Vol. First Edition). (M. 
Beaugureau, Ed.) Sebastopol, CA, USA: O'Reilly Media, Inc. 

Hunter, J., Dale, D., Firing, E., & Droettboom, M. (2017). The Matplotlib 2.1.0, User’s Guide. 
Matplotlib. Retrieved from https://matplotlib.org/2.1.0/users/index.html 

Inyang, F. I., Ozuomba, S., & Ezenkwu, C. P. (2017). Comparative analysis of Mechanisms for 
Categorization and Moderation of User Generated Text Contents on a Social E-
Governance Forum. Mathematical and Software Engineering, 78-86. 

Jain, A. (2016). Complete Guide to Parameter Tuning in Gradient Boosting (GBM) in Python. 
Retrieved 2017, from Analytics Vidhya: 
https://www.analyticsvidhya.com/blog/2016/02/complete-guide-parameter-tuning-
gradient-boosting-gbm-python/ 

Johnson, N. E., Ianiuk, O., Cazap, D., Liu, L., Starobin, D., Dobler, G., & Ghandehari, M. 
(2017). Patterns of waste generation: A gradient boosting model for short-term waste 
prediction in New York City. Waste Management, V 62, 3-11. 
doi:10.1016/j.wasman.2017.01.037 

Jordan, M., & Mitchell, T. (2015, July 17). Machine Learning: Trends, perspectives, and 
prospects. Science, 349(6245), 255-260. doi:10.1126/science.aaa8415 

Kumar, A. (2016). Learning Predictive Analytics with Python (Vol. First Edition). (N. Amey, 
Ed.) Birmingham, UK: Packt Publishing Ltd. 



 

152 
 

Lauren, I., & Rose, D. (2012). Transit Asset Management Manual - Overview. 4th State of Good 
Repair Roundtable. Philadelphia, PA: Federal Transit Administration. 

Laver, R., Schneck, D., Skorupski, D., & Cham, L. (2007). Useful life of transit buses and vans. 
U.S. Department of Transportation. Washington, D.C.: Federal Transit Administration. 

Lee, Y.-J., & Min, O. (2017). Comparative Analysis of Machine Learning Algorithms to Urban 
Traffic Prediction. Information and Communication Technology Convergence (ICTC). 
IEEE. doi:10.1109/ICTC.2017.8190846 

Louch, H., Robert, W., Gurenich, D., & Hoffman, J. (2009). Asset Management Implementation 
Strategy. Washington, D.C.: New Jersey Department of Transportation. Retrieved from 
http://www.state.nj.us/transportation/refdata/research/reports/NJ-2009-005.pdf 

Ma, J. (2012). Parameter tuning using gaussian processes. Ph.D. Dissertation. Hamilton, New 
Zealand. Retrieved from https://hdl.handle.net/10289/6497 

Massaron, L., & Boschetti, A. (2016). Regression Analysis with Python. (Vol. First). 
Birmingham, UK: Packt Publishing Ltd. 

McCollom, B. E., & Berrang, S. A. (2011). Transit Asset Condition Reporting: A Synthesis of 
Transit Practice. Transportation Research Board of the National Academies. 
Washington, D.C.: Federal Transit Administration. 

McKinney, W. (2017). Python for data analysis: Data wrangling with Pandas, NumPy, and 
IPython. (2nd ed.). Sebastopol, CA, USA: O'Reilly Media, Inc. 

McKinney, Wes; PyData Development Team. (2017). API Reference - pandas 0.22.0 
documentation: powerful Python data analysis toolkit Release 0.22.0. Pandas. Retrieved 
from https://pandas.pydata.org/pandas-docs/stable/ 

Meyer, M. D., & Cambridge Systematics, Inc. (2007). US Domestic Scan Program: Best 
Practices in Transportation Asset Management. Federal Highway Administration; 
National Cooperative Highway Research Program; The American Association of State 
Highway and Transportation Officials. 

Mirjalili, V., & Raschka, S. (2017). Python Machine Learning. Second Edition. (2nd ed.). 
Birmingham, UK: Packt Publishing Ltd. 

MTA. (2014). A Bold Direction for Leading Transportation in the Next 100 Years. New York, 
NY: Metropolitan Transportation Authority (MTA). Retrieved from 
http://web.mta.info/mta/news/hearings/pdf/MTA_Reinvention_Report_141125.pdf 

Mueller, J. P., & Massaron, L. (2015). Python for Data Science for Dummies. Hoboken, New 
Jersey, USA: John Wiley & Sons, Inc. 



 

153 
 

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., . . . Duchesnay, 
E. (2011). Scikit-learn: Machine Learning in Python. (M. Braun, Ed.) Journal of Machine 
Learning Research, 12, 2825-2830. 

Raschka, S. (2015). Python machine learning (First ed.). (R. Banerjee, Ed.) Birmingham, UK: 
Packt Publishing Ltd. 

Rathore, S. S., & Kumar, S. (2016). A decision tree regression based approach for the number of 
software faults prediction. ACM SIGSOFT Software Engineering Notes, v. 41(no. 1), 1-6. 

Robert, W., Reeder, V., Lawren, K., Cohen, H., & O'Neil, K. (2014). Guidance for Developing a 
Transit Asset Management Plan. Transportation Research Board. Washington, D.C.: 
Federal Transit Administration in cooperation with the Transit Development Corporation. 
doi:10.17226/22306 

Robert, William; Reeder, Virginia; Lauren, Katherine. (2014). Guidance for Developing the 
State of Good Repair Prioritization Framework and Tools. Transit Cooperative Research 
Program. Arlington, MA: Spy Pond Partners, LLC. 

Rose, D., Lauren, I., Shah, K., Blake, T., & Parsons Brinckerhoff, I. (2012). Asset Management 
Guide: Focusing on the Management of Our Transit Investments. U.S. Department of 
Transportation. Washington, D.C.: Federal Transit Administration. Retrieved from 
https://www.transit.dot.gov/about/research 

Shen, Q., & Chouchoulas, A. (2001). Rough set-based dimensionality reduction for supervised 
and unsupervised learning. Applie Mathematics and Computer Science 11 No. 3, 583-
602. 

Springstead, D. (2011). Asset Management: An Agency Perspective. 90th Annual Meeting of the 
Transportation Research Board. Washington, D.C.: Transportation Research Board. 

TRB. (2013). Review of the Federal Transit Administration’s Transit Economic Requirements 
Model. Transportation Research Board. Washington, D.C.: National Research Council. 

US Congress. (2012). Moving Ahead for Progress in the 21st Century (MAP-21). 112th Congress 
Public Law, Washington, D.C. 

US DOT. (2013). Transportation for a New Generation: Strategic Plan. Washington, D.C.: US 
Department of Transportation. 

US GAO. (2013). Transit Asset Management: Additional Research on Capital Investment Effects 
Could Help Transit Agencies Optimize Funding. U.S. Government Accountability Office. 
Retrieved from United States Government Accountability Office (U.S. GAO): 
www.gao.gov/products/gao-13 - 571 



 

154 
 

VDOT. (2006). Asset Management Methodology (Appropriation Act Item 444 A). Virginia: 
Virginia Department of Transportation. 

Waaramaa, E. R. (2010). Asset Management Systems MBTA Approach and Lessons Learned. 
Massachusetts Bay Transportation Authority. Chicago, IL: State of Good Repair 
Roundtable. 

Welbes, M. J. (2009). Rail Modernization Study. U.S. Department of Transportation. 
Washington, D.C.: Federal Transit Administration. 

Xu, M., Watanachaturaporn, P., Varshney, P. K., & Arora, M. K. (2005). Decision tree 
regression for soft classification of remote sensing data. Remote Sensing of Environment, 
97(3), 322-336. 

Zarembski, A. M. (2013). Analysis of Transit 20 Year Capital Forecasts: FTA TERM Model vs. 
Transit Estimates. Washington, D.C.: Transportation Research Board of the National 
Academies. Retrieved from 
http://onlinepubs.trb.org/onlinepubs/reports/TERM_March_2013Zarembski.pdf 

Zhang, Y., & Haghani, A. (2015). A gradient boosting method to improve travel time prediction. 
Transportation Research Part C: Emerging Technologies, 308-324. 

Zhao, Y., & Zhang, Y. (2008). Comparison of decision tree methods for finding active objects. 
Advances in Space Research, 41(no. 12), 1955-1959. 

Zhou, Z.-H. (2012). Ensemble Methods: Foundations and Algorithms. (R. Herbrich, & T. 
Graepel, Eds.) Boca Raton, FL, USA: Chapman & Hall/CRC. 

 

 

  



 

155 
 

APPENDIX A. FIELDS IN THE REVENUE VEHICLE INVENTORY MODULE 

Transit agencies group together vehicles if they are identical in manufacture, vehicle 

type, vehicle mode, and funding source. These identical vehicles are called fleets, and they are 

reported to NTD database. Transit agencies collect the following revenue vehicle information 

and report to NTD database (FTA, 2017b; FTA, 2017c): 

Agency Fleet Identification – The vehicle identification is the unique number provided 

by the FTA. Transit agencies must report each fleet with the unique identifier to the inventory. 

Mode – Transit agencies need to report the primary mode of each fleet to inventory. 

Vehicle Type – Transit agencies need to report the type of revenue vehicle for each fleet. 

Total Fleet – Total fleet includes the number of vehicles in both active and inactive 

fleets. Transit agencies need to report the number of vehicles in the total fleet at the end of fiscal 

year. 

Number of Active Vehicles in Fleet – These are the vehicles which are still active at the 

fiscal year-end. Agencies report the number of active vehicles in the fleet at the end of the year.  

Dedicated Fleet – Dedicated fleets are vehicles which are dedicated to only used for 

public transportation services. Agencies need to report directly operated vehicles under dedicated 

fleet.  

Vehicle Length – Vehicle length is the length in feet for each fleet of vehicles. Transit 

agencies should report it to inventory. 

Seating Capacity – Manufacturer cites the number of seating capacity for the vehicle. 

Transit agencies need to report the actual number to the inventory. 

Standing Capacity – Standing capacity is the maximum number of people who are 

allowed to stand inside on the vehicle. Transit agencies should report the number of standing 
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capacity. If the policy does not allow people to stand on the vehicle, they should report zero for 

standing capacity. 

Year of Manufacture – This is the year of manufacture when the vehicle was originally 

built. Transit agencies must need to report the year to inventory. 

Ownership – Agencies need to report what entity owns the vehicles and the ownership 

type. 

Funding Source – There are several funding sources available to purchase or lease 

vehicles. Transit agencies must need to report the funding sources. 

Number of Emergency Contingency Vehicles – Transit agencies may keep the FTA 

funded vehicles in an inactive fleet if they are used in case of natural disasters. The agencies 

need to report the number of emergency vehicles as an inactive fleet. 

ADA Accessible Vehicles – These are the active vehicles that meet accessibility 

requirements of Americans with Disability Act of 1990 (ADA). Transit agencies need to report 

the number of ADA vehicles.  

Fuel Type – Transit agencies need to report the type of fuel used to operate the revenue 

vehicles.  

Year of Rebuild – Transit agencies must report the year of the rebuild if it is rebuilt. 

Under the FTA grant rules, if the bus is rebuilt, the service life will be extended to a minimum of 

four years, and if a rail vehicle is rebuilt, the service life will be extended to a minimum of 10 

years. 

Manufacturer – Transit agencies need to report the manufacturer of the vehicle or the 

final manufacturer of the vehicle if more than one manufacturer.  
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Model – Transit agencies need to report the model of the vehicle that manufacturer 

provides.  

Total Miles on Active Vehicles - Transit agencies need to report total miles on active 

vehicles during the fiscal year. 

Average Lifetime Mileage per Active Vehicle – It is the average mileage which begins 

with the original manufacturer data. Transit agencies need to report it at the end of fiscal year. 

Support Other Mode – If active vehicles are used to provide on two modes, transit 

agencies need to report the supports another mode for active vehicles which provide service for 

another mode. 
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APPENDIX B. NTD REVENUE VEHICLE INVENTORY MODULE 

 In this research, the Revenue Vehicle Inventory data from National Transit Database had 

been used. The transit agencies reported information of revenue vehicles at the end of the fiscal 

year in the revenue inventory repository. The revenue information data are shown in Table A1. 

Table B1. Revenue Vehicles 

Revenue Vehicles Fields 
5 Digit NTD ID 
Legacy NTD ID 
Agency Name 
Reporter Type  
Reporting Module 
Mode 
TOS 
Revenue Vehicle Inventory ID 
Total Fleet Vehicles 
Dedicated Fleet 
Vehicle Type 
Ownership Type 
Funding Source 
Manufacture Year 
Rebuild Year 
Manufacturer 
Other Manufacturer 
Description 
Model 
Active Fleet Vehicles 
ADA Fleet Vehicles 
Emergency Contingency Vehicles 
Fuel Type 
Vehicle Length 
Seating Capacity 
Standing Capacity 
Total Miles on Active Vehicles During Period 
Average Lifetime Miles per Active Vehicles 
Supports Mode 
Supports Service 
Retired 

Source: Adapted from Federal Transit Administration. 2017. National Transit Database: NTD 
Policy Manual. Office of Budget and Policy. U.S. Department of Transportation. Washington, 
D.C. 
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Table B2. Vehicle Type  

Vehicle 
Code 

Vehicle Type Vehicle 
Code 

Vehicle Type 

AB Articulated bus LR Light rail vehicle 
AG Automated guideway vehicle MO Monorail vehicle 
AO Automobile RL Commuter rail locomotive 
BR Over-the-road bus RP Commuter rail passenger coach 

BU Bus RS Commuter rail, self-propelled pass car 

CC Cable car SB School bus 
CU Cutaway bus SV Sports Utility Vehicle 
DB Double decked bus TB Trolleybus 
FB Ferryboat TR Aerial tramway 
HR Heavy rail passenger car VN Van 
IP Inclined plane vehicle VT Vintage trolley/streetcar 

Source: Adapted from Federal Transit Administration. 2017. National Transit Database: NTD 
Policy Manual. Office of Budget and Policy. U.S. Department of Transportation. Washington, 
D.C 

Table B3. Fuel Type  

Fuel Code Fuel Type Fuel Code Fuel Type 
BD Bio-diesel GA Gasoline 
BF Bunker fuel HD Hybrid diesel 
CN Compressed natural gas (CNG) HG Hybrid gasoline 
DF Diesel fuel HY Hydrogen 
DU Dual fuel KE Kerosene 
EB Electric battery LN Liquefied natural gas (LNG) 
EP Electric propulsion LP Liquefied petroleum gas (LPG) 
ET Ethanol MT Methanol 

Source: Adapted from Federal Transit Administration. 2017. National Transit Database: NTD 
Policy Manual. Office of Budget and Policy. U.S. Department of Transportation. Washington, 
D.C 
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Table B4. Funding Source  

Funding Code Funding Source Funding Code Funding Source 
UA Urbanized Area Formula 

Program 
NFPE Non-Federal private funds 

OF Other Federal funds RAFP Rural Area Formula 
Program 

NFPA Non-Federal public funds EMSID Enhanced Mobility for 
Seniors and Individuals 
with Disabilities 

Source: Adapted from Federal Transit Administration. 2017. National Transit Database: NTD 
Policy Manual. Office of Budget and Policy. U.S. Department of Transportation. Washington, 
D.C 

Table B5. Ownership Type 

Ownership 
Code 

Ownership Type Ownership 
Code 

Ownership Type 

LPPA Leased under lease purchase 
agreement by a public agency 

OOPA Owned outright by public 
agency 

LPPE Leased under lease purchase 
agreement by a private entity 

OOPE Owned outright by private entity 

LRPA Leased or borrowed from 
related parties by a public 
agency 

TLPA True lease by a public agency 

LRPE Leased or borrowed from 
related parties by a private 
entity 

TLPE True lease by a private entity 

Source: Adapted from Federal Transit Administration. 2017. National Transit Database: NTD 
Policy Manual. Office of Budget and Policy. U.S. Department of Transportation. Washington, 
D.C 
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Table B6. Vehicle Mode 

Mode Code Primary Mode Mode Code Primary Mode 
AG Automated Guideway LR Light Rail 
AR Alaska Railroad MB Bus 
CB Commuter Bus MG Monorail/Automated Guideway 
CC Cable Car PB Public Bus 
CR Commuter Rail RB Bus Rapid Transit 
DR Demand Response SR Streetcar Rail 
FB Ferry Boat TB Trolleybus 
HR Heavy Rail TR Aerial Tramway 
IP Inclined Plane VP Vanpool 
JT Jitney YR Hybrid Rail 

Source: Adapted from Fabian Cevallos. 2016. State of Good Repair Performance Measures: 
Assessing Asset Condition, Age, and Performance Data. Final Report for National Center for 
Transit Research (NCTR) and University of South Florida. 


