

BUILDING A PREDICTIVE MODEL ON STATE OF GOOD REPAIR BY MACHINE

LEARNING ALGORITHM ON PUBLIC TRANSPORTATION ROLLING STOCK

A Dissertation
Submitted to the Graduate Faculty

of the
North Dakota State University

of Agriculture and Applied Science

By

Dilip Kumar Mistry

In Partial Fulfillment of the Requirements
for the Degree of

DOCTOR OF PHILOSOPHY

Major Program:
Transportation and Logistics

May 2018

Fargo, North Dakota

North Dakota State University
Graduate School

 Title

BUILDING A PREDICTIVE MODEL ON STATE OF GOOD REPAIR

BY MACHINE LEARNING ALGORITHM ON PUBLIC

TRANSPORTATION ROLLING STOCK

 By

Dilip Kumar Mistry

 The Supervisory Committee certifies that this disquisition complies with North Dakota

State University’s regulations and meets the accepted standards for the degree of

 DOCTOR OF PHILOSOPHY

 SUPERVISORY COMMITTEE:

Dr. Jill Hough

 Chair

Dr. Bruce Maylath

Dr. Alan Dybing

Dr. Michal Jaroszynski

 Approved:

 July 2, 2018 Joseph Szmerekovsky
 Date Department Chair

iii

ABSTRACT

Achieving and maintaining public transportation rolling stocks in a state of good repair is

very crucial to provide safe and reliable services to riders. Besides, transit agencies who seek

federal grants must keep their transit assets in a state of good repair. Therefore, transit agencies

need an intelligent predictive model for analyzing their transportation rolling stocks, finding out

the current condition, and predicting when they need to be replaced or rehabilitated. Since many

transit agencies do not have good analytical tools for predicting the service life of vehicles, this

simple predictive model would be a valuable resource for their state of good repair needs and

their prioritization of capital needs for replacement and rehabilitation.

The ability to accurately predict the service life of revenue vehicles is crucial achieving

the state of good repair. In this dissertation, three unique tree-based ensemble learning methods

have been applied to build three predictive models. The machine learning methods used in this

dissertation are random forest regression, gradient boosting regression, and decision tree

regression. After evaluation and comparison of the performance results amongst all models, the

gradient boosting regression model with the top 30 most important features was found to be the

best fit for predicting the service life of transit vehicles. This model can be used to predict the

projected retired year for all nationwide vehicles in operation, the single transit agency’s transit

vehicle, and any single vehicle.

The revenue vehicle inventory data from National Transit Database (NTD) has been used

to build the machine learning predictive model. Before feeding the data into the model, a variety

of new features were created, missing data were fixed, and extreme values or outliers were

handled for the machine learning algorithm.

iv

ACKNOWLEDGMENTS

I would like to thank to my entire family, and especially my beloved wife, Lupa Mistry.

Thank you for supporting me for everything, and especially I can’t thank you enough for

encouraging me throughout this experience. To my beloved daughter Authoi Mistry, I would like

to express my thanks for being such a good girl. Without your loving support, I could not have

achieved this important goal.

I would like to thank my advisor Dr. Jill Hough for her guidance throughout my time at

North Dakota State University, Fargo, North Dakota. Your advice throughout the development

of my dissertation as well as on my career has been invaluable. You have inspired me in many

difficult situations. You have served well as my guide, not just in my academics, but in life in

general. You have been a tremendous mentor for me. You have been very patient with my

shortcomings and have always encouraged me to grow as a research scientist. Your advice was

very motivational and gave me a new perspective to achieve my dream. I sincerely appreciate

your valuable time and I will stay forever grateful.

I am also grateful to my supervisory committee and would like to thank Dr. Bruce

Maylath, Dr. Alan Dybing, and Dr. Michal Jaroszynski for serving as my committee members. I

also want to thank you for letting my defense be an enjoyable moment, and for your brilliant

comments and suggestions.

Finally, I would like to thank NDSU Graduate Center for Writers, especially Kristina

Caton for proofreading my dissertation. My dissertation would not have been complete without

the aid and support of Graduate Center for Writers. During the proofreading period, Kristina

always gave me much encouragement and sound advice.

v

TABLE OF CONTENTS

ABSTRACT ... iii

ACKNOWLEDGMENTS ... iv

LIST OF TABLES .. x

LIST OF FIGURES .. xii

LIST OF ABBREVIATIONS .. xiv

LIST OF APPENDIX TABLES ... xvii

CHAPTER 1. INTRODUCTION ... 1

1.1. Background .. 1

1.2. Problem Statement ... 3

1.3. Objective .. 8

1.4. Organization ... 8

CHAPTER 2. LITERATURE REVIEW .. 10

2.1. Overview of Early Research on the State of Good Repair ... 10

2.2. Overview of Transit Asset Management .. 17

2.2.1. Key components of transit agencies’ strategic management processes 19

2.2.2. Transit asset inventory development ... 20

2.2.3. Service life of transit asset ... 21

2.3. Condition of the United States Transportation System .. 23

2.4. Analytical Tools for State of Good Repair ... 25

2.4.1. FTA’s transit economic requirements model (TERM Lite) .. 26

2.4.2. Other analytical tools for state of good repair ... 27

2.5. Review of Transit State of Good Repair Practices in the United States 29

2.5.1. MARTA state of good repair ... 29

2.5.2. MBTA state of good repair .. 30

vi

2.5.3. MTC state of good repair .. 30

2.5.4. NJDOT state of good repair .. 31

2.5.5. RTA state of good repair ... 31

2.5.6. CalTrain state of good repair ... 31

2.5.7. NYCT state of good repair .. 32

2.5.8. VDOT state of good repair .. 32

2.5.9. WMATA state of good repair .. 33

2.6. Summary of Best Practices of SGR on Selected Transit Agencies 34

2.7. Summary of Literature Review .. 35

CHAPTER 3. METHODOLOGY .. 38

3.1. Basic Concept of Machine Learning Techniques .. 38

3.1.1. Supervised learning ... 39

3.2. Machine Learning Algorithms ... 40

3.2.1. Ensemble methods ... 41

3.2.1.1. Random forest regression ... 43

3.2.1.2. Gradient boosting regression .. 43

3.2.1.3. Decision tree regression .. 44

3.4. A Roadmap for Building Machine Learning Predictive Model ... 45

3.5. Preprocessing of Data ... 46

3.6. Development of Training Data ... 48

3.7. Parameter Optimization .. 49

3.8. Evaluation of Predictive Model .. 50

3.9. Summary of Methodology ... 51

CHAPTER 4. DATA ANALYSIS AND RESULTS ... 53

4.1. Exploring the Revenue Vehicle Inventory Data Set .. 53

vii

4.2. Tools for Processing the Revenue Vehicle Inventory Data Set for Machine
Learning Algorithms .. 53

4.3. Data Preprocessing for Initial Training and Deployment Data for Machine
Learning Model .. 54

4.3.1. Removing unnecessary columns ... 62

4.3.2. Dealing with missing data ... 62

4.3.3. Filling in missing data ... 63

4.3.4. Clean up of categorical names ... 65

4.3.5. Create the initial training data ... 66

4.3.6. Create the initial deployment data ... 67

4.4. Analyzing Important Characteristics of Revenue Vehicle Inventory Training Data
Set ... 68

4.5. Visualizing Important Characteristics of Revenue Vehicle Inventory Training Data
Set ... 75

4.6. Visualizing Relationships Between a Target Feature and Categorical Features 79

4.7. Preprocessing the Training Data .. 82

4.7.1. Create new features ... 82

4.7.2. Create additional features from categorical features ... 83

4.7.3. Create features with dummy variables .. 84

4.7.4. Create features by analyzing the histogram of various categorical features 84

4.7.5. Remove unnecessary columns ... 87

4.7.6. Check null values in the training data ... 87

4.7.7. Set index .. 88

4.7.8. Check the number of rows and columns in training data set 88

4.7.9. Save the training data .. 88

4.8. Create Deployment Data Set for Prediction ... 89

4.9. Develop Simple Linear Regression Model using SAS .. 89

viii

4.10. Develop Predictive Model .. 90

4.10.1. Random forest regression model ... 91

4.10.1.1. Tuning hyperparameters for random forest regression model 91

4.10.1.2. Building a random forest model to predict the service life of vehicles 95

4.10.1.3 Building a random forest model with full data set as the training set 98

4.10.2. Gradient boosting regression model .. 100

4.10.2.1. Tuning hyperparameters for gradient boosting regression model 100

4.10.2.2. Building and evaluating a gradient boosting regression predictive model 102

4.10.2.3. Building a gradient boosting regression model with full data as the
training set .. 104

4.10.3. Decision tree regression predictive model .. 106

4.10.3.1. Tuning hyperparameters for decision tree regression model 106

4.10.3.2. Developing and evaluating a decision tree regression predictive model 108

4.10.4. Comparison between random forest regression and gradient boosting
regression model .. 109

4.11. Building Gradient Boosting Regression Model for Service Life Prediction.................. 110

4.11.1. Save the SGR predictive model ... 113

4.12. Building a Gradient Boosting Regression Model with Feature Importance 113

4.13. Comparison Analysis of Predictions .. 122

4.14. Save the Gradient Boosting Regression Model with Top 30 Important Features 123

4.15. Make Predictions on Deployment Data ... 123

4.16. The Deployment Data Analysis ... 125

4.16.1. Cross Tabulation Analysis ... 128

4.17. Analysis on the Condition of Buses Based on Predicted Service Life 131

4.18. Data Analysis on Fargo Metropolitan Area Transit (MAT Bus) data 132

4.19. Make Prediction on Any Single Vehicle .. 137

ix

4.20. Challenges .. 141

4.21. Summary of Data Analysis and Results ... 144

CHAPTER 5. CONCLUSION AND FURTHER RESEARCH ... 147

5.1. Conclusion .. 147

5.2. Recommendation .. 147

5.3. Further Research .. 148

REFERENCES ... 149

APPENDIX A. FIELDS IN THE REVENUE VEHICLE INVENTORY MODULE 155

APPENDIX B. NTD REVENUE VEHICLE INVENTORY MODULE 158

x

LIST OF TABLES

Table Page

1. TERM vs. Agencies’ 20 Year Capital Needs Forecasts by Revenue Vehicle Category
(in millions of $) ... 7

2. Transit Vehicle Minimum Service Life .. 22

3. Actual Average Vehicle Retirement Age ... 23

4. Transit Vehicles and Ridership: Unlinked Passenger Trips ... 23

5. Transit Vehicles and Ridership: Average Age of Vehicles .. 24

6. Transit Vehicles and Ridership: Person-Miles Travelled ... 25

7. TERM Condition Ratings ... 27

8. SGR Best Practices ... 34

9. Sample Revenue Vehicle Inventory Data ... 47

10. Sample Predictions on Deployment Data After Applying the Predictive Model 49

11. Data Columns Information Table ... 60

12. Missing Data Information ... 61

13. Number of Null Points in the Columns ... 63

14. Number of Data Points in Each Column ... 65

15. Number of Vehicles by Vehicle Type .. 69

16. Statistical Analysis of Service Life by Vehicle Type ... 71

17. Contingency Table Between Fuel Type and Mode ... 73

18. Statistical Analysis of Service Life by Fuel Type .. 86

19. Null Values in the Data Set ... 88

20. Performance Measures with Simple Linear Regression by SAS .. 90

21. The Performance Measures with Random Forest Regression on Training Set 97

22. The Performance Measures with Random Forest Regression on Test Set 98

xi

23. Comparison of Performance Results on the Training Set and the Test Set using the
Random Forest Regression Method .. 98

24. Performance Measures with Random Forest Regression on Full Training Set 99

25. The Performance Measures with Gradient Boosting Regression on Training Set 103

26. The Performance Measures with Gradient Boosting Regression on Test Set 104

27. Comparison of Performance Results on Training Set and Test Set with Gradient
Boosting Regression Method .. 104

28. The Performance Measures with Gradient Boosting Regression on Full Data Set 105

29. The Performance Measures with Decision Tree Regression on Training Set 109

30. The Performance Measures with Decision Tree Regression on Test Set 109

31. Comparisons of Performance Measures Between Random Forest Regression and
Gradient Boosting Regression .. 110

32. Comparison of Service Life vs. Predicted Service Life .. 111

33. Top 30 Most Important Features and their Importance Scores ... 115

34. The Performance Measures by Gradient Boosting Regression with Top 30 Most
Important Features on Full Data Set ... 119

35. Comparison of Performance Results Between Gradient Boosting Regression Model
and Gradient Boosting Regression Model with Top 30 Important Features 119

36. Predicted Service Life vs. Actual Service Life by Top 30 Most Important Features 120

37. Comparison of Actual Service Life vs. Predicted Service Life with All Features and
Top 30 Important Features .. 123

38. Number of Vehicles in Deployment Data by Vehicle Type ... 126

39. Contingency Table of Vehicle Type by Vehicle Model ... 129

40. Number of Vehicles by Vehicle Type at MAT Bus ... 133

41. Statistical Analysis of Service Life by Vehicle Type on MAT Bus 134

42. The Projected Retired Year for MAT Bus .. 136

43. Processed Columns on Revenue Vehicle Data for Machine Learning Algorithm 138

44. The Predicted Retired Year for the Vehicle with RVI ID of 24444 141

xii

LIST OF FIGURES

Figure Page

1. Asset Management Processes (Adapted from Rose, David, Isaac Lauren, Keyur Shah,
Tagan Blake, and Inc. Parsons Brinckerhoff. 2012. Asset Management Guide:
Focusing on the Management of Our Transit Investments. FTA Report No. 0027, U.S.
Department of Transportation, Washington, D.C.: Federal Transit Administration.
https://www.transit.dot.gov/about/research) .. 18

2. Components of an Agency’s Strategic Management Processes (Adapted from APTA.
2013b. Creating a Transit Asset Management Program: Recommended Practice.
APTA-SGR-TAM-RP-001-13, Washington, DC: American Public Transportation
Association, Working Group: Transit Asset Management) ... 20

3. Asset Inventory Development Key Steps (Adapted from APTA. 2013b. Creating a
Transit Asset Management Program: Recommended Practice. APTA-SGR-TAM-RP-
001-13, Washington, DC: American Public Transportation Association, Working
Group: Transit Asset Management) ... 21

4. Making Prediction about the Future with Supervised Learning (Adapted from Raschka,
Sebastian. 2015. Python machine learning. First Edition. Edited by Roshni Banerjee.
Birmingham: Packt Publishing Ltd.) .. 40

5. A Common Ensemble Architecture (Adapted from Zhou, Zhi-Hua. 2012. Ensemble
Methods: Foundations and Algorithms. Edited by Ralf Herbrich and Thore Graepel.
Boca Raton, FL: Chapman & Hall/CRC.) .. 42

6. Roadmap for Machine Learning Predictive Model (Adapted from Raschka, Sebastian.
2015. Python machine learning. First Edition. Edited by Roshni Banerjee.
Birmingham: Packt Publishing Ltd.) .. 46

7. Sample Initial Training Set on Revenue Vehicles Data .. 49

8. Machine Learning Predictive Model on State of Good Repair ... 51

9. Bar Plot of Number of Vehicles by Vehicle Type .. 70

10. Bar Plot with the Mean Value of Service Life .. 72

11. Scatterplot to Visualize the Correlation Amongst Internal Features 76

12. Scatter Plot of Service Life vs. Vehicle Length .. 77

13. Scatter Plot of Service Life vs. Seating Capacity ... 78

14. Scatter plot of Service Life vs. Standing Capacity ... 78

xiii

15. Box Plot of Service Life by Vehicle Type .. 80

16. Heat map of Correlation Matrix with Features ... 81

17. Histogram of Service Life vs. Number of Vehicles with Compressed Natural Gas 85

18. A Bar Plot of Number of Trees vs. Root Mean Squared Error ... 92

19. A Bar Plot of Maximum Features vs. Root Mean Squared Error ... 93

20. A line Plot of min_sample_leaf vs. Root Mean Squared Error (RMSE) 94

21. Comparison Histogram of Predicted Service Life vs. the Actual Service Life 111

22. Regression Plot with a Regression Line of the Prediction of Service Life 112

23. Bar Plot with Top 30 Important Features and Importance Score ... 117

24. Comparison Histogram of Prediction vs. Actual Service Life ... 121

25. Regression Plot of Predicted Service Life vs. Actual Service Life with Top 30 Most
Important Features .. 122

26. Bar Plot of Vehicle Count by Vehicle Type ... 127

27. Bar Plot of Statistical Analysis of Predicted Service Life by Vehicle Type 128

28. The Condition of Buses Based on Predicted Service Life .. 132

29. Bar Plot of the Number of Vehicles by Vehicle Type at MAT Bus 133

30. Bar Plot of Statistical Analysis of Predicted Service Life by Vehicle Type on MAT
Bus .. 134

31. MAT Bus Projected Retired Year ... 135

32. Pie Chart and Table to Show the Projected Retired Year on MAT Bus 137

xiv

LIST OF ABBREVIATIONS

AAAPUL ...Average Age of Assets as a Percentage of their
Useful Life.

AASHTO ...American Association of State Highway and
Transportation Officials.

ADA ...Americans with Disability Act of 1990.

APTA ...American Public Transportation Association.

Bagging ..Bootstrapped Aggregation.

BART ...San Francisco Bay Area Rapid Transit.

C & P..Conditions and Performance.

CIP ...Capital Investment Program.

CIS ...Capital Investment Strategy.

CSV ..Comma Separated Values.

CTA..Chicago Transit Authority.

CTAMS ..CalTrain Asset Management System.

DO ..Directly-Operated.

DOAV ..Department of Aviation.

DOT ...Department of Transportation.

DRPT ...Department of Rail and Public Transit.

DTR..Decision Tree Regression.

EAM ...Enterprise Asset Management.

FAST Act ...Fixing America’s Surface Transportation Act.

FHWA ..Federal Highway Administration.

FRA ..Federal Railroad Administration.

FTA ..Federal Transit Administration.

GAO ...Government Accountability Office.

xv

GBM ..Gradient Boosting Machines.

GBR ...Gradient Boosting Regression.

GBRT ...Gradient Boosted Regression Trees.

JPB ...Peninsula Corridor Joint Powers Board.

LCARE ..Life Cycle Asset Rehabilitation Enhancement.

MAE ...Mean Absolute Error.

MAP-21..Moving Ahead for Progress in the 21st Century.

MARTA ...Metropolitan Atlanta Rapid Transit Authority.

MAT Bus ...Fargo Metropolitan Area Transit.

MBTA ..Massachusetts Bay Transportation Authority.

MMIS ...Maintenance Management Information System.

MPO ...Metropolitan Planning Organizations.

MTA ...Metropolitan Transportation Authority of New
York.

MTC ...Metropolitan Transportation Commission.

NCHRP ..National Cooperative Highway Research Program.

NHTS ...National Household Travel Survey.

NJDOT ...New Jersey Department of Transportation.

NJT ...New Jersey Transit.

NJTA ..New Jersey Turnpike Authority.

NJ Transit ...New Jersey Transit Corporation.

NTD ...National Transit Database.

NYCT ...New York City Transit.

OOB ...Outside of the Bag.

PI ..Prioritization Index.

PROGGRES ...Program Guidance and Grant Evaluation System.

xvi

PT ...Purchased Transportation.

RFR ..Random Forest Regression.

RMSE ...Root Mean Squared Error.

RTA..Regional Transit Authority.

RTCI ..Regional Transit Capital Investment.

RVI ID ...Revenue Vehicle Inventory ID.

SAS ..Statistical Analysis System.

SEPTA ...Southeastern Pennsylvania Transportation
Authority.

SJTA ..South New Jersey Transportation Authority.

SGR ..State of Good Repair.

SOGR ...State of Good Repair.

TAM ...Transit Asset Management.

TAMP ..Transit Asset Management Plan.

TAPT..Transit Asset Prioritization Tool.

TCRP..Transit Cooperative Research Program.

TERM ..Transit Economic Requirements Model.

Trans-AM ...Transit Asset Management System.

TRB ..Transportation Research Board.

U.S. DOT ...United States Department of Transportation.

VDOT ..Virginia Department of Transportation.

VPA..Virginia Port Authority.

WMATA ..Washington Metropolitan Area Transit Authority.

xvii

LIST OF APPENDIX TABLES

Table Page

B1. Revenue Vehicles ... 158

B2. Vehicle Type .. 159

B3. Fuel Type.. 159

B4. Funding Source .. 160

B5. Ownership Type ... 160

B6. Vehicle Mode ... 161

1

CHAPTER 1. INTRODUCTION

The United States public transportation agencies are experiencing an increase in public

transportation use and facing challenges maintaining their existing transit assets. These agencies

have a variety of transit assets such as buses, trains, track, rights of way, facilities, and other

assets in operation. Most of the transit assets have either aged or are beyond their recommended

useful life. These assets need to be rehabilitated or replaced to maintain the state of good repair

(SGR) to keep up with increased ridership. But due to lack of funding, the transit agencies expect

their systems will suffer a significant reduction in service reliability, which will cause restricted

transit services (Cambridge Systematics, 2009). Therefore, transit agencies need an intelligent

predictive model that will help them to accurately predict when a transit asset needs to be

rehabilitated and replaced; this will enable agencies to make decisions on investment and

prioritize to maintain SGR needs.

1.1. Background

The “Moving Ahead for Progress in the 21st Century” or MAP21 law passed in 2012 was

the Federal Transit Administration's (FTA) first and only standalone initiative for the state of

good repair program. The MAP21 granted $2.14 billion in the fiscal year (FY) 2012 and $2.17

billion in the fiscal year 2013 for repairing and upgrading nation's transit rail and bus services to

provide reliable, efficient, and safe services to riders (FTA, 2012). Then, the “Fixing America’s

Surface Transportation Act” or FAST Act law passed in 2015 was built upon continuing most of

MAP21’s provisions, along with other federal programs. The FTA estimated that there was about

25 percent of U.S. rail transit and 40 percent of buses that were in a marginal or poor condition

in 2015. Therefore, the FTA prioritized maintaining bus and rail systems in a state of good

2

repair, so the FAST Act program increased annual funding from $2.1 billion to $2.5 billion for

the FTA’s state of good repair (5337) program (FTA, 2017).

Section 5326 of MAP21 requires the FTA to establish a definition for “State of Good

Repair” that will have objective standards to measure the condition of various capital assets such

as rolling stock, equipment, facilities, and infrastructure (Cevallos, 2016). However, there are no

universal definitions of “State of Good Repair” adopted for public transit (Cohen & Barr, 2012).

For example, according to “Transit Asset Management Practices,” SGR is defined as “an asset or

system is in a state of good repair when no backlog of capital needs exists – hence all asset life-

cycle investment needs (e.g., preventive maintenance and rehabilitation) have been addressed

and no capital asset exceeds its useful life” (FTA, 2010b, pp. Sec. 2-2). On the other hand, the

American Public Transportation Association (APTA) Transit Asset Management Working

Group defines SGR as “a condition in which assets are fit for the purpose for which they were

intended” (APTA, 2013, p. 1). Both agency and its stakeholders accept this definition as it is

comparatively easy. The Department of Transportation defined SGR as “a condition in which the

existing physical assets, both individual and as a system, (a) are functioning within their ‘useful

lives,’ and (b) are sustained through regular maintenance and replacement program” (Amtrak,

2009, p. 9). The state of good repair does not ensure the growth of service, but it provides a solid

foundation so that transit agencies are reliable as ridership grows. Under normal conditions,

certain transit assets reach at the end of their useful lives. These assets would be either replaced

or renewed by creating annualized funding referred as normalized replacement cost. Since many

transit assets have been deferred in the past and those assets have not been allotted funding for

replacement, a significant backlog has been accumulated which is known as SOGR backlog

(Amtrak, 2009).

3

Most transit agencies defined state of good repair in some ways so that they could keep

their transit assets in ideal conditions. However, they defined it in the more of the same manner

and concepts as (a) maintaining a transit agency’s rolling stock and transit infrastructure in a

specific level, (b) performing maintenance, repair, and rehabilitation, and (c) eliminating the

agency’s backlog (FTA, 2010b). The definition of SGR by transit agencies are listed below

(FTA, 2008):

 The Massachusetts Bay Transportation Authority (MBTA) defines SGR as a standard

where all transit assets are in an ideal condition within their design life.

 The New York City Transit Authority (NYCT) defines SGR as investments which

cover depreciated asset conditions.

 The Southeastern Pennsylvania Transportation Authority (SEPTA) defines SGR in

transit asset when no backlog exists, and each asset maintains its useful life. It also

adjusts past deferred maintenance and replaces assets which exceed their useful life.

 The New Jersey Transit (NJT) defines SGR by achieving infrastructure components

with replacing in scheduled maintenance within their life expectancy.

 The Cleveland Regional Transit Authority (RTA) defines SGR as a system where it

maintains a consistent and high-quality condition system-wide.

1.2. Problem Statement

Public transportation is a critical transportation mode in the United States for a wide

range of riders and is crucial to the nation’s transportation system. There are about 1500 transit

agencies in the United States that provide bus services and about 80 agencies that provide rail

services. These transit agencies provide services to tens of millions of Americans every day,

especially in large metropolitan areas. However, some of the major transit systems are more than

4

one hundred years old. Most of the transit assets are either suffering from underinvestment or

lack of optimal transit asset management practices (APTA, 2007; US DOT, 2013). Thus,

insufficient investment in capital transit assets is deteriorating much of the nation’s transit assets.

In addition, operating costs for maintaining transit assets beyond their original service

expectancy are getting higher. This means that the reliability of service decreases as more transit

assets breakdown during service. Overall, the quality of the stations and shelters, as well as the

public safety, decline as aging assets fail to perform properly. As a result, the transit agencies

become unreliable and less attractive for potential passengers (McCollom & Berrang, 2011).

Furthermore, according to the FTA in its “National State of Good Repair Assessment,”

approximately one-third of the nation’s transit assets are not in good shape. And, another

analysis conducted with Transit Economic Requirements Model (TERM) on current physical and

service condition shows that about one-third of the transit rail and bus are exceeding their useful

life and reinvestments are needed to bring nation’s transit vehicles to the state of good repair

(FTA, 2008).

Concurrently, ridership of public transportation is increasing over time. For example, as

reported by the APTA, public transportation ridership expanded by 34% from 1995 through

2012, which is higher than the 17% increase in the United States population over the same period

(APTA, 2017). Another result from the National Household Travel Survey (NHTS) also shows

that transit ridership increased by 16 percent from 2001 to 2009 which exceeds the population

growth forecast during that period (FHWA, 2010). In addition is a report of increased ridership

by the Metropolitan Planning Organizations (MPOs), who projects a low growth scenario for

transit, predicting the overall ridership will grow 1.7 % per year from 2012 to 2032. In the same

report by the MPOs, the high growth scenario is based on the historical trend of ridership over

5

the last 15 years and predicts that the future ridership will grow about 2.2 percent per year from

2012 to 2032. Both growth scenarios assess the level of investment needed for SGR. In fact,

TERM estimates the average annual level of investment for the nation would be $24.5 billion,

including $17.4 billion for replacing and rebuilding assets and $7.1 billion for expansion to keep

up with ridership growth (FHWA, 2010).

In 2009, the FTA estimated that nearly $78 billion is needed to bring the nation’s transit

assets into a state of good repair (US GAO, 2013). The FTA used TERM to estimate normal

replacement expenditures and estimated that an average of $14.4 billion per year was needed to

maintain the state of good repair (FTA, 2010a). The FTA also calculated with the TERM model

that an annual investment of $18.3 billion was needed to achieve a state of good repair over a 20-

year period while maintaining the normal replacement needs. The potential consequences of

keeping the above reinvestment rate suggests that the continued reinvestment may deteriorate the

overall condition on the nation’s transit assets and the rate of transit assets which already

exceeded their useful life will increase to more than 30% by 2029 (FTA, 2010a). Moreover, if

transit assets currently in acceptable condition are not replaced or rehabilitated on time, the

transit service will result in increased operating costs, reduced safety, disrupted on-time service,

and reduced ridership (US GAO, 2013). Therefore, it is imperative that the FTA and transit

agencies look for ways to solve these critical issues in order to sustain the state of good repair.

However, in order to implement plans to sustain that state of good repair, the tools used

to analyze the state of good repair must also be credible, reliable, and accurate. In 2010, the FTA

assessed the accuracy of TERM’s projections, which was published in ‘2004 Conditions and

Performance’ report. This assessment compared the projections made by the TERM model and

the agencies’ experiences. The comparison showed that the transit agencies total expenditures

6

were $10.5 billion from the year 2003 to 2009, whereas the TERM’s projection was $12.1

billion. This comparison result indicated TERM was projecting 14 percent above the actual

expenditure in the 2004 Condition & Performance report. The FTA also examined the condition

rating reported by agencies over the period between 2003 and 2009. They found that if the actual

agency expenditure is below the TERM’s projections, the condition rating declines, whereas if

the agency expenditure is above the TERM’s projections, the condition rating improves (TRB,

2013). More specifically, in order to access the accuracy, the FTA’s TERM tool forecasts the

yearly replacement needs based on decay curves derived from data from selected transit systems.

However, estimating an overall decay curve based on data from a single transit system, and then

projecting replacement needs for all based on that single decay curve, may not correctly estimate

the backlog by the TERM model because the decay curve is based on single transit system in a

single transit environment.

A second assessment was performed by the FTA committee on the accuracy of the

TERM’s backlog estimation by comparing it with the 20-year capital spending requirements of

three major agencies: MARTA, NYCT, and MBTA. The comparison results showed that the

NYCT had 40% less than the TERM forecast for rail vehicles because they increased their

rolling stock replacement age to 40 years while TERM kept it 28 to 29 years. It appears that the

NYCT changed their backlog definition to a condition-based replacement criterion rather than an

age-based replacement criterion. In addition, the MARTA found a discrepancy of $1.64 billion

(52%) between the two forecasts in the revenue vehicle category. Again, this discrepancy is due

to the difference in condition-based replacement rather than the TERM’s age-based approach.

Furthermore, the MBTA found a disparity of agency forecast of $0.53 billion (16%) higher than

the TERM forecast in revenue vehicle category. This difference between these two forecasts is

7

due to the difference in the definitions of replacement conditions. Table 1 below shows the

discrepancies between all three agencies’ forecasts and the TERM forecast in the revenue vehicle

category (Zarembski, 2013; TRB, 2013).

Table 1. TERM vs. Agencies’ 20 Year Capital Needs Forecasts by Revenue Vehicle Category
(in millions of $)

Category NYCT MARTA MBTA
TERM Agency Diff TERM Agency Diff TERM Agency Diff

Revenue
Vehicles

18,729 11,278 40% 3,127 1,488 52% 3398 3925 -16%

Source: Adapted from Zarembski, Allan M. 2013. Analysis of Transit 20 Year Capital Forecasts:
FTA TERM Model vs. Transit Estimates. Washington, D.C.: Transportation Research Board of
the National Academies.
http://onlinepubs.trb.org/onlinepubs/reports/TERM_March_2013Zarembski.pdf.

The FTA committee recommended refining the TERM model and developing simple

methods to project capital spending more accurately (TRB, 2013). Therefore, in order to reduce

the discrepancies between the TERM forecast and agency forecasts, the FTA should reexamine

its asset life criterion and should improve the TERM model to include a condition-based

replacement approach (Zarembski, 2013). Thus, a simple predictive model is needed to

supplement the TERM tool used to estimate the conditions of the revenue vehicles and project

capital expenditure needs.

In conclusion, the problem statement of this research summarizes that the FTA’s current

TERM tool may have shortcomings in predicting the service life of transit vehicles. Furthermore,

there is a problem with aging infrastructure, including the transit vehicles. Since the ridership in

public transit has been increasing and is projected to grow, and in light of ongoing funding

issues, both the FTA and transit agencies need an alternative way to accurately forecast the

service life of transit vehicles. Therefore, this research involves building a predictive model by a

machine learning algorithm that will more accurately predict the service life of transit vehicles

8

and perform statistical data analysis. This predictive tool will be useful to national, state, and

local transit agencies, as well as researchers in transit asset management.

1.3. Objective

Maintaining transit rolling stocks in a state of good repair has become a strategic goal for

transit agencies and the FTA. The challenge that transit agencies face maintaining assets in a

state of good repair is that most agencies do not have an effective way to manage their physical

transit assets (FTA, 2010b). The objective of this research is to develop a predictive model with

machine learning algorithms for transit agencies to obtain a state of good repair so they can

effectively prioritize capital investment for rehabilitation and replacement of transit vehicles.

Although, transit agencies are aware of the consequences of the underinvestment of their assets,

they have limited resources to predict the outcomes of various funding scenarios. Because the

tools they currently use are not reliable, transit agencies cannot project accurate timelines for

replacing assets when needed. These limitations prohibit transit agencies from addressing

ongoing backlog replacement and rehabilitation issues when funding is insufficient (McCollom

& Berrang, 2011). In order to address this problem, this research will develop a predictive model

using machine learning techniques to help transit agencies to predict the service life of transit

vehicles and calculate investment needs for rehabilitation and replacement needs of revenue

vehicles. To do this, the research will investigate the transit state of good repair, asset

management practices, fundamental concepts of transit asset management (TAM), and

application of machine learning algorithms.

1.4. Organization

The research begins with the abstract that highlights the overall summary of the

dissertation. The main thesis is organized into five chapters. In Chapter 1, the background of the

9

state of good repair problem, the problem statement, and the objectives of this research are

discussed. In Chapter 2, the previous study on the state of good repair and asset management

practices are presented. This chapter also includes early research on the state of good repair, an

overview of the transit asset management system, the current condition of the United States

transportation system, analytical tools used for the state of good repair, and a review of transit

state of good repair practices in the United States. In Chapter 3, the methodology developed for

service life prediction is presented, and three machine learning algorithms are introduced.

Chapter 4 presents the proposed predictive models by building, evaluating, and comparing three

regression models: gradient boosting regression, random forest regression, and decision tree

regression. Chapter 4 also presents the preprocessing of data, data analysis, and challenges.

Chapter 5 concludes the study and sets out goals for further research.

10

CHAPTER 2. LITERATURE REVIEW

This chapter provides an overview of the related literature on the state of good repair,

existing asset management practices, and support tools that are currently used by many transit

agencies and other relevant published articles. The review will focus on how the FTA maintains

its current minimum service life policy, how transit authorities approach asset management, how

they define and practice the state of good repair for transit assets, and how they identify the best

practices to maintain the state of good repair. The sources of the literature review are from

Federal Transit Agency (FTA) publications, Transportation Research Board (TRB) proceedings,

Transit Cooperative Research Program (TCRP) publications, National Cooperative Highway

Research Program (NCHRP) publications, and other published articles. The following key

concepts from the above resources are summarized below.

2.1. Overview of Early Research on the State of Good Repair

The “NCHRP Report 545: Analytical Tools for Asset Management, Reviewed Asset

Management Tools and Systems” published in 2005, provided two software tools, which are

AssetManager NT and AssetManager PT (Cambridge Systematics, 2005). These tools were

intended for the state departments of transportation and transit agencies to support tradeoff

analysis for transportation asset management. The tools were developed to integrate with

existing systems to help agencies to analyze and predict investment decisions for their transit

assets. The report provided a snapshot of how existing tools were being used, what capabilities

and limitations existed in the available asset management tools, and what kind of new tools were

needed (Cambridge Systematics, 2005).

Then, the “NCHRP Report 551: Performance Measures and Targets for Transportation

Asset Management” published in 2006, provided concepts of performance management for

11

transit agencies used for transit asset management (Cambridge Systematics, 2006). This report

described how performance measures could be used for decision-making processes and resource

optimization. It presented a framework for performance measure development and target values

for use in asset management. In addition, it also provided best practices on how to set the

performance target and what factors need to be considered when setting the performance target

(Cambridge Systematics, 2006).

The “Useful Life of Transit Buses and Vans” research published in 2007 by the FTA

assessed the policy on existing minimum service life for transit buses and vans (Laver, Schneck,

Skorupski, & Cham, 2007). The study team interviewed transit agencies and performed

engineering and economic analysis to evaluate the minimum service-life policy. The engineering

analysis showed that the bus lifespan was restricted by the bus structure, while the economic

analysis showed that the optimal replacement points for various bus types were at or later than

the FTA’s minimum service life. The study provided details on the useful life of buses and vans,

the minimum service life policy by the FTA, the impact of the vehicle life expectancies,

agency’s decision on retirement, vehicle maintenance, and replacement best practices. The study

also showed that the actual ages at which agencies were retiring buses from service exceeded

FTA’s minimum service life and suggested that the minimum service life policy needed to be

changed (Laver, Schneck, Skorupski, & Cham, 2007).

Another 2007 report, “NCHRP 20-68: Domestic Scan Pilot Program Best Practices in

Transportation Asset Management,” identified the best-case practices and the asset management

principles for transit agencies (Meyer & Cambridge Systematics, Inc., 2007). The Federal

Highway Administration (FHWA), the American Association of State Highway and

Transportation Officials (AASHTO), and the National Cooperative Highway Research Program

12

(NCHRP) sponsored this program. This research report was organized into four segments: a)

case studies of some state transit agencies, b) case studies of local agencies and metropolitan

planning organizations, c) observations of scan trips, and d) suggestions for further actions and

research (Meyer & Cambridge Systematics, Inc., 2007).

Then, in 2008, the FTA published “Transit State of Good Repair: Beginning the

Dialogue,” the first step to collaborate transit asset management practices and provide strategies

to address the state of good repair needs and transit asset management for the nation’s transit rail

and bus rolling stock (FTA, 2008). To do this, the FTA first convened a workshop in the summer

of 2008, bringing together diverse stakeholders from 14 public transit providers and state

departments of transportation to address the state of good repair for the nation’s transit inventory.

The objective of the workshop was to encourage stakeholders to be proactive by raising

awareness regarding the scope of the problem and exploring creative approaches for funding of

replacement and rehabilitation of aging transit assets. In the workshop, the FTA discussed the

condition of transit capital assets, asset management practices, preventative maintenance

practices, maintenance issues, and innovative financing strategies. The FTA also discussed

related research work and supporting tools for transit agencies for coping with the state of good

repair problems. The FTA further explained potential public-private partnership opportunities

with manufacturers, engineering firms, and private equity firms for long-term capital asset

management to make sure that the legacy assets are maintained and replaced when needed.

While this workshop was successful in starting a useful dialogue among transit professionals,

unfortunately the published report coming out of the round table workshop failed to define the

state of good repair. The result of this omission is the FTA could not articulate how condition

ratings, instead of age ratings, could be used effectively (FTA, 2008).

13

The “Rail Modernization Study,” published in 2009 by the FTA, focused on capital

expenditure and reinvestment needs for the nation’s top seven transit agencies: Massachusetts

Bay Transportation Authority (MBTA), Chicago Transit Authority (CTA), New Jersey Transit

Corporation (NJ Transit), Metropolitan Transportation Authority of New York (MTA),

Washington Metropolitan Area Transit Authority (WMATA), Southern Pennsylvania

Transportation Authority (SEPTA), and San Francisco Bay Area Rapid Transit (BART)

(Welbes, 2009). The study examined the asset management practices of the seven agencies and

found that a backlog of $50 billion in 2008 would be needed to bring the seven agencies to the

state of good repair, and an additional $5.9 billion would be required per year to maintain the

state of good repair after that time. The FTA found that even though these agencies maintained

their comprehensive asset inventories for capital funding, they lacked other asset management

practices; relatively few transit agencies developed complete capital planning asset inventories to

support long-term capital planning. Furthermore, the study found that, while only some of the

largest transit agencies were making progress to improve their asset inventories, the relatively

small and medium agencies had already developed these inventories. The shortcoming of this

study was that the model did not consider future capacity expansion and other transit agency

improvements (Welbes, 2009).

The 2010 “National State of Good Repair Assessment” study by the FTA was an

expansion of the original 2009 “Rail Modernization Study” and evaluated the level of investment

required to bring all agencies in the United States to a state of good repair (FTA, 2010a). This

study showed that in 2009 an estimated SGR backlog of $77.7 billion would be needed to

achieve the state of good repair and an additional $14.4 billion per year would be needed to

maintain the normal replacement investment for a state of good repair. The study assessed the

14

national reinvestment needs considering the condition of the existing transit assets. The study

found that about one-third of the nation’s overall transit assets were either in marginal or poor

condition, which meant these assets were either near or already exceeding their expected useful

lives. However, when just bus and rail data were analyzed, 41% of bus assets and 26% of rail

assets were either in marginal or poor condition. The report also described the methods for

estimating the amount of investment, data sources, useful life assumptions, and type of

investments required for the state of good repair needs. Furthermore, the study team also

documented the processes, methods, and asset management practices of the study’s 23 transit

agencies that provided capital planning asset inventory data for long-term capital planning in

support of both “National State of Good Repair Assessment” study and the earlier “Rail

Modernization Study” (FTA, 2010a).

The 2011 synthesis, “TCRP Synthesis 92: Transit Asset Condition Reporting – A

Synthesis for Transit Practice,” documented the current transit asset management system

practices for transit agencies as well as the local, state, and federal funding partners (McCollom

& Berrang, 2011). This synthesis showed that large transit agencies use elementary asset

management systems to fight against the consequences of underinvestment. Even though most

large transit agencies had asset management systems that recorded all their assets, their systems

were not able to make predictions about asset replacement under various funding scenarios.

Finally, this synthesis provided several suggestions for improving the design and structure of the

database, analysis techniques, and the SGR based tools for prioritizing funds (McCollom &

Berrang, 2011).

The “Transit Cooperative Research Program (TCRP) Report 157: State of Good Repair -

Prioritizing the Rehabilitation and Replacement of Existing Capital Assets and Evaluating the

15

Implications for Transit,” report published in 2012 provided an SGR framework to evaluate and

prioritize the rehabilitation and replacement investment decision for transit assets (Cohen &

Barr, 2012). This SGR framework helps decision makers to answer questions regarding transit

asset replacement and rehabilitation investment decisions. The report supported the framework

by presenting an analytical approach along with a set of spreadsheet tools. The tools are intended

for evaluating rehabilitation and replacement investments in specific transit assets and for

prioritizing them. In conclusion, transit agencies will find these models a valuable resource to

plan or finance public transportation (Cohen & Barr, 2012).

The “Moving Ahead for Progress in the 21st Century (MAP-21),” law was passed in July

6, 2012 and authorized $10.6 billion in the fiscal year 2013 and $10.7 billion in the fiscal year

2014 for federally funded transit agencies and highway programs (US Congress, 2012). Under

the MAP-21 law, most of the funding was distributed through the core formula programs. MAP-

21 created a state of good repair program and authorized at $2.1 billion in the fiscal year 2013

and $2.2 billion in the fiscal year 2014 for this program. Furthermore, the program also

established new asset management systems and performance measurements for transit agencies

(US Congress, 2012).

Thus, by 2014 the industry had published several research studies on state of good repair.

Several studies were successful in addressing the problems of the state of good repair; however,

more studies still needed to be completed. So, then in 2014 the “TCRP Project E-09: Guidance

for Applying the State of Good Repair Prioritization Framework and Tools,” provided guidance

on how the framework and tools from 2012 TCRP Report 157 could be applied to evaluate and

prioritize investment decisions in order to achieve a state of good repair. This research report

16

improved the framework and tools and then demonstrated their applications through a set of pilot

programs and workshops (Robert, William; Reeder, Virginia; Lauren, Katherine, 2014).

A concurrent report, the 2014 “TCRP Report 172: Guidance for Developing a Transit

Asset Management Plan,” provided a system of how a transit asset management plan (TAMP)

could be developed for use by transit agencies to achieve a state of good repair in accordance

with the requirements of MAP-21 (Robert, Reeder, Lawren, Cohen, & O'Neil, 2014). This

research was an expansion of the 2012 TCRP Report 157 and was intended to develop tools for

transit agencies for the state of good repair. This TCRP 172 research introduced transit asset

prioritization tool (TAPT), which consists of four spreadsheets tools for all types of transit assets

(Robert, Reeder, Lawren, Cohen, & O'Neil, 2014). Although these tools were not as successful

as expected, nevertheless these TAPT models were available to transit agencies to use for

forecasting the future condition of transit assets and prioritizing rehabilitation and replacement

investments.

This ten years of reports, research studies, round tables, workshops, and the MAP-21

provision culminated in the 2015 “Fixing America’s Surface Transportation Act” or the FAST

Act. This law reauthorized the public transportation and federal highway programs for the fiscal

years 2016 to 2020 (APTA, 2016). The SGR saw a 23.9% increase by 2020 fiscal year beginning

at $2.507 billion in 2016 fiscal year and rose to $2.684 billion by 2020 fiscal year. However, the

FAST Act did not make significant changes in the SGR program to maintain the state of good

repair on public transportation systems. In another case, the FAST Act incorporated about 2.85%

of the total program funds for a High-Intensity Motorbus Vehicle State of Good Repair program.

The FAST Act also suggested a maximum of 80% federal share for this program (APTA, 2016).

17

This dissertation focuses on the following aspects of the state of good repair development

timeline. The early research from 2005 to 2006 on the state of good repair stated analytical tools

for asset management, performance measures for transit asset management, and best practices to

set the performance target. In 2007, the early research assessed the policy on existing minimum

service life for transit buses and vans, and it suggested the minimum service life policy needed to

be changed. Another report provided asset management principles for transit agencies. In 2008,

the roundtable report provided strategies to address the state of good repair and transit asset

management. In 2009, the study examined transit asset management practices of the seven

agencies, and their capital expenditure and reinvestment needs. In 2010, the study assessed the

reinvestment needs and evaluated the level of investment to bring all agencies to state of good

repair. In 2011, the synthesis reviewed the current transit asset management system practices and

provided suggestions to improve them. In 2012, the report provided a framework to prioritize the

rehabilitation and replacement investment needs for transit assets. In 2014, the research reports

provided guidelines to evaluate and prioritize investment decisions and provided a system to

develop a transit asset management plan to achieve state of good repair. And finally, in 2015,

FAST Act law authorized $2.507 billion in 2016 fiscal year and rose to $2.684 billion by 2020

fiscal year for the state of good repair program.

2.2. Overview of Transit Asset Management

According to section 1103 of MAP-21, asset management is defined as a set of “actions

that will achieve and sustain a desired state of good repair over the lifecycle of the assets at

minimum practicable cost” (Cevallos, 2016, p. 3). The FTA defines transit asset management as

“Transportation asset management as a strategic and systematic process through which an

organization procures, operates, maintains, rehabilitates, and replaces transit assets to manage

18

their performance, risks, costs over their lifecycle to provide cost-effective, reliable and safe

service to current and future customers” (Lauren & Rose, 2012, p. 10). The FTA definition

shows that asset management not only manages cost, it also handles risk and the performance

across the lifecycle of transit assets (Lauren & Rose, 2012). Figure 1 shows how the ongoing

asset management processes are related to cost, risk and system performance over the lifecycle

of assets. The objective of asset management is to minimize the total cost as well as maximizing

the performance (Rose, Lauren, Shah, Blake, & Parsons Brinckerhoff, 2012).

Figure 1. Asset Management Processes (Adapted from Rose, David, Isaac Lauren, Keyur Shah,
Tagan Blake, and Inc. Parsons Brinckerhoff. 2012. Asset Management Guide: Focusing on the
Management of Our Transit Investments. FTA Report No. 0027, U.S. Department of
Transportation, Washington, D.C.: Federal Transit Administration.
https://www.transit.dot.gov/about/research)

The FTA provides financial assistance to transit agencies to maintain their transit

infrastructure and assets in a state of good repair. But the task is not easy for transit agencies

because of the costs involved in other transportation assets such as bridges, highways, and

transportation facilities. This is the reason transit agencies put more emphasis on asset

management systems to manage their assets accurately (FTA, 2010b). Thus, MAP-21 requires

Risk Cost Cost Risk

System
Performance

Investments Cost

Asset Management

System
Performance

 System

Risk

Time

19

transit agencies to establish a transit asset management system. The development of an asset

management system helps transit agencies to request needed funds for investments and attain a

state of good repair (Cevallos, 2016). In addition, asset management systems can help transit

agencies monitor their current assets’ conditions and redistribute their existing resources to more

effective uses (Meyer & Cambridge Systematics, Inc., 2007). Again, asset management can help

agencies to prioritize capital investment, allocate limited resources to maintain current transit

assets, and plan for replacement and rehabilitation of existing assets. In addition, asset

management can help transit agencies optimize limited funding, estimate a state of good repair

backlog, and set spending priorities (US GAO, 2013).

2.2.1. Key components of transit agencies’ strategic management processes

Transit agencies need to manage their transit assets on a regular basis. Therefore, along

with performance management and risk management, asset management has become an essential

part of an agency’s strategic management to achieve effective, high-level performance. Figure 2

shows the interaction among the agency’s strategic management and its components. Transit

agencies can accomplish their goals and objectives by combining and practicing these

management processes. Individually, these management processes cannot be effective; they must

be used in conjunction with the other management processes (APTA, 2013b; Cevallos, 2016).

20

Figure 2. Components of an Agency’s Strategic Management Processes (Adapted from APTA.
2013b. Creating a Transit Asset Management Program: Recommended Practice. APTA-SGR-
TAM-RP-001-13, Washington, DC: American Public Transportation Association, Working
Group: Transit Asset Management)

2.2.2. Transit asset inventory development

As per the federal requirement for funding, transit agencies need to focus on the data-

driven approach to measure the state of good repair and they need to require a transit asset

inventory as the primary source of data (Cevallos, 2016). The asset inventory should include

detailed information on the agency’s assets and the assets’ key attributes, such as asset type,

asset age, expected useful life, and lifecycle costs. Figure 3 shows key steps of asset inventory

development. The first step is to establish the organizational high-level class hierarchy for transit

agencies to develop an asset inventory. The second step is to determine the asset inventory fields

based on data requirements. The third step is to collect data, making sure that the data collection

is consistent and accurate. After obtaining the necessary data, transit agencies must set the useful

life and cost factors. The fourth step is to perform the quality check to ensure data accuracy. The

21

final step is to implement continuous improvement for data maintenance and constant evaluation

(Cevallos, 2016).

Figure 3. Asset Inventory Development Key Steps (Adapted from APTA. 2013b. Creating a
Transit Asset Management Program: Recommended Practice. APTA-SGR-TAM-RP-001-13,
Washington, DC: American Public Transportation Association, Working Group: Transit Asset
Management)

2.2.3. Service life of transit asset

The FTA established a minimum useful life policy for transit vehicles funded with

federal grants (Laver, Schneck, Skorupski, & Cham, 2007). The policy is to ensure that federally

funded vehicles have a significant service life serving transit riders. The service life starts when

the vehicle begins service and ends when it finishes service. The FTA’s minimum service life

varies by vehicle categories. Table 2 provides the vehicle categories and their minimum service

life schedules. The service life of vehicles within different categories differs significantly. The

12-year bus category accounts for more than 25% of the nation’s transit vehicles, while 4-year

vehicle category accounts for 20% of the nation’s transit vehicles. The analysis on 12-year

category vehicles shows that the average age is 15.1 years which means most transit agencies

operate buses above the minimum service life (Laver, Schneck, Skorupski, & Cham, 2007).

Establish High-Level Asset Class

Determine Asset Inventory Fields

Collect Data

Set Lifecycle and Cost Assumptions

Perform Quality Checks

Implement Continuous
Improvement

22

Table 2. Transit Vehicle Minimum Service Life

Category Typical Characteristics Minimum Life
Whichever comes

first
Length Approximate

Gross Vehicle
Weight

Seats Average
Cost

Years Miles
Heavy Duty
Large Bus

35 - 48 feet
and 60 feet
Articulated

33,000 to
40,000

27 to 40 $325,000 to
over

$600,000

12 500,000

Heavy Duty
Small Bus

30 feet 26,000 to
33,000

26 to 35 $200,000 to
$325,000

10 350,000

Medium Duty
and Purpose-
Built Bus

30 feet 16,000 to
26,000

22 to 30 $75,000 to
$175,000

7 200,000

Light Duty Mid-
Sized Bus

25 to 35
feet

10,000 to
16,000

16 to 25 $50,000 to
$65,000

5 150,000

Light Duty
Small Bus,
Cutaways, and
Modified Van

16 to 28
feet

6,000 to
14,000

10 to 22 $30,000 to
$40,000

4 100,000

Source: Adapted from Laver, Richard, Donald Schneck, Douglas Skorupski, and Laura Cham.
2007. Useful life of transit buses and vans. No. FTA-VA-26-7229-07.1, U.S. Department of
Transportation, Washington, D.C.: Federal Transit Administration.

Based on an analysis of the average retirement age of transit assets on NTD data, the

FTA found that the average retirement age was longer than the minimum required age in practice

(Edrington, et al., 2014). The NTD database contains the statistics of national transit vehicles.

Table 3 provides the average vehicle retirement age by vehicle category. The average retirement

age of 4-year van is 5.6 years with 29% of the vehicle retired one or more years after the FTA

minimum retirement age. Table 3 also shows that about 20% of 5 and 12-year vehicles exceed

one or more year past the minimum retirement age. Besides, 10% of 4-year vehicles exceed three

or four years past the minimum retirement age (Edrington, et al., 2014).

23

Table 3. Actual Average Vehicle Retirement Age

Vehicle Category
with Minimum
Retirement Age

Average Retirement
Age (Years)

Share of Active Vehicles That Are:
One or more years
past the minimum

service life

Three or more years
past the minimum

service life
12 – Year Bus 15.1 19% 9%

10 – Year Bus 8.4 7% 4%

7 – Year Bus 8.2 12% 3%

5 – Year Bus/Van 5.9 23% 5%

4 – Year Van 5.6 29% 10%

Source: Table adapted from Laver, Richard, Donald Schneck, Douglas Skorupski, and Laura
Cham. 2007. Useful life of transit buses and vans. No. FTA-VA-26-7229-07.1, U.S. Department
of Transportation, Washington, D.C.: Federal Transit Administration.

2.3. Condition of the United States Transportation System

There are about 850 urban transit agencies, and 1700 rural and tribal transit agencies

provide transportation services by transit bus, commuter rail, light rail, ferryboat, and subway.

Table 4 below shows that public transit provided about 10.5 billion unlinked trips in 2014 which

is an increase of 20.5% over 2000 (BTS, 2016).

Table 4. Transit Vehicles and Ridership: Unlinked Passenger Trips

Fiscal Year 2000 2010 2013 2014
Unlinked Passenger Trips (Billions)
Heavy Rail 2.63 3.55 3.82 3.93
Commuter Rail 0.41 0.46 0.48 0.49
Light Rail 0.32 0.46 0.52 0.48
TOTAL, Rail Transit UPT 3.36 4.47 4.81 4.90
Motor Bus 5.16 5.24 5.33 5.04
Demand Response 0.07 0.10 0.11 0.10
Ferry Boat 0.05 0.06 0.06 0.06
Other 0.08 0.10 0.09 0.40
TOTAL, Non-Rail Transit UPT 5.36 5.49 5.60 5.61
TOTAL, Transit UPT 8.72 9.96 10.41 10.51

Source: Table adapted from BTS. 2016. Transportation Statistics Annual Report. U.S.
Department of Transportation, Washington, D.C.: Bureau of Transportation Statistics.

24

Table 5 shows the average age of vehicles from 2000 to 2014 (BTS, 2016). The average

age of commuter rail passenger coaches increased over that period. The average age of the

heavy-rail passenger car fleet was 20.4 years old in 2014 but decreased by 2.5 years between

2000 and 2014. The average age of the transit buses was 7 to 8 years, and the average age of

light-rail vehicles was near 17 years. The bus fleet stayed comparatively newer than the transit

rail fleet as many transit agencies either retired, replaced or added new vehicles to the fleet and

the rail cars lasted longer than buses (BTS, 2016).

Table 5. Transit Vehicles and Ridership: Average Age of Vehicles

Fiscal Year 2000 2010 2013 2014
Average Age of Vehicles
Heavy Rail Passenger Cars 22.9 18.7 20.2 20.4
Commuter Rail Passenger Coaches 16.9 18.9 20.8 18.8
Full Size Transit Buses 8.1 7.9 8.1 7.2
Light Rail Vehicles 16.1 16.8 16.4 16.7
Transit Vans 3.1 3.4 3.5 3.5
Ferry Boats 25.6 20.5 21.4 23.8

Source: Table adapted from BTS. 2016. Transportation Statistics Annual Report. U.S.
Department of Transportation, Washington, D.C.: Bureau of Transportation Statistics.

In 2014, transit riders made about 10.5 billion trips which were 5.5% increases from 2010

(BTS, 2016). Table 6 shows that the transit riders traveled about 57.0 billion miles in 2014 which

were 8.2% travel increases since 2010. The light rail, commuter rail, and heavy rail made up the

nation’s rail transit with 15.3% of the total transit vehicles. The rail transit made 46.6% of the

total trips, and 57.2% of the total person-miles traveled. The bus transit produced 47.9% of total

transit trips and 37.9% of the total person-miles (BTS, 2016).

25

Table 6. Transit Vehicles and Ridership: Person-Miles Travelled

Fiscal Year 2000 2010 2013 2014
 Number of Transit Vehicles
Heavy Rail Cars 10,311 11,510 10,380 10,551
Commuter Rail Cars and Locomotives 5,497 6,768 7,150 7,177
Light Rail Cars 1,306 2,096 2,842 2,444
TOTAL, Rail Transit Vehicles 17,114 20,374 20,372 20,173
Motor Bus 59,230 63,679 66,823 62,449
Demand Response 22,087 33,555 31,433 31,359
Ferry Boat 98 134 156 144
Other 7,607 18,066 17,793 17,850
TOTAL, Non-Rail Transit Vehicles 89,022 115,434 116,205 111,802
TOTAL, Transit Vehicles 106,136 135,808 136,577 131,974
 Person Miles (Millions)
Heavy Rail 13,844 16,407 18,005 18,339
Commuter Rail 9,400 10,774 11,736 11,600
Light Rail 1,339 2,173 2,565 2,675
TOTAL, Rail Transit PMT 24,583 29,353 32,305 32,614
Motor Bus 18,999 20,739 21,414 21,587
Demand Response 588 874 852 864
Ferry Boat 298 389 402 414
Other 632 1,315 1,449 1,534
TOTAL, Non-Rail Transit PMT 20,517 23,317 24,117 24,399
TOTAL, Transit PMT 45,100 52,670 56,422 57,013

Source: Adapted from BTS. 2016. Transportation Statistics Annual Report. U.S. Department of
Transportation, Washington, D.C.: Bureau of Transportation Statistics.

2.4. Analytical Tools for State of Good Repair

The Map-21 authorized, and the FAST Act reauthorized FTA to develop a rule for the

state of good repair program. This rule establishes a system to monitor performance, manage

transit assets, increase safety and reliability, and estimate performance measures (WSDOT,

2016). Therefore, transit agencies need to develop a TAMP process per MAP-21 and FAST Act

requirements to achieve a state of good repair. FTA also developed TAPT tool for transit

agencies to support the TAMP process. This TAPT tool includes four spreadsheet models which

help transit agencies to predict the future conditions of their transit assets and help prioritize

rehabilitation and replacement needs. The FTA’s TERM Lite can be used along with TAPT or

26

without TAPT to support analysis of different investment scenarios. Furthermore, many agencies

developed their decision support tools and an asset management system which can be used to

support TAMP processes (Robert, William; Reeder, Virginia; Lauren, Katherine, 2014).

2.4.1. FTA’s transit economic requirements model (TERM Lite)

The FTA developed Transit Economic Requirements Model (TERM Lite) tool in 1995 to

estimate transit capital needs and spent about $5 million in development and update until 2013.

The TERM model measures asset condition on a 5-point scale and considers a revenue vehicle to

be in a state of good repair if the condition of the vehicle reaches or above the condition rating of

2.5 (FTA, 2013; Zarembski, 2013). It estimates the state of good repair backlog, determines the

capital funding levels required to achieve the state of good repair, analyze the impact of

projected future investment on capital performance, and prioritize long-term investment

(Cevallos, 2016). By using TERM, the transit agencies can forecast the trend of asset

maintenance, replacement, and rehabilitation costs for the next 20-year period as well as the FTA

can estimate the capital needs and develop various reports. The TERM model uses information

obtained from NTD database. The asset age and physical condition for each asset category are

considered as the predictor for determining the condition (Cevallos, 2016).

The TERM model can predict a current and future asset condition based on a five-point

rating system as shown in Table 7 (FTA, 2010a). It uses the numerical method to rate transit

asset condition based on a scale of 5.0 for excellent, 4.0 for good, 3.0 for adequate, 2.0 for

marginal, and 1.0 for poor for evaluating a transit asset condition based on their age, replacement

or rehabilitation history, and other factors. If the rating of the asset is at or above the condition

rating of 2.5, TERM model considers it a state of good repair. Similarly, if the condition value of

27

all transit assets is 2.5 or higher in a transit agency, it will be considered in a state of good repair

(FTA, 2010a).

Table 7. TERM Condition Ratings

Condition Ratings Description
Excellent 5.0 to 4.8 New or like new asset
Good 4.7 to 4.0 Asset showing minimal signs of wear
Adequate 3.9 to 3.0 Asset has reached mid-life
Marginal 2.9 to 2.0 Asset reaching or just past its useful life
Poor 1.9 to 1.0 Asset past its useful life

Source: Adapted from FTA. 2010. National State of Good Repair Assessment. Report to
Congress, U.S. Department of Transportation, Washington, D.C.: Federal Transit
Administration.

2.4.2. Other analytical tools for state of good repair

Along with the TERM tool, the FTA also developed four analytical tools for transit

agencies to support the TAMP process. These tools are (1) prioritization modeling tool, (2)

vehicle modeling tool, (3) age-based modeling tool, and (4) condition-based modeling tool. They

are described below.

1. Prioritization Modeling Tool

This tool prioritizes a series of asset rehabilitation or replacement funds and simulates the

funds for ten years (Cohen & Barr, 2012). This tool provides a set of recommendations for the

investment plan based on the allocated budget and prioritization index (PI) results. Even though

the tool provides the straightforward approach for allocating funds for replacement and

rehabilitation based on PI, in practice higher-ranked projects with available budgets may need to

be rescoped, and smaller projects need to be combined. Also, there might be a limitation of

maximum and minimum spending by asset category to get a reliable solution (Cohen & Barr,

2012).

28

2. Vehicle Modeling Tool

The vehicle modeling tool estimates the cost minimizing point that a bus or rail vehicle

should be replaced and predicts the annual costs and prioritizes replacement of transit vehicles

based on age (Cohen & Barr, 2012). It considers energy or fuel costs, rehabilitation costs, and

delay costs for calculating the need for replacement or rehabilitation. Transit agencies should use

this tool multiple times as the calculations are fleet specific. Therefore, the transit agencies need

to develop various models for different vehicle types (Cohen & Barr, 2012).

3. Age-Based Modeling Tool

The age-based modeling tool assesses deteriorations on transit asset other than a transit

vehicle over time and forecasts the annual costs of the transit agency as well as user costs of the

transit asset (Cohen & Barr, 2012). It also prioritizes asset replacement based on a function of

age. This tool calculates asset replacement cost and predicts when the asset will fail if it is not

replaced. It is intended to use for different asset types other than vehicles. Therefore, the transit

agencies should use this tool multiple times for different asset types. The age-based model may

not be preferable in some complicated situation where age might be a poor predictor of an asset.

However, the age-based model requires comparatively less data than the other models (Cohen &

Barr, 2012).

4. Condition-Based Modeling Tool

The condition-based modeling tool uses on non-vehicle assets that deteriorate as a

function of condition (Cohen & Barr, 2012). It predicts the annualized user costs of the assets to

the transit agency. Using this tool, the rehabilitation or replacement actions are performed on the

transit asset based on priority, and condition. This tool is intended to use for specific multiple

non-vehicle assets, therefore transit agencies need to run it multiple times for multiple asset

29

types. Guideway, facilities, systems, and stations are modeled using the tool. The condition-

based model is preferable in a complex situation where the condition is a good predictor rather

its age (Cohen & Barr, 2012).

2.5. Review of Transit State of Good Repair Practices in the United States

Most of the transit agencies use TERM Lite as their leading practices for a state of good

repair. They also use TERM Lite to collect data and develop information inventories to manage

transit assets and prioritize capital investment. However, some of the transit agencies are using

in-house assessment tools to estimate a state of good repair needs, make capital investment

decisions on the state of good repair backlogs, prioritize rehabilitation and replacement needs

(US GAO, 2013). A review of transit state of good repair practices and asset management

practices in selected transit agencies are summarized below:

2.5.1. MARTA state of good repair

The Metropolitan Atlanta Rapid Transit Authority (MARTA) provides rail rapid transit

and bus service to Atlanta area. In the 1990’s, MARTA developed an integrated maintenance

management information system (MMIS) which has a standalone asset database to track its

assets but its limitation in functionality led to poor quality asset data. The asset condition reports

are stored in the database which is collected through testing of preventive maintenance and field

inspection. MARTA analyzes the data to determine its rehabilitation and replacement needs

(Cohen & Barr, 2012). In 2006, it obtained an enterprise asset management(EAM) system and

utilized the life cycle asset rehabilitation enhancement (LCARE) system to establish and improve

its asset management system. In 2010, efforts were made to complete information on assets on

an existing database and added missing assets in the database. However, the budget cuts

increased the MARTA's SGR backlog (Springstead, 2011).

30

2.5.2. MBTA state of good repair

The Massachusetts Bay Transportation Authority (MBTA) developed an SGR database

that includes its asset inventory and an application for predicting future asset replacement needs.

The MBTA uses the database to prioritize the rehabilitation needs based on the age of the transit

asset representing as the percent of useful life, operation impact, and cost-effectiveness. They

also use the SGR database to describe the scale and scope of the state of good repair and

backlog. MBTA prepares annual capital investment program (CIP) which includes a 5-year

capital investment plan to maintain a state of good repair (Cohen & Barr, 2012; Waaramaa,

2010).

2.5.3. MTC state of good repair

The Metropolitan Transportation Commission (MTC) developed a comprehensive

regional transit capital investment (RTCI) database for the Bay Area Transit. This database

tracks all the transit assets on different transit agencies in the Bay Area. The database is also used

to allocate the limited funding to the agencies in a consistent manner to replace the assets and

make sure that the assets maintain its state of good repair. The RTCI built a classification on

assets and included analysis tool for replacement needs. The tool provides the average lifespan

for each asset category for replacing the assets. The RTCI provides the projection of the 25

years’ transportation funding plan among nine counties in the Bay Area. The funding for each

transit agency depends on the average age of assets as a percentage of their useful life

(AAAPUL), a measurement of asset conditions and objectives to reach a state of good repair

(Cohen & Barr, 2012).

31

2.5.4. NJDOT state of good repair

The New Jersey Department of Transportation (NJDOT) coordinates with New Jersey

Transit (NJT), South New Jersey Transportation Authority (SJTA) and New Jersey Turnpike

Authority (NJTA) and produces its capital investment strategy (CIS). The CIS allocates the

transportation funding for the next ten years for transit assets. NJDOT categorizes its total assets

into nine classes and assigns a set of goals in each category. The CIS monitors how the system

performance varies over time with different funding scenarios and performs trade-off analysis

with different investment strategies (Cohen & Barr, 2012). The CIS developed an asset

management decision support model. The model assists NJDOT to use asset data and systems to

make high-level resource allocation decisions. It also helps to use available data to prioritize

problems (Louch, Robert, Gurenich, & Hoffman, 2009).

2.5.5. RTA state of good repair

The Regional Transportation Authority (RTA) supervises all public transportation in

Northern Illinois. RTA also provides planning and allocates funding to Pace Suburban Bus,

Chicago Transit Authority (CTA), and Metra Commuter Rail. RTA’s asset management system

has the SGR needs-assessment process which is based on an ongoing inventory condition

assessment program. The system contains a capital plan development process which links to

ongoing performance measurement so that the authority can analyze and prioritize investment

funding. In addition to this program, RTA includes an integrated decision support tool along with

the FTA’s TERM model (FTA, 2011).

2.5.6. CalTrain state of good repair

The Peninsula Corridor Joint Powers Board (JPB) operates the CalTrain which is a

commuter railroad servicing the community from San Francisco to Gilroy since 1992. The JPB

32

developed the CalTrain asset management system (CTAMS) to bring CalTrain rails into a state

of good repair. The CTAMS tracks the condition of transit assets and keeps maintenance records.

It also helps to make a decision on prioritizing and coordinating replacement and rehabilitation

needs within existing budgets. It considers factors such as the age of transit assets, standard

requirements of Federal Railroad Administration (FRA), and the SGR standard requirement of

CalTrain to measure transit asset conditions (FTA, 2011).

2.5.7. NYCT state of good repair

The New York City Transit (NYCT) initiated its SGR program by developing a database

which tracks its asset and prioritize its capital investment needs. A detail information about an

asset in input in the database which enables NYCT to identify the specific assets which require

capital investment. This information helped NYCT to plan 5 years for capital investment and 20

years for needs planning and acquire significant progress in restoring the agency’s assets to a

state of good repair. NYCT also initiated a new condition-based approach to replace or

rehabilitate their transit assets. In this approach, they determine the asset condition based on the

asset’s condition ranking its age versus the remaining usage life, and the actual asset

performance (McCollom & Berrang, 2011). In its capital investment program, it allocates SGR

reinvestment needs to correct past maintenance or replace equipment which have no useful life

(FTA, 2010b).

2.5.8. VDOT state of good repair

The Virginia Transportation system consists of Virginia Department of Transportation

(VDOT), Department of Rail and Public Transit (DRPT), Department of Aviation (DOAV), and

Virginia Port Authority (VPA). VDOT and DRPT both have developed a performance dashboard

while VDOT measures asset condition, DRPT measures its ridership. DRPT developed a transit

33

asset management system (Trans-AM) which helps the FTA to facilitate the state of good repair

practices throughout the transit agency. Virginia took a leadership role in transit asset

management with the recent development of program guidance and grant evaluation system

(PROGGRES). DRPT implemented PROGGRES that effectively address the capital needs and

policy for the state of good repair programs (Cambridge Systematics, 2009). To support and in

accordance with fulfilling state and federal requirements as asset management, VDOT

established a detailed asset management method which measures the performance and manages

transit assets based on life cycle approaches and allocate funds to different transit agencies based

on needs-based budget approach (VDOT, 2006).

2.5.9. WMATA state of good repair

The years of underfunding and the tremendous regional growth caused underinvestment

in Washington Metrorail’s Area Transit Assets and created unreliable services for riders.

Therefore, WMATA created momentum which is a strategic 10-year capital investment plan to

bring their transit assets into a state of good repair. Momentum planned Metro 2025 with $6

billion of critical capital investment to maximize the existing rail system, improve the rail

stations and pedestrian connection, enhance bus service, upgrade communication systems,

expand maintenance facilities, and improve the transit infrastructure. With the first capital

investment, WMATA estimates a capacity increase of 36000 passengers per hour during rush

hour. With its second investment which is a “quick win,” WMATA relieves crowding in its

largest bottlenecks and brings the system to a state of good repair (MTA, 2014).

34

2.6. Summary of Best Practices of SGR on Selected Transit Agencies

Here are some highlights of best practices from each agency in the Table 8:

Table 8. SGR Best Practices

Agency Business Process Best Practices
CTA (Chicago)  Strategy

 Condition Assessment
 Performance Monitoring
 Capital Programming

 Set up performance measures for each
category
 Evaluate asset condition consistently across
all assets
 Align condition & performance
 Apply formal process for capital projects for
asset life-cycle

MARTA
(Atlanta)

 Inventory
 Lifecycle Management
 Capital Programming
 Predictive modeling

 Develop formal asset management plans
 Apply capital programming process
considering asset conditions, remaining service
life, and lifecycle costs
 Evaluate state of good repair analysis and the
SGR backlog

MBTA
(Massachusetts)

 Capital Programming
 SGR Database

 Establish the annual CIP for 5-year
investment plan
 Build the SGR database which estimated
SGR backlog, and prioritize the rehabilitation
needs

MTC (Bay
Area)

 Capital Programming
 Lifecycle Management

 The RTCI database tracks transit assets and
allocate the funding to the transit agencies.
 The tool provides the average lifespan for
each asset category, projects costs for replacing
the assets.

NJDOT (New
Jersey)

 Strategy
 Asset Management

 The CIS allocates the transportation funding
for the next ten years for transit assets.
 The NJDOT categorizes its total assets into
nine classes and assigns a set of goals in each
category.
 The asset management decision support
model assists NJDOT to use asset data and
systems to make high-level resource allocation
decisions and prioritize problems.

CalTrain (San
Francisco)

 Inventory
 Asset Management

 The CTAMS use Microsoft Excel to track the
condition of transit assets, helps to decide on
prioritizing and coordinating replacement and
rehabilitation needs within existing budgets.

35

Table 8. SGR Best Practices (continued)

Agency Business Process Best Practices
NYCT (New
York City)

 Asset Management
 Condition assessment
 Capital investment
programming

 The SGR database tracks its asset and
prioritizes its capital investment needs.
 The capital investment program allocates
SGR reinvestment needs to correct past
maintenance or replace equipment which has
no useful life

VDOT
(Virginia)

 Condition Measurement
 Asset management
 Policy
 Lifecycle management

 Developed the PROGGRES which helps the
FTA to facilitate the state of good repair
practices throughout the transit industry.
 PROGGRES address the capital needs and
policy issues associated with the state of good
repair programs.
 VDOT established an asset management
method which measures the performance and
manages transit assets based on life cycle
approaches and allocate funds to different
transit agencies based on needs-based budget
approach.

WMATA
(Washington)

 Capital programming  WMATA created momentum which is a
strategic 10-year CIP plan to maximize the
existing rail system, improve the rail stations
and pedestrian connection, enhance bus
service, upgrade communication systems,
expand maintenance facilities, and improve the
transit infrastructure.

Source: Adapted from APTA. 2013. Defining a Transit Asset Management Framework to
Achieve a State of Good Repair: Recommended Practice. APTA SGR-TAM-RP-002-13,
Washington, D.C.: APTA Standards Development Program Working Group: Transit Asset
Management; FTA. 2010b. Transit Asset Management Practices: A National and International
Review. FTA Report, U.S. Department of Transportation, Washington, D.C.: Federal Transit
Administration.

2.7. Summary of Literature Review

The literature review conducted in this research found that the Federal Transit

Administration was trying to find an intelligent way to solve the transit state of good repair that

nation’s transit agencies were facing. Per Map-21 requirements, transit agencies require a

predictive model for prioritizing capital investment for replacement and rehabilitation of transit

36

vehicles. The FTA conducted case studies on several transit agencies and found that most of the

transit agencies were lacking asset management practices and didn’t have complete transit asset

inventories. Another study by the FTA on the useful life of transit buses and vans showed that

the minimum service life policy by the FTA might need to be changed. The NCHRP report

indicated that two analytical tools could be used along with existing systems to make the

investment decision on transit vehicles. Another report by NCHRP showed that how well a

performance measure could be used for decision-making process for capital investment. The

TCRP report 157 provided a framework for the state of good repair and developed tools for

evaluating and prioritizing investment. The TCRP project E-09 improved the state of good repair

framework which was developed in TCRP report 157. The TCRP project E-09 provided

guidance on how the framework and tools can be used to achieve the state of good repair. As a

continuation of TCRP report 157, the TCRP report 172 developed a transit asset management

plan in accordance with the Map-21 requirements and further improved the prioritization tools

for transit agencies. The TCRP synthesis 92 showed that most transit agencies were not able to

make replacement decisions under different funding scenarios. Another NCHRP 20-68 pilot

program provided best practices in transportation asset management for transit agencies.

The literature review also discussed on transit asset management system and how it helps

transit agencies to maximize system performance. The transit asset management is very

important for transit agencies as the Map-21 requires them to build transit asset management

system to get the federal funds. Therefore, transit agencies need to develop transit asset inventory

and asset management recommended several key steps to develop the asset inventory.

As per Map-21 and FAST Act, transit agencies are required to develop a transit asset

management plan to achieve the state of good repair. Therefore, the FTA developed TAPT tools

37

as well as TERM tool to predict the condition of transit assets and prioritize the investment

needs.

The literature review also reviewed the current state of good repair practices and asset

management practices on nation’s major transit agencies. The reviews showed that most of the

agencies use their in-house analytical tool to estimate the state of good repair needs. However,

most transit agencies do not have comprehensive transit inventories for asset management

purposes. The MBTA uses their own SGR database and an application to predict future

replacement and rehabilitation needs. The NYCT also uses their own SGR database to prioritize

its capital investment needs. The WMATA uses 10-year capital investment plan to achieve the

state of good repair. Finally, this chapter concludes by presenting several best practices for the

state of good repair on nation’s top transit agencies.

38

CHAPTER 3. METHODOLOGY

Based on the information from the SGR practices of the transit agencies as well as

literature review, three predictive models were developed to address the state of good repair. In

this research, the predictive models were developed by applying machine learning algorithms

which predict the projected service life of transit vehicles and help decision-makers to evaluate

replacement and rehabilitation needs for transit vehicles and allocate available funds across

overall transit assets. Furthermore, this will also help to evaluate the long-term capital funding

and its impact on the future condition as the performance of transit assets.

3.1. Basic Concept of Machine Learning Techniques

The field of machine learning builds a computer program which can automatically

improve with experience (Jordan & Mitchell, 2015). It is one of the rapidly growing

technologies, which uses the core concept of Artificial Intelligent (AI), data science, computer

science, and statistics. The development of new machine learning algorithms and the availability

of online data made the machine learning techniques more effective. Since machine learning

methods are data intensive, the application of machine learning is an evidence-based decision-

making process across science, technology, medical, education, manufacturing, financial, and

marketing (Jordan & Mitchell, 2015).

Machine learning algorithms have been developed to solve data and machine learning

related problems (Jordan & Mitchell, 2015). In the past decade, the scientists and engineers

collected a vast amount of data through networking and mobile computing systems that are

referred to as ‘big data.’ They used machine learning to convert these data for a solution to the

problem. Machine learning algorithms learn from large amounts of data and customize the output

based on business requirements. The trend of capturing and mining large amounts of diverse data

39

sets can improve services and productivity across many fields of science. For example, historical

medical records can be used to identify a patient with similar symptoms and provide the best

treatment; historical traffic data can be used to control traffic perfectly and reduce congestion;

historical crime data can be used to allocate police to a specific location and reduce the crime

rate. Therefore, many organizations are capturing large data sets and analyzing them through

machine learning techniques to automate decision making processes across many aspects of data-

intensive sciences (Jordan & Mitchell, 2015).

In general, there are three types of machine learning called supervised learning,

unsupervised learning, and reinforcement learning (Raschka, 2015). In this methodology, the

supervised learning would be utilized for the problem and described below.

3.1.1. Supervised learning

Supervised learning uses inductive methodologies and learns from input-output pairs

(Shen & Chouchoulas, 2001). The supervised learning learns from labeled training data and

makes the prediction to unseen data. Supervised learning is useful when systems under the

training data are intended to perform as learning with real results. In this case, the results are

known, but the rules to perform the tasks are not known. Therefore, the system needs to be

trained by learning algorithms and examples, then apply the learning knowledge to the entire

domain (Shen & Chouchoulas, 2001). One sub-category of supervised learning is the regression.

In regression analysis, many predictor variables along with a continuous response variable are

used to find a relationship between these variables to predict an outcome (Raschka, 2015). Figure

4 shows the workflow diagram of how supervised learning makes the prediction.

40

Figure 4. Making Prediction about the Future with Supervised Learning (Adapted from Raschka,
Sebastian. 2015. Python machine learning. First Edition. Edited by Roshni Banerjee.
Birmingham: Packt Publishing Ltd.)

3.2. Machine Learning Algorithms

In this research, three machine learning techniques have been used for estimating the

service life of revenue vehicles and the best method has been selected to solve the state of good

repair problem. For machine learning algorithms, a training set has been created with the revenue

vehicle inventory data from the fiscal year 2008 to the fiscal year 2016 from NTD legacy

database. The training data set has vehicles which had already been retired and stored training

instances in the memory for prediction of the service life of non-retired vehicles and solve the

state of good repair needs.

There are many methods of machine learning available for building predictive models. In

this problem, the ensemble method had been used to build the SGR predictive model. In order to

choose the best model for the problem, three kinds of comparative analysis of machine learning

algorithms had been conducted. They are random forest regression, gradient boosting regression,

and decision tree regression (Lee & Min, 2017). At first, the random forest regression had been

applied, followed by gradient boosting regression, and finally, decision tree regression method.

Labels
Training Data

New Data Predictive Model Prediction

Machine Learning Algorithm

41

After comparing the performance measurements amongst the model, the best predictive model

had been chosen for the problem.

3.2.1. Ensemble methods

Ensemble methods are very powerful techniques, and the basic idea is to train multiple

learners to solve the same problem and then combine them by averaging the output of models to

calculate the final prediction. Therefore, ensemble methods are significantly more accurate than

a single learner (Zhou, 2012). The idea of ensemble methods is used in many decision-making

situations in our daily lives (Zhang & Haghani, 2015). For example, when we have problems, we

seek others’ opinions. By combining the weighted ideas, we can get a better decision. Therefore,

the success of the ensemble method depends on the combination of base models. If individual

base models generate different outputs, then combining several base models is useful. The

ensemble methods minimize errors on the predictions by correcting mistakes on the predictions

made by the individual base model. If individual base models produce similar mistakes, then

combining base models is worthless. There are two techniques such as bagging and boosting

which uses various resampling methods to achieve diverse base models (Zhang & Haghani,

2015).

Ensemble methods can handle extremely complicated behavior, but they are very simple

to use and can rank features based on the predictive performance. Ensemble methods became

successful in many real-world problems and provided nearly optimum performance among all

major predictive analytics (Bowles, 2015; Zhou, 2012). The most popular ensemble algorithms

are adaBoost, boosting, bootstrapped aggregation (Bagging), gradient boosting machines

(GBM), stacked generalization (blending), gradient boosted regression trees (GBRT), and

random forest (Brownlee, 2013).

42

Figure 5 outlines a common ensemble architecture. There are numerous learners in an

ensemble which are called base learners. The training data generates base learners using the base

learning algorithms such as neural networks, decision tree or other learning algorithms. In most

of the cases, ensemble methods apply single base learning algorithm; however, some of the

ensembles use multiple learning algorithms (Zhou, 2012).

Figure 5. A Common Ensemble Architecture (Adapted from Zhou, Zhi-Hua. 2012. Ensemble
Methods: Foundations and Algorithms. Edited by Ralf Herbrich and Thore Graepel. Boca Raton,
FL: Chapman & Hall/CRC.)

The ensemble tree uses the averaging technique to reduce the variance. Both ensemble

tree-based algorithms use a single regression tree as their base model. The random forest uses the

bagging technique while the gradient boosting uses the boosting technique. In the boosting

method, the base model appears sequentially, and the examples which are difficult to estimate in

the previous base model appears in the training data more often than the ones which are correctly

estimated. The additional base models will correct mistakes which were made in the previous

base models. The gradient boosting regression method uses a forward stage-wise modeling

approach which fits additional models to minimize the gap between the prediction value and the

43

true value by using the loss function such as squared error or an absolute error. In the regression

problems, the boosting method uses a gradient descent optimization technique which minimizes

specific loss function by adding a base model at each step to reduce the loss function accurately.

The performance of the model can be optimized by the best combination of the parameters

(Zhang & Haghani, 2015).

3.2.1.1. Random forest regression

Random forest is a predictive algorithm which is a representative of ensemble methods

(Kumar, 2016). The algorithm creates predictions on individual trees randomly and then

averages predictions of all trees. The random forest does not use the cross-validation process;

instead, the method uses bagging. Suppose there are m number of variables, and n number of

observations in training data set T. S number of trees need to be grown in the forest, and each

tree will be grown from the separate training data set. Each training data set from S number of

training data sets is created from sampling n observation randomly; therefore, some data sets

might get duplicate observations, and some observations might be missing from all the S training

data sets. These data sets are called bootstrap samples or bagging. The observations that are not

part of the bag are “out of the bag” (Kumar, 2016). A random forest model has better

generalization performance than an individual decision tree because of its randomness, and it

helps the model to decrease the variance. Another advantage of random forest is that they are

good at handling outliers in the data set and do not need much parameter optimization (Raschka,

2015).

3.2.1.2. Gradient boosting regression

Gradient boosting regression trees are stage-wise ensemble trees where weak models are

fit sequentially to minimize the errors on the training set and predictions are made by the

44

previous model in the sequence (Gagne, McGovern, Haupt, & Williams, 2017). These weak

models are considered as decision trees in gradient boosting trees. In the beginning, the initial

model is fit directly to the training labels, and the additional weak models are fit sequentially to

the negative gradient of the loss function to optimize the predictive model. The difference

between the actual observation and the prediction from the previous model is called a residual,

which is also the mean squared error of the loss function. The predicted residual is added to the

sum of the previous residuals. A learning rate is multiplied by each tree’s prediction to minimize

the residual of the prediction, and a smaller learning rate can be used to correct the prediction

and minimize the risk to fit to noise. The base gradient boosting regression model uses the

default parameters of learning rate 0.1, 500 trees, a maximum depth of 5, and least absolute

deviance loss function (Gagne, McGovern, Haupt, & Williams, 2017).

Several parameters can be tuned by the grid search method to optimize the performance

of the predictive model (Johnson, et al., 2017). One of the parameters is the number of trees that

grows sequentially, and another parameter is the depth of the tree that indicates the depth of

interaction between features. The learning rate, which is another important parameter of the

model, can be tuned to determine how much each tree contributes to the overall performance of

the model (Johnson, et al., 2017).

3.2.1.3. Decision tree regression

The decision tree regression is a regression model built on a form of tree-based

structures. The model generates predictions on the dependent variable in numeric form (Rathore

& Kumar, 2016). The decision tree method can build models with complex variables without

having many assumptions on the modeling (Zhao & Zhang, 2008). The method can isolate

important independent features by basis function when many variables are used in the model.

45

The decision tree regression can be unstable, for example a change in the training data can

change the output and different attributes for the model need to be selected (Zhao & Zhang,

2008). In this research, the decision tree regression was also applied as it could handle data sets

with high dimensionality and could predict a dependent variable in a numeric form (Rathore &

Kumar, 2016).

3.4. A Roadmap for Building Machine Learning Predictive Model

Previously, the basic concepts of machine learning, supervised learning, and learning

algorithms were discussed. In this section, Figure 6 depicts a workflow diagram for a machine

learning predictive modeling which will be discussed below. After acquiring the revenue vehicle

inventory data from the NTD database, the initial raw data from the fiscal year 2008 to 2016

were combined and preprocessed for the machine learning algorithm. The preprocessed data

were separated into training data with retired vehicles to build the predictive model and

deployment data for predictions for retirement. The training data set was split into the training set

and the test set. The learning algorithms were applied to the training set to build the predictive

model, and various performance measures were applied to the testing set to evaluate the model.

After getting the best predictive model, the model was deployed on deployment data for

predictions.

46

Figure 6. Roadmap for Machine Learning Predictive Model (Adapted from Raschka, Sebastian.
2015. Python machine learning. First Edition. Edited by Roshni Banerjee. Birmingham: Packt
Publishing Ltd.)

3.5. Preprocessing of Data

The quality of data and the information it contains are key factors of how well a machine

learning algorithm can learn. Most of the time, raw data from the source does not come in the

form and shape to use in the machine learning algorithm. Therefore, the preprocessing of the

data is a critical step before feeding the data to any machine learning application (Raschka,

2015). The NTD databases contain the revenue vehicle inventory data in excel format, which

have many general problems related to how transit agencies entered their data and maintained the

data structures. In this research, the revenue vehicle inventory data from the fiscal year 2008 to

2016 were processed for a machine learning predictive model to solve the transit state of good

repair. The example in Table 9 represents sample data from the vehicle inventory data that were

used to build the training data for machine learning algorithms. The columns designate attributes

or features which were used to make predictions and the rows designate instances or

observations. The first column is called Revenue Vehicle Inventory ID which is unique for each

row. The Revenue Vehicle Inventory ID was not used for prediction as it was too specific and

pertained to only a single observation (Bowles, 2015).

Label

Raw
Data

Training
Data set

Test Data
set

Learning
Algorith

Final Model

Label

New Data

Label

47

The attributes shown in Table 9 include numerical and categorical variables. In this

example, the numerical variables, Vehicle Length, Manufacture Year, Retired Year, and Service

Life, are the most usual type of attributes, whereas Mode, TOS, Vehicle Type, and Fuel Type are

categorical variables. These categorical variables were converted to numerical values with either

“1,” if the category exists, or “0,” if it does not exist (Bowles, 2015). Alternatively, the

categorical variables could be converted to True or False.

Table 9. Sample Revenue Vehicle Inventory Data

Revenue
Vehicle
Inventory
ID

Mode TOS Vehicle
Type

Mfr
Year

Fuel Type Vehicle
Length

Retired
Year

Service
Life

53849 VP DO Van 2009 Gasoline 17 2014 5

45948 MB DO Bus 1995 Diesel Fuel 40 2014 19

24446 DR PT Bus 2001 Diesel Fuel 22 2015 14

13756 TB DO Trolley
Bus

1996 Electric
propulsion

37 2013 17

It is common in the real-world application that there might be errors in the data collection

process. Therefore, the following items such as data quality, missing records, misspelling of

different fuel types or vehicle types, extra whitespaces at the end of the columns, inconsistencies

of a column naming in the legacy data sets were taken into consideration to ensure the accuracy

of the data. The most common problem is missing values. The missing values were handled

either by removing missing entries from the unique vehicle inventory ID or filling missing values

in the non-unique attributes with the value calculated by different methods based on data types.

In addition, there were misspelling of categorical names or alternate names present in the Fuel

Type or Vehicle Type categories. These categorical names were replaced with a normalized form

of name to maintain data consistency throughout all the historical data. All of the other issues of

48

the column names in the historical data were fixed either by replacing or renaming with correct

attribute names.

If the Retired column had a Flag Y present, a new column, Retired Year, was created

with the value of the year the vehicle was retired. Another new column of Service Life was

created with the historical data for training the model. The value of Service Life was generated

by subtracting Manufacturing Year from the Retired Year. Since Revenue Vehicle Inventory ID

was unique for vehicle identification, it was used for indexing the data sets and in that way,

duplication was avoided. The retired vehicles data were used for training and evaluating the

model, and the data with the current vehicles in operation were used for predicting the projected

service life of the transit vehicles.

3.6. Development of Training Data

In the methodology, the revenue vehicle inventory data sets from the NTD database were

used to train the predictive model. The retired revenue vehicles data from 2008 to 2016 that were

used as observational data to train and test the predictive model are shown in Figure 7, and the

non-retired vehicles’ data that are shown in Table 10 were used for predicting the service life of

the transit vehicles. At first, the Service Life was calculated from the observational data and was

used as target data. Then, the observational data from which the model will learn were split into

two separate data sets: the training set, and the testing set. The training set was used for building

the model and the testing set was used for evaluation purposes. Here the algorithm or the model

will learn from the training data by understanding some correlations to make the prediction, then

the models will be evaluated on the testing data.

49

Target

y

Figure 7. Sample Initial Training Set on Revenue Vehicles Data

Table 10. Sample Predictions on Deployment Data After Applying the Predictive Model

Revenue
Vehicle
Inventory ID

Manufacture
Year

Rebuild
Year

Vehicle
Length

Seating
Capacity

- - - - - Predicted
Service
Life

54985 2010 - 22 14 - - - - - 12
54986 2009 2014 16 13 - - - - - 14
54987 2014 - 24 50 - - - - - 10
54988 2013 - 30 50 - - - - - 13
54989 2012 - 22 42 - - - - 11
- - - - - - - - - - -
- - - - - - - - - - -

3.7. Parameter Optimization

The regression algorithm requires parameter values to be set up before applying the

algorithm. Appropriate parameter settings in the algorithm will provide the best model while bad

parameter settings will produce poor results. The best model with the tuned parameter will

provide good performance on making predictions on new data with previously unseen values

(Ma, 2012). The random forest model works very well without optimizing parameters. However,

Revenue
Vehicle
Inventory
ID

Vehicle
Type
Bus

Rebuild
Year

Vehicle
Length

Seating
Capacity

- - - - - Service
Life

24371 False 2012 22 14 - - - - - 13
24372 False 2009 22 13 - - - - - 10
38543 False - 16 3 - - - - - 9
52840 True 2010 24 13 - - - - - 14
345232 True - 60 42 - - - - 10
- - - - - - - - - - -
- - - - - - - - - - -
- - - - - - - - - - -
349823 False 2008 24 42 - - - - - 14
349824 False - 16 30 - - - - - 11
349826 False - 24 40 - - - - - 13

T
ra

in
in

g
S

et

T
es

t
S

et

Features

30
%

 o
f

D
at

a

X

70
%

 o
f

D
at

a

50

the performance of the model can be improved by removing redundant variables, fixing a

minimum leaf size, and defining a random state number (Mueller & Massaron, 2015).

In this research, a simple parameter optimization method was used to find the optimal

parameters for the random forest regression model. In addition, the grid search methodology was

used in the gradient boosting and decision tree regression models to find the optimal parameter

values where the points are situated on the grid within the parameter space. The grid search does

a complete search starting from the minimum point of the grid in the parameter space to the

maximum points and finds the optimal parameters. In short, the grid search chooses the best

point after evaluating every point in the grid, and the best value on the best point is considered to

be the optimum solution (Ma, 2012).

3.8. Evaluation of Predictive Model

After setting the best parameter values in the model, training the model with regression

objects, and fitting the model with the training set of data, the test data set was used to calculate

the performance of the model on the unseen data. The performance of the machine learning

model was tested by measuring the R2 score, root mean squared error (RMSE), and mean

absolute error (MAE) (Raschka, 2015). Once the evaluation of each model was complete, the

performance of each model was compared to each other, and the best performing predictive

model was chosen to predict on new data.

RMSE calculates the measure of the model’s performance which is simply the square

root of the average of the sum of squared error function. In regression problems, RMSE is the

primary performance indicator than the other measures for regression problems (Aurlien, 2017).

Another performance measure is called mean absolute error (MAE) which was used to check the

accuracy of the model's predictions. MAE looks at every prediction the model makes, and it

51

provides an average mistake across all the predictions (Geitgey, 2017). Another performance

measure, the coefficient of determination (R2) which is the fraction of the response variance, was

also used to measure the model performance. The value of R2 is between 0 and 1, and the model

fits the data perfectly if the value is equal to 1.

Figure 8 shows the diagram of machine learning predictive models on the state of good

repair which was used to predict the service life of the transit vehicles on the most up-to-date

data that the transit agencies had. Using the model, transit agencies will have a clear picture of

the condition of their transit vehicles when they will have to retire their revenue vehicles and will

help decision makers plan for their SGR estimations.

Figure 8. Machine Learning Predictive Model on State of Good Repair

3.9. Summary of Methodology

The methodology involved introducing machine learning techniques to develop a

predictive model for the state of good repair to predict the service life of transit vehicles. The

methodology discussed on the basic concept of machine learning, the type of machine learning,

52

and ensemble methods. The regression analysis of the supervised learning was utilized for the

problem. The ensemble methods, which are very powerful techniques for machine learning

model, were discussed. There are three different machine learning techniques, which were

introduced in the methodology; they are random forest regression, gradient boosting regression,

and decision tree regression. The random forest regression algorithms create predictions on the

individual tree randomly and average them on all trees. The gradient boosting regression trees fit

weak models sequentially to the negative gradient of the loss function to minimize the errors on

the training set and optimize the predictive model. The decision tree regression is a tree-based

structure which generates predictions in a numeric form.

The revenue vehicle inventory data from the NTD database was used to build the

predictive model. The preprocessing steps of the data were discussed to format the raw data for

machine learning algorithms. Data with retired vehicles were used to train and evaluate the

model, and data with non-retired vehicles were used to deploy the trained model for predictions.

The regression analysis requires optimized parameters for the model for the best

performance. A grid search method was discussed to find the best parameters. After selecting the

best parameters value for each of the three predictive models, three predictive models were built,

their performance evaluated, and then compared to each other. Based on the best performance,

the gradient boosting regression predictive model was chosen to predict the service life of transit

vehicles.

53

CHAPTER 4. DATA ANALYSIS AND RESULTS

4.1. Exploring the Revenue Vehicle Inventory Data Set

The revenue vehicle inventory data from the NTD database was used for building the

predictive model and for performing exploratory data analysis. The NTD is the primary source of

information on the transit vehicle systems in the United States. Transit agencies report their

transit asset data to the NTD database as a requirement for receiving federal funds from the FTA

(FTA, 2017d). Revenue vehicle inventory data sets can be found in XLS format in the NTD

database and contain information about revenue vehicles from transit agencies published at the

end of each fiscal year. The data sets are available to download from the United States

Department of Transportation site at https://www.transit.dot.gov/ntd/ntd-data.

The FTA requires all transit agencies who receive Chapter 53 funds, and use them for

public transportation services, to report all transit asset information to the NTD per the FTA’s

TAM regulation. All transit agencies who also receive 5310 funding for public transportation

services must begin reporting to the NTD at the beginning of the 2018 reporting year (FTA,

2017b).

4.2. Tools for Processing the Revenue Vehicle Inventory Data Set for Machine Learning

Algorithms

The Python programming language was used to analyze the revenue vehicle inventory

data from the NTD database and develop predictive models with machine learning algorithms.

Python can be accessed by installing the Anaconda distribution package, which includes the

Jupyter Notebook for Python. In this analysis, the older reliable Python 2.7 version was used

instead of the latest version (Grus, 2015).

54

Some additional packages were also used for the analysis, computation, and data

visualizations (Grus, 2015). Pandas is a tool that has lot more functionality and provides better

performance working and manipulating data sets than Python does. NumPy, a building block of

Python that performs the scientific computation, was used for computation. Matplotlib was used

to visualize data in the form of bar charts, line charts, and scatterplots. Scikit-learn is a machine

learning library in Python. Instead of writing an optimization algorithm, the Scikit-learn library

was implemented to build the predictive model (Grus, 2015).

4.3. Data Preprocessing for Initial Training and Deployment Data for Machine Learning

Model

The performance of the machine learning model depends on the quality of the data and

the information the data set contains. Therefore, it is crucial that the data need to be examined

and preprocessed before it can be fed to a learning algorithm.

In order to preprocess the revenue vehicles inventory data sets, a few basic packages for

Python were loaded as shown below.

Import file package

import sys

Import data science packages

import numpy as np

import pandas as pd

In addition, the matplotlib and seaborn packages were also imported to visualize the data. The

seaborn was used to improve default plot formatting. The inline command %matplotlib was used

to display all the plots in the iPython Notebook (Hunter, Dale, Firing, & Droettboom, 2017). The

block of code is as follows:

Plot pretty figures

import matplotlib.pyplot as plt

import seaborn as sns

55

Plot figures inline

%matplotlib inline

The following block of code below was used to change the default values and customize

the behavior for every plot. The labelsize parameters of the axes, as well as the labelsize of the

xtick and ytick were set a value to adjust the layout (Hunter, Dale, Firing, & Droettboom, 2017).

Set matplotlib parameters in the script

plt.rcParams['axes.labelsize'] = 14

plt.rcParams['xtick.labelsize'] = 12

plt.rcParams['ytick.labelsize'] = 12

The default setting of max_columns displays 20 columns, and the default setting of

max_info_columns displays 100 rows per column. If the data frame contains more objects or data

points per column, the default setting will truncate the display. Therefore, the settings of the

display were changed to ‘2000’ to show all columns and column information in this training data

frame (McKinney, Wes; PyData Development Team, 2017). The block of code is as follows:

Set pandas to show all columns and column information in Data Frame

pd.set_option("display.max_columns", 2000)

pd.set_option("display.max_info_columns", 2000)

The following block of codes works as a function, was used to save all the figures as

PNG format in the root directory under ‘images’ folder.

Save the figures to a path

ROOT_DIR = "."

IMAGES_PATH = os.path.join(ROOT_DIR, "images")

Define the function

def save_image(image_name, tight_layout = True, image_extension =

"png", resolution = 300):

path = os.path.join(IMAGES_PATH, image_name + "." +

image_extension)

 if tight_layout:

 plt.tight_layout()

plt.savefig(path, format = image_extension, dpi = resolution)

56

The revenue vehicle inventory data sets from fiscal year 2008 to fiscal year 2016 were

downloaded from the FTA’s NTD database website at https://www.transit.dot.gov/ntd/ntd-data.

After downloading data sets to the local drive, the pandas’s read_excel() function was applied to

all the data. The individual revenue vehicle inventory data was stored in the individual data

frame object. A sample block of code is shown below that used 2016 inventory data to read and

store data to the data frame, revenue_vehicle_inventory_16. The other data frames from years

2008 to the 2015 data were created in a similar way to that of the year 2016 data set.

Read annual revenue vehicle inventory data of the fiscal year 2016

revenue_vehicle_inventory_16 = pd.read_excel('..//NTD/2016/Revenue

Vehicle Inventory_0.xlsx')

A data frame is a rectangular table of data which contains columns of different value

types such as numeric, string, or Boolean, etc. The data in the data frame is stored as one or more

two-dimensional blocks rather than a list or some other collection of one-dimensional arrays

(McKinney, 2017). A new data frame was created that indicated what columns needed to be

included in the data frame for further feature engineering.

 # Select columns for models

df_all = pd.DataFrame(columns = ['NTD ID', 'Agency Name', 'Mode',

'TOS', 'Revenue Vehicle Inventory ID', 'Total Fleet Vehicles',

'Dedicated Fleet', 'Vehicle Type', 'Ownership Type', 'Funding

Source', 'Manufacture Year', 'Rebuild Year', 'Manufacturer',

'Model', 'Active Fleet Vehicles', 'ADA Fleet Vehicles',

'Emergency Contingency Vehicles', 'Fuel Type', 'Vehicle Length',

'Seating Capacity', 'Standing Capacity', 'Total Miles on Active

Vehicles During Period', 'Average Lifetime Miles per Active

Vehicles', 'Supports Mode', 'Supports Service', 'Retired',

'Retired Year'])

A function append_to_frame() was defined that added data from previous years to the

existing data. The code is as follows:

57

 # Define a function which add data from previous years

def append_to_frame(appendee, appender, match):

 add_to = appender.loc[~appender[match].isin(appendee[match]), :]

 return appendee.append(add_to)

The individual data frame for each year needed to be cleaned up individually before

combined into a single data frame. Since data were entered into the spreadsheet without

following any guidelines, the data sets were not consistent from year to year. For example,

column names were mismatched in many data sets from year to year. Therefore, the column

names were fixed by renaming or removing some unnecessary columns. Some data points were

dropped because they had a null inventory ID. There were also whitespaces that existed in the

categorical columns, which were fixed by removing extra whitespaces. The following examples

show how the block of codes was used to rename columns and drop unnecessary columns.

 # Rename columns

revenue_vehicle_inventory_16 =

revenue_vehicle_inventory_16.rename(columns = {'5 Digit NTD ID':

'NTD ID'})

Drop unnecessary columns

revenue_vehicle_inventory_16 =

revenue_vehicle_inventory_16.drop(['Legacy NTD ID', 'Reporting

Module', 'Reporter Type', 'Other Manufacturer Description'], axis

= 1)

A new column Retired Year was added to each data frame based on the information on

column Retired = Y. The following block of code was used to create the Retired Year column

and added value by inserting 2016.

Created new columns 'Retired Year'

revenue_vehicle_inventory_16['Retired Year'] =

np.where(revenue_vehicle_inventory_16['Retired'] == 'Y', '2016',

'')

Fill NaN with 'N' in 'Retired' field

58

revenue_vehicle_inventory_16['Retired'].fillna('N', inplace = True)

After the initial cleanup of individual data, the following code was used to add data to the

previous data frame. Since Revenue Vehicle Inventory ID is unique, it prevents duplicating data.

The code below was used to add the 2016 inventory data to the initial blank data frame.

 # Add revenue vehicle inventory data for 2016 to the blank Data Frame

df_all = append_to_frame(df_all, revenue_vehicle_inventory_16, 'Revenue

Vehicle Inventory ID')

Since the revenue vehicle inventory data from 2008 to 2016 were used, each data set

needed to be cleaned up separately before adding it to the combined data frame. In this analysis,

only the data cleaning procedure on 2016 revenue vehicle inventory data is demonstrated here.

For the remaining data sets, additional cleaning procedures may have been required depending

on the quality of the data. After the initial cleanup of all the data sets, the remaining data sets

from the years 2008 to 2015 were combined to the 2016 data set and stored into a data frame.

The following example shows how the sample block of codes was used to combine 2015 data set

with the 2016 data frame.

Add inventory data from 2015 to the previous Data Frame (2016)

df_all = append_to_frame(df_all, revenue_vehicle_inventory_15, 'Revenue

Vehicle Inventory ID')

The following code shows the number of rows and columns in the combined data frame.

 # Check the number of rows and columns

df_all.shape

The above code showed 42440 rows and 27 columns in the initial combined data frame.

Four categorical data types, called Fuel Type, Vehicle Type, Funding Source, and

Ownership Type, had categorical names. These categorical names contained whitespaces at the

59

end of the names. The following code was used to clean whitespaces from the Fuel Type

categorical name. The other categorical names mentioned above were cleaned in a similar way.

 # Remove whitespaces from the categorical name

df_all['Fuel Type'] = df_all['Fuel Type'].str.rstrip()

Initially, some data cleaning and manipulation were performed before combining all the

data frames. Then, the info() method was used in order to see important information about the

full inventory data frame, such as the number of data points, data columns, and data type stored

in each column. This information indicated which columns were numeric or strings and whether

or not all columns had complete data points in them. The df_all.info() command displayed the

basic information about the data frame, which is listed in Table 11. The information below in

Table 11 shows that there is missing information in the data set that might have caused problems

if not fixed before the model was built.

60

Table 11. Data Columns Information Table

Data Columns Data Points Data Value Data Type
ADA Fleet Vehicles 41104 non-null float64
Active Fleet Vehicles 42401 non-null float64
Agency Name 42440 non-null object
Average Lifetime Miles per Active Vehicles 24177 non-null float64
Dedicated Fleet 42422 non-null object
Emergency Contingency Vehicles 17579 non-null float64
Fuel Type 27616 non-null object
Funding Source 42416 non-null object
Manufacture Year 39251 non-null float64
Manufacturer 25539 non-null object
Mode 42440 non-null object
Model 25401 non-null object
NTD ID 42440 non-null object
Ownership Type 42418 non-null object
Rebuild Year 2201 non-null float64
Retired 32106 non-null object
Retired Year 42440 non-null object
Revenue Vehicle Inventory ID 42422 non-null object
Seating Capacity 42406 non-null float64
Standing Capacity 23176 non-null float64
Supports Mode 5983 non-null object
Supports Service 6087 non-null object
TOS 42440 non-null object
Total Fleet Vehicles 42419 non-null object
Total Miles on Active Vehicles During Period 24147 non-null float64
Vehicle Length 39287 non-null float64
Vehicle Type 42421 non-null object

The following block of code calculated the missing information in each column.

 # Calculate total missing values

total = df_all.isnull().sum().sort_values(ascending = False)

Convert missing values to percentage

percent =

(df_all.isnull().sum()/df_all.isnull().count()).sort_values(ascen

ding = False)*100

missing_data = pd.concat([total, percent], axis = 1, keys = ['Total

Missing Data', 'Percent of Missing Data'])

61

The output is shown in Table 12. The table below shows that the data were missing in different

data types. Therefore, different approaches were initiated to fill in the missing data.

Table 12. Missing Data Information

Columns Total Missing Data Percent of Missing
Rebuild Year 40239 94.813855
Supports Mode 36457 85.902451
Supports Service 36353 85.657399
Emergency Contingency Vehicles 24861 58.579171
Standing Capacity 19264 45.391140
Total Miles on Active Vehicles During Period 18293 43.103205
Average Lifetime Miles per Active Vehicles 18263 43.032516
Model 17039 40.148445
Manufacturer 16901 39.823280
Fuel Type 14824 34.929312
Manufacture Year 3189 7.514138
Vehicle Length 3153 7.429312
ADA Fleet Vehicles 1336 3.147974
Active Fleet Vehicles 39 0.091894
Seating Capacity 34 0.080113
Funding Source 24 0.056550
Ownership Type 22 0.051838
Total Fleet Vehicles 21 0.049482
Vehicle Type 19 0.044769
Revenue Vehicle Inventory ID 18 0.042413
Dedicated Fleet 18 0.042413
Mode 0 0.000000
NTD ID 0 0.000000
Retired 0 0.000000
Retired Year 0 0.000000
TOS 0 0.000000
Agency Name 0 0.000000

At this point, for further analysis a copy of the combined data was saved as a CSV file by

executing the following code:

 # Save all data to a comma separated (CSV) file

df_all.to_csv('Revenue_Vehicle_Inventory_all_years.csv', sep = ',')

62

In a pandas data frame, the index is a special column that contains the row labels

(Downey, 2014). Since the Revenue Vehicle Inventory ID column was unique, the column was

set as the index. The code is as follows:

 # Set 'Revenue Vehicle Inventory ID' as index

df_all = df_all.set_index('Revenue Vehicle Inventory ID')

Since the Manufacture Year is vital for calculating the service life of the vehicle, it is

important that the data must include the Manufacture Year. However, the calculation of missing

data estimated that the Manufacture Year data showed 3189 null data points. Since interpolation

techniques cannot fill these missing values in the Manufacture Year, this huge number of

important data points were removed by running the following code:

 # Drop rows if Manufacture Year is missing

df_all.dropna(subset = ['Manufacture Year'], inplace = True)

4.3.1. Removing unnecessary columns

Some variables from the data sets were not required for either data analysis or modeling.

Therefore, the drop() method was applied to remove unnecessary columns using the following

code (Mueller & Massaron, 2015):

 # Remove columns

df_all = df_all.drop(['Agency Name', 'NTD ID', 'Manufacturer', 'Model',

'Retired', 'Supports Service'], axis = 1)

4.3.2. Dealing with missing data

There could have been many reasons that the real-world applications may have had

missing values during the data collection process. Sometimes, some fields are left blank as NaN

(Not a Number) in the database. Unfortunately, machine learning algorithms cannot handle

missing values. Thus, it is very important to take care of the missing values before analyzing and

63

modeling. Since the inventory data frame is large, it would be tedious to look for missing values.

Therefore, the isnull() method was used in the data frame to see if the column contained missing

values with True and numeric values with False. Finally, the sum() method was used to calculate

the total number of missing values per column. The code is as follows:

 # Check number of nulls

df_all.isnull().sum()

The output is shown in Table 13.

Table 13. Number of Null Points in the Columns

Column Names Number of Null Points
ADA Fleet Vehicles 1207
Active Fleet Vehicles 10
Average Lifetime Miles per Active Vehicles 15121
Dedicated Fleet 0
Emergency Contingency Vehicles 21719
Fuel Type 14100
Funding Source 5
Manufacture Year 0
Mode 0
Ownership Type 3
Rebuild Year 37050
Retired Year 0
Seating Capacity 9
Standing Capacity 16118
Supports Mode 33523
TOS 0
Total Fleet Vehicles 2
Total Miles on Active Vehicles During Period 15151
Vehicle Length 3
Vehicle Type 0

4.3.3. Filling in missing data

Missing data is common in most of the data analysis. Rather than filtering out missing

data, it can be filled in many ways. However, in this case, the missing values (NaN) in arithmetic

operation were filled in with either applying the constant value of “0” or applying an appropriate

64

function. On the other hand, the categorical values were filled with prefixing “Unknown”

followed by the category name (McKinney, 2017). The block of codes for arithmetic filling and

categorical filling are as follows (only one of each sample column was shown here):

For arithmetic filling:

Fill NaN values with zero (0)

df_all['ADA Fleet Vehicles'] = df_all['ADA Fleet Vehicles'].fillna(0)

For categorical filling:

Fill NaN values with 'Unknown' followed by category name

df_all['Fuel Type'] = df_all['Fuel Type'].fillna('Unknown Fuel')

Furthermore, the Vehicle Length and the Seating Capacity categorical fields were filled by

averaging with the mean() function as follows.

Fill NaN values with mean() function

df_all['Vehicle Length'].fillna(value = df_all['Vehicle

Length'].mean(), inplace = True)

df_all['Seating Capacity'].fillna(value = df_all['Seating

Capacity'].mean(), inplace = True)

And finally, the missing values in Support Mode was filled by Mode by the following code:

Fill NaN with values from 'Supports Mode'

df_all['Supports Mode'].fillna(value = df_all['Mode'], inplace = True)

Once missing values were filled, the following code verified whether there were any missing

values remain in the data frame.

Check number of null data points in each column

df_all.isnull().sum()

The output is shown in Table 14. A zero (0) in each column indicates no missing values. The

table shows the number of missing values.

65

Table 14. Number of Data Points in Each Column

Column Names Number of Null Data Points
ADA Fleet Vehicles 0
Active Fleet Vehicles 0
Average Lifetime Miles per Active Vehicles 0
Dedicated Fleet 0
Emergency Contingency Vehicles 0
Fuel Type 0
Funding Source 0
Manufacture Year 0
Mode 0
Ownership Type 0
Rebuild Year 0
Retired Year 0
Seating Capacity 0
Standing Capacity 0
Supports Mode 0
TOS 0
Total Fleet Vehicles 0
Total Miles on Active Vehicles During Period 0
Vehicle Length 0
Vehicle Type 0

4.3.4. Clean up of categorical names

Since legacy data from 2008 through 2016 were used in the data set, there were naming

inconsistencies in categorical columns called Fuel Type, Vehicle Type, Funding Source, and

Ownership Type. Therefore, the replace() function was applied to rename the inconsistent names

of those categorical columns. The following is a sample code of renaming categorical names in

Fuel Type:

 # Rename fuel type for consistencies

df_all['Fuel Type'].replace({'Bio-diesel(BD)': 'Diesel Fuel', 'Bunker

fuel': 'Diesel Fuel', 'Compressed natural gas (CNG)': 'Compressed

Natural Gas', 'Diesel fuel': 'Diesel Fuel', 'Diesel

Fuel/Liquefied Petroleum Gas': 'Diesel Fuel', 'Dual fuel':

'Diesel Fuel/Compressed Natural Gas', 'Electric battery':

'Electric Battery', 'Electric propulsion': 'Electric Propulsion

Power', ‘Gasoline/Compressed Natural Gas': 'Gasoline',

66

'Gasoline/Ethanol': 'Gasoline', 'Hybrid diesel': 'Hybrid Diesel',

'Hybrid gasoline': 'Hybrid Gasoline', 'Hybird gasonline': 'Hybrid

Gasoline', 'Hybrid Gasoline/Ethanol': 'Gasoline', 'Hybrid

Gasoline/Liquefied Petroleum Gas': 'Gasoline', 'hydrogen (HY)':

'Hydrogen Cell', 'Liquefied natural gas (LNG)': 'Liquefied

Natural Gas', 'Liquefied petroleum gas (LPG)': 'Liquefied

Petroleum Gas', 'Other (specify in box below)': 'Other'}, inplace

= True)

The renaming of categorical names from Vehicle Type, Funding Source, and Ownership Type

were renamed in a similar manner.

4.3.5. Create the initial training data

The development of algorithms starts with building training sets. The training set consists

of the two types of data, such as the target data and the features for making the prediction

(Bowles, 2015). In order to create the training set, retired vehicles were filtered out of the data

from 2008 to 2016. The following code generated the training set:

 # Filter data which have been retired since 2008 until 2016

df = df_all.loc[df_all['Retired Year'].isin(['2016', '2015', '2014',

'2013', '2012', '2011', '2010', '2009', '2008'])]

The above code indicated that the training data with Retired Year were stored in a new data

frame df. The target column Service Life was created by subtracting Manufacture Year from

Retired Year by executing the following code:

 # Create new column by subtracting 'Manufacture Year' from 'Retired

Year'

df['Service Life'] = df[['Retired

Year']].astype(float).sub(df['Manufacture Year'], axis = 0)

Since the target column was created from Retired Year, which was no longer needed in the

training set, the column was removed from the training set by executing the following code:

67

 # Drop column 'Retired Year'

df = df.drop(['Retired Year'], axis = 1)

After initial analysis of the newly created column Service Life, some very low service

life figures were found, and in some cases, negative service life figures were found. These

negative service life or low service life figures were caused by inaccurate inputting in either the

manufactured year or the retired year. Therefore, the training data was further removed from the

data that had the service life field with either 0 or -1 values by the following code:

df = df.drop(df[df['Service Life'] == -1].index)

df = df.drop(df[df['Service Life'] == 0].index)

df.shape

After the drop function removed 330 data points from the training data, the shape attribute

showed 7772 total data points in the training data.

At this stage, the initial training data were saved for further preprocessing for machine

learning algorithms. The data were saved in a CSV format in the same folder as the iPython

Notebook by executing the following code:

 # Save initial training data for further processing

df.to_csv('initial_training.csv', sep= ',')

4.3.6. Create the initial deployment data

Since the training data were created based on the Retired Year column from 2008 to

2016, the rest of the data points did not have any values in the Retired Year column. Therefore,

the initial deployment data set was created by filtering out data that were not retired; this

operation was performed by logically negating the training data frame. The following code

filtered out non-retired vehicles data and stored them in a new data frame:

 # Filter data which have not been retired since 2008 until 2016

df_not_retired = df_all.loc[~df_all['Retired Year'].isin(['2016',

'2015', '2014', '2013', ‘2012’, '2011', '2010', '2009', '2008'])]

68

Since there was no need to create a target column in the deployment data, the Retired

Year was no longer needed and was removed from the deployment data by executing the

following code:

 # Drop unnecessary column 'Retired Year'

df_not_retired = df_not_retired.drop(['Retired Year'], axis = 1)

The following code showed the number of data points in the deployment data:

 # Check the number of rows and columns of the non-retired vehicles data

df_not_retired.shape

The above code showed 31149 vehicles in the deployment set for which the predictive model

was used to predict when the vehicles needed to be retired from service. At this stage, the initial

deployment data set was saved in a CSV format in the same folder as the current iPython

Notebook by executing the following code:

 # Save the non-retired vehicle data for further processing

df_not_retired.to_csv('NonRetired_Revenue_Vehicle_Data_from_2008_to_201

6.csv', sep = ',')

4.4. Analyzing Important Characteristics of Revenue Vehicle Inventory Training Data Set

Exploratory data analysis is the first step of analysis before creating a training data set for

a machine learning model (McKinney, 2017). Because the revenue vehicle inventory data were

used to build the training set for the predictive model, it was also important to analyze this data

to see the significant value of the model. The following code created a new data frame called

df_analysis by renaming two columns for easy manipulation to analyze the training data:

 # Rename columns for easy manipulation

df_analysis = df.rename(columns = {'Vehicle Type': 'Vehicle_Type',

'Service Life': 'Service_Life'})

69

Previously, there were 7772 vehicles data were found in the training data. Now, the

value_counts() function was used to calculate the number of vehicles in the training data in each

vehicle type.

 # Count the number of vehicles by vehicle type

df_analysis.Vehicle_Type.value_counts()

The output is shown in Table 15. The information about the training data set showed that there

was a large number of buses and vans available to train the model compared to other vehicle

types. The Double Decker Bus and Inclined Plane Vehicle each have a single data point, which

may not be a good fit for the model for these vehicle types.

Table 15. Number of Vehicles by Vehicle Type

Vehicle Type Number of Vehicle
Bus 3992
Van 2236
Cutaway 719
Automobile 232
Minivan 93
Commuter Rail Passenger Coach 89
Over-the-road Bus 84
Articulated Bus 72
Ferryboat 55
Commuter Rail Locomotive 45
Commuter Rail Self-Propelled Passenger Car 40
Heavy Rail Passenger Car 33
Sports Utility Vehicle 21
Light Rail Vehicle 15
Vintage Trolley 10
School Bus 7
Cable Car 4
Trolleybus 3
Inclined Plane Vehicle 1
Double Decker Bus 1

The vehicle type group data was further visualized by plotting a bar graph by executing

the following code:

70

 # Count number of vehicles

df_analysis.Vehicle_Type.value_counts().sort_values().plot(kind =

'barh', figsize = (14,5))

plt.title('Number of Vehicles per Vehicle Type')

plt.xlabel('Number of Vehicles')

plt.ylabel('Vehicle Type')

The above code plotted the number of vehicles by vehicle type as a bar plot shown in Figure 9.

Figure 9. Bar Plot of Number of Vehicles by Vehicle Type

Summarizing target values in the training data can be very useful. The agg() function was

used to view some typical summary statistics of the mean, standard deviation, minimum value,

maximum value, and element counts on the target variable by category. The code is as follows:

 # Statistical Analysis of Service Life by vehicle type

df_analysis.groupby('Vehicle_Type').Service_Life.agg(['count', 'min',

'max', 'mean', 'std'])

The output of the statistical summary is shown in Table 16. The statistical analysis showed a

clear picture of the training data.

71

Table 16. Statistical Analysis of Service Life by Vehicle Type

Vehicle Type count min max mean std
Articulated Bus 72 5 22 12.361 3.358
Automobile 232 5 19 8.495 2.727
Bus 3992 8 29 12.759 3.229
Cable Car 4 49 105 87.25 25.747
Commuter Rail Locomotive 45 18 44 30.511 8.988
Commuter Rail Passenger Coach 89 18 65 41.898 10.037
Commuter Rail Self-Propelled Passenger Car 40 24 51 37.625 6.739
Cutaway 719 7 21 9.965 2.142
Double Decker Bus 1 63 63 63 -
Ferryboat 55 18 94 40.09 13.502
Heavy Rail Passenger Car 33 18 47 29.151 6.562
Inclined Plane Vehicle 1 135 135 135 -
Light Rail Vehicle 21 24 84 41.857 18.65
Minivan 93 5 18 7.946 2.810
Over-the-road Bus 84 5 22 12.476 4.105
School Bus 7 9 22 16.571 5.028
Sports Utility Vehicle 15 5 24 9.733 5.391
Trolleybus 3 13 22 16.666 4.725
Van 2236 6 16 8.482 1.875
Vintage Trolley 10 9 99 59 26.284

Sometimes, the data can be more useful for analysis if it can be visualized it in a plot.

Therefore, a horizontal bar plot was drawn by vehicle type on the mean value of the Service Life

target feature. The code is as follows:

 # Plot Statistical Analysis of service life by vehicle type

df_analysis.groupby('Vehicle_Type').Service_Life.agg(['mean']).plot(kin

d = 'barh', figsize = (14, 5));

plt.title("Mean Service Life by Vehicle Type")

plt.xlabel("Service Life")

plt.ylabel("Vehicle Type")

The bar plot with the mean value of Service Life is shown in Figure 10.

72

Figure 10. Bar Plot with the Mean Value of Service Life

The contingency Table 17 displays a relationship between qualitative variables by

matching two different categorical distributions. The crosstab() function in pandas matches

variables and identify relationships (Mueller & Massaron, 2015). A contingency table was

created between Fuel Type and Mode by executing the following code:

 # Create cross tabulation on fuel type by vehicle mode

pd.crosstab(df_analysis['Fuel Type'], df_analysis.Mode, margins = True)

The contingency table between Fuel Type and Mode is shown in Table 17. The contingency

table shows us the tally of how many vehicles belong to each combination of fuel type and mode

and that particular fuel types and modes never appear together.

73

Table 17. Contingency Table Between Fuel Type and Mode

Fuel Type
Mode

All
AR CB CC CR DR DT FB HR IP LR MB RB SR TB VP YR

Compressed
Natural Gas

0 12 0 0 54 0 0 0 0 0 146 1 0 0 5 0 218

Diesel Fuel 3 127 0 33 1063 0 51 0 0 0 2119 0 0 0 9 1 3406

Diesel
Fuel/Compressed
Natural Gas

0 0 0 2 13 0 0 0 0 0 51 0 0 0 1 0 67

Diesel
Fuel/Electric
Propulsion Power

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1

Dual Fuel 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 2

Electric Battery 0 0 0 0 0 0 0 0 0 0 15 0 0 0 0 0 15

Electric Propulsion
Power

0 0 4 48 0 0 0 33 1 22 0 0 9 3 0 0 120

Ethanol 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 2

Gasoline 0 16 0 0 1662 0 4 0 0 0 325 0 0 0 801 0 2808

Gasoline/Liquefied
Petroleum Gas

0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 4

Hybrid Diesel 0 0 0 0 1 0 0 0 0 0 30 1 0 0 0 0 32

Hybrid Gasoline 0 0 0 0 9 0 0 0 0 0 3 0 0 0 0 0 12

Hydrogen Cell 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 2

Liquefied Natural
Gas

0 0 0 0 0 0 0 0 0 0 32 0 0 0 0 0 32

74

Table 17. Contingency Table Between Fuel Type and Mode (continued)

Fuel Type
Mode

All
AR CB CC CR DR DT FB HR IP LR MB RB SR TB VP YR

Liquefied
Petroleum Gas

0 0 0 0 5 0 0 0 0 0 16 0 0 0 0 0 21

Other 0 0 0 0 1 0 0 0 0 0 3 0 0 0 0 0 4

Unknown Fuel 2 61 0 85 600 5 0 0 0 0 241 3 0 0 9 0 1006

All 5 216 4 168 3415 5 55 33 1 22 2984 6 9 3 825 1 7752

75

4.5. Visualizing Important Characteristics of Revenue Vehicle Inventory Training Data Set

Before training a machine learning model, it is very important to perform an exploratory

data analysis on training data to visually detect outliers, distribution of the data, and relationships

between features. A scatterplot matrix was plotted to visualize the correlations between features.

A pairplot() function was used to plot scatterplot from python’s seaborn library based on

matplotlib (Mirjalili & Raschka, 2017). The code is as follows:

 # Rename columns for easy manipulation

df_scatter = df_analysis.rename(columns = {'Vehicle Length': 'VL',

'Seating Capacity': 'SC', ‘Standing Capacity': 'STC',

'Service_Life': 'SL'})

import matplotlib.pyplot as plt

%matplotlib inline

import seaborn as sns

sns.set(font_scale = 1.3)

cols = ['VL', 'SC', 'STC', 'SL']

g = sns.PairGrid(df_scatter[cols], size = 3, aspect = 1.5)

g.map(plt.scatter)

save_image('scatterplot')

plt.show()

The scatterplot matrix provided a graphical summary of feature relationships in the training data

set (Mirjalili & Raschka, 2017) and is shown in Figure 11.

76

Figure 11. Scatterplot to Visualize the Correlation Amongst Internal Features

Due to readability, a few of the columns from the training data set were used to plot

scatterplot. They are Vehicle Length (VL), Standing Capacity (STC), Seating Capacity (SC), and

Service Life (SL). By visualizing this scatterplot matrix, data distribution can be analyzed, and

outliers can be detected very easily. The above scatterplot showed that even though it had

outliers, it distributed normally. However, there is no strong linear relationship between any two

features.

Furthermore, visualizing interrelationships between variables and a target feature using

scatter plot can be a very useful way to explore the relationship between two attributes. It can

show patterns in the data and so data belong to certain groups and data outside of the expected

range can be easily visualized (Mueller & Massaron, 2015). The block of code created a scatter

plot between target feature (Service Life) and a numerical feature (Vehicle Length).

77

In the below scatter plot, most of the points lie in a group and tend to form a straight line,

but some of the points scatter around the plot. Therefore, these two variables are somehow

linearly, but not strongly, correlated. While visualizing the graphs can help explore the data for

patterns, some outliers in the data upon further analysis can be explained. For example, after

further analysis, it seemed these seemingly outlier points were actually for the Ferry Boat

category, which had a longer service life.

 # Scatter plot of Vehicle Length vs. Service Life

var = 'Vehicle Length'

data = pd.concat([df_analysis['Service_Life'], df_analysis[var]], axis

= 1)

data.plot.scatter(y = var, x = 'Service_Life', ylim = (0, 1650),

figsize = (12, 5))

plt.xlabel('Service Life')

plt.title('Service Life vs. Vehicle Lenght')

save_image('service_life_hist')

plt.show()

The above code plotted the scatter plot shown in Figure 12.

Figure 12. Scatter Plot of Service Life vs. Vehicle Length

78

Two additional scatter plots were created in the same general procedure described above

in order to visualize relationships. One of the scatter plots was created with the target variable

Service Life and numerical variable Seating Capacity, as shown in Figure 13. The other scatter

plot was created with Service Life and Standing Capacity shown in Figure 14. In the below

scatter plots, there are no strong linear correlations between Service Life versus either Seating

Capacity or Standing Capacity. Therefore, the data would be a good fit for the nonlinear

regression model instead of the linear regression model.

Figure 13. Scatter Plot of Service Life vs. Seating Capacity

Figure 14. Scatter plot of Service Life vs. Standing Capacity

79

4.6. Visualizing Relationships Between a Target Feature and Categorical Features

Box plots are an effective way to visualize a numeric column across several categories

and to provide statistical summaries. Box plots use rectangles with internal lines that show the

median value (also called 50th percentile) for the column. In addition, each rectangle also has

two horizontal external lines attached by a vertical line to the top and bottom of the box, which

indicate the 75th percentiles and 25th percentiles, respectively. The box, or the rectangle itself,

contains the values in the interquartile range between the 75th and the 25th percentile of the data.

The data points below and above the limit indicate outliers (Downey, 2014). The following block

of code was used to create a box plot on target variable Service Life by the categorical variable

Vehicle Type.

 # Boxplot of service life by vehicle type

var = 'Vehicle_Type'

data = pd.concat([df_analysis['Service_Life'], df_analysis[var]], axis

= 1)

f, ax = plt.subplots(figsize = (18, 11))

fig = sns.boxplot(x = var, y = "Service_Life", data = data, palette =

"Set3")

ax.set_title('Service Life vs Vehicle Type')

plt.xlabel('Vehicle Type')

plt.ylabel('Service Life')

fig.axis(ymin = 0, ymax = 140)

plt.xticks(rotation = 45);

save_image('boxplot_vt')

Figure 15 shows a box plot of Service Life versus Vehicle Type. The dots in the box plot

indicate service life outliers in each vehicle type. These outliers may reduce the performance of

the model. However, some machine learning algorithms can handle these outliers effectively and

provide a good predictive model. However, the performance of the predictive model can be

optimized by eliminating outliers from the training data set.

80

Figure 15. Box Plot of Service Life by Vehicle Type

The corrcoef() function was applied to the six feature columns that was visualized in the

scatter plot matrix. Then, the heatmap() function was applied to the correlation matrix that was

plotted as a heat map. The code block is as follows:

 # Service Life correlation matrix

k = 10

Matrix form for correlation data

corrmat = df_analysis.corr()

cols = corrmat.nlargest(k, 'Service_Life')['Service_Life'].index

cm = np.corrcoef(df_analysis[cols].values.T)

sns.set(font_scale = 1.25)

f, ax = plt.subplots(figsize = (11, 9))

hm = sns.heatmap(cm, cbar = True, annot = True, square = True, fmt =

'.2f', annot_kws = {'size': 12}, yticklabels = cols.values,

xticklabels = cols.values, linecolor = 'white', linewidths = 1)

save_image('heatmap')

81

The above code generated the correlation matrix provides a summary with graphic

representation as shown in Figure 16. This graphic summary was analyzed for features

correlations (Mirjalili & Raschka, 2017). This heat map indicates that the target variable Service

Life does not have a strong correlation with any of the features; the strongest correlation is 0.42

for the feature Seating Capacity. By analyzing the scatter plot and correlation matrix, a non-

linear relationship between target variable and other features was found. Therefore, the linear

regression model was not a good choice for this problem. Thus, a non-linear regression model

was applied.

Figure 16. Heat map of Correlation Matrix with Features

82

4.7. Preprocessing the Training Data

Features of the training data set needed to be engineered before building a machine

learning model. In order to engineer the training data, the previously preprocessed training data

were loaded and stored into a data frame by executing the following code:

 # Read cleaned training data

df = pd.read_csv('..//NTD/initial_training.csv')

4.7.1. Create new features

The feature engineering process involves determining which features need to be used,

what iterative processes need to be required for feature selection, and what combination of

features need to be added for making predictions (Downey, 2014). In this problem, eight new

features were created by combining different numerical features. The following sample block of

code created the feature StandingCap_SeatingCap dividing 'Standing Capacity' by 'Seating

Capacity'. The code also replaced null values with zero in the column.

 # Create new feature

df['StandingCap_SeatingCap'] = df['Standing Capacity']/df['Seating

Capacity']

df['StandingCap_SeatingCap'].replace(np.inf, 0, inplace = True)

Similarly, the other new features VehicleLength_SeatingCapacity,

VehicleLength_StandingCapacity, TMOAVDP_TFV, TMOAVDP_AFV, ALMPAV_TFV,

ALMPAV_AFV, and RebuildYear_ManufactureYear, were created following the same pattern

in which the first variable (before underscore) was divided by the second variable (after

underscore).

83

4.7.2. Create additional features from categorical features

Scikit-learn supports binary encoding by using the LabelBinarizer class that is available

in the Scikit-learn’s preprocessing package. It converts multiple labels to binary labels. The fit()

method picks the parameters from the data and the transform() method applies the parameters to

the new data (Massaron & Boschetti, 2016). The LabelBinarizer method was applied on Fuel

Type, Vehicle Type, Funding Source, Mode, and Ownership Type. The new features using

LabelBinarizer were renamed by prefixing the category name. The block of codes on Fuel Type

using LabelBinarizer is shown below. Codes on other types were written in the similar manner.

 # Import class

from sklearn import preprocessing

Binarize columns

lb = preprocessing.LabelBinarizer(pos_label = 1, neg_label = 0,

sparse_output = False)

Fit label binarizer

lb.fit(['Compressed Natural Gas', 'Diesel Fuel', 'Diesel

Fuel/Compressed Natural Gas', 'Diesel Fuel/Electric Propulsion

Power', 'Electric Battery', 'Electric Propulsion Power',

'Ethanol', 'Gasoline', 'Gasoline/Liquefied Petroleum Gas',

'Hybrid Diesel', 'Hybrid Gasoline', 'Hydrogen Cell', 'Liquefied

Natural Gas', 'Liquefied Petroleum Gas', 'Other', 'Unknown

Fuel'])

Join the categorical features with the numerical features

df = df.join(pd.DataFrame(data = lb.transform(df['Fuel Type']), columns

= [lb.classes_]).applymap(func = bool))

Rename binarized columns

df.rename(columns = {'Compressed Natural Gas': 'Fuel Type_Compressed

Natural Gas', 'Diesel Fuel': 'Fuel Type_Diesel Fuel', 'Diesel

Fuel/Compressed Natural Gas': 'Fuel Type_Diesel Fuel/Compressed

Natural Gas', 'Diesel Fuel/Electric Propulsion Power': 'Fuel

Type_Diesel Fuel/Electric Propulsion Power', 'Electric Battery':

'Fuel Type_Electric Battery', 'Electric Propulsion Power': 'Fuel

84

Type_Electric Propulsion Power', 'Ethanol': 'Fuel Type_Ethanol',

'Gasoline': 'Fuel Type_Gasoline', 'Gasoline/Liquefied Petroleum

Gas': 'Fuel Type_Gasoline/Liquefied Petroleum Gas', 'Hybrid

Diesel': 'Fuel Type_Hybrid Diesel', 'Hybrid Gasoline': 'Fuel

Type_Hybrid Gasoline', 'Hydrogen Cell': 'Fuel Type_Hydrogen

Cell', 'Liquefied Natural Gas': 'Fuel Type_Liquefied Natural

Gas', 'Liquefied Petroleum Gas': 'Fuel Type_Liquefied Petroleum

Gas', 'Other': 'Fuel Type_Other', 'Unknown Fuel': 'Fuel

Type_Unknown Fuel'}, inplace = True)

4.7.3. Create features with dummy variables

A convenient way to create dummy features for machine learning applications is to

transform a categorical variable into a dummy matrix. If a string column in a data frame has n

values, the get_dummies() function will convert n columns into 1’s or 0’s (McKinney, 2017). In

this training data, the categorical string columns TOS and Dedicated Fleet were converted into

dummy variables using the get_dummies() function. The code is as follows:

 # Replace categorical data with one-hot encoded data

df = pd.get_dummies(data = df, columns = ['TOS', 'Dedicated Fleet'])

4.7.4. Create features by analyzing the histogram of various categorical features

Histograms categorize data into bins. Although each bin contains a default data range of

10, the data range can be set by the user. Histogram plots the items in each bin and the

distribution of data can be visualized from bin to a bin (Mueller & Massaron, 2015). Five

additional features were created through analyzing histograms on Service Life against five

categorical features called Fuel Type, Vehicle Type, Mode, Funding Source, and Ownership

Type. Values for the newly created features were chosen based on the patterns of the histograms

85

and the mean values of Service Life in each category. The following code plotted histograms on

Service Life by Fuel Type.

 # plot histograms

df_stats.loc[:, ['Fuel_Type',

'Service_Life']].groupby('Fuel_Type').hist()

The above code generated a series of histograms. Due to space constraint, only the

histogram for Service Life by Compressed Natural Gas is included in Figure 17. The below

histogram showed that the service life of most of the vehicles fell between 14 and 15 years.

Figure 17. Histogram of Service Life vs. Number of Vehicles with Compressed Natural Gas

The following code calculated the average service life, the maximum service life, and the

standard deviation of vehicles in each fuel category.

 # Calculate mean, max and standard dev. of Service Life by Fuel Type

df_stats.groupby('Fuel_Type').Service_Life.agg(['max', 'mean', 'std'])

86

The mean, the max, and the standard deviation of service life by Fuel Type are shown in Table

18. The average service life of vehicles in the compressed natural gas category was 12 years, the

maximum service life was 19 years, and a standard deviation of about three years. Therefore,

after visualizing the above histogram as well as the statistical analysis of service life, the Service

Life by Compressed Natural Gas was mapped by 15 years. Similarly, all other service life was

calculated and mapped accordingly.

Table 18. Statistical Analysis of Service Life by Fuel Type

Fuel Type Max Mean STD
Compressed Natural Gas 19 12.041 2.744
Diesel Fuel 94 12.943 5.680
Diesel Fuel/Compressed Natural Gas 39 13.671 5.478
Diesel Fuel/Electric Propulsion Power 11 11 -
Dual Fuel 15 11.5 4.949
Electric Battery 22 14.733 4.131
Electric Propulsion Power 135 38.5 20.246
Ethanol 14 14 0
Gasoline 42 9.608 3.018
Gasoline/Liquefied Petroleum Gas 14 10.5 4.041
Hybrid Diesel 14 11.093 3.165
Hybrid Gasoline 14 12.583 2.574
Hydrogen Cell 14 14 0
Liquefied Natural Gas 21 12.312 2.889
Liquefied Petroleum Gas 14 10.904 2.527
Other 14 10.75 2.217
Unknown Fuel 65 12.985 9.881

The following block of code showed the mapping of service life by fuel type:

Map fuel type with the service life

df['Fuel Type_Service Life'] = df['Fuel Type'].map({'Compressed Natural

Gas': 15, 'Diesel Fuel': 16, 'Diesel Fuel/Compressed Natural

Gas': 17, 'Diesel Fuel/Electric Propulsion Power': 11, 'Electric

Battery': 19, 'Electric Propulsion Power': 56, 'Ethanol': 14,

'Gasoline': 10, 'Gasoline/Liquefied Petroleum Gas': 7, 'Hybrid

Diesel': 10, 'Hybrid Gasoline': 7, 'Hydrogen Cell': 3, 'Liquefied

Natural Gas': 15, 'Liquefied Petroleum Gas': 12, 'Other': 10,

'Unknown Fuel': 32})

87

Similarly, four other additional features, Service Life_Vehicle Type, Service Life_Funding

Source, Service Life_Mode, and Service Life_Ownership Type, were created by mapping service

life values.

 4.7.5. Remove unnecessary columns

Since the creation of new features was done with the Manufacture Year column and other

categorical feature columns, those columns were no longer needed and removed from the

training data set by executing the following code:

 # Remove the unnecessary fields from the data set

df.drop(['Manufacture Year', 'Fuel Type', 'Vehicle Type', 'Funding

Source', 'Mode', 'Supports Mode', 'Ownership Type'], axis =

'columns', inplace = True)

4.7.6. Check null values in the training data

The following code checked whether there were any null values in the training data set:

 # Checking Null values in the data set

df.isnull().sum()

The output is listed in Table 19 (only 10 of the features out of 120 are shown). In the output

window, the number in the right column of each feature indicated how many null values existed

in the data. If any null values existed, the data set needed to be fixed by removing null values;

otherwise, it would fail to build a model using the machine learning algorithm. The value 0

(zero) indicated the data set was ready for training the predictive model.

88

Table 19. Null Values in the Data Set

Features Name Number of Null Points
Revenue Vehicle Inventory ID 0
ADA Fleet Vehicles 0
Active Fleet Vehicles 0
Average Lifetime Miles per Active Vehicles 0
Emergency Contingency Vehicles 0
Rebuild Year 0
Seating Capacity 0
Standing Capacity 0
Total Fleet Vehicles 0
Total Miles on Active Vehicles During Period 0

4.7.7. Set index

The following code was used to set the index of the training data as the Revenue Vehicle

Inventory ID field:

 # Set index to Revenue Vehicle Inventory ID

df = df.set_index('Revenue Vehicle Inventory ID')

4.7.8. Check the number of rows and columns in training data set

The following code was used to check the number of data points and features in the

training set to train the predictive model:

 # Checking the number of rows and columns in the training data set

df.shape

The output showed a tuple of (7745, 119), which meant there were 7745 rows with 119 columns

in the training data set.

4.7.9. Save the training data

Finally, the following code was used to save the training data in the training.csv file in

the same directory in the iPython Notebook.

 # Save the training data

df.to_csv('training.csv', sep = ',')

89

4.8. Create Deployment Data Set for Prediction

The revenue vehicle deployment data set consisted of data of vehicles in operation. After

building the model with the training data set, the model was applied to the deployment data set to

predict the service life of vehicles. There were 31149 data points in the deployment data set,

which indicated 31149 vehicles were in operation nationwide based on revenue vehicle data

from 2008 to 2016. The deployment data were separated from total vehicles from 2008 to 2016

based on the N flag in the Retired column. The main purpose of creating the deployment data set

was to predict the service life of vehicles still in operation. Since the machine learning method

works only when the X features in the training data set match the X features in the deployment

data set exactly, the processing of the deployment data set was done in the same way as

processing the training data set was done. Finally, the processed deployment data set was saved

in a CSV file by executing the below code:

 # Save data to .csv file

X_deploy.to_csv('Final Deployment Data.csv', sep = ',')

4.9. Develop Simple Linear Regression Model using SAS

A simple linear regression model was developed using the Statistical Analysis System

(SAS) software to see whether the predictive model could be useful for this problem. The simple

linear regression model using the full training set with the top 23 important features produced the

performance results shown in Table 20. The value of R2 in the full training set is 0.7184, which

indicates that the model explains 72% of the variance in the data set. The RMSE score of

3.77945 indicates the prediction falls within 3.78 years below or above the standard deviation

with a 72% accuracy. Therefore, the below results indicate that the simple linear regression was

not a good fit for this problem; thus it was not considered as a viable model for this problem.

90

Table 20. Performance Measures with Simple Linear Regression by SAS

Performance Measures Performance Scores
Root Mean Squared Error (RMSE) 3.77945
Dependent Mean 12.10471
The Coefficient of Variation (Coeff Var) 31.22299
R2 Score 0.7184
Adjusted R2 Score 0.7175

4.10. Develop Predictive Model

After outlining the initial parameters for each module (as detailed above), the training.csv

file was loaded into a data frame called training. The code is as follows:

 # Load training data

training = pd.read_csv('..//NTD/training.csv')

After loading, the training data was split to separate the target variable Service Life from

predictor variables. The following block of code loaded the predictor variables into an object

called X, and the Service Life variable into an object called y:

 # Create the X arrays

X = training.set_index('Revenue Vehicle Inventory ID')

Create the y arrays

y = X.pop('Service Life')

The shape attribute checks the number of rows and columns in the data frame X and the y series.

 # Check the shape of the X features

X.shape

Check the shape of the y response

y.shape

The above codes showed 7745 rows and 118 columns in the X data frame and 7745 rows in the y

series in a single column.

91

4.10.1. Random forest regression model

The random forest regression is an ensemble technique that combines multiple decision

trees. Because it can randomize, the random forest regression handles generalization better than

an individual decision tree; thus, the variance of the model decreases (Mirjalili & Raschka,

2017). Before building the predictive model with the training data, the hyperparameters for

RandomForestRegressor class were tuned to train a random forest model.

4.10.1.1. Tuning hyperparameters for random forest regression model

The hyperparameters, n_estimators, max_features, and min_sample_leaf, were tuned to

the training data to increase the predictive performance. The default value of the n_estimators

was 10; this default value needed to be tuned for the best results. Therefore, a series of the

number of trees were selected to find the best value for n_estimators. The following block of

code assigned a series of number of estimators to ascertain which value returned the best root

mean squared error (RMSE) on the training data set:

 # Empty tree list

tree_results = []

n_estimator_options = [25, 50, 75 ,100, 125, 150, 175, 200, 300, 400,

500, 600, 700, 800, 900, 1000]

for trees in n_estimator_options:

 model = RandomForestRegressor(trees, oob_score = True, n_jobs = -

1, random_state = 42)

model.fit(X, y)

rmse = np.sqrt(mean_squared_error(y, model.predict(X)))

tree_results.append(rmse)

The above results were made into a graph using the following code:

 # Set plot style

plt.style.use('ggplot')

colors = ['lightcoral' if c == min(tree_results) else 'cornflowerblue'

for c in tree_results]

92

ax = pd.Series(tree_results, n_estimator_options).plot(kind = 'barh',

color = colors, xlim = [min(tree_results)-0.5, max(tree_results)

+ 0.5], figsize = (12,5))

ax.set_ylabel('Number of Trees')

ax.set_xlabel('Root Mean Squared Error')

The above code generated the graph shown in Figure 18 showed that the lowest RMSE value

was achieved while the number of trees (n_estimators) was 500.

Figure 18. A Bar Plot of Number of Trees vs. Root Mean Squared Error

The parameter max_features needed to be optimized because it originally defaulted to

‘None’. The number of features to be considered was based on the number features in the

training data and the problem. The maximum features were preconfigured with parameter

options such as ‘auto’ for all features, ‘sqrt’ or ‘log’ functions on the number of features, as well

as the percent of all features. The following block of code was set to produce the best

max_features parameter making sure to set n_estimators with 500:

 # Empty list for max_features

 max_features_results = []

max_feature_options = ['auto', None, 'sqrt', 'log2', 0.9, 0.8, 0.7,

0.6, 0.5, 0.4, 0.3, 0.2, 0.1]

for max_features in max_feature_options:

93

 model = RandomForestRegressor(n_estimators = 500, oob_score =

True, n_jobs = -1, random_state = 42, max_features =

max_features)

model.fit(X, y)

rmse = np.sqrt(mean_squared_error(y, model.predict(X)))

max_features_results.append(rmse)

 # Set plot style

plt.style.use('ggplot')

colors = ['lightcoral' if c == min(max_features_results) else

'cornflowerblue' for c in max_features_results]

ax = pd.Series(max_features_results, max_feature_options).plot(kind =

'barh', color = colors, xlim = [min(max_features_results) - 0.5,

max(max_features_results) + 0.5], figsize = (12, 5));

ax.set_ylabel('max_features')

ax.set_xlabel('Root Mean Squared Error')

save_image('max_features_rmse')

The above block of code generated the plot shown in Figure 19 that shows that the model

produced the best result when the maximum number of features was set to 70% of all features

(max_features = 0.7).

Figure 19. A Bar Plot of Maximum Features vs. Root Mean Squared Error

The min_samples_leaf parameter was run by setting max_features = 0.7 and n_estimators

= 500. The default value for this parameter is 1, which is good for a first few training-runs on the

94

data set. Assigning a series of values from 1 to 10 for this parameter and running the below code

will produce the best performance.

 # Create empty sample leap

min_sample_leaf_results = []

min_sample_leaf_options = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

for min_samples in min_sample_leaf_options:

model = RandomForestRegressor(n_estimators = 500, oob_score =

True, n_jobs = -1, random_state = 42, max_features = 0.7,

min_samples_leaf = min_samples)

model.fit(X, y)

rmse = np.sqrt(mean_squared_error(y, model.predict(X)))

min_sample_leaf_results.append(rmse)

 # Set pandas series

ax = pd.Series(min_sample_leaf_results,

min_sample_leaf_options).plot(figsize = (12, 5), color =

'cornflowerblue');

ax.set_xlabel('min sample leaf')

ax.set_ylabel('Root Mean Squared Error')

save_image('sample_leaf_rmse')

The above code plotted the graph below in Figure 20 showing that the default value (1) of min

sample leaf produced the best result.

Figure 20. A line Plot of min_sample_leaf vs. Root Mean Squared Error (RMSE)

95

After tuning the hyperparameters for the random forest regression predictive model, the

following hyperparameters were selected to optimize the state of good repair predictive model.

 # Parameters for RFR

RandomForestRegressor(n_estimators = 500, oob_score = True, n_jobs = -

1, random_state = 42, max_features = 0.7, min_samples_leaf = 1)

4.10.1.2. Building a random forest model to predict the service life of vehicles

The machine learning model was built using the Scikit-learn four-step modeling pattern.

In step one, the random forest regression class was imported. In step two, the model was

instantiated with the estimator by setting hyper-parameters that were tuned earlier. The tuned

parameters were instantiated by setting the max_features to 0.7, the n_estimators to 500, and the

min_samples_leaf to 1 in the RandomForestRegressor object. In step three, the model was fit on

the training data and then the patterns that were learned from the data were stored in the memory.

In step four, the fitted model was applied to predict the response variable to the test set for

evaluation (Inyang, Ozuomba, & Ezenkwu, 2017).

Before building any predictive model, it is important to test the model on unseen data to

evaluate its performance. Therefore, first the training data were split into the train set and the test

set; the model was fit to the train set and evaluated on the test set (Raschka, 2015). The following

code showed the train_test_split() function that was used to split the training data into the train

set, 70% of the data, and the test set, 30% of the data.

 # Import the class

from sklearn.model_selection import train_test_split

Split the data set in a training set (2/3) and a test set (1/3)

X_train, X_test, y_train, y_test = train_test_split(X, y, random_state

= 42, test_size = 0.30)

96

The shape attribute provided the number of rows and number of columns in a tuple. The

following block of codes showed the number of rows that were split into the train set and the test

set by running shape attribute in the data frame:

 X_train.shape

Output: (5421, 118)

y_train.shape

Output: (5421L,)

X_test.shape

Output: (2324, 118)

y_test.shape

Output: (2324L,)

The above output showed that 5421 data points were allotted for training and 2324 data points

for testing the model.

First, the RandomForestRegressor object with tuned hyperparameters was instantiated,

and then the fit() method was applied on the X_train and y_train sets. After that, the predict()

method was invoked on the X_test set, which then generated predictions (Mirjalili & Raschka,

2017). In addition, the predict() method was invoked on X_train set for comparing performance

measures with the test set. The block of codes is as follows:

 # Instantiate Random Forest Regressor with tuned hyperparameters

rfr_eval = RandomForestRegressor(n_jobs = -1, n_estimators = 500,

oob_score = True, random_state = 42, max_features = 0.7,

min_samples_leaf = 1)

Fit the model to the training data

rfr_eval.fit(X_train, y_train)

Make the predictions on the train set

y_pred_train = rfr_eval.predict(X_train)

Make the predictions on the test set

y_pred_test = rfr_eval.predict(X_test)

97

After having fitted the model with the training data, the model was evaluated on the test

set as well as on the train set by applying the performance measures of RMSE, MAE, and R2

score to see how well the model worked on the unseen data. If the performance results were

satisfactory for generalization errors, the model could be used to predict future data. If the

performance results are not acceptable, the model needed to be tuned further for optimal

performance (Mirjalili & Raschka, 2017). The block of codes on the train set with results is as

follows:

 # Find the error rate on the train set

rms_train = np.sqrt(mean_squared_error(y_train, y_pred_train))

mae_train = mean_absolute_error(y_train, y_pred_train)

r2_train = r2_score(y_train,y_pred_train)

print('Root Mean Squared Error:\t\t%0.2f' % rms_train)

print('Mean Absolute Error:\t\t\t%0.2f' % mae_train)

print('R2 Score:\t\t%0.2f' % r2_train)

The performance results of random forest regression model on the train set are listed below in

Table 21.

Table 21. The Performance Measures with Random Forest Regression on Training Set

Performance Measures Performance Scores
Root Mean Squared Error (RMSE) 1.27
Root Mean Squared Error (MAE) 0.72
R2 Score 0.97

The block of codes on the test set with performance results is as follows:

 # Find the error rate on test data

rms_test = np.sqrt(mean_squared_error(y_test, y_pred_test))

mae_test = mean_absolute_error(y_test, y_pred_test)

r2_test = r2_score(y_test,y_pred_test)

print('Root Mean Squared Error:\t\t%0.2f' % rms_test)

print('Mean Absolute Error:\t\t\t%0.2f' % mae_test)

print('R2 Score:\t\t%0.2f' % r2_test)

98

The performance results of the predictive model on the test set are listed below in Table 22.

Table 22. The Performance Measures with Random Forest Regression on Test Set

Performance Measures Performance Scores
Root Mean Squared Error (RMSE) 3.39
Root Mean Squared Error (MAE) 1.94
R2 Score 0.78

The performance results in Table 21 and Table 22 were shown in Table 23 side by side

and compare the results on the train set to the test set. The comparison results between the train

set and the test set showed that the RMSE value of 3.39 on the test set was much larger than the

RMSE value of 1.27 on the train set. This difference was an indicator that the current model was

overfitting the train data. In machine learning problems, overfitting is common when the model

performs well on the train data but does not generalize well on the test or unseen data. The model

may have a high variance due to overfitting. In addition, many parameters in the model may

cause the model to be too complex. Therefore, the noise can be filtered out from the data by

tuning parameters and removing non-important features from the model (Mirjalili & Raschka,

2017).

Table 23. Comparison of Performance Results on the Training Set and the Test Set using the
Random Forest Regression Method

Method Train Set Hold-Out Set (Test Set)
RMSE MAE R2 Score RMSE MAE R2 Score

RFR 1.27 0.72 0.97 3.39 1.94 0.78

4.10.1.3 Building a random forest model with full data set as the training set

The following block of code illustrates the 4 steps random forest regression model:

 # Import the class

from sklearn.ensemble import RandomForestRegressor

Instantiate Random Forest Regressor

99

rfr = RandomForestRegressor(n_jobs = -1, n_estimators = 500, oob_score =

True, random_state = 42, max_features = 0.7, min_samples_leaf =

1)

Fit regression model

rfr.fit(X,y)

#Make the predictions on the training set

y_pred = rfr.predict(X)

After building a machine learning model, it needs to be measured for performance. The

following block of code was used for performance measure:

 # Find the error rate on the full set of training data

rmse = np.sqrt(mean_squared_error(y, y_pred))

mae = mean_absolute_error(y, y_pred)

r2 = r2_score(y, y_pred)

print('Root Mean Squared Error:\t\t%0.2f' % rmse)

print('Mean Absolute Error:\t\t\t%0.2f' % mae)

print('R2 Score:\t\t%0.2f'% r2)

The performance results of the predictive model on the full data set are listed in Table 24.

The RMSE result of 1.23 in the random forest regression model performed well because the

prediction error is up to 1 year or above. The MAE of 0.71 is acceptable. The value of R2 in the

train set is 0.97, which indicates that the model explains 97% of the variance in the training set.

The below results suggested a good result, but not the best result. Since the evaluation results of

the random forest regression model do not seem to generalize well enough to deploy for

prediction, few more regression algorithms were applied before choosing the best model.

Table 24. Performance Measures with Random Forest Regression on Full Training Set

Performance Measures Performance Scores
Root Mean Squared Error (RMSE) 1.23
Root Mean Squared Error (MAE) 0.71
R2 Score 0.97

100

4.10.2. Gradient boosting regression model

Tree-based ensemble methods combine simple regression trees with poor results, fit

complex non-linear relationships, and produce high-performance predictions. The gradient

boosting regression method corrects the prediction made by previous base models in order to

improve prediction accuracy. In this problem, the gradient boosting regression tree method was

applied to build the model for service life on revenue vehicle inventory data in order to improve

prediction accuracy as compared to the random forest regression model (Zhang & Haghani,

2015).

4.10.2.1. Tuning hyperparameters for gradient boosting regression model

In scikit-learn, hyperparameters are parameters that are passed as arguments to the

constructor of the classes (Pedregosa, et al., 2011). The gradient boosting regression has many

parameters that can be tuned, such as learning_rate, n_features, max_features,

min_samples_split, max_depth, and min_samples_leaf. Before tuning hyperparameters using

GridSearchCV, a few required scikit-learn’s libraries were imported. The following block of

code loaded the training data and created X variables and y variable:

 # Import classes

from sklearn.ensemble import GradientBoostingRegressor

from sklearn.model_selection import GridSearchCV

from sklearn.metrics import mean_squared_error

from sklearn.model_selection import train_test_split

Import data science package

import pandas as pd

Load training data

training = pd.read_csv('..//NTD/training.csv')

Create the X arrays

X = training.set_index('Revenue Vehicle Inventory ID')

Create the y arrays

y = X.pop('Service Life')

101

The train_test_split() utility function was applied to split the data into a train set and a

test set. The train set was fed to the GridSearchCV instance and the test set was used to compute

performance metrics. The GridSearchCV instance provided a grid search in the parameters of

‘param_grid’ and generated the best parameters from a grid of parameters (Pedregosa, et al.,

2011). The parameters were set as follows:

 # Set a dictionary of parameters

param_grid = {'learning_rate': [0.1, 0.01, 0.001], 'max_depth': [2, 4,

6, 8, 10], 'min_samples_leaf': [2, 3, 4, 5, 6],

'min_samples_split': [2, 3, 4, 5, 6], 'max_features': [1.0, 0.8,

0.7, 0.6, 0.5]}

The parameter grid was set with a wide range of parameters for the grid search. The

learning_rate parameter controls the output of each tree and determines how fast or how slow it

can converge to the optimal result. The max_depth defines maximum depth of a tree controls

overfitting and allows the model to learn relations. The min_samples_leaf parameter defines

minimum samples in a leaf and it also controls overfitting. The max_features defines the number

of features and the min_samples_split parameter defines the minimum number of observations

that will be considered for splitting (Jain, 2016).

Now, after instantiating the GradientBoostingRegressor model with 3000 trees, the model

was fit with the training set and was run with GridSearchCV instance. Since a wide range of

parameters and a higher number of trees were used in the grid search, the iterations took some

time to finish. The block of codes was as follows:

 # Instantiate the model

est = GradientBoostingRegressor(n_estimators = 3000)

Grid Search

gs_cv = GridSearchCV(est, param_grid, scoring = 'mean_squared_error',

n_jobs = -1).fit(X_train, y_train)

102

After finishing up the grid search iterations, the following code found the best parameters:

 # Get the best hyperparameters

print('Best hyperparameters: %r' % gs_cv.best_params_)

The above code generated the following output:

Best hyperparameters: {'max_features': 0.8, 'min_samples_split': 5,

'learning_rate': 0.01, 'max_depth': 10, 'min_samples_leaf': 5}

After generating all the hyperparameters, the gradient boosting regression model was

ready to build the predictive model with the revenue vehicle inventory training data to solve

transit state of good repair issues.

4.10.2.2. Building and evaluating a gradient boosting regression predictive model

The gradient boosting regression model needed to be tested on unseen data set to

ascertain its performance. This is because the model, even if all of revenue vehicle data are used

and estimate the performance on the same data, the model may not provide an accurate picture of

its performance on unseen data. For this reason, it is important to split the data into the train set

and the test set, and then train the model with the train set by setting best hyperparameters. The

following block of code provided the evaluation procedure on test data:

 # Import class

 from sklearn.ensemble import GradientBoostingRegressor

from sklearn.model_selection import train_test_split

Split the data set in a training set (2/3) and a test set (1/3)

X_train, X_test, y_train, y_test = train_test_split(X, y, random_state

= 42, test_size = 0.30)

Instantiate regression model with tuned hyperparameters

gbr_eval = GradientBoostingRegressor(n_estimators = 3000, max_features

= 1.0, min_samples_split = 5, learning_rate = 0.01, max_depth =

6, min_samples_leaf = 5, loss = 'ls')

Fit the model

gbr_eval.fit(X_train,y_train)

103

Make the predictions on the train set

y_pred_train = gbr_eval.predict(X_train)

Make the predictions on the test set

y_pred_test = gbr_eval.predict(X_test)

The following block of code calculated the performance measures by gradient boosting

regression model on the train set:

 # Find the error rate on the train data set

rms_train = np.sqrt(mean_squared_error(y_train, y_pred_train))

mae_train = mean_absolute_error(y_train, y_pred_train)

r2_train = r2_score(y_train,y_pred_train)

print('Root Mean Squared Error:\t\t%0.2f' % rms_train)

print('Mean Absolute Error:\t\t\t%0.2f' % mae_train)

print('R2 Score:\t\t%0.2f' % r2_train)

The performance results of the predictive model on the train set are shown in Table 25.

Table 25. The Performance Measures with Gradient Boosting Regression on Training Set

Performance Measures Performance Scores
Root Mean Squared Error (RMSE) 1.52
Root Mean Squared Error (MAE) 1.05
R2 Score 0.95

The following block of code on the test set calculates performance measure:

 # Find the error rate on test data set

rms_test = np.sqrt(mean_squared_error(y_test, y_pred_test))

mae_test = mean_absolute_error(y_test, y_pred_test)

r2_test = r2_score(y_test,y_pred_test)

print('Root Mean Squared Error:\t\t%0.2f'% rms_test)

print('Mean Absolute Error:\t\t\t%0.2f'% mae_test)

print('R2 Score:\t\t%0.2f'% r2_test)

The performance results of the predictive model on the train set are shown in Table 26.

104

Table 26. The Performance Measures with Gradient Boosting Regression on Test Set

Performance Measures Performance Scores
Root Mean Squared Error (RMSE) 1.37
Root Mean Squared Error (MAE) 0.94
R2 Score 0.96

The performance results on the train set and the test set are shown below in Table 27 side

by side and compared to the performance results. This table shows that the RMSE score on the

train set is very close to RMSE score on the test set. Based on these figures, there is no indication

of overfitting in the model; thus this table generalizes the model very well. Therefore, this model

can be used for predictions. Furthermore, the full training set can be used to train the model; this

will further improve the performance because the full training data set contains more training

data.

Table 27. Comparison of Performance Results on Training Set and Test Set with Gradient
Boosting Regression Method

Method Train Set Hold-Out Set (Test Set)
RMSE MAE R2 Score RMSE MAE R2 Score

GBR 1.52 1.05 0.95 1.37 0.94 0.96

4.10.2.3. Building a gradient boosting regression model with full data as the training set

Since the performance results indicate a good predictive model during evaluation, the

training set was not split further for evaluation. Instead, the full training set was used to train the

model before applying to the deployment set. Just like random forest regression model, the fit()

and predict() methods in scikit-learn were used in the same way to build the model. The

following block of codes was used to develop the gradient boosting regression model:

 # Import the class

from sklearn.ensemble import GradientBoostingRegressor

Instantiate regression model with tuned hyperparameters using least-

squares

105

gbr = GradientBoostingRegressor(n_estimators = 3000, max_features =

0.8, min_samples_split = 5, learning_rate = 0.01, max_depth = 10,

min_samples_leaf = 5, loss = 'ls')

Fit the Gradient Boosting Regression model

gbr.fit(X, y)

Make predictions on the overall data set

y_gbr_pred = gbr.predict(X)

The following block of code calculated the performance measures by the gradient boosting

regression model on the overall data set:

 # Find the error rate on the full set

rmse = np.sqrt(mean_squared_error(y, y_gbr_pred))

mae = mean_absolute_error(y, y_gbr_pred)

r2 = r2_score(y, y_gbr_pred)

print('Root Mean Squared Error:\t\t%0.2f' % rmse)

print('Mean Absolute Error:\t\t\t%0.2f' % mae)

print('R2 Score (Variance Score):\t\t%0.2f' % r2)

The performance results of the predictive model on full data set are shown in Table 28.

The performance results indicate a very good performance model with the gradient boosting

regression. The R2 score suggested that the model can predict with a 98% accuracy about 1.04

years above or below the mean year, with a minimum absolute error of 0.65. Therefore, the

gradient boosting regression predictive model was a good fit for this problem of predicting the

service life of transit vehicles.

Table 28. The Performance Measures with Gradient Boosting Regression on Full Data Set

Performance Measures Performance Scores
Root Mean Squared Error (RMSE) 1.04
Root Mean Squared Error (MAE) 0.65
R2 Score 0.98

106

4.10.3. Decision tree regression predictive model

Nevertheless, in order to fully explore this problem, another algorithm, the decision tree

regression, was applied and the results were analyzed before choosing the best model for the

problem. A decision tree builds a regression model in the form of a tree-like structure to solve

regression problems and is a good fit to handle the complex nonlinear relationship between

features variables and target variable. A decision tree is a top-down approach where the

processing breaks down a data set into smaller subsets while at the same time the tree moves

down until the leaf node. The basic idea is to break down complex decisions into smaller subsets

of simpler decisions so that it is easier to arrive at a solution. In a regression problem, the

decision tree considers features of data as predictor variables and the continuous variable as the

target variable. The features with important information are chosen for the model, and features

with no information are rejected automatically from the model, thus increasing the computational

efficiency (Xu, Watanachaturaporn, Varshney, & Arora, 2005).

4.10.3.1. Tuning hyperparameters for decision tree regression model

A grid search algorithm was applied to find the optimal hyperparameters for the decision

tree regression model. The following block of codes imported some required classes and data

science packages for tuning hyperparameters:

 # Import classes

from sklearn.tree import DecisionTreeRegressor

from sklearn.model_selection import GridSearchCV

from sklearn.metrics import mean_squared_error

from sklearn.model_selection import train_test_split

Import Data Science package

import pandas as pd

The training data set was loaded and split into the train set and the test set. The following block

of code performed the grid search on the train set only:

107

 # Load the training data

training = pd.read_csv('..//NTD/training.csv')

Create the X arrays

X = training.set_index('Revenue Vehicle Inventory ID')

Create the y arrays

y = X.pop('Service Life')

Split the training data into a train set (2/3) and a test set (1/3)

X_train, X_test, y_train, y_test = train_test_split(X, y, random_state

= 42, test_size = 0.3)

A wide range of parameters was set in the dictionary ‘param_grid’. The code is as follows:

 # Define the search parameter values

param_grid = {'max_depth': [2, 3, 4, 5, 6], 'min_samples_leaf': [1, 2,

3, 4], 'min_samples_split': [1.0, 2, 3, 4], 'max_features': [1.0,

0.8, 0.6, 0.5, 0.4, 0.3, 0.1,'auto',None]}

The parameter grid setting included parameters as keys and a list of parameter values as

values. The parameter grid was searched to find the best values for the model. After setting the

parameter values, the decision tree regression model was instantiated with the random_state

number of 42, which meant every time it was run the output would remain the same. Next, the

grid search method was instantiated with the required parameters and was fit with the train set.

The code is as follows:

 # Instantiate the model

est = DecisionTreeRegressor(random_state = 42)

Instantiate and fit the grid search

gs_cv = GridSearchCV(est, param_grid, scoring = 'mean_squared_error',

n_jobs = -1).fit(X_train, y_train)

Once the iterations were completed, the following code generated the optimal parameter values

from the list of values:

 # Best hyperparameter setting

print('Best Hyperparameters for Train set: %r' % gs_cv.best_params_)

108

The output is listed below.

Best Hyperparameters for train set: {'max_features': 0.8,

'min_samples_split': 2, 'max_depth': 4, 'min_samples_leaf': 2}

4.10.3.2. Developing and evaluating a decision tree regression predictive model

The 4 steps scikit-learn modeling was used on the decision tree regression model in the

same way the previous models were built with the training set. The following block of codes was

used to develop the decision tree regression model:

Import classes

from sklearn.tree import DecisionTreeRegressor

from sklearn.model_selection import train_test_split

Split the data set in a training set (2/3) and a test set (1/3)

X_train, X_test, y_train, y_test = train_test_split(X, y, random_state

= 42, test_size = 0.3)

Instantiate the decision tree regressor model

dtr_eval = DecisionTreeRegressor(random_state = 42, max_features = 0.8,

min_samples_split = 2, max_depth = 4, min_samples_leaf = 2)

Fit the model

dtr_eval.fit(X_train,y_train)

Make the predictions on the train set

y_pred_train = dtr_eval.predict(X_train)

Make the predictions on the test set

y_pred_test = dtr_eval.predict(X_test)

The following block of code calculated the performance measures by decision tree regression

model on the training set:

Find the error rate on the train set

rms_train = np.sqrt(mean_squared_error(y_train, y_pred_train))

mae_train = mean_absolute_error(y_train, y_pred_train)

r2_train = r2_score(y_train,y_pred_train)

print('Root Mean Squared Error:\t\t%0.2f'% rms_train)

print('Mean Absolute Error:\t\t\t%0.2f'% mae_train)

print('R2 Score:\t\t%0.2f'% r2_train)

109

The performance results of predictive model on the training set are listed in Table 29.

Table 29. The Performance Measures with Decision Tree Regression on Training Set

Performance Measures Performance Scores
Root Mean Squared Error (RMSE) 3.47
Root Mean Squared Error (MAE) 2.17
R2 Score 0.76

Again, the following block of code calculated the performance measures by the decision

tree regression model on the test set.

Find the error rate on test set

rms_test = np.sqrt(mean_squared_error(y_test, y_pred_test))

mae_test = mean_absolute_error(y_test, y_pred_test)

r2_test = r2_score(y_test, y_pred_test)

print('Root Mean Squared Error:\t\t%0.2f' % rms_test)

print('Mean Absolute Error:\t\t\t%0.2f' % mae_test)

print('R2 Score:\t\t%0.2f' % r2_test)

The performance results of predictive model on the test set are listed in Table 30. The

high performance scores on the train and test sets indicated that the decision tree regression

model was not a good fit for the problem on a revenue vehicle inventory data set and will not

predict well on unseen data. Therefore, the decision tree regression model was not considered as

our predictive model.

Table 30. The Performance Measures with Decision Tree Regression on Test Set

Performance Measures Performance Scores
Root Mean Squared Error (RMSE) 3.48
Root Mean Squared Error (MAE) 2.20
R2 Score 0.77

4.10.4. Comparison between random forest regression and gradient boosting regression model

Since the decision tree regression model was not be considered due to poor performance

scores, the other two methods described above were compared for selection of the best predictive

110

model for service life on revenue vehicle inventory data. Table 31 shows the performance metric

for both models.

Table 31. Comparisons of Performance Measures Between Random Forest Regression and
Gradient Boosting Regression

Method Full Training Data Set
RMSE MAE R2 Score

Random Forest Regression 1.23 0.71 0.97
Gradient Boosting Regression 1.04 0.65 0.98

The above comparison results indicated that the gradient boosting regression model was a

better fit for this problem. The RMSE score of 1.04 indicated that the prediction would fall

within 1.04 below or above the standard deviation at 98% accuracy with a mean absolute error of

0.65 years of prediction difference from the actual service life of vehicles.

4.11. Building Gradient Boosting Regression Model for Service Life Prediction

Before applying the model on deployment data for predictions, the prediction of service

life was compared with the actual service life of vehicles. The following code compared the

vehicle’s actual service life and the predicted service life:

 # Get predicted service life

gbr_results = y.to_frame()

gbr_results['Prediction'] = y_gbr_pred

The output of the above code is listed below in Table 32. For simplicity, the output was shown

with the first five values. The comparision between Service Life and Prediction shows that the

model will perform well enough to deploy on unseen data. Futhermore, predictions could be

even further improved by removing unnecessary features from the X variables.

111

Table 32. Comparison of Service Life vs. Predicted Service Life

Revenue Vehicle Inventory ID Service Life Prediction
24369.0 12.0 12.02986
24446.0 14.0 13.20664
48056.0 14.0 13.49888
42667.0 5.0 5.576827
48051.0 14.0 13.53025

The following code plotted the comparison histogram that showed the predicted service

life vs. the actual service life:

 # Create a list of service life and prediction

features_training = ['Service Life', 'Prediction']

ax = gbr_results.hist(column = features_training, figsize = (14, 6),

bins = 50)

save_image('hist_gbr')

plt.show();

The above code produces the plots shown in Figure 21. The comparison histogram showed that

the shape of the distribution of the data was normally distributed, and both were approximately

bell-shaped. The range of the values was also same. Therefore, we could conclude that the model

was performing well enough to predict the future service life of transit vehicles.

Figure 21. Comparison Histogram of Predicted Service Life vs. The Actual Service Life

112

The following code plots a regression line:

 # Import classes

import seaborn as sns

import matplotlib.pyplot as plt

sns.set(color_codes = True)

plt.subplots(figsize = (14, 7))

g = sns.regplot(x = gbr_results['Service Life'], y = y_gbr_pred, data =

training)

regline = g.get_lines()[0]

regline.set_color('Cyan')

plt.title('Regression plot of Predicted Service Life')

plt.xlim(-5,150)

plt.ylim(-5,150)

The regression plot is shown in Figure 22. The regression line indicated the projected service life

of transit vehicles.

Figure 22. Regression Plot with a Regression Line of the Prediction of Service Life

113

4.11.1. Save the SGR predictive model

Since the model was trained and tested as well as the test data set already provided a

good estimate of predictions errors, the model can perform even better if larger training data set

can be used. The model generalizes and performs better if it is trained on the combined large data

set (Downey, 2014). Therefore, the following predictive model was created on overall training

data set and saved for unseen revenue vehicle inventory data for prediction. The following code

saved the model in a pickle format so that the model can be used on deployment data for

predictions.

 # Import the class

from sklearn.externals import joblib

Save the trained model to a file

joblib.dump(gbr, 'SGR_model_GBR.pkl')

4.12. Building a Gradient Boosting Regression Model with Feature Importance

In the previous gradient boosting regression predictive model, every useful features

available in the data and some combined features were used in the training data set. It seemed

reasonable to use as much information as available to build the model. However, sometimes

some features may add redundant information which may lead poor generalization and some

irrelevant features may cause overfitting the model. In addition, some poor features may return

poor results. Sometimes, a large number of features may increase computation time without

improving the regression model and may cause the problem on generalizing to train a model on a

data set. As a result, a smaller set of most important features may produce better results.

Therefore, in this model, 25% of the most important features were selected algorithmically. This

process of selecting features is called feature selection, and this is very important to get better

performance for any machine learning algorithms (Garreta & Moncecchi, 2013).

114

The gradient boosting regression can measure the feature importance by applying the

feature_importances_ attribute after fitting the GradientBoostingRegressor. The following code

ranks the top 30 most important features based on their respective importance measures:

 # Display top 30 most important features

importances = pd.DataFrame({'Top 30 Important Features': X.columns,

'importance': gbr.feature_importances_}).sort_values(by =

'importance', ascending = False).reset_index(drop = True)

importances.head(30)

The output is listed in Table 33. The gradient boosting regression generates rank among the

important features on a scale between 0 and 1 (Downey, 2014). The feature,

VehicleLength_SeatingCapacity, is the top most important features with 8.7% importance score

amongst all features.

115

Table 33. Top 30 Most Important Features and their Importance Scores

Index Top 30 Most Important Features Importance Scores
0 VehicleLength_SeatingCapacity 0.08783
1 ALMPAV_TFV 0.07824
2 Average Lifetime Miles per Active Vehicles 0.07704
3 Vehicle Length 0.06462
4 Vehicle Type_Service Life 0.05748
5 Total Miles on Active Vehicles During Period 0.05693
6 Seating Capacity 0.05662
7 ALMPAV_AFV 0.05176
8 StandingCap_SeatingCap 0.0492
9 Mode_Service Life 0.0468
10 TMOAVDP_AFV 0.04657
11 TMOAVDP_TFV 0.04514
12 VehicleLength_StandingCapacity 0.04153
13 Total Fleet Vehicles 0.03268
14 Standing Capacity 0.02562
15 Fuel Type_Service Life 0.01883
16 ADA Fleet Vehicles 0.01591
17 Active Fleet Vehicles 0.01472
18 Fuel Type_Electric Propulsion Power 0.00988
19 Funding Source_UA 0.00903
20 RebuildYear_ManufactureYear 0.00814
21 Fuel Type_Diesel Fuel 0.00746
22 Emergency Contingency Vehicles 0.00696
23 Funding Source_NFPA 0.00679
24 Funding Source_OF 0.00658
25 TOS_PT 0.00643
26 TOS_DO 0.00617
27 Vehicle Type_Bus 0.00457
28 Ownership Type_OOPA 0.00405
29 Rebuild Year 0.00386

After ranking the top 30 most important features, a plot was created based on their

relative importance with the top 30 most important features. The following code shows these top

30 most important features in a bar chart:

 # Display important features in bar graph

importances.head(30).plot(kind = 'bar', figsize = (14, 8) ,use_index =

'name', x = 'Top 30 Important Features')

plt.title('Top 30 Important Features and importance score')

116

plt.ylabel('Importance Score')

save_image('important_features')

plt.show()

The plot with top 30 most important features is shown in Figure 23 highlighted the top

most 30 features which was ranked by the relative feature importance for gradient boosting

regression predictive model. The relative importance of features indicates how much a feature

can contribute predicting a target variable. The greater feature’s importance means the feature is

being used more often. Since gradient boosting regression is an ensemble tree model, the scores

are averaged for each feature across all trees, and the sum of all important features is equal to 1.

In this gradient boosting regression predictive model, the relative feature importance for top ten

features were most significant and accounted for about 60% of total feature importance.

Similarly, the top five most important features contributed about 35% of relative feature

importance. There were only two internal features ranked amongst the top five important

features, and the most important feature is VehicleLength_SeatingCapacity used in this model

(Johnson, et al., 2017). Therefore, we can conclude that the creation of new features by

combining the different combination of features have the significant impact on the model.

117

Figure 23. Bar Plot with Top 30 Important Features and Importance Score

Next, the top 30 features were listed in the variable object which were used to build the

model. The below code listed the top 30 most important features.

 # List of top 30 most important features

important_features = ['Vehicle Length', 'Average Lifetime Miles per

Active Vehicles', 'Total Miles on Active Vehicles During Period',

'Seating Capacity', 'Standing Capacity', 'ADA Fleet Vehicles',

'Active Fleet Vehicles', 'Emergency Contingency Vehicles', 'Total

Fleet Vehicles', 'Fuel Type_Service Life', 'Mode_Service Life',

'Vehicle Type_Service Life', 'VehicleLength_SeatingCapacity',

'RebuildYear_ManufactureYear', 'VehicleLength_StandingCapacity',

'StandingCap_SeatingCap', 'TMOAVDP_TFV', 'TMOAVDP_AFV',

'ALMPAV_TFV', 'ALMPAV_AFV', 'TOS_DO', 'TOS_PT', 'Mode_CC',

'Supports_Mode_MB', 'Fuel Type_Diesel Fuel', 'Vehicle Type_Bus',

'Ownership Type_OOPA', 'Funding Source_NFPA', 'Funding

Source_OF', 'Funding Source_UA']

118

The following block of codes was used to build the predictive model using 30 most important

features. At first, the top 30 most important features were stored in X variables on the revenue

vehicle inventory data. Then, the Scikit-learn modeling patterns were applied to build the model.

 # Store feature matrix in 'X'

X_imp = X[important_features]

Store response vector in 'y'

y_imp = y

Import class

from sklearn.ensemble import GradientBoostingRegressor

Instantiate regression model with tuned hyperparameters using least-

squares

gbr_imp = GradientBoostingRegressor(n_estimators = 3000, max_features =

0.6, min_samples_split = 4, learning_rate = 0.01, max_depth = 10,

min_samples_leaf = 3, loss = 'ls')

Fit regression model to the overall training data set

gbr_imp.fit(X_imp, y_imp)

Make prediction on Overall training data set

y_pred_imp = gbr_imp.predict(X_imp)

In order to check the error rates and other performance measures on the split training set, the

following block of code was used:

 # Find the error rate on the full data set

rms_imp = np.sqrt(mean_squared_error(y_imp, y_pred_imp))

mae_imp = mean_absolute_error(y_imp, y_pred_imp)

r2_imp = r2_score(y_imp,y_pred_imp)

print('Root Mean Squared Error:\t\t%0.2f'% rms_imp)

print('Mean Absolute Error:\t\t\t%0.2f'% mae_imp)

print('R2 Score:\t\t%0.2f'% r2_imp)

Finally, the performance results of predictive model on the train set are listed in Table 34. In the

result, the root mean squared error of 0.83 and the R2 score of 0.99 indicates that the predictions

were fallen less than 1 year below or above the standard deviation with 99% accuracy rate and a

mean absolute error of 0.45 for predictions.

119

Table 34. The Performance Measures by Gradient Boosting Regression with Top 30 Most
Important Features on Full Data Set

Performance Measures Performance Scores
Root Mean Squared Error (RMSE) 0.83
Root Mean Squared Error (MAE) 0.45
R2 Score 0.99

The performance results were compared between gradient boosting regression model

with and without top 30 most important features shown in Table 35. The comparison results

showed that the gradient boosting model with top 30 important features produced the better

model.

Table 35. Comparison of Performance Results Between Gradient Boosting Regression Model
and Gradient Boosting Regression Model with Top 30 Important Features

Method Full Training Data Set
RMSE MAE R2 Score

Gradient Boosting Regression 1.04 0.65 0.98
Gradient Boosting Regression with Top
30 Most Important Features

0.83 0.45 0.99

The following block of code was used to compare the predicted service life of vehicles

with the actual service life of the same vehicles after applying only the 30 most important

features of gradient boosting regression model (only 5 rows shown):

 # Display predictions

results_imp = y_imp.to_frame()

results_imp['Prediction'] = y_pred_imp

Show first 5 rows

results_imp.head()

The output of the above code is shown in Table 36. The comparison showed a very close

predicted service life with the actual service life of vehicles.

120

Table 36. Predicted Service Life vs. Actual Service Life by Top 30 Most Important Features

Revenue Vehicle Inventory ID Service Life Prediction
24369.0 12.0 12.13049
24446.0 14.0 13.84231
48056.0 14.0 13.73627
42667.0 5.0 5.201973
48051.0 14.0 13.84958

The following block of code plots a comparison histogram that shows predicted service

life versus the actual service life with the gradient boosting regression model using top 30 most

important features:

 # List features

features = ['Service Life', 'Prediction']

results_imp.hist(column = features, figsize = (14, 6), bins = 50)

save_image('hist_imp')

plt.show();

The above code generates histograms shown in Figure 24. The comparison histogram showed

that the shape of the distribution of the data in both plots is normally distributed. The range of

the values was also same. Therefore, we could say that the model was performing well enough to

predict the future service life of vehicles using gradient boosting regression model with top 30

most important features.

121

Figure 24. Comparison Histogram of Prediction vs. Actual Service Life

The following code was used on revenue vehicle inventory data in order to check the

regression line with top 30 most important features:

 # Import classes

import seaborn as sns

import matplotlib.pyplot as plt

sns.set(color_codes = True)

plt.subplots(figsize = (14,7))

g = sns.regplot(x = results_imp['Service Life'], y = y_gbr_pred, data =

training)

regline = g.get_lines()[0]

regline.set_color('Cyan')

plt.title('Regression plot of Predicted Service Life with top 30

features')

plt.xlim(-5,150)

plt.ylim(-5,150)

save_image('reg_imp')

plt.show()

The above code plotted a regression plot with a line which was a prediction for the service life of

vehicles shown in Figure 25.

122

Figure 25. Regression Plot of Predicted Service Life vs. Actual Service Life with Top 30 Most
Important Features

4.13. Comparison Analysis of Predictions

Since we got the comparison results of predicted service life and actual service life for

both on gradient boosting regression model with all the features and with 30 most important

features, the results are inserted in Table 37 for comparisons. The prediction results in the below

table indicated the predictions were almost close in both cases. However, removing redundant

features from the model improved the performance of the model. Therefore, the predictive model

by gradient boosting regression model with top 30 most important features were chosen to solve

the state of good repair problem.

123

Table 37. Comparison of Actual Service Life vs. Predicted Service Life with All Features and
Top 30 Important Features

RVI ID Service Life Prediction (With All Features) Prediction (With top 30
important features)

24369 12 12.0299 12.1305
24446 14 13.2066 13.8423
48056 14 13.4989 13.7363
42667 5 5.57683 5.20197
48051 14 13.5303 13.8496

4.14. Save the Gradient Boosting Regression Model with Top 30 Important Features

At this point, the model was saved in a pickle format for predictions to deployment data.

 # Save the trained model with top 30 important features to a file

joblib.dump(gbr_imp, 'SGR_model_imp.pkl')

4.15. Make Predictions on Deployment Data

Since the gradient boosting regression model was developed with top 30 most important

features, the model was loaded to apply to the deployment data set for predictions. The following

codes loaded the desired model and the necessary data set for predictions:

 # Load the model that was trained previously

SGR_model = joblib.load('SGR_model_imp.pkl')

Load cleaned deployment data for machine learning predictive model

X_deploy = pd.read_csv('..//NTD/Final Deployment

Data.csv').set_index('Revenue Vehicle Inventory ID')

Load non-retired revenue vehicle inventory data since 2008 for

prediction

revenue_all_vehicles =

pd.read_csv('..//NTD/Revenue_Vehicle_Inventory_all_years.csv').se

t_index('Revenue Vehicle Inventory ID').drop(['Unnamed: 0'], axis

= 1)

The shape attribute was applied on all data to see the total number of vehicles, and it was further

applied on the deployment data to see the number of non-retired vehicles. The block of code is as

follows:

124

 # Show number of rows and columns

revenue_all_vehicles.shape

Show number of rows and columns

X_deploy.shape

The above code showed 42440 vehicles were in the revenue vehicle inventory database from

2008 to 2016. Among them, 31146 vehicles were still in operation which needed to be predicted

when their service life would be expired. The following code found the number of vehicles

which were missing with Manufacture Year.

Find the number of vehicles which are missing with 'Manufacture Year'

data

revenue_all_vehicles['Manufacture Year'].isnull().sum()

The above code showed that 3189 vehicles were missing with ‘Manufacture Year’ information,

and thus these data were not included in the deployment data set.

The following code finds the number of vehicles with missing Fuel Type.

Find the number of vehicles which are missing with 'Fuel Type'

information

revenue_all_vehicles['Fuel Type'].isnull().sum()

The above code showed that 14824 vehicles did not have fuel type information. This information

needs to be brought to attention to transit agencies so that they can update revenue vehicle

inventory data with fuel type information.

Now, the following code made the predictions on the deployment data set and created a

new column Predicted Service Life in the data frame.

 # Make the predictions on the non-retired data

y_pred = SGR_model.predict(X_deploy)

Create a column 'Predicted Service Life' with the prediction

X_deploy['Predicted Service Life'] = y_pred

125

Since the model generated the predicted service life value for deployment data, the newly created

column was merged with all revenue inventory data by performing a join operation. The merged

data frame was stored in a new data frame. The code is as follows:

 # Merge two DataFrame by a join operation

revenue_all = revenue_all_vehicles.join(X_deploy['Predicted Service

Life'], how = 'right')

Now, the following code created a new column of Projected Retired Year by adding Predicted

Service Life with the Manufacture Year. The code is as follows:

Create a new column by adding Predicted Service Life with Manufacture

Year

revenue_all['Projected Retired Year'] = (revenue_all['Manufacture

Year'] + (revenue_all['Rebuild Year'] - revenue_all['Manufacture

Year']).fillna(0) + revenue_all['Predicted Service Life'] +

1.0).round()

Finally, the model was saved in a comma separated CSV file as a final report for use as a guide

for predictions by transit agencies and the FTA. The code is as follows:

 # Save the result

revenue_all.to_csv('Report_Non-Retired Revenue Vehicle Inventory 2008-

2016 Results.csv', sep = ',')

4.16. The Deployment Data Analysis

Before doing any data analysis with the deployment data, some column names were

renamed by adding the underscore (_) between words for easy manipulation. The code is as

follows:

 # Rename columns

df = revenue_all.rename(columns = {'Vehicle Type': 'Vehicle_Type',

'Predicted Service Life': 'Predicted_Service_Life', 'Projected

Retired Year': 'Projected_Retired_Year', 'Vehicle Length':

'Vehicle_Length', 'Fuel Type': 'Fuel_Type'})

126

The following code checked the number of vehicles in the deployment data based on each

vehicle type by running value_counts() function:

 # Count the number of vehicles by vehicle type

df.Vehicle_Type.value_counts()

The output is shown in Table 38. The resulting output is in descending order where the Cutaway

is the most frequently occurring and the Inclined Plane Vehicle is the least frequently occurring

vehicles.

Table 38. Number of Vehicles in Deployment Data by Vehicle Type

Vehicle Type Number of Vehicles
Cutaway 11470
Bus 8729
Van 5419
Minivan 2616
Over-the-road Bus 692
Automobile 526
Articulated Bus 294
Commuter Rail Passenger Coach 234
Heavy Rail Passenger Car 210
Sports Utility Vehicle 196
Ferryboat 172
Light Rail Vehicle 133
Commuter Rail Locomotive 121
Commuter Rail Self-Propelled Passenger Car 91
School Bus 72
Other 56
Vintage Trolley 39
Cable Car 16
Streetcar Rail 16
Trolleybus 12
Double Decker Bus 12
Automated Guideway Vehicle 9
Aerial Tramway 8
Inclined Plane Vehicle 3

The following code can further visualize the above number in a horizontal bar plot:

 # Plot the number of vehicles by vehicle type

127

df.Vehicle_Type.value_counts(ascending = True).plot(kind = 'barh',

figsize = (12, 5))

plt.title('Number of Vehicles by Vehicle Type')

plt.xlabel('Number of Vehicles')

plt.ylabel('Vehicle Type')

save_image('bar_vt')

The bar plot of vehicle count by type is shown in Figure 26.

Figure 26. Bar Plot of Vehicle Count by Vehicle Type

Next, statistical analysis was performed on the predicted service life by vehicle type

using agg() function to visualize the average service life by vehicle type. The following code

plotted the statistical analysis:

Plot statistical analysis of average predicted service life by

vehicle type

df.groupby('Vehicle_Type').Predicted_Service_Life.agg(['min', 'mean',

'max']).plot(kind = 'barh', figsize = (14, 6))

plt.title('Average Predicted Service by Vehicle Type')

plt.xlabel('Average Predicted Service Life')

plt.ylabel('Vehicle Type');

save_image('mean_bar')

The bar plot is as shown in Figure 27.

128

Figure 27. Bar Plot of Statistical Analysis of Predicted Service Life by Vehicle Type

4.16.1. Cross Tabulation Analysis

A cross-tabulation analysis, also known as contingency table analysis, is a table shows

the frequency distribution of one variable in rows and another one in columns (Contingency

table, 2018). A typical cross-tabulation table comparing the two variables Fuel Type with

Vehicle Mode is shown below:

 # Create cross tabulation on vehicle type by mode

pd.crosstab(df.Vehicle_Type, df.Mode, margins = True)

The output is shown in Table 39. The table showed the distribution of a Vehicle Type with

Mode. A few vehicle type had a single mode, however; most of the vehicle type had multiple

mode.

129

Table 39. Contingency Table of Vehicle Type by Vehicle Model

Vehicle Type
Mode

All
AR CB CC CR DR DT FB HR IP LR MB MG RB SR TB TR VP YR

Aerial Tramway 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 8

Articulated Bus 0 30 0 0 0 0 0 0 0 0 239 0 25 0 0 0 0 0 294

Automated Guideway
Vehicle

0 0 0 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 9

Automobile 0 0 0 0 499 10 0 0 0 0 17 0 0 0 0 0 0 0 526

Bus 0 452 0 0 1700 0 0 0 0 0 6555 0 18 0 0 0 4 0 8729

Cable Car 0 0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16

Commuter Rail
Locomotive

9 0 0 112 0 0 0 0 0 0 0 0 0 0 0 0 0 0 121

Commuter Rail Passenger
Coach

20 0 0 213 0 0 0 0 0 0 0 0 0 0 0 0 0 1 234

Commuter Rail Self-
Propelled Passenger Car

0 0 0 86 0 0 0 0 0 0 0 0 0 0 0 0 0 5 91

Cutaway 0 302 0 0 8266 0 0 0 0 0 2902 0 0 0 0 0 0 0 11470

Double Decker Bus 0 2 0 0 0 0 0 0 0 0 9 0 1 0 0 0 0 0 12

Ferryboat 0 0 0 0 0 0 172 0 0 0 0 0 0 0 0 0 0 0 172

Heavy Rail Passenger Car 0 0 0 0 0 0 0 210 0 0 0 0 0 0 0 0 0 0 210

Inclined Plane Vehicle 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 3

Light Rail Vehicle 0 0 0 0 0 0 0 0 0 98 0 0 0 33 0 0 0 2 133

Minivan 0 0 0 0 2433 4 0 0 0 0 31 0 0 0 0 0 148 0 2616

Other 0 23 0 0 5 0 1 0 0 0 9 0 7 0 0 0 11 0 56

Over-the-road Bus 0 513 0 0 0 0 0 0 0 0 179 0 0 0 0 0 0 0 692

130

Table 39. Contingency Table of Vehicle Type by Vehicle Model (continued)

Vehicle Type
Mode

All
AR CB CC CR DR DT FB HR IP LR MB MG RB SR TB TR VP YR

School Bus 0 0 0 0 62 0 0 0 0 0 10 0 0 0 0 0 0 0 72

Sports Utility
Vehicle

0 0 0 0 135 1 0 0 0 0 0 0 0 0 0 0 60 0 196

Streetcar Rail 0 0 0 0 0 0 0 0 0 0 0 0 0 16 0 0 0 0 16

Trolleybus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 0 0 0 12

Van 0 0 0 0 3158 7 0 0 0 0 313 0 0 0 0 0 1941 0 5419

Vintage Trolley 0 0 0 0 0 0 0 0 0 5 0 0 0 34 0 0 0 0 39

All 29 1322 16 411 16258 22 173 210 3 103 10264 9 51 83 12 8 2164 8 31146

131

4.17. Analysis on the Condition of Buses Based on Predicted Service Life

The following code was used to analyze the predicted retirement years for buses. The

code divided nationwide bus data into two sets. One set included bus data which predicted

retirement years until 2017, and other set included bus data which predicted retirement after the

year 2017.

 # Set plot size

fig, ax = plt.subplots(1, 2, figsize = (14, 5))

Set first plot

df_bus_ = df.loc[(df.Vehicle_Type == 'Bus') &

(df.Projected_Retired_Year < = 2017)]

df_bus_.Projected_Retired_Year.plot.hist(ax = ax[0], color = 'red')

Give the plot a main title

ax[0].set_title('Buses already Retired by prediction by previous

years')

Set text for the x axis

ax[0].set_xlabel('Predicted Retired Years')

Set text for y axis

ax[0].set_ylabel('Number of Buses')

Second plot

df_bus = df.loc[(df.Vehicle_Type == 'Bus') & (df.Projected_Retired_Year

> = 2018)]

df_bus.Projected_Retired_Year.plot.hist(ax = ax[1])

Give the plot a main title

ax[1].set_title('Buses will be Retired in future Years')

Set text for the x axis

ax[1].set_xlabel('Predicted Retired Years')

Set text for y axis

ax[1].set_ylabel('Number of Buses');

save_image('bus_analysis')

The above code produces the current conditions of buses shown in Figure 28. The plot showed

that 1983 buses out of 8729 buses which were about 23% of buses nationally already predicted to

be retired and needed immediate attention to either replace or rehabilitate.

132

Figure 28. The Condition of Buses Based on Predicted Service Life

4.18. Data Analysis on Fargo Metropolitan Area Transit (MAT Bus) data

Now, we will analyze the condition of transit vehicles in a small urban transit agency as

an example of how the transit agency can get the benefit of using the model. For this purpose, the

transit agency, Fargo Metropolitan Area Transit (MAT Bus), was chosen which had 19 vehicles

in their fleet. The following code stores the Fargo Metropolitan Area Transit (MAT Bus) agency

data to fargo_mat data frame.

 # Filter data by agency name

fargo_mat = df[(df['Agency Name'] == 'City of Fargo, DBA: Metropolitan

Area Transit')]

The following code shows the number of transit vehicles in MAT Bus.

 # Count the vehicles

fargo_mat.shape

The shape attribute shows that 19 vehicles are in operation in Fargo, North Dakota area by

Metropolitan Area Transit. The following code shows the number of each type of vehicles

operated by the agency.

 # Count the number of vehicles by vehicle type

fargo_mat.Vehicle_Type.value_counts()

133

The output is shown in Table 40 showed the MAT Bus currently held 11 buses and 8 cutaways in

their fleet.

Table 40. Number of Vehicles by Vehicle Type at MAT Bus

Type of Vehicles Number of Vehicles
Bus 11
Cutaway 8

The following block of code shows the number of vehicles by vehicle type in a bar plot.

 # Plot the number of vehicles by vehicle type

f, ax = plt.subplots(figsize = (12, 4))

sns.countplot(y = 'Vehicle_Type', data = fargo_mat)

ax.set_title('Number of Vehicles by Vehicle Type')

ax.set_xlabel('Number of Vehicles')

ax.set_ylabel('Vehicle Type');

save_image('mat_counts')

The above code will plot a bar graph shown in Figure 29.

Figure 29. Bar Plot of the Number of Vehicles by Vehicle Type at MAT Bus

The statistical analysis was performed as well on the predicted service life by the

following code:

 # Statistical analysis of service life by vehicle type

fargo_mat.groupby('Vehicle_Type').Predicted_Service_Life.agg(['count',

'min', 'max', 'mean'])

134

The output is shown in Table 41. The statistical analysis showed the minimum, the maximum,

and the average service life of the vehicle by vehicle type. The predicted average service life is

very much close to the default useful life specified by the FTA which is 14 for bus and 10 for

cutaways.

Table 41. Statistical Analysis of Service Life by Vehicle Type on MAT Bus

Vehicle Type count min max mean
Bus 11 10.31104 16.362 12.85894
Cutaway 8 8.561481 10.85107 9.418001

The following code further visualizes the statistical analysis.

 # Plot statistical analysis of predicted service life by vehicle type

fargo_mat.groupby('Vehicle_Type').Predicted_Service_Life.agg(['mean',

'min', 'max']).plot(kind = 'barh', figsize = (14, 4))

plt.title('Statistical Analysis of Predicted Service Life of Vehicles

by Vehicle Type')

plt.xlabel('Number of Vehicles')

plt.ylabel('Vehicle Type');

save_image('mat_sa')

The above code plotted the statistical analysis shown in Figure 30.

Figure 30. Bar Plot of Statistical Analysis of Predicted Service Life by Vehicle Type on MAT
Bus

In order to see the overall condition of transit vehicles operated by Metropolitan Area

Transit, the revenue vehicle data was filtered with predicted retired year until 2018 and predicted

retired year after 2018. The following block of codes filters out data and plots into two subplots.

135

 # Set plot size

fig, ax = plt.subplots(1, 2, figsize = (14, 5))

df_fargo_mat_ = fargo_mat.loc[fargo_mat.Projected_Retired_Year < =

2017]

df_fargo_mat_.Projected_Retired_Year.plot.hist(ax = ax[0], color =

'red')

ax[0].set_title('Fargo MAT Vehicles already Retired by prediction by

previous years')

ax[0].set_xlabel('Predicted Retired Years')

ax[0].set_ylabel('Number of Vehicles')

df_fargo_mat = fargo_mat.loc[fargo_mat.Projected_Retired_Year > = 2018]

df_fargo_mat.Projected_Retired_Year.plot.hist(ax = ax[1])

ax[1].set_title('Fargo MAT Vehicles will be Retired in future Years')

ax[1].set_xlabel('Predicted Retired Years')

ax[1].set_ylabel('Number of Vehicles');

save_image('fargo_mat_analysis')

The above block of code plots the condition of vehicles for MAT Bus shown in Figure 31.

Figure 31. MAT Bus Projected Retired Year

The following code calculates the number of vehicles which are predicted to be retired

before the year 2018.

 # Show number of rows and columns

df_fargo_mat_.shape

136

The above code shows that 2 out of 19 vehicles which are about 11% vehicles need to be

replaced or rehabilitated immediately. The following code shows the predicted retired year of

each vehicle for MAT Bus.

 # Projected retired year for MAT Bus by vehicle type

 df_fargo_mat[['Projected_Retired_Year', 'Vehicle_Type']]

The code prints the predicted retired year shown in Table 42.

Table 42. The Projected Retired Year for MAT Bus

Revenue Vehicle Inventory ID Projected Retired Year Vehicle Type
13492 2018 Bus
24444 2019 Bus
30530 2021 Bus
38184 2019 Cutaway
38186 2020 Cutaway
38188 2022 Bus
43198 2024 Bus
47932 2023 Bus
47933 2022 Bus
53628 2022 Cutaway
59603 2022 Cutaway
59604 2028 Bus
337297 2024 Cutaway
337314 2018 Cutaway
343269 2025 Cutaway
343303 2030 Bus

The following block of code plots a pie chart and a table with projected retired year.

 # Plot chart

plt.figure(figsize = (14,6))

ax1 = plt.subplot(121, aspect = 'equal')

fargo_mat_ret = df_fargo_mat.Projected_Retired_Year.astype

(int).value_counts().plot (kind = 'pie', autopct = '%1.1f%%')

fargo_mat_ret.set_title('Percentage of Vehicles will be Retired in

Year')

Plot table

fargo_mat_tbl =

df_fargo_mat.Projected_Retired_Year.astype(int).value_counts()

137

Import class

from pandas.tools.plotting import table

ax2 = plt.subplot(122)

plt.axis('off')

tbl = table(ax2, fargo_mat_tbl, loc = 'center', colWidths = [0.3])

tbl.auto_set_font_size(False)

tbl.set_fontsize(14)

save_image('fargo_mat_pie')

plt.show();

The plot with table is shown in Figure 32. The pie chart showed the percentage of vehicles and

the table showed the corresponding number of vehicles which will be retired in the future year.

Therefore, the Metropolitan Area Transit (MAT Bus) should be aware of the condition of their

transit vehicles and plan for replacement.

Figure 32. Pie Chart and Table to Show the Projected Retired Year on MAT Bus

4.19. Make Prediction on Any Single Vehicle

The gradient boosting regression model with top 30 most important features was also

used in order to predict any single vehicle. After the initial setup with parameters, the model and

other necessary CSV files were loaded. The code for loading model and data is as follows:

 # Load the predictive model

model = joblib.load('SGR_model_imp.pkl')

138

Load the model that was trained previously with only top 30 important

features

revenue_all = pd.read_csv

('..//NTD/Revenue_Vehicle_Inventory_all_years.csv').drop(['Unname

d: 0'], axis = 1)

Load the cleaned deployment data

X_deploy = pd.read_csv('..//NTD/Final Deployment Data.csv')

Since the data analysis on Metropolitan Area Transit (MAT Bus), Fargo, North Dakota

was performed by gradient boosting regression predictive model, a single vehicle was chosen

from the MAT Bus for further analysis by gradient boosting regression predictive model with the

top 30 important features. For this analysis, a bus of vehicle inventory id of 24444 was chosen to

predict its projected retired year and compare the result with the previous analysis. The following

code was used to select the vehicle store it to a data frame:

 # Select vehicle with RVI ID of 24444

vehicle_24444 = X_deploy[X_deploy['Revenue Vehicle Inventory ID'] ==

24444]

The selected vehicle is listed in Table 43. Since the processed data had 119 columns, a few

columns were entered here for simplicity.

Table 43. Processed Columns on Revenue Vehicle Data for Machine Learning Algorithm

Revenue
Vehicle
Inventory
ID

Seating
Capacity

Standing
Capacity

Vehicle
Length

… Vehicle
Type_Bus

TOS_PT Mode_Service
Life

24444.0 16 0 25 … True 1 11.0

The following code was used to show the necessary vehicle information which needs to

be inserted as follows:

Example Vehicle: the following data has been input from the vehicle

inventory Id of 24444

SGR_Prediction = [

25, # Input the length of the Vehicle

139

220515, # Input the Average Lifetime Miles per Active Vehicles

22380, # Input the Total Miles on Active Vehicles During Period

 16, # Input the Seating Capacity of the vehicle

 0, # Input the Standing Capacity of the vehicle

 2, # Input ADA Fleet Vehicles

 2, # Input the Active Fleet Vehicles

 0, # Input the Emergency Contingency Vehicles

 2, # Input Total Fleet Vehicle

16, # Input the "number" based on Fuel Type of vehicle

 11, # Input the "number" based on Mode of vehicle

14, # Input the "number" based on Vehicle Type of vehicle

1.5625, # Input the ratio of "Vehicle length" and "Seating

Capacity of the vehicle"

0, # Input the ratio of "Rebuild Year" and "Manufacture Year"

0, # Input the ratio of "length of the Vehicle" and "Standing

Capacity of the vehicle"

0, # Input Ratio of "Standing Capacity of the vehicle" and

"Seating Capacity of the vehicle"

11190.0, # Input Ratio of "Total Miles on Active Vehicles During

Period" and "Total Fleet Vehicles"

11190.0, # Input Ratio of "Total Miles on Active Vehicles During

Period" and "Active Fleet Vehicles"

110257.5, # Input Ratio of "Average Lifetime Miles per Active

Vehicles" and "Total Fleet Vehicles"

441030.0, # Input Ratio of "Average Lifetime Miles per Active

Vehicles" and "Active Fleet Vehicles"

0, # TOS: if TOS = DO, then input 1; else input 0

1, # TOS: if TOS = PT, then input 1; else input 0

False, # Mode: if Mode = CC, input True; else input False

False, # Support Mode: if Support Mode = MB, input True; else

input False

True, # Fuel Type: if Fuel Type = Diesel Fuel, input True; else

input False

True, # Vehicle Type: if Vehicle Type = Bus, input True; else

input False

True, # Ownership Type: if Ownership Type = OOPA, input True;

else input False

140

False, # Funding Source: If Funding Source = NFPA, input True;

else input False

False, # Funding Source: if Funding Source = OF, input True; else

input False

True # Funding Source: if Funding Source = UA, input True; else

input False

]

The following blocks of codes generates the prediction for a single vehicle:

 # To predict the service life of a single vehicle

vehicle_service_life = [SGR_Prediction]

Run the model and make a prediction for each vehicle

predicted_service_life = model.predict(vehicle_service_life)

Predicting the single vehicle

predicted_life = predicted_service_life[0]

The following code prints the value of the predicted service life of the single vehicle:

 # Predict the service life for the vehicle

print ("The predicted service life of the vehicle would be {:, .0f}

years".format(predicted_life))

And, the output is as follows:

 The predicted service life of the vehicle would be 12 years

Finally, the following block of code calculates the predicted retired year of the vehicle:

Add Predicted Service Life to the non-retired revenue vehicle

inventory data with only specific vehicle

revenue_single_vehicle = revenue_all[revenue_all['Revenue Vehicle

Inventory ID'] == 24444]

revenue_single_vehicle['Predicted Service Life'] = predicted_life

Create a new column by adding predicted service life with Manufacture

Year

revenue_single_vehicle['Projected Retired Year'] =

(revenue_single_vehicle['Manufacture Year'] +

(revenue_single_vehicle ['Rebuild Year'] -

revenue_single_vehicle['Manufacture Year']).fillna +

revenue_single_vehicle['Predicted Service Life'] + 1.0).round()

141

Print the result

revenue_single_vehicle

The above code printed the output of the vehicle with the predicted retired year. Since

there were 29 columns in the output, a few important columns were inserted for simplicity shown

in Table 44. The gradient boosting regression predictive model with top the 30 important

features predicts that the vehicle with RVI ID of 24444 should be retired in the year of 2019.

This model predicted the same projected retired year comparing with the prediction of the same

vehicle made by the gradient boosting regression predictive model with all features.

Table 44. The Predicted Retired Year for the Vehicle with RVI ID of 24444

Revenue
Vehicle
Inventory
ID

Agency Name Fuel
Type

Man.
Year

… Vehicle
Length

Vehicle
Type

Projected
Retired
Year

24444.0 City of Fargo,
DBA:
Metropolitan Area
Transit

Diesel 2006 … True Bus 2019

4.20. Challenges

Throughout the preprocessing of revenue vehicle inventory data for machine learning

algorithms and exploratory data analysis, many challenges were encountered. For instance, the

quality of the revenue vehicle inventory data was not good. In addition, there were many

roadblocks during the feature engineering such as problems with missing data.

Data are the most important part of developing any predictive model. Lack of good

quality data or lack of sufficient data may not produce a good predictive model. In this model,

the revenue vehicle inventory data from 2008 to 2016 from the NTD database were used. Due to

poor quality of data, the available data from 1999 to 2007 were not used in the model. According

to the FTA, the vehicle’s default useful life depends on the vehicle type (NTD, 2017). Therefore,

142

each vehicle type needs enough training data to train the model. The exploratory data analysis

with the training data showed some of the vehicle types only had a few training data points. For

example, the Inclined Plane Vehicle and Double Decker Bus vehicle types had only 1 data point,

which was not enough to train these particular vehicle types.

The tasks for data preparation of the machine learning algorithm were very challenging.

The tasks involved cleaning bad data with missing information, creating new features,

transforming them into useful features, and reorganizing data into suitable machine learning

algorithms. The data preparation involved looking for data anomalies and making sure to fix

anomalies by taking proper actions and transforming them to be consistent.

Since the revenue vehicle inventory data sets were complex and there was no direct

information on when a vehicle was retired, it was very challenging to split the data into the

training set with retired vehicles and the deployment set with non-retired vehicles. In the revenue

vehicle inventory data, the Retired column was an important attribute as it indicated whether a

vehicle was retired or not by flagging ‘Y’ or ‘N’. This column exists in the data from 2014

through 2016, but not in the data from 2013 and prior. In addition, there were many data points

where the Retired column had null points in data from 2014 through 2016. Therefore, during the

data cleaning process, the Retired column was added to data from 2008 to 2013 with ‘Y’ value

and an extra column Retired Year was created to all data sets.

The Manufacture Year was another important column used to calculate the service life of

vehicles. There were 3189 data points with no value for Manufacture Year, which represented

about 7.5% of the total data. These data were not considered for the predictive model and

removed from the data set. Fuel Type was also an important categorical feature that impacted the

accuracy of the predictive model. The exploratory analysis showed that there were 14100 data

143

points missing for the Fuel Type category, which represented 33% of total data points. However,

in this case, the huge amount of data was not dropped from the data set. Instead, the missing

category was replaced by a dummy type with Unknown Fuel type. It might impact the

performance; however, it solved the problem.

During data processing, creating some useful features by combining multiple features

was another challenge. Since there was no strong correlation found between features with the

target feature, a combination of different features was applied to the model to obtain the best

performance. Therefore, a trial and error method was applied to the features selection using the

feature importance function to see whether newly created features had any impact on the model.

By following the trial and error method, some of the features were selected for the model, and

the rest of them were rejected.

After completing the initial exploratory data analysis, the selection of the best predictive

model for this problem was another challenge. The analysis showed the target variable was a

continuous variable and the regression analysis could solve the problem. Since there are many

regression algorithms available for machine learning problems and there is no concrete

methodology to choose the best model, this work was started with several popular methods to

build the predictive model for this problem. The entire data set was split into three sets called the

training set, the test set, and the deployment set. Once the process was done, three popular

machine learning techniques were chosen for the model. They were random forest regression,

gradient boosting regression, and decision tree regression. By using these three techniques, a

separate predictive model was built, evaluated the performance of the results, and the

performance results were compared across models. Even though the evaluation and the

144

comparison of the models took a significant amount of time, choosing the perfect algorithm for

the problem was a bit of a challenge.

Another challenge was to handle the outliers in the data set. After calculating the actual

service life of the vehicle by subtracting the manufacture year from the retired year some

vehicles were observed to have very low service life. This may be due to some consequences of

human errors by incorrectly inputting data for manufacture year or retired during the data

collection processes. These data were handled by removal from the training data set.

4.21. Summary of Data Analysis and Results

 This chapter explored revenue vehicle inventory data set from the NTD database where

transit agencies publish their vehicle information at the end of each fiscal year. Python was used

as a programming language in the Jupyter Notebook environment to analyze the revenue vehicle

inventory data and develop the predictive model. Nine data sets were used, one from each year

between 2008 to 2016; however, they were not consistent because data varied between years.

Therefore, each data set needed to be cleaned up individually and be made consistent before

combining them. A new column Retired Year was added and calculated the value based on the

status of the vehicle’s retirement. There were many data issues in the initial combined data set.

One of the main issues was missing information. The missing information was handled by filling

missing values with either zero (0) or by applying a function. In some cases, the data points with

missing values were removed. The categorical names with missing values were filled with

‘Unknown’ as the keyword followed by underscore, and then category name. Finally, some

unnecessary variables were removed from the data set as they were redundant for the model.

After cleaning up the data, a new column Service Life was created, and values were

generated by subtracting Manufacture Year from Retire Year. The entire data set was split into

145

two sets. The retired vehicles were used as the training set, while the non-retired vehicles were

used as the deployment set. An exploratory data analysis was performed on the training set to see

the significance value of data in the model as well as visualize outliers, data distribution, and

relationships between features.

The features of the training set were engineered prior to building a machine learning

model. As part of the feature engineering process, several new features were created by

combining different numerical features. In addition, binary features were created from

categorical names, and a few additional features were created by analyzing the histogram from

categorical features. A deployment set was created in the same manner. A model was built from

the training set, then it was applied to the deployment set for predictions.

Since the training data had the target variable, it was used to train the model. Three

different machine learning algorithms called random forest regression, gradient boosting

regression, and decision tree regression were applied to build three different predictive models.

Before building the model, the parameters for each algorithm were tuned to optimize the

performance of the model. During modeling, the training data was split into the training set and

the test set in the ratio of 70% of data to train the model and 30% of data to evaluate the model.

As part of the evaluation, three performance metrics called root mean squared error, mean

absolute error, and R2 score were applied to see how accurately the models were performing.

After comparing the performance results, the gradient boosting regression predictive model was

selected because it provided better performance results for the problem.

Sometimes, a large number of features may cause problems to generalize a model.

Therefore, the feature importance ranking method was further applied to the gradient boosting

regression model to get the top 30 most important features. After applying the top 30 most

146

important features and comparing the performance of the previous gradient boosting regression

model, we found an even better performing predictive model. Finally, we applied the full data set

as a training set to train the model that further improved the performance of the predictive model.

We concluded the gradient boosting regression model using the full training data set with the top

30 most important features would be our final predictive model.

After developing the predictive model using the gradient boosting regression algorithm

with the top 30 most important features, the model was applied on the deployment set for

predictions. Results were saved in a CSV file for transit agencies, and further data analysis was

performed to visualize the current conditions of the nation’s transit vehicles. Special data

analysis was performed on the Fargo Metropolitan Area Transit (MAT Bus) agency as an

example of how transit agencies could perform their own data analysis. By conducting similar

analysis, transit agencies would be made aware of their vehicle conditions to determine

replacement and rehabilitation needs.

Finally, another supplementary model was built using the gradient boosting regression

model with the top 30 most important features to make predictions for any given vehicle. Using

this simple model, transit agencies could input the necessary vehicle information for a specific

vehicle in the model and predict the condition of the vehicle.

147

CHAPTER 5. CONCLUSION AND FURTHER RESEARCH

5.1. Conclusion

This research developed a predictive model to evaluate the transit state of good repair

using machine learning algorithms. This dissertation explored three machine learning techniques

to predict the service life of vehicles. The random forest regression, gradient boosting regression,

and decision tree regression were applied on revenue vehicle inventory data to build the

predictive model and predict vehicle service life. After evaluating and comparing performance

results, we found that the gradient boosting regression predictive model performed better than

the other two predictive models. The gradient boosting regression algorithm was also used to

identify the top most important features, and the predictive model with the top 30 most important

features worked even better to predict vehicle service life.

The predictive tool developed in this study allows transit agencies to predict the service

life of their revenue vehicles. Furthermore, the FTA can use this tool to see the overall condition

of the nation’s revenue vehicles. Even though, the performance of the predictive tool is very

good, it could be further improved by implementing the following recommendations.

5.2. Recommendation

The author recommends to add additional data to the training set to train the model in

future work. The other data can be found from the FTA or directly from the transit agencies. The

analysis showed that if more training data can be added to the predictive model, the performance

of the model will be improved. The FTA can also take an initiative to add few crucial columns in

the revenue vehicles inventory database. For example, the FTA can instruct transit agencies to

add ‘operating start date,’ ‘retired date,’ ‘cost of vehicles,’ and ‘agency zone’ columns in the

database. The above information will improve the predictive performance for the model.

148

The exploratory data analysis also showed that some extreme values in the data were

causing outliers in the data. For example, in some cases, the retired year was earlier than the

manufacture year which was creating negative service life of vehicles. The author recommends

that the FTA will take actions to improve the quality of the revenue vehicle inventory data by

correcting manufacture year or retired year in the NTD database. The author suggests that further

analysis of revenue vehicle inventory data should be an essential step to solve the issues in the

state of good repair.

5.3. Further Research

The author suggests that the research of machine learning algorithms on the state of good

repair problem has enormous potential for further analysis. Adding few features as suggested

earlier and selecting better features for the model may produce perfect results. Therefore, feature

engineering can be further processed by combining different features and further research can be

done to choose various features selection processes.

In this study, the backlog analysis was not done as cost related data were not available in

the NTD database. However, the cost of the revenue vehicles can be collected by doing further

research. Therefore, in future, the backlog analysis can be added to the method, and the backlog

can be estimated to maintain the state of good repair. Further improvement of this predictive

model will help transit agencies to predict the service life of their vehicles very well so that the

agency can plan and prioritize to replace or rehabilitate their assets accordingly.

149

REFERENCES

Amtrak. (2009). Northeast Corridor State of Good Repair Spend Plan. Washington, DC.:
Amtrak.

APTA. (2007). Public transportation: Benefits for the 21st century. Washington, D.C.: American
Public Transportation Association. Retrieved from Public Transportation:
http://www.apta.com/resources/reportsandpublications/Documents/twenty_first_century.
pdf

APTA. (2013). Defining a Transit Asset Management Framework to Achieve a State of Good
Repair: Recommended Practice. Washington, D.C.: APTA Standards Development
Program Working Group: Transit Asset Management.

APTA. (2013b). Creating a Transit Asset Management Program: Recommended Practice.
Washington, DC: American Public Transportation Association, Working Group: Transit
Asset Management.

APTA. (2016). A Guide to Public Transportation and Rail-Related Provisions: Fixing America’s
Surface Transportation Act (FAST ACT). Washington, D.C.: American Public
Transportation Association.

APTA. (2017). Transit Facts: Transit Lifestyle. Public Transportation. Washington, D.C.:
American Public Transportation Association. Retrieved from Public Transportation:
http://www.publictransportation.org/benefits/Pages/Transit-Lifestyle.aspx

Aurlien, G. (2017). Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts,
Tools, and Techniques to Build Intelligent Systems. O'Reilly Media, Inc.

Bowles, M. (2015). Machine Learning in Python: Essential Techniques for Predictive Analysis.
Indianapolis, IN: John Wiley & Sons, Inc.

Brownlee, J. (2013). A tour of machine learning algorithms: Machine Learning Mastery.

BTS. (2016). Transportation Statistics Annual Report. U.S. Department of Transportation.
Washington, D.C.: Bureau of Transportation Statistics.

Cambridge Systematics. (2005). Analytical tools for Asset Management. Washington, D.C.:
Transportation Research Board.

Cambridge Systematics. (2006). Performance measures and targets for transportation asset
management. Washington, D.C.: Transportation Research Board.

Cambridge Systematics. (2009). Virginia’s Long-Range Multimodal Transportation Plan 2007-
2035. Office of Intermodal Planning and Investment. VTrans.

150

Cevallos, F. (2016). State of Good Repair Performance Measures: Assessing Asset Condition,
Age, and Performance Data. National Center for Transit Research.

Cohen, H., & Barr, J. (2012). State of Good Repair: Prioritizing the Rehabilitation and
Replacement of Existing Capital Assets and Evaluating the Implications for Transit.
Transportation Research Board.

Contingency table. (2018). Retrieved from Wikipedia:
https://en.wikipedia.org/wiki/Contingency_table

Downey, A. B. (2014). Think stats: exploratory data analysis. O'Reilly Media, Inc.

Edrington, S., Brooks, J., Cherrington, L., Hamilton, P., Hansen, T., Pourteau, C., & Sandidge,
M. (2014). Guidebook: Managing Operating Costs for Rural and Small Urban Public
Transit Systems. Texas A&M Transportation Institute.

FHWA. (2010). Data Integration Primer. Office of Asset Management, U.S. Department of
Transportation. Washington, D.C.: Federal Highway Administration.

FTA. (2008). Transit State of Good Repair: Beginning the Dialogue. U.S. Department of
Transportation. Washington, D.C: Federal Transit Administration.

FTA. (2010a). National State of Good Repair Assessment. U.S. Department of Transportation.
Washington, D.C.: Federal Transit Administration.

FTA. (2010b). Transit Asset Management Practices: A National and International Review. U.S.
Department of Transportation. Washington, D.C.: Federal Transit Administration.

FTA. (2011). State of Good Repair Initiative Report to Congress. U.S. Department of
Transportation. Washington, D.C.: Federal Transit Administration.

FTA. (2012). MAP-21 Fact Sheet: State of Good Repair Grants. U.S. Department of
Transportation. Washington, D.C.: Federal Transit Administration.

FTA. (2013). Transit Economic Requirements Model. U.S. Department of Transportation.
Washington, D.C.: Federal Transit Administration.

FTA. (2017, February 22). FAST Act: State of Good Repair. (F. T. Administration, Editor)
Retrieved 2017, from U.S. Department of Transportation:
https://www.transit.dot.gov/FAST

FTA. (2017b). National Transit Database: 2017-2018 Asset Inventory Module Reporting Guide.
US Department of Transportation. Washington, D.C.: Federal Transit Administration.
Retrieved from FTA Office of Budget and Policy.

151

FTA. (2017c). National Transit Database: Asset Inventory Module. Washington, D.C.: Federal
Transit Administration.

FTA. (2017d). National Transit Database: What is the National Transit Database (NTD)
Program? Washington, D.C.: Federal Transit Administration. Retrieved 2018, from
Federal Transit Administration: https://www.transit.dot.gov/ntd/what-national-transit-
database-ntd-program

Gagne, D. J., McGovern, A., Haupt, S. E., & Williams, J. K. (2017). Evaluation of statistical
learning configurations for gridded solar irradiance forecasting. Solar Energy 150, 383-
393.

Garreta, R., & Moncecchi, G. (2013). Learning scikit-learn: Machine Learning in Python.
Birmingham, UK: Packt Publishing Ltd.

Geitgey, A. (2017). Machine Learning & AI Foundations: Value Estimations. Lynda.com.
Lynda. Retrieved from https://www.lynda.com/Data-Science-tutorials/Machine-
Learning-Essential-Training-Value-Estimations/548594-2.html

Grus, J. (2015). Data science from scratch: first principles with python. (Vol. First Edition). (M.
Beaugureau, Ed.) Sebastopol, CA, USA: O'Reilly Media, Inc.

Hunter, J., Dale, D., Firing, E., & Droettboom, M. (2017). The Matplotlib 2.1.0, User’s Guide.
Matplotlib. Retrieved from https://matplotlib.org/2.1.0/users/index.html

Inyang, F. I., Ozuomba, S., & Ezenkwu, C. P. (2017). Comparative analysis of Mechanisms for
Categorization and Moderation of User Generated Text Contents on a Social E-
Governance Forum. Mathematical and Software Engineering, 78-86.

Jain, A. (2016). Complete Guide to Parameter Tuning in Gradient Boosting (GBM) in Python.
Retrieved 2017, from Analytics Vidhya:
https://www.analyticsvidhya.com/blog/2016/02/complete-guide-parameter-tuning-
gradient-boosting-gbm-python/

Johnson, N. E., Ianiuk, O., Cazap, D., Liu, L., Starobin, D., Dobler, G., & Ghandehari, M.
(2017). Patterns of waste generation: A gradient boosting model for short-term waste
prediction in New York City. Waste Management, V 62, 3-11.
doi:10.1016/j.wasman.2017.01.037

Jordan, M., & Mitchell, T. (2015, July 17). Machine Learning: Trends, perspectives, and
prospects. Science, 349(6245), 255-260. doi:10.1126/science.aaa8415

Kumar, A. (2016). Learning Predictive Analytics with Python (Vol. First Edition). (N. Amey,
Ed.) Birmingham, UK: Packt Publishing Ltd.

152

Lauren, I., & Rose, D. (2012). Transit Asset Management Manual - Overview. 4th State of Good
Repair Roundtable. Philadelphia, PA: Federal Transit Administration.

Laver, R., Schneck, D., Skorupski, D., & Cham, L. (2007). Useful life of transit buses and vans.
U.S. Department of Transportation. Washington, D.C.: Federal Transit Administration.

Lee, Y.-J., & Min, O. (2017). Comparative Analysis of Machine Learning Algorithms to Urban
Traffic Prediction. Information and Communication Technology Convergence (ICTC).
IEEE. doi:10.1109/ICTC.2017.8190846

Louch, H., Robert, W., Gurenich, D., & Hoffman, J. (2009). Asset Management Implementation
Strategy. Washington, D.C.: New Jersey Department of Transportation. Retrieved from
http://www.state.nj.us/transportation/refdata/research/reports/NJ-2009-005.pdf

Ma, J. (2012). Parameter tuning using gaussian processes. Ph.D. Dissertation. Hamilton, New
Zealand. Retrieved from https://hdl.handle.net/10289/6497

Massaron, L., & Boschetti, A. (2016). Regression Analysis with Python. (Vol. First).
Birmingham, UK: Packt Publishing Ltd.

McCollom, B. E., & Berrang, S. A. (2011). Transit Asset Condition Reporting: A Synthesis of
Transit Practice. Transportation Research Board of the National Academies.
Washington, D.C.: Federal Transit Administration.

McKinney, W. (2017). Python for data analysis: Data wrangling with Pandas, NumPy, and
IPython. (2nd ed.). Sebastopol, CA, USA: O'Reilly Media, Inc.

McKinney, Wes; PyData Development Team. (2017). API Reference - pandas 0.22.0
documentation: powerful Python data analysis toolkit Release 0.22.0. Pandas. Retrieved
from https://pandas.pydata.org/pandas-docs/stable/

Meyer, M. D., & Cambridge Systematics, Inc. (2007). US Domestic Scan Program: Best
Practices in Transportation Asset Management. Federal Highway Administration;
National Cooperative Highway Research Program; The American Association of State
Highway and Transportation Officials.

Mirjalili, V., & Raschka, S. (2017). Python Machine Learning. Second Edition. (2nd ed.).
Birmingham, UK: Packt Publishing Ltd.

MTA. (2014). A Bold Direction for Leading Transportation in the Next 100 Years. New York,
NY: Metropolitan Transportation Authority (MTA). Retrieved from
http://web.mta.info/mta/news/hearings/pdf/MTA_Reinvention_Report_141125.pdf

Mueller, J. P., & Massaron, L. (2015). Python for Data Science for Dummies. Hoboken, New
Jersey, USA: John Wiley & Sons, Inc.

153

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., . . . Duchesnay,
E. (2011). Scikit-learn: Machine Learning in Python. (M. Braun, Ed.) Journal of Machine
Learning Research, 12, 2825-2830.

Raschka, S. (2015). Python machine learning (First ed.). (R. Banerjee, Ed.) Birmingham, UK:
Packt Publishing Ltd.

Rathore, S. S., & Kumar, S. (2016). A decision tree regression based approach for the number of
software faults prediction. ACM SIGSOFT Software Engineering Notes, v. 41(no. 1), 1-6.

Robert, W., Reeder, V., Lawren, K., Cohen, H., & O'Neil, K. (2014). Guidance for Developing a
Transit Asset Management Plan. Transportation Research Board. Washington, D.C.:
Federal Transit Administration in cooperation with the Transit Development Corporation.
doi:10.17226/22306

Robert, William; Reeder, Virginia; Lauren, Katherine. (2014). Guidance for Developing the
State of Good Repair Prioritization Framework and Tools. Transit Cooperative Research
Program. Arlington, MA: Spy Pond Partners, LLC.

Rose, D., Lauren, I., Shah, K., Blake, T., & Parsons Brinckerhoff, I. (2012). Asset Management
Guide: Focusing on the Management of Our Transit Investments. U.S. Department of
Transportation. Washington, D.C.: Federal Transit Administration. Retrieved from
https://www.transit.dot.gov/about/research

Shen, Q., & Chouchoulas, A. (2001). Rough set-based dimensionality reduction for supervised
and unsupervised learning. Applie Mathematics and Computer Science 11 No. 3, 583-
602.

Springstead, D. (2011). Asset Management: An Agency Perspective. 90th Annual Meeting of the
Transportation Research Board. Washington, D.C.: Transportation Research Board.

TRB. (2013). Review of the Federal Transit Administration’s Transit Economic Requirements
Model. Transportation Research Board. Washington, D.C.: National Research Council.

US Congress. (2012). Moving Ahead for Progress in the 21st Century (MAP-21). 112th Congress
Public Law, Washington, D.C.

US DOT. (2013). Transportation for a New Generation: Strategic Plan. Washington, D.C.: US
Department of Transportation.

US GAO. (2013). Transit Asset Management: Additional Research on Capital Investment Effects
Could Help Transit Agencies Optimize Funding. U.S. Government Accountability Office.
Retrieved from United States Government Accountability Office (U.S. GAO):
www.gao.gov/products/gao-13 - 571

154

VDOT. (2006). Asset Management Methodology (Appropriation Act Item 444 A). Virginia:
Virginia Department of Transportation.

Waaramaa, E. R. (2010). Asset Management Systems MBTA Approach and Lessons Learned.
Massachusetts Bay Transportation Authority. Chicago, IL: State of Good Repair
Roundtable.

Welbes, M. J. (2009). Rail Modernization Study. U.S. Department of Transportation.
Washington, D.C.: Federal Transit Administration.

Xu, M., Watanachaturaporn, P., Varshney, P. K., & Arora, M. K. (2005). Decision tree
regression for soft classification of remote sensing data. Remote Sensing of Environment,
97(3), 322-336.

Zarembski, A. M. (2013). Analysis of Transit 20 Year Capital Forecasts: FTA TERM Model vs.
Transit Estimates. Washington, D.C.: Transportation Research Board of the National
Academies. Retrieved from
http://onlinepubs.trb.org/onlinepubs/reports/TERM_March_2013Zarembski.pdf

Zhang, Y., & Haghani, A. (2015). A gradient boosting method to improve travel time prediction.
Transportation Research Part C: Emerging Technologies, 308-324.

Zhao, Y., & Zhang, Y. (2008). Comparison of decision tree methods for finding active objects.
Advances in Space Research, 41(no. 12), 1955-1959.

Zhou, Z.-H. (2012). Ensemble Methods: Foundations and Algorithms. (R. Herbrich, & T.
Graepel, Eds.) Boca Raton, FL, USA: Chapman & Hall/CRC.

155

APPENDIX A. FIELDS IN THE REVENUE VEHICLE INVENTORY MODULE

Transit agencies group together vehicles if they are identical in manufacture, vehicle

type, vehicle mode, and funding source. These identical vehicles are called fleets, and they are

reported to NTD database. Transit agencies collect the following revenue vehicle information

and report to NTD database (FTA, 2017b; FTA, 2017c):

Agency Fleet Identification – The vehicle identification is the unique number provided

by the FTA. Transit agencies must report each fleet with the unique identifier to the inventory.

Mode – Transit agencies need to report the primary mode of each fleet to inventory.

Vehicle Type – Transit agencies need to report the type of revenue vehicle for each fleet.

Total Fleet – Total fleet includes the number of vehicles in both active and inactive

fleets. Transit agencies need to report the number of vehicles in the total fleet at the end of fiscal

year.

Number of Active Vehicles in Fleet – These are the vehicles which are still active at the

fiscal year-end. Agencies report the number of active vehicles in the fleet at the end of the year.

Dedicated Fleet – Dedicated fleets are vehicles which are dedicated to only used for

public transportation services. Agencies need to report directly operated vehicles under dedicated

fleet.

Vehicle Length – Vehicle length is the length in feet for each fleet of vehicles. Transit

agencies should report it to inventory.

Seating Capacity – Manufacturer cites the number of seating capacity for the vehicle.

Transit agencies need to report the actual number to the inventory.

Standing Capacity – Standing capacity is the maximum number of people who are

allowed to stand inside on the vehicle. Transit agencies should report the number of standing

156

capacity. If the policy does not allow people to stand on the vehicle, they should report zero for

standing capacity.

Year of Manufacture – This is the year of manufacture when the vehicle was originally

built. Transit agencies must need to report the year to inventory.

Ownership – Agencies need to report what entity owns the vehicles and the ownership

type.

Funding Source – There are several funding sources available to purchase or lease

vehicles. Transit agencies must need to report the funding sources.

Number of Emergency Contingency Vehicles – Transit agencies may keep the FTA

funded vehicles in an inactive fleet if they are used in case of natural disasters. The agencies

need to report the number of emergency vehicles as an inactive fleet.

ADA Accessible Vehicles – These are the active vehicles that meet accessibility

requirements of Americans with Disability Act of 1990 (ADA). Transit agencies need to report

the number of ADA vehicles.

Fuel Type – Transit agencies need to report the type of fuel used to operate the revenue

vehicles.

Year of Rebuild – Transit agencies must report the year of the rebuild if it is rebuilt.

Under the FTA grant rules, if the bus is rebuilt, the service life will be extended to a minimum of

four years, and if a rail vehicle is rebuilt, the service life will be extended to a minimum of 10

years.

Manufacturer – Transit agencies need to report the manufacturer of the vehicle or the

final manufacturer of the vehicle if more than one manufacturer.

157

Model – Transit agencies need to report the model of the vehicle that manufacturer

provides.

Total Miles on Active Vehicles - Transit agencies need to report total miles on active

vehicles during the fiscal year.

Average Lifetime Mileage per Active Vehicle – It is the average mileage which begins

with the original manufacturer data. Transit agencies need to report it at the end of fiscal year.

Support Other Mode – If active vehicles are used to provide on two modes, transit

agencies need to report the supports another mode for active vehicles which provide service for

another mode.

158

APPENDIX B. NTD REVENUE VEHICLE INVENTORY MODULE

 In this research, the Revenue Vehicle Inventory data from National Transit Database had

been used. The transit agencies reported information of revenue vehicles at the end of the fiscal

year in the revenue inventory repository. The revenue information data are shown in Table A1.

Table B1. Revenue Vehicles

Revenue Vehicles Fields
5 Digit NTD ID
Legacy NTD ID
Agency Name
Reporter Type
Reporting Module
Mode
TOS
Revenue Vehicle Inventory ID
Total Fleet Vehicles
Dedicated Fleet
Vehicle Type
Ownership Type
Funding Source
Manufacture Year
Rebuild Year
Manufacturer
Other Manufacturer
Description
Model
Active Fleet Vehicles
ADA Fleet Vehicles
Emergency Contingency Vehicles
Fuel Type
Vehicle Length
Seating Capacity
Standing Capacity
Total Miles on Active Vehicles During Period
Average Lifetime Miles per Active Vehicles
Supports Mode
Supports Service
Retired

Source: Adapted from Federal Transit Administration. 2017. National Transit Database: NTD
Policy Manual. Office of Budget and Policy. U.S. Department of Transportation. Washington,
D.C.

159

Table B2. Vehicle Type

Vehicle
Code

Vehicle Type Vehicle
Code

Vehicle Type

AB Articulated bus LR Light rail vehicle
AG Automated guideway vehicle MO Monorail vehicle
AO Automobile RL Commuter rail locomotive
BR Over-the-road bus RP Commuter rail passenger coach

BU Bus RS Commuter rail, self-propelled pass car

CC Cable car SB School bus
CU Cutaway bus SV Sports Utility Vehicle
DB Double decked bus TB Trolleybus
FB Ferryboat TR Aerial tramway
HR Heavy rail passenger car VN Van
IP Inclined plane vehicle VT Vintage trolley/streetcar

Source: Adapted from Federal Transit Administration. 2017. National Transit Database: NTD
Policy Manual. Office of Budget and Policy. U.S. Department of Transportation. Washington,
D.C

Table B3. Fuel Type

Fuel Code Fuel Type Fuel Code Fuel Type
BD Bio-diesel GA Gasoline
BF Bunker fuel HD Hybrid diesel
CN Compressed natural gas (CNG) HG Hybrid gasoline
DF Diesel fuel HY Hydrogen
DU Dual fuel KE Kerosene
EB Electric battery LN Liquefied natural gas (LNG)
EP Electric propulsion LP Liquefied petroleum gas (LPG)
ET Ethanol MT Methanol

Source: Adapted from Federal Transit Administration. 2017. National Transit Database: NTD
Policy Manual. Office of Budget and Policy. U.S. Department of Transportation. Washington,
D.C

160

Table B4. Funding Source

Funding Code Funding Source Funding Code Funding Source
UA Urbanized Area Formula

Program
NFPE Non-Federal private funds

OF Other Federal funds RAFP Rural Area Formula
Program

NFPA Non-Federal public funds EMSID Enhanced Mobility for
Seniors and Individuals
with Disabilities

Source: Adapted from Federal Transit Administration. 2017. National Transit Database: NTD
Policy Manual. Office of Budget and Policy. U.S. Department of Transportation. Washington,
D.C

Table B5. Ownership Type

Ownership
Code

Ownership Type Ownership
Code

Ownership Type

LPPA Leased under lease purchase
agreement by a public agency

OOPA Owned outright by public
agency

LPPE Leased under lease purchase
agreement by a private entity

OOPE Owned outright by private entity

LRPA Leased or borrowed from
related parties by a public
agency

TLPA True lease by a public agency

LRPE Leased or borrowed from
related parties by a private
entity

TLPE True lease by a private entity

Source: Adapted from Federal Transit Administration. 2017. National Transit Database: NTD
Policy Manual. Office of Budget and Policy. U.S. Department of Transportation. Washington,
D.C

161

Table B6. Vehicle Mode

Mode Code Primary Mode Mode Code Primary Mode
AG Automated Guideway LR Light Rail
AR Alaska Railroad MB Bus
CB Commuter Bus MG Monorail/Automated Guideway
CC Cable Car PB Public Bus
CR Commuter Rail RB Bus Rapid Transit
DR Demand Response SR Streetcar Rail
FB Ferry Boat TB Trolleybus
HR Heavy Rail TR Aerial Tramway
IP Inclined Plane VP Vanpool
JT Jitney YR Hybrid Rail

Source: Adapted from Fabian Cevallos. 2016. State of Good Repair Performance Measures:
Assessing Asset Condition, Age, and Performance Data. Final Report for National Center for
Transit Research (NCTR) and University of South Florida.

