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ABSTRACT 

BACKGROUND: Prolonged exposure to microgravity leads to a progressive loss in 

muscular strength, endurance and aerobic capacity (VO2). Rowing exercise combined with blood 

flow restriction (BFR) could be a supplemental countermeasure to maintain pre-flight muscle 

and VO2 function during prolonged spaceflight missions. METHODS: Twenty moderately 

trained male participants completed five sets of rowing exercise with and without BFR. Heart 

rate (HR), blood pressure (BP), surface muscle electromyography (sEMG), whole blood lactate 

([La−]b), and rate of perceived exertion (RPE) were measured. STATISTICAL ANALYSES: 

Repeated measures ANOVAs were used to analyze HR, BP, [La−]b and SEMG and a paired 

sample t-test was used to analyze RPE. RESULTS: HR and RPE showed significant increases 

during BFR compared to CON (F(2,38) = 5.220, P = .010) and (t(19) = -5.878, P < .001), 

respectively. CONCLUSION: Exercise intensity and cuff inflation pressure used was sufficient 

to elicit increased cardiovascular responses. 
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CHAPTER I. INTRODUCTION 

Prolonged exposure to microgravity leads to a progressive loss in muscular strength, 

endurance, and aerobic capacity (Antonutto & Prampero, 2003; Bishop et al., 1999; Buckey et 

al., 1996; Downs, Moore, Lee & Ploutz-Snyder, 2015; Ploutz-Snyder, Ryder, English, Haddad & 

Baldwin, 2015; Fomina et al., 2004; Hackney, Everett, Scott & Ploutz-Snyder, 2012; Hargens & 

Watenpaugh, 1996; Hawkey, 2003; Moore et al., 2014; Nicgossian, Bungo & Leach-Huntoon, 

1991; Tesch, Pozzo, Ainegren, Swaren & Linnehan, 2013). This microgravity-induced 

deconditioning is detrimental to the health and performance of crewmembers, as well as overall 

mission success. Countermeasures are in place on board the International Space Station (ISS) to 

combat in-flight deconditioning; however, these current methods do not mitigate deconditioning 

entirely. As much as a fifth of muscle mass is lost during the first four months in space; 

additionally, peak oxygen consumption (VO2peak) and left ventricular mass decrease early in 

flight by ~17% and ~ 12% respectively (Hawkey, 2003; Moore et al., 1985; Perhonen et al., 

2001). Emergency mission egress tasks may require normal ambulatory participants to work at 

intensities at 85% of maximum heart rate. Even a relatively small decrease in VO2peak (e.g., 10%) 

can greatly impact an astronaut’s ability to meet these high-energy demands (Bishop et al., 

1999). 

The National Aeronautics and Space Administration (NASA) created the Human 

Research Program (HRP) to investigate and mitigate high risk outcomes that impede 

crewmember health and performance. Two major risks identified by the HRP include the risk of 

reduced physical performance capabilities due to reduced aerobic capacity and the risk of 

impaired performance due to reduced muscle mass, strength, and endurance. Gaps of knowledge 

within these risks include the development of effective exercise programs for the maintenance of 
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muscle function and VO2 standards, and the development of pre-flight, in-flight, and post-flight 

evaluations to determine if muscle function and VO2 standards are being met during missions. 

Prior research and study acknowledges that VO2peak and muscle function decline during 

spaceflight, but can be mitigated with in-flight exercise (Bishop et al., 1999; Downs et al., 2015; 

Ploutz-Snyder et al., 2015). However, performance decrements are still observed despite current 

countermeasures, and research into advanced in-flight exercise protocols is necessary to identify 

activity thresholds and exercise prescriptions for crewmembers. 

The current exercise countermeasures on board the ISS must be completed on separate 

devices, increasing the time required to meet exercise prescriptions (Downs et al., 2015; 

Hawkey, 2003; Ploutz-Snyder et al., 2015). Two notable pieces of equipment are the Advanced 

Resistance Exercise Device (ARED) and the Combined Operational Load Bearing External 

Resistance Treadmill (COLBERT). The former allows for up to 600 lbs. of eccentric-concentric 

resistance strength training, while the latter provides astronauts with aerobic training by reaching 

up to 12 mph. Both devices help to mitigate microgravity-induced side effects, but they do not 

counter them entirely (Downs et al., 2015; Hawkey, 2003; Ploutz-Snyder et al., 2015). 

Additionally, these large pieces of equipment require preparation before use and reduce available 

space on board the ISS. Therefore, advanced in-flight exercise protocols and equipment are 

required to ensure astronauts are capable of completing exercise prescriptions efficiently.  

The physiological adaptations to prolonged microgravity exposure affect crewmembers 

both during and after spaceflight missions. Orthostatic intolerance is one of the earliest and most 

consistent findings associated with microgravity induced deconditioning (Nicgossian et al., 

1991). Orthostatic intolerance is caused by the headward shift of fluids in the body when 

exposed to microgravity. Side effects manifest upon returning to the influence of gravity, and 
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include: increased heart rate, decreased blood pressure, and dizziness (Hargens & Watenpaugh, 

1996). Previous countermeasures for orthostatic intolerance involved pressurized cuffs and 

equipment that would reduce pressure around the legs and promote the flow of blood and fluid to 

the lower extremities. During past missions, these lower body negative pressure (LBNP) devices 

were used with increasing practice to prepare crewmembers for reentry into earth’s gravity. 

However, these devices were bulky in size and restricted astronaut movement (Hackney et al., 

2012; Hawkey, 2003). 

Blood flow restriction (BFR) is a novel exercise intervention that involves the application 

of inflated tourniquet cuffs that restrict venous blood flow during exercise. Despite being a novel 

form of exercise intervention, BFR has been shown to elicit rapid and progressive gains in 

muscular strength, endurance and aerobic capacity (Abe, Kearns & Sato, 2006; Abe et al., 2010; 

de Oliveira, Caputo, Corvino & Denadai, 2016; Renzi, Tanaka & Sugawara, 2010; Sakamaki & 

Abe, 2011; Sugawara, Tomoto & Tanaka, 2015; Wernbom, Jarrebring, Andreasson & 

Augustsson, 2009). Two widely used forms of BFR are the Kaatsu and Delfi training cuffs. The 

former has been widely used in Japan and the ladder is showing increasing use in clinical 

populations. BFR allows participants to train at lower-submaximal (30% of one repetition 

maximum (1RM)) intensities yet receive the benefits as if they had trained at higher-submaximal 

(70% 1RM) intensities. For example, a study by de Oliveira et al. (2016) identified low-intensity 

interval BFR training as the only mode of training capable of simultaneously improving aerobic 

fitness and muscular strength when compared to low-intensity interval training without BFR, 

high-intensity interval training, and combined high-intensity interval training and BFR. The 

restriction of venous blood flow lowers heart and stroke volume thus, increasing heart rate to 

meet energy demands (Renzi et al., 2010). Allowing crewmembers to train at lower intensities 
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and still elicit a cardiac response capable of maintaining their pre-flight VO2peak and muscular 

strength. Additionally, restricted venous blood flow has been shown to help maintain central and 

peripheral hemodynamics during short-term spaceflights (Fomina et al., 2004). As mentioned, 

previous methods to mitigate post-flight orthostatic intolerance (LBNP devices) were bulky and 

restricted movement. BFR exercise may prove to be a superior alternative to past endeavors as 

the training cuffs are smaller and less restrictive on movement. 

Another novel form of instrumentation gaining popularity with NASA are rowing 

ergometers. The ARED and COLBERT devices offer the capabilities to complete either 

resistance training or cardiovascular training, but not both simultaneously (Downs et al., 2015; 

Hargens & Watenpaugh, 1996). Effective musculoskeletal and aerobic training can be performed 

on a rowing ergometer without significantly increasing hardware mass or compromising desired 

physiological responses (Tesch et al., 2013). The seated nature of rowing exercise appears to 

promote venous blood return and elicits smaller heart rate responses when compared to treadmill 

exercise of similar intensity (Yoshiga & Higuchi, 2002), but higher heart rate responses when 

compared to cycling exercise of similar intensity (Rosiello, Mahler & Ward, 1987). The heart 

rate response from rowing exercise is similar to the response recorded during long-term exposure 

to microgravity (Antonutto & Pampero, 2003). BFR combined with rowing exercise could be a 

supplemental countermeasure that requires minimal equipment and offers the potential to 

maintain pre-flight strength and VO2peak during prolonged spaceflight. 

The purpose of this research project was to determine the acute physiological effects of 

leg blood flow restriction during low-intensity rowing exercise. Our aim was to begin a new line 

of research which addresses current barriers and to progress by adding knowledge to the gaps 

identified by the HRP such as: develop the most efficient and effective exercise program for the 
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maintenance of VO2 standards and muscle function; and identify and validate exploration 

countermeasure hardware for the maintenance of VO2 standards and muscle function. Research 

findings will potentially add to current literature on exercise prescriptions to prolong human 

exposure during exposure to microgravity, and potentially transcend the use of BFR technology 

in other spinoff populations that may benefit such as: elderly sarcopenic and dynapenic, elite-

athletes, and clinical recovery patients from certain conditions (Abe et al., 2010; Park et al., 

2010; Tennent et al., 2016; Ohta et al., 2002). 
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CHAPTER II. LITERATURE REVIEW 

Prolonged exposure to microgravity leads to incremental losses in cardiovascular and 

musculoskeletal systems (Antonutto & Pampero, 2003; Bishop et al., 1999; Buckey et al., 1996; 

Downs et al., 2015; Ploutz-Snyder et al., 2015; Fomina et al., 2004; Hackney et al., 2012; 

Hargens & Watenpaugh, 1996; Hawkey, 2003; Moore et al., 2014; Nicgossian et al., 1991; Tesch 

et al., 2013). These negative effects can be seen in the cardiovascular system within the first 24 

hours of spaceflight (Hargens & Watenpaugh, 1996; Nicgossian et al., 1991), and in the 

musculoskeletal system within as little as 4 days in space (Hawkey, 2003). Exercise has been 

shown to help reduce the negative effects of microgravity; however, on its own, it does not 

negate them entirely.  Deconditioning caused by microgravity is progressive and associated with 

the time spent in the unique envirnment (Nicgossian et al., 1991). To ensure astronaut safety and 

overall mission success, additional exercise protocols must be researched and implemented 

(Hawkey, 2003). 

NASA 

NASA continues to push the boundaries of space exploration by identifying and 

addressing the risks of human space exploration. In October 2005, the HRP was established at 

the Johnson Space Center, Houston, Texas. The goal of the HRP is to establish human health and 

performance countermeasures, knowledge, technologies, and tools to enable safe, reliable, and 

productive human space exploration (Human Research Roadmap). Data collected and analyzed 

from past and current spaceflight missions help the HRP achieve their goal. 

Physiological Adaptations to Spaceflight 

The human body is not capable of withstanding the harsh environment of space 

unassisted. However, even with assistance the body still succumbs to detrimental physiological 
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changes (Hackney et al., 2012). These adaptations can be the single greatest detriment to a 

crewmember’s ability to perform mission-critical tasks while in spaceflight (Moore et al., 2014). 

The most notable of these changes are decreases in the cardiovascular and musculoskeletal 

systems (Downs et al., 2015; Ploutz-Snyder et al., 2015); with evidence suggesting that as 

mission length increases, so do the physiological impacts (Nicgossian et al, 1991). The Apollo 15 

mission had reports of cardiac arrhythmia, all Gemini and Apollo crewmembers experienced 

orthostatic intolerance (OI), and findings from Skylab indicate significant loss of muscle and 

bone mass, accompanied by a reduction in muscle strength and endurance (Hawkey, 2013). 

1G Environment 

Many of these adaptations are due to the removal of gravity upon the body in space. On 

earth the human body is constantly under the effect of Earth’s gravity. This constant force is 

known as one unit of gravity (1G). Upon entering the microgravity of space, there is a headwards 

shift of bodily fluids as the mechanisms that normally act to counter the pooling of bodily fluids 

act unopposed. Volume sensors, located in the upper body, interpret the shift as an increase in 

body fluid volume; and thus, attempt to initiate increased fluid loss. Decreased thirst, increased 

evaporation and diuresis are all ways the body attempts to eliminate the perceived “fluid 

overload” (Hawkey, 2013). Astronauts adapt to these new conditions after a few days in space. 

However, upon returning to earth, the adaptations leave the spacefarer with less protection 

against orthostatic stress (i.e., dizziness, fainting) (Hawkey, 2013). 

Orthostatic Intolerance 

OI is quite common in returning astronauts from spaceflight and is commonly manifested 

by increased heart rates and decreased blood pressures (Nicgossian et al., 1991). OI is caused by 

the shift in bodily fluid due to the microgravity environment of space. In the early days of 
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spaceflight, bodily fluid in the chest, and as much as one liter from each leg, is shifted upwards 

in the body. The shift happens rapidly during the first day of spaceflight, concluding after six to 

ten hours. Increased fluids in the head and neck lead to congested sinuses, puffiness of the 

eyelids, and engorgement of the superficial veins (Hawkey, 2013). 

Cardiovascular Deconditioning 

Microgravity can cause detrimental changes to cardiovascular health. Perhonen et al. 

(2001) demonstrated that left ventricular mass decreased by ~12% after short-duration 

spaceflight. This reduction in chamber volume can be attributed to the chronically reduced 

preload (cardiac filling pressure) caused by microgravity (Hargens & Watenpaugh, 1996). With 

less blood returning to the right atrium, the left ventricle is unable to pump blood volumes 

consistent under normal conditions, resulting in decreased stroke volume (SV). Using data 

collected during U.S. manned spaceflights from 1962-1985, Nicgossian et al. (1991) found that 

heart rate of crewmembers in the standing position increased from pre-flight to post-flight 

measurements. With reduced stroke volume heart rate must increase to meet energy demands and 

maintain cardiac output (Q). 

Musculoskeletal Deconditioning 

Prolonged stays in microgravity lead to constant changes in the musculoskeletal system 

(Downs et al., 2015; Hawkey, 2013; LeBlanc, Rowe, Schneider, Evans & Hedrick, 1995; Ploutz-

Snyder et al., 2015). Skylab findings and biomedical data from manned space missions have 

indicated a significant loss of muscle and bone mass; accompanied by decreases in lower leg 

circumference and muscular strength and endurance. These results are directly caused by the 

weightlessness of gravitational unloading while in space. Similar results can be seen in both 

short duration missions as well as longer duration, and it is typical for astronauts to lose as much 
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as a fifth of their muscle mass during a four month stay in space. As with cardiovascular 

detriments, this effect appears to be progressive, with no definite indication as to the outcome of 

missions longer than fourteen months (Hawkey, 2013). 

These effects are a crucial topic when planning and enacting long term human 

exploration. An example being a manned mission to Mars, which using current rocket 

technology would take up to three years round-trip. With our current understanding of the stress 

expressed on the human body during spaceflight, there is no guarantee that astronauts reaching 

Mars would be able to complete the basic mission tasks upon arrival. Therefore, 

countermeasures must be developed to reduce the effects of microgravity on the human body. 

Countermeasures to Microgravity Induced Deconditioning 

Since the beginning of our exploration into space there have been numerous methods 

developed to maintain astronaut health. The major methods being: assistive devices, dietary and 

pharmacological supplements, and exercise.  

Assistive Devices 

From the beginning of Skylab missions, LBNP devices were used to help reduce the 

effect of microgravity on the cardiovascular system. LBNP suits were worn over the legs and 

help to reverse the headwards shift of fluid by reducing pressure around the legs. Early LBNP 

devices were bulky and cumbersome, however the Chibis vacuum suit, developed in the former 

Soviet Union, was flexible and less bulky than other devices. While preparing crews for reentry 

to earth’s gravity, LBNP sessions were conducted regularly and with increased usage (Hawkey, 

2013). 

To help reduce muscle loss during space flight, cosmonauts have worn special elasticated 

suits known as the penguin suit. With rubber bands woven into the fabric of the suit the penguin 
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suit was worn throughout the day, and during appropriate exercise sessions. The suit can 

generate up to seventy percent of earth body weight on the musculoskeletal system – 

compensating for the absence of gravity. However, even these suits are uncomfortable and 

reduce mobility (Hawkey, 2013). 

Dietary and Pharmacological Supplements 

Supplements have been used to help counter bodily fluid imbalance and cardiovascular 

deconditioning caused by microgravity. Fluids and salts have been used to rehydrate crews, 

saline solutions, ingested before reentry, are used to decrease orthostatic intolerance, and mineral 

supplements are consumed to reduce bone loss (Hawkey, 2013). These interventions have had 

success in reducing the impact of microgravity on the human body, however, they are all reactive 

solutions and are mainly used before reentry into earth’s gravitational field. Other methods must 

be utilized to proactively counter these negative physiological adaptations during prolonged 

spaceflight.  

Six-Degree Head Down Tilt 

Current research aiming to counter microgravity induced deconditioning through exercise 

primarily use bed rest with a 6-degree head down tilt as an earth-based analog to simulate the 

detrimental physiological effects of microgravity (Hackney et al., 2012; Hastings et al., 2012; 

Hawkey, 2003; Murach et al., 2018). Concurrent rowing and resistance exercise training during 

5-weeks of bed rest with 6-degree head down tilt was capable of preventing the cardiac atrophy 

and stiffening that occurs with prolonged bed rest (Hastings et al., 2012). Additionally, aerobic 

and resistance exercise completed on a novel concurrent flywheel exercise device (Murach et al., 

2018; Tesch et al., 2010) during 70 days of bed rest with 6-degree head down tilt was capable of 

maintaining key myocellular characteristics in the vastus lateralis (VL); however, further 
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refinement of the exercise protocol is necessary to also effect the soleus (Murach et al., 2018). 

These findings demonstrate that rowing exercise can maintain cardiovascular function during 

prolonged bed rest but requires additional exercise supplementation and equipment to 

simultaneously maintain muscle function.  

Exercise During Spaceflight 

Currently, exercise is the most widely used method for countering the negative effects of 

microgravity on the human body. However, during early spaceflight missions (Mercury, Gemini 

and Apollo 1961 – 72) this was not the case. During these early missions, the small size of 

spacecraft, combined with short mission duration, did not yield adequate conditions to perform 

regular exercise regimens. It was not until later Apollo and Gemini missions that an exercise 

device was used. This rudimentary device was primarily used to relieve astronaut discomfort 

caused by both weightlessness and immobilization within the small craft; and it was during the 

Apollo missions that deconditioning first became apparent (Hawkey, 2013). 

With the development of Skylab (1973-74) and the International Space Station (ISS) 

(2001) astronauts were given more room to move freely and maneuver. With more room, 

astronauts were now capable of using exercise equipment similar to what can be seen on earth.  

Treadmills, cycle ergometers and other exercise equipment have been utilized on both shuttle 

missions and the ISS (Hawkey, 2013; Tesch et al., 2013). Some of the earliest implementations 

aboard the ISS were the treadmill with vibration isolation and stabilization (TVIS) and the 

interim resistive exercise device (IRED) – later replaced with the Combined Operational Load 

Bearing External Resistance Treadmill (COLBERT, 2010) and the Advanced Resistance 

Exercise Device (ARED, 2008), respectively (Downs et al., 2015). The TVIS resembled basic 

treadmills seen on earth. Limited to 6-7 mph, it offered the possibility of generating 1G 
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equivalent loads on the lower extremities while stressing and stimulating the musculoskeletal 

system. In 2010, the COLBERT, technically named the Treadmill 2, allows astronauts to run up 

to 12 mph with higher percentages of body weight loading due to improvements in the harness 

comfort. The IRED was used to replicate up to sixteen different exercises that under normal 

conditions are performed using free weights. Provisional data suggested that the IRED could 

prove to be as effective as free weight training (Hawkey, 2013) and in 2008 it was surpassed by 

the ARED. The ARED is capable of concentric loading up to 600 lbs., an eccentric ratio of 

~90%, and constant force throughout the range of motion. Marked improvements when 

compared to its predecessor which offered only 300 lbs., an eccentric to concentric ratio of only 

60-80% and no constant force throughout the range of motion. (Downs et al., 2015). 

The capabilities of exercise equipment on board the ISS has grown substantially. 

However, while the addition of the COLBERT and ARED exercise devices has helped reduce 

the negative effects of microgravity on astronauts, the ability to use these apparatuses during 

long term shuttle missions, like a trip to Mars, can be difficult due to their size and available 

shuttle space (Tesch et al., 2013). Not only that, it has been shown that following the prescribed 

training protocol while in microgravity still does not fully counter the negative effects of 

weightlessness. Russian astronaut Valerie Polyakov still suffered significant deterioration during 

his fourteen month stay on Mir, despite exercising constantly (Hawkey, 2013). Therefore, future 

exercise countermeasures will need to both implement additional exercise protocols and exercise 

equipment that can fit onboard future shuttle crafts and stations. 

Blood Flow Restriction 

Blood flow restriction (BFR) is a novel exercise modality that is becoming increasingly 

more popular. BFR uses exercise cuffs or bands to restrict venous blood flow during exercise. 
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The restriction of venous blood flow limits stroke volume and compensatory increases in heart 

rate during exercise (Sugawara et al., 2015). Recent studies have shown that BFR exercise 

training can result in significant and rapid increases in muscle hypertrophy (Abe et al., 2006; 

Abe et al., 2010) and aerobic capacity (Park et al., 2010). While the exact reason for these rapid 

results is still unknown, the results produced are similar to the results gained through high-

intensity resistance training programs. This unique characteristic of BFR training allows 

substantial muscle hypertrophy to occur even when training at exercise intensities as low as 20% 

of 1 RM (Abe et al., 2006; Abe at el., 2010). Therefore, low-intensity exercise (i.e. walking) with 

BFR may provide a more favorable alternative to high-intensity exercise to increase muscle size, 

strength and functional capacity (Staunton, May, Brandner & Warmington, 2015). Much of the 

research done using BFR has been acute training studies lasting up to 6 weeks as the long-term 

effects of BFR combined with exercise are still not established. However, BFR research has been 

done in a variety of populations, including: the elderly, elite-athlete, and clinical recovery 

patients (Abe et al., 2010; Park et al., 2010; Tennent et al., 2016; Ohta et al., 2002). Two primary 

exercise modalities used in combination with BFR are resistance exercise and aerobic exercise. 

Safety Concerns Using BFR 

Safety concerns using BFR have arisen due to the cuff inflation and restriction of venous 

blood flow during exercise. Numerous reviews have shown that BFR exercise has possible side 

effects but does not increase risk for cardiovascular disease. A nationwide review of safety of 

BFR practitioners reported possible side effects and prevalence during BFR exercise: bruising 

(mostly in arms) – 13.1%, temporary numbness – 1%, thrombosis – 0.055%, and pulmonary 

embolism – 0.008% (Nakajima, 2006). Another review reported: thrombosis - < 0.06%, 

rhabdomyolysis - < 0.01%, and pulmonary embolism - < 0.01% (Vanwye, Weatherholt & 
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Mikesky, 2017). Despite low reported rates of thrombosis and pulmonary embolism, the 

development of blood clots during BFR continues to be a concern. Recent studies looking into 

blood markers post-BFR exercise has shown no increase in clot formation markers (Clark et al., 

2011; Madarame et al., 2010; Madarame, Kurano, Fukumura, Fukuda & Nakajima, 2013; 

Nakajima et al., 2007). Additionally, increased cardiovascular responses seen during low-

intensity BFR exercise are lower than those seen during traditional high-intensity exercise. 

Therefore, low-intensity BFR exercise poses no greater threat to participant safety than 

traditional high-intensity exercise (Horiuchi & Okita, 2012; Hughes, Paton, Rosenblatt, Gissane 

& Patterson, 2017; Loenneke, Wilson, Wilson, Pujol & Bemben, 2011). 

BFR Combined with Aerobic and Resistance Exercise Training 

Findings demonstrate that BFR when used in combination with resistance exercise can 

lead to increased muscle cross-sectional area and muscle strength (Abe et al., 2006; Abe et al., 

2010; Neto et al., 2016). Additionally, during a 2-week walk training study with BFR, maximal 

oxygen utilization (VO2max) increased by 11.6% in college male athletes (Park et al., 2010). 

Studies have shown that the decrease in venous blood return during BFR training causes a 

resulting decrease in heart SV) and a compensatory increase in heart rate (HR) (Sugawara et al., 

2015). This decrease in SV is likely caused by the restricted venous return of blood due to the 

inflated cuff. BFR exercise is also a potential countermeasure for OI. Cuffs worn on the upper 

thighs during space flight have been shown to help maintain central and peripheral 

hemodynamics and mitigate the flow of bodily fluids headwards (Hackney et al., 2012) 

Blood flow restriction offers great potential to counter the negative physiological effects 

of microgravity. With the potential to prevent muscle loss, and minimize OI upon reentry to 

earth’s gravity, BFR is an ideal intervention to counter two of the most common side-effects 
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experienced by astronauts (Hawkey, 2013). Equipment needed to complete BFR exercise are 

also very minimal when compared to previous methods (COLBERT, ARED), making it an ideal 

exercise protocol during long during space flight missions where future mission craft space will 

be minimal.  

Rowing 

NASA’s strategic plan has identified the need for integrating features to allow both 

resistance and aerobic exercise training to be carried out on a single exercise apparatus (2014 

NASA Strategic Plan). Rowing ergometers offer the capability to perform strength and aerobic 

exercise simultaneously. Due to the large size of the current exercise equipment on board the 

ISS, NASA is seeking new, innovative exercise protocols and equipment to help establish and 

maintain VO2 standards during spaceflight. Future long duration spaceflight missions will 

require compact, lightweight equipment to capable of utilizing the small available volume on 

future space crafts. (Downs et al., 2015; Ploutz-Snyder et al., 2015). Effective musculoskeletal 

and aerobic training can be performed on a rowing ergometer without significantly increasing 

hardware mass or compromising desired physiological responses (Tesch et al., 2013); making 

rowing an ideal form of exercise to meet NASA’s needs. muscle function and VO2 standards 

during long duration spaceflight missions. 

Physiological Responses to Rowing 

The seated position and involvement of more muscles during rowing exercise facilitates 

venous return and is accompanied by a higher VO2 response when compared to running at the 

same relative intensity. Enhanced venous return elevates central blood volume and lowers HR 

response due to increases in stroke volume by the Frank-Starling mechanism (Yoshiga & 

Higuchi, 2002). Interestingly, when compared to cycle ergometers, at the same metabolic rates, 
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there were no significant differences in Q when using the cycle and rowing ergometers (Rosiello 

et al., 1987). Additionally, Horn, Ostadal & Ostadal (2015) has shown that when compared to 

cycling, rowing exercise lead to a more extensive stimulation of cardiac contractility and/or 

decreased peripheral vascular resistance.  

BFR Combined with Rowing 

At this time, a study using BFR and rowing exercise has not been initiated. Our goal is to 

establish the cardiovascular, musculoskeletal, and metabolic differences between rowing 

exercise with and without BFR intervention as preliminary evidence of efficacy. 
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CHAPTER III. METHODS 

This experimental study measured participants’ heart rate (HR), blood pressure (BP), leg 

muscle surface electromyography (sEMG), rate of perceived exertion (RPE), whole blood lactate 

([La-]b), and peak oxygen consumption (VO2peak) during a maximal exercise session, a control 

exercise session and a blood flow restriction (BFR) intervention session. The purpose of this 

study was to identify the acute physiological cardiovascular, musculoskeletal, and metabolic 

changes when using leg BFR during low-intensity rowing exercise. Research Question: 

1. What are the acute cardiovascular, musculoskeletal, and metabolic effects that occur 

when using leg blood flow restriction during low-intensity rowing exercise? 

a. What differences are seen in: 

i. Heart rate and blood pressure? 

ii. Muscle activation via surface electromyography? 

iii. Whole blood lactate? 

iv. Rate of perceived exertion 

Participants 

Inclusion 

The participants in this study were 20 males who were healthy, regularly active, and 18-

40 years of age. This sample size was selected based on similar study sizes (Abe et al., 2006; 

Abe et al., 2010; Park et al., 2010; Rosiello et al., 1986). Participants completed a Physical 

Activity Readiness Questionnaire (PARQ+) to determine if they were healthy and ready to 

participate in the exercise. To be considered, participants were required to have participated in a 

minimum of 100 minutes of aerobic and/or resistance exercise training, within a seven-day 

period, for at least the last six months. Before acceptance into the study, participants were 
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informed of the research procedures that would be used and briefed on what their responsibilities 

during testing would be. Participants were given the opportunity to ask any questions or address 

any concerns that they had with the research protocol. Participants agreeing to continue with the 

study were presented with an informed consent form to voluntarily sign.  

Exclusion 

The participants’ PARQ+ was reviewed to determine if they were healthy and ready for 

the required exercise. Participants who answered ‘yes’ to any of the questions on the PARQ+ 

were excluded from the study pending review of their answer. Any participants with, or at risk 

for, hypertension or hypotension, were excluded. The National Institute of Health and American 

Heart association have identified being “at risk for hypertension” as any blood pressure ≥120 for 

systolic and ≥80 for diastolic; and hypotension as any blood pressure <90 for systolic and <60 

for diastolic. Furthermore, any individuals with a history of lower back, neck, or leg pain; and/or 

a history/family history of cardiovascular disease, had sickle cell anemia, recent surgery, a 

history of blood clots or exertional rhabdomyolysis (breakdown of muscle) were excluded from 

the study. Additional exclusions included: individuals with a calculated body mass index 

(weight/height2) of 30 kg/m2 or greater, those with prior ligamentous, bony or other soft tissue 

reconstruction to the lower-extremity, a history of deep venous thrombosis (DVT), peripheral 

vascular disease (narrowing or blockage in a blood vessel), diabetes, acute fracture, tumor, or 

infection, being an active smoker, a user of illegal drugs, having an implanted medical device, or 

the inability to consent. Screening for illicit drug use was completed on the Informed Consent 

Form. Accepted participants were then scheduled for two exercise trial sessions: VO2peak and 

CON/BFR. 
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To assist with recruitment and reduce participant dropout, participants received monetary 

compensation for their participation. Participants received $10.00 after completing the first 

session (VO2peak) and $10.00 upon completing the second session (CON/BFR) – for a total of 

$20.00. Any participants that dropped out of the study before completion received any 

compensation that they had earned up to that point. A call for participants was posted using the 

North Dakota State University Listserve email announcements and flyers were posted at local 

gyms in the Fargo/Moorhead area to help recruit participants with possible rowing experience. 

All procedures and instruments used during the study were approved by the North Dakota State 

Institutional Review Board. 

Instrumentation 

Before being accepted into the study, potential participants filled out the PARQ+ survey. 

Participants that met the study criteria voluntarily signed an informed consent form and 

acknowledged that they understood the study procedures, what was expected of them, and any 

potential risks. To measure participant height and body mass a Stadiometer (Seca 213, Chino, 

CA) and an Eye level scale (Detecto, Webb City, MO) were used. A Polar heart rate strap 

monitor and wrist watch (Polar Electro, Kempele, FIN) or a Garmin heart rate monitor (Garmin, 

Olathe, KS) were used to measure participant HR at rest and during exercise. Blood pressure was 

measured ~5 minutes before and after exercise testing using a manual sphygmomanometer cuff 

and stethoscope (American Diagnostic Corporation, Hauppauge, NY). Participant VO2peak was 

determined using the TrueOne 2400 Parvo metabolic cart (Parvo Medics, Sandy, UT) and 

completed on the Concept2 Model E rowing ergometer (Concept2, Morrisville, VT). Rate of 

perceived exertion (RPE) was measured using the Borg 6-20 scale. Surface muscle 

electromyography (sEMG) was collected using self-adhesive monitoring electrodes and an EMG 
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MP150 machine (Biopac Systems, 3M Healthcare, London, Ontario, Canada). [La-]b levels were 

collected using a handheld Lactate Plus (NOVA Biomedical, Waltham, MA) blood lactate 

analyzer. During the BFR portion of the CON/BFR session, Kaatsu brand training cuffs (Kaatsu 

Global, Inc., Japan) were used to restrict venous blood flow.  

Obesity 

Researchers used the SECA Stadiometer and Tanita Body Composition Analyzer Scale to 

measure height and body mass for each participant. From those measurements, Body Mass Index 

(BMI) was calculated (weight/height2). Those over a BMI of 30 kg/m2, which was classified as 

obese, were excluded from the study (Pescatello, Arena, Riebe & Thompson, 2014). 

Muscle Surface Electromyography 

Muscle sensor sEMG electrodes (Red Dot 2560 monitoring electrodes, 3M Healthcare, 

London, Ontario, Canada) were placed on the right leg VL and BF muscles to measure sEMG 

during exercise. Areas of placement were shaved with a hand razor and carefully cleaned with 

ethanol before electrode placement. Electrodes were placed on the medial portion of the VL and 

the BF muscles with a 4.0 cm interelectrode distance. Electrodes were placed approximately 10-

15 cm above the proximal border of the patella. These placings are like those used by Wernbom 

et al. (2009) and allow for the application of the BFR training cuffs along with freedom of 

movement during exercise testing. Data were collected and stored using the sEMG MP150 

machine (Biopac Systems Inc., Goleta, CA) and saved under the participant’s number before 

being transferred onto an encrypted hard-drive.  

Whole Blood Lactate Testing [La-] 

Whole blood lactate was measured at rest and five minutes after exercise using a 

handheld Lactate Plus (NOVA Biomedical, Waltham, MA) blood lactate analyzer. Participants 
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selected a finger to be pricked and cleaned with alcohol wipes so that a drop of blood can be 

collected on the analyzer stick. Researchers wore wear protective gloves and clothing to prevent 

any transfer of fluids. ~30 µl of blood was collected ~5 min pre- and post-exercise for all three 

exercise sessions (Total: 6 finger sticks, ~180 µl of blood over entire study). A Band-aid was 

placed on the stuck finger and all disposable materials were discarded in the biohazard bins in 

the research lab.  

Heart Rate & Blood Pressure 

Participants’ HR was monitored using a Polar heart rate strap monitor (Polar Electro, 

Kempele, FIN) during the VO2peak session and a Garmin heart rate strap monitor (Garmin, 

Olathe, KS). Participants’ BP was measured using a manual sphygmomanometer and 

stethoscope (American Diagnostic Corporation, Hauppauge, NY). The sphygmomanometer was 

snuggly wrapped around the left arm and slowly inflated until pulse rate could be heard through 

the stethoscope placed on the antecubital space of the arm. The sphygmomanometer was then 

inflated to ~10 mm Hg above the last beat heard and then slowly deflated. Systolic and diastolic 

measures were recorded based on the first and last beats heard while deflating the 

sphygmomanometer cuff. Blood pressure measurement protocols were followed according to 

The Sixth Report of The Joint National Committee on Prevention, Detection, Evaluation, and 

Treatment of High Blood Pressure (National Institute of Health, 1997). Baseline and post-

exercise HR and BP were measured after five minutes of resting and roughly five minutes post-

exercise. Exercise HR was monitored throughout exercise and the peak HR was recorded. 

Orthostatic Hypotension Screening 

Participant’s blood pressure was measured both while they were sitting and while they 

were standing to compare measurements. If the participant had a drop of 20 millimeters of 
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mercury (mmHg) in their systolic blood pressure, or a drop of 10 mmHg in their diastolic blood 

pressure after two minutes of standing up, or if standing caused signs and symptoms of 

lightheadedness or dizziness, the participant was excluded from the study. 

Rate of Perceived Exertion 

Perceived exercise intensity was measured using the Borg 6-20 Rating of Perceived 

Exertion (RPE) scale. This form of evaluation has been used in prior studies to determine 

participants’ perceived exercise intensity (Wernbom et al., 2009). During the last 30 seconds of 

each exercise set, participants were shown a scale from 6 – 20 and asked to rate their level of 

exertion. A six on the scale equates to no exertion and a 20 on the scale equates to maximal 

exertion.  

Kaatsu Training Cuffs 

The restriction of venous blood flow was accomplished by using Kaatsu Nano exercise 

training cuffs (Kaatsu Global, Inc., Japan). The training cuffs were applied around the proximal 

portion of the legs, and during exercise were inflated according to the Kaatsu training protocol. 

Prior studies have identified Kaatsu brand training cuffs as a reliable method for attaining rapid 

gains in muscle strength, endurance and cardiovascular function (Abe et al., 2006; Abe et al., 

2010; Park et al., 2010; Renziet al., 2010; Sakamaki & Abe, 2011; Wernbom et al., 2009). To 

familiarize participants with the feeling of BFR they were taken through a traditional Kaatsu 

Cycle which involves 8 rounds of cuff inflation. Each round had the cuff inflated for 20 seconds 

followed by five seconds of cuff deflation. The Kaatsu cycle began at an inflation of 40 Standard 

Kaatsu Units (SKU), which are approximately equivalent to mmHg. After the five seconds of 

deflation the cuff pressure increased by ~15-20 SKU for each subsequent round, ending at ~160 

SKU. To find optimal SKU for exercise, researchers measured the individual’s capillary refill 
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time (CRT), or the time in seconds taken for color to return to an external capillary bed. CRT 

was checked by applying pressure to the quadriceps, just above the knee, to cause blanching 

during cuff inflation. A CRT of ~3 seconds indicates optimal SKU pressure for exercise; 

pressure was continually increased by ~15-20 SKU until optimal SKU was reached. However, to 

ensure participant safety an individualized training cuff inflation limit was set for each 

participant at 1.3 x their resting systolic BP. During the BFR portion of the CON/BFR session 

the training cuffs remained inflated throughout the entire exercise. 

Procedures 

All participants completed the two exercise sessions in order: VO2peak followed by 

Control (CON)/BFR. Each session was separated by at least 48 hours. Sessions took place on 

Monday through Friday in the Human Performance Lab of the Bentson Bunker Field House. 

Times for sessions were dictated based on participants’ and researchers’ schedules. Attempts 

were made to ensure participants completed exercise at the same time of day for each session. 

Data collection began November 27th, 2017 and ended March 1st, 2018. 

VO2peak Session 

Participants reported to the research lab in the Bentson Bunker Fieldhouse. Upon arrival, 

they were presented with the screening forms and consent form for the study. Once participants 

were screened, consented to participate, and signed the consent form, their height and weight 

was measured to calculate BMI. Afterwards, participants remained seated for roughly five 

minutes so that resting HR and BP could be taken; and screening for hypertension/hypotension 

could be performed. Participants were then familiarized with the Concept2 Model E rowing 

ergometer and 2400Parvo metabolic cart that were used during exercise sessions and to measure 

their peak oxygen utilization. Additionally, during exercise sessions, if a participant’s resting 
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blood pressure continually falls (after 2 measures 10 minutes apart) within the ranges of 

“elevated” or “hypertension” (≥120 systolic and ≥80 diastolic) or hypotension (<90 systolic and 

<60 diastolic), their exercise session was rescheduled for a later date. To become familiar with 

the equipment, the participants were given time to practice using the rowing ergometer while 

being coached on their technique. When the participants were comfortable using the rower, they 

were then shown the metabolic mask and equipment used to measure their VO2peak. After 

completing the VO2peak exercise test, participants were familiarized with the additional 

equipment that would be used during future testing (BFR training cuffs, muscle EMG electrodes, 

blood lactate analyzer) and taken through a Kaatsu cycle. 

VO2peak Exercise Test 

Participants were tested for peak aerobic capacity and oxygen utilization using an 

incremental maximal exercise test with the Parvo metabolic cart and the Concept2 Model E 

rowing ergometer. Previous research has established the TrueOne 2400 metabolic device as a 

valid and reliable method for calculating participant metabolic rates (Welch, Strath & Swartz, 

2015); and rowing ergometers have been established as a valid means to effectively perform both 

aerobic and resistance exercise simultaneously (Tesch et al., 2013). Participants were attached to 

the metabolic cart and seated on the rower. The rower damper setting was set to five for all 

exercise tests. Participants began the test by maintaining an average workload of 100W while 

rowing for four minutes. After four minutes, the average workload to maintain was increased by 

25W. This protocol was repeated with an increased workload of 25W every minute until the 

participant reached exhaustion. Exhaustion was determined when the participant met two of the 

following criteria: 1) unable to maintain average workload (±15W) for ≥15 seconds, 2) no 

increase in VO2 or HR despite increased exercise intensity, 3) respiratory exchange ratio greater 
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than 1.10, and 4) HR exceeds 90% of age-predicted maximum heart rate for ≥15 seconds (Park, 

2010). This exercise protocol has been modified from previous studies that recruited trained 

rowing athletes (Beneke, Leithäuser & Hütler, 2001; Cheng, Yang, Lin, Lee & Wang, 2012). 

Expired gas was collected and analyzed every 15 seconds. 

CON/BFR Session 

During the CON/BFR session, participants completed five, three-minute exercise sets 

with a one-minute rest in-between sets – for a total of 19 minutes of exercise. Exercise intensity 

for this session was set at 30% of the maximum wattage achieved during the VO2peak session. 

This type of protocol has been used in previous studies when using BFR. (Abe et al., 2006; Abe 

et al., 2010; de Oliveira et al., 2016). Baseline and post-exercise HR, BP, and [La-]b were taken 

after five minutes of resting and roughly five minutes post-exercise. HR levels were also 

monitored throughout the entire exercise session. HR, RPE, and muscle SEMG, measured at the 

right leg VL and BF, were recorded simultaneously during the last 30 seconds of each exercise 

set. All exercise was completed on the Concept2 Model E rowing ergometer. Participants were 

verbally encouraged to complete exercise to the best of their ability. However, participants were 

told to stop the test at any time if they chose to no longer participate or experienced any extreme 

discomfort. Researchers were prepared to stop the test if the safety of the participant was 

threatened in any way. Criteria for stopping the test early included, but was not limited to: 

participant dizziness, light-headedness, severe loss of breath or pain/numbness in the chest, back, 

or legs.  

BFR portion 

The same protocol used in the CON portion of the CON/BFR session was used during the 

BFR portion. However, during this session participants had Kaatsu Nano training cuffs applied 



 

26 

on the proximal portion of both legs. These training cuffs were inflated during exercise sets per 

the Kaatsu training capillary refill protocol (~3 sec refill time). For additional safety, an upper 

limit on cuff inflation was set for each individual participant. This limit was equal to 1.3 x the 

participant’s resting systolic BP. Thus, the operating range for cuff pressure during inflation was 

between 117-156 mmHg corresponding with subject’s systolic BP between 90 mmHg and 120 

mmHg (Clark et al., 2011). Training cuffs were inflated throughout the entire exercise session. 

Statistics 

This study was of experimental design. All participants completed the control and 

intervention, allowing participants to act as their own control. Statistical significance was set at 

the alpha ≤ 0.05 level of confidence. When a significant F was found, addition tests with 

Bonferroni adjustments were performed. All analysis was performed using SPSS (IBM, Armonk, 

NY). In the event of missing data, the sequence of data in correlation with the missing piece was 

not included in the statistics. Anthropometric measurements of participants are presented using 

descriptive statistics. Repeated measures ANOVAs were used to analyze HR, BP, [La-]b, and 

SEMG. A paired sample t-test was used to examine peak RPE. Heart rate (F(2, 38) = 5.220, P = 

.010; t(19) = -4.940, P < .001) and RPE (t(19) = -5.878, P < .001) showed significant increases 

during BFR compared to CON (Fig. 1 & 2). No statistical significance was found for systolic 

(F(1, 19) = 1.207, P = .286) and diastolic (F(1, 19) = 3.417, P = .080) BP. Additionally, there 

was no significant changes in [La-]b (F(1, 19) = .363, P = .554) and sEMG for the VL (F(4, 76) = 

2.062, P = .094) and BF (F(4, 76) = 1.547, P = .197). 
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CHAPTER IV. RESEARCH ARTICLE1 

Abstract 

BACKGROUND: Exposure to microgravity leads to a progressive loss in muscular 

strength, endurance, and aerobic capacity (VO2). Blood flow restriction (BFR) has been shown to 

elicit rapid gains in muscular strength and aerobic capacity. Rowing exercise combined with 

BFR could be a supplemental countermeasure to maintain pre-flight muscle and VO2 function. 

METHODS: Twenty moderately trained males completed rowing exercise during two sessions: 

VO2peak and CON/BFR. VO2peak was determined during an incremental maximal exercise test on 

a rowing ergometer. During the CON/BFR session, participants completed a 19-minute rowing 

protocol. Exercise intensity for the CON/BFR session was 30% of peak work achieved during 

the VO2peak session. Kaatsu cuffs were inflated around each leg during the BFR portion of the 

CON/BFR session. HR was measured throughout exercise. RPE, and sEMG of the right leg 

vastus lateralis and biceps femoris was measured at the end of each exercise set. BP and blood 

lactate ([La-]b) were measured at rest and post-exercise. RESULTS: HR and RPE showed 

significant increases during BFR (120.5 ± 5.53 vs. 128.9 ± 9.86 bts·min -1) and (9.8 ± 1.85 vs. 

11.8 ± 1.88 arbitrary units), respectively. No differences were found for BP, [La−]b, and sEMG. 

DISCUSSION: These findings indicate the exercise intensity and cuff pressure used were only 

sufficient to elicit an increased cardiovascular response without elevating BP post-exercise. To 

                                                 
 

1 1 The material in this chapter was co-authored by Sean Mahoney and Dr. Kyle Hackney. Sean 
Mahoney had primary responsibility for protocol development and data collection. Sean 
Mahoney was the primary developer of the conclusions that are advanced here. Sean Mahoney 
also drafted and revised all versions of this chapter. Dr. Kyle Hackney served as proofreader and 
checked the math in the statistical analysis conducted by Sean Mahoney. 
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simultaneously elicit cardiovascular and musculoskeletal responses, exercise intensity and/or 

cuff pressure may need to be increased. 

Key Words: Prolonged spaceflight, in-flight exercise protocols, cosmonaut health, mission 

success 

Introduction 

Prolonged exposure to microgravity leads to a progressive loss in muscular strength, 

endurance, and aerobic capacity (Antonutto & Pampero, 2003; Bishop et al., 1999; Hackney et 

al., 2012.) This microgravity-induced deconditioning is detrimental to crewmember health, 

performance and overall mission success. Exercise countermeasures are in place on board the 

International Space Station (ISS) to combat in-flight deconditioning; however, these current 

methods do not mitigate deconditioning entirely. As much as a fifth of muscle mass is lost during 

the first four months in space; additionally, peak oxygen consumption (VO2peak) and left 

ventricular mass decrease early in flight by ~17% and ~ 12% respectively (Hawkey, 2003; 

Moore et al., 1985; Perhonen et al., 2001). Emergency mission egress tasks may require normal 

ambulatory participants to work at intensities at 85% of maximum heart rate. Even a relatively 

small decrease in VO2peak (e.g., 10%) can greatly impact an astronaut’s ability to meet these 

high-energy demands (Bishop et al., 1999). 

The National Aeronautics and Space Administration (NASA) created the Human 

Research Program (HRP) to investigate and mitigate high risk outcomes that impede 

crewmember health and performance. Two major risks identified by the HRP include the risk of 

reduced physical performance capabilities due to reduced aerobic capacity and the risk of 

impaired performance due to reduced muscle mass, strength, and endurance. Gaps of knowledge 

within these risks include the development of effective exercise programs for the maintenance of 
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muscle function and VO2 standards, and the development of pre-flight, in-flight, and post-flight 

evaluations to determine if muscle function and VO2 standards are being met during missions. 

Prior research acknowledges that VO2peak and muscle function decline during spaceflight, but can 

be mitigated with in-flight exercise (Bishop et al., 1999; Downs et al., 2015; Ploutz-Snyder et al., 

2015). However, performance decrements are still observed despite current countermeasures. 

Research into advanced in-flight exercise protocols, capable of being completed on a singular 

device, are necessary to identify activity thresholds, exercise prescriptions, and promote in-flight 

exercise adherence and efficiency. 

Current research aiming to counter microgravity-induced deconditioning through exercise 

primarily use bed rest with a 6-degree head down tilt as an earth-based analog to simulate the 

detrimental physiological effects of microgravity (Hackney et al., 2012; Hastings et al., 2012; 

Hawkey, 2003; Murach et al., 2018). Concurrent rowing and resistance exercise training during 

5-weeks of bed rest with 6-degree head down tilt was capable of preventing the cardiac atrophy 

and stiffening that occurs with prolonged bed rest (Hastings, 2012). Additionally, aerobic and 

resistance exercise completed on a novel concurrent flywheel exercise device (Murach et al., 

2018; Tesch et al., 2010) during 70 days of bed rest with 6-degree head down tilt was capable of 

maintaining key myocellular characteristics in the vastus lateralis muscle; however, further 

refinement of the exercise protocol is necessary to also effect the soleus (Murach et al., 2018). 

These findings demonstrate that rowing exercise can maintain cardiovascular function during 

prolonged bed rest but requires additional exercise supplementation and equipment to 

simultaneously maintain muscle function. 

Blood flow restriction (BFR) is a novel form of exercise intervention that involves the 

application of inflated tourniquet cuffs that restrict venous blood flow during exercise. BFR has 
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been shown to elicit rapid and progressive gains in muscular strength, endurance and aerobic 

capacity (Abe et al., 2006; de Oliveira et al., 2016; Park et al., 2010). Low-intensity interval BFR 

training has been identified as the only mode of training capable of simultaneously improving 

aerobic fitness and muscular strength when compared to low-intensity interval training without 

BFR, high-intensity interval training, and combined high-intensity interval training and BFR (de 

Oliveira et al., 2016). The restriction of venous blood flow lowers heart stroke volume, thus, 

increasing heart rate to meet energy demands (Renzi et al., 2010; Hackney et al., 2012). This 

unique cardiovascular response may allow crewmembers to train at lower intensities and still 

elicit a cardiac response capable of maintaining their pre-flight VO2peak (Hackney et al., 2012). 

Additionally, restricted venous blood flow has been shown to counter orthostatic intolerance and 

maintain central and peripheral hemodynamics during short-term spaceflights (Fomina et al., 

2004). 

Current in-flight exercise devices offer the capabilities to complete either resistance 

training or cardiovascular training, but not both simultaneously (Downs et al., 2015; Hargens & 

Watenpaugh, 1996; Loehr et al., 2011). Effective musculoskeletal and aerobic training can be 

performed on a rowing ergometer without significantly increasing hardware mass or 

compromising desired physiological responses (Tesch et al., 2013). The seated nature of rowing 

exercise appears to promote venous blood return and elicits smaller heart rate (HR) responses 

when compared to treadmill exercise of similar intensity (Yoshiga & Higuchi, 2002). Low-

intensity BFR combined with rowing exercise could be a supplemental countermeasure that 

requires minimal equipment, physical volume, and power and offers the potential to maintain 

pre-flight strength and VO2peak during prolonged spaceflight. The purpose of this experimental 
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study was to identify the acute cardiovascular, musculoskeletal, and metabolic changes when 

using leg BFR during low-intensity rowing exercise. 

Methods 

Subjects 

Participants experienced both control and intervention sessions in a within subjects, cross 

over design. All procedures and instruments used during this study were approved by the North 

Dakota State University Institutional Review Board. Twenty healthy and regularly active adults 

(22.1 ± 1.71 years; 172.89 ± 24.49 cm; 87.26 ± 27.40 kg) volunteered and gave written informed 

consent to participate in the study. Any participant with, or at risk for, hypertension or 

hypotension, or classified as obese (BMI ≥ 30 kg/m2) were excluded. Additionally, any 

participant who had recent surgery, muscle disease, or history of cardiovascular disease were 

excluded.  

Table 1 

Descriptive Statistics  

Age (years) 22.1 ± 1.71 

Height (cm) 172.89 ± 24.49 

Body mass (kg) 87.26 ± 27.40 

Thigh Size (cm) 57.55 ± 4.04 

VO2peak (ml/kg/min) 47.57 ± 6.95 

30% work rate (W) 80.78 ± 14.15 

Cuff Pressure (mmHg) 157.8 ± 5.27 

Note: Data are mean ± standard deviation. 



 

32 

Instrumentation 

Participant VO2peak was determined using a TrueOne 2400 metabolic cart (Parvo Medics, 

Sandy, UT) and exercise was completed on a Concept2 Model E rowing ergometer (Concept2, 

Morrisville, VT). HR was recorded throughout exercise using a wireless heart rate strap monitor 

and extracted via Golden Cheetah streaming software. BP was taken using a manual 

sphygmomanometer cuff and stethoscope. sEMG was collected using self-adhesive Red Dot 

2560 monitoring electrodes (3M Healthcare, London, Ontario, Canada) and EMG MP150 

(Biopac Systems Inc., Goleta, CA). Recorded sEMG files were analyzed as root mean squared 

using AcqKnowledge 4.0 software and normalized to a maximal dynamic rowing stroke. 

Participant RPE was ranked using the Borg 6-20 rating scale and [La-]b was measured with a 

handheld whole blood lactate analyzer (Lactate Plus, NOVA Biomedical, Waltham, MA). 

During BFR exercise, five cm wide Kaatsu Nano training cuffs (Kaatsu Global, Inc., Japan) were 

applied to restrict blood flow.      

Procedures 

All participants completed two exercise sessions in order: VO2peak followed by 

CON/BFR. Each session was separated by at least 48 hours and attempts were made to ensure 

participants completed exercise at the same time of day for each session. 

VO2peak Session. Participants arrived for the first session and were familiarized with the 

procedures and instruments being used. Consent forms were provided, and inclusion/exclusion 

screening took place. Before exercise, baseline HR and BP were taken. VO2peak was determined 

using an incremental exercise test on the rowing ergometer. For all exercise testing the rower 

damper setting was set to five. Prior to each test the metabolic cart was calibrated for known gas 

concentrations and flow via the manufactures recommendation. Participants began the test by 
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maintaining an average workload of 100W while rowing for four minutes. After four minutes, 

the average workload to maintain was increased by 25W. This protocol was repeated with an 

increased workload of 25W every minute until the participant reached exhaustion. Exhaustion 

was determined when the participant met two of the following criteria: 1) unable to remain 

within 10-15W of average workload for ≥15 seconds, 2) no increase in VO2 or HR despite 

increased exercise intensity, 3) respiratory exchange ratio greater than 1.10, and 4) HR exceeds 

90% of age-predicted maximum heart rate for ≥15 seconds (Park et al., 2010). This exercise 

protocol has been modified from previous a previous study involving trained rowing athletes 

(Cheng et al., 2012). Expired gas was collected and analyzed every 15 seconds. Peak work rate 

was determined based on the final stage reached during VO2peak testing. 

 

Figure 1. Incremental VO2peak Protocol 
Note: Outline of exercise protocol used during VO2peak session 
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CON/BFR Session. This session involved two portions: exercise without limb occlusion 

(CON) and exercise with limb occlusion (BFR). At least 20 minutes of rest separated each 

portion and participants completed the portions in a randomized order.  

CON Session. Before exercise, baseline HR, BP and [La-]b, were measured. Additionally, 

muscle sensor sEMG electrodes were placed on the right leg VL and BF muscles to measure 

electrical activity of the muscle membrane during exercise. Areas of placement were shaved with 

a hand razor and carefully cleaned with ethanol before electrode placement. Electrodes were 

placed on the medial portion of the VL and the BF muscles, approximately 10-15 cm above the 

proximal border of the patella, with a 4.0 cm interelectrode distance. These placings are like 

those used by Wernbom et al. (2009) and allow for the application of the BFR training cuffs 

without interrupting electrode placement or restricting movement. Participants completed five, 

three-minute exercise sets with a one-minute rest in-between sets for a total of 19 minutes. 

Exercise intensity was set at 30% of the peak work rate achieved during the VO2peak session. This 

type of protocol has been used in previous studies when using BFR (Abe et al., 2006; Abe et al., 

2010; de Oliveira et al., 2016). Post-exercise HR, BP, and [La-]b measurements were taken 

roughly five minutes post-exercise. HR levels were also monitored throughout the entire exercise 

session. RPE and sEMG, measured at the right leg VL and BF, were recorded simultaneously 

during the last 30 seconds of each exercise set. All exercise was completed on the Concept2 

Model E rowing ergometer. Participants were verbally encouraged to complete exercise to the 

best of their ability. However, participants were told to stop the test at any time if they chose to 

no longer participate or experienced any extreme discomfort. Researchers were prepared to stop 

the test if the safety of the participant was threatened in any way. Criteria for stopping the test 
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early included, but was not limited to: participant dizziness, light-headedness, severe loss of 

breath or pain/numbness in the chest, back, or legs.  

BFR Session. The same protocol used in the CON was used during the BFR exercise. 

However, during this session participants had 5 cm Kaatsu Nano training cuffs applied on the 

proximal portion of both legs. Immediately before exercise began, participants were taken 

through a traditional Kaatsu Cycle which involves eight rounds of cuff inflation. Each round had 

the cuff inflated for 20 seconds followed by five seconds of total cuff deflation. The Kaatsu cycle 

began at an inflation of 40 Standard Kaatsu Units (SKU), which are approximately equivalent to 

mmHg. After the five seconds of deflation, the cuff pressure increased by ~15-20 SKU for each 

subsequent round, ending at ~160 SKU. To find optimal SKU for exercise, researchers measured 

individual’s capillary refill time (CRT), or the time in seconds taken for color to return to an 

external capillary bed, during the cycle. Pressure was applied to the quadriceps, just above the 

knee, to cause blanching during cuff inflation. A CRT of ~3 seconds indicates optimal SKU 

pressure for exercise; pressure was continually increased by ~15-20 SKU until optimal SKU was 

reached. However, to ensure participant safety, an individualized training cuff inflation limit was 

set for each participant at 1.3 x their resting systolic BP (Clark et al., 2011). During the BFR 

portion, training cuffs remained inflated throughout the entire exercise. 

Statistical Analysis 

All analyses were performed using SPSS (IBM, Armonk, NY). In the event of missing 

data, the sequence of data in correlation with the missing piece was not included in the statistics. 

Anthropometric measurements of participants are presented using descriptive statistics. Repeated 

measures ANOVAs (exercise x time) were used to analyze HR, BP and [La-]b. Heart rate was 

analyzed pre-, during, and post-exercise. Blood pressure and [La-]b was analyzed pre- and post-
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exercise. Paired sample t-tests were used to compare peak RPE and sEMG during CON and 

BFR. Statistical significance was determined by P < 0.05. When a significant F was found, 

additional tests with Bonferroni adjustments were performed. 

Results 

Mean cuff pressure for participants was 157.8 ± 5.27 SKU (Table 1). There was a 

significant exercise by time effect for HR (F(2, 38) = 5.220, P = .010). Follow-up comparisons 

determined there was a significant elevation of HR during exercise in BFR compared to control 

(120.5 ± 5.53 vs. 128.9 ± 9.86 bpm; t(19) = -4.940, P < .001; Fig. 2). RPE (t(19) = -5.878, P < 

.001) showed significant increases during BFR compared to CON (Fig. 3). No statistically 

significant differences were found for systolic (F(1, 19) = 1.207, P = .286) and diastolic (F(1, 

19) = 3.417, P = .080) BP (Table 2). Additionally, there were no statistically significant 

differences observed in [La-]b (F(1, 19) = .363, P = .554) (Table 2) and sEMG for the VL (F(4, 

76) = 2.062, P = .094) and BF (F(4, 76) = 1.547, P = .197) (Table 3). 

 

Figure 2. Peak Heart Rate  
Note: Peak HR taken pre-, during, and post-exercise. * denotes significance at p < 0.05 
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Figure 3. Peak RPE  
Note: Peak RPE recorded during the last 30 seconds of each exercise set. * denotes significance 
at p < 0.05 

Discussion 

This is the first study evaluating the effects of BFR during rowing exercise in a 1G 

environment. As such, the goal of this study was to establish the acute physiological responses of 

leg BFR during rowing exercise to guide future research design during bed rest or spaceflight. 

The major findings of this study were the exercise intensity and cuff inflation pressure used were 

sufficient to elicit an increased cardiovascular response with exercise, without elevating BP post-

exercise. However, this exercise protocol was insufficient to increase musculoskeletal, and 

metabolic responses (e.g., [La-]b). 

Rowing 

Due to its partially supine nature, rowing exercise promotes venous blood return, thus 

increasing stroke volume and cardiac output to a greater extent than other upright exercises (e.g. 

cycling, walking) (Horn et al., 2015). Additionally, for the same relative exercise intensity, HR 

response is lower during ergometer rowing than during treadmill running (Yoshiga & Higuchi, 
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2002). Consequently, the application of BFR cuffs works to restrict venous blood flow, therefore 

reducing stroke volume and increasing HR to maintain cardiac output. The interaction of these 

conflicting mechanics was not the focus of this study, but this interaction could play an important 

role in prescribing exercise intensity and cuff inflation pressure during BFR rowing exercise. 

Table 2 

Blood Pressure and Whole Blood Lactate 

 CON BFR 

Variable Pre Post Pre Post 

Systolic BP 120.6 ± 6.59 122.05 ± 7.23 121.5 ± 5.65 117.6 ± 22.63 

Diastolic BP  77.8 ± 5.73 79.9 ± 3.14 79 ± 4.47 78.6 ± 4.45 

[La-]b (mmol/L) 1.21 ± 0.66 1.19 ± 0.56 1.12 ± 0.50 1.20 ± 0.43 

Note: Data are mean ± standard deviation. 

Heart Rate & Blood Pressure 

Significant increases in HR were observed between CON and BFR (~7%). This result is 

similar to the HR increases observed during previous studies using BFR exercise (de Oliveira et 

al., 2016; Renzi et al., 2010). Renzi et al. (2010) completed a similar protocol using BFR during 

walking exercise with the same cuff pressure used in this study. However, Renzi et al. (2010) 

reported an almost 20% increase in HR between CON and BFR during walking. These findings 

indicate that while rowing exercise is capable of eliciting an increased cardiovascular response 

with BFR, it is not as potent an exercise as upright walking. Additionally, BFR during walking 

exercise has shown significant increases in both systolic and diastolic BP when compared to non-

BFR exercise (Renzi et al., 2010; Staunton et al., 2015). However, the exercise protocol 

completed in this study showed no significant increases in either systolic or diastolic BP from 
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pre- to post-exercise (Table 2). Cuff inflation and exercise modality could be factors influencing 

blood pressure responses. It is also important to note, systemic reviews of BFR exercise have 

shown that the increased cardiovascular responses witnessed during low-intensity BFR exercise 

are all well below increases that occur during high-intensity resistance training (Loenneke et al., 

2011).  

Rate of Perceived Exertion 

In this study, RPE was shown to be higher during BFR than CON. It has previously been 

reported to be significantly higher during high-intensity (80%) resistance exercise compared with 

low-intensity (20%) BFR exercise (Neto et al., 2016). Hackney et al. (2016) showed that low-

intensity (20%) BFR resistance exercise at 140 mmHg was insufficient to elicit differences in 

RPE between exercise with and without BFR. Additionally, reported RPE in young and older 

adults was shown to be lower during BFR treadmill exercise compared to leg press exercise 

(Staunton et al., 2015).  

Table 3 

Surface Muscle Electromyography of the Vastus Lateralis and Biceps Femoris 

Control Session Set 1 Set 2 Set 3 Set 4 Set 5 

Vastus Lateralis (%) 60 ± 109 36 ± 30 41 ± 57 34 ± 22 32 ± 24 

Biceps Femoris (%) 17 ± 10 35 ± 65 17 ± 15 23 ± 21 16 ± 11 

BFR Session Set 1 Set 2 Set 3 Set4 Set5 

Vastus Lateralis (%) 25 ± 11 47 ± 58 28 ± 20 41 ± 43 39 ± 41 

Biceps Femoris (%) 25 ± 38 26 ± 40 12 ± 8 13 ± 9 17 ±14 

Note: Data are in percent (%) of peak sEMG during maximal rowing strokes and mean ± 
standard deviation. 
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sEMG & Lactate 

Surface electromyography of the right leg VL and BF were not significantly different 

between CON and BFR (Table 3). Wernbom et al. (2009) reported similar findings and showed 

that BFR during low-intensity dynamic knee extension at 30% of 1RM decreased endurance but 

did not increase muscle activity (Wernbom et al., 2009). Additionally, increased relative 

integrated sEMG of the VL during low-intensity BFR knee extension was shown to be related to 

the production and accumulation of [La-]b during a hypoxic intramuscular environment 

(Takarada et al., 2000). The relationship between muscle activation and [La-]b accumulation 

appears to be linear as more glycolytic muscle fibers are recruited (Takarada et al., 2000). 

Elevations in [La-]b concentrations occur following BFR exercise due to increased rates of fast 

glycolysis in the ischemic muscle (Hackney et al., 2016; Takarada et al., 2000). In our study, no 

significant differences were seen in [La-]b from pre- to post-exercise for both CON and BFR 

(Table 2). There are two possible explanations for this event. First, the lack of elevated [La-]b 

during BFR indicates a possibility the prescribed cuff size (5 cm) and pressure (150 – 160 

mmHg) were not sufficient enough to significantly challenge metabolic stress. Similar results 

when using lower cuff size (5 cm) and pressure (140 mmHg) during resistance exercise have 

been previously reported (Hackney et al., 2016). Additionally, it is worth noting that during 

prolonged aerobic exercise, [La-]b can be used to fuel oxidative metabolism (Brooks, 1998). Due 

to the exercise length (19-minutes), it is possible that elevated [La-]b was not seen due to 

increased aerobic metabolism specifically given the arms were also active during the rowing 

exercise. Staunton et al. (2015) also demonstrated that [La-]b measures remained unchanged from 

baseline after treadmill walking in both young and old adults. It has been previously suggested 

cuff inflation pressures required to elicit resistance training adaptations are between 160-230 
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mmHg (Burgomaster et al., 2003; Park et al., 2010; Takarada et al., 2000). The inflation 

pressures used in this study were between 150-160 SKU (i.e., 150-160 mmHg). This pressure 

was determined using the standard Kaatsu protocol for prescribing cuff pressure. However, to 

ensure participant safety during this novel study, an upper limit of 1.3 x resting systolic BP was 

set for total inflation. Therefore, it is possible that the cuff inflation pressures used in the current 

study were not high enough to elicit additional motor unit recruitment.  

Finally, it is important to state limitations for this study. Participants recruited were not 

elite-trained rowing athlete nor astronauts. Any inexperience with the rowing ergometer could 

have impacted exercise efficiency. Additionally, the VO2peak exercise protocol was adapted 

from prior research using elite-rowing athletes (Cheng et al., 2012). The adapted protocol may 

have been insufficient in determining rowing VO2peak. Many participants were highly 

aerobically trained, and this may have impacted cardiovascular and metabolic responses. All 

participants recruited were young, healthy males, making it difficult to generalize the findings to 

other populations. Lastly, the study was not completed in a microgravity environment.  

Conclusion 

Short-term low-intensity interval BFR training has been previously shown to 

simultaneously improve aerobic fitness and muscular strength (de Oliveira, 2016). Additionally, 

two-week BFR walk training simultaneously improved VO2max (11.6%) and anaerobic capacity 

(2.5%) (Park et al., 2010). The final cuff inflation pressures used in the previous studies were 

between 200-220 mmHg. The findings of this study were novel in they indicate that low-

intensity (30% 1RM) leg BFR (150 – 160 mmHg) during rowing exercise was sufficient in 

elevating HR and RPE during exercise without impacting BP from pre- to post-exercise. 

However, this protocol was insufficient to elevate more motor unit recruitment and metabolic 
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muscle perturbation. Due to the partially supine nature of rowing, increased exercise intensity or 

cuff pressure may be required to simultaneously elicit cardiovascular and musculoskeletal 

responses in bed rest or spaceflight models. 

Leg BFR during rowing exercise could prove to be a useful exercise countermeasure for 

microgravity deconditioning; however, further studies should focus on evaluating different 

ranges of exercise intensity (40%, 50%, etc.) or increased inflation pressure (>160 mmHg) to 

elicit elevated muscular and metabolic stress and mimic increased aerobic and anaerobic 

responses during one method of exercise. One exercise device with multiple capabilities or 

adjuncts performing at minimal external power within a small amount of volumetric space would 

be efficacious for future long duration space missions beyond low earth orbit. 
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APPENDIX A. PRESCRIBING WORKLOAD 

 

Figure A1. Incremental Maximum Exercise Test. 
Note: Used to determine 30% workload for CON & BFR session. 

Peak Workload 
during Max 
Test: 

30% of Peak 
Workload (rounded 
up) 

100W 30W 

125W 37.5W 

150W 45W 

175W 52.5W 

200W 60W 

225W 67.5W 

250W 75W 

275W 82.5W 

300W 90W 

325W 97.5W 

350W 105W 

375W 112.5W 

400W 120 

Figure A2. 30% of Peak Workload. 
Note: Used to find 30% of peak work rate achieved during the VO2peak session. 
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APPENDIX B. IRB APPROVAL LETTER 
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APPENDIX C. INFORMED CONSENT FORM 

NDSU North Dakota State University 
  Health, Nutrition, and Exercise Science 
  1301 Centennial Blvd 
  Fargo, ND 58108-6050 
  701-231-6706 
 
Title of Research Study:  Leg blood flow restriction during rowing exercise as a 
countermeasure for microgravity induced deconditioning. 
 
This study is being conducted by:  
Sean Mahoney phone: (651)-249-9151 email: sean.mahoney@ndsu.edu; 
Kyle Hackney: email: kyle.hackney@ndsu.edu 
 
Why am I being asked to take part in this research study?  You are being asked to 
participate in this study, because we are seeking 20 males, between the ages of 18 – 
40 and considered to be “regularly active” and healthy, to complete rowing exercise 
during three exercise sessions.  

 
What is it about the individual that makes them of interest to the research team? 

Inclusions: You have been asked to participate, because you are “regularly 
active” and healthy enough for exercise. For the purposes of this study, you will 
be considered “regularly active” if you have completed at least 100 minutes of 
physical activity each week for the last six months. These 100 minutes can be 
any combination of cardiovascular and resistance training. You will be asked to 
complete several health-related questionnaires to help the researchers assess if 
you have any condition which would preclude you from participating in the study. 
 
Exclusions: You may be excluded from the study if you have: had any previous 
injuries in your neck, back or legs, you are taking any medications for high blood 
pressure/hypertension or have uncontrolled hypertension, you have any previous 
history of cardiovascular disease, have sickle cell anemia/trait, have recently had 
surgery, have a history of blood clots, or a history of muscle breakdown due to 
extreme exertion.  
 
Additional exclusions include: individuals with a calculated body mass index 
(weight/height2) of 30 kg/m2 or greater, those with abnormal blood pressure, 
those with prior ligamentous, bony, or other soft tissue reconstruction to the 
lower-extremity, a history of deep venous thrombosis (blood clots), peripheral 
vascular disease (narrowing or blockage in a blood vessel), diabetes, acute 
fracture, tumor, or infection, are an active smoker, a user of illegal drug use, have 
an implanted medical device, or the inability to consent. You will also be 
excluded from the study if you have a fever before any of the exercise sessions 
or the sessions will need to be rescheduled.  
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What is the reason for doing the study? The purpose of this study is to determine the 
short-term effects that leg blood flow restriction have on the body during rowing 
exercise. The results from this study will have an impact on the future research and the 
creation of new innovative exercise methods for clinical patients, elite-athletes, and 
spaceflight crewmembers. 
 
What will I be asked to do? You will be asked to attend an information session and 
two exercise sessions using a rowing machine. The order for the CON and BFR 
sessions will be random. A description of each is below: 
   
Information Session: You will first attend an informational session to become familiar 
with the equipment being used in the study. During this session, you will complete the 
2017 Physical Activity Readiness Questionnaire (PAR-Q)+ to determine if you are 
healthy enough to participate in the exercise required. During this session, your weight 
and height will be measured to calculate your body mass index. Last, a test will be 
performed to screen for abnormally low blood pressure. Your blood pressure will be 
measured while sitting and two minutes after standing up. Abnormal drops in blood 
pressure between positions may be grounds for exclusion from the study. 
 

VO2peak Session: During this session, you will complete a test to find your peak 
oxygen use (VO2peak) during exercise. To begin, your height and weight will be 
measured, and your resting heart rate and blood pressure will be measured before 
testing. A Polar heart rate monitor and blood pressure cuff and stethoscope will be used 
to measure these values. The test protocol will have you doing rowing exercise until you 
become exhausted (physically unable to complete any more exercise). During testing 
your peak oxygen use will be tracked using a PARVO metabolic cart. This will involve 
you wearing a mask to record the oxygen that you intake and expire. The mask will be 
attached to a tube that will connect to the metabolic cart. You will wear a nose plug 
during testing to make sure all breath measures are collected. 

 
Control (CON) & Blood Flow Restriction (BFR) Session: During this session, 

you will complete the following portions in random order. 
 CON session: During the CON session, you will complete rowing exercise at a 
set workload of 30% of the peak workload you achieved during the previous session. 
Around five minutes pre- and post- exercise, your resting and recovery heart rate, blood 
pressure, and blood lactate will be measured. Blood lactate will be measured from a by 
collecting a few drops of blood from a small finger stick on a finger of your choice. There 
will be a total of 4 finger sticks across the entire session, and a Band-aid will be 
provided after each one.  

The rowing exercise for this study is a full body exercise that will consist of five, 
three-minute stages with a one-minute rest interval between each stage for a total of 19 
minutes. During the last 30 seconds of exercise sets, your heart rate, surface muscle 
electromyography (EMG) and rate of perceived exertion (RPE) will be collected. EMG 
will be measured by applying muscle sensor electrodes to two of your leg muscles on 
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your right leg. A muscle oxygen sensor will also be placed on your left leg. Before 
applying the sensors, your upper legs will need to be shaved with a handheld razor and 
cleaned with alcohol wipes. Your RPE is a personal rating of the intensity of the 
exercise you are participating in. To collect this measure, a clipboard with a range of 
numbers from 6-20 will be shown to you during rest intervals. You will point to the 
number that equals your perceived level of exhaustion (6 being the lowest possible and 
a 20 being the highest). 
 BFRsession: The exercise protocol for the BFR session will remain the same as 
the control session; however, during this session you will have Kaatsu brand training 
cuffs on the upper portion of both of your legs. The cuffs will be worn and inflated for the 
entire 19-minute exercise session. Wearing the training cuff will feel very similar to what 
it feels like to wear a blood pressure cuff. 
 

Where is the study going to take place, and how long will it take? This study will 
take place in the North Dakota State University Human Performance Lab, room 15 and 
room 14. Each session will be between 30 - 60 minutes long, and sessions will take 
place at least 48 hours apart from each other.  The total time commitment for the study 
is approximately ≤ 120 minutes. 

 
What are the risks and discomforts? It is not possible to identify all risks in research 
procedures, but the researcher(s) have taken reasonable actions to reduce any known 
risks. Some of the most common risks and discomforts include: muscle 
soreness/cramping following exercise, lightheadedness, difficulty breathing, and 
increased heart rate and blood pressure. During exercise, if your heart rate exceeds 
your age-predicted heart rate maximum for 15 seconds, or you report an RPE of 17 or 
greater, the test will end immediately. If new findings develop during this research which 
may change your willingness to participate, we will tell you about these findings. Due to 
the small risk of blood clotting during exercise and the use of BFR, you will leave the 
final session with a hand out of possible symptoms, and researchers will contact you by 
phone within 24 hours of your last exercise session to monitor for signs and symptoms 
you may have developed after the testing sessions. 
 
What are the benefits to me? You are not expected to get any benefit from being in 
this research study. 
 

What are the benefits to other people? Possible benefits to others will include new 
exercise routines to assist in crewmember safety during long duration spaceflight 
missions and the creation of exercise routines for clinical patients and elite-athletes. 
 
Do I have to take part in the study? Your participation in this research is your choice. 
If you decide to participate in the study, you may change your mind and stop 
participating at any time.  
 
What are the alternatives to being in this research study? Instead of being in this 
research study, you can choose not to participate. 
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Who will see the information that I give? We will keep all research records that 
identify you private. Your information will be combined with information from other 
people taking part in the study and stored on a password protected data file.  You will 
be assigned a participant number and that number will be associated with all your 
information. When we write about the study, we will write about the combined 
information that we have gathered. We may publish the results of the study; however, 
we will keep your name and other identifying information private.   

We will make every effort to prevent anyone who is not on the research team 
from knowing that you gave us information, or what that information is. For example, 
your name will be kept separate from your research records and these two things will be 
stored in different places under lock and key. If you withdraw before the research is 
over, your information will be retained in the research record OR removed at your 
request, and we will not collect additional information about you.   
 
Can my taking part in the study end early? Your participation in the study may end 
whenever you wish. If you choose to end your participation early, you will receive any 
money that you have gained up to that point (see below). If you fail to attend any of the 
designated session, researcher(s) may remove you from the study and you will receive 
any money that you have gained up to that point. 
 
Will I receive any compensation for taking part in this study? You will receive 
$10.00 after completing the VO2peak session and $10.00 after completing the CON and 
BFR combined Session - for a total of $20.00. If you drop out of the study before 
completing both sessions you will only earn money for the session that you completed. 
 
What happens if I am injured because of this research? If you receive an injury 
when taking part in the research, you should contact Sean Mahoney (651-249-9151) or 
Kyle Hackney (701-231-6706). If injury occurs during testing, treatment for the injury will 
be available including first aid, emergency treatment and follow-up care as needed. 
Payment for this treatment must be provided by you and your third-party payer (such as 
health insurance). This does not mean that you are releasing or waiving any legal right 
you might have against the researcher or NDSU as a result of your participation in this 
research. 
 
What if I have questions? Before you decide whether to accept this invitation to take 
part in the research study, please ask any questions that you have. Later, if you have 
any questions about the study, you can contact the researcher, Sean Mahoney at (651-
249-9151) or sean.mahoney@ndsu.edu or Dr. Kyle Hackney at 701-231-6706 or 
kyle.hackney@ndsu.edu.   
 
What are my rights as a research participant? You have rights as a participant in 
research. If you have questions about your rights, or complaints about this research, 
you may talk to the researcher or contact the NDSU Human Research Protection 
Program by: 

• Telephone: 701.231.8995 or toll-free 1-855-800-6717 
• Email: ndsu.irb@ndsu.edu 
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• Mail:  NDSU HRPP Office, NDSU Dept. 4000, PO Box 6050, Fargo, ND 
58108-6050. 

The role of the Human Research Protection Program is to see that your rights are 
protected in this research; more information about your rights can be found at:  
www.ndsu.edu/irb .   
 
 
 
 
 
 
 
 
 
Documentation of Informed Consent: 
You are freely making a decision whether to be in this research study.  Signing this form 
means that  

1. you have read and understood this consent form 
2. you have had your questions answered, and 
3. you have decided to be in the study. 

 
You will be given a copy of this consent form to keep. 
 
 
              
Your signature         Date 
 

 

         
Your printed name  
 

 

              
Signature of researcher explaining study      Date 
 
 
         
Printed name of researcher explaining study   
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APPENDIX D. RECRUITMENT EMAIL 

EMAIL PROMPT: 

NASA Sponsored Research Study 

Greetings Students and Faculty! 

 You are being invited to participate in a research study supported through the North Dakota 

Space Grant Consortium and Northland ACSM. This research study will be looking at the short-term 

effects of leg blood flow restriction during rowing exercise. Participants who complete the entire study 

will receive $20.00 cash to compensate them for their time. To receive full compensation, individuals 

must attend all sessions listed below: 

Information Session – Participants will become familiarized with equipment and procedures 

used during testing. 

Exercise Session #1 – Participants will have their maximum aerobic capacity and peak work rate 

measured by completing rowing exercise to fatigue. 

Exercise Session #2 – Participants will complete five, three-minute sets of rowing exercise 

without leg blood flow restriction. After a ~20-minute rest, the same exercise protocol will be 

repeated with leg blood flow restriction. 

Data Collected: Heart rate, blood pressure, rate of perceived exertion, surface muscle 

electromyography, blood lactate, and leg muscle oxygen levels. 

Participant Exclusion and Risks: Due to the physical requirements of the study, individuals with any 

history or neck, leg, or back pain will be excluded from participation. Individuals who are diagnosed with 

any cardiovascular disease and females taking any form of contraception will also be excluded. 

Participants who complete this study may experience regular exercise side effects (shortness of breath, 

sore muscles, etc.). All precautions will be taken to ensure participant safety during testing. 

Participant Benefits: Individuals who complete this study will be compensated $20.00 for their time. 

Data collected from participants will be analyzed to determine the short-term effects of leg blood flow 

restriction and its place as a future exercise intervention. 

Those interested in participating or seeking more information should contact Sean Mahoney 

(sean.mahoney@ndsu.edu) or Dr. Kyle Hackney (kyle.hackney@ndsu.edu) for more information. 

Thank you for your time, and have a wonderful day! 

Sean J. Mahoney 

Graduate Assistant 

Health, Nutrition, and Exercise Science 

North Dakota State University 
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APPENDIX E. PARTICIPANT DATA COLLECTION SHEET 

 

 

 

 

 

 

 

 

 

 


