
USING HUMAN ERROR MODELS TO IMPROVE THE QUALITY OF SOFTWARE

REQUIREMENTS

A Dissertation

Submitted to the Graduate Faculty

of the

North Dakota State University

of Agriculture and Applied Science

By

Vaibhav Kumar Anu

In Partial Fulfillment of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

Major Department:

Computer Science

May 2018

Fargo, North Dakota

North Dakota State University

Graduate School

Title

USING HUMAN ERROR MODELS TO IMPROVE THE QUALITY OF

SOFTWARE REQUIREMENTS

 By

Vaibhav Kumar Anu

 The Supervisory Committee certifies that this disquisition complies with North Dakota

State University’s regulations and meets the accepted standards for the degree of

 DOCTOR OF PHILOSOPHY

 SUPERVISORY COMMITTEE:

Dr. Gursimran Singh Walia

 Chair

Dr. Kendall Nygard

Dr. Jun Kong

Dr. Verlin B. Hinsz

 Approved:

 June 6, 2018 Dr. Kendall Nygard

 Date Department Chair

iii

ABSTRACT

Creating high quality software is a primary concern for software development

organizations. Researchers have devoted considerable effort in developing quality improvement

methods that help software engineers detect faults early in the development lifecycle (when the

faults are cheapest to detect and repair). While useful, the available approaches still cannot make

sure that Software developers are able to identify all or even a significantly large portion of

faults. This is because they do not help software developers identify errors (i.e., underlying cause

of faults) that may have led to the insertion of the faults (i.e., manifestation of error). This lack of

focus on errors causes some faults to be overlooked which impacts quality of software produced.

Requirements engineering is the most people-intensive phase of software development.

Thus, requirements engineering is more prone to human error when compared to other phases of

software development. To that end, this dissertation focuses on understanding the human error

causes of requirements faults. The central idea that drives this dissertation is that, knowledge of

errors that commonly occur during the requirements engineering process can help software

developers in detecting faults that are otherwise overlooked when using traditional approaches

and also help them to avoid making errors when developing requirements.

Human error research focuses on understanding and classifying the fallibilities of human

cognition. This dissertation combines requirements error information (gathered from Software

Engineering literature) with the general accounts of human error and human error models

(gathered from the Psychology literature). There are three steps to this work:

• Development of a requirements phase human error taxonomy,

• Empirical validation of the taxonomy’s usefulness for understanding requirements

faults and errors, and

iv

• Development and subsequent validation of a formal software inspection technique

based on the taxonomy.

As a result of this dissertation, a structured Human Error Taxonomy (HET) that classifies

requirements phase errors was created with direct ties to the existing human error theories.

Several empirical validations of the taxonomy have helped in:

• Successfully demonstrating the taxonomy’s usefulness for understanding

requirements faults and errors, and

• Developing a formal HET-based Error Abstraction and Inspection (EAI) approach

and supplementary human error investigation tools.

v

ACKNOWLEDGEMENTS

The research that is presented in this dissertation is not a reflection of my abilities, but

instead the immeasurable contributions from my advisors, peers, family, and friends. I am

forever grateful for these contributions.

Particularly, Dr. Gursimran Singh Walia, who has been an invaluable voice in my

research. Dr. Walia graciously agreed to be my PhD mentor and has steered my research in the

right direction ever since I started working under his advisement. Dr. Walia has not only

encouraged me to pursue my ideas, but by questioning my oftentimes poorly formulated

concepts he has forced deeper contemplation. Words cannot express the immense gratitude that I

feel for Dr. Walia’s continuous support and guidance throughout my PhD.

I owe credit to Dr. Jeffrey C. Carver and Dr. Gary L. Bradshaw at University of

Alabama-Tuscaloosa and Mississippi State University, respectively. My research has

significantly benefitted from the timely advice they gave to refine my ideas, research questions,

and research goals. I am grateful to have had Dr. Carver and Dr. Bradshaw as mentors because

without their expert insights my dissertation would be lacking in impactful results.

I owe immense gratitude to the Department of Computer Science at North Dakota State

University. Said plainly, this dissertation would not have been possible without the support

provided by the department’s faculty members and administrative support team. I also owe

gratitude to the students at the department for participating in my research.

vi

DEDICATION

For my parents, Neelam Tyagi and Komesh Kumar Tyagi.

vii

TABLE OF CONTENTS

ABSTRACT ... iii

ACKNOWLEDGEMENTS .. v

DEDICATION ... vi

LIST OF TABLES ... xi

LIST OF FIGURES ... xiii

LIST OF ABBREVIATIONS .. xiv

1. INTRODUCTION .. 1

1.1. Historical Perspective on Software Quality Improvement ... 1

1.2. Dissertation Goals .. 3

1.3. Definitions .. 5

1.3.1. Error, Fault, and Failure .. 5

1.3.2. Software Inspections ... 6

1.4. Research Framework .. 6

2. BACKGROUND RESEARCH .. 9

2.1. Software Quality Improvement Methods ... 9

2.2. A Cognitive Psychology Perspective on Errors ... 13

3. IDENTIFICATION AND CLASSIFICATION OF REQUIREMENTS

ENGINEERING HUMAN ERRORS ... 18

3.1. Systematic Review Process for Developing Human Error Taxonomy 18

3.1.1. Source Selection and Search ... 19

3.1.2. Study Selection .. 20

3.1.3. Data Extraction .. 21

3.2. Results of the Systematic Review Process ... 24

3.2.1. RQ1: Type of Requirements Engineering Human Errors Described in

Literature ... 24

viii

3.2.2. RQ2: Organizing the Human Errors Identified in RQ1 into a Taxonomy 27

3.3. Evaluating the Usefulness of Human Error Taxonomy (HET) .. 30

4. VALIDATION OF THE HUMAN ERROR TAXONOMY .. 32

4.1. Research Questions for Empirical Validation of the Human Error Taxonomy 33

4.2. Description of Designs of the Three Empirical Studies ... 33

4.2.1. Experiment Design for Study 1 (A Control Group Study) .. 33

4.2.2. Experiment Design for Study 2 (A Feasibility Study) .. 36

4.2.3. Experiment Design for Study 3 (Study to Evaluate the Educational Value of

HET) .. 37

4.3. Analysis of Data Gathered During Studies 1, 2, and 3 .. 38

4.3.1. RQ1: Does the Human Error Taxonomy Improve the Fault Detection

Effectiveness of Inspectors when Compared to Existing Requirements Inspection

Techniques? ... 38

4.3.2. RQ2: Does the Human Error Taxonomy Provide a Useful Method of

Describing and Classifying the Human Errors and Faults Made During Development

of a Software Requirements Specification document? .. 40

4.4. Summary of Results Obtained from the Three Studies .. 46

5. THE HUMAR ERROR ABSTRACTION ASSIST TOOL.. 48

5.1. Error Abstraction Using HEAA ... 50

5.2. Evaluation of the Usefulness of HEAA Tool ... 52

6. VALIDATION AND REFINEMENT OF THE HUMAN ERROR ABSTRACTION

ASSIST TOOL.. 53

6.1. Research Questions .. 54

6.2. Description of Designs of the Four Empirical Studies ... 54

6.2.1. Experiment Design for Study 4 ... 54

6.2.2. Improving the Human Error Abstraction Assist Tool ... 56

6.2.3. Experiment Design for Study 5 ... 59

6.2.4. Experiment Design for Study 6 (Live Study in a Conference) 60

ix

6.2.5. Experiment Design for Study 7 ... 63

6.3. Analysis of Data Gathered During Studies 4, 5, 6, and 7 .. 65

6.3.1. RQ1: Can the Error Abstraction and Inspection Approach (supported by the

Human Error Abstraction Assist Tool) Improve the Fault Detection Effectiveness of

Inspectors when Compared to Traditional Requirements Inspection Approach? 65

6.3.2. RQ2: Does the Human Error Abstraction Assist Tool Provide a Useful Method

for Abstracting Human Errors from Requirements Faults? .. 70

6.3.3. RQ3: Can Error Abstraction Using the Human Error Abstraction Assist Tool

Provide Significant Insights into the Type of Human Errors that are Committed Most

Frequently During the Requirements Development Process? ... 80

6.4. Summary of Results Obtained from Studies 4, 5, 6, and 7 .. 85

7. ERROR AND FAULT PREVENTION.. 87

7.1. Study 8: Research Questions and Design ... 87

7.2. Study 8: Data Analysis and Results ... 88

7.2.1. What Specific Prevention Strategies do Industry Practitioners Employ for the

Human Errors Described in the Human Error Taxonomy? ... 88

8. A DISCUSSION ON THE IMPLICATIONS OF RESULTS .. 94

9. CONCLUSION ... 98

9.1. Contribution to Software Engineering Research and Practice ... 98

9.2. Publications .. 99

9.2.1. Refereed Conferences .. 99

9.2.2. Refereed Journal Articles (Under Review and In progress) 100

9.2.3. Workshops and Live Studies ... 101

9.3. Future Work ... 101

REFERENCES ... 104

APPENDIX A. PAPERS THAT PROVIDED INPUT TO THE HET DURING THE SLR

PROCESS ... 112

APPENDIX B. HUMAN ERROR ABSTRACTION ASSIST (HEAA) – INITIAL

VERSION ... 114

x

APPENDIX C. REFINED HUMAN ERROR ABSTRACTION ASSIST (HEAA) TOOL 116

APPENDIX D. STUDY 7 - TEAMS AND SYSTEM DESCRIPTIONS 120

xi

LIST OF TABLES

Table Page

1. Primary Goals of Dissertation .. 4

2. Research Questions for the Systematic Literature Review 19

3. Search Strings [23] ... 20

4. Inclusion-Exclusion Criteria .. 21

5. Common Data Items for Extracting Information ... 22

6. Data Items Related to Each Search Focus ... 23

7. Human Errors Identified in Literature ... 25

8. Human Error Taxonomy (HET) .. 26

9. Slip Errors in Human Error Taxonomy (HET) ... 28

10. Lapse Errors in Human Error Taxonomy (HET) .. 29

11. Mistake Errors in Human Error Taxonomy (HET) ... 29

12. Research Questions for Evaluating Usefulness of the HET 33

13. Steps Performed by Participants during Study 1 .. 35

14. Steps Performed by Participants during Study 2 .. 36

15. Steps Performed by Participants during Study 3 .. 37

16. Study 1: HET vs RET Comparison Using a 5-point Scale 43

17. Study 2: Post-Study Survey Results ... 44

18. Study 3: Participants’ Feedback about Educational Value of HET 45

19. Distribution of HET’s Human Errors across RE Activities 49

20. Research Questions to Evaluate the Usefulness of the EAI approach when

supported by the HEAA tool... 54

21. Study 4: Steps Performed by Participants ... 57

22. Study 5: Steps Performed by Participants ... 60

xii

23. Study 6: Steps Performed by Participants ... 62

24. Study 7: Steps Performed by Participants ... 64

25. Study 5: Strategies Used by Inspectors during Error-informed Reinspection 69

26. Study 1 vs Study 4: Error Abstraction Accuracy Comparison 73

27. Study 4 vs Study 5: Error Abstraction Accuracy Comparison 74

28. Study 5: Progressive Error Abstraction Correctness at the Three Decision

Levels of HEAA ... 76

29. Study 7: Error Abstraction Accuracy when Abstracting Errors from Faults

in Externally Developed SRS vs Faults in Self-Developed SRS 79

30. Study 7: Percentage Contribution of Human Error Classes to Faults 82

31. Study 7: Proneness of Requirements Engineering Activities to Different

Human Error Classes .. 84

32. Study 8: Research Question .. 87

33. Study 8: Prevention Mechanisms for Communication Problems 90

34. Study 8: Prevention Mechanisms through Changes to Resources 91

35. Study 8: Prevention Mechanisms for Management/Administration Problems 91

36. Study 8: Prevention Mechanisms through Changes to RE Procedures 92

file:///C:/Users/vaibh_000/Google%20Drive/KUMAR/Dissertation/xDoctoral%20Defense/xGradschool%202nd%20rev/Dissertation%20-%20Vaibhav%20-%20Rev2.docx%23_Toc518923533
file:///C:/Users/vaibh_000/Google%20Drive/KUMAR/Dissertation/xDoctoral%20Defense/xGradschool%202nd%20rev/Dissertation%20-%20Vaibhav%20-%20Rev2.docx%23_Toc518923533

xiii

LIST OF FIGURES

Figure Page

1. Research Framework .. 7

2. Fault based inspections vs Error Abstraction based inspections 9

3. Requirement Error Taxonomy (RET) ... 11

4. General Human Information-Processing Model Proposed by Reason 15

5. Human Error Model Proposed by Reason .. 16

6. Study Selection Process .. 21

7. Human Error taxonomy (HET)... 28

8. Experiment Procedure: Assignment of Participants, Artifacts and Output 35

9. Study 1: Comparison of Average Number of Faults .. 38

10. Study 1: Comparison of Average Fault Rate or Efficiency (faults/hour) 39

11. Study 2: Number of New Faults Found During Error-based Reinspection 40

12. Study 2: Team Faults by Error Types ... 42

13. Question# 1 in Human Error Abstraction Assist .. 50

14. Question# 3 in Human Error Abstraction Assist .. 51

15. Study 4: Experimental Procedure ... 56

16. Decision Tree to Select Error Type .. 58

17. Sample Error Report Form ... 61

18. Study 7: Experimental Procedure ... 64

19. Study 4: Effectiveness of EAI vs. Fault-checklist inspection 66

20. Study 5: Number of New faults Found During Error-informed Inspection 67

21. Study 5: Error Abstraction (EA) Accuracy at three HEAA Levels 77

22. Study 7: Percentage Contribution of Slips, Lapses, and Mistakes to Faults 81

file:///C:/Users/vaibh_000/Google%20Drive/KUMAR/Dissertation/xDoctoral%20Defense/xGradschool%202nd%20rev/Dissertation%20-%20Vaibhav%20-%20Rev2.docx%23_Toc518923324
file:///C:/Users/vaibh_000/Google%20Drive/KUMAR/Dissertation/xDoctoral%20Defense/xGradschool%202nd%20rev/Dissertation%20-%20Vaibhav%20-%20Rev2.docx%23_Toc518923326
file:///C:/Users/vaibh_000/Google%20Drive/KUMAR/Dissertation/xDoctoral%20Defense/xGradschool%202nd%20rev/Dissertation%20-%20Vaibhav%20-%20Rev2.docx%23_Toc518923327
file:///C:/Users/vaibh_000/Google%20Drive/KUMAR/Dissertation/xDoctoral%20Defense/xGradschool%202nd%20rev/Dissertation%20-%20Vaibhav%20-%20Rev2.docx%23_Toc518923328
file:///C:/Users/vaibh_000/Google%20Drive/KUMAR/Dissertation/xDoctoral%20Defense/xGradschool%202nd%20rev/Dissertation%20-%20Vaibhav%20-%20Rev2.docx%23_Toc518923329
file:///C:/Users/vaibh_000/Google%20Drive/KUMAR/Dissertation/xDoctoral%20Defense/xGradschool%202nd%20rev/Dissertation%20-%20Vaibhav%20-%20Rev2.docx%23_Toc518923330
file:///C:/Users/vaibh_000/Google%20Drive/KUMAR/Dissertation/xDoctoral%20Defense/xGradschool%202nd%20rev/Dissertation%20-%20Vaibhav%20-%20Rev2.docx%23_Toc518923331
file:///C:/Users/vaibh_000/Google%20Drive/KUMAR/Dissertation/xDoctoral%20Defense/xGradschool%202nd%20rev/Dissertation%20-%20Vaibhav%20-%20Rev2.docx%23_Toc518923332
file:///C:/Users/vaibh_000/Google%20Drive/KUMAR/Dissertation/xDoctoral%20Defense/xGradschool%202nd%20rev/Dissertation%20-%20Vaibhav%20-%20Rev2.docx%23_Toc518923333
file:///C:/Users/vaibh_000/Google%20Drive/KUMAR/Dissertation/xDoctoral%20Defense/xGradschool%202nd%20rev/Dissertation%20-%20Vaibhav%20-%20Rev2.docx%23_Toc518923334
file:///C:/Users/vaibh_000/Google%20Drive/KUMAR/Dissertation/xDoctoral%20Defense/xGradschool%202nd%20rev/Dissertation%20-%20Vaibhav%20-%20Rev2.docx%23_Toc518923335
file:///C:/Users/vaibh_000/Google%20Drive/KUMAR/Dissertation/xDoctoral%20Defense/xGradschool%202nd%20rev/Dissertation%20-%20Vaibhav%20-%20Rev2.docx%23_Toc518923336
file:///C:/Users/vaibh_000/Google%20Drive/KUMAR/Dissertation/xDoctoral%20Defense/xGradschool%202nd%20rev/Dissertation%20-%20Vaibhav%20-%20Rev2.docx%23_Toc518923337
file:///C:/Users/vaibh_000/Google%20Drive/KUMAR/Dissertation/xDoctoral%20Defense/xGradschool%202nd%20rev/Dissertation%20-%20Vaibhav%20-%20Rev2.docx%23_Toc518923338
file:///C:/Users/vaibh_000/Google%20Drive/KUMAR/Dissertation/xDoctoral%20Defense/xGradschool%202nd%20rev/Dissertation%20-%20Vaibhav%20-%20Rev2.docx%23_Toc518923339
file:///C:/Users/vaibh_000/Google%20Drive/KUMAR/Dissertation/xDoctoral%20Defense/xGradschool%202nd%20rev/Dissertation%20-%20Vaibhav%20-%20Rev2.docx%23_Toc518923340
file:///C:/Users/vaibh_000/Google%20Drive/KUMAR/Dissertation/xDoctoral%20Defense/xGradschool%202nd%20rev/Dissertation%20-%20Vaibhav%20-%20Rev2.docx%23_Toc518923341
file:///C:/Users/vaibh_000/Google%20Drive/KUMAR/Dissertation/xDoctoral%20Defense/xGradschool%202nd%20rev/Dissertation%20-%20Vaibhav%20-%20Rev2.docx%23_Toc518923342
file:///C:/Users/vaibh_000/Google%20Drive/KUMAR/Dissertation/xDoctoral%20Defense/xGradschool%202nd%20rev/Dissertation%20-%20Vaibhav%20-%20Rev2.docx%23_Toc518923343
file:///C:/Users/vaibh_000/Google%20Drive/KUMAR/Dissertation/xDoctoral%20Defense/xGradschool%202nd%20rev/Dissertation%20-%20Vaibhav%20-%20Rev2.docx%23_Toc518923344
file:///C:/Users/vaibh_000/Google%20Drive/KUMAR/Dissertation/xDoctoral%20Defense/xGradschool%202nd%20rev/Dissertation%20-%20Vaibhav%20-%20Rev2.docx%23_Toc518923345

xiv

LIST OF ABBREVIATIONS

HET ..Human Error Taxonomy.

RET ..Requirements Error Taxonomy.

SE ...Software Engineering.

RE ..Requirements Engineering.

CS ...Computer Science.

EA ..Error Abstraction.

EAI ...Error Abstraction and Inspection.

SRS ..Software Requirements Specification.

FC ...Fault Checklist.

RQ ..Research Question.

SLR ..Systematic Literature Review.

1

1. INTRODUCTION

Software development is an extremely human-centric activity that involves participation

of several people who perform various developmental tasks. During the early phase of software

development, software developers elicit user needs, translate those needs into requirements, and

validate the requirements for correctness, completeness, and other quality attributes. Owing to

the involvement of various stakeholders (both technical and non-technical) in this process, there

is the potential for human errors (i.e., human cognitive failures) to occur.

Cognitive Psychologists have long studied and analyzed the types of errors that people

commit when performing different types of tasks in safety-critical, human-centric domains such

as aviation, medicine, railway system, and nuclear power plants [1–4]. This research has not only

improved the human performance in these domains, but has also lead to a decrease in

unfavorable incidents by helping organizations identify and prevent errors. Because software

development is a complex, human-centric activity, the fallibility of human cognition (during

activities such as user-need elicitation, requirements and design analysis) leads to human errors.

These human errors can then lead to various types of faults. In the same manner that human error

research has benefited other domains by providing error identification/prevention mechanisms,

this dissertation hypothesizes that properly applied human error research can have similar

quality-improvement effects in software development. To that end, in this dissertation, I have

applied the Cognitive Psychology research on human errors to propose a human error-based

approach for improving software quality.

1.1. Historical Perspective on Software Quality Improvement

Software quality (or lack thereof), is a primary concern for both software developers and

researchers. Much research and experience has shown that identifying and correcting problems

2

during the earlier phases of software development (i.e., requirements phase) can save significant

project costs (associated with rework) [5–7]. Research has shown that about 40% of total project

budget is spent on rework [5, 8], and furthermore, finding and fixing requirements faults

consumes between 70% to 85% of the total project rework cost [9, 10]. To alleviate these

requirements quality problems, researchers have proposed and empirically validated the

usefulness of a variety of requirements quality improvement techniques ranging from fault-

checklist based artifact reviews [11–14] to N-Fold inspections [15–17]to Perspective Based

Reading [18–20]. The fault-checklist technique, which is the most popular requirements

inspection method, uses the “lessons learned” from historical fault data to suggest ways for

reviewers to identity faults [21, 22]. N-Fold inspections improves the fault-checklist technique

by replicating the inspection activities using N independent inspection teams. Perspective Based

Reading (PBR) technique focusses on examining requirements artifacts from different

perspectives of the potential users of the artifact [18]. PBR tries to improve inspection efficiency

by minimizing the overlap among the faults detected by the inspectors. Although successful in

improving requirements quality, research has shown that even the most faithful application of

inspection approaches like fault-checklist, N-fold inspections, and PBR can help locate only 50-

60% of the faults present in requirements documents [13, 21].

As can be seen from the discussion above, even though the above-mentioned techniques

(like PBR) have achieved varying degrees of success, they cannot help software development

teams find and fix all requirements problems because they treat the symptoms of the problem

(i.e., faults) and not the underlying causes of the problem (i.e., human error) [22, 23]. Identifying

these human errors can help Software engineers understand why problems occurred, find and fix

related faults, and prevent errors and faults from happening in the future. To that end, this

3

dissertation hypothesizes that focusing on human errors (i.e., the underlying causes of faults) as

compared to focusing on faults alone can help software development teams find all or most of

the faults, and hence provide a more complete and sound method to address the software quality

problem.

1.2. Dissertation Goals

Human error research has been successfully adapted in various domains like aviation,

medicine, and process control [4, 24–28] for improving both the process quality and the product

quality. Human error research relies on studying human information processing models to

investigate mental processes that lead to cognitive failures. These cognitive failures are also

referred to as human errors or mental errors.

Faults/defects in software engineering artifacts arise during the process of translating (or

processing) information gathered from the users into requirements, design, and then code. Each

of these activities are human-centric and are prone to human cognitive failures (or human errors).

This dissertation tries to apply human error research to improve the quality of software artifacts.

In order to have the greatest impact on software quality, this research focusses on the very first

phase of software development - the requirements phase - wherein customer needs are gathered

from different stakeholders and translated into a formal specification. This formal specification is

referred to as the SRS (Software Requirements Specification). The SRS is generally written in

Natural Language (NL) and acts as a means of communication among stakeholders. The

requirements development process (which produces the SRS) is especially prone to human errors

(and consequently defects) due to the following reasons: (1) The requirements phase is very

fuzzy due to the involvement of a number of technical and non-technical stakeholders like end-

users, analysts, and programmers, and (2) Natural language is inherently vague and ambiguous.

4

As mentioned earlier (in Section 1.1), fault-based defect detection techniques are not able

to find all the defects in the requirements artifacts [23], [29]. The major gap left by these fault-

based techniques is a missing mapping between a fault (manifestation of a human error) and the

underlying source of the fault (i.e., the human error). Therefore, the current dissertation

investigates where and how the failures of human cognition (i.e., human errors) occur during the

requirements development process. To that end, the primary goal of this dissertation is defined as

follows:

To identify and analyze the types of human errors that occur during the requirements

phase and to develop a structured human error taxonomy to help the requirements

engineers in understanding the identified human errors.

Another goal of this dissertation is to develop techniques and tools that utilize human

error information for the purpose of defect detection in requirements artifacts (SRS). With

regards to defect detection, the primary focus of this dissertation is on developing a requirements

inspection technique and its supplemental tools. The two primary goals of this dissertation are

reiterated in Table 1.

Table 1. Primary Goals of Dissertation

Goal

1 Identify and analyze the types of human errors that occur during the requirements

phase and develop an intuitive human error framework to help the requirements

engineers in understanding the identified human errors.

2 Develop a technique that utilizes the newly developed human error framework for

the purpose of defect detection in requirements artifacts (i.e., Software

Requirements Specifications).

5

The rest of this chapter defines the key terms relevant to this research, and describes the

research framework developed for achieving the primary goals of this research.

1.3. Definitions

The discussion about software quality revolves around the use of a few important terms:

error (human error), fault, and failure. These terms often have been used interchangeably in the

software engineering literature. To alleviate confusion, this section provides a definition of each

of these terms.

1.3.1. Error, Fault, and Failure

The definitions provided below are consistent with the definitions provided in the IEEE

Standard Glossary [30–32]:

Error – A flaw in human thought process that produces an incorrect result, such as

software containing a fault. The flaw in human thought process may occur while trying to

understand a given information, while solving a problem, or while using a method or a

tool. An example of an error in the context of software requirements is: a lack of

knowledge about the needs of the user or customer.

Fault – A manifestation of an error within the software. In the context of software

requirements, a requirements fault is a manifestation of an error that was committed

during the requirements phase of software development.

Failure - Termination of the ability of a product to perform a required function or its

inability to perform within previously specified limits. From the perspective of software

requirement specifications, failure is defined as the departure of the operational software

system’s behavior from user expected requirements.

6

1.3.2. Software Inspections

Software inspections are one of the most widely used methodologies for verification of

software artifacts (e.g., requirements documents) for correctness, consistency, and completeness

[13], [33]. The primary goal of software inspections is to uncover faults that get injected during

the development of a software artifact. Examples of requirements faults include: incorrect

requirement (i.e., a requirement which specifies a user need incorrectly), ambiguous requirement

(a requirement that can be interpreted in multiple ways), and inconsistent requirements (i.e.,

requirements that contradict each other). Software inspections usually consist of three major

steps: detection of faults, collection of faults, and repairing the artifact based on the collected

faults [21]. A typical inspection consists of the following:

• having inspectors independently review the software artifact to identify faults in

the artifact (because this is the most important step in the inspection process, the

inspectors need to be trained on a specific inspection technique before this step)

• conducting a team meeting to agree on the faults and compile them in a single list

• sending the list to the author/s of the artifact so that the artifact can be repaired

(i.e., the faults identified during the inspection can be removed from the artifact)

1.4. Research Framework

In order to aid seamless integration of Cognitive Psychology research on human errors

into Software Engineering research for attaining improved software quality, this dissertation has

three major focal points (also depicted in Figure 1):

I. Creation of a human error taxonomy:

Create the taxonomy using the following major steps:

7

(1) Identify, from the Software Engineering literature, the human errors that occur during

the requirements phase of the software development process.

(2) Identify, from Cognitive Psychology literature, a human error classification system

that is suitable for creating a taxonomy of requirements phase human errors.

 (3) Integrate the human error information collected from Software Engineering literature

with the human error theory identified from the Cognitive Psychology literature to create

a taxonomy of requirements phase human errors.

II. Empirical validation of the human error taxonomy:

Validate the human error taxonomy as an effective quality improvement approach in

controlled experimental settings (academic settings) and refine the human error taxonomy

based on the results.

III. Using the human error taxonomy to develop and validate techniques and tools for

detecting human errors and faults in software requirements artifacts:

Figure 1. Research Framework

Creation of human
error taxonomy

• Review Software
Engineering literature
to identify
requirements phase
human errors.

• Review Cognitive
Psychology literature
to identify a suitable
human error
classification system.

• Develop taxonomy of
requirements phase
human errors.

Empirical validation of
human error
taxonomy

• Have software
developers perform
error based inspection
supported by the
human error
taxonomy under
controlled settings to
evaluate the
usefulness of the
human error
taxonomy.

• Refine the taxonomy
using the results of
the controlled
experiments.

Develop requirements
inspection techniques
and tools.

• Use the human error
taxonomy as a basis
for developing
requirements defect
detection technique
and supplementary
tools.

• Validate the proposed
technique and its
supplemetary tools.

8

 Develop a requirements defect detection (i.e., inspection) technique and its

supplementary instrumentation. The supplementary instrumentation will include human

error tools and trainings to assist inspectors. This part of the research framework will also

include empirical validation of the newly developed defect detection approach to evaluate

its usefulness during requirements inspections.

9

2. BACKGROUND RESEARCH

This section describes limitations of the existing quality improvement approaches and

how my dissertation aims to overcome those limitations (Section 2.1). Section 2.2 describes the

cognitive psychology perspective on human errors and its usefulness in improving software

quality.

2.1. Software Quality Improvement Methods

 The idea of a requirements inspection approach based on sources of faults (i.e. errors)

was first proposed by Lanubile et al in 1998 [34]. Lanubile et al conceptualized the idea of

abstraction of errors from an initial set of requirements faults (found using a traditional

inspection approach like the fault-checklist approach), followed by re-inspection of requirements

document guided by error information.

Figure 2. Fault based inspections vs Error Abstraction based inspections

Figure 2 shows the difference between the conventional fault-checklist based inspection

vs the Error Abstraction and Inspection (EAI) approach proposed by Lanubile et al. The EAI

requirements inspection approach adds an additional step to the conventional fault checklist

based inspections. During the conventional fault based inspection process, first, the reviewers

(inspectors) identify faults in the requirements document, and the document author then uses the

Find Faults in
Requirements

Use Faults to
Fix

Requirements

Original Requirements Repaired Requirements

Find Faults in
Requirements

Use Errors and
related Faults to
Fix Requirements

Original Requirements Repaired Requirements

Abstract
Errors From

faults

10

reported faults to fix the requirements document. The Error Abstraction and Inspection (EAI)

process, however introduces a new step wherein reviewers (inspectors) are asked to abstract

errors from the previously discovered faults. The abstracted error information is used to identify

additional faults related to the abstracted errors (this step is referred to as error-informed re-

inspection). The document author then receives the recovered list of errors and related faults,

which he/she then use for repairing the requirements document. Abstracting error information

has multiple goals, including but not limited to the following:

• Help inspectors in focusing on those areas of the requirements document that may

also have been impacted by errors abstracted during first round of inspection.

• Help in providing an understanding of the real problems that occurred during the

requirements development process. These problems are generally left undetected

when the focus is on faults alone (traditional inspection approaches only focus on

faults and not the underlying errors).

• Abstracted error information helps in providing a better medium for conveying

information required for repairing the document. This is because looking for the

underlying problems (i.e., human errors) that caused fault-injection allows the

document’s author/s to learn the actual problems with their requirements

development process and then prevent the injection of the faults in future.

Lanubile et al also provided evidence of the usefulness of the EAI approach via an

empirical study [34]. During the study, a major drawback observed by Lanubile et al in their

approach was that the process of error abstraction was heavily reliant on the creativity of

reviewers (inspectors) while they are trying to retrospectively trace back the faults to the errors

responsible for the faults. In other words, the error abstraction process used in Lanubile’s

11

approach did not provide support for the reviewers (inspectors) during the error abstraction

activity. Walia & Carver tried to bridge this gap by proposing an error classification taxonomy

that contained information about cause-effect relationship between errors and faults [23].

The error classification taxonomy, titled Requirement Error Taxonomy (RET) was

developed for the purpose of guiding the reviewers (inspectors) while they are trying to abstract

errors from faults. Another purpose of the RET (Figure 3) was to provide a comprehensive list of

the types of errors that generally occur during the requirements development process, so that

inspectors do not rely simply on their ability or creativity to think of the errors that are

responsible for the faults being analyzed. In order to develop the comprehensive list of

requirement errors, Walia & Carver conducted an extensive literature survey [23] that

encompassed not only Software Engineering Literature, but also surveyed human cognition

research to evaluate if any of the human errors proposed in human cognition research can have

corresponding errors in software requirements. The result of the literature survey conducted by

Walia & Carver was the Requirement Error Taxonomy (shown in Figure 3), which grouped

Figure 3. Requirement Error Taxonomy (RET)

12

requirement errors into three major categories: People Errors, Process Errors, and

Documentation Errors. The People Errors category describes errors caused by the fallibilities of

the people involved in the requirements development process. The Process Error category

describes errors caused by selection of incorrect or inappropriate requirements engineering

technique or process. Documentation Error category describes errors caused due to incorrectly

organizing and specifying the requirements.

Following the development of the RET, Walia & Carver conducted multiple empirical

studies [29, 35–37] with the goal of: (1) validating whether the Error Abstraction and Inspection

(EAI) process is an effective approach for identifying faults in requirements documents, (2)

validating whether the Requirement Error Taxonomy or RET is a useful addition to Lanubile’s

EAI process, and (3) validating if integration of cognitive psychology research with software

engineering research is useful for software quality improvement. The results from the empirical

studies conducted by Walia & Carver [29] highlighted the following key observations:

• The results of the empirical studies validated that not only does EAI (guided by

RET) provides an improvement in inspectors’ fault detection effectiveness when

compared to fault-based inspection, RET was also found to have a very positive

impression on the participants of the studies with regards to its usefulness in

helping them locate faults.

• The results of the empirical studies highlighted that the People Error class (errors

caused by fallibilities of individuals involved in requirements development) of

RET was reported to be the source of a significantly large number of faults (up to

32% of the faults were traced back to People Errors).

13

The observation that People Errors were found responsible for a majority of faults in

requirements documents was of particular interest and a major motivational factor for the

research described in the current dissertation. Although, RET was found to be useful and

effective, RET was lacking in a direct tie-in with the research performed by Cognitive

Psychologists on human errors and the psychological processes that produce human errors.

Furthermore, even though RET did try to identify human errors that could have corresponding

requirements errors, it failed to evaluate each of the identified errors from the perspective of

whether or not the error qualified as a failure of human cognition (i.e., human error).

A major limitation of RET was that it was created without reference to psychological

theories of how human errors occur, and the observation that People Errors of RET were found

to be responsible for a significantly large number of faults were the two primary motivational

factors behind conducting the current research. The current research proposes to extend the work

done by Walia & Carver on RET by creating a requirements phase human error taxonomy which

is more strongly grounded in human error theories proposed in the Cognitive Psychology

literature. Section 2.1 provides a brief review of the formal literature on human errors from a

psychological perspective and the relevance of human error theories to Software Engineering

domain.

2.2. A Cognitive Psychology Perspective on Errors

As defined in Section 1.3, the term error, in context of the current research is understood

as failings of human cognition in the process of perception, judgement, problem-solving,

decision-making, planning, and execution of the plan (i.e., acting). This failure of human

cognition is often referred to as human errors or mental errors in the Cognitive Psychology

literature. These errors, in turn produce faults, which are physical manifestation of error. These

14

faults, when left undetected, may result in system failure. This is to say that most of the system

failures find their origin in a human cognition failure or human error.

Human errors have been examined in domains such as aviation, medicine, and the oil

industry. Cognitive Psychologists have developed domain-specific taxonomies of human errors

that capture systematic failure in human-performance [2, 4, 24, 26–28, 38]. The commonality

between the domain-specific taxonomies is that these taxonomies capitalize upon elementary

theoretical research on human cognition. Often, these elementary human cognition theories or

human error theories employ a human information-processing model that provides a coherent

account of human errors that are committed by people when they are performing different tasks.

Cognitive Psychologists argue that human errors generally are not the result of irrational or

maladaptive tendencies, but instead result from “normal, useful psychological processes gone

awry” [39]. Hence, human errors can be organized around the normal psychological processes

that an individual goes through when performing any task.

Similar to domains like aviation, medicine etc., Software Engineering is a process

dependent upon human operators and hence is susceptible to human errors (human cognition

failures). Human errors in software engineering arise during information processing, particularly

as information is translated from one form to another (for example, during requirements

development when customer needs are translated into formal requirements specifications). The

current research proposes that application of human error research to Software Engineering

offers great promise for reducing faults and improving software quality.

Cognitive scientists have proposed several human error classification systems e.g.,

Human Factors Analysis & Classification system (or HFACS) [27], ‘Swiss Cheese’ model [39],

Reason’s and Rasmussen’s taxonomy [39–43], and Norman’s classification [44] to show that

15

people’s judgments and decision-making can be erroneous when faced with different situations.

The most prominent and widely respected human error classification system is the one proposed

by James Reason [3, 4, 26–28]. James Reason, in his seminal book titled, Human Error [39],

proposed a general classification system of human errors, wherein human errors are organized

around a very simple model of human information-processing. Reason proposes that there are

three general processes a human operator goes through in order to perform an action: (1) sensing

and perceiving information, (2) processing the information and making a decision about which

action/s to take, and (3) taking action. Figure 4 shows the general human information-processing

model proposed by Reason. Human errors can originate in any of the three processes shown in

Figure 4.

 Reason defines the human errors associated with the three processes into three broad

categories: slips, lapses, and mistakes. Slips and lapses happen while executing the planned

action (taking action), whereas mistakes happen during the perception, processing, and decision

making stages. Reason further provides the underlying cognitive failure mechanisms behind

slips, lapses and mistakes (shown in Figure 5). As can be seen in Figure 5, slips and lapses occur

due to inattention and memory failures, respectively, and mistakes occur due to inadequate

formulation of plan. Inadequate formulation of plan often is due to lack of knowledge or

inadequate application of procedures/rules to a given situation.

Figure 4. General Human Information-Processing Model Proposed by Reason

16

Reason’s classification establishes a very strong association between the human

information-processing model and cognitive failure mechanisms like inattention, memory

failures, and lack of knowledge. This makes Reason’s human error classification system easily

applicable and adaptable to any domain. Another benefit of applying Reason’s model of slips,

lapses and mistakes to the Software Engineering domain is that the information-processing

stages software engineers undergo are similar to the ones on which Reason’s classification is

built upon: process user needs, make decisions about project plan, and execute (implement) the

plan.

The current research makes an effort to adapt the theoretical research on human errors

(specifically the research done by James Reason) to the software engineering domain. The

current research also provides evidence that such an adaptation will provide an improved

understanding of the means to detect and remove software engineering human errors and the

corresponding faults, and consequently have a positive impact on software process & product

Figure 5. Human Error Model Proposed by Reason

17

quality. The next chapter provides the development process of a requirements engineering

human error taxonomy in which requirements engineering human errors are organized around

Reason’s slips, lapses, and mistakes.

18

3. IDENTIFICATION AND CLASSIFICATION OF REQUIREMENTS ENGINEERING

HUMAN ERRORS

This chapter describes the research approach used to develop the Human Error

Taxonomy (HET) that describes the most commonly occurring requirements engineering human

errors and classifies them into Reason’s slips, lapses, and mistakes. Section 3.1 describes the

systematic literature review as a research method for developing the HET, and Section 3.2

provides the major outcomes of the systematic review process.

3.1. Systematic Review Process for Developing Human Error Taxonomy

This systematic literature review was conducted to identify and classify the requirements

phase human errors reported in the Software Engineering (SE) literature. Systematic Literature

Review (SLR) is a specific methodology of research, which was developed in order to gather and

analyze the available state of knowledge pertaining to a topic [45–47]. As the name suggests, a

systematic literature review follows a very well formulated and strictly structured method,

referred to as the review protocol. The review protocol is created by:

• first, expressing the focused research topic (which is being investigated) as one or

more structured question/s using specific terms and concepts that are relevant and

must be addressed in order to collect as much information about the topic as

possible, and

• second, creating strategies to retrieve the information around the pre-defined

structured question/s.

The review protocol needs to be explicitly defined so that other researchers can reproduce

the same procedure and be able to evaluate whether the protocol defined for the focused topic is

adequate to retrieve as much information about the topic as possible.

19

An effective systematic review is one that is driven by an overall goal. In the current

systematic review, the high-level goal was:

What types of human errors that occur during the requirements phase can be

identified in the literature and how can human error theories help in creating a

classification system for those human errors?

The high-level question was further decomposed into two detailed research questions.

The purpose of the first detailed research question was to identify the human errors reported in

Software Engineering (SE) literature, and the purpose of the second research question was to

organize the identified human errors into a taxonomy. Table 2 provides the two detailed research

questions.

Table 2. Research Questions for the Systematic Literature Review

Research Question

RQ1 What types of requirements engineering human errors does the software engineering

and psychology literature describe?

RQ2 How can we organize the human errors identified in RQ1 into a taxonomy?

Subsections 3.1.1, 3.1.2, and 3.1.3 describe the rest of the review protocol (Source

Selection, Primary Study Selection, and Data Extraction).

3.1.1. Source Selection and Search

The systematic review that I conducted was an extension and replication of the review

conducted by Walia et al [23]. Therefore, to identify relevant publications, I used the same

search strings that were used by Walia et al. The search strings were executed in IEEExplore,

INSPEC, ACM Digital Library, SCIRUS (Elsevier), Google Scholar, PsychINFO (EBSCO), and

Science Citation Index. Because Walia et al included papers published through 2006 in their

20

review, I only searched for studies published after 2006 (through October 2014). Table 3

provides the detailed search strings.

Table 3. Search Strings [23]

String# Search Focus Detailed Search string

1 Software quality

improvement

approach

((software OR development OR application OR product OR project) AND (quality OR condition

OR character OR property OR attribute OR aspect) AND (improvement OR enhancement OR

advancement OR upgrading OR ameliorate OR betterment) AND (approach OR process OR system

OR technique OR methodology OR procedure OR mechanism OR plan OR pattern))

2 Software inspection

methods

((software OR development OR application OR product OR project) AND (inspection OR

assessment OR evaluation OR examination OR review OR measurement) AND (approach OR

process OR system OR technique OR methodology OR procedure OR mechanism OR plan OR

pattern))

3 Error abstraction OR

root causes

(error OR mistake OR problem OR reason OR fault OR defect OR imperfection OR flaw OR lapse

OR slip OR err) AND (abstraction OR root cause OR cause))

4 Requirement stage

errors

((requirement OR specification) AND (phase OR stage OR situation OR division OR period OR

episode OR part OR state OR facet) AND (error OR mistake OR problem OR reason OR fault OR

defect OR imperfection OR flaw OR lapse OR slip OR err))

5 Software

error/fault/defect

taxonomy

((software OR development OR application OR product OR project) AND (error OR mistake OR

problem OR reason OR fault OR defect OR imperfection OR flaw OR lapse OR slip OR err) AND

(taxonomy OR classification OR categorization OR grouping OR organization OR terminology OR

systematization))

6 Human error

classification

((human OR cognitive OR individual OR psychological) AND (error OR mistake OR problem OR

reason OR fault OR defect OR imperfection OR flaw OR lapse OR slip OR err) AND (taxonomy

OR classification OR categorization OR grouping OR organization OR terminology OR

systematization))

3.1.2. Study Selection

During the first phase, called title-elimination phase, a total of 280 studies were identified

by running the search strings on the various publication databases. Next, the abstracts and

keywords were read to exclude any studies that were clearly unrelated to the research questions.

At the end of this stage, the list contained 96 studies.

Next, the full-text of the 96 remaining studies was reviewed. The inclusion/exclusion

criteria shown in Table 4 was used to examine the full-text of the 96 studies. This step resulted in

34 studies remaining.

21

Table 4. Inclusion-Exclusion Criteria

RQ Inclusion Criteria (Specific to RQ’s) Exclusion Criteria (same

for both RQ’s)

1

- Papers that focus on using human errors for improving software

quality

- Empirical studies (qualitative or quantitative) of using human error

information in the software development lifecycle

- Papers that provide errors, mistakes, or problems in the software

development lifecycle.

- Papers that provide error, fault, or defect classifications.

- Empirical studies (qualitative or quantitative) that provide causal

analysis or root causes of software defects.

- Papers based only on

expert opinion

- Short-papers, introductions

to special issues, tutorials,

and mini-tracks

- Papers not related to any

of the research questions

- Preliminary conference

versions of included journal

papers

- Studies whose findings are

unclear and ambiguous. 2

- Papers from the psychology literature about models of human error.

- Papers from the cognitive psychology literature about human the

thought process, planning, human reasoning or problem solving.

- Empirical studies (qualitative or quantitative) on human errors.

- Papers describing various human error classification systems.

Next, four additional studies were identified through snowballing (i.e., searching through

the references of the 34 remaining studies). This step resulted in 38 included studies. Fig. 6

summarizes the search and selection process.

3.1.3. Data Extraction

 Based on the type of information contained in the primary study, we classified 11

primary studies as Cognitive Psychology studies and 27 studies as Software Engineering studies.

The Cognitive Psychology papers focused on models of human errors. The Software Engineering

studies primarily focused on human errors committed during the process of software

Figure 6. Study Selection Process

22

development. The content and focus of these two types of studies was different, and hence

different types of data was extracted from them.

Note that studies included by Walia et al in their review [23] were reanalyzed and data

was extracted from these studies as well. Table 5 lists the common data extracted from all

studies. Table 6 lists the data extracted based on each primary study’s research focus. Using

these data extraction forms, information was extracted from the studies.

Table 5. Common Data Items for Extracting Information

Data item Description

Study Identifier Unique identifier for the paper (same as the reference number)

Bibliographic data Author, year, title, source

Type of article Journal/conference/technical report

Focus of Area The field in which the research was conducted e.g., Software Engineering or Industrial

Engineering or Psychology or Aviation or Medicine

Study aims The aims or goals of the primary study

Context Relates to one/more search focus, i.e., research area(s) the paper focuses upon.

Study type Industrial experiment, controlled experiment, survey, lessons learned.

Unit of analysis Individual developers or department or organizational

Control Group Yes, no; if ‘‘Yes”: number of groups and size per group

Data collection How the data was collected, e.g., interviews, questionnaires, measurement forms,

observations, and discussion.

Data analysis How the data was analyzed; qualitative, quantitative or mixed

Concepts The key concepts or major ideas in the primary studies

Higher-order

interpretations

The second- (and higher-) order interpretations arising from the key concepts of the

primary studies. This can include limitations, guidelines or any additional information

arising from application of major ideas/concepts

Study findings Major findings and conclusions from the primary study

23

Table 6. Data Items Related to Each Search Focus

Search

Focus

Data Item Description

Quality

Improvement
Approach

Focus or process Focus of the quality improvement approach and the process/method used to improve quality

Benefits Any benefits from applying the approach identified

Limitations Any limitations or problems identified in the approach

Evidence The empirical evidence indicating the benefits of using error information to improve software quality

and any specific errors found

Error focus Yes or No; and if ‘‘Yes”, classify the solution foundation (next data item)

Mechanism or

Solution

Foundation

1. Ad hoc - just something the investigators thought up but could have been supported by empirical

work showing its effectiveness; or

2. Evidence-based — a notation of a systematic problem in the software engineering process that leads

to a specific remediation method; or

3. Theory-based — draws support from research on human errors

Requirement
Errors

Problems Problems reported in requirement stage

Errors Reported errors (if provided in the paper) at the requirements stage

Faults Faults (if any information provided) at requirement stage

Mechanism Process used to analyze or abstract requirement errors (select one of the following):

1. Ad hoc - just something the investigators thought up but could have been supported by empirical

work showing its effectiveness; or

2. Evidence-based — a notation of a systematic problem in the software engineering process that leads

to a specific remediation method; or

3. Theory-based — draws support from research on human errors

Error-fault-

defect

taxonomies

Focus The focus of the taxonomy (i.e., error, fault, or failure)

Error Focus Yes or No; if ‘‘Yes”, What was the process used to classify errors into a taxonomy?

Requirement phase Yes or No (whether it was applied in requirement phase)

Benefits and

Limitations

Benefits and/or Limitations of the taxonomy

Evidence The empirical evidence regarding the benefits of error/fault/defect taxonomy for software quality

Software

inspections

Focus The focus of inspection method (i.e., error, fault of failure)

Error Focus Yes or No; if ‘‘Yes”, how did it focus reviewers’ attention to detect errors during the inspection

Requirement phase Yes or No (Did it inspect requirement documents?)

Evidence The empirical evidence regarding the benefits/limitations of error-based inspection method

Human errors

Human errors and

classifications

Description of errors made by human beings and classes of their fallibilities during planning, decision

making and problem solving

Evidence The empirical evidence regarding errors made by humans in different situations (e.g., aircraft control)

that are related to requirement errors

24

3.2. Results of the Systematic Review Process

This section is organized around the two research questions (shown in Table 2) that were

driving this systematic literature review.

3.2.1. RQ1: Type of Requirements Engineering Human Errors Described in Literature

To start with, individual errors, error categories, error-descriptions, and root causes were

extracted from the 38 primary studies. Similarly, the published systematic review paper written

by Walia et al [23] was analyzed and errors and their descriptions were extracted. An

examination of this extracted information revealed multiple interpretations of the term ‘error’.

These interpretations included: software defects, program errors, requirements defects,

requirements problems, end-user (or user) errors, and human error.

Before building the taxonomy, items that were not truly human errors were removed. The

output of this process was 31 human errors, listed in Table 7.

At this point, the list of included studies in this review was also updated. First, only seven

out of the 27 software engineering primary studies contained a true requirements engineering

human error. Therefore, the other 20 studies were eliminated. Second, none of the Psychology

studies contained any requirements engineering human errors. Hence, these studies were also

excluded.

Additionally, there were eleven (11) studies from the review paper published by Walia et

al [23] that identified requirements engineering human errors. So, in total, eighteen (18) studies

from the software engineering literature were included as they contain true requirements

engineering human errors (see Appendix A for a list of the 18 studies that provided input to the

Human Error Taxonomy).

25

Table 7. Human Errors Identified in Literature

Error # Error Name Source (see Appendix A)

1 Problem representation error Huang et al., 2012

2 RE people do not understand the problem Lehtinen et al., 2014

3 Assumptions in grey area. Kumaresh 2010

4 Wrong assumptions about stakeholder opinions Lopes and Forster 2013

5 Lack of cohesion Lopes and Forster 2013

6 Loss of information from stakeholders Lopes and Forster 2013

7 Assumption that insufficient requirements are ok Lehtinen et al., 2014

8 Low understanding of each other’s roles Bjamason et al., 2011

9 Not having a clear demarcation between client and users Kushwaha 2006

10 Mistaken belief that it is impossible to specify NFRs in a verifiable form Firesmith 2007

11 Accidentally overlooking requirements Firesmith 2007

12 Ignoring some requirements engineering tasks Firesmith 2007

13 Inadequate Requirements Process Firesmith 2007

14 Mistaken assumptions about the problem space Walia et al 2009

15 Environment errors Walia et al 2009

16 Information Management errors Walia et al 2009

17 Lack of awareness of sources of requirements Walia et al 2009

18 Application errors Walia et al 2009

19 Requirements developer did not understand some aspect of the product or process Walia et al 2009

20 User needs not well-understood or interpreted by different stakeholders Walia et al 2009

21 Lack of understanding of the system Walia et al 2009

22 Lack of system knowledge Walia et al 2009

23 Not understanding some parts of the problem domain Walia et al 2009

24 Misunderstandings caused by working simultaneously with several different software systems

and domains

Walia et al 2009

25 Misunderstanding of some aspect of the overall functionality of the system Walia et al 2009

26 Problem-Solution errors Walia et al 2009

27 Misunderstanding of problem solution processes Walia et al 2009

26

Table 7. Human Errors Identified in Literature (continued)

Error # Error Name Source (see Appendix A)

28 Semantic errors Walia et al 2009

29 Syntax errors Walia et al 2009

30 Clerical errors Walia et al 2009

31 Carelessness while documenting requirements Walia et al 2009

Table 8. Human Error Taxonomy (HET)

Reason’s

Taxonomy

Human Error Class Human Error(s) from

Table 7

Slips Clerical Errors 30, 31

Lack of consistency in the requirement specification 5

Lapses Loss of information from stakeholders 6

Accidentally overlooking requirements 11

Mistakes Application Errors 18, 25

Solution Choice Errors 26, 27

Syntactic Errors 28, 29

Wrong Assumptions 3, 4, 14

Environment Errors 15

Information management Errors 16

Poor understanding of one another’s roles 8

Not having a clear distinction between client an users 9

Mistaken belief that it is impossible to specify non-functional requirements in a verifiable form 10

Inadequate requirements process 13

Lack of awareness of requirements sources 17

Violations Assumption that insufficient requirements are ok 7

Ignoring some requirements engineering tasks 12

27

3.2.2. RQ2: Organizing the Human Errors Identified in RQ1 into a Taxonomy

To create the human error taxonomy (HET), two steps were followed. First, the

individual errors in Table 7 were examined and grouped into classes based on similarities.

These analyses were performed by studying the description provided for the error by the

primary study that supplied the error. Human error expert, Dr. Gary Bradshaw (Professor,

Cognitive Science Program, Mississippi State University) evaluated the final classification,

which is shown in Table 8.

Then, the error classes were organized into Reason’s Slips, Lapses, Mistakes taxonomy.

For this organization, each error class was analyzed to (i) decide whether it was a planning or an

execution error and (ii) for execution errors, decide whether the error was related to attention

failures (slips) or memory failures (lapses).

Note that the last two rows of Table 8 contain intentional violations (i.e., deliberately

failing to follow rules), which are different from unintentional errors (slips, lapses, and

mistakes). The human error taxonomy covers only unintentional errors. Hence, the taxonomy

excludes violations. Figure 7 shows the final outcome (i.e., the Human Error Taxonomy) of

answering RQ1.

In order to make the error classes in Table 8 (or Figure 7) more understandable, a

description of each class along with an example error and fault is provided in Tables 9, 10, and

11. For the examples given in the tables, the Loan Arranger (LA) system is used. The

28

requirements for Loan Arranger (LA) system were developed by researchers for use in software

quality research. A brief overview of LA system is provided in the next paragraph.

Loan Arranger (LA) overview: A loan consolidation organization purchases loans from

banks and bundles them for resale to other investors. The LA application selects an optimal

bundle of loans based on criteria provided by an investor. These criteria may include: 1) risk

level, 2) principal involved, and 3) expected rate of return. The loan analyst can then modify the

bundle as needed for the investor. LA system automates information management activities, such

as updating loan information monthly.

Table 9. Slip Errors in Human Error Taxonomy (HET)

Error Name Description Example of error Example of fault

Clerical errors Result from carelessness while performing

mechanical transcriptions from one format or

from one medium to another. Requirement

examples include carelessness while

documenting specifications from elicited user

needs.

Error: The requirement author understood the

difference between regular loans (amount <=

$275,000) and jumbo loans (amount > $275,000).

But, while documenting the requirements, s/he

recorded the same information for both types of

loans.

Fault: The requirements for

the jumbo loans incorrectly

specify the same behavior

as for regular loans

Lack of consistency

in the requirement

specification errors

Occur when requirement authors do not

articulate or organize the requirements in a

consistent manner, even when they have a clear

idea of user needs. This error leads to a

disjointed requirements specification, which

makes interpretation difficult.

Error: The requirement author is not consistent

with his/her use of terminology. The same concept

is referred to by different terms throughout the

document.

Fault: Use of terms:

“marked for inclusion” and

“identified for inclusion” to

convey the same

information.

Figure 7. Human Error taxonomy (HET)

29

Table 10. Lapse Errors in Human Error Taxonomy (HET)

Error Name Description Example of error Example of fault

Loss of

information from

stakeholders

errors

Result from a requirement author forgetting,

discarding or failing to store information or

documents provided by stakeholders, e.g. some

important user need

Error: A loan analyst informs the requirement

author about the format for reports (file, screen,

or printout) from a loan analyst, but forgets to

note it down

Fault: Information about the

report formats is omitted

from the requirement

specification.

Accidentally

overlooking

requirement errors

occur when the stakeholders who are the source of

requirements assume that some requirements are

obvious and fail to verbalize them

Error: Because stakeholders assume that

abnormal termination and system recovery is a

commonplace occurrence and will be handled by

the requirement analysts or the system design

team, they do not provide system recovery

requirements.

Fault: Requirement document

does not describe the process

of system recovery from

abnormal termination.

Table 11. Mistake Errors in Human Error Taxonomy (HET)

Error Name Description Example of error Example of fault

Application errors arise from a misunderstanding of the

application or problem domain or a

misunderstanding of some aspect of overall

system functionality

Error: The requirements author lacks

domain knowledge about loans,

investing, and borrowing. As a result she

incorrectly believes that the stakeholders

have told her all information required to

decide when to remove loans that are in

a default status from the repository.

Fault: The requirements specification

omits the requirement to retain

information about borrowers who are

in default status (even after the

corresponding loans are deleted from

the system).

Environment errors Result from lack of knowledge about the

available infrastructure that supports the

development of a given project. This

infrastructure includes tools, templates, or

other items of infrastructure that support the

elicitation, understanding, or documentation of

software requirements.

Error: The requirement authors did not

use a standard template for documenting

the requirements (for example, the IEEE

standard template for SRS) because they

were unaware of the presence of such a

template. Therefore, the author did not

use right tools.

Fault: Requirements about system

scope and performance were omitted.

Information

Management errors

Result from a lack of knowledge about

standard requirement engineering or

documentation practices and procedures within

the organization

Error: It is common procedure within the

organization that requirement

specifications include error-handling

information about which mechanisms

are invoked when error occur. This

specification does not contain any

information about error-handling

information.

Fault: Specification does not indicate

that an error message should be

displayed regarding errors rather than

just returning to a previous screen with

no notification.

Wrong Assumption

errors

Occur when the requirements author has a

mistaken assumption about system features or

stakeholder opinions

Error: Requirements author assumes that

error-handling is a task common to all

software projects and will be handled by

programmers. Therefore, s/he does not

gather that information from

stakeholders.

Fault: Information about what happens

when a lender provides invalid data

has been omitted.

Poor understanding

of one another’s

roles

Domain knowledge and perspectives vary

between roles, which necessitates considerable

communication among members of the

software engineering team. Without proper

understanding of developer roles,

communication gaps may arise, either by

failing to communicate at all (due to lack of

understanding that other roles are impacted) or

by ineffective communication (e.g. missing

tacit requirements due to lack of insight into

the customer’s domain.)

Error: It was not clear among team

members, who needed to elicit the

requirements of a bank lender, which

affected the participation of an important

stakeholder during the requirements

process.

Fault: Omitted functionality as

requirements of a bank lender (i.e., the

LA application system to handle both

fixed rate loans and adjustable rate

loans) were not recorded in the

specification.

30

Table 11. Mistake Errors in Human Error Taxonomy (HET) (continued)

Error Name Description Example of error Example of fault

Mistaken belief that

it is impossible to

specify non-

functional

requirements in a

verifiable form

Major causes of this problem are the prevalent

myths that it is too costly, too difficult, and

even impossible to produce good requirements,

especially nonfunctional requirements, during

the software engineering process. These myths

are especially prevalent with regard to quality

and specialty engineering requirements (e.g.,

availability, interoperability, performance,

portability, safety, security, and usability),

where there is still a prevailing but mistaken

belief that it is impossible to specify these

requirements in a verifiable form.

Error: An absence of any performance,

security, usability, or availability

requirements suggests that all non-

functional requirements were

overlooked.

Fault: Omission of performance

requirements, security requirements

and other non-functional requirements.

Not having a clear

distinction between

client and users

If RE practitioners are not able to distinguish

between clients and end users, or do not realize

that the clients are distinct from the end users,

they may fail to gather and analyze the end

users’ requirements

Error: The requirement-gathering person

failed to gather information from the

actual end user of LA system, the Loan

Analyst.

Fault: No functional requirement to

edit loan information has been

specified whereas ‘Purpose’ specifies

loans can be edited.

Lack of awareness

of requirement

sources

Requirements gathering person is not aware of

all stakeholders which he/she should contact in

order to gather the complete set of user needs.

Sources of requirements include all different

types of end users of the system being built and

all the decision-makers from project

sponsoring organization (also called the

customers or the clients)

Error: Requirement gathering person

was not aware of all end users and

clients and did not gather the needs of a

bank lender (one of the end users of LA

system). This end user wanted the LA

system to handle both fixed rate loans

and adjustable rate loans.

Fault: Omitted functionality as

requirements only considers fixed rate

loans.

Solution Choice (or

Problem Solution)

errors

Are due to not knowing, misunderstanding, or

misuse of problem solution processes. This

kind of errors occur in the process of finding a

solution for a stated and well-understood

problem. If RE analysts do not understand the

correct use of problem-solving methods and

techniques, they might end up analyzing the

problem incorrectly, and choose the wrong

solution

Error: Lack of knowledge of the

requirement engineering process and

requirement engineering terminology on

part of the analysts. The analyst does not

understand what kind of requirements

are performance requirements and what

kind of requirements are functional

requirements.

Fault: A particular requirement listed

under performance requirement should

be a functional requirement.

Inadequate

Requirements

Process

Errors occur when the requirement authors do

not fully understand all of the requirement

engineering steps necessary to ensure the

software is complete and inadvertently omit

one or more steps from the plan.

Error: Requirement engineering plan did

not have sufficient requirement

traceability measures to link

requirements to user needs.

Fault: An extraneous requirement that

allows loan analysts to change

borrower information is included that

could result in unwanted functionality

and unnecessary work for the

developers.

Syntax errors Occur when a requirement author

misunderstand the grammatical rules of natural

language or the rules, symbols, or standards in

a formal specification language like UML.

Error: The requirements engineer

misunderstood the use of navigability

arrows to illustrate that one use case

extends another.

Fault: An association link between

two classes on a UML diagram lacks a

navigability arrow to indicate the

directionality of association resulting a

diagram that is ambiguous and can be

misunderstood.

3.3. Evaluating the Usefulness of Human Error Taxonomy (HET)

After the development of the HET, its usefulness for error and fault detection was

evaluated via empirical studies that were conducted in academic settings. From a requirements

31

defect detection perspective, my research proposes that, a deeper understanding of the errors that

affected the development of a particular requirements artifact can lead requirements engineers to

detect faults that are often overlooked during traditional inspections. To that end, feasibility

studies were conducted to determine whether software developers can use the HET to improve

their defect detection ability during a requirements inspection. The next chapter describes the

design and execution of the studies that evaluated the usefulness of HET for requirements defect

detection.

32

4. VALIDATION OF THE HUMAN ERROR TAXONOMY

As mentioned earlier, the Human Error Taxonomy (HET) was constructed with the goal

of using the taxonomy as a basis for developing requirements defect/fault detection (i.e.,

requirements inspection) techniques. Therefore, a primary goal of my dissertation is to develop

and empirically validate human error based (i.e. HET based) requirements inspection (i.e., fault

detection) tools and techniques. In order to evaluate the usefulness of HET as a requirements

fault detection tool, a formal Error Abstraction and inspection (EAI) approach is employed. The

EAI approach adds an additional step to the traditional Fault Checklist (FC) based inspection.

The extra step consists of assisting inspectors in identifying underlying human errors (abstracted

from the faults found during the FC inspection). Inspectors then use the abstracted human error

information to re-inspect SRS (Software Requirements Specification document) for additional

faults.

The usefulness of the human error taxonomy (HET) during requirements inspections was

evaluated in three controlled experiments, two of which were conducted at North Dakota State

University (NDSU), and one was conducted at University of Alabama (UA) at Tuscaloosa.

While the major goal of the studies was same - to evaluate the usefulness of human errors

taxonomy for requirements fault detection – the designs were slightly different from each other

to gather insights about different aspects of using human error taxonomy (HET) for requirements

fault detection (example of these aspects include relevance of HET’s human error classes to

requirements engineering).

This chapter first discusses, in Section 4.1, the overarching Research Questions that these

three controlled studies answered. Next, in Section 4.2, details about each study’s design are

33

provided. Section 4.3 provides the results of analyzing the data gathered during the three studies.

Essentially, Section 4.3 provides the answers for the research questions described in Section 4.1.

4.1. Research Questions for Empirical Validation of the Human Error Taxonomy

As mentioned earlier, this section provides the main research questions that were

formulated to enable data collection for evaluating the usefulness of the human error taxonomy

for requirements fault detection. Table 12 provides the Research Questions that the three

empirical studies (described in this chapter) provided data for.

Table 12. Research Questions for Evaluating Usefulness of the HET

Research Question

RQ1 Does the Human Error Taxonomy improve the fault detection effectiveness of

inspectors when compared to existing requirements inspection techniques?

RQ2 Does the Human Error Taxonomy provide a useful method of understanding and

classifying the human errors and faults made during development of a Software

Requirements Specification document?

4.2. Description of Designs of the Three Empirical Studies

This section provides the designs of the three controlled studies that provided data for

answering the research questions described in Table 12. In this section, designs of the three

studies are provided, and next in Section 4.3, the data analysis and results (based on the research

questions shown in Table 12) are provided.

4.2.1. Experiment Design for Study 1 (A Control Group Study)

Study 1 compared the fault (or defect) detection effectiveness of the Human Error

Taxonomy with that of an existing error taxonomy called Requirement Error Taxonomy. The

Requirement Error Taxonomy (RET) [23] was an initial foray into error taxonomy based

inspections, but it was found that RET lacked a strong grounding in Cognitive Psychology

34

theories. This lack of connection with Cognitive Psychology theories was one of the motivations

behind creation of the Human Error Taxonomy. Study 1 was designed to evaluate if the updated

human error taxonomy (i.e., HET) offers an improvement over RET (a proven verification

technique) during requirements inspection. To that end, a randomized pre-test post-test control

group experiment was executed in controlled settings. The control group used RET, whereas the

experimental group used the newly developed HET to perform requirements inspection.

The participants in this study were 46 computer science students, enrolled in the

Principles of Software Engineering course at North Dakota State University (NDSU). The course

required students to work in teams (teams were selected by the instructor prior to this study) to

develop Software Requirements Specification (SRS) documents for different software systems.

To enable a comparison between HET vs. RET, participants were randomly divided in each team

into two equal groups (a control group that used RET and an experiment group that used HET).

Figure 8 shows the division of participants into three teams (e.g., team 1 had 16 participants) and

subdivision of each team into treatment groups (8 used RET and 8 used HET).

During the training (pre-test), the participants (23 in experimental group and 23 in control

group) were trained on their respective taxonomies (HET for experimental and RET for control

group) by having them perform an error based inspection of an external SRS document that was

seeded with 30 realistic faults. The SRS used during the training specified requirements for a

Parking Garage Control System (PGCS). During the post-test, participants inspected the SRS’s

that they had developed (as part of a team). Members of Team 1 developed and inspected the

SRS for Fly-by system, an airline reservation and travel management system. Team 2 developed

and inspected the SRS for Campus Reconnection system, a student information and course

management system. Team 3 developed and inspected the SRS for FaceSpace system, an online

35

music streaming system. As shown in Figure 8, half of the participants within each team

inspected their own SRS using HET (e.g., 8 in team 1) or RET (other 8 in team 1), depending on

the treatment group they were assigned during the pre-test. A detailed descriptions of the various

experimental steps performed by participants appears in Table 13.

Table 13. Steps Performed by Participants during Study 1

Experimental Step Description

Pretest

Steps

Training on HET

and RET

Participants were trained on the requirements inspections and the different type of requirement faults. Next, in two separate

sessions, 23 participants were trained on HET and 23 participants were trained on RET. The training involved teaching the

participants about the error abstraction using HET/RET (i.e., how to identify errors from faults), and using the abstracted

error information to perform fault inspection (i.e., how to locate new faults).

Error Abstraction After the training, participants were given 10 faults in PGCS SRS (chosen randomly from 30 seeded faults). Participants

then used HET/RET to abstract and classify errors from the 10 given faults. This step resulted in 46 error forms (23 for RET

and 23 for HET).

Fault Inspection The participants then used the abstracted error information (from error forms) to locate additional faults in the PGCS SRS

(i.e. participants re-inspected PGCS SRS using errors). This step resulted in 46 fault-forms (23 for HET and 23 for RET)

containing new faults in PGCS SRS.

SRS development Participants then worked in their respective teams (three teams) to develop requirements specification documents or SRS

for different systems.

Post-test steps: error-inspection

on self-created SRS

During the post-test, each participants inspected their own SRS (which they had developed as a team) using the technique

that were trained during the pre-test (HET or RET) and reported faults. For example, of the 16 participants in Team 1, 8

used HET while the other 8 used RET to inspect the “Fly-by” SRS. This step produced 46 individual fault-forms.

Post-study Survey and Focus

Group

The experimental group and the control group participants rated HET and RET across various usefulness categories on a 5-

point scale (ranging from “1 – not useful” to “5 – very useful”). A focus group discussion was conducted in order to

understand the problems faced by participants while using HET/RET to find faults.

Figure 8. Experiment Procedure: Assignment of Participants, Artifacts and Output

46 subjects

Team 1 (T1) 16 subjects Team 2 (T2) 14 subjects Team 3 (T3) 16 subjects

8 subjects
used HET

8 subjects
used RET

7 subjects
used HET

7 subjects
used RET

8 subjects
used HET

8 subjects
used RET

Pre-Test /
Training

PGCS
and 10
Faults

Abstract error
using HET

Abstract error
using RET

Abstract error
using HET

Abstract error
using RET

Abstract error
using HET

Abstract error
using RET

Inspect PGCS
using HET

Inspect PGCS
using RET

Inspect PGCS
using HET

Inspect PGCS
using RET

Inspect PGCS
using HET

Inspect PGCS
using RET

Post-test Inspect SRS 1
using HET

Inspect SRS 1
using RET

Inspect SRS 2
using HET

Inspect SRS 2
using RET

Inspect SRS 3
using HET

Inspect SRS 3
using RET

Survey and In-Class Discussion

36

4.2.2. Experiment Design for Study 2 (A Feasibility Study)

Similar to the control group study described in Section 4.2.1, the major goal of Study 2

(which was conducted at University of Alabama at Tuscaloosa) was to evaluate the feasibility of

using the Human Error Taxonomy (HET) to support the requirements inspection process. Study

2 also focused on analyzing whether the HET is useful for classifying errors and for guiding

inspectors to find additional faults.

Table 14. Steps Performed by Participants during Study 2

Experimental Step Description

Training 1 - Fault checklist

technique

During this 15-minute training, participants were trained on how to use the fault checklist technique to

inspect an SRS document.

Step 1- First Inspection

(Individual Inspection)

Each participants was randomly assigned an SRS developed by another team. The participants used the

fault checklist technique (from Training 1) to inspect (i.e., identify faults) in the assigned SRS. The output

of Step 1 was 28 individual Fault Forms (one per participants).

Step 2 - Team Meeting to

Consolidate Faults

Each team were provided with the individual Fault Forms submitted by the participants who inspected their

SRS (from Step 1). Each team then worked as a group to examine these fault lists to first remove duplicates

and then consolidate the faults into one single master list, which they documented on the Group Fault Form.

The output of Step 2 was eight Group Fault Forms (one per team).

Training 2 - Error

abstraction and

classification

During this 40-minute session, participants were first trained on the error abstraction process, and then

trained on the HET and how to use HET to abstract and classify requirements errors.

Step 4 - Error-informed Re-

inspection of the SRS

Using the errors abstracted during Step 3, each participants individually re-inspected their own SRS to

identify any additional faults related to these errors (i.e. the faults that were not found by their classmates

during Step 1). The participants documented the additional faults on a Re-inspection Form. The output of

Step 4 was 28 individual Re-inspection Forms (one per participants).

Step 5 - Coordinating the

individual fault lists

This step is similar to Step 2, except that each team used the faults found during the re-inspection (Step 4).

Each team created a Final Group Fault Form, in which they reported the agreed-upon list of faults. The

output of Step 5 was eight Final Group Fault Forms (one per team).

Post-study Survey After completing all experimental steps, each participants provided feedback about the error abstraction

process and the HET.

The study’s participants were 28 senior-level undergraduate computer science students.

The students were enrolled in the Fall’15 capstone project course at University of Alabama at

Tuscaloosa. The primary goal of this course was for the student teams to undergo the entire

software development process (requirements elicitation/documentation, design, implementation,

and testing) in order to build a complete software system. Students were divided into eight three

37

or four-person teams by the course instructor (not part of the research team). Each team

developed their own system.

The inspection artifacts were the 8 SRS’s developed by the teams. A detailed description

of the various experimental steps performed by participants during Study 2 appears in Table 14.

The complete experimental package used for Study 2 can be found here:

http://humanerrorinse.org/Studies/2015/Fall_UA.

4.2.3. Experiment Design for Study 3 (Study to Evaluate the Educational Value of HET)

Thirty-four (34) graduate students enrolled in the Software Development Processes

course in North Dakota State University participated in Study 3. Students were trained on the

Human Error Taxonomy (HET), and how to abstract human errors from faults. The primary

focus of Study 3 was to evaluate whether performing error abstraction on faults found in an

externally developed requirements document can help students understand requirement phase

human errors. Table 15 provides the experimental steps performed during this study.

Table 15. Steps Performed by Participants during Study 3

Experimental Step Description

Training - Error

abstraction and

classification

During this 50-minute session, participants were trained on the HET,

and how to use HET to abstract and classify requirements errors from

faults.

Error abstraction

from faults in PGCS

SRS.

The students were given 10 randomly selected faults (from 30 seeded

faults) in PGCS SRS and asked to analyze these 10 faults to abstract

and classify human errors into one of the error class of HET. The

result of this step was 34 individual error lists containing human

errors (and their classifications) that may have occurred during

creation of PGCS requirements

Post-study survey The survey gathered students’ feedback on HET and their

understanding of the human errors and cognitive failure mechanisms

that affect the requirements development process

http://humanerrorinse.org/Studies/2015/Fall_UA

38

During the survey, participants rated usefulness of HET on a 5-point scale (ranging from

“1- Strongly Disagree” to “5 – Strongly Agree”). The first category of survey questions

evaluated students’ abilities to distinguish between human error types (slips, lapses, and

mistakes). A second category of survey questions evaluated the usefulness of HET in helping

students understand the requirement phase errors and the faults caused by the errors.

4.3. Analysis of Data Gathered During Studies 1, 2, and 3

 This section provides the results of analyzing the data gathered during Studies 1, 2, and

3. This section is organized around the two research questions (see Section 4.1) that were

formulated to validate the usefulness of the Human Error Taxonomy for requirements fault

detection. The three studies (Studies 1, 2, and 3) were designed with the goal of collecting the

data to answer the research questions described in Table 12. Experimental design for each of the

three studies were provided in Sections 4.2.1, 4.2.2, and 4.2.3, respectively.

4.3.1. RQ1: Does the Human Error Taxonomy Improve the Fault Detection Effectiveness of

Inspectors when Compared to Existing Requirements Inspection Techniques?

Data gathered during Study 1 and Study 2 was analyzed to answer this research question.

Study 1 was a control group study that compared the fault detection effectiveness provided by

Figure 9. Study 1: Comparison of Average Number of Faults

39

HET vs fault detection effectiveness provided by RET (an existing requirements verification

technique). During Study 1, experimental group participants who used HET found more faults

than the control group participants who used RET for two out of three teams (as shown in Figure

9). In terms of efficiency (faults per hour), during Study 1, participants who used HET

(experiment group) found faults at a much faster rate than the participants who used RET

(control group) for all three teams (as shown in Figure 10).

 Independent sample t-tests were run for both effectiveness and efficiency for all three

teams. It was found that although the participants who used HET generally performed better than

the participants using RET, the effectiveness and efficiency improvement was not statistically

significant. With respect to effectiveness, the p-values obtained during the independent measures

t-tests were 0.684, 0.866, and 0.705 for Teams 1, 2, and 3 respectively, indicating that HET

group did not found significantly more faults. With respect to efficiency, the p-values obtained

during the t-tests were 0.835, 0.536, and 0.608 for Teams 1, 2, and 3 respectively indicating that

the efficiency for HET group was not significantly better than RET group.

Figure 10. Study 1: Comparison of Average Fault Rate or Efficiency (faults/hour)

40

Study 2 was a feasibility study that evaluated whether software development teams are

able to use human error information to find additional faults that they were not able to find

during a traditional fault-checklist based inspection. Results (which are provided in Figure 11)

from analyzing the data gathered during Study 2 showed that, all six teams found additional

faults during the re- inspection using abstracted error information, but the number of additional

faults found was not higher than the number of faults found during fault-checklist based

inspection (this maybe because most of the faults were already found during first inspection).

But overall, all teams located new faults that were not located during fault-checklist inspection,

thereby improving quality of their requirements.

Results from Study 1 and Study 2 show that the Human Error Taxonomy helped improve

the fault detection effectiveness of inspectors when compared to the existing techniques

(Requirement Error Taxonomy and Fault-checklist based inspection techniques).

4.3.2. RQ2: Does the Human Error Taxonomy Provide a Useful Method of Describing and

Classifying the Human Errors and Faults Made During Development of a Software

Requirements Specification document?

This research question was further broken down into two research questions:

Figure 11. Study 2: Number of New Faults Found During Error-based Reinspection

41

• RQ2a: Are all three Error types (slips, lapses, mistakes) and all error classes of the

Human Error Taxonomy relevant to the requirements engineering process?

• RQ2b: Do software developers believe that the Human Errors Taxonomy is useful

for abstracting and classifying requirements engineering human errors?

Data analysis and results for RQ2a is discussed in subsection 4.3.2.1 and the data analysis

for RQ2b is discussed in subsection 4.3.2.2.

4.3.2.1. RQ2a: Are all three Error types (slips, lapses, mistakes) and all error classes of the

Human Error Taxonomy relevant to the requirements engineering process?

Data gathered during Study 2 was analyzed in order to answer this research question.

During Study 2, each team abstracted human errors from faults in their own requirements

document (i.e., SRS document). The error abstraction data was analyzed at two levels:

• Error Type Level: The high level error types of HET are slips, lapses, and

mistakes. Analysis shown in Figure 12 indicates that all six teams made errors of

the three types. That is, teams committed all three types of errors (slips, lapses,

and mistakes) and these errors caused injection of faults in their SRS documents.

• Error Class Level: Each high-level error type of HET has some low-level error

classes. Error types Slip, Lapse, and Mistake have two, two, and eleven classes,

respectively. Thus, there are a total of 15 low-level error classes in HET.

Analysis showed that eleven of the fifteen error classes were represented in the

SRS documents of the teams. That is, teams made faults that were classified into

most (but not all fifteen) of HET’s error classes.

Overall, this analysis indicates that all three error types (slips, lapses, mistakes) in the

HET are important and relevant because software developers made errors and faults of each type.

42

Results also showed that developers made faults that were abstracted to (or traced back to) errors

belonging to eleven of the fifteen error classes in HET. Hence, HET’s errors classes are also

relevant to requirements engineering process, but need to be further studied so that more

conclusions can be drawn about relevance of all fifteen classes.

4.3.2.2. RQ3: Do software developers believe that the Human Errors Taxonomy is useful for

abstracting and classifying requirements engineering human errors?

The data gathered from Study 1, Study 2, and Study 3 was analyzed to answer this

research question. First during Study 1 (the control group study), a post-study survey was

conducted. In the survey, the experimental group and the control group participants rated HET

(experimental group) and Requirement Error Taxonomy or RET (control group) across various

usefulness categories on a 5-point scale (ranging from “1 – not useful” to “5 – very useful”). A

focus group discussion was also conducted in order to understand the problems faced by

participants while using HET/RET to find faults. Only the feedback data collected from the post-

study survey was analyzed to answer this research question (RQ3). The results (Table 16)

showed that while both error taxonomies were rated favorably, HET received slightly better

feedback in four out of the five usefulness categories. These four categories were usability (ease

of use), usefulness, confidence that error classes in taxonomy represent real RE problems, and

Figure 12. Study 2: Team Faults by Error Types

43

worthiness of effort spent in using the taxonomy. RET was rated more favorably for the

category, “Error Classes Do Not Overlap”.

This was expected because unlike the RET, the HET includes errors within an error type

(e.g., Application error – an error class under Mistake) that can happen at different points during

the requirements development process (i.e., elicitation, analysis, and verification).

Table 16. Study 1: HET vs RET Comparison Using a 5-point Scale

 HET RET

Usability of the

taxonomy

2.9 2.6

Error classes in

the taxonomy are

distinct and do

not overlap

2.9 3

Usefulness of the

taxonomy

3.8 3.4

Confidence that

error classes in

taxonomy

represent real

requirements

engineering

problems

3.9 3.7

Worthiness of

effort

3.3 3.2

Next, during Study 2 (feasibility study), participants rated the Human Error Taxonomy

(HET) across nine specific characteristics: usefulness, intuitiveness, confidence, understandable,

classification, abstraction, helpful, and no overlap of error classes. Table 17 provides the results

of this analysis.

44

Table 17. Study 2: Post-Study Survey Results

HET

Characteristic

Survey Statement Mean Rating (on a 5-point

Scale)

Usefulness The HET is helpful for identifying

faults

3.4

The HET is complete 3.7

The HET will be useful on future

project

3.7

The HET is helpful in improving the

SRS

4.2

The HET is helpful to detect

overlooked faults

3.5

The effort spent on using HET is

valuable

4

Intuitiveness The HET is intuitive 3

I am confident that errors represent

real problem

3.7

Confidence I am confident in the error abstraction

process

2.9

Understandability HET is easy to understand 3.4

Classification The HET is easy to use to abstract

and classify errors

3

Helpful The HET is helpful for understanding

faults.

3.8

No overlap of

errors classes

HET’s error classes are distinct and

do not overlap

2.9

Although, during Study 2, most of the HET-characteristics were rated positively, there

were some characteristics that participants believed needed to be improved. Participants’

feedback showed that they did not find the HET intuitive and they also were not confident about

the error abstraction process. Additionally, participant feedback also showed that they did not

45

find HET easy to use when abstracting and classifying human errors from requirements faults.

Overall, feedback from Study 2 participants revealed that the error abstraction process and the

error abstraction training was not clear and needed to be improved.

Table 18. Study 3: Participants’ Feedback about Educational Value of HET

Questions that evaluated effectiveness of HET and the error abstraction process for

imparting knowledge of human errors

 N Mean (SD) Median

Q1 I feel confident I can distinguish between a

slip and a lapse

33 3.9 (0.6) 4

Q2 I feel confident I can distinguish between a

slip and a mistake

33 4.1 (0.8) 4

Q3 HET documentation had sufficient detail to

allow me to understand human errors that

occur during the requirements development

process

33 3.8 (1) 4

Questions related to educational value of human errors and the error abstraction process

Q4 The effort spent in learning human errors is

valuable and worthwhile in understanding

faults in requirements document.

33 3.97 (0.9) 4

Q5 I am confident that human errors represent

real problems in the requirements

development process.

33 4.2 (0.8) 4

Study 3 specifically focused on the educational value of training students on the

requirements engineering human errors described in the HET. During Study 3, the students were

first trained on HET and the error abstraction process and then they were asked to abstract errors

from 10 faults in an externally developed SRS document (PGCS SRS). Next, students were

asked to provide feedback about, whether performing the error abstraction process (using HET)

has helped them in understanding the difference between the three human error types (slips,

46

lapses, mistakes). With Study 3, the central idea was to evaluate if HET is a good learning

resource for Computer Science and Software Engineering students to learn about Cognitive

Psychology concepts (i.e., slips, lapses, mistakes). Table 18 provides the results of analyzing the

feedback data collected during Study 3. As can be seen in Table 18, students believed that

performing error abstractions (using HET) from faults helped them learn about slips, lapses, and

mistakes in general and also the slips, lapses, and mistakes that occur during the requirements

engineering process.

4.4. Summary of Results Obtained from the Three Studies

The three studies described in this chapter were designed to evaluate the feasibility of

using the Human Error Taxonomy for requirements fault detection. The results from Studies 1

and 2 (shown in Figure 9, 10, and 11) showed that software developers were able to use human

error information to find faults in requirements documents. The results (Figure 9 and 11) also

showed that HET can provide improved fault detection effectiveness when compared to

traditional inspection approaches like Requirements Error Taxonomy and Fault-checklist based

inspections. The improvements, however, were not statistically significant. That is, during

Studies 1 and 2, even though the inspectors who used HET found more faults, the HET did not

help inspectors detect a significantly larger number of faults when compared to Requirements

Error Taxonomy and Fault-checklist based inspections. Significance of results notwithstanding,

the improved fault detection effectiveness provided by HET motivated further investigation of

using the HET to support requirements inspections.

The post-study surveys and discussions conducted during the studies also revealed that

study participants faced major difficulties when performing error abstraction from requirements

faults. Error abstraction is an important leg of the HET-based inspection approach (called Error

47

Abstraction and Inspection or EAI). These results revealed that in order to improve the fault

detection effectiveness of the HET-based inspection approach (i.e., the EAI approach), it is

important to improve the training and tool support for the error abstraction leg of EAI.

To that end, I worked on developing an error abstraction tool called Human Error

Abstraction Assist. The development of this tool was done under the supervision of a Cognitive

Psychology expert, Dr. Gary Bradshaw (Professor, Mississippi State University). The next

chapter provides a detailed description of the Human Error Abstraction Assist (HEAA) tool.

48

5. THE HUMAR ERROR ABSTRACTION ASSIST TOOL

EAI, which is the human error based (i.e., HET-based) inspection approach, begins with a

fault checklist (FC) inspection step, which is followed by an error abstraction step, which in turn

is followed by an error-informed re-inspection step. Results from Studies 1 and 2 (in Chapter 4)

showed that, in order for improving the fault detection effectiveness of the HET-based inspection

approach (Error Abstraction and Inspection or EAI approach), it was important that the error

abstraction leg of EAI be improved. The error abstraction leg of EAI helps software development

teams in identifying and understanding the human errors that were committed during the

development process of a requirements document (these human errors in turn caused faults to be

injected in the requirements document being inspected). Participants of the studies described in

Chapter 4 stated in their feedback that the trainings and support they were provided on error

abstraction were not sufficient for them to be able to accurately abstract errors from requirements

faults. Participants faced considerable difficulties during the error abstraction step. This maybe

because the error abstraction step requires inspectors to retrospectively analyze each fault (found

during the fault-checklist inspection) to determine the cognitive process that went awry (or was

flawed to begin with), thus causing the fault to be injected. Requirements development is a fuzzy

process as it involves multiple activities (elicitation, analysis, documentation etc.) and multiple

people (client, end-users, requirement analysts, requirement author). Hence, for an inspector,

who may not have not been involved in the requirements development process, retrospectively

analyzing a fault to determine the cognitive failure (human error) that caused the injection of the

fault can be an overwhelming and complex task. Overwhelming, because the inspector can think

of numerous scenarios where the cognitive failure might have occurred and this can cause

difficulties for the inspector to pick the most likely scenario.

49

Table 19. Distribution of HET’s Human Errors across RE Activities

 RE Activities

Human Error

Categories

Elicitation Analysis Specification Management

Slips

Clerical Errors Clerical Errors

Lack of consistency

in Requirement

Specifications

Lapses

Loss of information from

stakeholders

Accidentally overlooking

requirements

Mistakes

Application errors Application errors

Environment errors Environment errors Environment errors

Information

Management

errors

Wrong assumptions Wrong assumptions

Low understanding of each

other’s roles

Low understanding of

each other’s roles

Mistaken belief that it is

impossible to specify non-

functional requirements in a

verifiable form

Mistaken belief that it is

impossible to specify non-

functional requirements in

a verifiable form

Not having a clear

demarcation between client

and users

Lack of awareness of

sources of requirements

 Problem-Solution errors

Inadequate

Requirements

Process

 Syntactic errors

To alleviate this problem and assist the inspectors when they are trying to identify the

human error that caused the injection of a fault, an intuitive questionnaire-style framework

(Appendix B) was developed that helps inspectors accurately pinpoint the human error that

caused the fault being analyzed. The Human Error Abstraction Assist (HEAA) works by guiding

the inspector in eliminating the unlikely scenarios and focus on a scenario that is more likely to

have caused the injection of the fault being analyzed.

50

The motivation behind HEAA’s development was the belief that inspectors will be more

comfortable if they focus their attention on requirements phase activities (elicitation, analysis,

specification, and management) instead of focusing on understanding the mechanisms of human

cognitive failures (i.e., slips, lapses, and mistakes). This is because inspectors are generally

software developers and are expected to have more knowledge about the various requirements

engineering activities as compared to being knowledgeable about slips, lapses, and mistakes.

Therefore, for developing the HEAA, the fifteen human error classes in the Human Error

Taxonomy were distributed across four major requirements engineering activities (elicitation,

analysis, specification, and management). Table 19 on the pervious page provides the result of

this distribution. The HEAA was developed based on this distribution of errors. A description of

how the HEAA helps inspectors in mapping requirements faults to human errors is provided in

subsection 5.1.

5.1. Error Abstraction Using HEAA

Abstracting human error from a given fault with HEAA begins with the inspector picking

a requirements phase activity wherein the human error occurred and resulted in the injection of

Figure 13. Question# 1 in Human Error Abstraction Assist

51

the fault being analyzed. As Question #1 in HEAA (see Figure 13), a checklist of items is

provided to guide the selection of the requirements activity.

The next question (Question# 2) requires the inspector to visualize and provide an

account of the scenario where the human error occurred. This helps the inspectors in improving

their understanding of the requirement phase activity where the human error might have occurred

(so in a sense, steps 1 and 2 are iterative in nature).

Next, as Question# 3, the inspector picks a human error from the options provided to

him/her under error boxes labelled with requirement activity names.

Each box in Question # 3 (see Figure 14) is labeled with a particular requirements

engineering activity and provides the human errors that are relevant to that requirements

engineering activity. The boxes in Question# 3 of the HEAA tool were created based on the

Figure 14. Question# 3 in Human Error Abstraction Assist

52

distribution of human errors across requirements engineering activities (this distribution was

shown in Table 19).

5.2. Evaluation of the Usefulness of HEAA Tool

The Human Error Abstraction Assist (HEAA) tool was created with the purpose of

improving the error abstraction leg of the human error-based requirements inspection approach,

Error Abstraction and Inspection (or EAI) approach. After the creation of the HEAA tool,

empirical studies were conducted to evaluate whether the HEAA tool provides improved support

(compared to Human Error Taxonomy) for software developers when they are trying to abstract

human errors from requirements faults. It was anticipated that improved support during the error

abstraction leg of EAI would improve the fault detection effectiveness of the EAI inspection

approach. To that end, Chapter 6 described the controlled studies conducted to evaluate the

usefulness of the Human Error Abstraction Assist tool during human error-based requirements

inspections.

53

6. VALIDATION AND REFINEMENT OF THE HUMAN ERROR ABSTRACTION

ASSIST TOOL

The creation of the Human Error Abstraction Assist (HEAA) tool was motivated by

participant feedback that training and support for the error abstraction leg of the human error-

based inspection approach (i.e., the Error Abstraction and Inspection or EAI approach) needed to

be improved. After the creation of the HEAA tool, four empirical studies were designed and

executed to evaluate its usefulness. The studies not only evaluated the usefulness of the HEAA

tool during human error-based requirements inspections, but also evaluated the human error-

based requirements inspection approach (i.e., the EAI approach) itself. Essentially, the four

studies were a continuation of the series of studies (described in Chapter 4) to evaluate the

usefulness of the human errors identified in Human Error Taxonomy, with the only exception

being that the EAI inspection approach was now being supported by the newly developed HEAA

tool. Because the four new studies are continuation in the series of empirical evaluations of

human error-based requirements inspections, the four new studies are referred to as Studies 4, 5,

6, and 7 (the first three studies of the series were described in Chapter 4).

This chapter describes the procedure followed and the results obtained from the four

empirical studies that were conducted after the creation of the HEAA tool. Section 6.1 provides

the research questions that drove the designs of the four studies, followed by Section 6.2 that

provides the study designs for the four studies. Section 6.3 provides the results obtained from the

four studies.

54

6.1. Research Questions

Table 20 provides the research questions that were formulated to enable data collection

for evaluating the usefulness of the human error-based requirements inspection approach (i.e.,

EAI approach) supported by the newly developed Human Error Abstraction Assist tool.

Table 20. Research Questions to Evaluate the Usefulness of the EAI approach when supported

by the HEAA tool

Research Question

RQ1 Can the Error Abstraction and Inspection approach (supported by the Human Error

Abstraction Assist tool) improve the fault detection effectiveness of inspectors when

compared to traditional requirements inspection approach?

RQ2 Does the Human Error Abstraction Assist tool provide a useful method for abstracting

human errors from requirements faults?

RQ3 Can error abstraction using the Human Error Abstraction Assist tool provide

significant insights into the type of human errors that are committed most frequently

during the requirements development process?

6.2. Description of Designs of the Four Empirical Studies

This section provides the designs of the four controlled studies that provided data for

answering the research questions described in Table 20. This section provides the designs of the

four studies, followed by Chapter 6.3 that provides the data analysis and results (based on the

research questions shown in Table 20). As the four studies described in this chapter are

continuation of the series of empirical evaluations (described in Chapter 4) of the usefulness of

human error-based requirements inspections, the four studies are titled Studies 4, 5, 6, and 7.

6.2.1. Experiment Design for Study 4

The primary goal of Study 4 was to evaluate if the Error Abstraction and Inspection

(EAI) approach supported by the Human Error Abstraction Assist tool will help inspectors

55

discover a significantly larger number of faults that are otherwise left undetected when using the

standard fault checklist-based inspection approach.

The participants in Study 4 were 17 graduate students enrolled in the Software

Requirements Definition and Analysis course at North Dakota State University. The participants

were a mix of MS and PhD students in computer science or software engineering and had prior

Information Technology (IT) industry experience. The course trained students on identifying,

analyzing, documenting and verifying requirements.

Study 4 utilized two different requirements artifacts. During the initial training,

participants performed a practice inspection using EAI on a software requirements specification

(SRS) document that specified requirements for a Parking Garage Control System (PGCS).

PGCS SRS described requirements for controlling the entries and exits of a parking garage. The

PGCS SRS was 10 pages long and seeded by its original developers with 30 realistic faults.

PGCS SRS was chosen for the training due to its generic domain and seeded set of faults. For the

transfer session, participants used EAI to inspect the SRS document for Restaurant Interactive

Menu (RIM) system. The RIM system is responsible for taking customer’s orders in a restaurant

with the help of an interactive PDA or online system. The RIM SRS was developed for a real

project through interaction with clients, was 21 pages long, and contained real faults.

Figure 15 shows the experimental procedure followed during Study 4. The study was

conducted in two phases: an initial training and the transfer session. The initial training consisted

of two training sessions: Training 1 on fault checklist (FC) inspection approach, and Training 2

on EAI approach. Transfer session refers to the part of the experiment wherein participants apply

(or transfer) the knowledge gained during the trainings to carry out the actual experimental tasks.

The details of the trainings and transfer session steps are provided in Table 21.

56

6.2.2. Improving the Human Error Abstraction Assist Tool

Using lessons learned from the previous study (i.e., Study 4), I first worked on

refining/improving the Human Error Abstraction Assist (HEAA) tool, and next Study 5 was

conducted wherein the Error Abstraction and Inspection (EAI) approach was supported by the

refined-HEAA tool. Before describing the experiment design of Study 5, in this section a brief

description of the improvements added to the HEAA tool is provided.

The goal was to improve the HEAA tool on several levels. First goal was to refine the

HEAA to help the inspectors better visualize the situation/scenario wherein the human error

occurred and led to the injection of the fault that is being analyzed. Second goal was to provide

inspectors with a better view of HET’s three human error types (slips, lapses, mistakes).

Figure 15. Study 4: Experimental Procedure

57

Table 21. Study 4: Steps Performed by Participants

Experimental Step Description

Training 1 – Pre-experimental training on

Fault-Checklist (FC) inspection.

Over the course of the semester, the participants have been trained on applying the fault-

checklist (FC) approach on various SRS documents. Training 1 consisted of a quick recap

session of the FC inspection approach.

Training 2

(PGCS SRS)

Initial training on EAI This training was a 90-minute training session wherein the participants were trained on human

error taxonomy (HET), on using the Human Error Abstraction Assist (HEAA) to abstract and

classify human errors, and on using the abstracted human errors to find additional faults in the

SRS document. After the participants were introduced to HET and HEAA, they were provided

with the PGCS SRS and 6 (out of 30 seeded) randomly chosen faults.

Step 1 – Error

abstraction and

classification on the 6

faults

The participants used information provided during initial training (on EAI) to abstract and

classify human errors from the six faults using Human Error Abstraction Assist (HEAA). The

output of this step was 17 individual Error Report Forms (one per participant) containing human

errors present in PGCS SRS.

Step 2 – Error-informed

re-inspection of PGCS

SRS for the remaining

faults

The participants then re-inspected the PGCS SRS using the human error information contained

in error report form (from Step 1). The output of this step was 17 individual New-Fault lists (one

per participant) containing new faults found during the re-inspection.

Following the completion of Step 2, the researchers discussed the issues faced by the

participants when performing error abstraction, and re-inspection using the EAI process.

Transfer

Session (RIM

SRS)

Step 1 – FC Based

inspection

The participants used the fault-checklist (FC) inspection approach to inspect the RIM SRS. This

step resulted in 17 individual Fault forms (one per participant) containing faults present in RIM

SRS.

Step 2 – Human error

abstraction and

classification

Participants used the Human Error Abstraction Assist (HEAA) to abstract and classify human

errors for each fault they found during Step 1. The result of this step was 17 individual Error

Report forms containing human errors committed during the development of RIM SRS.

Step 3 – Error-informed

re-inspection of RIM

SRS for remaining

faults

The participants re-inspected RIM SRS using the human error information from Error Report

forms (from Step 2). The output of this step was 17 individual New-Fault List forms containing

new faults in RIM SRS (i.e., faults that were not found during FC inspection or Step 1).

Post Study Questionnaire After completing the steps described above, participants provided feedback regarding the

usefulness of EAI, HEAA and the training procedures. This feedback was required in order to

better understand the results and make improvements in both the EAI and the HEAA tool.

In order to achieve these goals, a decision flow diagram (Figure 16) was added to the

HEAA tool in consultation with the Psychology expert. The improved HEAA tool can be found

in Appendix C. The decision flow diagram asks intuitive questions at the decision nodes, which

helps the inspectors in selecting the right human error type for the fault they are analyzing.

58

A noticeable change in the improved HEAA compared to the one used in Study 4 (see

Chapter 5 for a description of the HEAA tool used in Study 4) is that the high level error types of

HET (i.e., slips, lapses, mistakes) have been brought back into the fold. That is, the improved

HEAA will require inspectors to choose an appropriate error type (slips/lapse/mistake) before

they select a human error class. The inclusion of error type level in HEAA was suggested by the

Cognitive Psychology expert (Dr. Gary Bradshaw). The rationale is that, from an inspector’s

perspective, an understanding of slips, lapses, and mistakes will promote his/her understanding

of the detailed human error classes that are included in the HET. Concerning the above-

mentioned inclusion of the error type level in HEAA, an additional module to the error

abstraction training has been added. The additional module focuses on helping inspectors

understand the difference between slips, lapses, and mistakes by demonstrating the process of

mapping simple real world mishaps to slips, lapses, and mistakes. It will be demonstrated to the

inspectors that the decision tree (Figure 16) can be used to categorize day-to-day accidents or

Figure 16. Decision Tree to Select Error Type

59

mishaps (such as clinical misdiagnosis by a doctor) as either a slip, lapse, or a mistake. Such

examples are expected to help inspectors in understanding and using the refined HEAA tool (to

map requirements faults to human errors) more effectively.

Furthermore, in order to improve the error abstraction training, more examples of the

“fault to error-class mapping process” were needed. In order to do this, the training was updated

to include demonstrations of the steps of error abstraction (using HEAA) for real faults in the

RIM SRS. That is, for a selected set of RIM SRS faults, the training will include all steps,

starting from situation/scenario formation, to error type selection (using decision flow diagram),

to error-class selection.

Study 5, which is described in the next section, evaluated the EAI inspection approach

supported by the refined-HEAA tool.

6.2.3. Experiment Design for Study 5

Similar to Study 4, the main goal of Study 5 was to evaluate if the Error Abstraction and

Inspection (EAI) approach supported by the HEAA tool can help inspectors identify

requirements faults that are overlooked or are hard-to-locate during traditional requirements

inspections. One major difference between Study 4 and Study 5 was that Study 5 used the

refined HEAA tool. Another primary goal of Study 5 was to gather and analyze data about: (1)

issues that inspectors face when abstracting human errors from requirements faults and, (2)

strategies that inspectors use when using the abstracted human error information to locate

additional related faults.

Fifteen (15) Graduate students enrolled in the Software Development Processes course at

North Dakota State University (NDSU) participated in Study 5. The course is a breadth course

on software engineering topics and covers the entire software development lifecycle.

60

An artifact that described the requirements for a Restaurant Interactive Menu (RIM)

system and contained naturally occurring faults was used during the study. The RIM system

allows restaurant owners to control the inventory, and restaurant customers to order and pay

bills. RIM SRS was used during Study 5 to enable comparison of the results with Study 4 (Study

4 also used RIM and evaluated the usefulness of the EAI inspection approach, but in Study 5

EAI was supported by the refined-HEAA).

The experimental procedure was carefully designed to gather insights that can be used to

improve the Error Abstraction (EA) and the error-informed re-inspection steps of the EAI

approach. Table 22 provides the descriptions of the procedure followed during Study 5.

Table 22. Study 5: Steps Performed by Participants

Experimental Step Description

Training 1 During this 50-minute session, participants were trained on human errors in the Human Error Taxonomy,

abstracting human errors from requirements faults using the refined-HEAA.

Step 1- Error Abstraction

from RIM SRS faults

Participants were supplied with the RIM SRS and 16 known faults in the RIM SRS and were asked to

abstract human errors from the 16 given faults. The output of this step was 15 error report forms (one per

participant) containing human errors in RIM SRS. The output of this step helped in comparing the error

abstraction results of all participants on same set of faults.

Step 2 – Error-informed

inspection of RIM SRS

Participants were given the expected error abstraction results for each of the 16 faults. The expected

abstraction results were decided in consultation with a Cognitive Psychologist, Dr. Gary Bradshaw. The

participants were asked to use the provided human error information to inspect RIM SRS and locate

additional faults related to the provided human errors. The idea behind giving participants the expected

error abstraction results for each of the 16 given faults was to understand how individual participants use

the same human error information to find additional related faults. The outcome of this step was 15

individual Fault Report Forms containing new faults in RIM SRS. The motivation behind asking

participants to perform this task (i.e., error-informed inspection) was to evaluate if human error information

helps inspectors in identifying additional faults (that are overlooked when only the traditional fault-

checklist inspection approach is used).

6.2.4. Experiment Design for Study 6 (Live Study in a Conference)

Studies 5 and 6 were performed simultaneously, and while Study 5 evaluated the refined-

HEAA tool in academic settings, Study 6 was targeted towards requirements engineering

practitioners and researchers. Study 6 was performed at a requirements engineering (RE)

conference called Requirements Engineering: Foundations for Software Quality (REFSQ) [48].

61

The major goal of Study 6 was to evaluate if requirements engineering professionals are

able to use the Human Error Abstraction Assist tool to abstract human errors from requirements

faults. The population of interest were professionals with understanding of requirements

engineering activities and industry experience. Participants were recruited at the venue of the

conference (REFSQ conference). A total of 15 conference attendees volunteered to participate in

Study 6. Although any background information regarding participants’ experience was not

gathered, the participants were a good mix of academic requirements engineering researchers

(university professors) and industry practitioners (in software development organizations across

world).

The requirements document used during the study was the document that specified

requirements for a Parking Garage Control System (PGCS). Due to time restriction, instead of

asking participants to read the entire PGCS requirements document, an error report form was

prepared that provided background information and fault descriptions of 10 randomly selected

faults in the PGCS requirements document. The participants were asked to abstract human errors

from the 10 faults provided to them. The following supplementary documents were provided

during the study:

Figure 17. Sample Error Report Form

62

• PGCS SRS: A printed copy of PGCS requirements document in case if

participants wanted more background information related to the fault being

analyzed.

• Refined-HEAA decision tree: A printed copy of the refined-HEAA tool was

provided to help participants in abstracting human errors from the 10 given faults.

• Error Report Form: The error report form contained 10 faults in PGCS SRS.

Participants were asked to abstract errors from the faults after they were provided

a training on how to use the HEAA tool. Figure 17 provides the error reporting

template for one of the 10 PGCS faults. Note that the participants used the HEAA

tool to abstract only the requirements engineering activity and the error type

(slip/lapse/mistake) for each fault. Due to time constraints, the participants were

not asked to abstract the human error class for the faults.

Table 23 provides the procedure followed during Study 6.

Table 23. Study 6: Steps Performed by Participants

Experimental

Step

Description

Error Abstraction

Training

During a 30-minute session, participants were trained on the human

error classes in Human Error Taxonomy, and how to use the refined-

HEAA tool to abstract errors from the given faults.

Step 2 - Error

abstraction and

classification

Participants used the HEAA tool to abstract and classify human errors

(into Slips, Lapses, and Mistakes) from 10 given faults in PGCS SRS.

Step 3 -

Discussion of

Results

The completion of error abstraction step was followed by a discussion

of participants’ results. The discussion step helped in gaining insights

into the thought process of participants when they were analyzing faults

and tracing the faults to human errors.

63

6.2.5. Experiment Design for Study 7

The primary goal of Study 7 was to evaluate the usefulness of Human Error Abstraction

Assist (HEAA) in helping software developers in understanding/ identifying the human errors

committed during the requirements engineering process. During Study 7, the objective was to

evaluate the usefulness of HEAA for two distinct situations:

• Usefulness of the HEAA when identifying the human errors that were committed

during the creation process of an externally-developed requirements document

(note that the human errors, in this case, were committed by someone else).

• Usefulness of the HEAA when identifying the human errors that were committed

during the creation process of a self-developed requirements document.

Essentially, the idea was to evaluate whether HEAA can be used by software

developers to map the faults (in their own requirements documents) to human

errors that caused the injection of the faults.

Compared to the error abstraction training in Study 6, a small improvement was made to

the error abstraction training during Study 7. A training supplement that provides the fault to

error-class mappings for all the faults in PGCS SRS has been made available for helping

inspectors in understanding the error abstraction process better. This training supplement was

used during Study 7 during the Reflection step (shown in Figure 18 and described in Table 24).

Thirty-six (36) undergraduate computer science students enrolled in the Principles of

Software Engineering course at North Dakota State University participated in this study. The

course required students to work in teams to develop Software Requirements Specifications

(SRS) for different software systems. After developing the SRS, the teams proceeded to

implement the requirements. In this study, the focus was specifically on the faults and errors

64

committed during the requirements (i.e., SRS) creation process. The students were divided into

teams by the course instructor prior to this study.

Table 24. Study 7: Steps Performed by Participants

Experimental Step Description

SRS Creation The participants worked as part of teams to create requirements documents for different software systems. A description of

the different software systems for which the teams created requirements documents, is provided in Appendix D. Note that

teams had already created their requirement documents (i.e., their SRS’s) before the study started.

Training 1 – Error

Abstraction Training

During a 50-minute session, participants were trained on Human Error Taxonomy (HET), and on using the HEAA tool to

abstract errors from faults. In order to demonstrate the HEAA tool’s step-by-step procedure of mapping requirements faults

to human errors, some generic requirements faults were used.

Task 1 – Abstraction and

Classification of Human

Errors in PGCS SRS

After the error abstraction training, participants were supplied with PGCS SRS, and 15 faults in the PGCS SRS. The

participants were asked to use HEAA in order to map each of the 15 faults to human error that caused the fault. The outcome

of this step was 36 individual error report forms (one per participant) containing human errors present in PGCS SRS.

Reflection In this step, the participants were provided the expected error abstraction results for each of the 15 PGCS faults. The expected

error abstraction results were obtained through discussions with a Cognitive Psychology expert (Dr. Bradshaw). The idea

behind reflection step was to improve participants’ understanding of the fault-to-error mapping process (i.e., the error

abstraction process using HEAA).

Training 2 – Training on

Fault-checklist Inspection

Technique

The participants were trained on how to use the fault-checklist inspection technique to inspect SRS documents. This step is

required to identify faults in a requirements document. The identified faults can then be mapped to human errors. So,

essentially this step is required to initiate the error discovery process.

Task 2 – Fault-checklist

Inspection of Self-created

SRS

Participants inspected their self-developed SRS documents during this step. Each participant inspected the document they had

created as part of their team. So, a participant who was part of Team 1 (see Appendix D) and created the SRS document for

Dissertation Calculator system inspected the Dissertation Calculator SRS. The output of this task was 36 individual Fault

Report Forms containing faults in different SRS documents created by the teams.

Fault Consolidation This was performed by the researchers. As an example, for Team 1, I first compiled all the faults reported by the 8 team

members. Next, I removed any false-positives (i.e., non-faults) and created a Master Fault List that only consisted of actual

faults (true-positives) in Team 1’s SRS. This was done for all 5 teams.

Task 3 - Abstraction and

Classification of Human

Errors in Self-created SRS

Participants were provided with the Master Fault List that was created for their SRS document (in previous step) and asked

to individually abstract human errors (using HEAA) for each fault in their self-developed SRS’s Master Fault List. The

outcome of this step was 36 individual Error Report Forms containing human errors in the SRS documents created by the

participants.

Figure 18. Study 7: Experimental Procedure

65

Study 7’s objective was to evaluate the usefulness of HEAA, both when abstracting

errors from faults in an externally-developed SRS and when abstracting faults in a self-developed

SRS. Therefore, the study was conducted across two phases (see Figure 18). During Phase 1, an

externally developed SRS that specified requirements for a Parking Garage Control System

(PGCS) was used. During Phase 2 (see Figure 18) of the study, participants abstracted human

errors from faults in the SRS documents that they had developed (as part of a team) during the

course of the semester. Appendix D provides a description of the systems for which SRS’s were

created by each team. Table 24 provides the steps performed by the participants during Study 7.

6.3. Analysis of Data Gathered During Studies 4, 5, 6, and 7

This section provides the results of analyzing the data gathered during Studies 4, 5, 6, and

7. This section is organized around the three Research Questions (shown in Table 20, Section

6.1) that were formulated to validate the usefulness of the Error Abstraction and Inspection

(EAI) approach supported by the Human Error Abstraction Assist (HEAA) tool. The four studies

(Studies 4, 5, 6 and 7) were designed with the goal of collecting the data to answer the three

Research Questions described in Table 20. Experimental design for each of the four studies were

provided in Sections 6.2.1, 6.2.3, 6.2.4 and 6.2.5, respectively.

6.3.1. RQ1: Can the Error Abstraction and Inspection Approach (supported by the Human

Error Abstraction Assist Tool) Improve the Fault Detection Effectiveness of Inspectors

when Compared to Traditional Requirements Inspection Approach?

Data gathered during Studies 4 and 5 was analyzed to answer this research question.

During Study 4, participants first detected faults in a requirements document (RIM SRS)

using the fault-checklist inspection technique. Next, they used the HEAA tool to abstract human

errors from the faults they had found during the fault-checklist inspection. Finally, the

66

participants performed an error-informed reinspection on the RIM SRS. It was found that during

the fault-checklist inspection of RIM SRS, participants found an average of 6 faults. Whereas,

during the error-informed reinspection of RIM SRS, participants were able to locate an average

of 14 new faults that they were not able to find during the first inspection (i.e., the fault-checklist

inspection). Figure 19 shows the result of this analysis. Figure 19 compares the fault count of

each participant during fault-checklist inspection (bottom portion of each column) vs. the new

fault count during re-inspection using EAI (top portion of the same column). For example,

participant S1 (inspector# 1) found 3 faults during the first inspection (using fault-checklist), and

found 7 new faults during the re-inspection (using EAI), which computes to a percentage

increase of 233% in fault detection effectiveness. Overall, participants found an average of 6

faults during the first inspection (fault-checklist) and an average of 14 new faults during the

second inspection (EAI), with an average increase in effectiveness of 225%. These results

provide evidence that an error-abstraction and inspection (EAI), supported by HEAA, can help

inspectors discover a significantly more number of faults in an SRS that are otherwise left

Figure 19. Study 4: Effectiveness of EAI vs. Fault-checklist inspection

67

undetected during the fault-checklist based inspection. The result of the one-sample test

(p<0.001) showed that the average number of faults found using EAI (14) was significantly

higher than average number of faults during FC inspection (6). Furthermore, even though the

participants were re-inspecting the same document during EAI-based reinspection, the

significantly large number of additional faults found shows that EAI is a very useful addition to

FC for improving requirements quality.

During Study 5, participants were given 16 faults in the RIM SRS document and were

asked to use the HEAA tool to abstract errors from the given faults. Next, the participants were

provided with human errors that caused the injection of each of the 16 faults (for reflection

purpose). The participants then used human error information to inspect the RIM SRS document.

As shown in Figure 20, all participants were able to use human error information to find at least

some new faults in RIM SRS (the new faults were not part of the list of 16 faults given to them).

On an average, participants in Study 5 found 11.4 new faults in RIM SRS. A one-sample t-test

showed the mean number of faults found by participants using error information was

significantly larger than zero (p<0.001).

Figure 20. Study 5: Number of New faults Found During Error-informed Inspection

68

The analyses from Studies 4 and 5 shown above (in Figures 19 and 20, respectively)

provide evidence that the Error Abstraction and Inspection (EAI) approach when supported by

the Human Error Abstraction Assist tool can improve the fault detection effectiveness of

inspectors when used in conjunction with the traditional fault-checklist inspection approach.

Another analysis - related to gathering insights about what strategies are used by

inspectors during the error informed reinspection step of EAI approach - was performed on data

collected during Study 5. During Study 5, participants were provided with 16 faults in RIM SRS

documents and they were also provided with the human errors that caused the injection of the

given 16 faults. The participants were then asked to use the error information to find related

faults in RIM SRS. The idea behind supplying all participants with the error information was to

examine: When provided with the correct human error (that caused a fault), where in the SRS

document do participants look in order to find other related faults that were caused by the

human error?

An interpretive analysis (see Table 25) was performed on the fault data provided by

participants during the error-informed inspection of RIM SRS (during Study 5).

The goal of this interpretive analysis was to obtain insights into how participants make

use of error-information to find additional faults that are related to the errors. Currently, the

error-informed inspection is an ad-hoc process, wherein individual inspectors devise their own

strategies to locate new faults.

We examined the location of all the new faults reported by the participants (not just the

true-positives) for each of the 16 fault-error combinations provided to them.

69

Table 25. Study 5: Strategies Used by Inspectors during Error-informed Reinspection

Strategy Title Strategy Description Example

Additional

faults in the

same

requirement

Participants reviewed the requirement that

contained the original fault when looking

for additional faults. The rationale was that

the same requirement may contain more

faults (not necessarily similar to original

fault) because the requirements engineer/s

who worked on creating the requirement

were already under the influence of the

human error (that was abstracted from the

given original fault)

As an example, for Fault #1, the error happened

while specifying the requirement titled,

‘RIM_CUSTLOGIN_S01’. This requirement can

be found between lines Line 77 to 124 in the RIM

SRS. Multiple participants used this strategy to

report other faults in the same requirement.

Furthermore, three participants successfully

found a new fault (true-positive) on Line #105.

Additional

similar faults

in other

similar

requirements

Participants reviewed the RIM SRS to first

find any requirements that were similar to

the requirement in which the original

given fault was located. Next, if

participants were able to identify any

similar requirement, they reviewed the

identified requirement to find faults that

were similar to the original fault. The

rationale was that if a human error

occurred while creating a specific type of

requirement, then it is possible that the

same human error might have occurred

while creating other similar requirements.

As an example, Fault #2 is located in the

requirement stated between lines 77-124, more

specifically in the constraints section of the

requirement. Fault #2 occurred due to

carelessness while performing numerical

calculations. Participants looked at constraints

sections of other requirements, specifically where

numerical calculations may have been performed

by requirements engineer/s. Eleven (11)

participants successfully used this strategy to find

a similar calculation-related fault in a different

requirement.

Additional

faults in

related

requirements

The creators of RIM SRS have attached a

related requirements section with every

requirement. Participants reviewed

requirements related to the original

requirement (in which the original given

fault was located). The rationale was that

if a human error occurred during the

creation of a requirement, then the human

error might have affected the creation

process of related requirements as well.

As an example, Fault #3 is in a requirement

titled, ‘RIM_REQUEST_HELP_S03’. Four

participants reviewed a related requirement

titled, ‘RIM_ORDER_ENTREE_D08’ and

reported faults (found to be false-positives) in

the latter requirement.

Additional

similar faults

in other

requirements

For simplistic faults like ‘missing

information or missing words’,

participants just read through the whole

SRS to find if there are other instances

where requirement-sentences were

missing or words in the sentence were

missing (rendering the requirement

incomplete or ambiguous).

As an example, Fault #8 states that “Hacker is

listed in the list of actors. However, the hacker

has no role in this requirement”. Participants

simply looked at the ‘Actor’ sub-section of all

requirements to find if other requirements had

faulty ‘Actor’ list. Four participants successfully

found a fault on Line #346. The fault was that the

‘Actor’ sub-section of the requirement was left

blank (whereas all use cases must have at least

one actor).

70

Please recall that, during Study 5, for each of the 16 RIM SRS faults that were provided

to the participants, they were also provided the human error that caused the fault. This analysis

necessitated interpretation because, for each original given fault, we needed to compare and

contrast the location of the reported faults (which participants deemed to be related to the

original fault) with the location of the original fault. Furthermore, we had no quantitative data

about: why a participant thought that a certain reported fault was related to the original fault and

human error (that was provided for the original fault). There was also no quantitative data about

what prompted the participant to look for a related fault at a particular location. Therefore, we

needed to derive meaningful interpretations (from the locations of the reported faults) about how

a participant (or multiple participants) found the particular reported faults. In other words, we

were looking for prompts that participants created in their mind when looking for new faults.

This analysis revealed four major strategies (shown in Table 25) that participants used in order to

locate new faults related to the given fault-error combinations. In the future evaluations of the

EAI inspection approach, the inspectors will be trained on these reinspection strategies.

6.3.2. RQ2: Does the Human Error Abstraction Assist Tool Provide a Useful Method for

Abstracting Human Errors from Requirements Faults?

This research question focused on the usefulness of HEAA tool. A major focus was to

evaluate if using the HEAA tool to support the EAI inspection approach works better when

compared to simply using the Human Error Taxonomy (HET) to support the EAI approach (HET

was used to support EAI during the first set of evaluations that were discussed in Chapter 4).

Another focus of this research question (RQ2) was to evaluate the

refinements/improvements that were added to the HEAA tool using the lessons learned during

the empirical studies. After its creation, the HEAA tool was first used during Study 4. After

71

Study 4, the HEAA was refined (see Section 6.2.2.) and the refined HEAA tool was used in the

rest of the studies (Studies 5, 6, and 7). Hence, it was important to evaluate whether these

refinements helped in improving the effectiveness of the HEAA tool.

Based on the discussion above, it can be seen that Research Question 2 (RQ2) is a

multipart research question. Hence, RQ2 has been subdivided into the following research

questions:

• RQ2a: Does the Human Error Abstraction Assist tool improve the error

abstraction effectiveness of inspectors when compared to abstracting errors using

Human Error Taxonomy?

• RQ2b: What insights into – the problems faced by the inspectors during the

process of error abstraction using HEAA tool – can be used to improve the error

abstraction process?

• RQ2c: Is the error abstraction process (supported by the HEAA tool) more

effective when employed by professional requirements engineers as compared to

when it is employed by students?

• RQ2d: Is the error abstraction process (supported by the HEAA tool) more

effective when employed on self-developed requirements documents as compared

to when employed on externally-developed requirements documents?

Data analyses and results for RQ2a, RQ2b, RQ2c, and RQ2d are discussed in subsections

6.3.2.1. 6.3.2.2, 6.3.2.3, and 6.3.2.4, respectively.

72

6.3.2.1. RQ2a: Does the Human Error Abstraction Assist tool improve the error abstraction

effectiveness of inspectors when compared to abstracting errors using Human Error

Taxonomy?

It is important to understand if the HEAA tool has improved the error abstraction process,

which is an important step of the human error based requirements inspection approach (i.e., the

Error Abstraction and Inspection or EAI approach). In order to measure the improvements

provided by the HEAA tool, a metric called Error Abstraction Accuracy is used. Error

abstraction accuracy is calculated for each inspector and it is simply the percentage of correctly

abstracted errors out of the total number of errors reported by an inspector. As an example, if an

inspector abstracted 16 human errors (from 16 requirements faults), and out of the 16 reported

errors, 8 were correctly abstracted, then the Error Abstraction Accuracy for the inspector would

be 50% (i.e., 8/16).

To answer the research question (RQ2a), a comparison was made between the error

abstraction accuracies achieved by participants of Study 1 vs the participants of Study 4. During

Study 1, twenty-three participants from the experimental group used the Human Error Taxonomy

to abstract errors from 10 faults in the PGCS SRS (details about Study 1 can be found in Section

4.2.1). For all twenty-three Study 1 participants, the mean error abstraction accuracy (when

abstracting and classifying human errors from the same 10 given PGCS SRS faults) was found to

be 15.45%. That is, overall, the 23 participants were able to achieve an error abstraction accuracy

of 15.45% (using the Human Error Taxonomy) when abstracting and classifying human errors

from the 10 given PGCS SRS faults.

Now, during the first phase of Study 4, participants were supplied with 6 faults in the

PGCS SRS and were asked to abstract human errors from the faults. But, unlike Study 1 (in

73

which participants were trained on error abstraction using Human Error Taxonomy), during

Study 4 participants were trained on error abstraction using the HEAA tool (more details about

Study 4 can be found in 6.2.1). It was found that participants in Study 4 were able to achieve a

mean error abstraction accuracy of 26.04%. Table 26 compares the error abstraction accuracy

that was achieved using Human Error Taxonomy in Study 1 vs the error abstraction accuracy

that was achieved using Human Error Abstraction Assist in Study 4.

Table 26. Study 1 vs Study 4: Error Abstraction Accuracy Comparison

Study Description Mean Error Abstraction Accuracy

Study 1: 23 participants used the Human Error

Taxonomy to abstract human errors from faults

in PGCS SRS.

15.45%

Study 4: 17 participants used the Human Error

Abstract Assist tool to abstract human errors

from faults in PGCS SRS.

26.04%

Recall that Study 4 had two phases: a training session and a transfer session. The error

abstraction accuracies achieved by Study 4 participants during training session were shown in

Table 26. Next, during Study 4’s transfer session, participants used the HEAA tool to abstract

errors from faults in the RIM SRS. The error abstraction accuracies achieved by participants

during Study 4’s transfer session were also analyzed. It was found that participants were able to

achieve a mean error abstraction accuracy of 38% when abstracting errors (suing HEAA) from

faults in RIM SRS. After completion of Study 4, the HEAA tool was improved/refined based on

participant feedback and the refined HEAA tool was used during Study 5. During Study 5,

participants were given 16 faults in the RIM SRS and were asked to use the refined HEAA tool

74

to abstract errors from the given 16 faults. The mean error abstraction accuracy achieved by

participants of Study 5 was found to be 45%.

Table 27. Study 4 vs Study 5: Error Abstraction Accuracy Comparison

Study Description Mean Error Abstraction Accuracy

Study 4: 17 participants used the Human Error

Abstract Assist tool to abstract human errors

from faults in RIM SRS.

38%

Study 5: 15 participants used the Human Error

Abstract Assist tool to abstract human errors

from faults in RIM SRS.

45%

The analyses presented in Table 26 and 27 show that:

• The Human Error Abstraction Assist tool has improved the error abstraction

accuracy of inspectors when compared to Human Error Taxonomy.

• The improvements made to the HEAA tool (after Study 4) has helped in further

improving the error abstraction accuracy of inspectors. A discussion on the

improvements made to the HEAA tool was provided in Section 6.2.2.

6.3.2.2. RQ2b: What insights into – the problems faced by the inspectors during the process of

error abstraction using HEAA tool – can be used to improve the error abstraction process?

Data gathered during Study 5 was analyzed to answer this research question. Study 5 was

specifically designed to collect insights about the major issues inspectors face when using the

HEAA tool to abstract errors from requirements faults. The HEAA tool used during Study 5 is

provided in Appendix C. HEAA is a control flow style process, wherein control statements

appear (inside decision nodes) in a top to bottom order. When using HEAA, inspectors have to

make decisions at three (3) levels. At Level 1, the inspector has to decide the requirements

75

engineering activity in which the fault originated (i.e., the human error occurred). At Level 2, the

inspector has to decide the high level human error type that was committed (slips/lapse/mistake).

Based on decisions made for Levels 1 and 2, at Level 3, inspectors have to select an adequate

human error class. For inspectors’ convenience, HEAA’s decision tree has been unpacked into a

detailed, self-explanatory, and stepwise system that can be found in Appendix C. It is important

to note here that, because HEAA is a control flow style process, if am inspector makes an

incorrect decision in an initial decision level, then the rest of the flow is automatically rendered

incorrect.

During Study 5, participants were given 16 faults in the RIM SRS document and were

asked to use the refined HEAA tool to abstract errors from the faults. The output of this task

helped in comparing the error abstraction results of all participants for same set of faults. The

idea was to investigate the following: At what level of the error abstraction process (i.e., when

using HEAA) are participants making most of the misjudgments?

Table 28 provides an overview of the error abstraction results reported by the 15

participants. Each row in Table 28 provides error abstraction accuracy at different HEAA levels

across all the participants for each fault. As an example, for Fault #2, 13 out of 15 participants

were able to select the correct requirements engineering activity (where the fault originated).

Therefore, we only evaluated the rest of the abstraction data of those 13 participants who

selected the correct requirements engineering activity. The analysis showed that, 11 of those 13

participants selected the right error type (slips/lapse/mistake). Furthermore, only 9 of the

remaining 11 participants selected the correct human error class for Fault #2. Overall, 9 out of 15

participants provided the expected error abstraction result for Fault #2 (i.e., only 60% of

76

participants were able to accurately abstract the human error that caused Fault #2). Similar

analysis was performed for all 16 faults.

Table 28. Study 5: Progressive Error Abstraction Correctness at the Three Decision Levels of

HEAA

Fault # Number of

participants who

chose the correct

RE activity (Level

1 of HEAA)

Number of

participants who

chose the correct

Error Type (Level

2 of HEAA)

Number of

participants who

chose the correct

Error Class (Level

3 of HEAA)

Overall Correctness:

Number of participants

who reported correct EA

result for the fault (correct

at all 3 levels)

Fault 1 100% (15/15) 93.33% (14/15) 100% (14/14) 93.33% (14/15)

Fault 2 86.67% (13/15) 84.62% (11/13) 81.82% (9/11) 60% (9/15)

Fault 3 66.67% (10/15) 100% (10/10) 100% (10/10) 66.67% (10/15)

Fault 4 53.33% (8/15) 75% (6/8) 83.33% (5/6) 33.33% (5/15)

Fault 5 80% (12/15) 83.33% (10/12) 90% (9/10) 60% (9/15)

Fault 6 66.67% (10/15) 80% (8/10) 37.5% (3/8) 20% (3/15)

Fault 7 33.33% (5/15) 60% (3/5) 33.33% (1/3) 6.67% (1/15)

Fault 8 66.67% (10/15) 80% (8/10) 87.5% (7/8) 46.67% (7/15)

Fault 9 73.33% (11/15) 63.64% (7/11) 85.71% (6/7) 40% (6/15)

Fault 10 53.33% (8/15) 87.5% (7/8) 57.14% (4/7) 26.67% (4/15)

Fault 11 46.67% (7/15) 100% (7/7) 71.43% (5/7) 33.33% (5/15)

Fault 12 86.67% (13/15) 100% (13/13) 76.92% (10/13) 66.67% (10/15)

Fault 13 66.67% (10/15) 70% (7/10) 71.43% (5/7) 33.33% (5/15)

Fault 14 46.67% (7/15) 85.71% (6/7) 83.33% (5/6) 33.33% (5/15)

Fault 15 53.33% (8/15) 100% (8/8) 87.5% (7/8) 46.67% (7/15)

Fault 16 100% (15/15) 93.33% (14/15) 64.29% (9/14) 60% (9/15)

Figure 21 compares the error abstraction accuracies achieved by the participants at the 3

levels of HEAA. It was found that participants frequently misjudged the requirements

engineering activity in which the faults originated. Furthermore, this analysis showed that, if

participants picked the right requirements engineering activity, they were able to pick the correct

77

Error Type (slips/lapse/mistake) and the correct Error Class in most cases. Figure 21 shows that

the participants had the most difficulty when picking the adequate requirements engineering

activity wherein the human error occurred (and resulted in the insertion of the fault being

analyzed). Overall, for all 16 faults, participants achieved a median error abstraction accuracy of

67% at the requirements engineering activity level (compared to 85% at Error Type level and

83% at Error Class level). HEAA is a decision flow process and selecting an appropriate

requirements engineering activity is the first decision that the inspectors have to make. Selecting

the incorrect requirements engineering activity essentially renders the rest of the error abstraction

effort futile.

 The analysis provided above (in Table 28 and Figure 21) revealed that in order to

improve the error abstraction accuracy of inspectors, the training on requirements engineering

needs to be improved.

Figure 21. Study 5: Error Abstraction (EA) Accuracy at three HEAA Levels

78

6.3.2.3. RQ2c: Is the error abstraction process (supported by the HEAA tool) more effective

when employed by professional requirements engineers as compared to when it is employed by

students?

Data gathered during Study 6 (Live study at a conference) was analyzed to answer this

research question.

During Study 6, requirements engineering researchers and industry professionals were

provided with 10 faults in the PGCS SRS and were asked to use HEAA to abstract errors from

the given faults. Overall, the participants were able to achieve an error abstraction accuracy of

59%. The main goal of Study 6 was to gather feedback about the HEAA tool from requirements

engineering professionals. The requirements engineering professionals provided the following

comments during a discussion session:

• Participants stated that inspectors may have different understanding of

requirements engineering activities (especially the order of analysis activity and

specification activity) depending on the life-cycle employed in their software

development projects. It was suggested that a glossary of requirements

engineering activities should be provided (for future studies) to assist the

inspectors during the error abstraction process.

• Participants stated that during the error abstraction training, providing definition

and examples of a "RE specific plan" (as opposed to everyday plan failures)

would help inform error analyses. The current error abstraction training provides

example about how to map everyday failures (like pouring orange juice in cereal

instead of milk) to slips/lapses/mistakes. The participants suggested that training

should provide examples of the different types of requirements engineering plans

79

(e.g., requirements elicitation plan, requirements analysis plan, and requirements

management plan). This will help inspectors in better visualizing the

situations/scenarios in which human errors occur during the various requirements

engineering activities.

6.3.2.4. RQ2d: Is the error abstraction process (supported by the HEAA tool) more effective

when employed on self-developed requirements documents as compared to when employed on

externally-developed requirements documents?

Data gathered during Study 7 was analyzed in order to answer this research question.

Study 7 was conducted across two phases: (1) Phase 1, in which participants abstracted

errors from faults in an externally-developed PGCS SRS, and (2) Phase 2, in which the

participants abstracted errors from the faults in the SRS documents that they had developed as

part of their team.

Table 29. Study 7: Error Abstraction Accuracy when Abstracting Errors from Faults in

Externally Developed SRS vs Faults in Self-Developed SRS

Team # Mean Error Abstraction Accuracy when

Abstracting Errors from Faults in

Externally-developed SRS (PGCS SRS)

Mean Error Abstraction Accuracy when

Abstracting Errors from Faults in Self-

developed SRS

Team 1 35.36% 60.74%

Team 2 34.57% 60.09%

Team 3 32.14% 58.67%

Team 4 38.73% 58.12%

Team 5 39.52% 59.88%

Table 29 presents a comparison between the error abstraction accuracies achieved by the

participants during Phase 1 vs Phase 2. In order to perform the analysis shown in Table 29, first

80

the individual error abstraction accuracy for each participant was calculated. Then, the mean

accuracy for each team was calculated. It was necessary to calculate the mean error abstraction

accuracy for each team (and not all participants together) because, during Phase 2 participants

abstracted errors from faults in different SRS documents.

As can be seen in Table 29, participants in Study 7 achieved significantly higher error

abstraction accuracies when using the HEAA tool to abstract errors from faults in their self-

developed SRS documents.

6.3.3. RQ3: Can Error Abstraction Using the Human Error Abstraction Assist Tool

Provide Significant Insights into the Type of Human Errors that are Committed Most

Frequently During the Requirements Development Process?

Data gathered during Study 7 was analyzed to answer this research questions. During

Study 7, participants worked as part of a team to develop requirements documents (i.e., SRS

documents) for different software systems. There were a total of 5 teams in Study 7 that

developed 5 SRS documents. One of the objectives of Study 7 was to understand what kind

insights are generated when software development teams use the HEAA tool to abstract errors

from faults they committed when creating their requirements documents. It was important to

evaluate this because, the HEAA tool was developed to help software developers understand the

human errors that they frequently commit when creating their requirements. A software

development team’s understanding of the most commonly occurring human errors during their

requirements engineering process can help them in avoiding these human errors in future.

It was anticipated that abstracting errors from faults in an SRS document can generate

tailored insights about the most common human error related issues that a team faced when

creating their SRS document. That is, each requirements creation effort is different in that it

81

involves different personnel who are trying to create requirements for different software systems,

and hence the human errors committed by them are also different. Hence, it can be worthwhile to

identify the type of human errors different requirements engineering teams are more prone to.

First, I analyzed, for each team separately, the most frequently committed high level

Error Types (Slip/Lapse/Mistake). Figure 22 shows the result of this analysis. As can be seen in

Figure 22, the distribution of Slips, Lapses and Mistakes are different for different teams. This is

because different teams worked under different environments and were trying to solve unique

problems (the software systems they were creating the requirements for were different), and as a

result the human errors they committed were also different. Figure 22 also shows that Slips were

the leading cause of fault-injection when the teams were creating their requirements documents,

followed by Mistakes. One clear trend that was seen across all five teams was that execution

errors (Slips and Lapses together constitute execution errors) contributed to 60-80% of all the

faults.

This result is consistent with Cognitive Psychology research, where researchers have

shown that most of the errors committed by human operators are execution errors. Human

subject based studies in Cognitive Psychology have shown that 60-70% of all detected human

errors are execution errors [39, 49].

Figure 22. Study 7: Percentage Contribution of Slips, Lapses, and Mistakes to Faults

82

Table 30. Study 7: Percentage Contribution of Human Error Classes to Faults

 Slips Lapses --Mistakes--

Cler. LC LI Accd. Appln Env IM WA PU MB NH LA PS IR Synt

Team1 23.7% 17% 13.6% 25.4% 11.9% 1.7% 5% 1.7%

Team2 55.9% 14.7% 8.9% 5.9% 8.8% 5.9%

Team3 23% 15.4% 36% 12.8% 5.1% 7.7%

Team4 68.8% 8.3% 6.3% 8.3% 4.2% 2% 2%

Team5 42.1% 13.2% 15.8% 18.4% 7.9%

Next, in order to generate deeper insights about frequently committed human errors, an

analysis was performed to examine the contribution of Human Error Taxonomy’s human Error

Classes (see Figure 7) to the faults in each team’s SRS document. Table 30 provides the result of

this analysis. Note that each row in Table 30 provides the distribution of human errors for one

team. The sum total of each row in Table 30 is 100%. As can be seen in Table 30, teams

committed different types of human errors when they were developing their requirements. For

Team 1, the major cause of fault-injection was errors that happen due to Accidentally

Overlooking Requirements (an error class under Lapse). Such errors happen when requirements

engineers or end users or stakeholders forget to include a requirement or some information

related to a requirement. Such overlooks are generally caused when end-users/stakeholders think

that some things are obvious and fail to verbalize such information (a very common example is

lack of requirements related of exception handling in SRS’s). For Team 2, most of the faults

were traced back to Clerical Errors, an error class under Slip error types. Clerical errors happen

due to carelessness during mechanical transcription of requirements from one medium to another

(for example, carelessness when creating formal requirements specifications from elicitation-

notes). For Team 3, errors that happen due to Accidentally Overlooking Requirements were

83

again found to be the major cause of fault-injection in their SRS document. Most of the faults in

both Team 4’s and Team 5’s SRS’s were mapped back to Clerical Errors.

Furthermore, error abstraction using the HEAA tool can not only provide teams with

insights about Error Types and Error Classes, but it can also provide insights about how prone

their individual requirements engineering activities (i.e., elicitation, analysis, specification,

management) are to different human error classes. To that end, the error proneness of

requirements engineering activities to different human errors were analyzed (for each team

separately). Table 31 provides the result of this analysis. It should be noted that for each Team’s

table, the sum total of all cells in the table is 100%.

For Team 1, most of the faults in their SRS were traced back to their elicitation and

specification activities. Additionally, the major problem area for Team 1’s elicitation activity

was Lapses (Loss of Information errors and Accidentally Overlooking Requirements). Team 1’s

specification activity mainly suffered from Slips (Clerical errors and errors due to Lack of

Consistency when writing specifications). As for Team 2, their most error-prone activity was the

specification activity and it mainly suffered from Slips committed by the team members when

writing the specifications. Most of the faults in Team 3’s SRS documents were mapped back to

elicitation activity and Team 3’s elicitation activity mainly suffered from Lapse errors. As for

Team 4, most of the faults in their SRS were traced back to specification and elicitation

activities, with both activities suffering mainly from Clerical errors committed by team members.

84

Team 5’s most error-prone activity was specification activity and a majority of human

errors committed by Team 5’s members were Clerical slips.

T
ab

le
 3

1
.

S
tu

d
y
 7

:
P

ro
n

en
es

s
o
f

R
eq

u
ir

em
en

ts
 E

n
g
in

ee
ri

n
g
 A

ct
iv

it
ie

s
to

 D
if

fe
re

n
t

H
u
m

an
 E

rr
o
r

C
la

ss
es

T
ea

m
 1

 -
 D

C

S
li

p
s

L
a

p
se

s
M

is
ta

k
e
s

C
le

ri
ca

l
L

C

L
I

A
cc

d
.

A
p

p
ln

.
E

n
v
.

IM

W
A

P

U

M
B

N

H

L
A

P

S

IR

S
y
n

t.

E
li

ci
ta

ti
o
n

1
.7

%

1

3
.6

%

2
5
.4

%

6
.8

%

1
.7

%

1
.7

%

A
n

al
y
si

s
6

.8
%

5
.1

%

3
.4

%

S
p

ec
if

ic
at

io
n

1

5
.3

%

1
7
.0

%

M
an

ag
em

en
t

1
.7

%

T
ea

m
 2

 -

S
O

S
S

S
li

p
s

L
a

p
se

s
M

is
ta

k
e
s

C
le

ri
ca

l
L

C

L
I

A
cc

d
.

A
p

p
ln

.
E

n
v
.

IM

W
A

P

U

M
B

N

H

L
A

P

S

IR

S
y
n

t.

E
li

ci
ta

ti
o
n

2
.9

%

8
.8

%

8

.8
%

5
.9

%

A
n

al
y
si

s

5

.9
%

S
p

ec
if

ic
at

io
n

5

2
.9

%

1
4
.7

%

M
an

ag
em

en
t

T

ea
m

 3
 -

C
M

S

S
li

p
s

L
a

p
se

s
M

is
ta

k
e
s

C
le

ri
ca

l
L

C

L
I

A
cc

d
.

A
p

p
ln

.
E

n
v
.

IM

W
A

P

U

M
B

N

H

L
A

P

S

IR

S
y
n

t.

E
li

ci
ta

ti
o
n

1
5
.4

%

3
5
.9

%

A
n

al
y
si

s

1

2
.8

%

S
p

ec
if

ic
at

io
n

2

3
.0

8
%

M
an

ag
em

en
t

5
.1

%

7
.7

%

T

ea
m

 4
 -

W
o

W

S
li

p
s

L
a

p
se

s
M

is
ta

k
e
s

C
le

ri
ca

l
L

C

L
I

A
cc

d
.

A
p

p
ln

.
E

n
v
.

IM

W
A

P

U

M
B

N

H

L
A

P

S

IR

S
y
n

t.

E
li

ci
ta

ti
o
n

2
2
.9

%

8
.3

%

2
.1

%

4
.2

%

A
n

al
y
si

s
8

.3
%

4
.2

%

4
.2

%

S
p

ec
if

ic
at

io
n

3

7
.5

%

4
.2

%

2
.1

%

M
an

ag
em

en
t

2

.1
%

T
ea

m
 5

 -

S
B

R
E

B

S
li

p
s

L
a

p
se

s
M

is
ta

k
e
s

C
le

ri
ca

l
L

C

L
I

A
cc

d
.

A
p

p
ln

.
E

n
v
.

IM

W
A

P

U

M
B

N

H

L
A

P

S

IR

S
y
n

t.

E
li

ci
ta

ti
o
n

2
.6

%

A
n

al
y
si

s

S
p

ec
if

ic
at

io
n

4

2
.1

%

1
3
.2

%

1

5
.8

%

M
an

ag
em

en
t

1
8
.4

%

7
.9

%

85

Overall, the analysis performed for RQ3 shows that, by abstracting human errors from

their faults, software development teams can generate valuable insights about the major problem

areas in their requirements engineering process. These insights can help development teams

make future decisions about how to improve their requirements engineering process.

6.4. Summary of Results Obtained from Studies 4, 5, 6, and 7

Studies 4, 5, 6, and 7 validated the following:

• The usefulness of the human error-based requirements inspection approach (i.e.,

the Error Abstraction and Inspection or EAI approach) when it is supported by the

newly developed Human Error Abstraction Assist or HEAA tool.

• The improvements in error abstraction accuracy provided by the HEAA tool

during the error abstraction leg of the EAI inspection approach.

Overall, during Studies 4 and 5, it was found that the EAI approach, when added to the

traditional fault-checklist inspections, can provide significant improvements in the defect

detection effectiveness of inspectors (see Figure 19 and 20). Study 5 also revealed the strategies

used by successful inspectors that helped them find additional faults during the error-informed

reinspection step of the EAI approach. Inspectors will be trained on these reinspection strategies

(shown in Table 25) in future evaluations of the EAI approach.

Additionally, results (in Tables 26 and 27) showed that the introduction of HEAA tool

has helped increase the error abstraction accuracy of inspectors. An increased error abstraction

accuracy means that inspectors are able to better understand the human error causes of

requirements faults, which can help them find more faults related to the human errors during

error-informed reinspection step of the EAI inspection approach.

86

Another major result obtained during Study 5 and Study 6 was that, when using the

HEAA tool, inspectors faced difficulties when selecting the right requirements engineering

activity wherein the fault originated. Requirements engineering professionals in Study 6

suggested that improving the training around requirements engineering activities can help

alleviate this problem.

The four studies described in this chapter and the three studies described in Chapter 4

focused mainly on the usefulness of human error information for detecting errors and faults in

requirements documents. The next chapter describes a study that involved industry professionals

and focused on creating prevention strategies that can help requirements engineering teams avoid

committing the human errors.

87

7. ERROR AND FAULT PREVENTION

Fault prevention can be described as the process of using the knowledge of likely

problems to prevent those problems from happening in future. In software engineering research,

the knowledge of likely problems is collected through historical fault/defect data, or expert

opinion [50]–[52]. Fault prevention strategies that are based on historical fault data (i.e., a

sample of faults) can provide specific measures/strategies to prevent those type of faults [50],

[53]. On those lines, the human error information identified during the creation of the Human

Error Taxonomy (Figure 7) presents an opportunity to create prevention strategies that can help

in preventing the human errors from being committed by requirements engineers, and

consequently the faults that are injected due to these human errors can be reduced as well.

To that end, an industrial survey was conducted at a software development organization

(which is based out of Minneapolis, MN). Industry requirements professionals were trained on

human error types (slip, lapse, mistakes) and the various human error classes and were asked to

indicate the approaches (i.e., strategies) that they use in order to eliminate or reduce the

likelihood for human errors from occurring.

Section 7.1 provide the research question and the study design, and Section 7.2 provide

the result obtained from analyzing the survey data.

7.1. Study 8: Research Questions and Design

Table 32 provides the research question that was formulated during Study 8.

Table 32. Study 8: Research Question

Research Question

RQ1 What specific prevention strategies do industry practitioners employ for the

human errors described in the Human Error Taxonomy?

88

The participants of Study 8 were 11 industry practitioners working in a software

development organization based in Minneapolis, MN. The participants were first provided a

video-based training on the human errors in the Human Error Taxonomy (HET). The training

included: a module that helped participants understand the human errors types (slips, lapses, and

mistakes), and a module that helped them understand the 15 human error classes in the Human

Error Taxonomy. An additional module trained the participants on the Human Error Abstraction

Assist or HEAA tool and how to use the tool to abstract human errors from requirements faults.

This additional module was meant to provide participants with a deeper understanding about:

how the human errors can lead to faults being injected in requirements documents. Post-training,

participants were provided with a set of requirements faults, the complete information about each

fault, a training supplement document containing description of each human error class, and an

error form with their perception of the human error that caused fault-injection. Next, the

participants were asked to answer the following survey item about each error:

How would you reduce the future occurrence of the human error? (Note that participants

provided subjective feedback for this survey item).

7.2. Study 8: Data Analysis and Results

This section provides the results of analyzing the data gathered during Study 8. This

section is organized around the research question that was provided in Table 32.

7.2.1. What Specific Prevention Strategies do Industry Practitioners Employ for the

Human Errors Described in the Human Error Taxonomy?

The participants provided subjective feedback for the following survey item: How would

you reduce the future occurrence of the human error? In their feedback, participants described

the prevention mechanisms that they use in order to eliminate the occurrence of specific human

89

errors. This feedback, containing prevention mechanisms, was first analyzed separately for each

human error class. If the description of the prevention mechanism was found to be incomplete or

incomprehensible, the mechanism was rejected. Next, from the remaining mechanisms, those

prevention mechanisms that were similar were grouped together. As the reported prevention

strategies were being analyzed, it was observed that four high-level groups emerged based on the

problem that was being addressed by the reported strategies/mechanisms:

• Prevention mechanisms for communication problems: Under this high-level

category, participants described the prevention mechanisms for those human

errors that result from cognitive under specification caused due to communication

problems within the requirements engineering team and also the communication

problems between the team and the end-users/stakeholders. Table 33 shows the

prevention strategies for communication problems.

• Prevention mechanisms through changes to resources: Under this high-level

category, participants described the prevention mechanisms for those human

errors that result from unavailability of expert knowledge about the system-being-

built. Table 34 shows the prevention mechanisms for this category.

• Prevention mechanisms for management/administration problems: Under this

high-level category (see Table 35), participants reported strategies that can help

prevent human errors through some administrative changes.

• Prevention mechanisms through changes to requirements engineering (RE)

procedure: Under this high-level category (see Table 36), participants reported

strategies that can help prevent human errors through changes to requirements

engineering best practices.

90

Tables 33, 34, 35, and 36 provide prevention mechanisms that were obtained as a result

of analyzing Study 8’s data.

Table 33. Study 8: Prevention Mechanisms for Communication Problems

Prevention Strategy

Relevant Error

Class in HET

Relevant Requirements

Engineering Activity

Creating a communication plan that includes what type of

communication should happen between the different team

members, how should it happen (method of communication), and

at what times (weekly, daily, or after completion of specific tasks,

etc.).

Clerical Errors

(Slip)

Specification, Analysis

Requirements team should get a list of common terminology from

end-users and make sure all members are familiar with them. It is

almost impossible to expect different end-users will use the same

words/names for an entity.

Lack of

Consistency in

Requirements

Specifications

(Slip)

Specification

During requirements gathering, repeat back all the requirements

that were heard and get confirmation that:

(a) requirements were understood correctly

(b) the end-users haven’t missed any special circumstances

Accidentally

Overlooking

requirements

(Lapse)

Elicitation

Creating a dictionary/glossary of terms used by clients. Notes

gathered from different clients should be examined to check if

different terms are being used for the same entity. If so, then the

different terms should be consolidated into one name (in

consultation with the clients).

Wrong

Assumptions

(Mistake)

Analysis

The requirements gathering person should ask the right follow-up

questions in order to force the client to be more concise and clear

in their use of terminology and to avoid redundant terms.

Wrong

Assumptions

(Mistake)

Elicitation

Knowledge transfer within the requirements engineering team

should be encouraged. This can be done by asking requirements

engineering team members to do presentations or talks about the

parts of the system that they are currently working on.

Additionally, end-users/stakeholders should be invited to such

presentations in order to get feedback from them about: whether

they think the requirements engineering team members’

knowledge about the system is correct.

Poor/Low

Understanding

of Roles

(Mistake)

Elicitation, Analysis

A glossary of important items/terms/entities related to the system-

under-development should be created and distributed to all

members of the requirements engineering team. It should also be

continually updated.

Inadequate

Requirements

Process

(Mistake)

Management

91

Table 34. Study 8: Prevention Mechanisms through Changes to Resources

Prevention Strategy

Relevant

Error Class

in HET

Relevant

Requirements

Engineering Activity

If the complete knowledge of system is not present, then

application errors can be avoided by consulting Subject

matter Experts (SMEs). Organizations have SMEs for the

various parts of the system (being built) and they can provide

functional knowledge about the system.

Application

Errors

(Mistake)

Analysis

Hiring an experienced requirements gathering person and

training them on the dos and don’ts of requirements

elicitation.

Wrong

Assumptions

(Mistake)

Elicitation

Subject matter Experts or SMEs, who can provide functional

knowledge about the system and various parts of the system,

should be available. Having technical SMEs on hand is also

useful and they can help in choosing the right solutions

related to design and programming constraints.

Problem-

solution Errors

(Mistake)

Analysis

Table 35. Study 8: Prevention Mechanisms for Management/Administration Problems

Prevention Strategy

Relevant

Error Class

in HET

Relevant

Requirements

Engineering

Activity

From a very early stage in requirements engineering, a

process should be in place that ensures that ‘customer

approvals’ can be readily obtained by requirements

engineering team members. Not having too many

layers between requirements engineering team

members and end-users can help with this.

Inadequate

Requirement

s Process

(Mistake)

Management

At the very outset of the requirements phase, the

organization should establish a procedure for dealing

with requirement-change. Procedures should be in

place to ensure that team performs impact analysis for

all proposed changes, and channels should be in place

to get approvals from appropriate stakeholders.

Inadequate

Requirement

s Process

(Mistake)

Management

92

Table 36. Study 8: Prevention Mechanisms through Changes to RE Procedures

Prevention Strategy

Relevant Error

Class in HET

Relevant Requirements

Engineering Activity

Wherever applicable, when creating formal requirements specifications from

elicited (and analyzed) requirements, the requirements author should make sure to

get any formulas (mathematical expressions) validated from end-

users/stakeholders who have supplied the formulas.

Clerical Errors

(Slip)

Specification

Once the formal requirements specifications have been created, a workshop or JAD

(Joint Application development) session should be conducted wherein end-users,

programmers, testers, and system designers can review the document and discuss

issues with the requirements engineering team.

Lack of

Consistency in

Requirements

Specifications (Slip)

Specification

Building dependency and traceability matrices early in the requirements

engineering phase and keeping them updated can help avoid overlooking any

requirements. Members of requirements engineering team should be encouraged to

utilize these matrices when eliciting/analyzing/writing requirements.

Accidentally

Overlooking

requirements

(Lapse)

Elicitation

Both requirements engineering team and end-users should be encouraged to review

the dependency matrix before requirements gathering sessions.

Accidentally

Overlooking

requirements

(Lapse)

Elicitation

If the new system is being built is going to replace a legacy system, then it is

essential that the requirements team gains as much knowledge as possible about the

existing legacy system. But if the system is one of a kind, then techniques such as

creating use case scenarios and showing them to the end-users/stakeholders can

help gather knowledge about the system.

Application Errors

(Mistake)

Analysis, Elicitation

When analyzing requirements, it is essential to think from a tester's perspective and

validate every requirement being created. More specifically, requirements that

describe formulas and mathematical expressions can easily be validated (by using

techniques like boundary value analysis).

Application Errors

(Mistake)

Analysis

A central reference guide for all variables used during requirements creation should

be created and updated periodically. The guide should also define the relationships

(i.e., how a change in one variable effects another) between the different variables.

Requirements team should ensure that they should refer to the guide whenever they

are eliciting/analyzing/writing requirements that use variables.

Information

Management Errors

(Mistake)

Management, Analysis,

Specification

Creating data flow diagrams (DFD) using requirements specifications can reveal

omissions. RE teams should be trained on DFD-construction and creating DFDs

should be part of requirements engineering best practices.

Information

Management Errors

(Mistake)

Management

Inconsistencies can be avoided by limiting the number of places in the requirements

document where the same item/entity (e.g., an equipment) is discussed. If this is

not possible, then the requirements engineering team needs to maintain a log of

related requirements within the documents.

Information

Management Errors

(Mistake)

Management, Specification

Assumptions are common issues, especially when a person thinks they know a lot

about the system. Assumptions can be avoided by asking all members of

requirements engineering team to create a central repository of any and all

assumptions that they make while creating the requirements and making this

repository visible to the entire team (so that team members can flag those

assumptions that they think are incorrect).

Wrong

Assumptions

(Mistake)

Elicitation, Analysis

If the team does not have the proper know-how about what are the correct

resources/techniques for creating the solution of a given problem, then it is a good

idea to create a proof-of-concept (POC) first. The POC can reveal whether the

solution that the team has come up with is the right one or not.

Problem-solution

Errors (Mistake)

Analysis

93

Analyzing the data gathered during Study 8 has revealed a list of strategies that industrial

practitioners use in order to avoid the occurrence of human errors described in the Human Error

Taxonomy. It is anticipated that by applying these strategies, software development

organizations can help the teams in avoiding the human errors and related faults, thereby

increasing the quality of requirements created by the teams.

The next chapter provides a discussion of the major implications of the results obtained

during the research described in this dissertation.

94

8. A DISCUSSION ON THE IMPLICATIONS OF RESULTS

This chapter provides a discussion of the implications of the various study-findings (i.e.,

results) obtained during the research described in this dissertation. Here, I discuss the results of

answering the various research questions and the implications of these results. This chapter is

organized around the several research questions (discussed in Chapter 3, 4, 6 and 7) that were

driving the research described in this dissertation.

What types of requirements engineering human errors does the software engineering

and psychology literature describe, and how can we organize the identified human errors

identified into a taxonomy?

The systematic literature review (described in Chapter 3) identified the human errors that

are most frequently committed during the requirements engineering phase of the software

development life-cycle. The outcome of the systematic literature review was a Human Error

Taxonomy (Figure 7) containing requirements phase human errors. The development of Human

Error Taxonomy required close collaboration with a human error expert from psychology. While

a number of general frameworks for classifying human errors have been proposed by psychology

researchers, the errors found in software engineering literature did not utilize these frameworks.

Therefore, each error description needed to be carefully analyzed in order to determine whether

it truly represented a human error. Research described in this dissertation has shown that a close

interaction between software engineers and psychology researchers can help in providing a

theoretically-sound human error framework for organizing requirements engineering human

errors. Furthermore, the human error taxonomy developed in this research will help software

development teams identify the most frequently committed human errors so that they can focus

the requirements inspection process on identification and removal of the faults caused by those

95

human errors, and also create and implement strategies to prevent the human errors (e.g.

checklists, and trainings).

Does the human error-based inspection approach (i.e., the Error Abstraction and

Inspection or EAI approach) improve the fault detection effectiveness of inspectors when

compared to traditional requirements inspection approach?

Multiple empirical studies described in this dissertation provided evidence that the Error

Abstraction and Inspection approach can improve the fault detection effectiveness of inspectors

when compared to traditional inspections techniques. It should be noted that the Error

Abstraction and Inspection approach works as an addendum to the traditional fault-checklist

inspection approach. Results from Study 4 (Figure 19) showed that, on an average, the Error

Abstraction and Inspection approach (supported by Human Error Abstraction Assist tool)

increased the fault detection effectiveness of inspectors by 225% as compared to conducting only

fault-checklist inspection on the requirements document. That is, during Study 4, a significantly

large number of faults were identified by the inspectors during error-informed reinspection that

were left undetected during the first inspection (the first inspection was a fault-checklist based

inspection). Overall, it can be concluded that knowledge of human errors can aid software

development teams in finding additional faults related to those human errors. The central idea of

the Error Abstraction and Inspection (EAI) approach is that once a development team becomes

aware of the human errors that were committed during an SRS’s development process, it is likely

that faults related to those human error are also present in the SRS. Furthermore, analyzing the

data collected during Study 7 (see Table 25) helped in uncovering the strategies that successful

inspectors use during the error-informed reinspection leg of the EAI inspection approach. It is

96

anticipated that by training inspectors on these reinspection strategies can further improve the

fault detection effectiveness of the EAI approach.

Does the Human Error Abstraction Assist tool provide a useful method for abstracting

human errors from requirements faults?

During the initial evaluations, the Error Abstraction and Inspection (EAI) approach was

supported by the Human Error Taxonomy (HET). Then, the Human Error Abstraction Assist or

HEAA tool was developed (with HET as its foundation) and it was found that the HEAA tool

helped inspectors in understanding the error abstraction process better. We found that

implementing the steps of a standard error abstraction process (in HEAA tool) helped the

inspectors achieve better error abstraction performance. Furthermore, using feedback from

participants, some improvements were made to the HEAA tool and the refined HEAA was able

to further improve the error abstraction accuracy of inspectors. Results from Study 7, however,

revealed that the participants face difficulties when applying HEAA tool to abstract errors from

faults in externally-developed requirements documents (i.e., SRS documents). Therefore, there is

a need for improving the error abstraction process and the HEAA tool when employing it on

externally-developed SRS documents. Another major area wherein HEAA tool needs to be

improved is helping inspectors select the correct requirements engineering activity where the

fault (being analyzed for human error) originated. When using the HEAA tool, participants made

most of the misjudgments when selecting the requirements engineering activity wherein the fault

originated (i.e., the human error occurred and caused the injection of the fault being analyzed).

Requirements engineering professional during a Live Conference study (Study 6) provided

feedback that inspectors might have different understanding of requirements engineering

activities (depending on the software development organization an inspector belongs to). This is

97

because organizations follow different requirements engineering processes and techniques.

Therefore, requirements engineering professionals suggested that the error abstraction training

should provide detailed descriptions of the various activities, so that all inspectors can develop a

similar understanding of the activities before they start using the HEAA tool.

What specific prevention strategies do industry practitioners employ for the human

errors described in the Human Error Taxonomy?

Study 8 compiled a list of the strategies or mechanisms that can be used by requirements

engineering teams to reduce the incidence of human errors. A total of twenty-four (24) human

error prevention strategies were identified during the survey. Of the 24 error prevention

strategies, a majority of the strategies (17 of them) address Mistake error type in the Human

Error Taxonomy. This showed that participants believed that Mistake errors represent a more

deep-seated problem in the requirements engineering process. These problems are also called

latent errors and require system-wide improvements/changes in order to reduce their occurrence.

Additionally, strategies related to changes in requirements engineering procedures (Table 36)

were the most frequently reported strategies. Almost half of all the identified strategies (i.e., 12

out of 24) are related to human errors that can be prevented via changes in requirements

engineering practices. Participants emphasized that requirements engineering team can prevent

many errors and faults by creating and maintaining the following requirements engineering tools:

dependency matrix, traceability matrix, Data Flow Diagrams, and a central data dictionary.

98

9. CONCLUSION

This section discusses the major contribution of the work described in this dissertation to

Software Engineering research and practice. This section also enlists the publications that will be

the output of this dissertation work.

9.1. Contribution to Software Engineering Research and Practice

 This research has illustrated that human error research has the potential to provide an

effective solution to the software quality problem. Through a meticulous application of human

error research to requirements engineering, this research has resulted in the development of a

Human Error Taxonomy (HET) that is strongly grounded in human error theories.

This research empirically validated the usefulness of the HET to support a formal

requirements inspection technique (the Error Abstraction and Inspection - EAI) that can be used

by researchers and practitioners when understanding requirement errors at their organizations.

This will also motivate other researchers to employ human error research for developing similar

human error based quality improvement approaches for other software lifecycle phases.

Furthermore, this research highlighted the need for a more formal Human Error Abstraction

Assist (HEAA) tool to help software engineers systematically investigate the human error causes

of requirements faults. Interested researchers might develop similar tools to understand the

human error causes of problems that occur during other phases of software development. The

systematic literature review (SLR) procedure that identified requirements phase during this

research can be used by other interested researchers as a blueprint to identify human errors that

happen in other phases of software development lifecycle.

The results from this work provide insight into the human error causes of defects and

failures that occur during software development. These insights can be used by organizations and

99

developers to focus their review process on detection and removal of defects and to implement

policies and interventions to prevent the most frequently occurring human errors.

This research has also compiled a preliminary list of the mechanisms that can be used by

organizations to prevent the incidence of human errors during software development process.

Reducing the incidence of human errors will lead to a reduction in the number of faults/defects

and failures that are caused by the human errors, thereby increasing the overall quality of the

software being developed.

9.2. Publications

This section describes the publications resulted from the work done for this dissertation.

The publication plan is described in terms of articles (conference papers and journal papers) that

have been published, and the articles that have been submitted or are in progress.

9.2.1. Refereed Conferences

1. Anu, V., Walia, G., Hu, W., Carver, J., and Bradshaw, G. “Issues and

Opportunities for Human Error-based Requirements Inspections: An Exploratory

Study”, ACM/IEEE International Symposium on Empirical Software Engineering

and Measurement (ESEM 2017) [54].

2. Anu, V., Walia, G., and Bradshaw, G. "Incorporating Human Error Education

into Software Engineering Courses via Error-based Inspections", 48th ACM

Technical Symposium on Computer Science Education (SIGCSE 2017) [55].

3. Anu, V., Walia, G., Hu, W., Carver, J., and Bradshaw, G. “Using a Cognitive

Psychology Perspective on Errors to Improve Requirements Quality: An

Empirical Investigation” Proceedings of 27th IEEE International Symposium on

Software Reliability Engineering (ISSRE 2016)[[56].

100

4. Anu, V., Walia, G., Hu, W., Carver, J., and Bradshaw, G. “Error Abstraction

Accuracy and Fixation during Error-based Requirements Inspections”

Proceedings of 27th IEEE International Symposium on Software Reliability

Engineering Workshops (ISSREW 2016) [57]

5. Hu, W., Carver, J., Anu, V., Walia, G., and Bradshaw, G. “Detection of

Requirement Errors and Faults via a Human Error Taxonomy: A Feasibility

Study” Proceedings of 10th ACM/IEEE International Symposium on Empirical

Software Engineering and Measurement (ESEM 2016) [58]

6. Anu, V., Walia, G., Hu, W., Carver, J., and Bradshaw, G. “Effectiveness of

Human Error Taxonomy during Requirements Inspection: An Empirical

Investigation” Proceedings of 28th International Conference on Software

Engineering and Knowledge Engineering (SEKE 2016) [59]

9.2.2. Refereed Journal Articles (Under Review and In progress)

1. Anu, V., Hu, W., Carver, J., Walia, G., and Bradshaw, G. “Development of a

Human Error Taxonomy for Software Requirements: A Systematic Literature

Review” Accepted with some changes to Journal of Information and Software

Technology (JI&ST), 2018.

This article describes the systematic literature review process for developing the

Human Error taxonomy (HET). This paper has been modified based on

reviewers’ comments and re-submitted to JI&ST.

2. Hu, W., Carver, J., Anu, V., Walia, G., and Bradshaw, G. “Using Human Error

Information for Error Prevention” Accepted to be published in Empirical

Software Engineering (EMSE), May 2018.

101

3. Anu, V., Walia, G., Hu, W., Carver, J., and Bradshaw, G. “Progressive

Refinement of a Human Error Detection Tool for Improving the Investigation of

Human Error Causes of Requirements Faults.” In progress to be submitted to

Journal of Information and Software Technology (JI&ST), 2018.

This paper will describe the series of three controlled empirical studies that

resulted in the development and refinement of a human error detection tool

called Human Error Abstraction Assist (HEAA). The error abstraction data

obtained during the empirical studies will be analyzed for more insights.

9.2.3. Workshops and Live Studies

1. Anu, V., Walia, G., Bradshaw, G., Hu, W., and Carver, J. "Using Human Error

Abstraction Method for Detecting and Classifying Requirements Errors: A Live

Study" In 23rd International Working Conference on Requirements Engineering:

Foundation for Software Quality (REFSQ 2017) [48]

2. Hu, W., Carver, J., Anu, V., Walia, G., and Bradshaw, G. "Understanding

Human Errors in Software Requirements: An Online Survey", In 23rd

International Working Conference on Requirements Engineering: Foundation for

Software Quality (REFSQ 2017) [60]

3. First Workshop on Applications of Human Error to Improve Software

Engineering. Held in the International Conference on Software Engineering

(ICSE 2015)

9.3. Future Work

An immediate task is to replicate the empirical studies (which were conducted in

academic settings) with professional developers in industrial settings. This will help in

102

understanding if the results obtained from students are consistent with those obtained from

industry practitioners. Another future task is to extend the Human Error Taxonomy (HET) by

collecting and analyzing error data from professional developers. HET currently contains

requirements phase human errors that were found in software engineering literature. In order to

add more error classes to HET, I plan to conduct ethnographical studies, wherein a participant

observer (a human error expert) will act as a fly on the wall and take notes as professional

developers carry out the various requirements engineering activities.

Another future goal is to improve the human error investigation tool (i.e., HEAA tool) by

adding the human factors perspective of latent organizational errors. This will require reviewing

the software engineering literature to identify the organizational weaknesses (like lack of time

and resources allocated to requirements phase). These organizational weaknesses act as pre-

cursors to the human errors. This kind of comprehensive human error and human factor

investigation can provide organizations an opportunity to perform fine-grained analysis of the

people and process problems that exist within their requirements engineering practices.

An area of future work is to develop and validate error taxonomies for the design and

implementation phases of software development. Work has already begun on a research project

that uses the systematic literature review process to identify the human errors that are committed

during the architecture/design phase of the software development lifecycle.

Another future goal is to create and evaluate educational materials and procedures that

can be used by academic educators and project managers to impart knowledge about human

errors that affect the software development process. This research will benefit students and

practitioners by providing insights into the human cognition aspect of software development. A

detailed understanding of the psychological and cognitive processes that lead to human errors

103

will provide software engineers with a fresh perspective on software quality assurance and equip

them with new set of tools to prevent, detect, and fix software faults.

Another future goal is to investigate other areas of Software Engineering and Information

Sciences that can benefit from inclusion of Cognitive Psychology research on human errors and

human factors. One research area that is of particular interest is: incident investigation of

successful cybersecurity attacks from a human factors analysis perspective. This research will

look at: what are the major cognitive and human factors that drive the erroneous behavior of the

people involved in cybersecurity incidents.

104

REFERENCES

[1] M. T. Baysari, C. Caponecchia, A. S. McIntosh, and J. R. Wilson, “Classification of errors

contributing to rail incidents and accidents: A comparison of two human error

identification techniques,” Saf. Sci., vol. 47, no. 7, pp. 948–957, 2009.

[2] T. Diller, G. Helmrich, S. Dunning, S. Cox, A. Buchanan, and S. Shappell, “The Human

Factors Analysis Classification System (HFACS) applied to health care.,” Am. J. Med.

Qual., vol. 29, no. 3, pp. 181–90, 2014.

[3] T. B. Sheridan, “Understanding human error and aiding human diagnostic behaviour in

nuclear power plants,” in Human detection and diagnosis of system failures, 1981, pp. 19–

35.

[4] D. Wiegmann and C. Detwiler, “Human Error and General Aviation Accidents : A

Comprehensive , Fine-Grained Analysis Using HFACS,” Security, no. December, pp. 1–5,

2005.

[5] B. Boehm and V. R. Basili, “Software Defect Reduction Top 10,” Computer (Long.

Beach. Calif)., vol. 34, no. 1, pp. 135–137, 2001.

[6] M. Hamill and K. Goseva-Popstojanova, “Common trends in software fault and failure

data,” IEEE Trans. Softw. Eng., vol. 35, no. 4, pp. 484–496, 2009.

[7] J. C. Chen and S. J. Huang, “An empirical analysis of the impact of software development

problem factors on software maintainability,” J. Syst. Softw., vol. 82, no. 6, pp. 981–992,

2009.

[8] R. Dion, “Process Improvement and the Corporate Balance Sheet,” IEEE Softw., vol. 10,

no. 4, pp. 28–35, 1993.

105

[9] S. T. Knox, “Modeling the cost of software quality,” Digit. Tech. J., vol. 5, pp. 9–16,

1993.

[10] D. Leffingwell, “Calculating the return on investment from more effective requirements

management,” Cut. IT J., vol. 10, no. 4, pp. 13–16, 1997.

[11] B. Brykczynski, “A survey of software inspection checklists,” ACM SIGSOFT Softw. Eng.

Notes, vol. 24, no. 1, p. 82, 1999.

[12] D. L. Parnas and M. Lawford, “The role of inspection in software quality assurance,” in

IEEE Transactions on Software Engineering, 2003, vol. 29, no. 8, pp. 674–676.

[13] A. A. Porter and L. G. Votta, “An experiment to assess different defect detection methods

for software requirements inspections,” Proc. 16th Int. Conf. Softw. Eng., pp. 103–112,

1994.

[14] T. Thelin, P. Runeson, and C. Wohlin, “An experimental comparison of usage-based and

checklist-based reading,” in IEEE Transactions on Software Engineering, 2003, vol. 29,

no. 8, pp. 687–704.

[15] E. Kantorowitz, A. Guttman, and L. Arzi, “The performance of the N-fold requirement

inspection method,” Requir. Eng., vol. 2, no. 3, pp. 152–164, 1997.

[16] J. Martin and W. T. Tsai, “N-Fold inspection: a requirements analysis technique,”

Commun. ACM, vol. 33, no. 2, pp. 225–232, 1990.

[17] G. M. Schneider, J. Martin, and W. T. Tsai, “An experimental study of fault detection in

user requirements documents,” ACM Trans. Softw. Eng. Methodol., vol. 1, no. 2, p. 188,

1992.

106

[18] V. R. Basili, S. Green, O. Laitenberger, F. Shull, S. Sørumgård, and M. V. Zelkowitz,

“The Empirical Investigation of Perspective-based Reading,” Empir. Softw. Eng., vol. 1,

pp. 133–164, 1996.

[19] J. C. Maldonado, J. Carver, F. Shull, S. Fabbri, E. Dória, L. Martimiano, M. Mendonça,

and V. Basili, “Perspective-based reading: A replicated experiment focused on individual

reviewer effectiveness,” in Empirical Software Engineering, 2006, vol. 11, no. 1, pp. 119–

142.

[20] F. Shull, I. Rus, and V. Basili, “How perspective-based reading can improve requirements

inspections,” Computer (Long. Beach. Calif)., vol. 33, no. 7, pp. 73–79, 2000.

[21] A. A. Porter, V. R. Basili, and L. G. Votta, “Comparing Detection Methods for Software

Requirements Inspections: A Replicated Experiment,” IEEE Trans. Softw. Eng., vol. 21,

no. 6, pp. 563–575, 1995.

[22] O. Laitenberger, “A Survey on Software Inspection Technologies,” in Handbook on

Software Engineering and Knowledge Engineering, vol. 2, 2002, pp. 517–555.

[23] G. S. Walia and J. C. Carver, “A systematic literature review to identify and classify

software requirement errors,” Inf. Softw. Technol., vol. 51, no. 7, pp. 1087–1109, 2009.

[24] J. W. Lee, Y. H. Lee, T. Il Jang, D. H. Kim, and J. Park, “A proposition of human factors

approaches to reduce human errors in nuclear power plants,” in IEEE Conference on

Human Factors and Power Plants, 2007, pp. 16–22.

[25] I. A. Taib, A. S. McIntosh, C. Caponecchia, and M. T. Baysari, “A review of medical

error taxonomies: A human factors perspective,” Safety Science, vol. 49, no. 5. pp. 607–

615, 2011.

107

[26] G. da S. R. Ribeiro, R. C. da Silva, M. de A. Ferreira, and G. R. da Silva, “Slips, lapses

and mistakes in the use of equipment by nurses in an intensive care unit,” Rev. da Esc.

Enferm., vol. 50, no. 3, pp. 419–426, 2016.

[27] S. A. Shappell and D. A. Wiegmann, “The Human Factors Analysis and Classification

System – HFACS,” Security, p. 19, 2000.

[28] N. A. Stanton and P. M. Salmon, “Human error taxonomies applied to driving: A generic

driver error taxonomy and its implications for intelligent transport systems,” Saf. Sci., vol.

47, no. 2, pp. 227–237, 2009.

[29] G. S. Walia and J. C. Carver, “Using error abstraction and classification to improve

requirement quality: Conclusions from a family of four empirical studies,” Empir. Softw.

Eng., vol. 18, no. 4, pp. 625–658, 2013.

[30] REQB, “Standard glossary of terms used in Requirements Engineering,” Requir. Eng.

Qualif. Board, vol. 1.0, p. 24, 2011.

[31] IEEE, “Systems and software engineering -- Vocabulary,” ISO/IEC/IEEE 24765:2010(E),

pp. 1–418, 2010.

[32] IEEE std, “IEEE Standard Glossary of Software Engineering Terminology (IEEE Std

610.12-1990). Los Alamitos,” CA IEEE Comput. Soc., vol. 610.12-199, 1990.

[33] A. A. Alshazly, A. M. Elfatatry, and M. S. Abougabal, “Detecting defects in software

requirements specification,” Alexandria Eng. J., vol. 53, no. 3, pp. 513–527, 2014.

[34] F. Lanubile, F. Shull, and V. R. Basili, “Experimenting with Error Abstraction in

Requirements Documents,” in In Proceedings of the 5th International symposium on

software metrics, 1998.

108

[35] G. S. Walia, J. C. Carver, and P. Thomas, “Requirement Error Abstraction and

Classification: An Empirical Study,” in In Proceedings of the 5th International

Symposium on Empirical Software Engineering, 2006, pp. 336–345.

[36] G. S. Walia and J. C. Carver, “Evaluating the use of requirement error abstraction and

classification method for preventing errors during artifact creation: A feasibility study,” in

In Proceedings of the 24th IEEE International Symposium on Software Reliability

Engineering, ISSRE, 2010, pp. 81–90.

[37] G. S. Walia, J. C. Carver, and T. Philip, “Requirement error abstraction and classification:

A control group replicated study,” in In Proceedings of the 18th IEEE International

Symposium on Software Reliability Engineering, ISSRE, 2007, pp. 71–80.

[38] R. P. E. Gordon, “The contribution of human factors to accidents in the offshore oil

industry,” Reliab. Eng. Syst. Saf., vol. 61, no. 1, pp. 95–108, 1998.

[39] J. Reason, Human error. New York, NY: Cambridge University Press, 1990.

[40] J. Rasmussen and K. J. Vicente, “Coping with human errors through system design:

implications for ecological interface design,” Int. J. Man. Mach. Stud., vol. 31, no. 5, pp.

517–534, 1989.

[41] J. Rasmussen, “Skills Rules and Knowledge, Other Distinctions in Human Performance

Models,” IEEE Trans. Syst. Man. Cybern., vol. 13, no. 3, pp. 257–266, 1983.

[42] J. Rasmussen, “Human errors. A taxonomy for describing human malfunction in industrial

installations,” J. Occup. Accid., vol. 4, no. 2–4, pp. 311–333, 1982.

[43] J. Rasmussen, “Skills, Rules, and Knowledge; Signals, Signs, and Symbols, and Other

Distinctions in Human Performance Models,” IEEE Trans. Syst. Man Cybern., vol. SMC-

13, no. 3, pp. 257–266, 1983.

109

[44] D. A. Norman, The Design of Everyday Things, vol. 16, no. 4. 2002.

[45] P. Brereton, B. A. Kitchenham, D. Budgen, M. Turner, and M. Khalil, “Lessons from

applying the systematic literature review process within the software engineering

domain,” J. Syst. Softw., vol. 80, no. 4, pp. 571–583, 2007.

[46] D. Budgen and P. Brereton, “Performing systematic literature reviews in software

engineering,” in Proceeding of the 28th international conference on Software engineering

- ICSE ’06, 2006, p. 1051.

[47] B. Kitchenham, “Procedures for performing systematic reviews,” Keele, UK, Keele Univ.,

vol. 33, no. TR/SE-0401, p. 28, 2004.

[48] V. Anu, G. S. Walia, W. Hu, J. C. Carver, and G. Bradshaw, “Using Human Error

Abstraction Method for Detecting and Classifying Requirements Errors: A Live Study,” in

23rd International Working Conference on Requirements Engineering: Foundation for

Software Quality, 2017.

[49] A. Esgate, D. Groome, and K. Baker, An Introduction to Applied Cognitive Psychology.

Psychology Press, 2005.

[50] G. M., “Software defect prevention using orthogonal defect prevention.,” 2005. .

[51] S. Kumaresh and R. Baskaran, “Software Defect Prevention through Orthogonal Defect

Classification,” Int. J. Comput. Technol., vol. 11, no. 3, pp. 2393–2400, 2014.

[52] S. Kumaresh and R. Baskaran, “Defect Analysis and Prevention for Software Process

Quality Improvement,” Int. J. Comput. Appl., vol. 8, no. 7, pp. 42–47, 2010.

[53] W. Hu, J. C. Carver, V. Anu, G. S. Walia, and G. Bradshaw, “Using human error

information for error prevention,” Empir. Softw. Eng., 2018.

110

[54] V. Anu, G. Walia, W. Hu, J. C. Carver, and G. Bradshaw, “Issues and Opportunities for

Human Error-Based Requirements Inspections: An Exploratory Study,” in International

Symposium on Empirical Software Engineering and Measurement, 2017, vol. 2017–

November, pp. 460–465.

[55] V. Anu, G. Walia, and G. Bradshaw, “Incorporating Human Error Education into

Software Engineering Courses via Error-based Inspections,” in Proceedings of the 2017

ACM SIGCSE Technical Symposium on Computer Science Education - SIGCSE ’17,

2017, pp. 39–44.

[56] V. Anu, G. S. Walia, W. Hu, J. C. Carver, and G. Bradshaw, “Using A Cognitive

Psychology Perspective on Errors to Improve Requirements Quality: An Empirical

Investigation,” in IEEE 27th International Symposium on Software Reliability

Engineering (ISSRE’16), 2016, pp. 65–76.

[57] V. Anu, G. S. Walia, W. Hu, J. C. Carver, and G. Bradshaw, “Error Abstraction Accuracy

and Fixation during Error-based Requirements Inspection,” in 27th IEEE International

Symposium on Software Reliability Engineering Workshops (ISSREW ’16)., 2016.

[58] W. Hu, J. C. Carver, V. Anu, G. S. Walia, and G. Bradshaw, “Detection of Requirement

Errors and Faults via a Human Error Taxonomy: A Feasibility Study,” in 10th ACM/IEEE

International Symposium on Empirical Software Engineering and Measurement, ESEM,

2016.

[59] V. Anu, G. S. Walia, W. Hu, J. C. Carver, and G. Bradshaw, “Effectiveness of Human

Error Taxonomy during Requirements Inspection: An Empirical Investigation,” in 2016

International Conference on Software Engineering and Knowledge Engineering, SEKE,

2016.

111

[60] W. Hu, J. C. Carver, V. Anu, G. S. Walia, and G. Bradshaw, “Understanding Human

Errors in Software Requirements: An Online Survey,” in 23rd International Working

Conference on Requirements Engineering: Foundation for Software Quality, 2017.

112

APPENDIX A. PAPERS THAT PROVIDED INPUT TO THE HET DURING THE SLR

PROCESS

This appendix provides a list of exclusively those 18 papers that provided input to the

HET. Some of these papers are also cited in the main paper.

[1] Basili VR, Perricone BT (1984) Software Errors and Complexity: An Empirical

Investigation. Commun ACM 27:42–52. doi: 10.1145/69605.2085

[2] Basili VR, Rombach HD (1987) Tailoring the Software Process to Project Goals and

Environments. In: Ninth Int. Conf. Softw. Eng. IEEE Press, California, USA, pp 345–357

[3] Bhandari I, Halliday MJ, Chaar J, Chillarege R, Jones K, Atkinson JS, Lepori-

Costello C, Jasper PY, Tarver ED, Lewis CC, Yonezawa M (1994) In-process improvement

through defect data interpretation. IBM Syst J 33:182–214. doi: 10.1147/sj.331.0182

[4] Bjarnason E, Wnuk K, Regnell B (2011) Requirements are slipping through the gaps -

A case study on causes & effects of communication gaps in large-scale software development.

In: Proc. 2011 IEEE 19th Int. Requir. Eng. Conf. RE 2011. pp 37–46

[5] Coughlan J, Macredie RD (2002) Effective Communication in Requirements

Elicitation: A Comparison of Methodologies. Requir Eng 7:47–60. doi: 10.1007/s007660200004

[6] Firesmith D (2007) Common requirements problems, their negative consequences,

and the industry best practices to help solve them. J Object Technol 6:17–33. doi:

10.5381/jot.2007.6.1.c2

[7] Galliers J, Minocha S, Sutcliffe AG (1998) A causal model of human error for safety

critical user interface design. ACM Trans Comput Interact 5:756–769.

[8] Huang F, Liu B, Huang B (2012) A Taxonomy System to Identify Human Error

Causes for Software Defects. Proc. 18th Int. Conf. Reliab. Qual. Des. ISSAT 2012

113

[9] Kumaresh S, Baskaran R (2010) Defect Analysis and Prevention for Software Process

Quality Improvement. Int J Comput Appl 8:42–47. doi: 10.5120/1218-1759

[10] Kushwaha DS, Misra AK (2006) Cognitive software development process and

associated metrics - A framework. In: Proc. 5th IEEE Int. Conf. Cogn. Informatics, ICCI 2006.

pp 255–260

[11] Lehtinen TOA, Mantyla M V., Vanhanen J, Itkonen J, Lassenius C (2014) Perceived

causes of software project failures - An analysis of their relationships. Inf Softw Technol

56:623–643. doi: 10.1016/j.infsof.2014.01.015

[12] Leszak M, Perry DE, Stoll D (2000) A case study in root cause defect analysis. Proc

22nd Int Conf Softw Eng - ICSE ’00 428–437. doi: 10.1145/337180.337232

[13] Lopes M, Forster C (2013) Application of human error theories for the process

improvement of Requirements Engineering. Inf Sci (Ny) 250:142–161.

[14] Lutz RR (1993) Analyzing software requirements errors in safety-critical, embedded

systems. Proc IEEE Int Symp Requir Eng 126–133. doi: 10.1109/ISRE.1993.324825

[15] Mays RG, Jones CL, Holloway GJ, Studinski DP (1990) Experiences with Defect

Prevention. IBM Syst J 29:4–32. doi: 10.1147/sj.291.0004

[16] Nakashima T, Oyama M, Hisada H, Ishii N (1999) Analysis of software bug causes

and its prevention. Inf Softw Technol 41:1059–1068. doi: 10.1016/S0950-5849(99)00049-X

[17] De Oliveira KM, Zlot F, Rocha AR, Travassos GH, Galotta C, De Menezes CS

(2004) Domain-oriented software development environment. J Syst Softw 72:145–161. doi:

10.1016/S0164-1212(03)00233-4

[18] Zhang X, Pham H (2000) An analysis of factors affecting software reliability. J Syst

Softw 50:43–56. doi: 10.1016/S0164-1212(99)00075-8

114

APPENDIX B. HUMAN ERROR ABSTRACTION ASSIST (HEAA) – INITIAL

VERSION

1. Choose one of the following options to decide where the fault originated:

(a) Did the fault occur

• While the system was being analyzed?

• While a large system was being divided into smaller parts?

• While system functionalities (functional requirements) and system behavior (performance and

other non-functional requirements) were being determined?

(b) Did the fault occur during interviews or discussions with the stakeholders (end users, project sponsors, etc.)? This

is where the user needs are gathered.

(c) Did the fault occur when the system information/requirements were being documented to create a formal software

requirements document?

(d) Did the fault occur

• During the management of the activities in a), b), or c) above?

• As requirements evolved or changed (i.e., traceability, version control, etc.)

RE activity associated to each option:

Option (a) – Requirement Analysis. Option (b) – Requirement Elicitation.

Option (c) – Requirement Specification. Option (d) – Requirement Management

2. Please consider the task which was being performed when the fault was injected (i.e., when the human error

occurred) and form a task/problem statement. For example,

“Analyzing the number of available parking spaces in the parking garage to arrive at a generic formula for

calculating the number of available parking spaces (a = k-r).”

Note that you will be asked to provide this task/problem statement in the ‘Error-Report Form’

The boxes below provide the human errors that are relevant to various RE activities. Based on your answer to

Question# 1, go to the appropriate box and pick the human error you think caused the fault.

**Refer to the HET details document to get a detailed description of the human error and an example fault.

Note that you will be asked to provide a brief description of why you picked a specific human error in the

‘Error-Report Form’.

Requirement Analysis

▪ Application error: requirement analyst's misunderstanding or lack of knowledge of a part of (or the whole) system

or problem

▪ Environment error: misunderstanding or misuse of the requirement analysis tools available for use in the project

▪ Wrong assumptions made by requirement analyst about user/stakeholder needs or opinions or any incorrect

assumptions by RE analysts

▪ Low understanding of each other’s roles: RE analyst does not understand the roles of all end users, stakeholders

and other RE analysts.

▪ Mistaken belief of RE analysts that it is impossible to specify non-functional requirements in a verifiable form

▪ Problem-Solution errors: Lack of knowledge of the requirement analysis process and general requirement

engineering know-how

115

 Requirement Elicitation

▪ Clerical Error: Carelessness while recording user needs

▪ Loss of information from stakeholders: Forgetting, discarding or failing to store information or documents

provided by stakeholders.

▪ Accidentally overlooking requirements

▪ Application error: stakeholder's or requirement gathering person's misunderstanding of a part of (or the whole)

system or problem

▪ Environment error: misunderstanding or misuse of the requirement gathering tools available for use in the project

▪ Wrong assumptions made by requirement gathering person about user/stakeholder needs or opinions or any

incorrect assumptions made by requirement gathering person.

▪ Low understanding of each other’s roles: Requirement gathering person does not understand the roles of all end

users and stakeholders.

▪ Mistaken belief of requirement gathering person that it is impossible to specify non-functional requirements in a

verifiable form

▪ Not having a clear demarcation between client and users: Requirement gathering person's misunderstanding of

the difference between clients and users

▪ Lack of awareness of sources of requirements

Requirement Specification

▪ Clerical Error: Carelessness while documenting specifications from elicited requirements.

▪ Lack of consistency In Requirement Specifications: Lack of logical coherence in the requirement specification

documentation, which makes it difficult to be interpreted correctly

▪ Environment error: misunderstanding or misuse of the requirement specification tools available for use in the

project

▪ Syntactic error: Misunderstanding of grammatical rules of natural language (English) or grammatical rules of a

formal requirement specification language.

Requirement Management

▪ Inadequate Requirements Process: All steps required to ensure a robust requirement engineering process are not

followed

▪ Information Management error: lack of knowledge about standard procedures and practices defined by the

organization

116

APPENDIX C. REFINED HUMAN ERROR ABSTRACTION ASSIST (HEAA) TOOL

117

 Step 2:

Please consider the task, which was being performed, and form a task/scenario

statement. In order to do this, try to visualize the scenario where you think the

human error might have occurred.

Based on the scenario, use the decision tree below to decide whether the human

error was a slip, a lapse, or a mistake

The boxes on the next two pages provide the human errors that are relevant to various RE

activities. Based on your RE activity choice in Step 1 and human error type choice during

Step 2 (slip, lapse, or mistake), go to the appropriate box and pick the human error you

think caused the fault.

You can refer to the HET details document to get a detailed description of the human error

and an example fault.

118

Step 3: Pick the appropriate Human Error

Requirement Analysis

Slips:
▪ Clerical Error: Carelessness while analyzing elicited requirements

Mistakes:
▪ Application error: analyst's misunderstanding or lack of knowledge of a part of (or the whole) system or problem

▪ Environment error: misunderstanding or misuse of the requirement analysis tools available for use in the project

▪ Wrong assumptions made by requirement analyst about user/stakeholder needs or opinions or any incorrect

assumptions by RE analysts

▪ Low understanding of each other’s roles: RE analyst does not understand the roles of all end users, stakeholders

and other RE analysts.

▪ Mistaken belief of RE analysts that it is impossible to specify non-functional requirements in a verifiable form

▪ Problem-Solution errors: Lack of knowledge of the requirement analysis process and general requirement

engineering know-how

Requirement Elicitation

Slips:
▪ Clerical Error: Carelessness while recording user needs

Lapses:
▪ Loss of information from stakeholders: Forgetting, discarding or failing to store information or documents provided

by stakeholders.

▪ Accidentally overlooking requirements: Overlooking a requirement or some information that is crucial to the

requirement

Mistakes:
▪ Application error: stakeholder's or requirement gathering person's misunderstanding of a part of (or the whole)

system or problem

▪ Environment error: misunderstanding or misuse of the requirement gathering tools available for use in the project

▪ Wrong assumptions made by requirement gathering person about user/stakeholder needs or opinions or any

incorrect assumptions made by requirement gathering person.

▪ Low understanding of each other’s roles: Requirement gathering person does not understand the roles of all end

users and stakeholders.

▪ Mistaken belief of requirement gathering person that it is impossible to specify non-functional requirements in a

verifiable form

▪ Not having a clear demarcation between client and users: Requirement gathering person's misunderstanding of

the difference between clients and users

▪ Lack of awareness of sources of requirements

119

Requirement Specification
Slips:

▪ Clerical Error: Carelessness while documenting specifications from elicited requirements.

▪ Lack of consistency In Requirement Specifications: Lack of logical coherence in the requirement specification

documentation, which makes it difficult to be interpreted correctly

Mistakes:
▪ Environment error: misunderstanding or misuse of the requirement specification tools available for use in the

project

▪ Syntactic error: Misunderstanding of grammatical rules of natural language (English) or grammatical rules of a

formal requirement specification language.

Requirement Management

Mistakes:
▪ Inadequate Requirements Process: All steps required to ensure a robust requirement engineering process are not

followed

▪ Information Management error: lack of knowledge about standard procedures and practices defined by the

organization

120

APPENDIX D. STUDY 7 - TEAMS AND SYSTEM DESCRIPTIONS

Team

of

members
System Name and Description (Length of SRS Document)

1 8

Dissertation Calculator (DC): The DC application will allow graduate

students to easily create a calendar with specific events and deadlines

related to their dissertation progress. (7-page long SRS)

2 6

Science Olympiad Scoring System (SOSS): Function of SOSS is to

store data for Science Olympiad competitions at NDSU. The goal of

the system is to provide a central location for judges to view and edit

scores for each event of the competition. (9-page long SRS)

3 7

Capstone Management System (CMS): Currently, Excel Spreadsheets

and handwritten notes are used to administratively manage the

computer science Capstone class and projects. The CMS project will

develop of a set of tools for management of the Capstone Class. It will

include the ability to authenticate users of Student and Admin type,

project–bidding, profile view/edit, etc. (8-page long SRS)

4 7

Wonders of Weather (WoW): The WoW system will allow a course

instructor to create a class in which the students can enter weather data

on specified days. Instructor chooses which data is required on

specific days and can enter the data on the required day. The system

will also keep track of the students’ grades. (5-page long SRS)

5 8

Sugar Beet Research and Education Board (SBREB): Currently, The

Sugar Beet Research and Education Board in North Dakota uses a

physical paper medium for collecting and storing their grant

proposals. SBREB will be an online interface for submitting, storing,

and reviewing grant proposals and associated research. (6-page long

SRS)

