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ABSTRACT 

A con-man deception appears in services from cyberspace, e.g., in cloud services. A 

cloud-service provider deceives by repeatedly providing less service than promised and 

deliberately avoids service monitoring. Such a repeated shortfall is beneficial for the cloud-

service provider but victimizes the service’s legitimate consumers. This deception is called a 

con-man deception. A con-man-resistant trust algorithm is used as a proactive measure against 

such deception, reducing the deception’s severity on the victim’s end. This trust algorithm 

detects a con-man deception by evaluating a cloud service’s expected versus actual behavior. 

This detection application reveals the con-man-resistant trust algorithm’s previously veiled 

properties. With this dissertation, a study of these properties reveals some necessary 

enhancements for this algorithm. The previous con-man-resistant trust-algorithm applications 

only considered the pattern of service-shortfall repetition. However, for cloud applications, the 

service-shortfall magnitude at each repetition is also important. Hence, an exponential growth-

function-based extension of this algorithm is proposed and implemented. The algorithm’s initial 

parameter configuration has a significant influence on the con-deception detection pace. Some 

consumers tolerate intense repetition of service shortfall, and some consumers can tolerate mild 

repetition. Hence, the deception-detection pace has a correlation with the consumer’s 

perspective. A machine-learning extension of the con-man-resistant trust algorithm can 

ascertain a consumer’s perspective by analyzing that consumer’s historical usage of the same 

cloud service. The result of this learning is a parameter configuration that reflects the 

consumer’s perspective. The loss associated with a con deception is significant on the 

consumer’s side. Hence, the work presented in this dissertation contributes to cybersecurity by 

attempting to minimize such deception in cyberspace. 
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CHAPTER 1. GENERAL INTRODUCTION 

1.1. Introduction 

A con man, or confidence man, has a sequence of interactions with a victim 

[1][2][3][4][5][6][7]. The con man carries out consecutive cooperative interactions (cooperation) 

or good transactions, elevating the victim’s trust. When high trust is achieved, the con man 

defects or defrauds the victim by engaging in a transaction that is bad for the user. The con man 

regains the victim’s trust with a similar series of cooperating, or good, transactions. The con man 

then deceives the victim again. This bad transaction following good transaction behavior is 

cyclic, regaining trust with good transactions and misusing this trust by engaging in bad 

transactions. This cycle is a con-man trick and is also a type of deception. 

 This con-man behavior can appear in the service-oriented architecture, e.g., the cloud 

services [4][5][6][7]. The work in this dissertation contributes by, first, modeling the con 

behavior in a cloud environment and then applying the con-man-resistant trust algorithm to 

detect the cloud services’ con behavior. The algorithm uses the con-man-resistant model which is 

aimed at measuring a trust value. The implemented algorithm measures and monitors the cloud-

service provider’s con deception in the form of actual versus standards of performance for the 

contracted cloud services. Until now, there was no detection methodology for the cloud service’s 

con deception. 

The con-man-resistant trust algorithm generates a trust value that depends upon 

measuring the metric values that are based upon monitoring the interactions between two agents. 

This trust value reflects the perception of one agent from the second agent’s view. If the first 

agent does not show a lapse in expected behavior to the second one, it is referred to as defection. 

If the first agent meets the second agent’s need or provides the expected behavior to the second 
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agent, then it is referred to as a cooperation. Trust values are increased when cooperation 

happens and decreased when a defection happens. The changes are non-linear and depend upon 

prior rates of occurrence for the cooperation and the defection. 

The efficiency of the implemented con-man-resistant trust algorithm depends on how 

well it can reflect the consumer’s perspective of trust for the service. This reflection further 

depends upon how aligned the algorithm’s parameters are with the consumer’s trust perspective. 

Hence, in this presented work, the parameters’ characteristics are studied, analyzed, and 

explained in detail. Also, a suitable machine-learning algorithm can learn the algorithm’s 

configuration or parameter alignment for a specific consumer. The dissertation further 

contributes by proposing and implementing a machine-learning algorithm where the con-man-

resistant trust algorithm learns about the consumer’s choice from that consumer’s historical 

service use. The implemented algorithm has the ability to classify real-time data as trustworthy 

or untrustworthy, based on the specific consumer’s perspective, after learning via the training 

phase. As a result, the algorithm achieves context sensitivity with parameter tuning or algorithm 

configuration. 

Again, for the cloud services, the consumer is concerned about the service’s performance 

magnitude. As another contribution, for the con-man-resistant trust algorithm, the different 

aspects of this performance are included in order to detect the cloud service’s con-deception 

actions. The parameter’s characteristics, analysis, and explanation are the other contributions of 

the presented study. The dissertation also recommends different possible applications of the con-

man-resistant trust algorithm in a cloud-computing environment.  

In summary, the research first studied and modeled the con deception in a cloud-

computing environment. Then, the work examined and extended the con-man-resistant trust 
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algorithm as a mitigation technique against the cloud-service provider’s con deception. The 

dissertation studied the principles that this algorithm follows as well as the algorithm’s 

properties. The project further enhanced the mitigation algorithm’s efficiency by learning the 

consumer’s perspective of the trust. The significance of the con-man-resistant trust algorithm is 

determining a cloud service’s instability as well as its service deficiency. 

1.2. Significance of the Research 

The significance of the presented work is that is provides both the consumer and the 

service provider with a context-sensitive tool to detect a cloud service’s deficiency by identifying 

an unstable cloud-service behavior as a con deception. The tool can be applied by both the 

consumer and the service provider. The consumer can automatically monitor a cloud service’s 

performance by using the con-man-resistant trust algorithm as a tool. The service provider can 

also monitor its business services using this tool. The service provider can revise investment 

decisions by reviewing the business-service evaluation score given by the tool.  

Another significance is that consumers or producers can tune the algorithm’s parameters, 

depending upon their choice of flexibility (e.g., flexible consumer versus conservative 

consumer). If the consumers or producers want the deficiency tolerance to be reflected in the 

service-deficiency detection as a con deception following their perspective, they can apply the 

recommended machine-learning version of the con-man-resistant trust algorithm. 

The con behavior has economic effects because it incurs financial loss, directly or 

indirectly. Hence, the presented work has significance for cloud economics because the cloud’s 

con-man-resistant trust algorithm for prevents loss by early detection of the con deception. 

The con-man-resistant trust algorithm was first applied to improve a smart electrical 

grid’s reliability [3]. The con-man-resistant trust algorithm is used to find stable electrical grid 
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node. In terms of an electrical grid, the con-man-resistant trust algorithm states that the less 

stable a node’s frequency is, the more it affects the components of the electrical grid. Similarly, 

the cloud service can be improved by applying the con-man-resistant trust algorithm as an 

evaluation method. This application problem can be restated as the less stable the service quality 

is, the more it affects the service’s consumer. 

1.3. Motivation for the Research 

This work is motivated by the business effect of repeated service deficiencies in a 

service-oriented architecture. Further study suggests that repeated service shortfalls can be a 

result of the service provider’s deception. When a repeated service shortfall appears as a 

deception, then the deception is identical to a con-man attack. The consumer or the cloud-service 

provider can improve awareness about unstable cloud-service behaviors or con deceptions by 

reviewing the referenced examples of the con behavior’s appearance in service-oriented 

architecture and such behavior’s effect in business. Similar concepts which are equivalent to the 

con-man deception in the service-oriented architecture are as follows: the cloud-service provider 

predicts a consumer’s usage pattern for the service and allocates resources according to the 

pattern; there is a repeated service-shortfall behavior by the provider in a peer-to-peer network; 

the peer follows an oscillation of a good and acceptable reputation with the goal of profit 

maximization; and there cyclic patterns of good and bad transactions by the service provider in a 

distributed network. Repetitive bad service reduces the consumer number of a business. Real-life 

examples of such business loss are presented in this work. Examples are that softlayer.com lost 

its consumers [8]; some users of the Animato site left permanently [9]; and the social-networking 

and gaming site friendster.com failed because its consumers left gradually due to repeated slow 

responses [10]. 
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The repeated service deficiency in cloud services is an unstable service behavior. This 

instability is comparable with an unstable electrical node where the node’s frequency fluctuates 

beyond a limit and fluctuation repeats. The con-man-resistant trust algorithm identifies the 

fluctuating, or unstable, behavior as a con [3]. The con-man trust value works as a node’s 

reliability measure. A similar concept can be used to identify stable cloud services. 

1.4. Peer-Reviewed, Published Papers and Their Relationship 

Six papers are published for this dissertation. Four papers are specifically about the con-

man-deception application. With these four papers, Minhaz Chowdhury is responsible for the 

innovations described, but the dissertation’s academic adviser is a co-author. The rest two papers 

mentions about the con-man-resistant trust algorithm application in cloud computing. However, 

these two papers did not present any new research. Hence, these two papers are connected to the 

dissertation but in less-direct ways. 

The first paper’s title is “Deception in Cyberspace: An Empirical Study on a Con Man 

Attack” [4]. Chapter 2 presents this paper. First, the possibility of the con-man deception as a 

repetitive performance-degradation issue is presented. Cloud software as a service (SAAS) and 

infrastructure as a service (IAAS) are simulated to represent the cloud services. SAAS simulation 

represented a web-service call that provided a service at each fixed interval. Hence, the resulting 

data are a time series.  

The con-man attack is simulated by adding server overloads and following a Poisson 

inter-arrival time. Due to the overload, the web-service task submitted at that time needed more 

time to complete, resulting in a longer response time. This time is the performance degradation. 

Hence, at each Poisson inter-arrival time, a performance degradation happened, simulating the 

repetition of service shortfalls.  
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With IAAS, fewer resources are provided at each Poisson inter-arrival time. The result is 

time-series data with repeated under-provision. This recurring under-provision is the IAAS 

simulation of a con-man attack. After the simulation, the con-man-resistant trust algorithm is 

implemented to catch the cloud service’s con behavior. The cloud-service provider is accused of 

this deception because the tradeoff between a cloud provider’s investment and service 

performance can eliminate many repeated shortfalls. 

In prior con-man-resistant trust algorithm research, the algorithm’s parameter settings 

were recommended [1][2][3]. In this dissertation, these recommended parameter settings is 

applied. The con-man-resistant trust algorithm’s performance is compared with another trust 

model [11]. The comparison proves the con-man-resistant trust algorithm’s efficiency to spot the 

con deception in cloud environment.  

At the end of Chapter 2, a time-window-based version of the con-man-resistant trust 

algorithm is proposed and implemented. The characteristics of this time-window-based version 

algorithm are also presented. However, this time-window-based algorithm is not a part of Paper 

1. When the work presented in the first paper was in progress, it became obvious to study the 

con-man-resistant algorithm’s properties for proper application of the algorithm in the cloud-

computing domain.  

Studying the properties revealed some shortcomings for previous versions of the con-

man-resistant trust algorithm. One shortcoming is the algorithm’s calculated trust value is 

dependent on parameter values from last few interactions rather only the last interaction. Another 

shortcoming is not to include the cloud service’s particular issue, e.g., performance-degradation 

amount. The last shortcoming is this algorithm’s inability to learn the consumer’s preference. 

The subsequent papers overcame these shortcomings.  
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The second paper’s title is “An Empirical Study on a Con Resistant Trust Algorithm for 

Cyberspace” [6]. In this paper, the properties of the con-man-resistant trust algorithm for a cloud 

service are studied, and an enhancement is proposed. The study resulted in a set of principles that 

drive the algorithm. The principles give insight about this algorithm’s configuration during its 

application in the cloud service’s con-deception pattern detection. The con-detection pace is 

dependent upon the configuration.  

The third paper’s title is “Deception in Cyberspace: Performance Focused Con Resistant 

Trust Algorithm” [5]. In this paper, a performance-degradation-focused, con-man-resistant trust 

algorithm extension for the cloud services is developed and evaluated. With the previous con-

man-resistant trust algorithm, only the service shortfall frequency was considered. In this 

extension, the service-shortfall magnitude is also included.  

The service-shortfall magnitude is exponentially related to the penalty associated with the 

shortfall. The penalty amount affects the con deception’s pace. Hence, the higher the shortfall 

magnitude, the higher the penalty is, resulting in a shorter time to detect the con. Three 

exponential growth functions are used to model the shortfall and penalty relationship. Each 

function is applicable in specific cloud scenarios. Two more authors were added to this paper; 

they reviewed the finished work to suggest possible enhancements. 

The fourth paper’s title is “Machine Learning Within a Con Resistant Trust Model” [7]. 

The methodology to automatically configure the con-man-resistant trust algorithm for a 

particular user is developed. A machine-learning algorithm is proposed and implemented to 

discover the consumer’s preference from his or her historical data for using a certain cloud 

service. The output of this machine-learning algorithm is a parameter setting of the con-man-
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resistant trust algorithm that reflects the consumer’s preference. The parameter tuning, or 

algorithm configuration, for a specific situation makes the algorithm context sensitive.  

One of the loosely coupled papers is “Trust and Purpose in Computing” which was 

published as a conference proceeding [12]. The paper claims that an automated trust calculation 

can be part of the system design. The con-man-resistant trust algorithm for cloud services which 

is presented in this dissertation is described in a section of this paper. However, the paper does 

not go into the implementation details and simulation results. Hence, this paper is not presented 

in the dissertation. 

Another paper is “People and Intelligent Machines in Decision Making” which was 

published in a journal’s special issue [13]. This paper first explains the benefits of artificial-

intelligence-based machines. In this paper, the con-man-trust algorithm for the cloud domain is 

added as a section, no implementation or simulation results are presented. Hence, this paper is 

loosely connected to the dissertation and is not part of this dissertation. 

1.5. Organization of the Dissertation 

Chapter 2 presents the research work completed in the first paper titled “Deception in 

Cyberspace: An Empirical Study on a Con Man Attack.” Chapter 3 presents the second paper: 

“An Empirical Study on Con Resistant Trust Algorithm for Cyberspace.” Chapter 4 presents an 

extension to the con-man-resistant trust algorithm for a cloud service. Chapter 4’s contents are 

from the third paper titled “Deception in Cyberspace: Performance Focused Con Resistant Trust 

Algorithm.” Chapter 5 presents the fourth paper: “Machine Learning Within a Con Resistant 

Trust Model.” Finally, Chapter 6 presents the Conclusion. 
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CHAPTER 2. AN EMPIRICAL STUDY ON A CON-MAN ATTACK  

2.1. Introduction 

Deception happens in social-life which is now omnipresent in cyber domains. As a result, 

deception is also evident in cyberspace. Deception in cyberspace is diverse and often differs 

from traditional social deceptions. This deception has a cost or a loss which is often incurred by 

the deception’s victim. Hence, it is important to detect deceptions and to protect assets. In this 

dissertation, empirical work and analysis of the con-man-attack deception are conducted. This 

work is in the context of the cloud services.  

The conceptual model of a con-man-attack deception for the cloud-computing 

environment is designed and implemented with a proposed solution. The cloud-service 

consumer’s firsthand experience is used to evaluate the deception. The cloud-service consumers 

can be victims of this deception. The cloud-service providers that exhibit the con-man behaviors 

may do so to maximize profits or to minimize costs. The losses may be directly financial or 

subtle, such as a loss of reputation, customer base, or good will. In this chapter, a con-man-

resistant trust algorithm is applied to detect the cloud-service provider’s deception. The detection 

results are contrasted with a another trust algorithm [11], revealing that the con-man-resistant 

trust algorithm provides the best results. 

The presented algorithm measures and monitors the cloud service provider’s deception[4] 

[5][6][7]. Consumers can carefully choose and develop the conditions in their service-level 

agreement (SLA) with a cloud-service provider after reviewing the service provider’s trust 

history (provided that the history is available to the consumers).  

Using trust can reduce the cost of a consumer’s investment or the cost to verify the 

integrity of a submitted cloud task. For example, if the consumer uses a cryptographic algorithm 
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for such verification, then the verification overhead (the computing cost) is 103 to 109 times more 

than the task’s computing cost [14][15]. The overhead of trust calculation, as a contrast, is a 

much smaller amount. These term pairs are used interchangeably for the rest of this chapter: con 

man and cloud-service provider, victim and consumer, and trust and computational trust. 

This chapter is organized into six sections. Section 2.2 describes the work’s objective as a 

Problem Statement. Section 2.3 presents the motivation for the work. Section 2.4 describes the 

concepts related to the problem. Section 2.5 presents the solution for sub problem 1, i.e., 

detecting the cloud-service provider’s cyclic fraud behavior by using the con-man-resistant trust 

algorithm with simulated cloud-services data. Section 2.6 uses these simulated data to solve sub 

problem 2: comparing this con-man-resistant trust algorithm’s performance with another 

comparable trust algorithm. Finally, Section 2.7 presents the solution for sub problem 3, i.e., 

considering a batch of interactions between the consumer and the cloud service, and calculates 

the con-man-resistant trust value for each such batch in order to detect the deception. Section 2.9 

concludes this chapter.  

2.2. Problem Statement 

Deception happens in the realm of cyberspace. Often, the deceiver benefits, and the 

victims incur losses. Thus, it is important to detect deception and to differentiate between 

deceivers and non-deceivers [16]. However, a common characteristic of deception is effort on 

the deceiver’s part to conceal the deceit [17]. People may not be skilled at detecting the 

deception [18]. Hence, computer-aided tools to detect deception are useful. Several approaches 

have been suggested to detect the deception [18]. One approach described in [18] is to create a 

deception model and a deception-detection process by synthesizing applicable theories. This 

basic approach is followed and extended in this chapter. 
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The goal for this chapter is to empirically investigate the behavior of a specific deception 

called the con-man attack in a specific cyberspace environment. The cloud service is chosen as 

an example cyberspace environment. The problem in terms of the cloud services is the cloud-

service provider’s con-man-attacker behavior detection. The context, then, is the upholding or 

lapsing of the cloud resource’s performance relative to quality of service metrics. This lapse in 

the cloud-service performance incurs a loss on the consumer’s end. 

The cloud-service provider’s con-behavior formalization is inspired by the peers’ short-

change deception in a peer-to-peer network [19].  In this network, one peer’s central processing 

unit cycles can be shared with another peer. Unfortunately, there are deceptive peers which 

provide fewer resources than promised.  

In this dissertation, the repetition of this short-change deception is identified as the cloud-

service provider’s cyclic fraud behavior. This short changing is the repeated under-provisioning 

scenario for IAAS and the repeated, unexpected response time for SAAS. 

This chapter’s goal is to use the con-man-resistant trust algorithm to identify the cloud-

service provider’s cyclic fraud behavior. The problem can be further divided into sub problems: 

 Sub problem 1: Applying the con-man-resistant trust algorithm to identify the cloud-

service provider’s cyclic fraud behavior by using the simulated cloud-service data. 

The conceptual model of the con-man deception for a cloud-computing environment 

is designed and implemented with a proposed solution. 

 Sub problem 2: Contrasting this algorithm’s performance with another trust algorithm 

by using simulated cloud-service data. 
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 Sub problem 3: Applying this algorithm when trust is updated for each batch of 

interactions between a cloud service and its consumer by using the simulated cloud-

service data. 

2.3. Motivation for the Empirical Study 

This chapter identifies and models of the trust concept as the metric of interest in 

determining a cloud service’s con behavior. Two cloud services are considered: software as a 

service (SAAS) and infrastructure as a service (IAAS). The trust is evaluated for each service’s 

specific quality attributes. Each attribute has its own quality metrics. The quality attributes and 

the corresponding quality metrics vary between cloud services and cloud organizations.  

Examples of the quality attributes include availability, performance, scalability, 

reliability, reusability, and sustainability [20]. Examples of the quality metrics are service-

response time for availability, CPU speed for performance, and the mean time to failure for 

reliability [11][20] [21]. The selected quality attributes for this work are availability and 

performance; the corresponding metrics are, respectively, service-response time or latency of 

service (in milliseconds) for SAAS [11] and CPU speed (in millions of instructions per second, 

MIPS) [22][23][24] for IAAS. These two metrics are measured following the study presented in 

[11][22]. 

This chapter contributes by providing the design and a simulation of a method to measure 

and monitor a cloud-service provider’s deception. The work is divided into two areas. The first 

area is designing two deception models which occur in a cloud environment. One deception is 

assigning priority to the consumer requests in proportion to the consumers’ revenue contract, 

which may result in substandard service for lower-revenue consumers. The cloud-service 

provider is assiduously seeking to maximize revenue by limiting the cost of the provided 
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services. The second area is applying metrics that measure these deceptions in the form of actual 

versus expected service behavior. This metric is referred to as the con-man-resistant trust 

algorithm. 

Figure 1 shows an example of a service shortfall in SAAS. The actual versus expected 

service for the service-response time is shown. In this figure, “t” represents the time when a 

service is observed or received by the consumer. 

 

 

Figure 1. Example of Actual versus Expected Response Time for Service. 

 

The service is measured by the response time. The consumers expect the service time, or 

response time, to be 5 milliseconds each time they receive service. When the response time is 

above 5 milliseconds, then the consumers wait more than they expect; hence, this service is 

considered as an unexpected service quality. Similarly, when the response time is equal to or 

below 5 milliseconds, then the response time is considered to match the consumers’ expected 

service quality. The figure conceptualizes the repletion of unexpected service quality. As time 

increments go by (t1, t2, …, t12), the response time fluctuates; hence, the response time at some 

time stamps does not meet the consumers’ given threshold; that is, the consumers’ experienced 
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service quality is unexpectedly low. This scenario happens when the service provider does not 

deliver the promised service, regardless of the source for this unexpected service quality. This 

event is the consumers’ firsthand experience. One important characteristic of a cloud service’s 

response-time issue is that the response time grows exponentially when the server is overloaded 

[25]. 

A similar example of a repeated service shortfall is described in [9] and as Figure 2 (p. 

11). The example given in [9] depicts a repeated IAAS service shortage. Each shortfall is known 

as under-provisioning. The figure shows a schematic representation of this repeated under-

provision. In this figure, the under-provision happens when the resource demand surpasses the 

service provider’s capacity. 

 

 

Figure 2. Repeated Under-Provision. 

 

A cloud-service provider can predict the consumer’s usage pattern for the service and can 

allocate resources according to the pattern, rather allocating all the time [26][27]. Therefore, if 

the consumer changes the pattern, he or she experiences a repeated service shortfall. 

Again, the provider shows repeated service-shortfall behavior in a peer-to-peer network 

[19]. The oscillating-reputation issue is present in a peer-to-peer network [28]. A peer exhibits 

good service to achieve a good reputation, followed by acceptable service until the reputation 

touches the reputation’s lower bound. This oscillating reputation maximizes the profit. A cyclic 
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pattern of good and bad transactions is camouflaged by a service provider and from the 

consumer in a distributed network in order to deceive consumers [29]. 

The work is motivated by the loss associated with such con behavior. There is a 

significant loss from the con behavior because it decreases the number of consumers for a 

business. For example, softlayer.com lost its consumers due to repetitive bad service [8]; some 

users of the Animato site left permanently due to repetitive unsatisfactory service [9]; the social 

networking and gaming site friendster.com failed because its consumers left gradually due to 

repeated slow responses [10]. 

In this dissertation, these two scenarios (service shortfall for two cloud services: SAAS 

and IAAS) are implemented. The cloud services are simulated by utilizing the Cloudsim toolkit 

in order to obtain the results [30][31]. Finally, the approach’s effectiveness is established by 

comparing the simulation results with prior work in the same domain. 

2.4. Related Concepts 

2.4.1. Deception in Cyberspace 

The realm of deception is not new. Deception has been studied and defined in earlier 

scholarly works. Deception can occur in the form of agreement violations if there is an 

agreement between the two parties [32]. The medium of deception in this work is the cloud 

services, a prototypical and common domain in cyberspace. The concepts and the approach 

apply to many cyberspace domains. 

A cloud-service provider is a profit-driven organization. If deception benefits the 

provider’s profit, then it is possible for the provider to be involved with deception. Table 1 

summarizes the service-provider deception research, including the cloud-service provider’s 

deception. 



 

16 

Table 1. Service-Provider Deception. 

Cloud-Service 

Provider Deception 

Deception Description 

A cloud-service 
provider colludes with 

another service 

provider to deceive 

[14]. 

A cloud-service provider can deceive by avoiding the computation part of a complex calculation for a 
submitted task. Identifying this avoidance can be costly. A relatively cost-effective way is to submit the 

computation to two cloud-service providers and then to compare the results. However, the two service 

providers can engage in collusion by cooperating with each other and deceiving the consumer with the 
verification process. Using a smart contract and crosschecking the computation with these two clouds, 

verifiability can be achieved in a cost-efficient way without the collusion and corner-cutting activity of these 

two cloud-service providers. The smart contract is called the traitor’s contract; the service provider reveals the 
collusion information and receives more benefit than the collusion contract benefits the two service providers. 

Less resource 

provision [33][34] 

A cloud-service provider deceives by providing less CPU and memory resources for a virtual machine than 

promised in the SLA. 

Deceives the auditing 

process [26][27] 

The service provider only follows the SLA at the time stamps when the auditor will check the quality. The 

service provider also tracks the consumer’s usage pattern and provides the required resources described in the 

SLA for the time stamps when the consumer utilizes the resources.  

False quality of service 

advertisements [36] 

There is the possibility of false quality of service advertisements from the cloud-service providers. The cloud-

service providers can advertise an exaggerated service performance with respect to the real amount which 

they can provide in order to attract consumers. A cloud service can be selected based on different attributes; 
one attribute is the resource amount. The exaggerated resource amount biases the selection process because 

the number is input into this selection algorithm. 

Data-storage deception 
[35] 

Consumers can use a proposed cryptographic idea to confirm the integrity of the stored data even if the cloud-
storage service deceives. The consumer stores both the data and a hash function that he or she generates with 

the data. The service provider can only save the hash key or throw away the data. Generating the hash from 

the data is resource intensive for the service provider. Another conceptual example of the possible deception 
is when service providers, such as Amazon S3, claim to have three copies of the consumer data. Amazon can 

only store one copy of the data but sent the same copy three times to mimic that it has three copies of the same 
data. 

Denying authorized 

user and manipulating 
user ciphertext [39] 

The cloud-service provider and cloud server are interchangeable entities. The cloud server can be involved 

with two deceptions. In the first type, the service provider deceives by manipulating the consumer’s ciphertext 
(when the server is compromised). In the second type, the cloud-service provider can deceive consumers to 

save cost by reducing the computation resource amount. The legitimate or authorized user is denied access to 

the service, reducing the cost. This access denial will reduce the number of users and save cost. 

Data stored in a lower-

cost data center [40] 

A cloud-service provider stores data in different locations than promised, e.g., at a lower-cost data center 

instead of the promised data center.  

Reduced computation 
resources [37] 

Cloud servers can deceive about computation to reduce the computation-resource load but still claim the 
credit. Also, the cloud server can be compromised by doing unreliable computations. The cloud provider’s 

choice to hide computation makes these issues worse. The stored data are manipulated in the storage-

deceiving attack model. The cloud service performs the wrong computation in the computation-deceiving 
attack model. The confidential data are compromised in the privacy-deceiving attack. 

Virtual machine CPU 

speed shortage or 
reduction [38] 

The cloud-service provider can be deceptive about the virtual machine’s CPU speed. This deception helps the 

service provider to support more users compared to cases when the service provider delivers the exact 
resource amount. The user incurs a loss here because his or her submitted computation will take more time to 

finish.  In addition to this deception, the service provider tempers the logged conversion time.  

Shared-resource 
shortfall [19] 

In a peer-to-peer network, a peer sharing its resources with another peer can deceive by sharing a smaller 
resource amount than promised. In this dissertation, it is argued that the same deception is possible for a 

cloud-service provider. 

Oscillating service 
quality [28] 

Peers can cheat by building a high reputation at the beginning. Then, they can start cheating, occasionally, in 
such a way that the cheating does not affect their existing reputation very much. Another cheating option is an 

oscillation of building reputation that is followed by acceptable reputation. When the reputation is less than 

acceptable, then an investment is made to rebuild the reputation. This cycle continues. In this dissertation, it is 
argued that the same deception is possible from a cloud-service provider. 

Cyclic pattern of 

benevolent and 
fraudulent behavior 

[29] 

Malicious peers on a distributed network follow a cyclic pattern of good and bad transactions when chosen as 

a service provider. The authors addressed this behavior as a camouflage. The authors suggested punishing 
such behavior. Three types of behavior are mentioned: an oscillating pattern, an increasing and decreasing 

pattern, and a random-behavior pattern. In this dissertation, it is argued that the same deception is possible 

from a cloud-service provider. 
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There is research that demonstrates the cloud-service provider’s deception. The examples 

are conceptual models described in [14][26][27][33][34][35][36][37][38][39]. Sources [36] and 

[40] describe deception without explicitly modeling it.  

2.4.2. Service-Level Agreement 

A service-level agreement, or SLA, is a contract between an end user (a consumer) and a 

service provider. The service provider describes the details of the promised service in the SLA. 

The SLA is a formal way of representing the consumer’s expected service. Table 2 presents the 

SLA definition from different authors. 

Table 2. Service-Level Agreement Definitions. 

Definition by Definition 

[43] “A service level agreement is a document which defines the relationship between two parties: the service provider and the 

recipient. This is clearly an extremely important item of documentation for both parties. If used properly, it should 

 Identify and define the customer’s needs 

 Provide a framework for understanding 

 Simplify complex issues 

 Reduce areas of conflict 

 Encourage dialog in the event of disputes 

 eliminate unrealistic expectations” ( p. 517). 

[44] “A typical Service Level Agreement (SLA) within the Cloud Service Agreements (CSA) describes levels of service using 

various attributes such as availability, serviceability or performance. The SLA specifies thresholds and financial penalties 
associated with violations of these thresholds”( p. 5). 

[45] “An SLA is a document that includes a description of the agreed service, service-level parameters, guarantees, and actions 

and remedies for all violations” ( p. 606). 

 

When a consumer receives the expected service is measured by matching the received 

service’s attributes with the information given in the service’s SLA. The SLA negotiation is the 

process of bargaining for the service cost and the service quality between the cloud-service 

provider and the consumer. 

In cloud-computing architecture, the SLA plays a vital role because the provided 

service’s characteristics are mapped into the SLA to find the discrepancies between the promised 
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and the given service characteristics [41][42]. Maintaining the SLA’s described service is a 

challenge for the cloud-service providers due to the heterogeneous architecture. A service-quality 

fluctuation can happen at each transaction or interaction between the consumer and the cloud 

service due to load fluctuations, resulting in an SLA violation [42]. 

When the consumers’ service falls below the SLA-described characteristics, then it is 

considered a violation and is called an SLA violation. In other words, if the consumers do not 

receive their expected service, then an SLA violation happens. An SLA violation represents two 

terms in this work: SLA violation magnitude and SLA violation repetition (frequency) over time. 

2.4.3. Quality of Service 

Quality of service (QoS) is a measure of the service performance in a service-oriented 

architecture. The QoS measurement is taken at the consumer’s end rather than the service 

provider’s end. The QoS measurement is essential for service-oriented architectures, e.g., for the 

cloud-computing paradigm [46]. 

The service’s expected performance is described in the SLA, resulting in the consumer 

expecting the QoS to be a part of the SLA. The SLA can be addressed as an “agreement on 

quality of service” [47, p. 12]. The number of resources should be adopted dynamically in 

service-oriented architectures to meet the QoS described in the SLA. The adoption includes 

changing the system’s architecture to facilitate the service. This change often includes allocating 

additional resources.  

However, it is a challenge to facilitate additional resources and the resulting architectural 

change for a service-oriented architecture, e.g., cloud service. It is not possible to overcome this 

challenge all the time. Failing to overcome the challenge results in a resource shortage or a lower 

QoS compared to the promised QoS. The work in this dissertation is about the frequent 
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appearance of a lower QoS for the consumer. This repetitive occurrence is a cycle. These cycles 

should be detected; the detection saves the consumer from the loss incurred by a lower QoS. 

Table 3 presents the QoS definition from different authors. 

Table 3. Quality of Service Definitions. 

Definition Summary Definition 

QoS is the degree of satisfaction [48]. “The collective effect of service performance which determine the degree of satisfaction of a user 

of the service.” (p. 3) 

QoS is a combined aspect of multiple 

performance attributes [48].  

The QoS is the collective aspect of service-support performance, service-operability 

performance, serve-ability performance, service-security performance, and other factors. 

QoS is comprised of all aspects of a 
telecommunication connection [49] 

“In telecommunication systems there are several measures to characterize the service provided. 
The most extensive measure is Quality-of-Service (QoS), comprising all aspects of a connection 

as voice quality, delay, loss, reliability etc.” (p. 109) 

IBM defined QoS [50]. “QoS covers a whole range of techniques that match the needs of service requestors with those of 
the service provider's based on the network resources available. By QoS, we refer to non-

functional properties of Web services such as performance, reliability, availability, and security” 

(p. 1). 

 

2.4.4. Trust Model: Definition and Applications 

In 1994, Marsh first introduced the concept of computational trust in an artificial-agent 

environment and defined trust as follows [51]: “Trust in an artificial agent is a means of 

providing an additional tool for the consideration of other agent and the environment in which it 

exists” (p. i). 

According to Marsh [51], trust is 

 A means for understanding and adapting to the environment’s complexity 

 A means of providing added robustness to independent agents 

 A useful judgment in light of experiencing others’ behavior 

 Applicable to inanimate others. 

Marsh formally defined trust to embed the concept of social trust into the artificial-agent 

environment by using mathematics. According to Marsh, trust is a computational concept from 

the artificial agent’s perspective and is the tool one agent can use to assess another agent [51]. 
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The trust is defined as a continuous variable over the range [-1, +1]. To globalize the same 

meaning for the trust value for all artificial agents in a system, trust is stratified into qualitative 

values: blind trust, very high trust, high trust, … very high distrust, and complete distrust. Each 

qualitative value is assigned to a trust-value range. Marsh also described the trust usage for 

another agent’s anomalous behavior detection. 

The contribution of this dissertation is applying the formal trust concept to evaluate a 

cloud service. The trust is defined in [52], for the cloud services, as follows: 

“Trust in a cloud service means that one believes in and is willing to depend on the cloud 

service provider and the cloud service IT artifact as well as the platform provider and the 

platform service IT artifact” (p. 70). 

Trust is defined for the service-oriented architecture by an earlier research work [53] as 

follows: “In Service-oriented network environments, we define Trust as the belief that the 

Trusting Agent has in the Trusted Agent’s willingness and capability to deliver a quality of 

service in a given context and in a given Timeslot” (p. 7). Table 4 presents some other 

definitions of computational trust. 

Table 4. Trust Definitions. 

Definition 

Reference 

Definition 

[54] “Trust: a subjective expectation an agent has about another’s future behavior based on the history of their encounters” ( p. 1). 

[55] “Trust is indeed an expectation. It is a probability that things will work and 

keep working as they are supposed to. But when it comes to security, trust should be zero or one, i.e., one trusts an information 
system, network, etc. or does not” ( p. 3740-3741). 

[56] “Trust is a subjective assessment of another’s influence in terms of the extent of one’s perceptions about the quality and 

significance of another’s impact over one’s outcomes in a given situation, such that one’s expectation of, openness to, and 
inclination toward such influence provide a sense of control over the potential outcomes of the situation” ( p. 33). 

[57] “Trust is a particular level of the subjective probability with which an agent assesses that another agent or group of agents will 

perform a particular action, both before he can monitor such action (or independently or his capacity ever to be able to monitor 
it) and in a context in which it affects his own action” ( p. 216). 

[58] “Reputation Trust: Trust is the subjective probability by which an individual, A, expects that another individual, B, performs a 

given action on which its welfare depends” ( p. 94). 

[58] “Decision Trust: Trust is the extent to which a given party is willing to depend on something or somebody in a given situation 

with a feeling of relative security, even though negative consequences are possible” ( p. 95). 
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Cloud computing architecture is an example of service-oriented architecture. Hence, the 

definition of trust for the service-oriented architecture is also applicable for the cloud domain. 

The trust characteristics are presented in [55]. Table 5 presents the characteristic summary that is 

given in in [55]. 

Table 5. Trust Characteristics’ Summary [55, p. 3741]. 

Characteristic Example 

“Trust can be measured” “Entity A trusts more in entity B than A trusts in entity C.” 

“Trust is context-aware“ “Entity A may trust B to perform URL filtering but does not trust B to perform authentication tasks.“ 

“Trust changes with time“ “The amount A trust B may grow or reduce as interactions take place. “ 

“Trust is directional“ “Entity A may trust B, but B may not trust A.“ 

“Trust is social-aware“ “Entity A may trust entity C because C was introduced by B to A, and A already trusts B.“ 

 

Computational trust has the ability to represent a historical interaction pattern between 

two agents using a single parameter (trust value). Hence, this computational trust is an interest of 

many researchers. This curiosity led to numerous applications of computational trust in the area 

of computing. Table 6 represents some state-of-the-art computational trust applications. 

Table 6. Trust Applications. 

Application Summary Trust Application 

Trust and information 

security [55] 

The relationship between trust and information security is presented and is evaluated. The trust measure is 

presented as an essential element of information-security measurement.  

Introducing the con-man 

attack and its counter-trust 

model [59] 

A decentralized trust model is proposed; it is exploitation resistant against two types of attacks: con-man attack 

and witness-based collusion attacks. An agent’s trustworthiness is calculated by evaluating information from 

multiple sources. The vulnerability of three trust models to the con-man attack is analyzed. 

Trust identifying malicious 

peer behavior [60] 

A trust model is developed to identify malicious peer behavior in peer to peer computing. Trust is calculated by 

an weighted aggregation of multi-dimensional trust factors e.g., interaction, rating, availability, etc. 

Trust-function selection 
for reputation based on the 

trust model [61] 

The trust model has a trust function to evaluate trust. A reputation-based trust model can use multiple trust 
functions. A trust-function selection scheme is presented and recommends a trust function for a particular 

application. This selection is based on the function’s classification: subjective or objective, transaction based or 

opinion based, rank based versus threshold based, etc.  

Trust application in cyber-

attack scenarios [62] 

Trust is used to evaluate different techniques of cyber-attack detection. Example techniques are the big-data 

and decision-making techniques (information fusion and dynamic data-driven application systems). Such trust 

can be evaluated using a framework that utilizes Bayesian and Dempster-Shafer theory. 

Attack-resistant trust 

metric [63] 

In cryptographic trust implementation, a trust graph is considered. Each node in this graph is a public key with 

the edges as certificates. When there is an edge from one node to the other, it means the second node is 

trustworthy. An attack can take place where an attacker can make an edge from this second node to his node. 
The owned node corresponds to a fraud-computing resource. The link from such a node is a fraud certification 

referring to an insecure registration. A trust metric is proposed to resist this type of attack. The attack’s 

resistance is measured by counting such compromised edge numbers. If the edge numbers are below a 
threshold or minimum, then the system is attack resistant. 
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As described earlier, the trust concept is applicable in an agent-based system. This trust 

value helps with an agent’s decision making about another agent or about the environment and 

situation where it is. Also, the utility-computing environment is represented using the agent-

based modeling in many studies. Hence, the computational trust application in the utility-

computing domain, e.g., the cloud-computing domain, is prevalent. Table 7 presents an 

application for computational trust in this cloud-computing domain. 

Table 7. Trust-Model Applications in the Cloud-Computing Domain. 

Application Summary Trust Application in the Cloud 

Trust value evaluating the 

reliability of file 
exchange in the public 

cloud [64] 

The trust value for a storage resource is calculated from the resource’s performance during storage operations. 

Resources with a high direct-dynamic trust value are highly reliable for file-exchange operations in public 
clouds. During the calculation, a high score was given to larger storage space, higher processing capacity, and 

non-varying node capacity over the time, etc. 

Trust parameters from 
SLA [65] 

The cloud-service provider’s trustworthiness is evaluated, and the set of parameters measuring this 
trustworthiness is identified and quantified. These parameters are selected and extracted from the SLA. 

Trust by comparing the 

SLA and the consumer’s 
experience [66] 

The proposed trust model calculates the trust by comparing the SLA’s specified values and the user’s firsthand 

experience with the cloud service. Hence, this trust value scores the cloud service’s reliability. It is also proposed 
that an automated agent monitors this trust and that the cloud-service provider repays the consumer’s financial 

loss from bad service. The consumer can select a cloud service by focusing on the service’s trust value. 

Trust-based IAAS 
scheduling 

[67] 

A trust model for cloud infrastructure as a service is proposed. A scheduling algorithm considers this trust value. 
This algorithm enhances a cloud service’s QoS. 

Trust-based cloud-task 
scheduling [68] 

Tasks are submitted to the cloud resources by a cloud consumer. The tasks are scheduled into these resources to 
efficiently execute them. Trust-based scheduling reduces the scheduling-execution time. This trust is calculated 

by fusing three trusts: one indirect trust and two direct trusts. The indirect trust is reputation based, and the direct 

trusts are data trust and communication trust. The Bayesian model fuses the direct trusts. Data trust is used to 
select cloud resources. Communication trust is calculated from the client’s resources, e.g., bandwidth. 

Trustworthiness of IAAS 

providers 

[69] 

The cloud-service providers can use a reputation-based trust model to evaluate the trustworthiness of an IAAS 

provider. This trust is calculated by monitoring the SLA compliance, the service provider’s rating, and the 
service provider’s behavior. Service providers give opinions about the IAAS services. Also, the uncertainty of 

this opinion is considered. An uncertainty model is presented to help the reputation-based trust model. 

Trust-model scoring for 
the cloud-service 

provider in the 

marketplace 

[70] 

The trust model used to differentiate the cloud-service quality is proposed. The trust score for a cloud-service 
provider in this model depends on the selected sources on which trust is calculated and the service provider’s 

filled-out questionnaire about its capability for different aspects, e.g., compliance, information security, and 

governance. 

 

In this era of computational intelligence, things are becoming more automated. However, 

there are still many human users for these systems. Humans make decisions that vary from 

person to person. They want to use a system that they trust. This trust develops over time and 

mostly depends on past behaviors that are in the form of interactions. As trust develops, humans 
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expect that the system will continue its past behavior [62]. This expectation implies that, if trust 

is degraded for some system behavior that can be called as a lack of cooperation for the system, 

then, most likely, the person does not want to have any more interactions with that system. The 

expectation also implies that, if trust is gained, people want to continue interacting with the 

system when needed. Hence, past behaviors are important to determine a system’s future use for 

systems that involve humans. To benefit from this human-interaction pattern with the system, it 

is important to have an ability to measure the trust [55]. This measurement needs to be 

automated due to the volume of users who are interacting with the system. The work presented 

here is about the trust evaluation of services, focusing on the service attribute’s repetitive nature. 

 How often should this evaluation happen? For a dynamic system, e.g., a cloud-

computing environment, the system’s state changes over time; i.e., the system state is dependent 

on time. During each interaction between the service and its consumer, the system can behave 

differently. Hence, trust needs to be measured at each interaction. The trust model should be a 

dynamic trust model, i.e., a trust model that has time dependency [71]. This dynamic-trust 

evaluation should happen at each discrete time stamp and be separated by a fixed time interval; 

i.e., time slots between two consecutive interactions of the consumer and the service are not 

asynchronous [71]. 

In this dissertation, an existing dynamic-trust model is applied, analyzed, revised, and 

extended with the goal of fraud- or deception-cycle identification. This trust model observes each 

interaction, over discrete times and separated by a fixed time interval, between two agents. An 

agent’s action is identified as cooperative when it meets the commitment between two agents 

[72]. The two agents are the cloud-service consumer and the cloud-service provider. The 

commitment is the cloud-service provider’s promised service. Each observation updates the trust 
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value. The trust value determines the cloud-service provider’s fraud or deception. This 

application, analysis, revision, and extension, which aims for fraud or deception detection, is the 

contribution of this work. 

2.4.5. Trust and Security 

Trust can be defined as a security concept as follows [73]: “Trust is a kind of soft security 

which complements the traditional hard security like encryption, authorization, and 

authentication. An agent exists in complex heterogonous environment must possess both two 

securities in order to be safe and effective” (p. 18). 

On the other hand, trust and security are differentiated in [53] as follows: 

“Trust and security are not the same thing in the world of e-Commerce. Unfortunately a 

variety of uses, particularly of the term ‘trust’, could lead to some confusion. In this 

section, we clearly distinguish trust and security and when they could be synonymous and 

when they are not. Security focuses on protecting users and businesses from anonymous 

intrusions, attacks, vulnerabilities etc., while Trust helps build consumer confidence and 

a stable environment for customers or businesses to carry out interactions and 

transactions with a reduction in the risk associated with doing these in a virtual world, 

thus allowing one to more fully reap the possible rewards of the increased connectivity, 

information richness and flexibility” (p. 4). 

Trust is a tool to verify the expected versus the actual behavior of a cybersecurity concept 

[55]. The security measures and the measurement limits should be transparent to the consumer. 

The transparency illustrates the acceptability of these measures and the limits for people. Trust 

gives such transparency [55]. When trust is applied with cybersecurity concepts, its suggested 

value is binary (0 or 1) [55]. However, this suggested trust value is a perfectionist’s perception 
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because it is not easy to gain a trust of 1 or 100%. A pictorial relationship for trust, information 

assurance, information security, and cybersecurity is presented in [55] and as Figure 3 (p. 3734). 

 

 

Figure 3. Relationship Among Trust, Cybersecurity, and Information Security. 

 

The figure explains that, when cybersecurity, information assurance, and information 

security are maintained adequately, then trust can be achieved. Similarly, when trust is achieved, 

the cybersecurity, information security, or information assurance is partially confirmed. The 

dependency is partial because these components have other dependencies; e.g., information 

assurance is also dependent upon cybersecurity and information security. 

Trust is included in cybersecurity with the goal of the security improvements. The 

following subsection describes examples of trust integration with a cybersecurity application. 

2.4.5.1. Example: Trust in Information-Security Architecture 

Trust concepts can be integrated with the information-security architecture to ensure 

cybersecurity [55]. The trust needs to be confirmed for each component of this architecture. The 

review and architecture presented in [55] show the significance of computational trust in 

cybersecurity, either by integrating the trust with information security or considering the trust as 

confidence for a security measure. 
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2.4.5.2. Example: Trust to Ensure Hardware-Level Security 

Trust is used to ensure hardware-level security. Secured cryptographic operations are 

executed by dedicated hardware called a crypto-processor. A secure crypto-processor is 

hardware in the microprocessor that ensures cryptographic operation at the hardware level. This 

chip ensures physical security. The Trusted Platform Module (TPM) is an international standard 

for this secure crypto-processor. The TPM is used to attest a computer hardware platform’s 

integrity. TPM’s goal is to propose a safe computing environment (introduced by the Trusted 

Computing Group). The TPM establishes a chain of trust between the hardware components. The 

TPM can calculate this trust both locally and remotely. 

2.4.5.3. Example: Zero-Trust Model 

The incremental use of trust in cybersecurity requires a standard. The National Institute 

of Standards and Technology (NIST) presented a guideline to establish trust for information 

security [74]. The guideline is called the zero-trust model of information security and requires all 

packets in the network (both the internal and external network) to be considered as untrusted. All 

network traffic is a threat. All the traffic should be authorized, inspected, and secured. Strict 

access control with the least possible privilege is recommended by NIST. In this trust model, the 

trust is replaced by “verification.” Rather than trusting a user’s action, the action is verified. The 

zero-trust model changes the proverb “trust but verify” into “never trust but always verify” by 

requiring the inspection and logging of all traffic (both internal and external). The drawback of 

this guideline is that it is ideal but may not practical to implement due to an organization’s cost 

constraints. For example, building a zero-trust network architecture involves an investment in the 

infrastructure as well as in the research and development to optimally use the network.  
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2.4.5.4. Example: Trust Measures Security 

Trust can be a measure of the security [75]. Trust can be used to predict the security 

threats [66]. A security-aware cloud is a cloud platform that uses a security-related trust model. 

This trust model has an internal trust component. This component calculates trust depending on 

whether standards for personal-security measures are maintained, e.g., ID management or key 

management. This security-aware trust model for the cloud has a second trust component called 

contracted trust. The contracted trust first delegates security for the information by including the 

security in the SLAs. The contracted trust is calculated by the service provider’s ability to offer 

security as a service. 

2.4.5.5. Example: Trust Assesses Security Risk 

Trust can assess the security risks [76]. A game-theory model can optimize trust between 

the consumer and the service provider in cyberspace. Hence, the participants of a three-player 

game are the consumers, the service providers, and the attackers. This game imposes the 

consumer’s data-protection concern on the service provider.  

2.4.6. Trust and Reputation 

A system with a mostly positive reputation may not be trustworthy. The trust-value 

calculation counts the interactions as time-series data while the reputation does not count the 

ratings as time-series data. Alternatively, the trust-value calculation may have extra components 

which contribute to trust increments. 

A system with a mostly bad reputation has a high chance of becoming untrustworthy. A 

series of bad-reputation events eventually take the trust score to a lower value. A trust and 

reputation comparison can be found in [77]. The widely accepted definition of trust and 

reputation is adopted in [77] as follows: 



 

28 

“Trust: a subjective expectation an agent has about another’s future behavior based on the 

history of their encounters. 

Reputation: a perception that an agent creates through past actions about its intentions 

and norms” (p. 29). 

Reputation is an antecedent to trust [78]. Hence, it is implied that trust can be derived 

from the reputation. Regardless of the fact that trust can be derived from the reputation, the 

similarities and differences between these two concepts are evident. The following subsections 

describe the similarities and differences. 

2.4.6.1. Similarity Between Trust and Reputation 

2.4.6.1.1. Trust and reputation change after each transaction 

The similarity between trust and reputation is defined in [78] as follows: “Trust and 

reputation scores must increase after the agent under evaluation fulfills an obligation and must 

decrease after the agent violates an obligation. The weights ascribed to either the fulfillment or 

the violation of an obligation may be different” (p. 3). 

2.4.6.1.2. Trust and reputation both fulfill accountability and represent the QoS fulfillment 

Trust and reputation can represent the degree of QoS fulfillment [77]. The trust and 

reputation, in terms of measuring QoS fulfillment, are an indirect measure of accountability [77]. 

The similarity between these two concepts is this accountability. When the SLA is violated by 

the service provider in a service-oriented architecture, it results in lower trust values and a lower 

reputation rating. Monitoring the SLA violations can manage the accountability. The trust-and-

reputation engine can match the actual versus expected service quality by comparing the SLA 

values and real-time service quantities. These engines can give trust values and reputation ratings 

after matching or comparing the actual versus the expected values or quantities. These trust 
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values and reputation ratings are the service provider’s feedback. The provider can take these 

values seriously and can make a decision about investing in the cloud resources so that the SLA-

described quality values are maintained. This way, the trust values and reputation ratings can 

work as a degree of QoS fulfillment and, hence, can put pressure on the service providers. 

2.4.6.1.3. Trust and reputation both focus on relationships 

Trust and reputation both focus on a specific relationship between a service provider and 

its consumer [79]. An example of the relationship is how well the provided service’s encryption 

or authentication is maintained. 

2.4.6.2. Discrepancies Between Trust and Reputation 

The trust is a state of confidence: the higher the trust, the higher the confidence and vice 

versa. However, reputation is a score based on an entity’s past behavior for a certain attribute or 

goal. The trust and reputation differences from various authors are presented in the following 

sections. 

2.4.6.2.1. Trust versus reputation: uncertain versus well informed, subjective versus 

objective 

The trust is uncertain and subjective. The authors in [79] claimed that reputation has the 

opposite characteristics: knowledge of an entity’s past behaviors (knowledge as information or 

observations) and an objective concept. 

2.4.6.1.2. Reputation derives trust, but trust does not derive reputation 

A suitable metric can calculate the trust, aggregating the reputation ratings of an entity’s 

attributes [78][80]. Hence, the reputation ratings can measure the trust, and the reputation affects 

the trust. For example, in a mobile, ad-hoc network, a node’s reputation ratings from all other 
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nodes can be used to determine the trustworthiness of that single node. However, the same 

reputation cannot be derived from the calculated trust. 

2.4.6.1.3. Trust is between two agents; reputation is all other interacting agents giving a 

rating 

The difference between trust and reputation is given as a definition in [78]: 

“The trust that an agent has on another agent under evaluation is given by a score 

computed using the past contracts established between both agents. In turn, the reputation 

of the agent under evaluation is computed using all past contracts established with this 

agent in the Electronic Institution” (p. 3). 

2.4.6.1.4. Trust calculation can avoid direct interaction by counting on reputation 

The difference between trust and reputation is defined in [73] as follows: 

“Trust toward specific agent is generated through recognition and experience under 

repeated transactions with that agent. Reputation is the socialized trust which can be 

propagated through a social network of agents. It helps agents trust the target agent 

without any direct interaction with the target agent” (p. 18). 

2.4.7. Game Theory 

Game theory studies the interaction between two agents or objects by modeling their 

interaction mathematically. The agents are capable of making their own decisions. Game theory 

is defined in [81] as follows: “Game theory is the study of the ways in which interacting choices 

of economic agents produce outcomes with respect to the preferences (or utilities) of those 

agents, where the outcomes in question might have been intended by none of the agents” (p. 1). 

There are different types of games in game theory. The “cooperative game” and “non-

cooperative game” is a type of game, described in [82, p. 322]. This type of game is the interest 
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of this dissertation. In a “cooperative game” and “non-cooperative game”, both agents evaluate 

each other’s action or interaction. One agent evaluates the other one by considering the 

interaction either as a cooperation or a defection [57][81][83]. Cooperation of the other agent, 

from the first agent’s perspective, means that the other agent follows the agreement between 

these two agents. A defection is when the other agent does not follow the agreement. 

Cooperation is defined in [81] as “keeping the agreement” (p. 1), and “breaking the agreement” 

(p. 1) is defection. There is an agreement between the consumer and the service provider in a 

service-oriented architecture; the agreement describes the consumer’s expected service 

performance. It is phenomenal that there are situations when the service provider fails to deliver 

the expected service. This failure breaks the agreement. Hence, for a service-oriented 

architecture, e.g., a cloud-computing environment, “breaking the agreement,” or failing to 

provide the expected service to the consumer, is the defection. Similarly, “keeping the 

agreement,” or providing the expected performance to the consumer, is cooperation. Hence, a 

cycle of expected or good service along with unacceptable or bad service is essentially the cycle 

of the game theory’s cooperation and defection concepts. Hence, the definition of game theory 

presented in [81] relates the game theory’s concepts in terms of cooperation with and defection 

from the problem specified in Section 2.2. 

Game theory has been applied in the cloud-computing domain. For example, game theory 

is applied in “admission control” ( p. 318) of the cloud-service requests [82]. The “admission 

control” means controlling the acceptance of any new service request while serving the current 

requests. The SAAS provider and the requests are considered to be players; SAAS is one player, 

and requests are multiple players. Therefore, for the lifetime of the SAAS service evaluation, the 

service is an n+1 non-cooperative game, a two-player game for a single SAAS service request. 
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2.4.8. Con-Man Attack 

Although the concept of the con man is not new, its introduction in the utility-computing 

domain is described in [59]. The counter-trust models that deal with this type of attack are 

described in [59]. This attack and its counter-trust model subsequently appeared in  [1], [2], and 

[3]. Again, the work presented in this dissertation is about this con-man attack and its resistance 

[4][5][6][7]. 

A con man is a person or agent who uses a confidence trick on another person or agent to 

gain something, e.g., financial gain [1][2][3][59][84]. The con man and the other person, or 

agent, interact over time, possibly in multiple ways. The con man’s behavior is expected to be 

cooperative and trustworthy. An unexpected behavior is a defection and causes a loss of some 

type, e.g., financial, for the other agent.  A con man gains the other agent’s trust by showing 

cooperative behavior for a certain number of interactions. When the con man determines that it 

has gained the other person or agent’s trust, it proceeds to seek unwarranted gains by manifesting 

defection behaviors. If the victim agent observes the defections and notices the losses, the 

agent’s trust for the deceiver may be diminished or lost altogether. However, the con man may 

seek to regain trust by exhibiting cooperative behaviors in subsequent interactions. Once a con 

man regains trust, defection behaviors may be used. Thus, over an extended time, there can be 

patterns where cooperation is the norm for periods of time, followed by defections for other 

periods of time. The victim agent may never realize that it has become a victim of the con man. 

This scenario is referred to as a con-man attack. 

The con-man behavior can be detected using the con-man-resistant trust algorithm where 

the trust value measures the con behavior [1][2][3][59][85]. This con-man-resistant trust 

algorithm has been successfully applied to application domains, such as the smart electrical grid, 
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to detect unstable electrical nodes [1]. This chapter is inspired from applying the con-man-

resistant algorithm in the smart-grid domain. 

The con-man trust model implemented here is SLA based. This trust model is objective-

trust based, transaction based, localized information, and threshold-based trust, following the 

classification of [61]. 

The con-man-resistant trust algorithm increments and diminishes the trust value based on 

cooperative and defective behavior. In the previous con-man-resistant trust algorithm research, 

the trust values were as follows [1]: trustworthy (Trust is close to 1.), not yet known, and 

untrustworthy (Trust is close to -1.). In this dissertation, trust values are modeled on a continuous 

closed interval [-1,+1], where +1 indicates fully trustworthy and -1 is fully untrustworthy. Values 

between +1 and -1 are neither trustworthy nor untrustworthy. Concerning the future, positive 

trust values between 0 and +1 suggest that the target is trusting the deceiver while negative 

values between -1 and 0 suggest an untrustworthy view. As interactions proceed, trust 

increments and diminishments are denoted by α and β, respectively. The values of α and β are 

adjusted dynamically as a function of history. Basically, increment β increases when deception 

occurs persistently, and α increases when the cooperation is persistent. Initial values, α0 and β0, 

are set in accordance with the approach presented in [2] and [3]. 

2.4.9. Con-Man-Resistant Trust Algorithm’s Trust-Updating Scheme 

If the con-man-resistant trust algorithm is applied to a utility computing domain, then 

each interaction between the victim and the con man is a time when the consumer receives a 

service from the provider. Each time a consumer encounters a service, the consumer’s trust for 

the service is updated, depending on the consumer’s satisfaction. According to game theory, 

when the encountered service is good (from the consumer’s perspective), it is called cooperation, 
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and when the service is not good, it is called a defection. The evolution of this trust follows the 

con-man-resistant trust algorithm’s formulas called a “trust updating scheme.” According to this 

scheme, which is presented in [1], [2], and [3], “T” represents the current interaction’s trust, and 

“Tˊ” represents the updated trust value when a defection or cooperation happens. 

Table 8 and Table 9 show the trust-updating schemes from earlier con-man-resistant trust 

algorithm research [1][2][3]. 

Table 8. Trust-Value Dependencies. 

T Cooperation Defection 

> 0 𝑇′ = 𝑇 + 𝛼(1 − 𝑇) 
𝑇′ =

𝑇 + 𝛽

1 −𝑚𝑖𝑛 (|𝑇|, |𝛽|)
 

< 0 
𝑇′ =

𝑇 + 𝛼

1 −𝑚𝑖𝑛 (|𝑇|, |𝛼|)
 

𝑇′ = 𝑇 + 𝛽(1 − 𝑇) 

= 0 𝑇′ = 𝛼 𝑇′ = β 

 

Table 9. Trust-Parameter Dependencies. 

Cooperation Defection 

α′ = min (α + γ𝐶  (α0 −  α),  α0) α′  = α × (1 − |β|) 

β′  =  β
  
–  γ𝐷 × (1 +  β ) 

γ′𝐶  =  1 − |β| γ′𝐷 =  C × |𝑇| 

 

It is clear from the equations in the both tables that trust parameters are dependent on the 

α, β, and C values. α is the reward parameter; β is the punishment parameter; and C is a constant 

value. Both the reward parameter, α, and punishment parameter, β, have initial values: α0 and β0, 

respectively. C (= e-1), α0, and β0 were recommended by earlier works [1][2][3]. These 

recommended values were used in a smart electrical-grid application [3]. 
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When defection happens, the reward diminishes (α decreases), and punishment increases 

(β decreases or |β| increases). These increments (∆α) and diminishments (∆β) are dependent on C 

(Table 9) along with their previous values. 

Now, trust is incremented if the consumer encounters good service or cooperation. The 

updated trust is the current trust, Tˊ. If the previous trust value (T) was higher, then this trust 

increment shall be more than a lower previous trust value. Also, there should be a reward amount 

that results from good service or cooperation. Hence, the size of trust increase depends on a 

positive reward value (α) and the previous trust value (T). This scenario is represented by Table 

8’s second column. Again, the better service or cooperation that there is, the higher the reward 

value, α, is. Similarly, with worse service or defections, the smaller the reward value, α, is. This 

relationship between the service quality and the reward value explains the ∆α. This relationship 

is represented by the second row of Table 9’s first column and the second column’s second row. 

In the second column’s second row, the reward parameter, α, is multiplied by a number less than 

1 (1 − |β| < 1), resulting in the new α or the current value of α ( αˊ) being smaller than the 

previous α.  

Trust is diminished if the consumer encounters unexpected bad service, or a defection 

(column three’s second and third rows in Table 8). If the previous trust value (T) was lower, then 

this trust diminish should be more than a higher previous trust value. There should also be a 

punishment amount that results from bad service or a defection. Hence, the size of a trust 

diminish depends on a negative punishment value (β) and the previous trust value (T). This 

scenario is represented by Table 8’s third column. Again, the worse service or defections there 

are, the higher the punishment value, β. This relationship between service quality and 

punishment value explains the ∆β. This relationship is represented by the second column’s third 
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row in Table 9. In the second column’s third row, the defection, or punishment parameter, βˊ, is 

derived by deducting a value from β (previous β value); i.e., β  –  γ𝐷 × (1 +  β ). The β value is 

always negative, and deducting an amount from β further reduces the new β value, meaning that 

βˊ becomes more negative than β. However, this deducted amount is smaller than 1 because 

(1 +  β ) < 1 and γ𝐷 × (1 +  β ) <  (1 +  β ). 

2.5. Sub Problem 1: Detecting Cyclic Fraud for a Cloud Service with Simulated Data 

 In this dissertation, the repetition of a cloud-service shortage where the provided cloud 

service (resource or task execution) is shorter than the promised cloud service is the issue. Third-

party auditing tools to monitor the cloud services are mentioned in [19], [86], [87], [88], [89], 

[90], and [91]. These tools monitor specific aspects of the SLA. If a new SLA violation scheme 

emerges, the existing tool may not be able to monitor that scheme. The repetitive performance-

issue scenario is a con-man attack scenario and a new SLA violation scheme. The violation 

might be overlooked due to the longer duration between consecutive violations, but this 

repetition has an accumulated loss on the cloud-service consumer’s end. Hence, a specific 

methodology that identifies the con behavior is necessary. This section’s goal is to model this 

con-man deception in a cloud-computing environment and to implement a counter algorithm in 

order to detect the deceit. 

2.5.1. Motivation 

The deception-detection research presented in this dissertation is motivated by a cause-

and-effect analysis. On the cause side, there is evidence that providers in a service-oriented 

architecture engage in deception. The following subsection describes the deception evidence. 

Each ruse has the ability to create additional deceptions. The modeled and mitigated con-man 
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deception for the cloud services is a derivative of the deception evidence. Hence, this dissertation 

about con-man-deception resistance is inspired from  [1], [2], [3], [19], [26], [27], [28], and [29]. 

When an SLA violation is repeated in a cloud service for a long time, the consumers 

cancels the service. The consumers’ dissatisfaction is the effect. Repetition of the cloud service’s 

performance shortfall (short-change or under-provision) or a repeated SLA violation incurs a loss 

on the consumers’ end. The cloud-service provider may pay for this loss [92]. The service 

provider may pay a penalty that results from an SLA violation [93][94]. Even if the service 

provider agrees to penalize itself for the loss, it is hard to calculate the loss amount, i.e., the 

monetary effect of under-provisioning [9]. In addition, there are cases where it is not possible to 

replenish the losses. In this dissertation, the inability to attract new consumers as well as losing 

the existing consumers due to frequent service-performance shortfalls are the concerning losses. 

The following subsections present evidence that shows how the repeated and unexpected 

negative performance upsets the cloud-service consumers. The reduced number of consumers 

incurs a financial loss for the cloud business. Hence, the con-man-attack deception needs to be 

predicted and spotted in order to reduce the loss. 

2.5.1.1. Deception Evidence: Deception-Monitoring System 

Recent research suggests the involvement of an external audit party which is called a 

third-party auditor (TPA) to monitor the cloud services [86][87][88][89][90][91]. The audit 

service works as the consumer’s delegate to verify the cloud service’s integrity or performance, 

e.g., how secure the service is, how well the SLA is maintained, integrity of the stored data, etc. 

There are cloud-service providers which trick the consumer by deceiving the SLA 

[26][27]. This deception reduces the service provider’s investment in the cloud service. The 

claim is that the cloud-audit party cannot catch many of the cloud-service provider’s deceits. The 
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cloud service’s consumers do not have knowledge about when a provider lowers their allocated 

resources or service. Fewer resources mean reducing the service provider’s investment or saving 

costs. At the same time, the cloud-service provider wants to be competitive in the cloud market. 

Hence, the company tries to hide these short-change issues, e.g., hiding frequent under-

provisions, slow-response events, security incidents, etc. 

How does a deceptive cloud-service provider hide the issue? The answer is presented in 

[26] and [27]: the company takes advantage of service-monitoring time gaps and the auditor’s 

limitation to access the cloud service’s user data. (Access can be restricted by the service 

provider by citing a security policy.) The auditor monitors the cloud service by following 

intervals. The service provider often gives preferential access to the user’s service data (many 

times due to a security policy). Hence, if the service provider delivers short-changed service 

during this interval period, the time when the auditor is not auditing, then the auditor will not 

catch this short-changing behavior or the SLA violation. This inability means that no SLA 

violation happened because there is no evidence about the violation, except in the user’s 

experience or feedback. 

Two deceptive scenarios are illustrated in [26] and [27]. A third-party auditor is capable 

of addressing these two deceptions [26]. The intermediate entities can crosscheck the QoS data 

with the auditor-informed QoS data [27]. 

In the first deception scenario, the cloud-service provider tempers the QoS information to 

deceive the auditor. The provider has both higher- and lower-configuration resources or services 

with respect to the SLA-described resources or service characteristics. However, the cloud-

service provider allocates a lower-configuration resource. When this low-configuration resource 

or service is chosen, the service provider’s cost is reduced, but the consumer suffers. The status 
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of the higher-configuration resource or service is returned when the resource’s status is sought by 

the auditor. The provider continues this process for the service’s entire lifecycle. Hence, the 

undetected SLA violation repeats. This process is a deception. This deception has all the 

characteristics of a con-man attack. 

The con-man-resistant trust algorithm can be at the consumer’s side and can monitor the 

consumer’s service. This algorithm’s trust-value evolution can evaluate the service’s con-man 

deception. Additionally, the algorithm’s consumer-side residence allows the validation of the 

audit data. 

In the second deception scenario, the cloud-service provider predicts the consumer’s 

usage pattern for the service. Then, the provider only upholds the SLA at those times, i.e., only 

ensuring the promised resources at the predicted times. Therefore, when the consumer changes 

the service’s usage pattern, then the service provider delivers a smaller service or resource 

amount than promised. This action is a deception because the resources were supposed to be 

consistent over time. It is guaranteed that the service provider cannot predict the consumer’s 

service-usage pattern with 100% accuracy. At the time stamps where the predicted pattern does 

not match the real pattern, the SLA violation can be spotted. Over time, this scenario of SLA 

violations is duplicated. This repetition is part of the evidence about the deception, and the 

pattern matches the con-man attack. Hence, the con-man attack is a derivative of this service 

provider’s deception with the exception of deceptive cloud-service provider (deceptive CSP) 

definitions. 

Unfortunately, the methodologies offered to detect the deceptions in [26] and [27] are not 

designed to spot the deception’s repetitive nature. The derivative con-man attack or the repetitive 
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SLA violation reduces the cloud-service provider’s investment and deprives the legitimate 

consumer. 

2.5.1.2. Deception Evidence: Shorter Service in a Peer-to-Peer Network 

In a peer-to-peer network, one peer or connected computer’s CPU cycles can be shared 

with another peer [19]. The peer that shares resources is bound to provide the promised resource 

amount. However, there are cases when these resource providers deceive by providing fewer 

resources than promised [19]. The provider further deceives by billing for the promised resources 

rather than the served amount. This shortage scenario is a short-change deception [19].  

In this dissertation, repeating this short-change deception is identified as the cloud-

service provider’s cyclic fraud behavior: the con-man attack or deception. This short-change 

action is the repeated under-provisioning scenario for IAAS and the repeated, unexpected 

response time for SAAS. 

2.5.1.3. Deception Evidence: Oscillating Reputation in a Peer-to-Peer Network 

An example of oscillating service-performance behavior in a peer-to-peer network is 

described in [28]. The oscillating service-performance behavior is necessarily a con-man 

behavior in the peer-to-peer network. A malicious peer considers the peer-to-peer network’s 

environment as a game and can maximize the peer’s profit by deploying a trick that is not 

detectable by the game’s rules. The number of deceptions can be numerous. One example is that 

peers can cheat by building a high reputation at the beginning. Then, they can start cheating 

occasionally in such a way that the cheating does not affect their existing reputation very much. 

This cheating gives them more profit because maintaining good service all the time is investment 

intensive compared to this cheating model. The oscillating-performance issue of this cheating 

model is identical to the con man’s repeated defection. 
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Another trick, targeting the profit maximization, is an oscillation of building a reputation 

and taking advantage of that reputation. By taking advantage, it means to give acceptable service 

where good service was expected following the good reputation. When the reputation goes below 

the acceptable level, then an investment is made to rebuild the reputation. This cycle continues. 

This oscillation is the con-man behavior. A dynamic, reputation-based trust model is applied in 

[28] to identify this deception. The issue with this trust model is that it needs feedback about the 

evaluated peer from many network peers. The feedback may not be available all the time, and the 

feedback numbers vary, adding uncertainty to the evaluation. 

2.5.1.4. Deception Evidence: A Camouflaged Cyclic Pattern in a Distributed Network 

The trust value is used in [29] to avoid a peer with fraudulent or malicious interactions. 

One behavior of a malicious peer is following a pattern of good-and-bad transactions when 

chosen as a service provider. This pattern can have three types: an oscillating pattern, an 

increasing and decreasing pattern, and a random pattern. The authors suggested punishing all 

three patterns [29].  

The oscillating pattern is a cycle of consecutive good transactions for a period of time 

followed by consecutive bad transactions for the next period of time. The oscillating behavior is 

presented in [29] and as Figure 4 (p. 548) to describe the peer’s oscillating, malicious behavior.  

The figure’s x-axis represents the amount of the peer’s promised behavior. The scale is 

from 0 to 1. Here, 0.0 represents that the 0% of the promised behavior is provided by the peer; 

i.e., the promised behavior is never met by the peer. A 1.0 means that 100% of the promised 

performance is achieved. The figure’s y-axis represents the transactions between this peer and 

the other peers. The peer provides 100% of its promised behavior to the other peers for the 

transaction at time t = 0. 



 

42 

 

Figure 4. Example of Oscillating Behavior. 

 

However, at t = 20, the peer cannot behave as promised; i.e., it is only able to perform 0% 

of its promised behavior. Again, at t = 40, the peer is able to come back to its promised behavior 

of 100% performance. At t = 60, the peer fails to keep its promise and performs only 0% of the 

expected behavior. This cycle of expected behavior and not-expected behavior continues. The 

authors of [29] addressed this behavior as a camouflage. 

The increasing and decreasing pattern is described in [29] and as Figure 5 (p. 548). Here 

the peers’ transactions (as a behavior) gradually become good and then gradually become bad. 

This cycle continues. 

 

 

Figure 5. Example of an Increasing and Decreasing Pattern. 
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The random behavior pattern is described in [29] and as Figure 6 (p. 548). Here, the 

peers’ transactions (as a behavior) become better and worse, but may not follow a uniform cycle. 

 

 

Figure 6. Example of Random Behavior. 

 

2.5.1.5. Evidence of a Repeated Short-Change Action Repelling the Consumer: Softlayer.com 

Softlayer.com is a cloud-hosting service which is now owned by IBM (since 2013). In 

2011, the webhostingtalk.com forum claimed that this service provider’s cloud-storage service 

had repeated downtime; one consumer reported it as an “unreliable” storage service [8]. The 

reported downtime instances were first spotted in 2009. The consumer reported that this cloud-

service provider did not fix the issue until 2011. Along with these downtimes, other unstable 

cloud-environment-related issues were reported; these problems repeatedly happened each week. 

Other consumers shared similar experiences about cloud services that were part of 

Softlayer.com. Due to the repeated issues of downtime and other instability with the rented cloud 

services, the Softlayer.com consumers changed service providers.  
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2.5.1.6. Evidence of a Repeated Short-Change Action Repelling the Consumer: Animato Site 

A real-life scenario of repeated, unexpected service or repeated under-provision was 

presented by [9]. The authors claimed that, when the cloud-service shortfall continued or was 

frequent, some users left the service site permanently.  

When the demanded resource amount surpasses the available resources, a shortfall 

happens. When the shortfall continues, the existing consumer base dwindles, and the number of 

new consumers attracted to the service also decreases. This continuous decline for the number of 

consumers reaches a point where the demand is no longer larger than the available resources 

(because the customer base is small). At that point, the shortfall or under-provision frequency 

decreases. This behavior is explained in [9] and as Figure 7 (p. 11). A real-life reference for a 

social-networking and gaming site (Animoto) that experienced this consumer behavior is 

presented in [9]. 

 

 

Figure 7. A Frequent Shortfall Reduces the Number of Consumers, Resulting in a Lower 

Demand. 

 

2.5.1.7. Evidence of a Repeated Short-Change Action Repelling the Consumer: 

Friendster.com 

 The social-networking and gaming site Friendster.com failed because the site’s 

consumers gradually left [10]. The site had competitors: Myspace and Facebook. The site’s 
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consumers were dissatisfied with its slow response time (reported to be as much as 40 seconds) 

and switched to its competitors. Friendster.com underestimated the importance of redesigning 

the existing system to accommodate a future high-consumer load [95]. The company tried to 

resolve the issue by using its existing design and by adding new components, rather than doing a 

complete redesign and restructuring. The company also focused on the business side instead of 

the technical side. As a result, Friendster.com became unreliable (based on the consumers’ 

perspective), and consumers migrated to the competitors’ sites. This real-life example proves 

that, when a service’s performance suffers repeatedly, the company gradually loses consumers, 

leading to the failure of the service provider’s business.  

2.5.2. Con-Man-Deception Scenario 

The deception scenarios of the previous subsection has a cyclical behavior of good and 

bad services. Hence they are a con-man deception scenario. Additional con-man deception 

scenarios are presented in this subsection. 

The provider of any service-oriented business, e.g., the cloud service, wants to attract 

consumers by promising and providing good service during the startup period. The SLA 

specifies the consumer’s quality expectations. The anticipated quality includes the consumer’s 

desired values for the quality attributes, e.g., the service’s response time or latency, the CPU 

speed, and various conditions for storage. As time goes by, the number of the consumers can 

increase. The resource constraints can easily result in diminishing service levels for things such 

as cloud computing, because the number of the consumer rose. Inadequate service can diminish 

the service provider’s acceptance to the consumer. The cloud-service provider may have few 

choices. These options may include preventing inequity by expanding resources to prevent 

shortages, distributing shortages equally among the consumers, or taking no action. Another 
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choice is to distribute the shortages among the consumers in an unequal way, possibly through 

policies that amount to deception. For example, large data sets which are moved to low-cost 

tertiary storage may severely limit access times and violate the SLA. The provider may 

implicitly or explicitly have threshold levels for which the consumer satisfaction is expected to 

be acceptable or at least not severe enough to cause the consumer to switch service providers. 

Some choices are investment intensive while others risk the consumer’s dissatisfaction or 

defection. One such deception mechanism is that the con-man attack is modeled and 

experimentally analyzed in this research. 

In the con-man attack scenario, the cloud-service provider may try to maintain a high 

confidence by communicating assurances that its service is good even if it is not. Service 

providers may engage in excellent service for a time and then fall back to a poor level of service. 

The service provider may cleverly deal with complaints to suggest that the user is not properly 

handling himself or herself while using the system, thereby shifting the blame to the end user. 

This blaming scenario is sort of like the old tactic of blaming the victim when something bad 

happens, basically suggesting that the victims brought the harm upon themselves. 

As an example of this con-man scenario, a cloud-service provider with a relatively large 

number of consumers is considered. The consumer engages in requests for service that demand 

resources over time. There are situations when the resources requested by the collective set of 

consumers during a certain time interval is more than the resources available. This resource 

shortage scenario can happen if the provider is overcommitted or if some resources have failed 

[9]. When shortages occur, the service provider makes different choices for resource allocation; 

these decisions are often related to revenue considerations. For example, high-revenue 

consumers may have their demands met often, and the low-revenue customers may have their 
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needs partially met. Thus, resource shortages drive service inequities. When the service falls 

short, trust in the service provider may be diminished. This situation may cause the service 

provider to deliver good service when it is trying to keep a customer who may defect and to 

provide lesser service when the company is confident that the customer is secure. This good and 

poor service provision results in patterns, or cycles, of good and poor service, the basic meaning 

of a cloud-service provider’s con-man behavior. 

Overall, the cloud-service providers are the deceiver, and the service’s consumers are the 

targets. The cost implications for a victim can be large. 

2.5.3. The Deception Modeling and Implementation 

2.5.3.1. Con-Man Attack in SAAS 

The Cloudsim simulator was used to implement the con-man behavior in cloud 

computing for software as a service (SAAS). The concept is that the service provider cannot 

provide the expected service to consumers at certain times. The provider delivers the expected 

service at other certain times. This cycle simulates the con-man behavior where the ability to 

provide the expected service is cooperation, and the inability to provide the expected service is a 

defection. 

The SLA concept in a real-life case is presented in [42]. This use case is about how 

enterprise consumers (the gaming industry) outsource their data using cloud services. The 

importance of the response time or a service’s latency for the gaming industry is presented. For 

SAAS, the response time (latency of service) is the metric used to measure service in this 

dissertation. 

In the Cloudsim simulator, a web-service call is simulated by submitting tasks to a simulated 

cloud resource, e.g., into a virtual machine (VM), at regular time intervals. Hence, for each 
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simulation time, there is a task submission. Each task is called a cloudlet. Over time and at each 

time stamp, each cloudlet’s completion time is set as the response time for the corresponding 

web service. If the response time is beyond a threshold, then latency happens. This latency is the 

amount by which the expected QoS is not met.  

The dynamic nature of the traffic load is incorporated into the web-service simulation by 

giving more input cloudlets to the same virtual machine (VM) that is processing the regular 

cloudlets or tasks. When more tasks appear at the same VM, they overload the VM, and the VM 

delays the regular tasks, resulting in a latency, or longer response time, for the web service. 

Again, certain cloudlets are given high priority (1), and the regular-interval cloudlets are 

given low priority (0). The lower-priority cloudlets are the consumer’s simulated tasks. The 

cloudlet or task-scheduling algorithms of Cloudsim are modified (space shared and time shared). 

The modification schedules the higher-priority tasks or cloudlets first and, then, the low-priority 

tasks. The space-shared scheduling algorithm simulates the intentional cost minimization or 

revenue maximization. The higher-priority tasks are given most of the available space in the 

shared space because their list is selected first. On the other hand, the lower-priority tasks are 

scheduled in the leftover spaces if there are any leftovers. If there is no space, then at the next 

scheduling cycle, the lower-priority tasks are scheduled. However, the priority application does 

not work in the time-shared scheduling although the time-share algorithm scheduled higher-

priority items first and the lower priority next. Time sharing also simulates revenue 

maximization because Cloudsim is not creating additional resources (simulating real-life 

additional-resource investments).  
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The unexpected QoS at certain time intervals is simulated by introducing the tasks’ or 

cloudlets’ load along with the regular tasks into the VM. Figure 8 describes the simulation 

scenario.  

 

 

Figure 8. The Web Service as Cloudlets with Normally Distributed Demand and Poisson-

Distributed Arrival Time for the Demands. 

 

The load tasks that arrive together follow Poisson inter-arrival times [96][97]. Again, the 

number of task simulates the load level. Therefore, the number of tasks follows a normal 

distribution. 

In the Cloudsim simulator, submitting individual cloudlets at each time interval and also 

submitting a collection of cloudlets at a specific time is not straightforward. All the cloudlets are 

submitted to the VM at the simulation’s start time. Each cloudlet has its own submission time. 

The submission times are set during the simulation’s start time when all the cloudlets are 

submitted. 
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When the Cloudsim simulator reads the cloudlet information, the simulator acknowledges 

the cloudlet’s start time. For example, if the goal is to model a 4-time-unit, or milliseconds, web-

service call that experienced a con-man attack, then first, more than 4 cloudlets (e.g., 5 cloudlets: 

cloudlet 1, cloudlet 2, … cloudlet 5) are submitted at the simulation’s start time. If the simulation 

times are 0.0, 1.0, 2.0, and 3.0 milliseconds, then the first 4 cloudlets’ start is delayed by 0.0, 1.0, 

2.0, and 3.0 milliseconds. If the delay is not added, then all 4 cloudlets would start at 0.0 

milliseconds, defeating the purpose of web-service call or task submission at a uniform interval. 

Now, consider that an overload is introduced at 1.0 (time t = 1). Therefore, the 5th cloudlet’s start 

is delayed by 1.0 milliseconds. Cloudsim simulator runs two cloudlets (cloudlets 1 and 5) at time 

1.0 millisecond (t = 1.0). Consider that the VM where the cloudlets are submitted only has 

resources to run one cloudlet. Therefore, if more than one cloudlet is submitted at the same time, 

the resource is shared between the two cloudlets, resulting in a longer completion time for the 

tasks associated with the cloudlets; i.e., performance degradation will happen. Hence, at t = 1.0, a 

resource overload results in performance degradation. Figure 9 shows this scenario where all the 

tasks, or cloudlets, are submitted when the simulation starts, but the execution is delayed until 

the desired time. 

 

 

Figure 9. Task-Submission Simulation in Cloudsim. 
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Figure 10 shows sample SAAS simulation data. Both the service time (discrete) and the 

response time are in milliseconds. 

 

 

Figure 10. Sample SAAS Simulation Data. 

 

2.5.3.2. Con-Man Attack in IAAS 

The Cloudsim simulator is used to implement the con-man behavior in an infrastructure 

as a service (IAAS). Like SAAS, in IAAS, the expected service is represented using a metric. 

The metric employed here is millions of instructions per second (MIPS) [22][23][24]. The 

consumer requests a level of MIPS from the service provider. The provider delivers either the 

requested MIPS or a lower MIPS. When a lower-level MIPS is provided, the expected QoS falls 

short. This shortage in QoS is the SLA breach by the service provider. 

In the IAAS simulation, the cloud resource’s configuration is checked or monitored at 

each simulation time that is separated by a fixed duration (i.e., at time t = 1.0, 2.0, 3.0, 4.0 …. 

milliseconds). A cloud consumer is given a certain amount of resources from a virtual machine 

(VM) as the rented infrastructure. MIPS is an attribute of the VM in the Cloudsim simulator. The 

cloud-service provider shall give its consumer a VM’s MIPS that the customer requests. MIPS 

means how many instructions the VM can process in a time unit of seconds. If the VM’s MIPS is 

shorter than the consumer’s requested amount at any time, then the SLA breach happens. Hence, 
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at each simulation time (e.g., t = 0.0, 1.0, 2.0, 3.0, 4.0, etc.), the requested MIPS versus the 

allocated MIPS for the VM is monitored. Consumers may need a different MIPS at each 

monitoring time because their task load is variable. Although the VM shall have a fixed and 

SLA-mentioned amount of MIPS available all the time, in real life, the amount is not available 

due to the cloud infrastructure’s inherent issues. Hence, at each monitoring time, the consumer’s 

requested MIPS needs to be match the allocated MIPS. 

The SLA violation is simulated by injecting it at some t values. Figure 11 shows an 

example of the IAAS simulation. 

 

 

Figure 11. IAAS Simulation. 

 

The x-axis represents the simulation time, and the y-axis represents the MIPSs that are 

requested and allocated. The time, t, of the SLA violation follows a Poisson distribution. For 

example, if λ = 5, then one SLA violation happens for every 5 simulation time units. 

There are 10 Poisson numbers generated by following λ = 5. The assumed numbers are 3, 

5, 4, 2, 3, 1, 4, 5, 3, 1. At the 1st simulation-time duration of 5 time units, an SLA violation will 

happen at the 3rd time unit. For the 2nd simulation-time duration of 5 time units, another SLA 

violation will happen at the 5th time unit, etc. The 1st SLA violation happens at t = λ×0+the 1st 

generated number = 5×0+3 = 3.0 time unit. The 2nd SLA violation happens at t = 5×1+the 2nd 
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generated number = 5×1+5 = 10.0, the 3rd violation at t = 5×2+4 = 14, the 4th violation at t = 

5×3+2 = 17.0, etc. Therefore, at t = 3.0, 10.0, 14.0, 17.0, etc., the SLA violation happens. Hence, 

at t = 3.0, 10.0, 14.0, 17.0, etc., the consumer experiences fewer MIPSs than requested at his or 

her allocated VM. 

The simulated SLA-violation magnitude, or resource-shortfall amount, follows a normal 

distribution. Consider a normal distribution with mean of 0.5 and a standard deviation of 0.5. 

The generated series of normal numbers from this distribution is 7.0, 0.3, 0.4, 0.9, 0.5, 0.1, 0.6, 

0.8, 1.0, and 0.2. The 1st SLA violation causes an MIPS shortage of 70%. If the consumer’s need 

or request 100 MIPS, then only 30 MIPS are allocated. The 2nd SLA violation allocates 70% of 

the MIPS requested. Similarly, the 3rd, 4th, 5th, and 6th SLA violations provide 40%, 90%, 50%, 

and 10% of the VM’s requested MIPS. The 1st SLA violation happens at t = 3.0 with 70% of the 

requested MIPS amount, a 70% SLA violation. The 2nd violation is at t = 10.0 with a 30% SLA 

violation, the 3rd at t = 14.0 with a 40% SLA violation, the 4th at t = 17.0 with a 90% SLA 

violation, etc.  

At t = 0.0, there is no SLA violation; hence, the MIPS is allocated as requested. 

Similarly, at t = 1.0 and 2.0, the MIPS is also allocated as requested. However, when t = 3.0 is 

reached, 30% of the requested MIPS is not provided. At t = 4.0, the exactly requested MIPS is 

provided. Similarly, at t = 5.0, the allocated MIPS is the exact amount that was requested. the 

exact requested MIPS provision continues until t = 10.0 is reached. At t = 10.0, the SLA 

violation is injected by allocating 30% of the requested MIPS. The MIPS request at t = 11.0, 

12.0, and 13.0 is also executed normally with the requested MIPS allocated. At t = 14.0, the 

requested MIPS is shortened, and 40% of the requested MIPS are allocated. The IAAS is 

simulated in this way, including the SLA violation or under-provisioning. 
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An interesting question is why the SLA-violation injection follows the Poisson inter-

arrival time. The answer is explained in Figure 12. A consumer is allocated with a VM as the 

consumer’s requested infrastructure. The consumer demands a certain configuration from that 

VM. However, the configuration is not available all the time in real life, although, ideally, it 

should be what is promised. 

The VM’s inter-arrival time follows a Poisson distribution [23][98]. There are time 

intervals when multiple VM-generation requests are executed at the same time as several 

consumer requests for resources. If the total MIPS or other resources available from the data 

centers can accommodate the VMs, then no performance degradation happens. If the total MIPS 

or other resource amount is less than all the VM requests arriving at that time duration, then due 

to resource management, the existing VMs’ resource-shortage happens. (e.g., During migration, 

some percentage of resource shortage happens.) The arrival of requests is one reason for a 

resource shortage or SLA violation. For example, at t = 1, multiple VM requests arrive, and a 

shortage happens (Figure 12). 

 

 

Figure 12. The IAAS’ SLA-Violation Issues Follow a Poisson Distribution. 
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At t = 4, multiple VM requests arrive, but a shortage never happens. Again at t = N, 

multiple VM requests arrive, and a shortage happens. Hence, the duration between the first (t = 

1) and this last resource shortage or SLA violation (t = N) is the summation of two Poisson 

numbers. The aggregation of Poisson numbers itself is a Poisson number, the resource shortage 

due to unexpected consumer requests also follows a Poisson distribution. 

2.5.3.3. Summary of the Con-Man Attack in SAAS and IAAS 

Each reading from the simulator against the simulation time represents QoS data. The 

QoS data for a specific time are known as individual interactions. Each interaction may or may 

not violate the SLA. As described previously, each SLA violation has components about when 

the violation happened and the violation’s magnitude. The number of interactions or inter-arrival 

interactions between two consecutive SLA violations follows a Poisson distribution. The SLA-

violation magnitude follows a normal distribution. 

An online monitoring system, http://downrightnow.com/, shows the outage history during 

the past 24 hours for popular cloud-service providers. The outage history is from user-reported 

downtime as well as official announcements and feeds. 

2.5.4. Deception-Detection Implementation 

2.5.4.1. Simulator Settings 

The precision of decimal places is important in this work. Hence, when data are 

generated following some statistical distributions (using an R script), 10 decimal places are used. 

All the data which are read and generated by the con-man-resistant trust algorithm in the 

simulation with Cloudsim have 10 decimal-place precision. Previous work had 5 decimal points, 

e.g., α, β values [1][2][3]. Hence, to keep consistency with the earlier research, when results for 

the con-man-resistant trust algorithm’s simulation were retrieved, 5 decimal-point precision was 
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utilized. For additional information, Table 10 lists the simulated cloud-resource configuration 

used in this work (for the Cloudsim simulator). 

Table 10. Simulated Cloud-Resource Configuration. 

Datacenter Characteristics Host Characteristics  

System architecture x86 Four Processing Elements for each 100,000 MIPS 

Linux operating system 16,384 MB of host memory 

Virtual machine manager "Xen" 1,000,000 GB host storage 

Location of the resource in time zone 10.0 10,000 units of bandwidth 

The cost for processing in this resource is 3.0. 

The cost for memory in this resource is 0.05. 

The cost for storage in this resource is 0.1.  

The cost for bandwidth in this resource is 0.1. 

 

2.5.4.2. Deception Detection: Defection-and-Cooperation Cycle Detection 

Figure 13 shows a cooperation-and-defection cycle. The figure shows the SAAS response 

times and the trust value in the x-axis, and the pass of discrete time is in the y-axis. 

 

 

Figure 13. A Sample of the Defection-Cooperation Cycle (SAAS). 
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This figure depicts the fundamental characteristics of the con-man-resistant trust 

algorithm. It shows that, the more the unexpected bad service, the less trust there is, and the more 

the expected positive service there is, the higher the trust is. Figure 13 also shows that, as bad 

outcomes repeat, the recovery of trustworthiness takes longer. 

Figure 14 shows this defection-cooperation cycle for the IAAS data. Here, QoS happens 

in clusters and is also repeated. From this figure, it is observed that, if the repetition continues 

further, trust can converge to its minimum possible value of -1. Once the trust converges to -1, it 

never goes up even though no defections are present.  

 

 

Figure 14. A Sample of the Defection-Cooperation Cycle (IAAS). 

 

The consistency of trust value at -1 establishes the ability of the con-man-resistant trust 

algorithm to catch the cloud service’s deceptive behavior or, more generically, to catch the 

deceptive behavior in cyberspace domains. The summary of Figure 14 is, the trust diminishes 

with repetitive unexpected bad service. 
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2.5.4.3. Trust-Convergence Results 

Figure 15 shows how the trust value converges to -1 as the service provider’s con 

behavior continues for an SAAS simulation. The convergence time depends on variable different 

combinations. Here, the α0 and β0 ratios’ effect on trust evolution is shown (A ratio of 1:3 and 

1:10 were suggested by previous work [1][2]). 

The following observations can be made from this figure: 

 For the same β0, the number of interactions for trust convergence toward -1 is 

proportional to α0 i.e. the lower the value of α0, the faster the convergence or the 

smaller the number of such interactions. 

 For the same α0, the number of interactions for trust convergence toward -1 is 

inversely proportional to β0 i.e. the higher the value of β0, the faster the convergence 

or the smaller the number of interactions. 

 

 

Figure 15. Trust Convergence to -1 for Two Different Parameter Ratios (SAAS). 

-1.00

-0.80

-0.60

-0.40

-0.20

0.00

0.20

0.40

0.60

0.80

Tr
u

st
 V

al
u

e

Time

SLA violation % Normalized WRT Given Sla Trust Alpha = 0.16667 Beta =-0.5

Trust Alpha = 0.05 Beta =-0.5 Trust Alpha = 0.05 Beta =-0.15



 

59 

2.6. Sub Problem 2: Comparing the Con-Man-Resistant Trust Algorithm’s Performance 

To compare the performance of the con-man-resistant trust algorithm for deception-cycle 

detection, it is important to select an algorithm that is applicable to solve a similar problem. 

There is research that counts the performance or QoS fluctuations, giving a low trust score if the 

fluctuations are greater than expected [11]. The repeated bad service following good service of 

con man attack scenario is the service quality fluctuates. Hence, the con-man-attack scenario is 

necessarily the fluctuations of the presented work in [11].  

The presented work in [11] is compared with the con-man-resistant trust algorithm in the 

cloud-computing domain. In the rest of this section, a comparable trust model is described; then, 

the SLA violation is re-calculated in the con-man-resistant trust model for comparison purposes, 

followed by describing the inputs for both algorithms and comparing the results. 

2.6.1. Comparable Trust Model 

There are prior works that provide evaluations for the actual versus promised behaviors 

of a cloud service, e.g., the research mentioned in [11], [69], [99], and [100]. However, none of 

them addressed this con-man-trick behavior. 

Repeated SLA violations or QoS instability for a cloud service that result from the con-

man deception is also an example of fluctuating QoS behavior [11]. Hence, this con-man 

application is comparable with the fluctuating QoS and flexible SLA work [11], the only prior 

work that deals with trust modeling for unstable QoS with a cloud resource. In terms of 

fluctuating QoS, the con-man algorithm gives a lower score for a higher fluctuation of QoS and 

the algorithm’s generated lower score indicates a reduced trustworthiness. 

A con-man-resistant trust algorithm was never applied on historical data in the prior 

research on con-man-resistant trust [3][2][1]. The concept is applied to historical data in this 



 

60 

work. The con-man-resistant trust value which results from the historical data is compared with 

the fluctuating QoS and flexible SLA work. The degree of satisfaction with fluctuating QoS and 

a flexible SLA, before and after normalization, falls in the range of  {0}  ∪  [0.5, 1] and {−1}  ∪

 [0, 1], respectively, resulting in aggregated trust: є [0, 1] and є [-1,1], respectively. It is evident 

that the trust value before normalization is comparable to the con-man-resistant trust, є [-1, 1]. 

The fluctuating QoS and the flexible SLA work’s trust value normalization is eliminated to 

confirm the similarity and contrast of both trust values: the fluctuating QoS and the flexible SLA 

trust value and the con-man-resistant trust value. 

The consumer’s satisfaction is affected by continuous SLA violations or a QoS below the 

specified threshold. The con-man-resistant trust value reflects the effect of such dynamics. The 

more persistent the continuity is, the lower the trust value is. The con-man-resistant trust value 

converges toward its lowest possible value (-1) if the QoS violation repeats. The con-man-

resistant trust algorithm calculates the trust value against time. Hence from the beginning of a 

historical time series data till the end, the trust value changes. This change shows the dynamism 

of service quality using trust value. However, the fluctuating QoS and flexible SLA process 

cannot capture such dynamism because the process calculates the trust value after reading all 

data for a certain historical record [11]. 

In fluctuating QoS and flexible SLA studies, even though the 𝑜𝑣𝑒𝑟𝑎𝑙𝑙𝑆𝐿𝐴 is satisfied, if 

the 𝑝𝑒𝑎𝑘𝑆𝐿𝐴 is violated even once in the individual historical record, the resulting trust value is 

assigned the minimum possible value (-1) for that record. However, only violating the SLA once 

in a large time span (historical record) is given a waiver in a complex system such as a cloud. 

The con-man-resistant trust algorithm assigns a penalty in the trust value for such a violation but 

does not assign the lowest possible trust value (marked as untrustworthy) all at once. 
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2.6.2. Pre-Comparison Step: Con-Man-Resistant Trust Algorithm’s SLA-Violation 

Recalculation 

For this comparison, the con-man-resistant trust algorithm presented in this dissertation 

was tuned. The SLA violation was calculated in a prior comparison for this con-man-resistant 

trust algorithm, was based on the requested and allocated MIPS, and was expressed as a 

percentage. However, in the fluctuating QoS and flexible SLA research, this SLA violation is 

recalculated with respect to the 𝑜𝑣𝑒𝑟𝑎𝑙𝑙𝑆𝐿𝐴. Hence, for tuning, the presented con-man-resistant 

trust algorithm also recalculates the SLA violation, resulting in a comparison version for this 

trust model. This new SLA violation percentage is calculated from the 𝑜𝑣𝑒𝑟𝑎𝑙𝑙𝑆𝐿𝐴 and the SLA 

violation percentage from the simulator using the following equation. 


𝑋𝑆𝐿𝐴− 𝑜𝑣𝑒𝑟𝑎𝑙𝑙𝑆𝐿𝐴

100−𝑜𝑣𝑒𝑟𝑎𝑙𝑙𝑆𝐿𝐴
=
𝑆𝐿𝐴𝑜𝑣𝑒𝑟𝑎𝑙𝑙𝑆𝐿𝐴

100


Here, 𝑋𝑆𝐿𝐴 is the SLA violation percentage from the simulator as the current input. 

𝑆𝐿𝐴𝑜𝑣𝑒𝑟𝑎𝑙𝑙𝑆𝐿𝐴 is the SLA violation with respect to the 𝑜𝑣𝑒𝑟𝑎𝑙𝑙𝑆𝐿𝐴, which is calculated from the 

SLA violation percentage or the current input. If 𝑜𝑣𝑒𝑟𝑎𝑙𝑙𝑆𝐿𝐴 = 50% and 𝑋𝑆𝐿𝐴 or SLA violation 

percentage = 75%, then 𝑆𝐿𝐴𝑜𝑣𝑒𝑟𝑎𝑙𝑙𝑆𝐿𝐴 = 50%. Similarly, for 𝑋𝑆𝐿𝐴 = 60%, 𝑆𝐿𝐴𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = 20%. 

2.6.3. Inputs for the Trust Algorithms 

A collection of historical records is taken as the input to the fluctuating QoS and flexible 

SLA method. Hence, a collection of historical records is taken as the input to both the con-man-

resistant trust algorithm and the fluctuating QoS and flexible SLA method. Again, in the 

fluctuating QoS and flexible SLA method, four constraints, called the SLA set, were defined to 

split the input historical records collection. Hence, in this chapter four SLA set are defined. Each 

historical record only follows one such constraint. The four categories are as follows: 

SLA set 1: both 𝑜𝑣𝑒𝑟𝑎𝑙𝑙𝑆𝐿𝐴 and 𝑝𝑒𝑎𝑘𝑆𝐿𝐴 are violated. 



 

62 

SLA set 2: only 𝑝𝑒𝑎𝑘𝑆𝐿𝐴 is violated. 

SLA set 3: only the 𝑜𝑣𝑒𝑟𝑎𝑙𝑙𝑆𝐿𝐴 is violated. 

SLA set 4: neither the 𝑜𝑣𝑒𝑟𝑎𝑙𝑙𝑆𝐿𝐴 nor the 𝑝𝑒𝑎𝑘𝑆𝐿𝐴 are violated. 

The 𝑜𝑣𝑒𝑟𝑎𝑙𝑙𝑆𝐿𝐴 and 𝑝𝑒𝑎𝑘𝑆𝐿𝐴 values are determined by Algorithm 1. The 𝑜𝑣𝑒𝑟𝑎𝑙𝑙𝑆𝐿𝐴 and 

𝑝𝑒𝑎𝑘𝑆𝐿𝐴 for historical records was determined satisfying their associated SLA set category. For 

example, in the con-man-resistant trust algorithm version for this comparison, 40% of the 

historical records’ 𝑜𝑣𝑒𝑟𝑎𝑙𝑙𝑆𝐿𝐴 and 𝑝𝑒𝑎𝑘𝑆𝐿𝐴 are determined with the constraints of SLA set 1, 

30% of SLA set 2, 20% of SLA set 3, and 10% of SLA set 4. From each set, e.g., in 40% of the 

historical records, each record in the 40% has its own 𝑜𝑣𝑒𝑟𝑎𝑙𝑙𝑆𝐿𝐴 and 𝑝𝑒𝑎𝑘𝑆𝐿𝐴. 

 

 

Algorithm 1. SLA Constraint-Determination Algorithm. 
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The algorithm helps to empirically calculate the overallSLA and peakSLA for individual 

records. Each record may have different values for the overallSLA and peakSLA since the records 

belong to independent consumers. The algorithm calculates the overallSLA and peakSLA in such a 

way that, for a certain record, both SLAs, no SLAs, or only one SLA is violated. 

The algorithm calculates both the overallSLA and peakSLA for each historical record. The 

algorithm then determines into which SLA set category the current historical record falls. If the 

record falls under SLA set 1, then both constraints (overallSLA and peakSLA) are violated. The 

overallSLA needs to be below the mean of the record’s individual interactions, and the peakSLA 

needs to be lower than the maximum value of the interaction data. If the overallSLA and peakSLA 

are generated this way, both the maximum value of a record’s interactions and the average is 

above overallSLA and peakSLA, respectively. Hence, the overallSLA is calculated by deducting a 

small number from the average, and the peakSLA is calculated by deducting a small number from 

the maximum value. 

Similarly, if the record belongs to SLA set 2, then only the overallSLA is violated; i.e., the 

overallSLA is below the average, but the peakSLA is above the maximum value among the record’s 

interactions. Hence, the overallSLA is calculated by deducting a small number from the average, 

and the peakSLA is calculated by adding a small number to the maximum value. 

If the record is in SLA set 3, then only the peakSLA, not the overallSLA, is violated. Hence, 

overallSLA is calculated by adding a small number to the average, and the peakSLA is calculated 

by deducting a small number from the maximum value. 

The records in SLA set 4 do not have any SLA violations; i.e., neither the overallSLA nor 

the peakSLA is violated. Hence, if the record falls in SLA set 4, then the overallSLA is calculated 

by adding a small number to the average, and the peakSLA is calculated by adding a small number 



 

64 

to the maximum value. The algorithm ends with a result where each record has a corresponding 

overallSLA and peakSLA. 

2.6.4. Trust-Model Comparison  

With previous con-man research, pairs of α0 and β0 were suggested. The con-man-

resistant trust algorithm is applied to each historical record for a particular α0 β0 pair. Trust either 

converges to -1 or not for each α0 β0 pair which is applied to the historical record. For each pair’s 

each historical record where trust converges to -1, the interaction numbers’ average is calculated. 

With the historical records where trust did not converge, the average trust for each α0 β0 pair is 

calculated. Algorithm 2 shows this process. 

 

 

Algorithm 2. Average Trust from Historical Records for Each α0 β0 Pair. 

 

A collection of historical records is taken as the input to both the fluctuating QoS and 

flexible SLA method and the con-man-resistant trust algorithm. During the comparison of these 

two methods, 10 historical records (HRs) are used. Some HRs are identified as untrustworthy by 

the con-man-resistant trust algorithm (The trust value converged to -1.) for a certain α0 β0 pair. 

For the untrustworthy HRs, Figure 16 shows the average number of interactions. Nine α0 

β0 pairs are present. 



 

65 

 

Figure 16. Number of Average Interactions for Converged Trust with Each α0, β0 Pair. 

 

Only the untrustworthy records’ interaction number to spot untrustworthiness is averaged 

for each pair. The figure shows that the pairs took a minimum of 15 interactions and a maximum 

of 51 interactions to identify the con behavior (when the trust value converged to -1). The 

fluctuating QoS and flexible SLA method took 209 interactions (the average length of all HRs) 

but never gave a trust value of -1. The fluctuating QoS and flexible SLA were never able to spot 

the con deception. Therefore, it is clear that the con-man-resistant trust algorithm takes fewer 

interactions, with respect to the fluctuating QoS and flexible SLA methods, to spot the con 

deception. 

When the fluctuating QoS and flexible SLA method and the con-man-resistant trust 

algorithm are applied on the collection of HRs, some HRs are identified as trustworthy by the 

con-man-resistant trust algorithm.  

Figure 17 shows how many HRs are identified as trustworthy and how many HRs are 

identified as not trustworthy i.e. how many HRs detected the con deception. Most HRs (9) 

spotted the con behavior, and 1 HR did not, for all α0 β0 pairs except 1. 
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Figure 17. Percentage of HRs Converging Toward Untrustworthiness. 

 

For the trustworthy HRs, trust values from the method and the algorithm are compared 

and shown in in Figure 18. The average con-man-resistant trust value for trustworthy HRs is 

shown for a certain α0 β0 pair. Trust converged to -1 (con deception detected) for most of the α0 

β0 pairs (with 1 exception in 9), for 90% of the HRs. 

 

 

Figure 18. Number of Average Interactions for Converged Trust with Each α0 β0 Pair. 
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The figure also shows that the trust values for the con-man-resistant trust algorithm are 

closer to untrustworthy with respect to the fluctuating QoS and flexible SLA model. For 

example, the minimum trust value is about -0.9, and the maximum is -0.8 (except for the one 

trustworthy α0 β0 pair with a trust value of 0.0002). 

The following findings come from Figure 18: 

 β0 and the number of interactions are inversely related: the lower the β0, the higher 

the number of interactions. 

 Con-man-resistant trust values for most α0 β0 pairs are lower than the fluctuating QoS 

and flexible SLA trust values. 

2.7. Sub Problem 3: Deception Detection with the Batch Processing of Data 

2.7.1. Trust from Windows 

A time window that consists of fixed- or variable-size time units or time stamps for the 

time series plays an important role when trust is calculated for time-series data. There is a 

plethora of research on trust calculation considering a time window: [28], [101], [102], [103], 

[104], [105], [106], [107], [108], and [109]. 

An oscillating service-performance behavior example in a peer-to-peer network is 

described in [28]. This oscillating behavior is an example of the con-man-attack pattern or the 

con-man deception in this dissertation. A malicious peer considers the peer-to-peer network’s 

environment as a game. The peer can maximize its profit by deploying a trick that is not 

detectable by the game’s rules. The amount of cheating can be large. For example, peers can 

cheat by creating a highly positive reputation at the beginning. Then, they can start cheating 

occasionally so that the cheating does not affect their existing reputation. This cheating model 

gives the malicious peer a profit over the non-cheating model, i.e., the model where the peer 
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maintains good service all the time, because this ideal case of maintaining good service all the 

time is investment intensive. This cheating model is identical to the con man’s repeated defection 

which is presented in this dissertation. 

Another trick, targeting profit maximization, is an oscillation of building a good 

reputation and then taking advantage of that reputation [28]. When the reputation goes below the 

acceptable value, then an investment is made to rebuild the reputation. The cycle of reputation 

building and diminishing continues. This cycle, or oscillation, is the con-man behavior in this 

dissertation. 

The authors of [28] applied a dynamic trust model which considered a recent time 

window to deal with the oscillation behavior. One peer calculates the trust of all other peers from 

the feedback about these peers in the recent time window. A smaller time window is considered 

when a peer’s performance is doubted. The smaller time window reacts better when the peers’ 

dynamic behavior is present. The dynamic behavior consists of both the peers’ performance 

issues and the previously described malicious behavior. The behavior is the con-man behavior in 

this dissertation. Hence, for this dissertation, the con-man-resistant trust algorithm is calculated 

by including the recent time window as the current game-theory interaction to calculate a 

cooperating or defection behavior. 

In the peer-to-peer network, a smaller window is used to catch the dynamic or malicious 

behavior [28]. The window is kept small in order to the catch sudden changes for this dynamic 

behavior. The “recent” window is included to exclude the older reputation data during the trust 

calculation. 

In e-commerce, a seller provides good transactions followed by bad transactions. The 

dynamic trust is calculated by taking all the buyer’s transactions with a system from a certain 
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time duration or window. Trust is a weighted sum of the concerned buyer’s trust regarding the 

seller and a reputation calculation. The buyer’s trust is another weighted sum of the buyer’s trust 

from the current transaction and the previous transactions in the recent time window. The 

reputation is the average of the trust from all other buyers in the system during that time window 

(similar to the concerned buyer’s trust). 

Similarly, in e-commerce, a smaller sliding time window is included for trust calculation 

[109]. The larger time window gives enough time for a malicious agent to perform fraudulent 

transactions before the agent’s trust value (in terms of reputation) diminishes. On the other hand, 

a smaller time window reduces the severity of the malicious agent’s activity due to early 

detection. 

In the con-man-resistant trust algorithm for cloud services, the following concepts about 

a time window are of great importance: 

 Excluding older interactions. 

 Keeping the window size smaller to catch sudden interaction-pattern changes during 

the current trust calculation. 

 Keeping the window size smaller to reduce the deception’s effect with early 

detection. 

2.7.2. Trust from a Non-Overlapping Window versus Trust from a Sliding Window 

The time window can be non-overlapping and sliding (overlapping). Trust can be 

calculated using both methods. For example, a sliding time-window concept is applied in [110] 

to measure dynamic trust with each window. In every window, good and poor interaction counts 

are recorded. Trust concept is used to identify malicious nodes. Each interaction is the 

cooperation between two nodes. The interactions happen at every time unit or time stamp. This 
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interaction is equivalent to the interplay between a consumer and a cloud provider in the con-

man-resistant trust algorithm. 

The non-overlapping window for time-series data does not share any time-unit or time-

stamp data between windows. Each time the window proceeds forward with time in a sliding 

window, the oldest time-unit data are dropped, and the new time-unit data are added.  

Each window in the non-overlapping window represents an interaction of the con-man-

resistant trust algorithm. Each window contains a collection of time-unit data where every time 

unit is when the consumer receives service from the cloud-service provider. In such a non-

overlapping window, the same issue is not considered twice; i.e., if a performance issue is found 

inside a window, then the issue does not appear in another window. 

On the other hand, time stamps in a sliding window are shared; hence, a performance 

issue for a certain time stamp can appear in more than one consecutive window. Therefore, in a 

sliding window, the same performance issue propagates into multiple windows, influencing 

consecutive trust values. This sliding-window property allows the same performance issue to 

penalize the service provider multiple times because the issue affects consecutive trust values. 

Hence, in this dissertation, sliding-window-based trust is discouraged.    

2.7.3. Window-Based Con-Man Algorithm 

In the prior con-man algorithm research, data read for particular times were considered as 

individual interaction [1][2][3]. For example, if a consumer receives a service from a service 

provider at time t = 0 then the consumer had an interaction with the provider at t = 0. At the next 

time t = 1 if the consumer again receives a service from the same provider, then another 

interaction happened at t = 1. Each interaction resulted in one trust value corresponding to that 

time. The most-recent interaction generates the latest trust. An extension of the con-man trust 
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algorithm is implemented in this work to account for a fixed number of multiple data entries over 

time as one window of data. Each window is further counted as one interaction for this con-man 

algorithm. 

For example, if datum no. 0 is read, then the first window would end at datum no. 

“window size –1,” where window size represents how many data the algorithm shall group for 

the current interaction of the con-man algorithm (one interaction). The second window is from 

data no. “window size” to “2 × window size -1. Hence, window i starts at data no. “(i -1) × 

window size” and ends at data no. “i × window size -1,” inclusive for i є ℕ. The number of data 

in the window is the “window size.” Figure 19 conceptualizes this scenario.  

 

 

Figure 19. Each Window Considered as Individual Con-Man Datum. 

 

In every window, a collection of data corresponding to each time represents a single 

interaction. A trust value is calculated for each interaction. The following equation confirms the 

window size. 

i ×  window size − 1 − (i − 1)  ×  window size +  1 =  window size 
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2.7.4. Window-Based, Con-Man-Resistant Trust Algorithm Properties 

Two methods are considered to unlock the properties of the window-based con-man 

algorithm. The first method is inspired from the fluctuating QoS and flexible SLA work [11]. A 

threshold or an overall value is considered in a time window. The area above and below the 

threshold is calculated using area integration. If the area above is less than the area below or if 

any data value inside the window reaches a predefined peak value, then the corresponding 

interaction for that window is taken as a defection. If none of the conditions are true for that data 

window, cooperation happens. This peak value is 100%, and the trapezoidal rule of integration is 

applied in this application. Whenever defection happens, the defection percentage is considered 

as 100% because only the constant-punishment method is applied for this window-based 

approach or batch processing of data. Cooperation is indicated by the 0% defection percentage. 

In the second method, the defection percentage corresponding with each data value is 

aggregated. Hence, an aggregation method needs to be selected. The cooperation or defection is 

determined based on the difference between the aggregated value’s average and a threshold (the 

same threshold value mentioned in the previous paragraph). The simplest aggregation method, 

the mean of data values inside this window, is chosen. The corresponding time for this window is 

the time of the last data inside the window. There is a case when both methods result in the same 

defection percentage for the interaction window. The case is when there is no data inside the 

window with 100% SLA violation and when the trapezoidal rule of integration is applied for the 

first method. Only for this case, the following statements hold: 

 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛 𝑎𝑟𝑒𝑎 𝑎𝑏𝑜𝑣𝑒 ==

𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛 𝑎𝑟𝑒𝑎 𝑏𝑒𝑙𝑜𝑤 𝑟𝑒𝑠𝑢𝑙𝑡𝑠 𝑛𝑜 𝑆𝐿𝐴 𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛 ≃

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑖𝑠 𝑜𝑣𝑒𝑟𝑎𝑙𝑙𝑆𝐿𝐴 𝑟𝑒𝑠𝑢𝑙𝑡𝑠 𝑛𝑜 𝑆𝐿𝐴 𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛 
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 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛 𝑎𝑟𝑒𝑎 𝑎𝑏𝑜𝑣𝑒 < 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛 𝑎𝑟𝑒𝑎 𝑏𝑒𝑙𝑜𝑤 𝑟𝑒𝑠𝑢𝑙𝑡𝑠 𝑛𝑜 𝑆𝐿𝐴 𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛 ≃

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑖𝑠 𝑏𝑒𝑙𝑜𝑤 𝑜𝑣𝑒𝑟𝑎𝑙𝑙𝑆𝐿𝐴 𝑟𝑒𝑠𝑢𝑙𝑡𝑠 𝑛𝑜 𝑆𝐿𝐴 𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛 

 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛 𝑎𝑟𝑒𝑎 𝑎𝑏𝑜𝑣𝑒 > 𝑎𝑟𝑒𝑎 𝑏𝑒𝑙𝑜𝑤 𝑟𝑒𝑠𝑢𝑙𝑡𝑠 100% 𝑆𝐿𝐴 𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛 ≡

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑖𝑠 𝑎𝑏𝑜𝑣𝑒 𝑜𝑣𝑒𝑟𝑎𝑙𝑙𝑆𝐿𝐴 𝑟𝑒𝑠𝑢𝑙𝑡𝑠 100% 𝑆𝐿𝐴 𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛. 

2.7.5. Window-Based Algorithm’s Property Analysis  

2.7.5.1. Trust Measure for the Area Above Threshold Versus the Area Below Threshold 

Figure 20 shows how the trust value changes when the defection’s presence is 

recalculated for a batch of data or for each window following the first method of defection 

detection. In the figure, for the con-man-resistant trust algorithm, the parameter setting used is: 

α0 = 0.05 and β0 = -0.5. All the data represented against time in Figure 20 have the corresponding 

defection amount as percentages with few time-stamps where no defection happened.  

 

 

Figure 20. Trust Values over Time with the Area Above Threshold versus the Area Below 

Threshold as a Measure of the Defection Presence for Each Window (SAAS). 
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Each window is 5 consecutive data against time. An integration of area above a threshold, 

e.g., 25% defection percentage, is compared against the area below that threshold, i.e., inside that 

window. 

The two conditions determining the defection presences in a window, for the first or the 

integration method, are: if for any time inside a window, the defection percentage is 100% or in 

the window, the integrated area above the threshold is larger than the area below that threshold. 

The conditions are called the defection-detection conditions. A defection is present in a window 

if any of the conditions is true. The figure shows that, for five time windows of size 5, at least 

one defection-detection condition is true. The height of the bars for the defection-presence line 

represents the defection’s existence; 100% indicates the presence, and 0% means the absence of 

cooperation. 

2.7.5.2. Average of Defection or Cooperation Within Each Window as a Measure of Trust 

Figure 21 shows how the trust value changes when the defection presence is recalculated 

for a batch of data or for each window following the second method of defection detection. 

 

 

Figure 21. Trust Values over Time with the Average for the Defection or Cooperation Amount 

Within Each Window as a Measure of the Defection Presence for Each Window. 

-150%

-100%

-50%

0%

50%

100%

-1

-0.5

0

0.5

1

5
.1

2
5

.1

4
5

.1

6
5

.1

8
5

.1

1
0

5
.1

1
2

5
.1

1
4

5
.1

1
6

5
.1

1
8

5
.1

2
0

5
.1

2
2

5
.1

2
4

5
.1

2
6

5
.1

2
8

5
.1

3
0

5
.1

3
2

5
.1

3
4

5
.1

3
6

5
.1

3
8

5
.1

4
0

5
.1

4
2

5
.1

4
4

5
.1

4
6

5
.1

4
8

5
.1

D
ef

ec
ti

o
n

 P
er

ce
n

ta
ge

Tr
u

st
 V

al
u

e

Time

Trust value for each window Defection amount recalculated for each window Defection Percentage



 

75 

The defection percentages are averaged using the arithmetic mean for 5 consecutive data 

points against time (window size 5). If this average is above a threshold, e.g., 25%, then it is 

considered as a defection. Here, punishment categories are not used; hence, if defection happens 

in each window, it is 100%. The figure shows that for two windows (windows ending at 50.1 

milliseconds and 130.1 milliseconds respectively) the average defection percentage is above the 

threshold (25%). For rest of the windows the average is below the threshold. Hence only for the 

two window, the defection is detected and the corresponding con-man-resistant trust value drops 

at 50.1 milliseconds and 130.1 milliseconds respectively. The con-man-resistant trust value 

eventually gets higher value over time as for rest of the windows no defection is detected. 

2.7.5.3. Trust-Measures Comparison: Average versus Area Integration 

Figure 22 shows the defection-presence calculation in a window using the two methods 

described earlier. The trust-value evolution is also presented.  

 

 

Figure 22. The Trust Values’ Evolution for the Average and Area-Integration Method. 

 

-100%

-50%

0%

50%

100%

-1.01

-0.51

-0.01

0.49

0.99

1.49

5
.1

2
5

.1

4
5

.1

6
5

.1

8
5

.1

1
0

5
.1

1
2

5
.1

1
4

5
.1

1
6

5
.1

1
8

5
.1

2
0

5
.1

2
2

5
.1

2
4

5
.1

2
6

5
.1

2
8

5
.1

3
0

5
.1

3
2

5
.1

3
4

5
.1

3
6

5
.1

3
8

5
.1

4
0

5
.1

4
2

5
.1

4
4

5
.1

4
6

5
.1

4
8

5
.1 D

ef
ec

ti
o

n
 P

er
ce

n
ta

ge

Tr
u

st
 V

la
u

e

Time

Trust calculated by area integration Trust calculation by mean

Defection presence calculated by area integration Defection presence calculation by mean



 

76 

The following principle can be concluded from this trust-value evolution: 

Principle: Trust converges faster or with an equal number of interactions for the 

defection-presence calculation process with area integration compared to the mean or 

average. 

Consider that there is at least one data point inside any window for which the defection 

percentage is equal to 100%. In such a scenario, trust converges faster or with an equal number 

of interactions for area integration when compared to the mean or average. However, if no 

defection amount is 100%, then the convergence time, or number of interactions, is identical for 

these two methods of window-based defection calculation. 

2.7.5.4. Trust-Value Evolution Comparisons for Different Window Sizes 

Figure 23 shows the trust-value evolution over time with two different window sizes: 5 

and 10. Defection-presence calculation with an average is applied with 10% as the threshold. 

 

 

Figure 23. Trust-Value Evolution Comparisons: Window Sizes 5 and 10. 
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The following observation is established from Figure 23: 

Principle: The number of interactions needed to detect untrustworthiness is proportional 

to the window size; i.e., trust converges to -1 faster or with an equal number of 

interactions for a smaller window. 

2.7.5.5. Trust-Value Evolution Comparisons for Different Thresholds 

Figure 24 shows the trust-value evolution over time for two different thresholds during 

the defection-presence calculation from windows. The window size is 5. The following 

observation is made from this result: 

Principle: The number of interactions needed to detect untrustworthiness is proportional 

to the threshold; i.e., trust converges to -1 faster for lower thresholds. 

 

 

Figure 24. Trust-Value Evolution Comparisons: 5% versus 25% Threshold. 

 

2.8. Recommended Applications for the Implemented Con-Man-Resistant Trust Algorithm 
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customer has less satisfaction. Again, the higher the SLA-violation magnitude, the lower the 

customer’s satisfaction. Such repetition is an example of the con behavior. This repetition of the 

SLA violation is essentially a cycle of bad and good interactions; this cycle is also 

interchangeable with instability for a cloud service’s QoS. The con-man-resistant trust algorithm 

is capable of detecting such a cycle. When the cloud-service provider does not resolve this issue, 

despite having revenue from the consumer, the bad part of the cycle keeps affecting the 

consumer. An example of this effect is financial loss. This cyclic behavior is a fraud from the 

cloud-service provider. The con-man-resistant trust algorithm can detect this fraud. 

Besides this fraud-cycle-detection application, the algorithm can be applied for other 

purposes. The algorithm can detect unstable resources for any service-oriented architecture. This 

recommended use is inspired from the first application of the con-man-resistant trust algorithm 

for utility computing, e.g., in a smart electrical grid [3]. This con-man trust model was applied in 

the smart electrical-grid domain to select stable nodes for a smart power-grid control system. 

“Stable” means a node where the power frequency does not vary beyond a limit. The less stable 

the node’s frequency is, the more it affects other components of the grid. This stability issue 

stresses the grid’s operation. Hence, detecting such a stability issue is crucial. The repetitive 

unstable behavior is comparable to the con man’s cyclic behavior of good and bad service. 

Hence, the con-man-resistant trust algorithm can detect this stability issue. The con-man-

resistant trust algorithm can be applied to determine the stability of cloud-computing resources 

following the smart-grid control system’s application of the algorithm. 

Table 11 lists the recommended applications for this con-man-resistant trust algorithm in 

the cloud-computing domain. The recommended applications are those utilizations where stable 

behavior for the cloud resource is desired. 
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Table 11. Applications for the Recommended Con-Man-Resistant Trust Algorithm. 

Possible 

Application 

Description 

Stability-concerned 
applications 

The con-man-resistant algorithm can be applied to determine the stability of cloud-computing resources. This 
application can replace the existing stability-calculation process for the cloud-computing system described in 

[111]. 

Cloud resource 
management 

The con-man trust model in cloud-resources stability can also be applied as an alternative method for cloud-
resource allocation and load-balancing applications [112][67]. Only trusted resources, i.e., stable resources, can be 

selected with SLA-violation frequency as the stability-measurement metric. 

Assessing fluctuant 
QoS behavior 

Repetitive SLA violations is an example of an unstable or fluctuating QoS. Hence, the con-man-resistant trust 
algorithm can be applied to measure the fluctuating QoS behavior of the cloud resources by replacing the static 

trust model with the fluctuating QoS and flexible SLA [11]. 

Cloud-service 
monitoring 

Any SLA-violation-based measure that can indicate possible customer dissatisfaction is desirable for the service 
providers. Moreover, any comprehensive number of parameters’ value representing the dissatisfaction  is further 

desirable. The con-man algorithm can catch the dissatisfaction dynamics with a smaller number of parameters. 

Also, the con-man-resistant trust algorithm can be applied to monitor the QoS for both real-time and historical 

data, and the algorithm can be embedded with a third-party monitor [113]. Hence, this con-man trust algorithm is 

of great interest to the cloud-service providers. 

Selecting con-man-
attack resistant 

resources 

To make a system con-man-attack resistant, resources with the maximum con-man-resistant trust value can be 
selected. This con-man algorithm can be used in the existing trust-management module [66], as a part of trust 

calculator inside a trust engine [114], and in a trust-aided evaluation module [115]. The algorithm can be utilized 

in the first phase of the trust-aided evaluation module: trust formulation. Although the trust-formulation unit 
computes trust values based on the direct trust values and reputation values, the con-man trust values can be used 

as a direct trust values. From the perspective of the con-man trust value, any service providers with a trust value of 

1 can be on a suggestion or recommendation list. 

 

2.9. Conclusion 

Deceptions in cyberspace are becoming quite diverse and unpredictable. Hence, it is 

important to predict and to model the deceptions. The developed model is useful for resisting the 

deception. A con-man attack in the cloud services is empirically studied in this chapter by 

modeling and observing the behavior from the model’s results and by applying a resistance 

algorithm to find the deception. The result shows how quickly the con-man behavior is identified 

with the con-man-resistant trust value. Additionally, the findings show how well the con-man-

resistant trust algorithm works with respect to another algorithm which aims to identify service-

quality issues. Like the cloud services, this deception can happen with other service types in 

cyberspace. The loss associated with the deception is significant. Hence, the work presented in 

this chapter contributes to cybersecurity by attempting to minimize the con deception in 

cyberspace. 
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CHAPTER 3. CON-MAN-RESISTANT TRUST ALGORITHM PROPERTIES STUDY 

3.1. Introduction 

The con-man-resistant trust algorithm’s properties are studied in this chapter. Certain 

principles and properties emerge from this study, and they serve as a guide for setting parameter 

values. Depending on the parameter values, the con-behavior-detection velocity varies. The 

velocity models rate of interactions which are necessary to detect the con behavior when the 

deceptive behavior prevails. A severe end user may choose a small number of interactions before 

labeling a con, whereas a more forgiving end user may choose a larger number of interactions. 

The specific configuration of the parameter values must be chosen for each domain. For 

example, for cyber-attack-prone cloud applications, a relatively small number of interactions to 

detect the con behavior might be the best choice, whereas for secondary cloud-storage capacity, a 

larger number of interactions may be appropriate. Hence, the study presented in this chapter 

contributes results for choosing the appropriate configurations of the con-man-resistant trust 

algorithm to proactively detect a con-man attack. 

An enhancement for this algorithm is proposed: the recursion depth utilized in the 

mathematical scheme for the algorithm is reduced. This adjustment can potentially reduce the lag 

of dependencies between the con-man-resistant trust algorithm’s parameters. 

The remainder of this chapter is organized as follows: Section 3.2 states the problem. 

Section 3.3 summarizes this chapter’s Contribution. Section 3.4 presents The Con-Man-Resistant 

Trust Algorithm’s Properties with Enhancement. In section 3.4, Sub-section 3.4.1 has the State 

Diagram of the Con-Man-Resistant Trust Algorithm. Sub-section 3.4.2 explains the algorithm’s 

properties in terms of its parameters. Sub-section 3.4.3 shows The Con-Man-Resistant Trust 

Algorithm’s Trust-Calculation Step Reduction which is a revision for the trust-updating scheme. 
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Sub-section 3.4.4 elaborates the Study of the Con-Man-Resistant Trust Algorithm’s Parameter 

Properties. Sub-section 3.4.5 explains the observed and evaluated principles from the Simulation 

Results. Finally, Section 3.5 concludes the chapter by summarizing the presented work. 

3.2. Problem Statement 

This chapter evaluated several con-man-resistant properties for the trust algorithm during 

the algorithm’s use in cyberspace [4]. The con-man-resistant trust algorithm utilizes a 

mathematical procedure to calculate trust value. The mathematical scheme’s properties depend 

upon the initial value for several parameters. Certain parameter configurations can result in 

improved efficiency for the algorithm. 

It is important to know the correct parameter configuration and how one parameter 

affects another one in order to use this algorithm effectively. Hence, it is necessary to evaluate 

the parameter values’ effect on each other by evaluating the dependency chain between the 

parameters. In the same way, understanding the effect of the parameter ratios, the decimal 

precision, and the exponential-function-based constants on trust evaluation and evolution is 

important.  

The properties of consecutive defection (a bad outcome from an end user’s perspective) 

without cooperation or the expected outcome can appear in service-oriented architecture’s 

services, e.g., in the cloud services. Similarly, consecutive cooperation (an expected outcome) 

without defection (a bad outcome) can prevail. Studying the con-man-resistant trust algorithm’s 

properties in the scenario is important. 

The core of this con-man-resistant trust algorithm is its mathematical procedure; the 

scheme defines a recursion that leads to one parameter’s dependency on its own or another 

parameter’s prior values. The depth of the recursion also controls the effectiveness of this 
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algorithm along with the parameter configuration. Hence, it is important to study this recursion 

and to evaluate the reduced calculation steps. 

3.3. Contribution 

This chapter’s contribution is the study of the con-man-resistant trust algorithm’s 

properties and the proposed enhancement. The result of this study is a set of principles that a 

con-man-resistant trust algorithm follows and a revised trust-updating scheme for this algorithm. 

These principles and the enhancement guide the con-man-resistant trust algorithm’s parameter 

configuration. The detection pace of the con behavior depends upon this configuration proving 

that these principles and the enhancement are promising. The con-man resistant trust algorithm is 

formally modeled by the interaction pattern presented in the following equation in terms of 

formal language (L) over the alphabet ∑ =  {𝐶, 𝐷} [116][117]. 

𝐿 = {(𝐷𝐶𝜃𝑖)
+
| 𝑖 = 1…𝑛, 𝜃𝑖є ℕ} 

The cycle here is defection and cooperation. There are i cycles. The amount of 

cooperation (C) is θi in each cycle i, followed by one defection (D).  

The implemented con-man-resistant trust algorithm in this chapter reveals that, if 𝜃′𝑖 >

 𝜃𝑖, i.e., the number of cooperation interactions between two defections is more than θi, then the 

con-man-resistant trust algorithm cannot detect this con behavior (Figure 25).  

 

 

Figure 25. Undetected Con Man. 

 

The algorithm has a trust value as output. If this trust is -1, then the cloud service is 

untrustworthy; if the trust is +1, then the service is trustworthy [4]. The consumer expects a zero 
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or positive trust value. Negative values are discouraged because they can converge towards -1, or 

untrustworthiness, faster than positive values. Trust convergence means that the trust value is 

moving toward either +1 or -1. Again, θi results from a fixed α0, β0 pair with certain number of 

interactions. The specific number of interactions implies that the results of prior work 

[1][2][3][4] were also for a certain number of interactions. However, in the previous research, no 

such fixed interaction numbers were reported. This chapter reveals that the α0, β0 pair and the α0-

to-β0 ratio affect the evolution of the trust value which is calculated using the con-man-resistant 

trust algorithm. Also, the trust-value calculation formula, called the “trust-updating scheme” in 

prior work, has dependencies on the con-man-resistant trust algorithm’s parameter value. The 

trust-updating scheme is also revised in this chapter. 

Trust-value convergence also depends upon the constant C. Prior research presented 

results for C = e-1. However, for C = e-2 … e-10, the results’ convergence times are different; this 

finding is shown in the chapter’s result section. Additionally, the decimal precision plays a big 

role in determining the trust value. Hence, the convergence time of the con-man-resistant trust 

algorithm towards -1 or +1 is also dependent on the latter two parameters along with the α0, β0 

pair. The chapter’s contribution is showing the influence of the α0, β0 pair; the α0 to β0 ratio; C; 

and the decimal precision for the con-man-resistant trust algorithm’s trust value along with an 

enhancement for the trust-updating scheme. 

3.4. The Con-Man-Resistant Trust Algorithm’s Properties with Enhancement 

3.4.1. State Diagram of the Con-Man-Resistant Trust Algorithm 

In this chapter, the con-man-resistant trust algorithm’s state diagram is derived. Figure 26 

illustrates the state diagram. The trustworthy node has a trust value of +1 for a cloud-service 

provider to be trusted and, hence, in a trustworthy state. The cooperation arc from the 
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trustworthy node to itself depicts that, when a service provider is trustworthy (+1), further 

cooperation or good service does not improve the trust value because +1 is the maximum 

trustworthy value. 

 

 

Figure 26. State Diagram of the Con-Man-Resistant Trust Algorithm. 

 

If defection or a lapse in service occurs, the trust value is diminished, and the service 

provider’s trust value becomes less than +1. When the trust value is less than 1, the service 

provider is neither trustworthy nor untrustworthy. Hence, another node labeled neither 

trustworthy nor untrustworthy indicates this service-provider state. When the trust value becomes 

less than 1, the service provider transitions from the trustworthy state into the “neither 

trustworthy nor untrustworthy state. This transition is represented by the arc’s defection from the 

trustworthy node to the neither trustworthy nor untrustworthy node. 

The neither trustworthy nor untrustworthy node presents the provider’s state where the 

service provider achieves a trust value between +1 and -1. The value explicitly indicates that the 

service provider’s state is neither trustworthy nor untrustworthy. This state is the start-state of the 
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state diagram for the con-man-resistant trust algorithm because, at the very beginning of a 

service evaluation, the cloud-service provider is neither trustworthy nor untrustworthy. In Figure 

26’s diagram, the start arrow explicitly illustrates that this node is the start state. When 

cooperation or good service continues, the trust value increases. This change in trust value is 

indicated by the cooperation arc from this node to itself. The increment results in the trust value 

reaching +1 at some point. When the trust value is +1, the service provider reaches the 

trustworthy state (transition to the trustworthy node). This transition is indicated by the 

cooperation arc from the current node to the trustworthy node. Again, when a defection or lapse 

in service continues in the current state (neither trustworthy nor untrustworthy), the trust value is 

diminished. This defection, or lapse in service, is indicated by the defection arc from the neither 

trustworthy nor untrustworthy node to itself. The defection or a lapse in service can result in a 

trust value of -1. When the -1 value is achieved, the service provider is no longer trustworthy, 

and the service provider is tagged as a “con man.” Hence, when the -1 value is achieved, a 

transition from the neither trustworthy nor untrustworthy state to a new state happens and is 

called the untrustworthy node. This transition is shown by the defection arc from the neither 

trustworthy nor untrustworthy node to the untrustworthy node.  

At the untrustworthy node, the service provider already has a trust value of -1. If further 

defection or service lapses happen, the trust value does not decrease because the trust has already 

reached the minimum value. This change in trust value is shown by the defection loop from the 

untrustworthy node to itself. Once the con man or the cloud-service provider becomes 

untrustworthy (trust value of -1), it cannot recover; i.e., “once untrustworthy, always is 

untrustworthy” or “once a con, always a con.” The value of α is (0, α0], and β is (-1, β0]. When 

defection happens for a significant amount of time, then α and β have their smallest values in the 
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diagram and are at the untrustworthy node. If cooperation or good service continues after the 

defections or service lapses, the α and β values never increase. Hence, the trust value never 

changes. This scenario of unchanged trust value explains why, once the trust value reaches -1 or 

the service provider is identified as untrustworthy, the provider can never become trustworthy. 

Hence, there is no arc from the untrustworthy node to either of the remaining nodes: neither 

trustworthy nor untrustworthy and trustworthy. The double circle of the node representation for 

the untrustworthy state explicitly shows that this node is the dead state. 

3.4.2. The Con-Man-Resistant Trust Algorithm’s Behavior with Respect to the α0 to β0 

Ratio, Continuous Cooperation, and Defection 

As another contribution to con-man-resistant trust algorithm, a study about the con-man 

algorithm’s behavior when continuous defection or cooperation happens is presented in the result 

section. The following principles present the findings. Principles 1 and 2 are combined into 

Principle 3. 

 Principle 1: When continuous defection happens without any cooperation, then θ is 

not dependent on α or α0.  

 Principle 2: When continuous cooperation happens without any defection, then θ is 

not dependent on β or β0.  

 Principle 3: The α-to-β ratio does not affect θ when consecutive defection happens 

without any cooperation or when consecutive cooperation happens without any 

defection. 

In the previous research about the con-man-resistant trust algorithm [1][2][3][4], the 

parameter which influenced the convergence time or the number of interactions necessary for 

trust to converge towards its extreme values (trustworthiness or untrustworthiness) was the pair 
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{α0, β0}. Hence, in this chapter, only one pair is used for most calculations. Again, following the 

previous works, the α0 to β0 ratios used in this chapter are 1 to 3 [3] and 1 to 10 [1]. A 

comparison of these ratios is presented in later sections. 

3.4.3. The Con-Man-Resistant Trust Algorithm’s Trust-Calculation Step Reduction 

This algorithm calculates trust recursively. The recursion depth is 4 in the latest work [3]; 

i.e., if the current trust is for interaction N with a defect, then it is dependent on parameters down 

to N-3. Consecutive defection is utilized to evaluate the defection parameter’s effect on the trust 

value (defection at N, N-1, N-2, and N-3). The recursion depth of 4 in Table 12 is reduced into 3 

in Table 13 and into 2 in Table 14. 

Table 12. Recursion Steps for the Con-Man-Defection Formula. 

Recursion Depth Recursion Steps for the Con-Man-Defection Formula 

 Interaction No. Defection Present Formula (Recursion) 

0 N Yes TN = TN-1 + βN-1 (1 + TN-1) 

1 N-1 Yes βN-1 = βN-2 – γN-2 (1 + βN-2) 

2 N-2 Yes γN-2 = C × TN-3 

3 N-3 Yes or No TN-3 = …. … … 

 

Table 13. Reduction of Recursion Steps for Con-Man-Defection Formula 

Recursion Depth Recursion Steps for the Con-Man-Defection Formula 

 Interaction No. Defection Present Formula (Recursion) 

0 N Yes TN = TN-1 + βN (1 + TN-1) 

βN = βN-1 – γN-1 (1 + βN-1) 

1 N-1 Yes γN-1 = C × TN-2 

2 N-2 Yes TN-2 = …. … … 

 

Table 14. Further Reduction of the Recursion Steps for the Con-Man-Defection Formula. 

Recursion Depth Recursion Steps for the Con-Man-Defection Formula 

 Interaction No. Defection Present Formula (Recursion) 

0 N Yes TN = TN-1 + βN (1 + TN-1) 

βN = βN-1 – γN-1 (1 + βN-1) 

1 N-1 Yes γN-1 = C × TN-1 

TN-1 = …. … … 
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3.4.4. Study of the Con-Man-Resistant Trust Algorithm’s Parameter Properties 

With prior con-man-trick related research, not all parameters that bias the con-man-

resistant trust value were studied [1][2][3][4]. These parameters are analyzed in this chapter. 

When the con man interacts with the victim’s expected behavior (expected service quality), then 

a parameter called the reward parameter (α) is incremented. This parameter keeps track of how 

well the con man (or the cloud-service provider) meets the expected behavior or service quality 

from the victim’s (the consumer) perspective. A high value for this parameter indicates a high 

quality for the interactions and vice versa. This parameter value represents the interactions’ 

positivity or the service quality’s goodness. Hence, this reward for cooperation (parameter α) is 

always a positive value. 

The more consecutive or repetitive the unexpected behavior of the con man (the cloud-

service provider) toward the victim is, the worse the quality of interactions (unexpected service 

quality). Hence, this negative behavior is tracked by a variable called the defection parameter (β) 

and is always a negative value. A higher value of |β| or, equivalently, a lower value of β 

represents a lower-quality interaction (unexpected service quality). 

When cooperation happens, the trust value is incremented by an amount dependent on α. 

Hence, the trust increment is dependent on how many high-quality interactions the victim or 

consumer experienced. Alternatively, how much of the expected service quality that the victim 

or consumer experienced is reflected by this trust increment.  

Similarly, when defection happens, the trust value is decreased by an amount which is 

dependent on β. This trust value diminish represents how much unexpected service quality the 

victim of con behavior or the consumer experienced. 
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When cooperation happens, α is increased. Therefore, if cooperation happens 

consecutively, α experiences a series of increments. This  consecutive increment is how a high α 

value represents a series of cooperation. 

When defection happens, α is reduced and |β| is increased or β is decreased. If defections 

happen consecutively, both α and β experience a series of declines. Hence, a low α value and a 

low β value individually indicate that there is a series of defections or unexpected bad service 

from the cloud-service provider.  

The con-man-resistant trust algorithm does not increment β when cooperation happens. 

Hence, any subsequent β value with respect to the interaction number is less than or equal to the 

previous β; i.e., βN ≤ βN-1 ≤ βN-2…. ≤ β0, where N represents the interaction number. This trend for 

β is explained for the first time in this chapter by using the following mathematical deductions. 

C is a constant with value e-1 < 1 [1][2][3][4]. The following equation represents a 

variable biasing the trust decrement upon defection. 

γD = C×|T| 

Here, T is the trust from a previous interaction. At any time, the con-man-resistant trust 

algorithm’s trust value is between +1 and -1. 

0 ≤ |T| ≤ 1 

These results give 

0 ≤ C ×|T| ≤ C.

Hence, 

≤γD≤C 

Again, 
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ββγD×β

If -1 < βN-1 < 0 then, 

0 < (1 + βN-1) < 1   (3).

Equations 1 and 3 give 

0 ≤ γDN-1 × (1 + βN-1) <1.

Hence from Equation 2, the following can be concluded: 

βN ≤βN-1 

Initially, α = α0 and β = β0 with α0≤|β0|. As time goes by, if the defection-cooperation 

cycle continues, then the α value decreases toward 0, and the β value decreases toward -1. The 

decrement results, at any time α0 ≤ α < 0 and -1 < β ≤ β0 or |β| ≥ |β0|. Hence, α є [0, α0) and β є (-

1, β0] (Figure 27). These α,  β values range result α ≤ |β| at any time. 

 

 

Figure 27. Convergence of α and β. 

 

The α is dependent upon β, and β is dependent upon γD. If the drop in trust needs to be 

slower than what is observed, then |β| needs to be lowered (e.g., β0 from -0.1 to -0.05). To slow 

down increasing trust, α needs to be slowed (e.g., α0 from 0.1 to 0.05). In summary, to achieve 

this lowering the pair {α0, β0} needs to be lowered. 

3.4.5. Simulation Results 

Chapter 2 presented the con-man-resistant trust algorithm’s application with cloud 

services in order to catch the cloud-service provider’s deception [4]. In that chapter, the cloud 
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services were simulated on top of the Cloudsim simulator, and the service’s quality was 

monitored against the simulated time from the Cloudsim simulator [30][31]. The con-man-

resistant trust algorithm for the cloud services evaluated trust by comparing the actual versus the 

promised service quality for the simulated cloud services. Poisson inter-arrival time (several λ) 

was used to simulate the repetition intervals of the cloud service’s quality degradation. This 

repetition simulated the con-man behavior in Chapter 2. 

The data from Chapter 2 are used in this chapter to study the con-man-resistant trust 

algorithm parameters’ behavior and the enhanced mathematical scheme’s effectiveness. The rest 

of this subsection gives results from the simulation.  

3.4.5.1. Effect of the Con-Man Algorithm Parameters’ Values on Each Other 

Defection repetition affects parameter values in this sequence: previous trust changes 

previous γ (Figure 28); previous γ changes current β; current β changes current trust; previous β 

and previous α (Figure 29) change current α. In Figure 28, trust at time t is influenced by the γD 

at time t-3 following the formula mentioned in previous con-man research [1][2][3][4]. 

 

 

Figure 28. γD Changes with Dropping Trust. 
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Figure 29. Trust Evolves with α and β Changes, Where α and β Change with the γD. 

 

3.4.5.2. The α0 to β0 Ratio’s Effect on Consecutive Defection or Consecutive Cooperation 

Figure 30 shows the proof of principle 1-3. Here, the service-level agreement (SLA) 

violation percentage represents the service quality’s deficiency. 

 

 

Figure 30. Consecutive Cooperation or Defection is Unaffected by β0 and α0, Respectively. 
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The following principles are evaluated with this figure: 

 Principle 1: Consecutive cooperation and the α0 to β0 ratio: the number of interactions 

needed for trust convergence toward +1; i.e., how fast trust converges does not 

depend upon β0 and, hence, does not depend upon the α0 to β0 ratio. 

 Principle 2: Consecutive defection and the α0 to β0 ratio: the number of interactions 

needed for trust convergence toward -1; i.e., how fast trust converges does not depend 

upon α0 and, hence, does not depend upon the α0 to β0 ratio. 

 Principle 3.1: Consecutive defection and |β0|: |β0| is inversely proportional to number 

of interactions needed for trust convergence toward -1; i.e., the higher |β0| is, the 

faster the convergence or the smaller the number of interactions. 

 Principle 3.2: Consecutive cooperation and α0: α0 is inversely proportional to the 

number of interactions needed for trust convergence toward +1; i.e., the higher α0 is, 

the faster the convergence or the smaller the number of interactions. 

3.4.5.3. Comparison of the α0 to β0 Ratio’s Values 

Figure 31 shows the comparison of two α0 to β0 ratios. 

  

 

Figure 31. Trust Comparisons for Two Different Parameter Ratios. 
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The following principles are evaluated with this figure: 

 When |β0|is kept the same, the number of interactions for trust convergence toward -1 

is proportional to α0. It means that, the lower the α0 is, the faster this convergence or 

the smaller the number of interactions. 

 When α0 is kept the same, the number of interactions for trust convergence toward -1 

is inversely proportional to |β0|. It means that, the higher the |β0|, the faster the 

convergence or the smaller the number of interactions. 

3.4.5.4. Trust-Convergence Interaction Number with Respect to e-1 

Figure 32 and Figure 33 show the number of interactions needed to catch the con man’s 

behavior with respect to different C values when bad outcomes or unexpected service quality 

repeats (for decimal precision = 5). 

 

 

Figure 32. Trust Evolution for Different C = e-1, e-2, e-5 Values. 
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decimal precision = 5, α0 = 0.05, and β0 = -0.5. Figure 33 shows the number of interactions for 10 

different C or exponent values as well as 10 different α0, β0. 

 

 

Figure 33. Trust-Convergence Interaction Number with Respect to e-n. 

 

The statement is evaluated with Figure 32 and Figure 33 is, the number of interactions 
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reduces the number of interactions needed to catch con behavior. The trust at time t in this 

reduced step is dependent on trust parameters from time t-1. 

 

 

Figure 34. Calculation-Step Reduction. 

 

3.4.5.6. The Number of Interactions Varies for Different Decimal Precision and Different λ 

Figure 35 shows the number of interactions need for trust convergence to -1 for two 

different decimal precisions and two different data series (simulated data following two Poisson 

inter-arrival times or two λ values). 

 

 

Figure 35. Number of Interactions for Two-Decimal Precision and Two Data Series. 
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Two principles are evaluated with Figure 35: 

 For a fixed data set, the number of trust-convergence interactions is proportional to 

the decimal precision. 

 For a fixed decimal precision when data follow a Poisson distribution, the number of 

trust-convergence interactions is proportional to λ. 

3.5. Conclusion 

A con-man trick can appear as a deception in cyberspace. A con-man-resistant trust 

algorithm can deal with this trick and can be used to find stable resources for service-oriented 

architecture, e.g., services in cyberspace. Hence, it is important to complete this algorithm by 

analyzing and studying its properties. This chapter empirically analyzed the properties of the 

con-man-resistant trust algorithm for cyberspace where the cloud services represented services 

from cyberspace. This property study completes the con-man-resistant trust algorithm. This 

completion is accomplished by extending the prior deception-detection procedure in cyberspace. 

The results presented in this chapter establish the correctness and effectiveness of the derived 

principles as well as the proposed enhancement of the mathematical scheme.   



 

98 

CHAPTER 4. PERFORMANCE-FOCUSED CON-MAN-RESISTANT TRUST 

ALGORITHM 

4.1. Introduction 

A con-man-resistant trust algorithm diminishes or enhances the trust value depending 

upon the defection-and-cooperation interaction patterns. The earlier works concerning the con-

man behavior’s trust did not vary the defection magnitude. However, the defection magnitude 

greatly affects a cloud-consumer victim. A defection is a performance degradation, and 

cooperation is the expected performance level for a cloud service. This performance-degradation 

magnitude varies; i.e., a performance fluctuation happens [118][119][120]. 

 For example, consider an expected completion time for a certain web-service call of 5 

milliseconds. This web service, hosted on the cloud, had a 6-millisecond response time once and 

a 1,000-millisecond response time another time. Although the response times degrade, or have a 

performance lapse, 1,000 milliseconds is worse than 6 milliseconds. Hence, the performance-

degradation magnitude needs to be considered when designing the con-man-resistant trust 

algorithm. 

The work in this chapter contributes by addressing this issue and proposes a 

performance-focused extension to the con-man-resistant trust algorithm’s trust-updating scheme. 

According to this extension, the trust-decrement amount also depends upon the performance 

degradation or defection amount. Analysis reveals that the relationship between the decrement 

amount of trust and performance-degradation magnitude follows an exponential growth. 

Depending upon the type of cloud service, this exponential growth function varies. This work 

applied three growth functions. The application domain, such as in the cyber-attack prone cloud 

services or power-aware cloud services, of the functions is also considered. The experimental 
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studies compare these three methods with the prior works’ method by using cloud-service data 

from previous work [4]. The results show that this modification is promising. Result analysis 

reveals the principles that this performance extension follows. The cloud-service simulation data 

from Chapter 1 are used to demonstrate the extension’s correctness and effectiveness. 

The remainder of this chapter is organized as follows: Section 4.2 describes the problem. 

Section 4.3 presents the chapter’s Contribution. Section 4.4 explains why the relationship 

between performance degradation and the corresponding penalty follows an exponential growth. 

Three exponential growth functions are used. These functions are utilized for defection or 

performance-degradation magnitude mapping in the punishment or penalty range. Section 4.5 

describes two exponential growth functions, discrete and compound interest law, for the con-

man-resistant trust algorithm. Section 6 describes the third exponential growth function, the 

logistic growth function. Section 4.7 illustrates the configuration of the simulator which was 

used for the simulation. Section 4.8 presents the Simulation Results that validated the correctness 

of the con-man-resistant trust algorithm’s extension. Section 4.9 concludes this chapter and 

suggests future research. 

4.2. Problem Statement 

A con-man trick appears in cyberspace as a deception around the cloud services from the 

service provider. The con-man-resistant trust algorithm continuously monitors the cloud 

service’s performance to detect this con-man behavior.  

A cloud service is identified as a con when a lapse in the service performance repeats by 

an amount that is greater than the consumer can accept. Like the repetition, performance with a 

degraded magnitude is another service-performance attribute that affects the consumer’s 

satisfaction. The problem statement includes the dynamism of the performance-degradation 
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magnitude into the con-man-resistant trust algorithm in such a way that the trust evolution also 

depends upon both the frequency and the magnitude of the cloud service’s performance 

degradation. 

4.3. Contribution 

The chapter’s contribution includes the cloud service’s performance-degradation 

magnitude being added to the con-man-resistant trust algorithm by following various models. 

The algorithm’s mathematical scheme tracks the performance degradation magnitude. This 

revision evaluates the con behavior in proportion to the performance degradation. This 

proportional effect follows an exponential growth.  

Three alternative exponential growth functions are evaluated. Each function is applicable 

for a specific cloud service. These functions are compared with each other, and the properties 

which affect the con-man-resistant trust algorithm are analyzed, resulting in a set of principles. 

Also, the relationship between performance-degradation magnitudes and the con behavior’s 

detection speed are unlocked, resulting in a principle. The result represents the correctness and 

effectiveness of the principles. 

4.4. Exponential Growth Function as Relationship Between Defection and Penalty 

Table 15 and Table 16 show trust-updating schemes from earlier con-man-resistant trust 

algorithm research [3][118][119].  

Table 15. Trust-Value Dependencies. 

T Cooperation Defection 

> 0 𝑇′ = 𝑇 + 𝛼(1 − 𝑇) 
𝑇′ =

𝑇 + β

1 −min (|𝑇|, |β|)
 

< 0 
𝑇′ =

𝑇 + α

1 −min (|𝑇|, |α|)
 

𝑇′ = 𝑇 + β(1 − 𝑇) 

= 0 𝛼 β 

 



 

101 

T represents the current interaction’s trust, and Tˊ presents an updated trust value when a 

defection or cooperation happens. It is clear from the equations in the both tables that trust 

parameters are dependent on the α, β, and C values.  

Table 16. Trust-Parameter Dependencies. 

Cooperation Defection 

α = min (α + γ𝐶  (α0 −  α), α0) α  = α × (1 − |β|) 

β  =  β  – γ𝐷 × (1 +  β ) 

γ𝐶  =  1 − |β| γ𝐷  =  C × |𝑇| 

 

Reward parameter α and punishment, or penalty, parameter β have initial values of α0 and 

β0, respectively. C (= e-1), α0, and β0 were defined by earlier work [1][2][3]. 

If defection happens, then the reward decreases (α decreases), and the punishment or 

penalty increases (β decreases or |β| increases). These increases (∆α) and decreases (∆β) are 

dependent on C (Table 16) along with their own previous values.  

As described earlier, the defection amount varies. The con-man-resistant trust diminish in 

this work is proposed to be proportionate to the defection amount. Formally, the greater the 

defection, the more the ∆β is reduced relative to ∆α. The increased punishment, or penalty, is 

achieved by mapping the performance degradation or defection amount into a punishment or 

penalty range: (0, C], where C is the constant function of mapping with value e-1.  

The performance-degradation or defection amount can be normalized into the range 

[0%,100%]. The assumed defection amounts are s1, s2, and s3 with corresponding punishments of 

Ps1, Ps2, and Ps2, respectively. Here, 0% <  s1 <  s2 <  s3 ≤  100%. When all other con-man-

resistant trust algorithm parameters are unchanged, then this incremental penalty means the 
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following relationship between the defection amount and the corresponding punishment amount, 

as illustrated in Figure 36. 

 0 ≤  Ps1 <  Ps2 <  Ps3 ≤  C , 

resulting in 0 ≤ |∆βs1|  <  |∆βs2|  <  |∆βs3|  ≤  C  

and 0 ≤ |∆ αs3|  <  |∆ αs2|  <  |∆ αs1|  ≤  C. 

 Ps2 −  Ps1 <  Ps3 −  Ps2 s, 

where s2 –  s1 ≤  s3 –  s2. 

 

 

Figure 36. Punishment Increases with a Defection-Amount Increment. 
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penalties is not new. The exponential growth function is presented as a suitable function for 

applications where an intense situation is penalized more than a mild situation, e.g., deceptive 

delays [122]. The server’s delayed response for a requested service is a defense mechanism 

against a denial-of-service attack. The delay amount can be calculated using the exponential 

function. The service’s expected response time, or processing time, can be used as input for the 

exponential function. The exponential function’s output is how delayed the response for the 

requested service is. A longer response time refers to a service that needs more computational 

resources. This request represents an intense situation, i.e., a high possibility for a denial-of-

service attack. 

Exponential growth is a common phenomenon in the cloud-computing domain. For 

example, the cloud-computing data centers’ growth follows exponential growth [123][124]. The 

disc storage amount per dollar has increased over time (from 1990 to 2012) [125]. The change 

follows exponential growth. The growth of data stored in Amazon storage service S3 follows 

exponential growth [126]. The electronic data traffic’s increment follows exponential growth 

(between 2010 and 2020) [127]. However, these cloud-computing-domain examples might be 

the result of computing-performance growth characteristics that follow exponential growth 

[128]. In this chapter, three exponential growth functions are used to accomplish this mapping. 

The growth functions are discrete compounding (discrete compound-interest law), continuous 

compounding (continuous compound-interest law), and logistic growth. 
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4.5. Compound-Interest Law 

4.5.1. Compound-Interest Law and Applications 

The compound-interest law is defined in [129] as follows: “the rate of change of some 

quantity is proportional to that quantity itself” (p. 353). This law is phenomenal in nature and has 

been studied for a long time. 

For example, the compound-interest law’s presence in nature was presented in 1919 

[129]. Examples are plant growth, the rate at which a hotter body loses heat or cools down, the 

relationship of air pressure and height above sea level (The higher the elevation is, the lower the 

air pressure is.), any chemical reaction’s velocity, and the growth of cucumbers.  

Another example is the relationship between temperature and a mature butterfly’s size. 

This relationship follows the compound-interest law [130]. Knowledge growth follows the 

compound-interest law; i.e., knowledge about the current time is a result of a fixed, proportionate 

increment of the previous knowledge [131]. 

Another example is evolutionary stability theory. This theory can interpret the 

compound-interest law in biology [132]. The plant germinability theories, e.g., seed-bank 

dynamics, follow the compound-interest law [132]. The number of British banks, known as the 

“bank population,” has declined since 1810. This decline follows a negative compound-interest 

law [133].  

Moore’s law is combined with the compound-interest law (Compound-Moore’s law) to 

calculate the depreciation of a cloud resource [134]. This depreciation cost is used to calculate 

the cloud-service provider’s investment in a duration. This calculation helps the cloud-service 

provider to make smart business decisions before entering a contract with the consumer. The 

duration can be divided into the number of years.  
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Every year, the cloud-service provider can buy a resource. Each subsequent year, the cost 

of buying a new resource with the same configuration declines due to the depreciation calculated 

by Compound-Moore’s law. However, the service provider may charge the same price to the 

consumer every year. Over time, the cloud-service provider’s investment declines, but revenue 

from the consumer remains the same. When the investment is deducted from the revenue for the 

investment’s duration, the net profit can be calculated. Therefore, if the investment amount and 

profit are known, the expected revenue can be calculated by the cloud-service provider. The 

provider can set the consumer’s price for a cloud service by splitting the expected revenue for the 

contract’s duration with the consumer. 

4.5.2. Compound-Interest Law for the Con-Man-Resistant Trust Algorithm 

The compound-interest law is suitable for specific cloud services, e.g., cyber-attack prone 

services. With such services, the greater the service-performance degradation, the lower the 

consumer’s trust. Hence, the compound-interest law is chosen to calculate the proposed 

proportional penalty. On the compound-interest law’s debit side, the longer the time left to pay 

the debt, the larger the balance to be paid is. Hence, the punishment is analogous to this debt side 

with the defection amount representing to the time that elapses while paying the compound 

interest. 

The defection magnitude can have a continuous value. Hence, a continuous compound-

interest law is applied to model the corresponding punishment. There are situations where the 

defection magnitude can represent intensity levels. Examples include the cloud-service 

performance’s degradation magnitudes. This magnitude can be a continuous value (e.g., 90% 

performance degradation) or discrete values (e.g., very high, high, medium, low, and very low 

performance degradation) [64].  
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To make the presented work adaptable for this latter case, a discrete compound-interest 

law is used. Moreover, to assign these discrete levels to a defection magnitude, different and 

disjoint ranges are assigned to the various levels. 

With the compound-interest law, interest is paid for each interest period [135]. The 

interest period is the time when the interest value changes. This period can be finite or 

infinitesimally small. When a finite interest period is used, the compound-interest law is called 

discrete compounding. When an infinitesimally small period is used, the compound-interest law 

is called continuous compounding. 

The compound-interest law is given as follows [135]: 

𝑃𝑡 = {
𝑃0 × 𝑒

𝑟𝑡, 𝑓𝑜𝑟 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑𝑖𝑛𝑔

𝑃0 × (1 + 𝑟)
𝑡, 𝑓𝑜𝑟 𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑𝑖𝑛𝑔

 

where 𝑃0 = starting balance 

 𝑃𝑡 = Balance needs to pay at year t 

 r = yearly interest rate 

 t = current time limit 

 T = Maximum time limit or number of years when the loan needs to 

pay. 

Because this function is exponential, the payments are incremental; i.e., for any time {t, 

t’} є (0, T] and t < t’, the respective payments Pt and Pt’ are related as Pt < Pt’. Hence,  
𝑃𝑡′

𝑃𝑡
 є (0, 1]. 

Pt represents the payment that needs to be made after t years and within T years. Hence, PT 

outputs the function’s maximum value. However, if we want to use the same formula for an 

exponential-growth-driven penalty calculation, then its output must be mapped into [𝑃0, C]. This 

mapping means that PT must be set to C. The compound-interest law’s core is an exponential 

growth function. This growth function is derived from the following mathematical deduction. 
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For discrete compounding, 

𝑃𝑡
𝑃𝑇
=
𝑃0 × (1 + 𝑟)

𝑡

𝑃0 × (1 + 𝑟)𝑇
 

results in 

𝑃𝑡
𝑃𝑇
= (1 + 𝑟)(𝑡−𝑇). 

For discrete compounding, 

𝑃𝑡
𝑃𝑇
=
𝑃0 × 𝑒

𝑟𝑡

𝑃0 × 𝑒𝑟𝑇
 

results in 

𝑃𝑡
𝑃𝑇
= 𝑒𝑟×(𝑡−𝑇). 

For discrete compounding, t corresponds to distinct defection levels. For example, if the 

performance-degradation magnitude’s intensity scale is considered, then the levels are very low, 

low, medium, high, and very high. Hence, t є {1, 2, 3, 4, 5}, with T = 5, and the intervals 

between levels is 
100%

𝑇
 (20% for T = 5). Level 0 always means no performance degradation; 

hence, it is not in the defection levels’ example. Also, a 100% performance degradation, or 

defection magnitude, is assigned a defection level of T. The discrete defection level is calculated 

as follows from performance-degradation or defection magnitude (0%, 100%]: 

Defection level

= {

⌈𝐷𝑒𝑓𝑒𝑐𝑡𝑖𝑜𝑛 𝑎𝑚𝑜𝑢𝑛𝑡 𝑖𝑛 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 ∈ (0,1] × 𝑁𝑢𝑚𝑏𝑒𝑟  𝑜𝑓 𝑑𝑒𝑓𝑒𝑐𝑡𝑖𝑜𝑛 𝑙𝑒𝑣𝑒𝑙𝑠⌉

⌈
𝑆𝐿𝐴 𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 ∈ (0,100] × 𝑁𝑢𝑚𝑏𝑒𝑟  𝑜𝑓 𝑑𝑒𝑓𝑒𝑐𝑡𝑖𝑜𝑛 𝑙𝑒𝑣𝑒𝑙𝑠

100
⌉

 

Similarly, for continuous compounding, t corresponds to a value from the range (0,100], 

with T = 100. Therefore, it is clear what the values for t, T, and 𝑃𝑇 can be. The other parameters 
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which need an explanation for this penalty analysis are r and 𝑃0. A formula for r can be derived 

by simplifying the compound-interest formula mentioned earlier. 

𝑟 =

{
 

 
1

𝑇
× ln

𝑃𝑇
𝑃0
, 𝑓𝑜𝑟 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑𝑖𝑛𝑔

𝑒

ln
𝑃𝑇
𝑃0
𝑇 − 1, 𝑓𝑜𝑟 𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑𝑖𝑛𝑔

 

Here, r is dependent on the PT-to-P0 ratio. Both r and P0 can be explained by defining this 

ratio because the PT value is given. This ratio, r, determines the exponential curve. Choosing this 

ratio is a challenge. Figure 37 and Figure 38 show punishment values with respect to 

performance-degradation or defection magnitudes for different ratios, i.e., 
𝑃𝑇

𝑃0
 values. If this ratio 

is 100, then for the compound interest during early t values or with a low performance-

degradation magnitude, ∆t, the corresponding ∆P is very low. ∆t is the change in time, defection 

magnitude, or performance-degradation magnitude; ∆P is the corresponding change in the 

penalty amount. A ratio value of 5 has almost linear growth, and a value of 10 is close to 

symmetrical. 

 

 

Figure 37. The Continuous Compound-Interest Formula, P0×ert, is Used with r and Pt = e-1 and t 

as the Defection Magnitude. 
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Figure 38. The Discrete Compound-Interest Formula, P0×(1 + r)t, is Used with r and PT = e-1 and 

t as the Defection Magnitude. 
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4.6.1. Logistic Growth Function and Its Applications 

The logistic function is an S-shaped function that slowly increases before a certain value 

and slowly decreases after that value. The logistic function’s growth is slower at the dependent 

variable’s initial and end values. The sigmoid function is a type of logistic function [136]. When 

A = B = C =1 in a logistic function’s formula, then the resulting function is a sigmoid function 

[137]. The output of the sigmoid function is € [0,1]. The sigmoid function is mentioned here 

because, in a cloud-computing domain, the sigmoid form of the logistic function is widely 
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The logistic growth function reflects a naturally occurring behavior. This function has 

numerous applications; the most popular applications are in statistics and neural networks. This 

function is the core of the logistic-regression methodology in statistics and has been used to map 
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application details for other fields are outside the scope of this chapter because only cloud-

computing applications are of interest in this chapter. 

In the cloud-computing domain, this logistic function is applied widely. For example, the 

relationship between the average response time experienced by all users of a cloud service and 

the number of users follows a sigmoid function [140]. The number of users (x-axis) and the 

number of request time outs (y-axis) also follow the sigmoid function [140]. 

The sigmoid function is applied to normalize a cloud service’s QoS values (e.g., into 

[0,1]) [141]. The sigmoid function is also applied as a utility function for the cloud services 

[142]. This sigmoid function represents the cloud consumer’s satisfaction based on the QoS and 

allocated resources. Inputs for this sigmoid function can be the cloud-service response time and 

the cost of that service. The same function is reused to define the cloud user’s behavior [82]. The 

consumer-satisfaction issue, i.e., dissatisfaction, is presented in this chapter by the penalty 

amount that the cloud-service provider pays for a QoS violation. Hence, the logistic function, the 

parent of the sigmoid function, is used in this chapter to represent the relationship between the 

cloud-service provider’s penalty and the QoS. 

In another earlier application, an algorithm was designed to make decisions during an 

automated web-based SLA negotiation [143]. The decision function was dynamically chosen 

from an exponential, polynomial, and sigmoid function. The sigmoid function reached the 

negotiation between the cloud consumer and service provider quicker than the other two 

functions. 

The sigmoid function is used in the cloud-computing domain to include the dynamism of 

an SLA violation [25]. The sigmoid function represents the relationship between the service 

provider’s penalty and the associated SLA violation. The penalty is dependent on the violation’s 
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duration. The sigmoid function is applied to reduce the cloud-service provider’s loss when the 

SLA violation is above a predefined limit. Another function, called SLA satisfaction, which was 

used in [25], restricts the upper limit of the service provider’s penalty. The sigmoid function 

applied in [25] is also used in [144] to represent the cloud-service provider’s penalty percentage 

with respect to the SLA violation ratio. 

The sigmoid function’s application in this chapter is inspired by the relationship between 

the SLA violation’s duration and the service provider’s penalty. The sigmoid function applied in 

[25], representing the penalty and SLA violation’s duration, is a time-series function because the 

penalty amount is dependent on the time length. The difference between the sigmoid function 

applied in [25] and this chapter’s sigmoid function is time length (or duration) and the function’s 

parameters. The SLA-violation magnitude or QoS degradation magnitude is used in this 

chapter’s sigmoid function instead of time length. The sigmoid function’s parameters are domain 

specific. Hence, the parameters, e.g., A, B, are different for this chapter’s sigmoid function. 

In this chapter, the logistic function’s application in the cloud service’s penalty mapping 

is inspired by the logistic function’s application described in [25], [122], and [142] . 

 First, an exponential function is suitable for applications where an intense situation is 

penalized more than a mild situation [122].  

 Second, a special kind of logistic function, i.e., sigmoid function, is used to represent 

the relationship between the cloud consumer’s satisfaction and the QoS [142].  

 Third, a logistic function, i.e., a sigmoid function, represents the SLA violation and 

the corresponding penalty for the service provider’s [25].  
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 Fourth, logistic function limits the upper bound of the service provider’s penalty[25]. 

By limiting the upper bound, this function reduces the cloud-service provider’s loss 

when the SLA violation is above a predefined limit. 

4.6.2. Logistic Growth Function for the Con-Man-Resistant Trust Algorithm 

In cloud-computing research, there is research dealing with the tradeoff between resource 

management and performance, e.g., between power consumption and performance 

[22][145][146]. These studies allow a certain performance-degradation magnitude to save 

energy. If the performance-degradation mapping into the penalty range follows a compound-

interest function for such applications, then the power-aware methods result in a high penalty for 

performance degradation. An asymptotic analysis can bound or limit the punishment curve’s 

high end.  

The logistic growth function’s symmetric, S-shaped curve can serve this purpose. In 

statistics, the logistic growth function has been applied to map real values into a bounded interval 

[138]. This function reflects a naturally occurring behavior. Hence, for situations where a certain 

performance-degradation magnitude is accepted (e.g., energy-aware cloud algorithms), the 

logistic growth function can be used to represent the relationship between performance-

degradation magnitude and cloud service provider’s penalty. 

In addition, this function has a legacy in the cloud-computing domain. This function was 

used with similar applications in the past. Examples are representing the relationship between an 

SLA violation and the corresponding service-provider penalty when limiting the penalties’ upper 

bound [25] as well as representing the relationship between consumer satisfaction and QoS 

[142]. 

The logistic growth function has the following form: 
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𝑃𝑡 =
𝐶

1 + 𝐴𝑒−𝐵×𝑡
 

Pt has a maximum possible value, C. This formula’s output is є (0, C). In this equation, 

when t = 0, the logistic growth function’s initial value needs to be the minimum possible penalty. 

𝑃0 = 
1

10# 𝑜𝑓 𝑑𝑒𝑐𝑖𝑚𝑎𝑙 𝑝𝑙𝑎𝑐𝑒
 =  

1

105
 ; [𝑓𝑜𝑟 5 𝑑𝑒𝑐𝑖𝑚𝑎𝑙 𝑝𝑙𝑎𝑐𝑒] 

However, for t = 0, 

1

10# 𝑜𝑓 𝑑𝑒𝑐𝑖𝑚𝑎𝑙 𝑝𝑙𝑎𝑐𝑒
= 𝑃0 =  

𝐶

1 + 𝐴𝑒0
= 

𝐶

1 + 𝐴
 

results in, 

𝐴 =  𝐶 × 10# 𝑜𝑓 𝑑𝑒𝑐𝑖𝑚𝑎𝑙 𝑝𝑙𝑎𝑐𝑒 − 1. 

For 5 decimal places and 𝐶 =  𝑒−1, 

𝐴 = 𝐶 × 105 − 1 = 36786.94.

B’s value would be positive because this logistic growth function always needs to be 

increasing. The logistic growth function’s inflection point is (
𝑙𝑛𝐴

𝐵
,
𝐶

2
). If we want X% punishment 

to be at 
𝐶

2
, then  

𝑙𝑛𝐴

𝐵
= 𝑋% =

𝑋

100
 

𝐵 = 
100

𝑋
× 𝑙𝑛𝐴. 

For 5 decimal points and when the performance-degradation or defection magnitude is 

50%, 

𝐵 =
100

50
× 𝑙𝑛𝐴 =  2 × 𝑙𝑛𝐴 = 21.02580. 

Figure 39 shows this logistic growth function. This function for the con-man-resistant 

trust algorithm does not result in exact upper- and lower-bound values; hence, its output is (0, C) 
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rather than [0, C]. Again, the initial t = 0 is never applied with the con-man algorithm because 

there is no penalty for 0% performance degradation or no defection. Hence, t є (0%, 100%]. 

 

 

Figure 39. Logistic Growth Function. 

 

The minimum possible value for t is given by following equation. 

𝑡𝑚𝑖𝑛 =  
1

10# 𝑜𝑓 𝑑𝑒𝑐𝑖𝑚𝑎𝑙 𝑝𝑙𝑎𝑐𝑒
 =  

1

105
 ; [𝑓𝑜𝑟 5 𝑑𝑒𝑐𝑖𝑚𝑎𝑙 𝑝𝑙𝑎𝑐𝑒𝑠] 

Figure 40 shows the utilized exponential growth function’s comparison. 

 

 

Figure 40. Comparison Between Two Compound-Interest Functions and the Logistic Growth 

Function for Mapping. 
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4.7. Simulation Configuration 

In prior chapters, two cloud services were simulated on top of the Cloudsim simulator 

[30][31]. These services are software as a service (SAAS) and infrastructure as a service (IAAS). 

The appearance of performance degradation follows Poisson arrivals or exponential inter-arrival 

time. The performance-degradation magnitude follows the normal distribution for IAAS. The 

con-man-resistant trust algorithm is applied to these data, monitoring the cloud-service 

providers’ con behavior [4]. Data from previous chapters are used for this research to evaluate 

the effectiveness of the con-man-resistant trust algorithm’s proposed extension in this chapter. 

4.8. Simulation Results 

4.8.1. Discrete Trust: Trust Values from the Same Defection-Level Range Are Identical 

Defection, or performance-degradation magnitudes, is mapped into defection levels when 

a discrete compound-interest formula is used as the mapping function. Figure 41 shows the 

design’s correctness.  

 

 

Figure 41. For the Same Defection-Magnitude Range, the Defection Level is Identical for Two 

Different Data Sets. 
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The figure shows that different defection magnitudes from a certain range correspond to a 

specific defection level. Here, the bar’s heights show a particular defection level. The figure also 

shows that, when defection magnitudes are not in the same range, they magnitudes falls into 

different defection levels. For example, at time 6.1 milliseconds, the defection magnitudes are 

mapped into two distinct defection levels. 

Figure 42 further shows this correctness. It shows that a defection magnitude of 1% 

versus 20% using the discrete compound-interest formula results in identical trust values. The 

trust values are identical because both 1% and 20% defections belong to same defection level of 

1. 

 

 

Figure 42. The Trust Values’ Evolution with the Discrete Compound-Interest Formula Are 

Identical for the Same Level. 
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4.8.2. Principle 1: The Number of Interactions is Inversely Proportional to the Service’s 

Performance-Degradation Magnitude or Defection for Non-Constant Mapping 

Figure 43 shows untrustworthiness for a service provider’s detection when defection or 

performance degradation happens consecutively. Untrustworthiness is detected when the trust 

value has its minimum value (-1).  Here, α0 = 0.01; β0 = -0.1; there are 5 decimal places; and the 

continuous compound-interest formula is applied. Principle 1 is derived from this figure: 

Principle 1: When non-constant mapping is used, the higher the performance degradation 

or defection magnitude (percentage) that appears consecutively, the faster the trust 

convergence is toward untrustworthiness (faster detection of con behavior) and vice 

versa.  

 

 

Figure 43. Con-Behavior Detection for Different Consecutive-Lapse Magnitudes. 

 

4.8.3. Principles 2 to 5 from Comparing the Performance-Degradation Magnitude’s 

Mapping Functions 

Figure 44 shows how quickly the con behavior is detected, i.e., how quickly the trust 

value converges to -1 (untrustworthiness) for 4 different defection-magnitude mapping functions 
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when a defection magnitude of 50% appears consecutively. The con-man resistant trust 

algorithm’s parameter configuration is decimal place = 5 and C = e−1. 

 

 

Figure 44. Trust-Convergence Comparison for Different Defection-Magnitude Mapping 

Functions When the Defections Appear Consecutively. 

 

Figure 45 shows a similar comparison with parameters α0 = 0.05, β0 = -0.5, decimal place 

= 5. Here, the con-man-attack scenario follows Poisson inter-arrival time (1/λ = 5). 

 

 

Figure 45. Con-Behavior Detection Time Comparison for Performance-Degradation Magnitude 

Mapping Functions. 
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The following principles are derived from Figure 44 and Figure 45: 

 Principle 2: The constant function to map the defection magnitude is the fastest for 

the con-behavior detection. The detection takes fewer interactions for the trust value 

to converge to -1. 

 Principle 3: The logistic function can detect the con behavior faster. 

 Principle 4: The discrete-interest law function detects the con behavior slowly. 

 Principle 5: The continuous-interest law function is the slowest for the con-behavior 

detection. 

4.9. Conclusion and Future Work 

In this chapter, a performance-degradation focused, con-man-resistant trust algorithm’s 

extension for cloud services is developed and evaluated. Three exponential growth functions are 

added as extensions. These growth functions’ properties are studied, and the functions are 

compared with each other concerning the con behavior’s detection. Each growth function is 

applicable for individual cloud services. In the studied compound-interest function, the 

performance-degradation magnitude resembles the time length for paying a debt. Hence, the 

corresponding interest mapped into the penalty value, and, therefore, into the con-behavior 

amount, is also a natural phenomenon. The logistic growth curve is used to bind the penalty 

curve’s high end and is applicable to certain research scenarios. Additionally, the degradation 

magnitude’s effect on trust convergence is presented as a principle. The principles aid in decision 

making when the con-man-resistant trust algorithm is configured for a specific domain. These 

derived principles are this chapter’s contribution. 

For future work, additional functions which reflect the relationship between the 

performance-degradation magnitude and the con-behavior amount can be introduced. Like 
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performance-degradation or defection-magnitude mapping in the punishment range, cooperation 

or the expected performance magnitude can be mapped in the reward range. For example, if a 

web service hosted in the cloud has a 3-millisecond expected response time, but the actual 

response time is 1 millisecond, then the service has good performance. This goodness amount (3 

milliseconds -1 millisecond = 2 millisecond) can be normalized and can then be mapped in the 

reward range. 
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CHAPTER 5. LEARNING ABILITY OF THE CON-MAN-RESISTANT TRUST 

ALGORITHM 

5.1. Introduction 

Recently, the global average cost incurred as a result of cybercrimes has dramatically 

increased. Hence, organizations are investing to deal with “cybercrimes.” This investment is 

more on “cybercrime-detection” activity. The machine-learning technologies for cybercrime 

detection are cost effective. The con-man attack is a deception in cyberspace, hence falling under 

the umbrella of cybercrime. The con-man-resistant trust algorithm detects this cybercrime. The 

machine-learning algorithm can be applied to tune the con-man-resistant trust algorithm in such 

a way that con-man-resistant trust algorithm gives its optimal performance. 

The con-man deception’s victim is the consumer. As a result, the algorithm that detects 

this deception needs to be consumer centric. The algorithm needs to learn the consumer’s 

perspective about the deception. A learning ability is added to the con-man-resistant trust 

algorithm in this chapter. This ability is added by empirically studying a machine-learning 

algorithm for the con-man-resistant trust algorithm to learns about a particular consumer’s 

perspective, about a service from cyberspace, from that the consumer’s historical data using that 

service. The study’s results are a set of principles that the con-man-resistant trust algorithm 

follows and a machine-learning algorithm that learns the con-man-resistant trust algorithm’s 

parameter settings for a particular consumer. Finding the parameter configuration for a particular 

consumer is both an algorithm-configuration and parameter-tuning problem. 

The assumption for this algorithm-configuration problem’s solution is that there is a 

collection of a particular cloud service’s time-series data (historical data) for a particular 

consumer. The consumer identified the data as either trustworthy or not trustworthy. Only 
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trustworthy data are selected from the data collection. The con-man-resistant algorithm is tuned 

for the trustworthy data. Hence, a specific parameter configuration is determined for all the 

trustworthy data. This tuning in a set of parameter configurations (for the collection of cloud-

service data). Only one configuration is chosen from this set of parameter configuration. The 

specific parameter configuration is determined for the trustworthy data by iteration. The con-

man-resistant algorithm’s performance is evaluated at each iteration. If the performance test fails, 

then the search space shrinks, and the iteration continues with the new, smaller search space. 

This iteration continues until the search space is the smallest that it can be. 

The remainder of this chapter is organized as follows: Section 5.2 describes the problem. 

Section 5.3 presents the Contribution of this chapter. Section 5.4 describes the Related Concepts, 

e.g., algorithm-configuration problem, parameter versus hyperparameter, machine-learning 

details, and cross-validation details. Section 5.5 is a summary of the overall learning process that 

uses a machine-learning algorithm. Section 5.6 presents the simulated cloud-resource 

configuration. Section 5.7 is the solution for sub problem 1, i.e., selecting the con-man-resistant 

trust algorithm’s bias parameter that needs tuning. Section 5.8 presents sub problem 2, i.e., 

analysis of the selected parameter’s properties. Section 5.9 describes sub problem, 3 i.e., training, 

testing, and applying the machine-learning algorithm. Section 5.2 elaborates the con-man-

resistant trust algorithm’s limitations in learning. Finally, Section 5.3 ends this chapter with 

suggested future work. 

5.2. Problem Statement 

The con-man-resistant trust algorithm monitors the cloud-service provider’s con-man-

attack deception. The con-man-attack deception is an oscillation of good and bad service. The 

deception-detection pace depends on the trust model’s parameter tuning, known as an algorithm 
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optimization problem. A specific consumer is susceptible to a certain pattern of oscillation. 

Hence, for different consumers, this optimal parameter setting varies. Manual adjustment of the 

parameters by trial and error during the algorithm’s optimization, with the goal of parameter 

tuning for a particular consumer, is time consuming. A machine-learning algorithm can learn this 

parameter configuration by reading the consumer’s historical-usage data for that cloud service. 

Hence, the problem statement is optimizing the con-man-resistant trust algorithm for a particular 

consumer. 

This problem can be divided into the following sub problems: 

 Sub Problem 1: Selecting the con-man-resistant trust algorithm parameters to be 

tuned. 

 Sub Problem 2: Studying the selected parameters’ properties. 

 Sub Problem 3: Training, testing, and applying the Machine Learning version of the 

con-man-resistant trust algorithm. 

5.3. Contribution 

The efficiency of the con-man-resistant trust algorithm depends on how well it can reflect 

the consumer’s perspective of trust for the service. The reflection further depends upon how 

aligned the algorithm’s parameters are with the consumer’s trust perspective. Hence, the 

efficiency of the con-man-resistant trust algorithm can be enhanced by tuning, either manually or 

automatically, its parameter values. This area of study is known as algorithm configuration. 

Manual parameter tuning means to follow an exhaustive trial-and-error process. Automatically 

means following some kind of machine-learning algorithm in a way that the algorithm can learn 

from experiences and can tune itself. However, there is no such technique for the con-man-
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resistant trust algorithm. The chapter’s goal is to optimize the con-man-resistant trust algorithm 

for a particular consumer.  

More elaborately, the goal is to propose a machine-learning algorithm where the con-

man-resistant trust algorithm learns about the consumer’s choice from that consumer’s historical 

use of any service. Upon learning, this con-man-resistant trust algorithm can classify real-time 

data as trustworthy or untrustworthy from that consumer’s perspective. In short, the learning 

enables this algorithm to discern the consumer’s perspective. 

The chapter’s contribution is to unlock additional properties for the con-man-resistant 

trust algorithm and to introduce the algorithm’s learning capability to optimize the algorithm for 

a particular consumer. 

5.4. Related Concepts 

5.4.1. Algorithm-Configuration Problem 

An algorithm-configuration or parameter-tuning problem is finding the set of parameters 

for which the algorithm provides its optimal output. Generally, the optimal performance for any 

algorithm is effective in terms of performance or cost. Hence, from the definition, there is no 

doubt why the tuning or configuration is desired. The algorithm-configuration, or parameter-

tuning, problem’s definitions from different authors are presented in Table 17. 

Table 17. Algorithm-Configuration, or Parameter-Tuning, Problem Definitions by Authors. 

Definition by Definition 

[147] “Given 

 An algorithm, A, with parameters, p1.... pk, that affect its behavior. 

 A space, C, of configurations (i.e., parameter settings), where each configuration, c ∈ C, specifies values for A’s 

parameters such that A’s behavior for a given problem instance is completely specified. 

 A set of problem instances, I. 

 A performance metric, m, that measures the performance of A on instance set I for a given configuration, c. 

Find a configuration, c ∗ ∈ C, that results in optimal performance of A on I according to metric m” (p. 38). 

[148] “Given an algorithm, a set of parameters for the algorithm, and a set of input data, find the parameter values under which the 

algorithm achieves the best-possible performance on the input data” (p. 269). 
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The algorithm-configuration problem can be defined in terms of set theory. According to 

[147], the algorithm’s configuration problem is finding a set of configurations such that the 

algorithm results in an optimal performance for certain inputs and for these configurations. The 

optimal performance is measured using a pre-defined metric. 

The con-man-resistant trust algorithm’s parameter-configuration problem can be defined 

in terms of the definition given by [147] which is presented in Table 18. According to [147], 

“algorithm configuration” and “parameter tuning” are interchangeable; hence in this dissertation, 

they both refer to the same concept. 

Table 18. Mapping the Con-Man-Resistant Trust Algorithm’s Terminologies with the 

Algorithm Configuration’s Definitions. 

Algorithm-Configuration Definition Terms Con-Man-Resistant Trust Algorithm’s Terms 

A is an algorithm where its parameters affect its behavior. These 
parameters are p1…. pK. 

A is the con-man-resistant trust algorithm. The α0-to-β0 ratio and α0, β0 
(Parameter C is excluded, and the reason is explained later in this 

chapter.) are the parameters which affect A’s behavior. 

C is the set of parameter configurations or settings. Algorithm 
A’s behavior, or output, is well known for each element of C, or 

for each such configuration. 

C is the combinations of the parameter values (α0-to-β0 ratio; α0, β0; and 
e-1), where each parameter belongs to its own range. 

I is the set of problem instances. I corresponds to the set of cloud-service-quality historical data for a 

certain service and for a certain consumer that is identified as trustworthy 

by the consumer. 

The performance of A on input data set I for an element of C, or 
for a configuration, is measured by the performance metric, m. 

m is trustworthiness. 

 

The algorithm configuration’s definition that is presented in [147] is restated in this 

dissertation as follows, for the con-man-resistant trust algorithm:  

The algorithm configuration problem, in terms of con man resistant trust algorithm, is 

finding the values of α0 to β0 ratio, α0, β0 in such a way that A outputs trustworthy for all 

elements of I i.e., for all trusted historical data. 

The algorithm configuration, is achievable in both a manual and an automated way. 

However, the automatic configuration, or tuning, is always preferred [149]. The automated 

iterative process to find an algorithm’s optimal parameter setting is described in [150]. At each 
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iteration, the algorithm’s performance is evaluated. If the evaluation process fails the 

performance test, then the iteration continues until the evaluation passes. The work presented in 

this chapter follows this concept of iteration where a parameter space, or value range, shrinks at 

each iteration until a range is found where the condition is met. For future work, the iterations 

can be parallelized [151]. One drawback with algorithm configuration is it needs numerous run 

of the algorithm [151]. Hence, this process is computationally very costly [151]. This cost 

sensitivity proves that, the smaller number of algorithm runs need for the con-man-resistant trust 

algorithm configuration, is expected. Table 19 presents automated algorithm-configuration 

examples where machine-learning algorithms are applied for automated algorithm configuration.  

Table 19. Automatic Algorithm-Configuration Examples. 

Algorithm-Configuration 

Example 

Description 

Optimizing MaltOptimizer MaltOptimizer is an implemented machine learning that is based on the parameter-tuning algorithm [152]. This 

learning algorithm can tune some specific parameters of an algorithm automatically in such a way that the 

tuned configurations result in optimal outputs for the algorithm. The MaltParser algorithm’s parameters are 
tuned using MaltOptimizer. The input to this MaltOptimizer is a training set, and the output is an optimized 

configuration of MaltParser. 

Tuning support-vector-
machine parameters 

An example of algorithm configuration is the use of an iterative algorithm to tune the pattern-recognition 
support vector machine’s (SVM’s) parameter [153]. The learning algorithm minimizes the SVM’s 

generalization error over specific parameters. This minimization is done by minimizing the error in the SVM 

classifier’s generalization ability for a set of particular SVM parameters, i.e., by minimizing the generalization 
error with a gradient-descent algorithm. 

Evolutionary computing as 

machine learning to tune 
parameters 

The choice function’s weights, or parameters, are tuned by genetic-algorithm and particle-swarm optimization 

[154]. Both algorithms train the choice function at the sampling phase where the search continues until a 
criterion, e.g., number of steps, is met. Hence, these algorithms are applied as machine-learning techniques to 

tune the choice function [155]. 

Population-based  
algorithms as machine 

learning to tune parameters 

Two machine-learning algorithms, random forest and genetic algorithm, are applied to build a model that is 
applied for automatic algorithm configuration [156]. This model works by predicting the parameter space’s 

high-performance regions. 

Bayesian optimization in 
parameter tuning 

 

Bayesian optimization is applied for automated parameter tuning of a Markov Chain Monte Carlo, without 
human intervention [149]. 

Machine-learning-based 
genetic algorithm and 

particle-swarm 

optimization 

A machine-learning-based genetic algorithm and particle-swarm optimization are applied to find the optimum 
model parameter for a probabilistic neural-network classifier [157].  

Random forests in 

algorithm configuration 

An algorithm called sequential model-based optimization is applied to solve algorithm-configuration problems 

[158]. This algorithm is based on a machine-learning technique called random forests.  

Supervised learning for 
algorithm configuration 

F-Race is a supervised learning technique that is applied for a highly parameterized algorithm’s configuration 
[159]. 

Machine learning to tune 

metaheuristics 

F-Race is applied to tune metaheuristics [160]. A machine-learning-based genetic algorithm is also applied to 

tune metaheuristics. 

 A genetic algorithm and simulated annealing are applied to tune the support vector machine’s parameter 

automatically [161].  
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5.4.2. Hyperparameter versus Parameter 

Model hyperparameter is an algorithm parameter that cannot be estimated from data, e.g., 

from the training phase of any learning algorithm. On the other hand, the model parameter can be 

estimated from data. The configuration of model parameter affects the algorithm’s efficiency and 

correctness. 

Table 19 presented the model parameter tuning, or optimization, using machine-learning 

algorithms. Similarly, machine-learning algorithms, e.g., support vector machine, can be applied 

to hyperparameter optimization[150][162][163]. In a con-man-resistant trust algorithm, the ratio 

of α0 to β0 is hyperparameter, where C, α0, and β0 are model parameters. 

5.4.3. Machine Learning 

The concept of machine learning was first introduced in 1959 [164]. This concept was 

first applied in the game of checkers to determine whether a machine-learning algorithm 

outperforms a human. An IBM 704 computer was used. The algorithm learned how to improve 

its game playing when rules and information about the game were given. 

Machine-learning algorithms can deal with black-box optimization problems [165]. The 

goal of machine learning is to add learning capability to an algorithm. An algorithm can count its 

experiences as its input and can then train itself. Machine-learning algorithms can unlock the 

dependencies between a system’s input and output efficiencies [93]. The training part of machine 

learning makes the algorithm adaptive to its computational environment because the algorithm is 

learning from the feedback. Machine-learning algorithms are applicable when human 

intervention to solve a problem is expensive [166]. These algorithms can discover the complex 

nature of the input data [93]. However, there are problem areas where machine-learning 
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algorithms should not be used, e.g., areas where a completely error-free outcome is expected 

[166]. 

The machine-learning algorithms that possess characteristics which are significantly 

different from other optimization problems are presented in [165]. The two characteristics 

mentioned are as follows: the algorithms can run in parallel, and the run time for an individual 

algorithm can vary. These two characteristics enable the algorithm to run with a large amount of 

computational resources, e.g., using the cloud resources. Deploying the algorithm into multiple 

cloud resources reduces the cost. In the reminder of this subsection, machine-learning algorithm 

types, machine-learning technology in cybercrime detection, and machine-learning applications 

are presented. 

5.4.3.1. Unsupervised Learning 

A machine-learning algorithm can be unsupervised. Unsupervised learning is described 

in [167] as “learning without a teacher” (p. 486). The goal of unsupervised learning is defined in 

[167] as inferring the characteristics of a given observation collection where the correct 

characteristics for each observation are not given. Unsupervised learning infers hidden properties 

that are common in a given collection of the unlabeled data. These data possess the same 

characteristics and are clustered together [32]. These clusters are the output for the learning 

process. There is no way to evaluate the accuracy of an unsupervised learning algorithm due to 

the lack of data labels. This learning method discovers the patterns, properties, or structures from 

the observations. Unsupervised learning can be applied in the classification process but in an 

indirect way. This classification process clusters the data items, or observations, based on the 

common properties. Afterword, this learning algorithm assigns class labels to these clusters. This 

classification is suggested in [168] to classify internet traffic data using the unsupervised 
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learning. This process is applied in the intrusion detection, e.g., in determining if a user belongs 

to an authorized users’ cluster or not [32]. 

Data mining is subfield of machine learning that deals with data analysis and falls under 

the umbrella of unsupervised learning. Pattern recognition is an example of an unsupervised-

learning and data-mining application. 

5.4.3.2. Supervised Learning 

A machine-learning algorithm can be supervised. There are two steps in supervised 

learning: training and testing [169]. The algorithm is trained to learn the items’ properties. The 

items can be considered as classes. The algorithm is then tested by to identify unknown items 

that have the features of the known items or classes. Hence, supervised learning is applied for 

classification purposes [170]. This learning ascertains the class labels from training and then 

maps these class labels to new items during the testing phase. Supervised machine-learning 

algorithms have been applied in classification problems to map known class labels into items 

where the labels are not known (for example, in internet traffic classification) [168][169]. A 

supervised learning algorithm with artificial neural networks is applied for anomaly detection in 

IAAS [171]. 

The supervised machine learning algorithms involve steps. In the first step, features of 

the internet traffic are defined (traffic-flow duration, packet lengths, etc.). In the second step, the 

machine-leaning algorithm is trained to co-relate these features with the existing, known traffic’s 

class labels. In the third step, the algorithm is applied to internet traffic where the classes are not 

known. The third step’s goal is to map the class labels from step 2 into step 3’s traffic. The 

classifier’s accuracy is evaluated by splitting the known, labeled data set into two: the training 
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and test data sets [168]. The model is built using the training data set, and the classification 

accuracy is measured using the test data set. 

5.4.3.3. Semi-Supervised Learning 

A machine-learning algorithm is semi-supervised when the input is a collection of labeled 

data with many unlabeled data [172]. This learning algorithm is a subclass of the supervised-

learning method. This method is useful when labeling the data is expensive. 

5.4.3.4. Reinforcement Learning 

Reinforcement learning is another machine-learning technique [173]. This learning tunes 

the underlying model’s actions in such a way to maximize a reward [174]. The difference 

between reinforcement learning and supervised learning is the pre-classified or pre-labeled input 

data. In terms of reinforcement learning, the difference is that the optimal output samples are not 

given [174]. 

5.4.3.5. Machine-Learning Technology in Cybercrime Detection 

The global average cost incurred by cybercrime has dramatically increased recently 

[175]. A study surveyed 254 global companies’ investment in cybersecurity [175]. The 

companies’ cost for cybercrime was $7.2 million in 2013, $7.6 million in 2014, $7.7 million in 

2015, $9.5 million in 2016, and $11.7 million in 2017. Hence, organizations are investing to deal 

with cybercrimes. Among the investments, the companies are spending more on cybercrime 

detection, e.g., 35% for detection activities during 2017. Hence, the cybercrime detection is of 

great importance. According to the study presented in [175], information-technology security 

layers have six components: network layer, application layer, data layer, human layer, physical 

layer, and host layer. The organizations’ investments for cybersecurity had the largest increase 

from 2015 to 2017 at the application layer (4% increment) and the data layer (4% increment). 
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Hence, the security technologies for these layers shall be given a great importance. The machine-

learning technologies for the cybercrime detection can reside on the application layer. The 

companies’ investment to employ security-enabled technologies versus the return of investment 

is also calculated in [175]. The arithmetic reveals that the organizations have not widely accepted 

automation, orchestration, and machine-learning technology as their security solution. Hence, 

this technology is ranked the lowest among the enterprise-wide deployment technologies for 

security (nine technologies represented in [175]).  

However, when the return on investment for a technology is calculated, the automation, 

orchestration, and machine-learning technology is ranked 3rd; i.e., the return on investment is 

17.1%. This return-on-investment cost is calculated by dividing the gains from the investment by 

the cost of the individual technologies’ application. The average return on the investment for all 

nine studied security technologies is 14.1%, which is lower than 17.1%. Hence, machine-

learning technology for cybercrime detection can be considered when the cost savings come into 

play. 

5.4.3.6. Machine-Learning Applications 

Machine-learning algorithms have been applied for algorithm optimization [156]; 

computer vision, e.g., in corner detection [176]; pattern recognition [153][174][177]; data mining 

[170][178][179]; distributed artificial intelligent systems or multi-agent systems [180]; 

classification [153][181][182][183]; and many other diverse areas. Table 20 presents examples 

of the machine-learning applications.  

Machine-learning classifiers have been successfully applied in security-concerned areas 

[184]. For example, game theory and machine-learning concepts, together, can take advantage of 

each other’s methods to detect malicious and fraudulent behavior [184]. 



 

132 

Table 20. Machine-Learning Applications. 

Machine-Learning 

Application 

Example 

Parallel random forest 
algorithm in classification 

A wide range of machine-learning algorithms are evaluated in [183] for classification. The authors concluded that 
the parallel random forest algorithm gave the best result.  

Cyber-intrusion detection Machine learning is applied in the cyber-intrusion-detection domain, e.g., unsupervised anomaly detection [32]. If 

a user belongs to an authorized-user cluster, then the user may not be an anomalous user. 

Hybrid support-vector-

machine-based decision 

tree 

The support vector machine is a widely used supervised machine-learning tool in the classification domain. A 

hybrid support-vector-machine-based decision tree is a fast version of the support vector machine used for 

classification [177]. 

Internet-traffic 

classification 

Two supervised machine-learning algorithms, Kiss and Abacus, are used as the behavior classifiers that 

categorize internet traffic based on the traffic’s features [185]. These algorithms are studied and compared, 

focusing on the memory consumption and the computational cost.  

Data mining Machine learning is used to extract information from data [170]. A machine-learning algorithm can be used as the 

tool or technique to discover, explain, and unlock existing patterns in data. The technical side of data mining is 

the machine learning techniques [170]. 

Multi-agent systems In multi-agent systems, machine learning is used to learn the agent’s behavior for different scenarios [180]. As a 

machine-learning application on multi-agent systems, robotic soccer is used as a test bed [180]. 

Cloud security and attack 
classification 

The machine-learning techniques are used in cloud security to monitor cyber-attacks on cloud resources [186]. 
The cyber-attack threats are identified by analyzing the virtual machine’s performance data, e.g., CPU speed, 

disc-space usage, network data, and memory usage. Predefined attack classes help to classify the attacks using 

machine learning. These learning techniques can be provided as a third-party tool and can help the consumer to 
avoid losses from cyber-attacks. Among the employed techniques, the support vector machine has the best 

performance on the top threats’ identification.   

Netflix recommendation 
system 

Netflix uses machine learning to predict a consumer’s choice [187]. This machine-learning-based 
recommendation system first matches the consumer features with already-known consumer’s feature. Based on 

known consumer choices, the technique predicts the current consumer’s choice. 

Walmart Walmart bought data storage from Hewlett Packard to store the purchase records for all its customers [187]. The 

company is using machine-learning tools and techniques to analyze those data in order to improve business 

efficiency. 

Supervised learning feed-

forward network 

Artificial neural networks, a machine-learning approach, are used for anomaly detection in IAAS with statistical 

pattern recognition [171]. A supervised learning algorithm is used with a feed-forward network. 

Machine-learning forensics Machine learning can be used for data mining. The algorithms can find interesting structures or information from 

large data sets. An example of such information mining can be risk discovery. The algorithms can analyze the 

pattern of criminal activities. This specific area of machine learning that deals with predicting criminal behavior 

and crimes is known as machine-learning forensics [188].  

Intrusion detection: Cloud-

based malware detection 

A machine-learning algorithm is used to classify malicious code and botnet traffic automatically. This machine-

learning algorithm has a significantly lower classification error during such intrusion detection with classification. 

This algorithm can be implemented in MapReduce and, hence, can run parallel to cloud resources, reducing cost. 
Therefore, the problem that this algorithm addressed is called cloud-based malware detection [189]. 

Botnet detection Botnet is malicious software or compromised client software that resides on a client’s computer. A machine-

learning algorithm is used to extract the features of both malicious and non-malicious clients during the training 
phase [190]. Then, this trained algorithm is used on real-time network data to detect malicious activities.  

Machine-learning 

vulnerability: Adversarial 
examples 

Adversarial examples are the inputs for which a machine-learning algorithm gives an incorrect result. An attacker 

can replace the existing machine-learning model with a substitute model. The substitute model works perfectly as 
the original machine-learning algorithm for all inputs except the adversarial examples. Therefore, if a machine-

learning algorithm is replaced with this malicious entity, then the algorithm can incur losses. The effect of a 

malicious substitute model, or entity, is demonstrated using the commercial machine-learning classifiers from 
Amazon and Google. 

Malicious-code 

identification 

Decision tree, naïve bayes, bayesian network, and artificial neural networks are used to learn the behavioral 

patterns of malicious code samples [139]. The learned algorithm can be used to identify malicious codes. 

Modeling the nonlinear 

behavior of a cloud 

resource 

Machine-learning techniques can be used to model the nonlinear behavior of a cloud resource, e.g., cloud data 

center, when trained with real-life workload traces [93]. The trace used was two years of records produced by 

DJM software that ran at the Los Alamos National Lab. Each job that ran on the lab’s servers had 18 features; 6 
features were used by the machine-learning algorithm: average CPU time, allocated processor number, memory 

usage, the job’s run time, the job’s wait time, and queue number. The wait time is considered as the latency and 

represented the disk’s read-write wait time and network latency.  

Big-data classification 

problem 

The accumulated collection of internet traffic data became a big-data problem [191]. Hence, introducing 

machine-learning techniques to classify these traffic data with the goal of network-intrusion prediction is 

essentially a big-data classification problem. This prediction problem was resolved with big-data classification 
and by integrating multiple technologies together, e.g., Hadoop distributed file systems, cloud technologies, the 

representation learning technique, and support vector machines.  
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The goal of the work presented in this dissertation is to identify given time-series data as 

trustworthy or not trustworthy by using the concepts of both game theory and machine learning. 

The assumption is that the consumer of a specific cloud service classifies the service as 

trustworthy or not depending upon their satisfaction about the service. As described before, the 

con-man-resistant trust algorithm uses game theory to identify a cloud-service provider’s 

oscillating service-performance issue.  

The goal of the machine-learning algorithm implemented in this chapter is to find a 

parameter setting for the con-man resistant-trust algorithm so that the parameter value best 

describes these classes (form the consumer’s given trustworthy and untrustworthy data). This 

parameter value reflects the consumer’s perspective of trustworthy and not trustworthy. Hence, 

this problem is a classification problem. The algorithm is a supervised machine-learning 

algorithm because an algorithm needs to train itself with pre-classified data (trustworthy and 

non-trustworthy) to meet the goal. This supervised machine-learning algorithm trains itself by 

learning the con-man-resistant trust algorithm’s parameter value and then uses this parameter 

setting to classify a cloud service’s execution as trustworthy or not. 

5.4.4. Cross-Validation for the Accuracy-Estimation Method and Parameter Tuning 

A model is accurate when its output is correct. A model’s accuracy estimation validates 

the model’s correctness. A model can have the goal of classifying data. Example classes can be 

good or bad, trustable or not trustable, etc. The accuracy estimation is often used to validate such 

binary classifiers. The accuracy-estimation methods split the data set into two mutually exclusive 

sets: the training set and the test set. A classifier learns from the training set, and the accuracy is 

tested with this trained classifier’s application on the test data set. According to [179], a 

classification algorithm trains itself from the training data set; hence, the training data set has 
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indirect effects on the accuracy estimation. The test data set is used to see how well the trained 

algorithm is performing. The test data set directly affects the measurement for accuracy 

estimation because the measurement is taken against the test data set.  

The importance of an accuracy estimation for a supervised learning algorithm with goals 

of both estimating the classification accuracy and selecting a classifier from a classifier list is 

described in [192]. The two most widely accepted methods to assess classifier accuracy are 

cross-validation and bootstraping [192]. Additional accuracy estimation methods, presented in 

[192], are holdout and random subsampling.  For real-world data sets, cross-validation, e.g., 

tenfold cross-validation, provides the best output when the goal is to choose an accuracy-

estimation method with low bias and low variance [192]. The leave-one-out method is very 

expensive with respect to the cross-validation, although it is not biased [161]. 

The repeated versions of cross-validation and bootstrapping are also compared in [193]. 

However, the result of the comparison is the opposite of the result presented in [192] because the 

findings presented in [193] consider a larger sample size. The cross-validation estimator 

outperforms with a smaller sample size; for a larger sample size, the bootstrapping method 

performs better.  

The characteristics of the cross-validation and bootstrapping methods are also studied in 

[194]. Bootstrapping is biased for a small sample size. Both algorithms behave like an 

asymptotically optimal algorithm with a very large data size. Both techniques have a low mean-

square error. 

In a holdout method, two-thirds of the data are used for the training and one-third of the 

data for the testing. The method’s issue is its high variance [192]. Dividing the set into two has a 

high performance bias for this method [192]. Another issue with this method is that the one-third 
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of the data used during the test is a large number in real life, making the method inefficient 

[192]. Random subsampling is a form of the holdout method. This method is repeated a fixed 

number of times. The estimated accuracy is the mean of the accuracy estimate from each run. 

This estimator is good for a large sample size. The issue with this method is the bias. If a class is 

overrepresented by the training partition, then the other class suffers a misclassification [192]. 

In the k-fold cross-validation method, the data set is divided into k mutually exclusive 

subsets. The training and test phases are run k times. At each time, one particular subset is used 

as the test set, and the rest (k-1) of the subsets are the training set. This process is repeated until 

all k subsets are used as the test set. The k-fold cross-validation provides an accurate 

performance estimate [179]. The goal of any k-fold cross-validation is the replicability of results. 

Replicability is a measure of stability, meaning how consistent the statistical result is for samples 

from the same population [195]. The goal of the work presented in this dissertation is to validate 

a supervised learning-based binary-classification method to give the data trustworthy and not 

trustworthy labels. Both the consistency and the correctness of this binary classification are of 

equal importance. The k-fold cross-validation can also be used successfully in the performance 

estimation of a supervised learning algorithm [179]. 

For the cross-validation, k = 10 is a widely accepted value for the accuracy estimator 

[193]. This estimator is comparatively unbiased and has a high variance with a smaller k [193]. 

A higher k value results with a smaller test data set size, reducing the bias [194].  

In a stratified, k-fold cross-validation, each fold contains the same proportion of every 

class label (for the classification problem). Each fold needs to be a good representation of the 

given data set. Rearranging the data can enable this property [179]. For a binary classification, 

50% of the data from each fold shall represent one class label [179]. Hence, in the binary 
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classification presented in this dissertation, the trustworthy class label represents 50% of the 

data. 

Another special cross-validation case is the leave-one-out method where one subset is 

used as the test data and rest as the training data [194]. This process is repeated for N - 1 subsets, 

where N is the number of observations. This method is computationally expensive because it 

needs to run N times. When k = N, the k-fold cross-validation is a leave-one-out method. 

In the bootstrap method, data are randomly selected from the data set N times with 

replacement. Replacement means that the same data can be selected more than once because the 

already-selected data are still in the selection pool. Bootstrapping has a smaller standard 

deviation, i.e., a low variance, for a small sample size [193]. However, the bootstrap method is 

computationally expensive with respect to cross-validation [193]. Bootstraping can also be used 

for testing the results’ replicability, but it has some other drawbacks with respect to cross-

validation. The 0.632 bootstrap is biased to a small sample size compared to the cross-validation 

method [194]. The training set is two-thirds, or 0.632, of the total data in the 0.632 bootstrap. 

The work presented in this chapter has a small sample size; therefore, the 0.632 bootstrap 

is not a good choice with respect to the cross-validation. The cross-validation has three 

applications: performance estimation, model selection, and parameter tuning [179]. Cross-

validation is used in this chapter to estimate the accuracy of the binary classifier. 

The cross-validation application is recommended in [179] for the parameter-tuning 

application. The authors mentioned that, when the labeled, or pre-classified, data are limited, 

then cross-validation is the best option. They recommended splitting the training data from the 

supervised learning algorithm to perform the cross-validation. A part of the supervised learning 

algorithm’s training data needs to be the training data for the cross-validation, and the rest shall 
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be the test data. The split of the supervised learning algorithm’s training data is repeated k-1 

times because the k-fold cross-validation is used. The classifier in this dissertation work is a 

supervised learning algorithm that is trained using labeled data. The training data are split to 

apply the k-fold cross-validation. 

5.5. Learning-Process Summary 

There is no previous work on the con-man trust domain that incorporated historical data. 

All previous studies focused on real-time data. However, historical data are utilized in this 

chapter. The idea of trust generation from historical records came from [11]. However, the 

learning idea is empirical. Trust from real-time data 𝐴𝑓(𝑃𝑖 , 𝑃𝑗) can be addressed as a short-term 

trust factor, whereas a long-term trust factor is trust from historical data, 𝐻𝑓(𝑃𝑖, 𝑃𝑗) [11]. 

According to the terms of Xiaoyong’s work, this long-term trust is a learned behavior from 

historical data using the machine-learning algorithm [60]. Applying this machine-learning 

algorithm on simulated, real-time data is short-term trust factor. Hence, the application of 

machine learning can follow Xiaoyong’s notation, where Pi is the consumer and Pj is the service 

provider. 

𝐷 = (𝐻𝑓(𝑃𝑖, 𝑃𝑗), 𝐴𝑓(𝑃𝑖, 𝑃𝑗) ) 

The con-man-resistant trust algorithm’s parameter values are tuned from this learning. 

These parameter settings are fed into the con-man-resistant trust algorithm (as the initial 

parameters) to monitor unstable cloud services in real time. 

5.6. Simulation Configuration 

Supervised learning is used in this empirical study. The learning needs pre-classified data 

[196]. Therefore, the assumption is that a collection of historical records is identified as either 
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trustworthy or untrustworthy. Rather than choosing a mix of both types, only the trustworthy 

records are chosen. 

For one preselected con-man algorithm parameter, β0, a certain β0 value identifies one 

individual record as trustworthy. The maximum β0 (minimum |β0|) is chosen from these β0s. This 

β0 is used to determine whether the real-time data for that service provider and consumer pair (Pi, 

Pj) are trustworthy. 

The simulated historical records contain 144 fixed-interval simulation times, from 0.1 

millisecond to 143.1 milliseconds. The Poisson inter-arrival time used is 5 milliseconds, and the 

number of requests at each Poisson time is between 5 and 10 (normal distribution). This number 

of 5 to 10 is determined from the trial-and-error process. For example, with a number between 0 

and 5 (normal distribution), the resource shortage does not happen, resulting in no QoS 

degradation. The QoS violation happens for more than two consecutive data when the number is 

between 10 and 15. 

5.7. Sub Problem 1: Selecting Bias Parameters to be Tuned 

The con-man-resistant trust algorithm’s trust evolution over time depends upon certain 

algorithm parameters which were described, in detail, with their properties in previous chapters. 

A particular amount for these parameters is chosen in this chapter, and then, the parameters are 

tuned using a machine-learning algorithm. In this subsection, a particular parameter is 

determined.  

Table 21 and Table 22 are recap from previous chapters. Table 21 shows the trust-value 

dependencies, and Table 22 is the trust-parameter dependencies. Each time a consumer 

encounters a cloud service, the current trust value, Tˊ, is updated (Table 21). In all the cases for 

Table 21, the current trust depends upon previous trust, T, and parameters 𝛼 and 𝛽. 
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Table 21. Trust-Value Dependencies. 

T Cooperation Defection 

> 0 𝑇′ = 𝑇 + 𝛼(1 − 𝑇) 
𝑇′ =

𝑇 + 𝛽

1 −𝑚𝑖𝑛 (|𝑇|, |𝛽|)
 

< 0 
𝑇′ =

𝑇 + 𝛼

1 −𝑚𝑖𝑛 (|𝑇|, |𝛼|)
 

𝑇′ = 𝑇 + 𝛽(1 − 𝑇) 

= 0 𝑇′ = 𝛼 𝑇′ = β 

 

The α and β values change each time the consumer receives the cloud service. Table 22 

illustrates that this change depends upon initial values α0 and β0; previous α, β, and C; and 

previous trust value, T. 

Table 22. Trust-Parameter Dependencies. 

Cooperation Defection 

α′ = min (α + γ𝐶  (α0 −  α),  α0) α′  = α × (1 − |β|) 

β′  =  β
  
–  γ𝐷 × (1 +  β ) 

γ′𝐶  =  1 − |β| γ′𝐷 =  C × |𝑇| 

 

The constants here are initial values α0, β0, and C. In previous con-man-resistant trust 

algorithm work, the ratio between 𝛼0 and 𝛽0, with a value of C, is recommended [1][2]. Also, 

these recommended values are successfully utilized in the con-man-resistant trust algorithm’s 

application for stable node selection in a smart electrical grid [3]. 

Hence, the ratio and C values are excluded. The only parameters left are 𝛼0 and 𝛽0. The 

𝛼0s and 𝛽0s are derivable from each other because their ratio is defined or recommended. Either 

of these values can be considered as the selected variable to be tuned. In this chapter, 𝛽0 is 

selected as the parameter to be tuned using the machine-learning algorithm. Therefore, the 

selection process is complete. 
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There are multiple values for the 𝛼0-to-𝛽0 ratio recommended by previous work. Multiple 

C values are recommended in a previous chapter of this dissertation [4]. It can be argued that 

there is a relationship between the consumer type and the recommended parameter values. In this 

chapter, it is hypothesized that there can be two consumer categories: flexible and conservative 

(not flexible).  

For the flexible consumer type, the consumer allows frequent QoS degradation. This 

consumer will identify the frequent QoS degradation-appearing data as trustworthy. The SAAS 

data in the presented work, with a very small inter-arrival time of QoS degradation appearance 

(λ, e.g., 3, 4, 5, 6, 7) are an example. The consumer has more trust reward for cooperation (good 

service) and less trust punishment for the defection (bad service). Hence, to learn from or to train 

the machine-learning algorithm with this consumer’s identified trustworthy data, the parameter 

values can be flexible. For example, C = 𝑒−𝑛, with n more than 1 and the α0-to-β0 ratio as 1:3 

(indicates a smaller punishment value with respect to the reward value). This scenario is tested 

by using different values for these parameters. 

A conservative consumer can be defined as one who does not like frequent QoS 

degradation. The QoS degradation’s appearance in the data needs to be sparse. This property of 

the empirical-analysis data used in this work is presented by a large inter-arrival time (e.g., λ = 

50, 60, 70, etc.) of QoS degradation. This consumer has more trust punishment for the defection 

than trust reward for cooperation. Hence, to train the machine-learning algorithm using this 

consumer’s identified trustworthy data, the parameter values need to be conservative. The 

conservative values imply indicates a larger punishment value for a defection with respect to the 

reward value for cooperation. The conservative values are C = 𝑒−1 and the α0-to-β0 ratio as 1:10. 

This scenario is also tested by utilizing different values for the parameters.  
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5.8. Sub Problem 2: Selected Parameter’s Property Study 

The selection of a particular parameter for the con-man-resistant trust algorithm is 

presented in the previous subsection. The parameter’s characteristics and the learning process for 

this parameter value are studied in this section. The assumption is that there is a list of data 

which were classified by the consumer as trustworthy and not trustworthy. Trustworthy means 

that the data did not have con behavior (from the consumer’s perspective). In this chapter, the 

relationship between the selected parameter values for trustworthy and not-trustworthy data is 

unlocked. For certain data, if the 𝛽0 for which these data are identified as trustworthy can be 

derived, then the 𝛽0 for which these data are not trustworthy can also be obtained with the earlier 

𝛽0. In the second step, the algorithm to find such 𝛽0 for certain data identified as trustworthy is 

described. 

5.8.1. Selecting Historically Trustworthy and Untrustworthy Data 

In the con-man-resistant trust algorithm, for a continuous defection-cooperation cycle, 

higher β0 values yield an earlier convergence rate of trust toward -1 (untrustworthy value). This 

relationship between β0 values and convergence rate implies that, if a record is untrustworthy, 

there must be a β0 for which the con-man trust model identifies the record as trustworthy. This 

relationship also implies that, if the record is trustworthy, there must be a β0' for which the con-

man trust model identifies this record as untrustworthy. Hence, the first two principles are 

equivalent. They result in the third principle. 

 Principle 1: If the historical record is identified as trustworthy, there is a 𝛽0
′ , 

maximum trustworthy β0, for which any β0  ≤  𝛽0
′  
yields
→    Trustworthy with any𝛽0

" >

 𝛽0
′  
yields
→    Untrustworthy. 
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 Principle 2: If the historical record is identified as untrustworthy, there is a 𝛽0
′ , 

minimum untrustworthy β0, for which any 𝛽0
" ≥ 𝛽0

′  
yields
→    Untrustworthy with 

any β0 < 𝛽0
′  
yields
→    Trustworthy. 

 Principle 3: For any data with fixed length, there is a 𝛽0
′  for which any 𝛽0

" ≥ 𝛽0
′  

yields
→    Untrustworthy with any β0 < 𝛽0

′  
yields
→    Trustworthy. The difference between 

𝛽0
′  and the maximum value of such β0s and is 10−𝑑𝑒𝑐𝑖𝑚𝑎𝑙 𝑝𝑙𝑎𝑐𝑒. 

 Summary of principles 1-3: In short, 𝑎𝑏𝑜𝑣𝑒 𝛽0
′  
yields
→    Untrustworthy and 𝑏𝑒𝑙𝑜𝑤 𝛽0

′  

yields
→    Trustworthy. 

The above principle 3 is a conclusion from this project’s results. The difference between 

β0and 𝛽0
′  , which are representative of the trustworthy and untrustworthy parameter values, 

respectively, in this project, is always at the least significant digit (for any constant decimal place 

throughout the project). This difference is always 10−𝑑𝑒𝑐𝑖𝑚𝑎𝑙 𝑝𝑙𝑎𝑐𝑒. Figure 46 shows this 

scenario. 

 

 

Figure 46. Maximum Trustworthy β0 and Minimum Untrustworthy β0. 
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For example, for 5 decimal places, if a trustworthy β0 = -0.49999, then the untrustworthy 

β0 = -0.50000. As another example, for a trustworthy β0 = -0.27278, any βˊ0 = - 0.4 > β0 results in 

trust converging to -1 or untrustworthiness. Similarly, for an untrustworthy β0 = -0.27278 (trust 

converges to -1 for this β0.), any βˊ0 = - 0.005 < β0 results in trustworthiness (trust d not converge 

to -1).  

It is clear that the trustworthy parameter can be derived from the untrustworthy one and 

vice versa. Hence, considering only the trustworthy records or only the untrustworthy records, 

rather than a mix of them, produces interchangeable results. Only the trustworthy records are 

chosen in this project’s training phase to find β0 value(s) for a certain service provider. 

5.8.2. Finding Trustworthy β0 

The β0 can take a value from [−(1 − 10−decimal place, −10−decimal place)] for any one 

historical record. For example, for 5 decimal places, β0 є [- 0.99999, - 0.00001]. The maximum 

number of possible distinct values that β0 can take in this β0 range is 𝑚 = 10decimal place −  2. 

The developed algorithm to find trustworthy 𝛽0, i.e., the maximum 𝛽0 for which the historical 

record is trustworthy, has a complexity of 𝜃(⌈log2𝑚⌉). The 𝜃 is 17 for decimal place = 5. 

Improvement can be made in future work by dividing the problem to find trustworthy 𝛽0 into 10 

sub problems rather than 2 (current application). This split reduces the complexity into 

𝜃(⌈log10𝑚⌉). The reason for using 10 is that m is dependent on decimal precision where the 

base is 10. 

As described in previous sections, the {α0, β0} pair is selected for the training phase of 

the machine-learning algorithm. Also, the α0-to-β0 ratios used are 1:3 and 1:10. Hence, only the 

trustworthy β0 value (the β0 for which certain service data are identified as trustworthy) needs to 

be determined from the training records. This β0 is also dependent on the length of an individual 
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record, so the β0 for a longer record could be different. Algorithm 3 determines the β0 for a 

certain historical record. 

 

 

Algorithm 3. Finding the Minimum Trustworthy β0 for a Certain Historical Record. 

 

Figure 47 shows that, for β0 = -0.00265, trust converges to -1 and that, for β0 = - 0.00264, 

it does not converge until the simulation time of 3015.10.The number of times that the con-man-

resistant trust algorithm ran is 11.  

The α0-to-β0 ratio used for these β0 is 1:10, and the con man’s constant C = 𝑒−1. Here, 

𝑚 = 105 −  2 = 99998; hence, complexity is 𝜃(⌈log2 99998⌉) or 17 ≥ 11. The same difference 

of 1 at the least-significant digit is found for the α0-to-β0 ratio of 1:3. 
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Figure 47. Maximum Trustworthy β0 and Minimum Untrustworthy β0. 
 

Table 23 summarizes more data from the presented experiment for C = 𝑒−1 and a α0-to-β0 

ratio of 1:3. 

Table 23. Maximum Trustworthy β0 and Minimum Untrustworthy β0. 

λ Trust Converges for β0 

(Untrustworthy β0) 

Trust Does Not Converge for β0 

(Trustworthy β0) 

Number of Times that the Con-Man-Resistant 

Trust Algorithm Ran and Found β0 

5 - 0.32626 - 0.32625 9 

5 -0.29893 -0.29892 10 

5 -0.33778 -0.33777 7 

6 -0.28510 -0.28509 8 

6 -0.31416 -0.31415 10 

7 -0.30253 -0.30252 8 

7 -0.32555 -0.32554 8 

7 -0.33060 -0.33059 10 

8 -0.34567 -0.34566 8 

8 -0.30336 -0.30335 9 

8 -0.29491 -0.29490 6 
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In the experiments summarized in Table 23 and shown in Figure 47, a certain parameter 

setting for this con-man-resistant trust algorithm is used. However, it is necessary to know more 

about the parameter settings. There is a need for the con-man-resistant algorithm’s parameter 

analysis because the algorithm is still in its evolving era. Recent works analyzed the parameter 

setting [6]. The parameters which affect the proposed machine-learning algorithm’s performance 

and accuracy are listed in this chapter. 

5.9. Sub Problem 3: Training, Testing, and Applying Machine Learning 

The training data are adequate for the current application. This adequacy is known as the 

training-data coverage criteria. The training data are used to tune the selected parameter. During 

this training phase, the goal is to choose the maximum β0 or minimum |β0|. In addition, cross-

validation is used to find how many training data are misidentified as not trustworthy for this β0. 

The optimized algorithm is applied on simulated real-time data after training and cross-

validation. 

5.9.1. Training-Data Coverage Criteria 

Higher QoS degradation (violation magnitude and QoS-degradation frequency) results in 

an earlier convergence of trust, resulting in a lower β0. Similarly, lower QoS-degradation values 

result in a later convergence of trust, resulting in a higher β0. There is a β0 for the highest QoS 

degradation valued historical record is trustworthy. This β0 is the lowest among all the β0s from 

rest of the records. Hence, choosing the minimum β0 among all the β0s for that the consumer’s 

historical record determines the specific consumer’s allowed, or acceptable, QoS values. The 

|minimum β0| serves as an optimal minimum-dominating set among all β0s because there is only 

one such β0 or |minimum β0| = 1. 
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Figure 48 shows the overlapping area for different historical data (simulated) and their 

trustable β0 values. There is a β0 range above which any value of the trustable β0 is not 

trustworthy, at least for one historical datum Below this range, the β0 is trustable for all historical 

data used in the training. In the previously given example of decimal place = m, if there are n 

historical records, then the algorithm to find the concerned β0 for a certain customer has the 

complexity of 𝜃(𝑛 × ⌈log2𝑚⌉). The β0 constitutes the optimal-minimum dominating set. This 

complexity is the optimality burden for this machine-learning version of con-man algorithm. 

 

 

Figure 48. Choosing the Lowest β0. 

 

If the historical record does not represent a case which is trustable, the corresponding β0 

value is supposed to be unrevealed. Hence, the training-set coverage criteria could be collecting a 

sample of all trustworthy historical records that collectively represents all the trusted cases. 

However, such brute-force coverage criteria are eliminated by representing all the trustworthy 

cases with the highest-possible QoS degradation record or the record with minimum β0. 



 

148 

The customer-satisfaction level related to the QoS degradation varies. Some consumers 

may not be dissatisfied with a certain percentile of QoS declination and its repetition above a 

certain time interval. The same values, however, can be unacceptable to another consumer. 

Hence, the declination of trust related to the mentioned values is consumer dependent. This 

dependency implies that, the con-man algorithm’s parameters, e.g., a β0 above which the service 

provider is not trustworthy, are dependent on a specific consumer. Each trustworthy β0 implies 

the allowed QoS degradations or the allowed service instability for a certain consumer and a 

certain service-provider pair. 

For multiple trusted historical records of the consumer receiving service from that 

specific service provider, the trustworthy β0s can be found, one β0 for each record. Finding the 

minimum number of historical records and the corresponding β0 that represents the customer’s 

satisfaction from the collection of historical records is essentially a set-coverage problem. If a 

consumer is satisfied with a certain frequency and value of QoS degradation, then that customer 

will most likely accept any lower frequencies and values. Hence, the lowest frequencies and 

values serve as a dominating set. Hence, the β0 for which the highest QoS-degradation-

containing historical records are identified as trustworthy is a representative of the consumer’s 

acceptable QoS values. 

5.9.2. Training and Cross-Validation 

For this part, the con-man-resistant trust algorithm’s parameter setting is C = 𝑒−5; the α0-

to-β0 ratio is 1:3; and the decimal precision is 5. Fivefold cross-validation is used to validate this 

machine-learning method [12]. Each λ є {5, 6, 7, 8} took 10 historical data, using a total of 10×4 

= 40 time-series data. These data are divided into 5 same-size subsets in the next step. Each 

subset has 8 data points.  
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These subsets are non-overlapping because they are distinct from each other. Although, 

for the same λ, the data are conceptually similar, they cannot be the same (due to the randomness 

of Poisson-data generation).  

In each 5 cases of cross-validation, shown in Table 24, 32 data are used for training (from 

4 subsets), and the remaining 8 data (the remaining subset) are used for the test phase.  

Table 25 shows the statistical summary of the unlocked β0 from the training data set 

using the first subset. 

Table 24. Fivefold Cross-Validation Summary. 

Number of Folds Each Fold Contains 

5 folds 32 training data 

8 test data 

 

Table 25. The Training Data’s Statistics for the First Subset. 

Mean β0 Maximum β0 Minimum β0 Standard Deviation Variance 

-0.31725 -0.35845 -0.28509 0.02025 0.00041 

 

Table 26 shows the result from the first subset of the fivefold cross-validation. The table 

illustrates that, in 75% of the cases, the result is correct; i.e., the historical record is correctly 

identified as trustworthy. 

Table 26. Sample Results for the Fivefold Cross-Validation (First Subset). 

λ Untrustworthy? Trustworthy? Trust Converged to -1 at Time 

5 No Yes  

5 Yes No 143.1 

6 No Yes  

6 No Yes  

7 Yes No 141.1 

7 No Yes  

8 No Yes  

8 No Yes  
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The result of Table 26 is very close for the incorrect part (two cases); i.e., the time until 

the data are treated as trustworthy is close to 143.1 milliseconds.  

Table 27 shows a basic statistical summary for the other four subsets. The minimum |β0| 

corresponding to a subset is used for cross-validation. This minimum value is used as the |β0| for 

the con-man-resistant trust algorithm, and then, the algorithm is applied to the corresponding 

subset. 

Table 27. Training-Data Summary for Four Subsets. 

Subset No. Mean β0 Maximum |β0| Minimum |β0| Standard Deviation Variance 

2 -0.31745 -0.35845 -0.27278 0.02005 0.0004 

3 -0.31607 -0.35845 -0.27278 0.02254 0.00051 

4 -0.30934 -0.35441 -0.27278 0.01876 0.00035 

5 -0.31425 -0.35845 -0.27278 0.02224 0.00049 

 

Like Table 26, Table 28 shows the results from the second subset of the fivefold cross-

validation. Table 28 illustrates that, in 100% of the cases, the result is correct; i.e., the historical 

record is correctly identified as trustworthy. 

Table 28. Sample Result for the Fivefold Cross-Validation (Second Subset). 

λ Untrustworthy? Trustworthy? 

5 No Yes 

5 No Yes 

6 No Yes 

6 No Yes 

7 No Yes 

7 No Yes 

8 No Yes 

8 No Yes 

 

Table 29 shows the summary for this fivefold cross-validation. The table illustrates that, 

except for the first subset, all the other subsets have 100% correct results. 
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Table 29. Fivefold Cross-Validation Summary. 

Fold Number Number of Records True Positive False Negative Correct Result % 

1 8 6 2 75% 

2 8 8 0 100% 

3 8 8 0 100% 

4 8 8 0 100% 

5 8 8 0 100% 

 

5.1. Application on Simulated, Real-Time Data 

For SAAS simulation data with λ = 3, the applied parameter setting for the con-man-

resistant trust algorithm is the learned β0 = - 0.27278 from the training phase (Figure 49). The 

expectation is that these data will be identified as untrustworthy, and that result happened at 

139.1 milliseconds. 

 

 

Figure 49. Con-Behavior Detection Using the Learned β0 Value. 
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5.2. Con-Man-Resistant Trust Algorithm’s Machine-Learning Version Limitations 

It is not possible to find the minimum untrustworthy β0 from a certain consumer’s 

historical data all the time. This unattainable situation happens in two opposite, extreme cases as 

shown in Table 30. 

Table 30. Cases with an Inability to Calculate the Minimum Untrustworthy β0. 

Case 1  Case 2 

Compact performance-degradation appearance in data For sparse performance-degradation appearance in data 

Higher C value (e.g., C = 𝑒−1) Lower C values 

Higher α0-to-β0 ratio (e.g., 1:10) Lower α0-to-β0 ratio (1:3) 

 

5.3. Conclusion and Future Work 

In this empirical study, a machine-learning process is presented to learn about user’s 

preference by using the consumer’s historical data. Some principles that the con-man-resistant 

algorithm follows are derived from this study. The project’s assumption is the arrival of requests 

following the Poisson inter-arrival time. An algorithm is presented to determine the parameter 

settings for the con-man-resistant trust algorithm which reflect the consumer’s preference. The 

algorithm’s output is cross-validated after training. The contribution is to unlock properties the 

con-man-resistant trust algorithm’s properties and to take the first step to learn.  

Some enhancements for this learning process can be recommended for future research. 

First, the QoS-degradation magnitude can be recalculated with respect to a consumer’s given 

tolerable value. There are cases where the consumer chooses or mentions the allowed, or 

tolerable, QoS-degradation magnitude. Hence, as a future study, the QoS degradations in a 

consumer’s record can be further recalculated with respect to these tolerable values. However, 

the recalculation will change the distribution for both the generated QoS-degradation data and 

the violations’ inter-arrival time. For example, if the consumer can tolerate a 50% QoS 
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degradation and the QoS-degradation magnitude is 49%, then the recalculated QoS degradation 

(with respect to 50%) is 0%, resulting in no violation for that Poisson interval time. This 

recalculation changes the pattern of QoS-degradation repetition. The con-man-resistant trust 

algorithm can be run on the recalculated data in real time in order to identify the con deception. 

Finally, the historical records’ diversity can be maintained by following the research 

mentioned in [11]. The records can be split into collections where each collection has its own 

service-level agreement (SLA). The con-man algorithm can be run for each historical record, 

keeping in mind that the new QoS-degradation percentage needs to be recalculated with the 

appropriate QoS degradation. After running the con-man-resistant trust algorithm on historical 

records, there is one value for each con-man trust parameters for each record: α, β, γ, and trust. 

These values can, first, be aggregated following the aggregation process of [11]. In the second 

step, the aggregated values for each parameter (α, β, γ, trust) are used as initial trust parameters 

for the con-man trust calculation with real-time data. 
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CHAPTER 6. CONCLUSION 

Cloud-computing models are becoming targets for exploitation. The cloud-computing 

model also inherits misuse from the distributed-computing and utility-computing models. The 

exploitation ranges from consumer-side fraudulent behavior to service-provider-side deceptive 

behavior. The loss associated with the deception is significant and is often incurred by the 

deception’s victim. Hence, it is important to detect deceptions and to protect assets. 

The work presented in this dissertation contributes by modeling a cloud-service 

provider’s specific type of deception: the con-man attack. The deception exploits consumers with 

repeated service shortfalls. The repetition may or may not dissatisfy the contract between the 

consumer and the cloud-service provider. The cases of breaking the total-service-availability 

contract and not breaking the contract have a long-term effect on the consumer’s business. When 

the cloud-service provider delivers service shortfalls, the provider has a short-term benefit: an 

operating-cost reduction and less investment. Hence, cloud-service providers that utilize con-

man behaviors may do so to maximize profits or to minimize costs. If the cloud-service provider 

does not resolve this repetition issue, despite having revenue from the consumer, then the bad 

part of the cycle still affects the consumer. Examples of this effect are a loss for the consumer 

and also a long-term loss for the service provider. The incurred losses may be directly financial 

or subtle, such as the loss of reputation, customer base, or good will. Hence, this cyclic behavior 

is a fraud by the cloud-service provider. The mitigation algorithm for this fraud is the con-man-

resistant trust algorithm. 

The work is motivated from the presence and the effect of repeated service deficiencies 

as a deception. The study presents the sources of the con deception: the cloud-service provider 

predicting the consumer’s service-usage pattern and allocating resource accordingly, rather than 
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allocating all the time; the provider’s repeated service-shortfall behavior in a peer-to-peer 

network; an oscillating reputation in peer-to-peer network where a peer exhibits good service to 

achieve a good reputation, followed by acceptable service until the reputation touches the lower 

bound, with the goal of profit maximization; and the cyclic pattern of good and bad transactions 

from the service provider in a distributed network (oscillating pattern, increasing and decreasing 

pattern, and random pattern). The dissertation also presents the effect of this oscillating behavior 

as a declining number of consumers; e.g., softlayer.com lost its customers; some users of the 

Animato site left permanently; and the social-networking and gaming site friendster.com failed 

because its customers gradually left due to repeated slow responses. The described examples and 

the effect on businesses improve the consumer’s and the service provider’s awareness. 

The dissertation contributes by applying the resistance algorithm to the con deception. 

The result shows how quickly the con-man behavior is identified with the con-man-resistant trust 

value. The findings also illustrate how well the con-man-resistant trust algorithm works with 

respect to another algorithm that aims to identify the service-quality issues. 

Another contribution is completing the con-man-resistant trust algorithm by empirically 

analyzing its properties and the individual parameter’s properties, studying one parameter’s 

effect on another parameter, aggregating multiple transactions, describing the trust-model 

behavior using the state diagram, analyzing continuous cooperation-defection behavior, and 

proposing enhancements for the trust-calculation process. The study and analysis derived many 

useful principles. 

An additional contribution is the development and evaluation of a performance-

degradation-focused, con-man-resistant trust algorithm extension for the cloud services. Three 

exponential growth functions are added, and the functions are compared with each other 
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concerning the con-behavior detection along with studying their properties. A study of the cloud 

service’s performance-degradation magnitude’s effect on con-man-resistant trust convergence is 

presented as principles. These rules and properties aid in decision making during the algorithm-

configuration process of the con-man-resistant trust algorithm for a specific domain.  

The work also contributes by recommending applications for the exponential growth 

functions. For example, the logistic function is recommended for use in resource-management 

and performance-tradeoff situations, e.g., in energy-aware cloud algorithms when there is a 

tradeoff between resource management and performance (e.g., between power consumption and 

performance). The compound-interest law is suitable for specific cloud services, e.g., cyber-

attack prone services where the penalty needs to be an increasing value like the interest’s debt 

side. The QoS-degradation magnitude can be expressed either as a continuous value or as 

intensity levels. 

The con-man-trust algorithm’s automated configuration is another contribution, i.e., 

enhancing the con-man-resistant trust algorithm’s efficiency by automatically tuning its 

parameter values to reflect a consumer’s perspective of trust for a cloud service. A machine-

learning algorithm is designed and implemented to configure the con-man-resistant trust 

algorithm’s parameters to reflect the consumer’s preference. This algorithm configuration with 

machine learning unlocked a few properties of the con-man-resistant trust algorithm. The first 

step to add a learning capability to the con-man-resistant trust algorithm is designing and 

implementing this machine-learning algorithm. The algorithm is context sensitive after the 

learning process. 

The dissertation research improves the efficiency of the con-man-resistant trust 

algorithm’s application to detect the cloud-service provider’s con behavior as a deception. 
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Identifying the con deception helps the consumer take action, e.g., leaving the service provider or 

selecting the service provider wisely, to avoid further financial losses from the con deceit. The 

identification also helps the cloud-service provider to dynamically evaluate its service 

deficiencies and to take action, e.g., sufficient investment, to overcome them. The presented 

work also recommends different applications for the con-man-resistant trust algorithm in a 

cloud-computing environment. 

In conclusion, this dissertation is a significant research work that proposes a new context-

sensitive evaluation method for cloud services. The evaluation states that, the less stable the 

cloud-service quality is, the more it affects the service’s consumer. The significance of this study 

is instrumenting the consumer or the service provider to detect the cloud service’s deficiency by 

identifying an unstable cloud service as a con deception. The service provider can review its 

investment decisions by evaluating the business service’s score that was given by the con-man-

resistant trust algorithm for cloud services. The con behavior has an economic effect because it 

incurs loss, directly or indirectly. Hence, the presented work has significance for cloud 

economics because the con-man-resistant trust algorithm for the cloud prevents the loss with 

early detection of the con deception. The con-man-resistant trust algorithm’s parameter setting 

depends upon the consumer type. The consumer or provider can tune the algorithm’s parameter 

depending upon the flexibility choice (e.g., a flexible consumer versus a conservative consumer). 

If the consumer or provider wants the deficiency tolerance to be reflected in the service-

deficiency detection, they can apply the recommended machine-learning version of the con-man-

resistant trust algorithm. 
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