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ABSTRACT

Motivated by the study of polytopes formed as the convex hull of permutation matrices

and alternating sign matrices, several new families of polytopes are defined as convex hulls of sign

matrices, which are certain {0, 1,−1}–matrices in bijection with semistandard Young tableaux.

This bijection is refined to include standard Young tableau of certain shapes. One such shape

is counted by the Catalan numbers, and the convex hull of these standard Young tableaux form

a Catalan polytope. This Catalan polytope is shown to be integrally equivalent to the order

polytope of the triangular poset: therefore the Ehrhart polynomial and volume can be combinatorial

interpreted. Various properties of all of these polytope families are investigated, including their

inequality descriptions, vertices, facets, and face lattices, as well as connections to alternating sign

matrix polytopes, and transportation polytopes.
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1. INTRODUCTION AND BACKGROUND

1.1. Introduction

Polytopes are multi-dimensional geometric objects that are the solution to a set of inequal-

ities. Polytopes can be studied from their vertices or from their inequalities. In linear algebra or

optimization, whenever we are presented with a situation that has some constraining inequalities,

there is a space bounded by the inequalities which may be a finite space or infinite space. The task

at hand is usually to find points inside this region that fit all of the constraints and also maximizes

or minimizes something. For this research, the polytopes are formed from sign matrices, which are

a special type of {-1,0,1}–matrix introduced by Aval [2] for their bijection with Young tableaux.

The combinatorial nature of tableaux and sign matrices form objects that are accessible to work

with, thus creating polytopes with nice properties [31, 3, 5, 32]. Using techniques established in the

study of the Birkhoff polytope [32] and alternating sign matrix polytope [31], several new polytope

families are established from tableaux and sign matrices. These new polytope families are the

subject of this study. Results include connections with the transportation, alternating sign matrix

and order polytopes.

1.2. Background

The two main combinatorial objects used in this thesis will be introduced in this chapter.

The first object is the polytope, which is the higher dimensional analog of a convex polygon. A

polytope is a geometric structure that results from combining either points or inequalities in a

certain way. The discussion about polytopes will include their definition and their structure. To

see the structure in the faces of a polytope, posets and lattices will be introduced in Subsection 1.3.3.

Some well-studied polytopes will be discussed in Subsections 1.3.6 to 1.3.9.

The second object, introduced in Section 1.4, is a tableau. A tableau is a basic and well-

studied combinatorial object. The enumeration and properties of various tableaux are known and

will be given. The discussion highlights some of the different types and shapes of tableaux. One such

type of tableau is a Catalan object, enumerated by the Catalan numbers. The Catalan numbers

will be discussed in Section 1.5 and many different Catalan objects will be shown. Also there is a

short discussion of graphs and two properties of matrices.
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1.3. Polytopes

Polytopes are geometric structures used to arrive at solutions to problems relating to op-

timization and linear programming. Polytopes with two variables are in 2-dimensions and called

convex polygons; more variables create an n-dimensional polytope. In addition to polytopes, posets

will be examined as an introduction to a face lattice of a polytope. The face lattice, as well as

dimension and enumeration of facets and vertices, is discussed with regard to some well-studied

polytopes: the Birkhoff polytope, alternating sign matrix polytope, order polytope, and transporta-

tion polytope. Some proof techniques were inspired by the research in [1, 5, 22, 25, 31, 32]

The discussion on polytopes follows Ziegler’s Lectures on Polytopes [34] unless otherwise

cited.

1.3.1. Polygons

A set of inequalities in two variables can be graphed on a 2-dimensional coordinate plane.

The inequalities form a region, and the points where the lines intersect can be used to maximize or

minimize an objective equation. Cost and profit are examples of quantities that could be maximized

or minimized. If the region is completely enclosed by the inequalities, a convex polygon is formed.

However, the region could be infinite. For this discussion, all regions are assumed to be enclosed,

or finite, regions.

These finite regions are called polygons, and are defined as follows: a polygon is formed by

coplanar segments (called sides) such that: 1. Each segment intersects exactly two other segments,

one at each endpoint. 2. No two segments with a common endpoint are collinear [6]. Some polygons

in R2 (or the xy-plane) are triangles, parallelograms and trapezoids. Circles and sectors of circles

are not polygons, since curved sides are not allowed in a polygon. Polygons are most commonly

thought of as convex polygons. A convex polygon is defined as a polygon such that no line containing

a side of the polygon contains points in the interior of the polygon [6]. A more concrete definition

of convex is now given.

Definition 1.3.1 ([34, p. 3]). A set of points K ⊆ Rd is convex if for any two points ~x, ~y ∈ K, the

straight line segment [~x, ~y] = {λ~x+ (1− λ)~y : 0 ≤ λ ≤ 1} is contained in K.

Definition 1.3.2. The convex hull of a finite set of points {~v1, ~v2, . . . , ~vk} ⊂ Rd is the smallest

convex set containing all of the points. Therefore, every point in the convex hull can be written as

2



the convex combination of {~v1, ~v2, . . . , ~vk}, which is given by the formula:

k∑
i

µi~vi where all µi ≥ 0, and
k∑
i

µi = 1 for 1 ≤ i ≤ k.

A convex polygon is the convex hull of a finite set of points in R2. Consider some cases with a

small number of points. The convex hull of three non-collinear points results in a triangle. However,

the convex hull of four non-collinear points in R2 results in either a triangle or a quadrilateral.

A convex polygon can be thought of as putting a rubber band around the outside of the

set of points. The rubber band will touch only the sides and vertices while enclosing the polygon.

The difference between a convex and non-convex polygon is illustrated in Figure 1.1.

A three-dimensional analog of a convex polygon is a polyhedron. A polyhedron example in

R3 is a pyramid or prism. Convex figures like these and others in higher dimensions are polytopes,

which are defined formally in Subsection 1.3.2. When discussing polytopes in d-dimensions, the

notation d-polytope will be used. For example, a polygon is a 2-polytope and a prism is a 3-

polytope.

Figure 1.1. A non-convex polygon on the left, and a convex polygon on the right.

For an example of the convex combination, using the vertices in Figure 1.3, the point

(
4

3
, 2

)
is inside the polygon and can be written as:

(
4

3
, 2

)
= 0(0, 0) +

1

6
(3, 0) +

1

4
(3, 1) +

1

3
(1, 4) +

1

4
(−1, 2).

Notice that 0 +
1

6
+

1

4
+

1

3
+

1

4
= 1 and all coefficients are nonnegative.

Note that a finite set of points is not necessarily the vertex set for the polygon; Figure 1.2

shows an example of such a case.
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Figure 1.2. The convex hull of eleven points in R2. Note that only five points are vertices.

When the vertices of a polygon are known, the convex hull is a very straightforward way

to define a polygon. Starting with the vertices is not necessary however, as there is an equivalent

way to define a polygon, stated below. The equivalence of the two definitions will be stated in

Theorem 1.3.5.

Definition 1.3.3. A polygon in R2 is the bounded intersection of finitely many linear inequalities.

An example of a polygon described by bounded intersections is seen in Figure 1.3.

x

y

y ≥ 0
x ≤ 3

y ≥ −2x

y ≤ −x + 4

y ≤ 1

2
x +

5

2

(0,0)

(3,0)

(3,1)

(1,3)

(-1,2)

Figure 1.3. The same pentagon from Figure 1.2 with the bounding inequalities.

1.3.2. d-dimensional polytopes

Polygons in R2, or 2-polytopes, can be generalized into higher dimensions. In this subsec-

tion, polytopes will be defined in full generality using two equivalent definitions. After they are

defined, the parts of a polytope will also be defined. Finally, different types of characteristics that

polytopes can possess will be discussed.
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Definition 1.3.4. A subspace of dimension d− 1 in Rd is called a hyperplane. Halfspaces are the

geometric objects that are formed on either side of a hyperplane.

A hyperplane in 2-dimensions is a line and a hyperplane in 3-dimensions is a 2-dimensional

plane.

It has been discussed that a polytope can be defined by a set of points and also by a set of

inequalities (where the inequalities form a bounded, not infinite, region). The two ways to define a

polytope are equivalent, as the following theorem confirms and will be used as the formal definition.

Theorem 1.3.5. A subset P ⊆ Rd is the convex hull of a finite set of points

P = convex hull of {~v1, ~v2, . . . , ~vk} for vi ∈ Rd for all 1 ≤ i ≤ k

if and only if it is a bounded intersection of halfspaces

P = {~x ∈ Rd : A~x ≤ ~z} for some m× d matrix A, ~z ∈ Rm.

Consequently, the two ways to describe a polytope are equivalent definitions. However,

obtaining both polytope definitions can be a challenge, even though both exist for every polytope.

When specific polytopes are discussed in the following chapters, the proofs will start with the

convex hull description to prove the inequality, or halfspace, description. Also, one definition of a

polytope can be preferred to the other to more easily prove different properties of a polytope.

The discussion will now change from basic definitions to the parts of a polytope. Parts

of a polytope can be categorized by dimension. After dimension is known, how the pieces of the

polytope fit together will be discussed.

Definition 1.3.6. A face of a polytope is the intersection of the polytope with a hyperplane for

which the polytope is entirely contained in one of the two halfspaces determined by the hyperplane.

Faces of the cube are vertices, edges and squares. However, the empty face and the entire

cube itself are also faces. In a d-polytope, a proper face is any face of dimension less than d. Some

faces of a polytope also have special names. A formal definition of vertices, edges and other faces

is now given.
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Definition 1.3.7. Given a polytope P of dimension d, the faces of P of dimensions 0, 1, d − 2,

and d− 1 are called vertices, edges, ridges, and facets, respectively. In particular, the vertices are

the minimal nonempty faces, and the facets are the maximal proper faces.

The facets of a polygon are the edges and the facets of a polyhedron are the 2-dimensional

faces. For larger polytopes, the 0-dimensional faces are vertices, 1-dimensional faces are edges;

however the rest of the faces are denoted by the dimension and not given a name until ridges and

facets. Vertices and facets are of importance in Chapters 2 and 3.

Polytopes are not always full-dimensional, meaning all the variables involved are not nec-

essarily needed. A smaller-dimensional polytope sitting in a higher-dimensional space is seen in

Example 1.3.8.

Example 1.3.8. A simple example of a polytope not being full-dimensional is a 2-dimensional

triangle sitting in 3-dimensional space, as in Figure 1.4.

x

y

z

(0, 0, 1)

(1, 0, 0)

(0, 1, 0)

Figure 1.4. A 2-dimensional triangle in 3-dimensional space.

Polytopes can have different or specific properties that make them unique. The following

are some commonly studied properties of polytopes.

• An integral polytope has integer values for all vertex coordinates.

• A regular polytope requires all vertices to be contained in the same number of edges.

• A simplicial polytope requires every facet to have the minimal number of vertices. This also

means that all facets have the same number of vertices.
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• A simple polytope requires every vertex to be contained in the minimal number of facets.

This means that all vertices are contained in the same number of facets.

All polytopes have structure as to how the faces are connected. In the next two subsections,

the structure between faces of a polytope is discussed.

1.3.3. Posets

Faces of a polytope have a natural partial order based on dimension of each face; this will

be discussed in Subsection 1.3.4. So that this partial order of faces may be discussed, the definition

and properties of a partially ordered set, or poset, are given. A Hasse diagram is introduced as a

way a poset can be visualized. A specific type of poset is a lattice. Furthermore, within posets,

the structure of order ideals will be discussed. This discussion can be referenced in Chapter 3 of

Stanley’s Enumerative Combinatorics, Volume 1 [27], unless cited otherwise.

Definition 1.3.9. A partially ordered set (P,≤) (or poset) is a set P together with a binary

relation, denoted ≤, satisfying the following three properties on s, t, u ∈ P :

• For all t ∈ P, t ≤ t (reflexivity).

• If s ≤ t and t ≤ s, then s = t (antisymmetry).

• If s ≤ t and t ≤ u, then s ≤ u (transitivity).

In this thesis, a poset will be denoted by the set P , as the relation is understood to be ≤.

A poset can be visualized with a diagram. For a diagram to be meaningful, it needs to show how

the elements of a poset relate to each other. This relationship is given in the following definition.

Additionally, the notation a < b will be used to indicate a ≤ b and a 6= b.

Definition 1.3.10. Cover relations for a poset (P,≤) are as follows: if s, t ∈ P , then it is said

that t covers s or s is covered by t if s ≤ t and no element u ∈ P satisfies s < u < t.

Definition 1.3.11. The Hasse diagram of a finite poset P is the graph whose vertices are the

elements of P , whose edges are the cover relations, and such that if s ≤ t then t is drawn above s.

An example of a Hasse diagram is given in Figure 1.5 for the six elements {A,B,C,D,E, F}.

The figure illustrates the previous definitions; for example, notice D < C < F < A. Notice further,

E and C cannot be compared, B covers both E and C, and also C is covered by both F and B.
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D

A

E C

F B

Figure 1.5. A Hasse diagram of a six element poset.

A special type of poset called a lattice will be defined next. Characteristics of a lattice will

also be given.

Definition 1.3.12. • The join (or least upper bound) of s and t is an upper bound u of s and t

such that every upper bound v of s and t satisfies v ≥ u. The join of s and t is denoted s∨ t.

• The meet (or greatest lower bound) of s and t is a lower bound u of s and t such that every

lower bound v of s and t satisfies v ≤ u. The meet of s and t is denoted s ∧ t.

Definition 1.3.13. A poset P is a lattice if every pair of elements s, t ∈ P has a join and a meet.

Example 1.3.14 will show why the poset of Figure 1.5 is not a lattice and why the posets

in Figure 1.6 are lattices.

Example 1.3.14. Two examples of lattices are in Figure 1.6. There is a meet and a join for each

pair of elements in each poset. In the poset on the left, 3∧ 5 = 6 and 3∨ 5 = 2, and in the poset on

the right, b∧ f = d and b∨ f = a. However, in Figure 1.5, notice the least upper bounds of E and

C are both F and B. Similarly, greatest lower bounds of F and B are both E and C. Therefore,

the poset in Figure 1.5 is not a lattice.

A poset can be either finite or infinite. Similarly, a poset may or may not have a unique

maximum or minimum element. The definition of this unique maximum or minimum is below.

Definition 1.3.15. A finite poset P has a 0̂ if there exists an element 0̂ ∈ P such that t ≥ 0̂ for

all t ∈ P . Similarly, P has a 1̂ if there exists 1̂ ∈ P such that t ≤ 1̂ for all t ∈ P .

In Figure 1.6, both lattices are finite and have unique maximum and minimum elements.

The 0̂ elements are the 6 and d, whereas the 1̂ elements are the 1 and a. Figure 1.8 gives an example

of a poset with no unique minimal element.
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1

2

3 4 5

6

a

b

c

d

ef

Figure 1.6. Two lattices on six vertices.

An example of an infinite lattice is the divisibility lattice. The divisibility lattice has as

elements all positive integers. The cover relations are defined as follows: b covers a if a is a factor

of b. Figure 1.7 shows part of the infinite divisibility lattice for factors of 60. The 0̂ element is

1; above 1 are the primes. Notice that the greatest common factors are the meets and the least

common multiples are the joins.

1

2 3 5

6 1510
4

12
20 30

60

Figure 1.7. The divisibility lattice for 60, which is part of the infinite divisibility lattice.

Next there are a few definitions that will be needed to discuss special lattices related to

polytopes.

Definition 1.3.16. A chain is a poset in which any two elements are comparable. A subset C of

a poset P is called a chain if C is a chain when regarded as a subposet of P . The length of a finite

chain is one less than the number of elements in the chain. The rank of a finite poset P is the

length of the maximal chain. If all maximal chains of P are the same, then the rank of elements

in the poset are as follows: if s is a minimal element, then the rank of s is zero, and if t covers s,

then the rank of t is the rank of s plus 1.
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Thus in the poset in Figure 1.8, the elements a, b, c, d have rank 0, the elements e, f, g have

rank 1 and h has rank 2.

The discussion will now shift to a special subset of a poset.

Definition 1.3.17. An order ideal of a poset P is a subset I of P such that if t ∈ I and s ≤ t,

then s ∈ I. Let J(P ) denote the set of order ideals of P .

Example 1.3.18. For examples of order ideals, consider the poset in Figure 1.8. If e is in an order

ideal I, then a, b ∈ I. If f ∈ I, then b ∈ I. If a, b ∈ I nothing else is required. Finally, if h ∈ I,

then all poset elements are in I.

a b c d

e f g

h

Figure 1.8. An example of a poset.

Next, a special poset is defined. The set of order ideals of this poset have nice properties.

Definition 1.3.19. Define a poset Qτ that is in the shape of an equilateral triangle with top point

the maximum element and τ − 1 minimal elements.

An example of Q5 with generators of an order ideal highlighted and the resulting order ideal

is shown in Figure 1.9. The example of J(Q4), the set of all order ideals of Q4 is in Figure 1.10.

Figure 1.9. The poset Q5 with two generator elements highlighted and the corresponding order
ideal.
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Figure 1.10. The fourteen order ideals in J(Q4). The larger red elements are the generators of each
order ideal.

Definition 1.3.20. A linear extension of a poset P is a bijective function f : P → {1, . . . , n}

where the number of elements in P is n, such that if p1 < p2 in P then f(p1) < f(p2). The number

of linear extensions of P is denoted e(P ).

An example of a linear extension is shown in Figure 1.11. Notice that the elements of the

poset receive numbered labels and these labels preserve the partial ordering.

3 1 4 6

5 2 7

8

Figure 1.11. A poset on the left and a linear extension of it on the right.

Definition 1.3.21. Let P be a finite n-element poset and t a positive integer. Define Ω(P, t) to

be the number of order-preserving maps η : P → {1, . . . , t}; i.e., if x ≤ y in P then η(x) ≤ η(y).

Then Ω(P, t) is a polynomial function of t of degree n, called the order polynomial of P .

Theorem 1.3.22. The leading coefficient of Ω(P, t) is
e(P )

n!
.
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Example 1.3.23. Consider the triangular poset on three elements A

B

C. This poset has order

polynomial:
1

3
t3 +

1

2
t2 +

1

6
t.

When t = 1 the result is 1, since there is only one map into {1}. When t = 2, the map is

from P into {1, 2}, there are 5 possibilities and there are 5 order ideals. Notice there are two linear

extensions

3 3

2 1 21 and n! = 3! = 6 so
e(P )

n!
=

2

6
=

1

3
, the leading coefficient.

Definition 1.3.24. Two posets P and Q are isomorphic if there exists an order-preserving bijection

φ: P → Q whose inverse is order-preserving; that is,

s ≤ t ∈ P ⇐⇒ φ(s) ≤ φ(t) ∈ Q.

1.3.4. The face lattice of a polytope

The concepts of faces, posets and lattices have been discussed. Putting these concepts

together motivates the discussion of the face lattice of a polytope. The face lattice incorporates

how the faces of a polytope are connected. The Hasse diagram shows this structure visually.

Definition 1.3.25 ([34, p. 57]). The face lattice of a convex polytope P is the poset of all faces

of P , partially ordered by inclusion.

The face lattice of a polytope naturally has the needed inclusion relationship. The inclusion

in a polytope is as follows: a vertex is part of an edge, if two vertices form an edge there is only

one edge between them and so on. The dimension of each face dictates the rank in the lattice. The

empty set has rank 0, the vertices have rank 1, the edges have rank 2 and so on. The dimension

of a face is one less than the rank in the face lattice poset. The face lattice of a square pyramid is

shown in Example 1.3.26.

Example 1.3.26. Given the 3-polytope square pyramid on the left in Figure 1.12, the Hasse

diagram of its face lattice is on the right. Notice the empty set is the 0̂ at the bottom, then the

vertices, next the edges, then the 3-dimensional faces, and finally the entire pyramid is the 1̂ at the

top.

12



A

B

C
D

E

A B C D E

∅

AB AC BC AD CD AE BE DE

ABC ABEACD ADE BCDE

ABCDE

Figure 1.12. A square pyramid and its associated face lattice.

1.3.5. The Ehrhart polynomial

Next the Ehrhart polynomial of a polytope is discussed. A property of the Ehrhart polyno-

mial is that the volume of the polytope is given as part of the polynomial. To define the Ehrhart

polynomial, let P be a d-dimensional integral convex polytope in Rn. This subsection will reference

Stanley’s paper [25].

Definition 1.3.27. If t is a positive integer, define i(P, t) to be the cardinality of (tP ∩ Zn).

In other words, i(P, t) is the number of integer points in the tth dilate of the P.

Theorem 1.3.28. i(P, t) is a polynomial function of t of degree d, called the Ehrhart polynomial

of P. When d = n the leading coefficient of i(P, t) is the volume V (P) of P. The normalized

volume is the leading coefficient of i(P, t) multiplied by n!.

The following subsections discuss several special classes of polytopes.

1.3.6. The Birkhoff polytope

One of the classical and well-studied polytopes is the Birkhoff polytope, which is the convex

hull of permutation matrices. The Birkhoff polytope along with the proof of its inequality descrip-

tion were an inspiration for work in Subsection 1.3.7 and Chapters 2 and 3. To discuss this special

polytope, a definition from algebra is needed.
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Definition 1.3.29 ([13, p. 29]). Let Ω be any nonempty set. The symmetric group on the set Ω

under the action of composition, denoted SΩ, is the set of all bijections from Ω to itself (otherwise

known as the set of all permutations of Ω). If Ω = {1, 2, 3, . . . , n}, denote SΩ as Sn.

For the purpose of this thesis a group is not vital in the definition of a permutation, as a

permutation on a finite set can be thought of as the rearranging of the elements in the set. The

following definition shows permutations with a matrix representation.

Definition 1.3.30 ([27, p. 41]). If w ∈ Sn, then define the n×n matrix Pw, with rows and columns

indexed by {1, 2, · · · , n}, as follows:

(Pw)ij =


1, if w(i) = j

0, otherwise.

The matrix Pw is called the permutation matrix corresponding to w.

Permutation matrices are examples of doubly stochastic matrices, which means that all

entries are non-negative and both the columns and rows sum to 1. The six 3 × 3 permutation

matrices are shown in Figure 1.14 and some of the 4 × 4 doubly stochastic matrices are shown in

Example 1.3.31.

Example 1.3.31. Two of the twenty-four 4× 4 permutation matrices are on the left and a doubly

stochastic matrix that is not a permutation matrix is on the right. Notice permutation matrices

have one 1 in each row and in each column, with the other entries 0.

0 0 1 0

0 1 0 0

0 0 0 1

1 0 0 0





0 0 0 1

0 1 0 0

1 0 0 0

0 0 1 0





5
12

1
3

1
4 0

0 1
4

1
6

7
12

1
4

1
6

7
12 0

1
3

1
4 0 5

12


.

n× n matrices can be seen as vectors in Rn
2
. Take the vector to be the first row taken in

order, then the second row taken in order and so on. There are n2 entries in each matrix, thus

n2 entries in the vector and so the vectors are in Rn
2
. Therefore, the dimension of a permutation

matrix is n2.
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Definition 1.3.32 ([34, p. 20]). The Birkhoff Polytope, Bn, is the convex hull of all n× n permu-

tation matrices, considered as vectors in Rn
2
.

The Birkhoff polytope has several other names. The Birkhoff Polytope was named after

Garrett Birkhoff, who first defined it [5]. Another name is the assignment polytope; since there is

one 1 in each row and column, a permutation matrix can be thought of as the rows and columns

being assigned to one another. Permutation matrices are doubly stochastic matrices, thus the name

polytope of doubly stochastic matrices is also used.

Example 1.3.33. Every point inside the n = 3 Birkhoff polytope, B3, is given by the following

convex combination, for some set of µi.

µ1


1 0 0

0 1 0

0 0 1

+ µ2


1 0 0

0 0 1

0 1 0

+ µ3


0 1 0

1 0 0

0 0 1

+ µ4


0 1 0

0 0 1

1 0 0

+ µ5


0 0 1

1 0 0

0 1 0

+ µ6


0 0 1

0 1 0

1 0 0



where

6∑
i=1

µi = 1 and µi ≥ 0 for all i.

It is known that the permutation matrices are the vertices ofBn, thus there are n! vertices. It

is also known that the dimension is (n− 1)2 and there are n2 facets [5]. Notice that the dimension

is not n2, which would be full-dimensional. The vectors of the polytope live in Rn
2
; this is the

ambient dimension. However, sometimes there are entries of the matrix that are determined, so

the dimension of the polytope is less then the ambient dimension. Doubly stochastic matrices have

determined entries, as the rows and columns need to add to 1. The Birkhoff polytope, therefore,

has dimension (n− 1)2.

An inequality description of the Birkhoff polytope will be discussed now.

Theorem 1.3.34 ([5, 32]). The Birkhoff polytope Bn consists of all n×n real matrices X = (Xij)

such that:

Xij ≥ 0 1 ≤ i, j ≤ n,
n∑
k=1

Xik = 1 1 ≤ i ≤ n,

n∑
k=1

Xkj = 1 1 ≤ j ≤ n.
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This result was proven independently by Birkhoff [5] and von Neumann [32]. The inequality

proofs in Theorems 2.4.1 and 2.4.3 are modeled after the technique used by von Neumann to prove

the inequality description of the Birkhoff polytope.

A permutation can be shown as a perfect matching in a bipartite graph. Discussed next

will be the definition of bipartite graphs and perfect matchings. Then the relationship between the

Birkhoff polytope and perfect matchings of bipartite graphs will be stated.

Definition 1.3.35. A bipartite graph on 2n vertices is a graph that can be drawn with two rows

of n vertices in each row. The only allowed edges are between points on opposite rows. A complete

bipartite graph is a bipartite graph with all possible edges, denoted Kn,n. A perfect matching of a

graph is a subset of the edges such that each vertex is contained in exactly one edge.

Some examples of bipartite graphs can be found in Example 1.3.37. Given two graphs on

the same vertex set, let the union of those graphs be the graph on the vertex set whose edge set is

the union of the two edge sets. Graphs constructed as the union of perfect matchings are examples

of elementary graphs, which means every edge is in some perfect matching.

Now the theorem that connects the Birkhoff polytope to the complete bipartite graph is

stated.

Theorem 1.3.36 ([4, 7]). The lattice of elementary subgraphs of Kn,n ordered by inclusion, is in

bijection with the face lattice of the Birkhoff polytope. Thus, the number of cycles in an elementary

graph gives the dimension of the corresponding Birkhoff polytope face.

Example 1.3.37. In Figure 1.13, the top two bipartite graphs are perfect matchings of K3,3 and

represent the permutations 132 and 312. Think of the top row as where the line starts and the

bottom row where it ends. Notice in the left graph, the 1 goes to 1, the 2 goes to 3 and the 3 goes

to 2, thus this represents the permutation 132. The bottom graph is the union of the top two, and

thus is an elementary graph. Notice that there is one cycle in the bottom graph; this represents a

dimension 1 face, or edge, of the Birkhoff polytope.

Remark 1.3.38. It is interesting to note that within the Birkhoff polytope the only integer points

are the permutation matrices; there are no other points within the polytope that have all integer

coordinates. Such integer points are called lattice points. In other words, the Birkhoff polytope

contains no non-vertex lattice points. A similar result will be proved in Proposition 2.7.5.
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Figure 1.13. Two perfect matchings of K3,3 on top. The bottom is the union of the others.

1.3.7. The alternating sign matrix polytope

Another well-studied polytope is the alternating sign matrix polytope. The alternating sign

matrix polytope contains the Birkhoff polytope. This discussion of the alternating sign matrix

polytope will follow Striker’s work [31], unless otherwise stated.

Definition 1.3.39 ([23]). An alternating sign matrix is a square matrix with entries in {−1, 0, 1}

such that the rows and columns each sum to one and the nonzero entries along any row or column

alternate in sign. Let A(n) denote the set of n× n alternating sign matrices.

 1 0 0
0 1 0
0 0 1

 ,

 1 0 0
0 0 1
0 1 0

 ,

 0 1 0
1 0 0
0 0 1

 , 0 1 0
0 0 1
1 0 0

 ,

 0 0 1
1 0 0
0 1 0

 ,

 0 0 1
0 1 0
1 0 0

 ,

 0 1 0
1 −1 1
0 1 0

.

Figure 1.14. The seven 3 × 3 alternating sign matrices. Notice the first six are also permutation
matrices.

There are seven 3×3 alternating sign matrices; all are shown in Figure 1.14. Notice that six

of the matrices are the 3× 3 permutation matrices; a permutation matrix is always an alternating

sign matrix. This is why the Birkhoff polytope is contained in the alternating sign matrix polytope.
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Theorem 1.3.40 ([21, 33]). The total number of n × n alternating sign matrices is given by the

expression:
n−1∏
j=0

(3j + 1)!

(n+ j)!
.

This enumeration of alternating sign matrices was first conjectured by Mills, Robbins, and

Rumsey [23]. Several years later it was proved by Zeilberger [33] with a shorter proof following

by Kuperberg [21]. This shorter proof used a bijection between alternating sign matrices and

configurations of the statistical physics model of square ice with domain wall boundary conditions.

Alternating sign matrices have also been studied as polytopes [3, 31]. The rest of this

subsection discusses a family of polytopes formed from alternating sign matrices.

Definition 1.3.41. The nth alternating sign matrix polytope, denoted ASMn, is the convex hull

in Rn
2

of the n× n alternating sign matrices.

It has been proved that ASMn has the alternating sign matrices as the vertices and has

dimension (n− 1)2 [3, 31]. Also the inequality description is known to be the following.

Theorem 1.3.42 ([3, 31]). The convex hull of n×n alternating sign matrices consists of all n×n

real matrices X = {Xij} such that:

0 ≤
i∑

i′=1

Xij ≤ 1 1 ≤ i ≤ n, 1 ≤ j ≤ n

0 ≤
j∑

j′=1

Xij ≤ 1 1 ≤ j ≤ n, 1 ≤ i ≤ n.

n∑
i=1

Xij = 1 1 ≤ j ≤ n.

n∑
j=1

Xij = 1 1 ≤ i ≤ n.

Now the number of facets is discussed.

Theorem 1.3.43. ASMn has 4[(n− 2)2 + 1] facets, for n ≥ 3.

The proofs of the previous two theorems use certain graphs called flow grids. Flow grids are

also used to prove some interesting results about the face lattice of ASMn. These will be defined

and discussed next.
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Definition 1.3.44. Consider a directed graph with n2 + 4n vertices: n2 internal vertices (i, j) and

4n boundary vertices (i, 0), (0, j), (i, n+ 1), and (n+ 1, j) where i, j = 1, . . . , n. These vertices are

naturally depicted in a grid in which vertex (i, j) appears in row i and column j. Define the complete

flow grid Cn to be the directed graph on these vertices with edge set {((i, j), (i, j ± 1)), ((i, j), (i±

1, j)) | i, j = 1, . . . , n}.

Thus Cn has directed edges pointing in both directions, called doubly directed, between

neighboring internal vertices and also directed edges from internal vertices to neighboring boundary

vertices. In other words, the directed edges all point out to the boundary vertices and they go both

directions in the interior of the graph. A complete flow grid is shown in Figure 1.15.

Figure 1.15. The complete flow grid for n = 5.

Definition 1.3.45. A simple flow grid of order n is a subgraph of Cn consisting of all the vertices

of Cn, and in which four edges are incident to each internal vertex: either all four edges directed

inward, all four edges directed outward, or both horizontal edges pointing in the same direction

and both vertical edges pointing in the same direction.

An example of a simple flow grid and its corresponding alternating sign matrix from the

bijection in the following proposition are both shown in Figure 1.16.

Proposition 1.3.46. There exists an explicit bijection between simple flow grids of order n and

n× n alternating sign matrices.

A short explanation of the proof is as follows. A vertex configuration of four edges directed

outward is called a source, the configuration of four edges directed inward is called a sink. Each
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internal vertex of the simple flow grid corresponds to an entry in the matrix. If there is a source,

the corresponding entry is a 1 and a sink corresponds to a −1. Everything else is a 0. Starting

with an alternating sign matrix, a simple flow grid is constructed as follows. All of the boundary

vertices have a directed edge pointing to them, by definition. For the internal vertices, if there was

a 1 in the matrix the corresponding vertex is a source and, similarly, a −1 corresponds to a sink.

Once the sinks and sources are drawn, the rest of the directed edges “continue” in the direction

they are already going and will end at a boundary vertex or a sink. Figure 1.16 has an example of

an alternating sign matrix and its corresponding simple flow grid.


0 0 0 1 0
0 1 0 0 0
0 0 1 −1 1
1 −1 0 1 0
0 1 0 0 0

 ⇐⇒

Figure 1.16. A 5× 5 alternating sign matrix and its corresponding simple flow grid.

Definition 1.3.47. For any face F of ASMn define the grid corresponding to the face, g(F ), to

be the union over all the vertices of F of the simple flow grids corresponding to the vertices.

Definition 1.3.48. An elementary flow grid G is a subgraph of the complete flow grid Cn such

that the edge set of G is the union of the edge sets of simple flow grids.

Definition 1.3.49. A doubly directed region of an elementary flow grid G is a connected collection

of cells in G completely bounded by double directed edges (edges with arrows in both directions)

but containing no double directed edges in the interior.

The union in Definition 1.3.48 is the same as in the discussion about perfect matchings in

Example 1.3.37. The edge arrows only pointing in one direction can now point in both directions,

giving the doubly directed edges of the graph. Figure 1.17 shows an example of doubly directed

regions on an elementary flow grid.
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Now recall the definition of a face lattice given in Definition 1.3.25. The face lattice of the

Birkhoff polytope was described in Theorem 1.3.36. These ideas were extended to help study the

face lattice of ASMn.

Theorem 1.3.50. The face lattice of ASMn is isomorphic to the lattice of all n × n elementary

flow grids ordered by inclusion.

Theorem 1.3.51. The dimension of a face F of ASMn is the number of doubly directed regions

in the corresponding elementary flow grid g(F ). In particular, the edges of ASMn are represented

by elementary flow grids containing exactly one cycle of double directed edges.

Figure 1.17 shows an example of three regions of an elementary flow grid corresponding to

a 3-dimensional face of ASMn, as discussed in the previous theorem.

Figure 1.17. An elementary flow grid containing three doubly directed regions, which corresponds
by Theorem 1.3.51 to a 3-dimensional face of ASM5.

1.3.8. The order polytope

The order polytope is a polytope defined from a poset and is one of the few polytopes

where the Ehrhart polynomial is known, thus the volume is known as well. The study of the order

polytope had been scattered throughout combinatorial literature until Stanley [25] summarized all

the relevant properties in 1986. This paper will be a reference for the following discussion.
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Definition 1.3.52. Given a poset P with elements {a1, a2, . . . , an}, the order polytope, O(P ) is

the set of all functions f : P → R which satisfy the following conditions:

0 ≤ f(ai) ≤ 1, for all i (1.1)

f(ai) ≤ f(aj), if aj covers ai in P . (1.2)

Proposition 1.3.53. The vertices of O(P ) are the set J(P ), the order ideals of P .

Stanley also gives the polytope Ô(P ), which defines a combinatorially equivalent polytope

to O(P ).

Definition 1.3.54. Obtain P̂ from P by adjoining a maximal element 1̂ and a minimal element

0̂. Define a polytope Ô(P ) to be the set of functions g : P̂ → R satisfying g(0̂) = 0, g(1̂) =

1, and g(x) ≤ g(y), if x ≤ y in P̂ .

(1.1) is independent from (1.2), so together they define the facets of O(P ). Since the

polytopes O(P ) and Ô(P ) are combinatorially equivalent, the facets are related.

Proposition 1.3.55. A facet of O(P ) consists of those f ∈ O(P ) satisfying exactly one of the

following conditions:

f(x) = 0, for some minimal x ∈ P , (1.3)

f(x) = 1, for some maximal x ∈ P , (1.4)

f(x) = f(y), for some y covering x in P . (1.5)

A facet of Ô(P ) consists of those g ∈ Ô(P ) satisfying g(x) = g(y) for some fixed pair (x, y) for

which y covers x in P̂ .

From these definitions some nice results are obtained.

Theorem 1.3.56. Suppose P is a poset with a maximal elements, b minimal elements and c cover

relations. The number of facets of either Ô(P ) or O(P ) is a+ b+ c.

Next recall the Ehrhart polynomial from Theorem 1.3.28 and consider the Ehrhart polyno-

mial of O(P ). Further recall that the leading coefficient of the Ehrhart polynomial gives the volume

of the polytope. Also, recall the definition of the order polynomial Ω(P, t) from Definition 1.3.21.
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Theorem 1.3.57. The Ehrhart polynomial of O(P ) is given by

i(O(P ), t) = Ω(P, t+ 1).

Corollary 1.3.58. The normalized volume of O(P ) is given by

V (O(P )) = e(P ).

1.3.9. The transportation polytope

The polytope discussed in this subsection is the transportation polytope. The transportation

polytope connects to the social sciences. An example of a polytope in this setting is as follows;

consider moving n objects from a set of out-going facilities, S, to a set of in-coming facilities, C.

A matrix can be used to organize and represent the information with S along the top and C along

the side. Let each column vector stand for the amounts going out of each Sj and each row vector

stands for the amounts coming into each Ci. Therefore in the matrix X, let Xij be the amount of

objects coming from Sj and going to Ci. This matrix has nonnegative entries and with fixed row

and column integer sums.

Definition 1.3.59 ([11]). Fix two integers p, q ∈ Z>0 and two vectors ~y ∈ Rp≥0 and ~z ∈ Rq≥0.

The transportation polytope P(y,z) is the convex polytope defined in the pq variables Xij ∈ R≥0,

1 ≤ i ≤ p, 1 ≤ j ≤ q, satisfying the p+ q equations:

q∑
j′=1

Xij′ = yi for all 1 ≤ i ≤ p (1.6)

p∑
i′=1

Xi′j = zj for all 1 ≤ j ≤ q. (1.7)

The relationship between transportation polytopes and sign matrix polytopes is discussed

in Section 2.8.

1.4. Young tableaux

This section will discuss the second main element in this research, semistandard Young

tableaux. Young tableaux are well-loved objects for their nice combinatorial properties, including

beautiful enumerative formulas, and nontrivial connections to Lie algebras, representation theory,
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and statistical physics [8, 15, 20]. Two main types of Young tableaux will be discussed: standard

Young tableaux and semistandard Young tableaux. These two types of tableaux are the objects that

are used to create polytopes in Chapters 2 and 3. Information from this section is referenced from

Young Tableaux by Fulton [15] unless stated otherwise.

Definition 1.4.1. A partition is a weakly decreasing sequence of positive integers λ = [λ1, λ2, . . . , λk].

The positive integers λi are called the parts of the partition and k is the length of the partition.

Definition 1.4.2. A Young diagram is a finite collection of boxes, or cells, arranged in left-justified

rows, with a weakly decreasing number of boxes in each row. The shape of a Young diagram is

denoted λ.

The definition above is the English notation; see Figure 1.18 for an example. The English

notation will be used in this thesis, however there are other notations that are commonly used.

The French notation for a Young diagram is lower left justified, whereas the Russian notation takes

the French diagram and rotates it 45 degrees counter-clockwise; this puts the upper left box (of the

English diagram) at the bottom. Again, the English notation is to be assumed hereafter.

1.4.1. Standard Young tableaux

A Young diagram can be filled with numbers; one such filling and the resulting tableaux

are discussed in this subsection. In addition to defining these tableaux, their enumeration will also

be discussed.

Definition 1.4.3. A standard Young tableau, denoted SY T , is defined as a filling of a Young

diagram with the numbers 1 through n. There are n boxes, each used exactly once and such that

the numbers in the rows and the columns are strictly increasing when starting at the left or top,

respectively.

An example of a standard Young tableau is shown in Figure 1.18.

When working with SY T , referring to a specific shape of the tableau is useful. The set of

SY T of shape λ is denoted SY T (λ). The enumeration of SY T (λ) is given using the hook length

formula. Next some elements needed to find this enumeration are given.

Definition 1.4.4. A hook in a Young diagram is the collection of boxes obtained by taking a

specific box of the diagram along with all of the boxes to the right and below this box.
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1 2 4 8 12 13

3 6 9

5 7 10

11

Figure 1.18. A Young diagram of shape [6, 3, 3, 1] and a standard Young tableau of the same shape.

See Figure 1.19 for an example of a hook in a Young diagram. When referring to a specific

hook, a specific box of the diagram is being referenced also. That box is usually called u.

Figure 1.19. A Young diagram with a hook shown.

Now the hook length of a box in a Young diagram is discussed.

Definition 1.4.5. The hook length of a box u in a Young diagram λ is the number of boxes

contained in the hook established from u, denoted h(u).

Each box of a Young diagram has its own hook length. This is shown in Figure 1.20. Frame,

Robinson and Thrall used hook length in their enumeration of standard Young tableaux.

9 7 6 3 2 1

5 3 2

4 2 1

1

Figure 1.20. The Young diagram of [6,3,3,1] with the hook lengths of each box.

Theorem 1.4.6 ([14]). Let λ be a partition with n boxes. The number of tableaux in SY T (λ),

denoted by fλ, is given by the hook length formula: fλ =
n!∏

u∈λ
h(u)

.
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Example 1.4.7. The number of tableaux in SY T ([6, 3, 3, 1]) uses the hook lengths in Figure 1.20

and is as follows: f [6,3,3,1] =
13!

9 · 7 · 6 · 3 · 2 · 1 · 5 · 3 · 2 · 4 · 2 · 1 · 1
= 11440.

Young diagrams may be filled in different ways to create other types of tableaux. Standard

Young tableaux is one such type and they are used in Chapter 3. The next definition describes

another way to fill a Young diagram with numbers and will be used in Chapter 2.

1.4.2. Semistandard Young tableaux

Semistandard Young tableaux are other fillings of a Young diagram. These new tableaux

will be defined and enumerated in the following discussion.

Definition 1.4.8. A semistandard Young tableau (SSYT) is a filling of a Young diagram with

positive integers such that the rows are weakly increasing and the columns are strictly increasing.

An example of a semistandard Young tableau is seen in Figure 1.21.

1 1 2 4 5 7

2 2 3

3 4 5

6

Figure 1.21. A semistandard Young tableau of shape [6, 3, 3, 1].

The following refinement is studied in Chapter 2 and places more restrictions on the

tableaux.

Definition 1.4.9. Let SSY T (m,n) denote the set of semistandard Young tableaux with at most

m columns and entries at most n.

In 1983, Gordon enumerated SSY T (m,n) as follows.

Theorem 1.4.10 ([17]). The number of SSYT with at most m columns and entries at most n is:

∏
1≤i≤j≤n

m+ i+ j − 1

i+ j − 1
.

Example 1.4.11. This example shows how the formula for enumerating SSY T (m,n) is used.
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SSY T (3, 2) =

(
3 + 1 + 1− 1

1 + 1− 1

)(
3 + 1 + 2− 1

1 + 2− 1

)(
3 + 2 + 2− 1

2 + 2− 1

)
=

(
4

1

)(
5

2

)(
6

3

)
= 20

Therefore, there are 20 different semistandard Young tableau with first row of length at most 3 and

entries at most 2. These tableau come from semistandard Young tableau of shapes:

[3], [3, 1], [3, 2], [3, 3], [2], [2, 1], [2, 2], [1], ∅. There can be at most two rows in the tableau since the

entries may be at most 2.

As with SY T , at times it is necessary to refer to the shape of the tableau. Notation using

the shape of the tableaux is now discussed.

Definition 1.4.12. Let SSY T (λ, n) denote the set of semistandard Young tableaux of partition

shape λ and entries at most n.

For example, the tableau in Figure 1.21 is in both SSY T (6, n) and SSY T ([6, 3, 3, 1], n) for

any n ≥ 7.

Stanley’s enumeration of SSY T (λ, n) is discussed in the following definition and theorem.

Definition 1.4.13. The content, c(u), is given by c(u) = j − i for every u = (i, j) in a Young

diagram.

Example 1.4.14. The content of each box in a Young diagram of shape [6, 3, 3, 1] is given below.

Notice that u = (3, 2) represents the box in the third row and second column from the upper left.

0 1 2 3 4 5

−1 0 1

−2 −1 0

−3

Theorem 1.4.15 ([26, p. 403]). The number of SSY T of shape λ with entries at most n is given

by the hook-content formula: ∏
u∈λ

n+ c(u)

h(u)

where c(u) is the content of the SSY T and h(u) is the hook length of u.

Example 1.4.16. The hook content formula is applied to enumerate SSY T of shape [6,3,3,1] with

entries at most 7:
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(
7 + 0

9

)(
7 + 1

7

)(
7 + 2

6

)(
7 + 3

3

)(
7 + 4

2

)(
7 + 5

1

)(
7 + (−1)

5

)(
7 + 0

3

)
(

7 + 1

2

)(
7 + (−2)

4

)(
7 + (−1)

2

)(
7 + 0

1

)(
7 + (−3)

1

)
= 344960.

Therefore, there are 344960 semistandard Young tableau of shape [6, 3, 3, 1] that have entries at

most 7.

Notice that in Theorem 1.4.15 a shape of tableau is needed. Conversely, in Theorem 1.4.10

all tableau that fit in a certain size box are considered. Example 1.4.11 shows that there are many

shapes that make up SSY T (m,n).

1.4.3. Special shapes of tableaux

There are many special shapes of tableaux that are studied for various reasons. Some of

these special shapes will be discussed in the following subsection. These special tableaux show

other ways that tableaux can be used in combinatorics, and some will be further discussed in later

chapters.

Definition 1.4.17. A hook-shaped Young diagram is a Young diagram with only one row and one

column (of length k − 1), denoted [λ1, 1
k−1].

Recall that λ1 is the length of the first row of a Young diagram. Two examples of hook

shapes are given in Figure 1.22, A and B. Hook shaped tableaux tend to have nice properties.

SSY T of hook shape will be discussed in Chapter 2 and SY T of hook shape will be discussed in

Chapter 3.

A = B = C =

Figure 1.22. Young diagram A is a [6, 1] hook, B is a [3, 14] hook and C is a staircase shaped
diagram.

Definition 1.4.18. A staircase-shaped Young diagram is a Young diagram where the row lengths

decrease by one with every row. Thus the shapes of these Young diagrams are [n, n− 1, . . . , 2, 1].
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The example of a staircase shaped Young diagram is [5,4,3,2,1], in Figure 1.22 C. When

the maximum entry is also the number of rows of the tableau, then the hook content formula gives

the enumeration of these special SSY T as 2(n2). Staircase shaped semistandard Young tableaux

with the extra condition that each diagonal is strictly increasing from upper right to lower left are

in bijection with alternating sign matrices [23]. Examples of enumerating tableaux of these shapes

is given in Example 1.4.19.

Example 1.4.19. First the enumerations of hook shaped tableaux for both a SY T (Theorem 1.4.6)

and SSY T (Theorem 1.4.15) are given to compare.

Using the [6, 1] hook from Figure 1.22 the number of SY T ([6, 1]) is:

f [6,1] =
7!

1 ∗ 2 ∗ 3 ∗ 4 ∗ 5 ∗ 7 ∗ 1
= 6.

The number of SSY T ([6, 1], 7) of the same shape is:

(7 + 0)(7 + 1)(7 + 2)(7 + 3)(7 + 4)(7 + 5)(7− 1)

1 ∗ 2 ∗ 3 ∗ 4 ∗ 5 ∗ 7 ∗ 1
=

7 ∗ 8 ∗ 9 ∗ 10 ∗ 11 ∗ 12 ∗ 6

1 ∗ 2 ∗ 3 ∗ 4 ∗ 5 ∗ 7 ∗ 1
= 4752.

The enumeration for SSY T of staircase shape was given; now the enumeration of SY T of

staircase shape is given.

f [n,n−1,...,3,2,1] =

(
(n+1)(n)

2

)
!

1n ∗ 3n−1 ∗ 5n−2 ∗ · · · ∗ (2n− 3)3 ∗ (2n− 1)1

1.5. Catalan objects

It is well-known that two row rectangular standard Young tableaux are counted by the

Catalan numbers, and therefore they are a Catalan object [27, p.259]. A polytope made from these

Catalan objects will be the focus of Chapter 3. Catalan objects will be defined and enumerated in

the following discussion, in addition to several examples of Catalan objects. Stanley’s book Catalan

Numbers [28] is the reference for this subsection unless stated otherwise.

Definition 1.5.1. The nth Catalan number Cn is:

Cn =
1

n+ 1

(
2n

n

)
=

(2n)!

(n+ 1)!n!
.
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Any countable collection of sets such that the nth set is enumerated by Cn is called a collection of

Catalan objects.

Catalan numbers count many objects in combinatorics. Stanley’s book Catalan numbers [28]

lists 214 different known objects that are counted by these numbers, and are thus Catalan objects.

The following theorem contains several common Catalan objects.

Theorem 1.5.2. The Catalan number Cn counts the following:

i. Plane binary trees with n+ 1 endpoints (or 2n+ 1 vertices).

ii. Sequences i1i2 · · · i2n of 1’s and −1’s with i1 + i2 + · · · + ij ≥ 0 for all j. These are called

ballot sequences.

iii. Arrangements of n left parentheses ‘(’ and n right parentheses ‘)’ so that all the parentheses

match. These are called binary parenthesizations.

iv. Paths P in the (x, y) plane from (0, 0) to (2n, 0), with steps (1, 1) and (1,−1), that never pass

below the x-axis. Such paths are called Dyck paths.

v. Dissections of a convex (n + 2)-gon into n triangles by drawing n − 1 diagonals, no two of

which intersect in their interior. Such dissections are called triangulations of an (n+ 2)-gon

(with no new vertices).

vi. Partitions of a set with n elements such that all the elements in the set are separated into

non-empty groups, called blocks, where every element is included in one and only one block

and such that the blocks are non-crossing. These are called non-crossing set partitions on n

points.

vii. Graphs with 2n nodes that are connected into pairs by n edges in such a way that no two of

them intersect. Such graphs are called non-crossing matchings.

viii. Standard Young tableaux of shape [n, n].

ix. Order ideals of the triangular poset Qn.

The bijections between these nine Catalan objects are demonstrated and briefly explained

in Example 1.5.3. However, this is not a proof of the bijections, just examples of them.
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Example 1.5.3. Here are several Catalan objects that are in bijection with each other, (note in

our examples, n = 7). The objects are numbered according to their number in the theorem, and

the idea of the bijections is briefly described from one Catalan object to the next (denoted, e.g.,

vi to vii, for each transition). Notice the examples are organized so that the picture of one object

is shown, then the description of getting from this first object to the next object, with the second

object displayed after the transition.

The first Catalan object discussed is the non-crossing set partition.

vi. Non-crossing set partition: 147|2|3|56, or pictorially

1

2

3

4
5

6

7

The non-crossing set partition can be seen as a partitioned number sequence or pictorially

as follows. Start with n numbered nodes in a circle, in this case there are seven nodes numbered

in order clockwise around the circle. Then for each section of the partition, the nodes of the

corresponding number are connected in order. Note that none of the connections cross.

vi to vii : For each vertex in the circle of the non-crossing set partition, separate it into

two vertices. Renumber around the circle (make a note which vertices came from which original

number). For this example, the 1 from the non-crossing set partition becomes the 1 and 14 in the

non-crossing matching. Now repeat the connections as they were before, while keeping in mind the

original numbering. Thus a single vertex becomes two vertices and the split vertices will each have

a connection. One line becomes two lines and so on. Notice there are no crossings of the new lines

either. There are two ways to draw a non-crossing matching. To get from the circle to the line

example of non-crossing matchings, cut the circle between 1 and 14 and lay it straight.

vii. Non-crossing matching, drawn two ways:

1

2

3

4

5

6

78

9

10

11

12

13
14

1 2 3 4 5 6 7 8 9 10 11 12 13 14
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vii. to iii.: Starting with the second non-crossing matching, move in order from left to

right. When there is a start of an arc, write “ ( ”, when there is a end of an arc, write “ ) ”.

iii. Binary parenthesization: ( ( ) ( ) ) ( ( ( ) ) ) ( )

iii. to ii.: Replace “(” in the binary parenthesization by a 1 and “ ) ” by a −1.

ii. Ballot sequence: 1 1 − 1 1 − 1 − 1 1 1 1 − 1 − 1 − 1 1 − 1

i. to ii.: First some terminology for binary trees will be discussed. A binary tree begins at

the top with a 1. Then the branches which extended both to the right and left are called children.

A branch separates into children at a node and if there is an ending place, that is a leaf.

Starting with a binary tree and going to a ballot sequence will be discussed. Start at the

top and think about an ant “walking” around the outside, counter-clockwise. The ballot sequence

is found when noting new numbers as they are encountered the first time, however the last leaf gets

no number.

i. Binary tree:

1

1

1
-1

-1 -1

1

11

1

-1 -1

-1 -1

ii. to iv.: Here, start again with the ballot sequence. The Dyck path starts at (0, 0);

following the sequence from left to right, a 1 gives an up-step and a −1 gives a down-step.

iv. Dyck path from (0, 0) to (2n, 0):

(0, 0) (14, 0)

iv. to viii.: In the Dyck path, number each step from left to right. Make a Young diagram

with two rows each the length of half the number of steps in the Dyck path. Working from left to

right across the Dyck path, if the step is up, that number is written in the first available top box

(also working from left to right). If on the Dyck path there is a down-step, the number is written

in the next available bottom box.

32



viii. Two row rectangular standard Young tableau:
1 2 4 7 8 9 13

3 5 6 10 11 12 14

vi. Triangulation of an (n+ 2)-gon:

vi. to i. Start with a triangulation on an (n + 2)-gon. In this case the triangulation is of

a 9-gon. In the pictures, the triangulation is on the left and the triagulation with the binary tree

in the 9-gon is on the right. On the n-gon, start with a point on a fixed edge. From this point,

connect a line to all adjacent diagonals. At this connection point in the diagonals, a node is placed.

Then two branches will connect to the next diagonals. Continue to make nodes and branches until

an edge of the n-gon is reached. When finished, all diagonals will have a node and every polygon

edge (besides the top of the tree with the starting edge) will have an ending leaf. Thus it is a binary

tree inside the n-gon, like the one on the right.

ix. Order ideals on the triangular poset, Qn+1:

ix. to iv. This example starts with an order ideal of Q8. The elements of the order ideal

are red dots in the picture above. Now add another row of dots at the bottom of the order ideal,

these will all be included in the order ideal by construction. If the lower left dot is (0, 0) connect

the upper elements in the order ideal with a line that starts at (0, 0) and ends at (2(7), 0). Notice

there are 14 steps and this line always stays above the x-axis. Thus this line is a Dyck path.

This is just a glimpse at how all of these Catalan objects are in bijection with each other

and with all of the 214 Catalan objects that have been documented so far. The vertices of the

polytope discussed in Chapter 3 can be added to this list of Catalan objects.
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1.6. Other topics

This subsection contains a few other topics related to either matrices or graphs. The

background on graphs will be used in Section 2.6 and the material on matrices will be used in both

Chapters 2 and 3.

Definition 1.6.1 ([9]). A graph G is called a planar graph if G can be drawn in the plane without

any two of its edges crossing.

Definition 1.6.2 ([9]). When those points in the plane that correspond to the vertices and edges

of a planar graph G are removed from the plane, the resulting connected pieces of the plane are

the regions of G. One of the regions is unbounded and is called the exterior region of G.

Remark 1.6.3. The above definition of region is valid even when a graph is disconnected. For a

disconnected graph, the regions depend on the planar embedding. The graphs considered in this

thesis are given with a specific planar embedding, so this will not cause ambiguity.

A planar graph and its regions are shown in Figure 1.23.

R1

R2

R3

R4

R6

R5

Figure 1.23. An example of a planar graph with regions labeled. R6 is the exterior region.

Now the discussion turns to matrices. Most properties of matrices used in this research are

basic properties, so only a few items will be discussed here. Partial column sums and partial row

sums of a matrix are defined first. These matrices will be used in Sections 3.3 and 3.4. Note that

this is notation used in this research and is not standard notation for partial sum matrices.

Definition 1.6.4. Let Ĉ(X) be the partial column sum matrix of an m× n matrix X, defined as

ci,j =

i∑
i′=1

Xi′,j (1 ≤ i ≤ m, 1 ≤ j ≤ n).
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An example of a matrix and its partial column sum matrix is given in Figure 1.24.



0 0 0 0 0 .2 0 0 .7 .1 0 1
0 0 0 0 .5 −.1 0 .4 −.7 −.1 1 −1
0 0 0 .5 −.4 −.1 .4 −.4 .1 .9 −1 0
0 0 .9 −.4 −.1 .4 −.4 .4 .1 −.9 0 0
0 .9 −.8 −.1 .4 −.4 .4 −.2 −.2 0 0 0
1 −.8 −.1 .4 −.4 .3 −.2 −.2 0 0 0 0





0 0 0 0 0 .2 0 0 .7 .1 0 1
0 0 0 0 .5 .1 0 .4 0 0 1 0
0 0 0 .5 .1 0 .4 0 .1 .9 0 0
0 0 .9 .1 0 .4 0 .4 .2 0 0 0
0 .9 .1 0 .4 0 .4 .2 0 0 0 0
1 .1 0 .4 0 .3 .2 0 0 0 0 0



Figure 1.24. Example of a 6× 12 matrix and its corresponding partial column sums matrix Ĉ(X).

Definition 1.6.5. Let R̂(X) be the partial row sum matrix of an m× n matrix X, defined as

ri,j =

j∑
j′=1

Xi,j′ (1 ≤ i ≤ m, 1 ≤ j ≤ n).

Remark 1.6.6. Any m× n matrix X can be recovered from Ĉ(X) or R̂(X) as follows.

Ĉ−1 is given by Xi,j =


ci,j − ci−1,j 2 ≤ i ≤ m, 1 ≤ j ≤ n

ci,j i = 1, 1 ≤ j ≤ n

R̂−1 is given by Xi,j =


ri,j − ri,j−1 1 ≤ i ≤ m, 2 ≤ j ≤ n

ri,j 1 ≤ i ≤ m, j = 1
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2. SIGN MATRIX POLYTOPES FROM YOUNG TABLEAUX1

This chapter discusses polytopes formed by different semistandard Young tableaux and de-

fines a new set of matrices called sign matrices. A bijection between sign matrices and semistandard

Young tableaux will be discussed. In Theorem 2.1.5 this bijection is refined to a bijection between

semistandard Young tableaux with a given shape and sign matrices with prescribed row sums. The

two polytope families discussed are the convex hulls of certain sign matrices. Sections 2.2 to 2.6 will

define the two polytope families and discuss their dimension, vertices, inequalities, facet enumera-

tions and face lattice descriptions. Section 2.7 discuses the connection of the two polytope families

to each other and to the alternating sign matrix polytope. Section 2.8 investigates the connection

of these polytope families to the transportation polytope. This chapter is based on work from [24].

2.1. Semistandard Young tableaux and sign matrices

In this section, the definition of semistandard Young tableaux is recalled and sign matrices

are defined. Then a bijection between them is discussed, due to Aval. This bijection is refined in

Theorem 2.1.5 to a bijection between semistandard Young tableaux with a given shape and sign

matrices with prescribed row sums.

Recall that a semistandard Young tableau is a filling of a Young diagram such that the

rows are weakly increasing and the columns are strictly increasing. More information about these

tableaux can be found in Section 1.4. The next definition uses partitions, which were introduced

in Definition 1.4.1.

Definition 2.1.1. The frequency representation of a partition λ is the sequence [a1, a2, . . . , aλ1 ]

where ai equals the number of parts of λ equal to i.

Example 2.1.2. The partition λ = [6, 3, 3, 1] has frequency representation [1, 0, 2, 0, 0, 1] and k = 4.

An example of the Young diagram with this partition shape is pictured on the left in Figure 1.18.

Aval [2] defined a new set of objects, called sign matrices, which will be the building blocks

of the polytopes that will be our main objects of study.

1The material in this chapter was co-authored by Sara Solhjem and Dr. Jessica Striker. Solhjem had primary
responsibility for all computations involved in this research and resulting theorem statements. Solhjem and Striker
worked collaboratively to prove most of the theorems in this chapter. Solhjem was the primary drafter of this chapter;
both Solhjem and Striker revised and proofread this chapter.
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Definition 2.1.3 ([2]). A sign matrix is a matrix M = (Mij) with entries in {−1, 0, 1} such that:

i∑
i′=1

Mi′j ∈ {0, 1} , for all i, j. (2.1)

j∑
j′=1

Mij′ ≥ 0, for all i, j. (2.2)

In words, the column partial sums from the top of a sign matrix equal either 0 or 1 and the

partial sums of the rows from the left are non-negative.

Aval showed that m× n sign matrices are in bijection with SSYT with at most m columns

and largest entry at most n [2, Proposition 1]. Defined now is the set of sign matrices shown in

Theorem 2.1.5 to be in bijection with SSY T (λ, n); this is a refinement of Aval’s bijection. See

Figure 2.1 for an example of this bijection.

1 1 2 4 5

2 2 3

3 4 5

6

⇐⇒


0 0 0 0 1 0
0 0 0 1 −1 0
0 1 1 −1 1 0
1 0 −1 1 −1 0
0 0 1 −1 0 1



Figure 2.1. Example of the bijection between SSY T and sign matrices.

Definition 2.1.4. Fix a partition λ with frequency representation [a1, a2, . . . , aλ1 ] and fix n ∈ N.

Let M(λ, n) be the set of λ1 × n sign matrices M = (Mij) such that:

n∑
j=1

Mij = aλ1−i+1, for all 1 ≤ i ≤ λ1. (2.3)

Call M(λ, n) the set of sign matrices of shape λ and content at most n.

Theorem 2.1.5. M(λ, n) is in explicit bijection with SSY T (λ, n).

Proof. We first outline the bijection of Aval [2] between SSY T and sign matrices. Given an m×n

sign matrix M , construct a tableau Φ(M) = T ∈ SSY T (m,n) such that the entries in the ith row

of M determine the (m − i + 1)st column (from the left) of T . In the ith row of M , note which

columns have a partial sum (from the top) of one. Record the numbers of the matrix columns in
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which this occurs, in increasing order from top down, to form column m − i + 1 of T . Since we

record the entries in increasing order for each column of T and each entry only occurs once in a

column, the columns of T are strictly increasing. The rows of T are weakly increasing, since by

(2.2) the partial sums of the rows of M are non-negative. Thus, T is a SSY T . The length of the

first row of T is m and the entries of T are at most n, since M is an m× n matrix. Thus Φ maps

into SSY T (m,n).

Aval proved in [2] that Φ is an invertible map that gives a bijection between SSY T (m,n)

and m×n sign matrices. We refine this to a bijection between SSY T (λ, n) and M(λ, n) by keeping

track of the row sums of M and the shape of T . Given a tableau, T ∈ SSY T (λ, n), we show

that Φ−1(T ) = M ∈ M(λ, n). By [2], it is known that M is a sign matrix, so we only need to

show it satisfies the condition (2.3). Consider the frequency representation [a1, a2, a3, . . . , aλ1 ] of

the partition λ. Consider columns λ1 − i and λ1 − i + 1 of T . If a number, `, appears in both

columns λ1− i+ 1 and λ1− i+ 2 of T , then Mi` = 0. So we can ignore when a number is repeated

in adjacent columns of T , since it corresponds to a zero in M , which does not contribute to the

row sum. Suppose ` appears in column λ1− i+ 2 of T but not column λ1− i+ 1. Then Mi` = −1.

Suppose ` appears in column λ1 − i + 1 of T but not column λ1 − i + 2. Then Mi` = 1. So the

total row sum

n∑
j′=1

Mij′ equals the number of entries that appear in column λ1− i+ 1 of T but not

column λ1 − i + 2 minus the number of entries that appear in column λ1 − i + 2 but not column

λ1 − i+ 1. This is exactly the length of column λ1 − i+ 1 minus the length of column λ1 − i+ 2,

which is given by aλ1−i+1.

See Figure 2.2 and Example 2.1.6.

Example 2.1.6. In Figure 2.2, a semistandard Young tableau T of shape [3, 3, 1, 1, 1] is given

and the corresponding sign matrix M formed by the bijection discussed in Theorem 2.1.5. To see

that M satisfies (2.3), note that the total row sums of M are 2, 0 and 3, while the frequency

representation of the partition [3, 3, 1, 1, 1] is [3, 0, 2].

2.2. Definition and vertices of P (λ, n)

In this section, we define the first of the two polytopes that we are studying and prove some

of its properties.
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1 2 3

2 3 6

4

5

6

⇐⇒

 0 0 1 0 0 1
0 1 0 0 0 −1
1 0 −1 1 1 1



Figure 2.2. The SSYT of shape [3, 3, 1, 1, 1] and corresponding sign matrix from Example 2.1.6.

Definition 2.2.1. Let P (λ, n) be the polytope defined as the convex hull, as vectors in Rλ1n, of

all the matrices in M(λ, n). Call this the sign matrix polytope of shape λ.

We now investigate the structure of this polytope, starting with its dimension.

Proposition 2.2.2. The dimension of P (λ, n) is λ1(n − 1) if 1 ≤ k < n. When k = n, the

dimension is (λ1 − λn)(n− 1).

Proof. Since each matrix in M(λ, n) is λ1 × n, the ambient dimension is λ1n. However, when

constructing the sign matrix corresponding to a tableau of shape λ, as in Theorem 2.1.5, the last

column is determined by the shape λ via the prescribed row sums (2.3) of Definition 2.1.4. This is

the only restriction on the dimension when 1 ≤ k < n, reducing the free entries in the matrix by

one column. Thus, the dimension is λ1(n− 1).

When k = n the dimension depends on the number of columns of length n in λ; this is

given by λn. A column of length n in a SSYT with entries at most n is forced to be filled with the

numbers 1, 2, . . . , n. So the matrix rows corresponding to these columns are determined, and thus

do not contribute to the dimension. Thus the dimension is (λ1 − λn)(n− 1).

From now on, it is assumed k < n. We now define a graph associated to any matrix. The

graph will be useful in upcoming theorems; see Figure 2.3.

Definition 2.2.3. We define the m× n grid graph Γ(m,n) as follows. The vertex set is V (m,n) :=

{(i, j) : 1 ≤ i ≤ m + 1, 1 ≤ j ≤ n + 1}. We separate the vertices into two categories. We

say the internal vertices are {(i, j) for 1 ≤ i ≤ m, 1 ≤ j ≤ n} and the boundary vertices are
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{(m+ 1, j) and (i, n+ 1) for 1 ≤ i ≤ m, 1 ≤ j ≤ n}. The edge set is

E(m,n) :=


(i, j) to (i+ 1, j) 1 ≤ i ≤ m, 1 ≤ j ≤ n

(i, j) to (i, j + 1) 1 ≤ i ≤ m, 1 ≤ j ≤ n.

We draw the graph with i’s increasing to the right and j’s increasing down, to correspond with

matrix indexing.

Definition 2.2.4. Given an m× n matrix X, define a graph, X̂, which is a labeling of the edges

of Γ(m,n) from Definition 2.2.3. The horizontal edges from (i, j) to (i, j+ 1) are each labeled by the

corresponding row partial sum rij =

j∑
j′=1

Xij′ (1 ≤ i ≤ m, 1 ≤ j ≤ n). Likewise, the vertical edges

from (i, j) to (i + 1, j) are each labeled by the corresponding column partial sum cij =
i∑

i′=1

Xi′j

(1 ≤ i ≤ m, 1 ≤ j ≤ n). In many of the figures, the interior vertices are labeled with their

corresponding matrix entry Xij (1 ≤ i ≤ m, 1 ≤ j ≤ n).

Remark 2.2.5. Note that given either the row or column partial sum labels of X̂, one can uniquely

recover the matrix X. See Remark 1.6.6.

See Figures 2.3 and 2.4.

c11

cm1

c12 c1n

cm2 cmn
. . .cm3

r11 r12 r1n

r21 r22 r2n

.

rm1 rm2 rmn

.

.

Xm1 Xm2 Xmn

X11 X12 X1n

X21 X22 X2n

Figure 2.3. The graph X̂ from Definition 2.2.4, with dots on only the internal vertices.
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The above notation will be used in proving the next theorem, which identifies the vertices

of P (λ, n).

Theorem 2.2.6. The vertices of P (λ, n) are the sign matrices M(λ, n).

Proof. Fix a sign matrix M ∈M(λ, n). In order to show that M is a vertex of P (λ, n), we need to

find a hyperplane with M on one side and all the other sign matrices in M(λ, n) on the other side.

Then since P (λ, n) is the convex hull of M(λ, n), M will necessarily be a vertex.

Let cij denote the column partial sums of M , as in Definition 2.2.4. Define CM :=

{(i, j) | cij = 1}. Note that CM is unique for each M , since the column partial sums can only

be 0 or 1, and by Remark 2.2.5, we can recover M from the cij . Also note that |CM | = |λ|, that is,

the number of partial column sums that equal one in M equals the number of boxes in λ.

Define a hyperplane in Rλ1n as follows, on coordinates Xij corresponding to positions in a

λ1 × n matrix:

HM (X) :=
∑

(i,j)∈CM

i∑
i′=1

Xi′j = |λ| − 1

2
. (2.4)

If X = M , then HM (X) = HM (M) = |λ|, since |CM | = |λ|. Given a hyperplane formed in

this manner, we may recover the matrix from which it is formed, thus HM is unique for each M .

By definition, every matrix in M(λ, n) has |λ| partial column sums that equal 1. Let

M ′ 6= M be another matrix in M(λ, n). It must be that there is an (i, j) where cij = 1 in M and

cij = 0 in M ′. HM (M ′) will be smaller than HM (M) by one for every time this occurs. For any

(i, j) such that cij = 0 in M and cij = 1 in M ′, (i, j) 6∈ CM , so this partial sum does not contribute

to HM .

Therefore, HM (M) = |λ| > |λ| − 1

2
while HM (M ′) < |λ| − 1

2
. Thus the sign matrices of

M(λ, n) are the vertices of P (λ, n).

Example 2.2.7. Figure 2.4 gives the six graphs corresponding to the six sign matrices in M(λ, 3)

for λ = [2, 2]; these matrices correspond to SSY T of shape [2, 2] with entries at most 3. Let Me

be the sign matrix corresponding to the graph in Figure 2.4(e). The equation for the hyperplane,

HMe , described in Theorem 2.2.6, is HMe(X) = X11 + (X11 +X21) +X13 + (X12 +X22) = 2X11 +

X12 +X13 +X21 +X22 = |λ|− 1

2
= 3.5. Now we substitute the entries of each matrix in M([2, 2], 3)

into this equation to show (e) is the only matrix on one side of this hyperplane.
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1

0

0
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0

0

1

1

1
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1

0

1 0 1

0 1 -1

2

0

0 1 1

1 -1 0

2

0

(f)

1 1

-1

0

0

0

0

0

1

1

1 1

1

0 1 1

0 0 0

2

0

Figure 2.4. The six graphs corresponding to the six sign matrices in M([2, 2], 3); these matrices
correspond to SSY T of shape [2, 2] with entries at most 3.

(a): X11 = 1, X12 = 1, X13 = 0, X21 = 0, X22 = 0 → HMe(Ma) = 2 + 1 + 0 + 0 + 0 = 3;

(b): X11 = 1, X12 = 0, X13 = 1, X21 = 0, X22 = 0 → HMe(Mb) = 2 + 0 + 1 + 0 + 0 = 3;

(c): X11 = 0, X12 = 1, X13 = 1, X21 = 1, X22 = 0 → HMe(Mc) = 0 + 1 + 1 + 1 + 0 = 3;

(d): X11 = 0, X12 = 1, X13 = 1, X21 = 0, X22 = 0 → HMe(Md) = 0 + 1 + 1 + 0 + 0 = 2;

(e): X11 = 1, X12 = 0, X13 = 1, X21 = 0, X22 = 1 → HMe(Me) = 2 + 0 + 1 + 0 + 1 = 4;

(f): X11 = 0, X12 = 1, X13 = 1, X21 = 1, X22 = -1 → HMe(Mf ) = 0 + 1 + 1 + 1+(-1) = 2.

Note that Me is on one side of 2X11 + X13 + X21 + X22 = 3.5 and the other five matrices

in M([2, 2], 3) are on the other side.

2.3. Definition and vertices of P (m,n)

Another family of polytopes will now be defined and studied, constructed using all m × n

sign matrices.

Definition 2.3.1. Let P (m,n) be the polytope defined as the convex hull of all m×n sign matrices.

Call this the (m,n) sign matrix polytope.

Proposition 2.3.2. The dimension of P (m,n) is mn for all m > 1.
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Proof. Since every entry is essential, all mn of the entries contribute to the dimension.

Theorem 2.3.3. The vertices of P (m,n) are the sign matrices of size m× n.

Proof. Fix an m × n sign matrix M . In order to show that M is a vertex of P (m,n), we need to

find a hyperplane in Rmn with M on one side and all the other m × n sign matrices on the other

side. Then since P (m,n) is the convex hull of all m × n sign matrices, M would necessarily be a

vertex.

Let cij =

i∑
i′=1

Xi′j in M , as in Definition 2.2.4. Recall from the proof of Theorem 2.2.6 the

notation CM = {(i, j) | cij = 1 in M} and HM (X) =
∑

(i,j)∈CM

i∑
i′=1

Xi′j .

Define a hyperplane in Rmn as follows, on coordinates Xij corresponding to positions in an

m× n matrix.

KM (X) := HM (X)−
∑

(i,j)6∈CM

i∑
i′=1

Xi′j = |CM | −
1

2
. (2.5)

Note that CM is unique for each sign matrix M since we may recover any sign matrix from its

column partial sums (see Remark 2.2.5). Therefore KM (X) is unique for each matrix M .

We wish to show the hyperplane KM (X) = |CM | −
1

2
has M on one side and all the other

m × n sign matrices on the other. Note that if X = M , then KM (X) = KM (M) = |CM |. So we

wish to show that given any M ′ ∈M(m,n) such that M ′ 6= M , KM (M ′) < |CM | −
1

2
.

We have two cases:

Case 1 : There is a (i, j) entry cij = 0 in M and cij = 1 in M ′. In this case, (i, j) 6∈ CM . So

in KM (M ′), this partial sum gets subtracted making KM (M ′) one smaller than KM (M) for every

such (i, j).

Case 2 : There is a (i, j) entry cij = 1 in M and cij = 0 in M ′. In this case, (i, j) ∈ CM . So

this partial sum contributed one to HM (M), whereas in HM (M ′) there is a contribution of zero.

Therefore HM (M) is one greater than HM (M ′) so that KM (M) is one greater than KM (M ′) for

every such (i, j).

Since M and M ′ must differ in at least one column partial sum, |CM | = KM (M) ≥

KM (M ′) + 1 so that KM (M ′) < |CM | −
1

2
for all m × n sign matrices M ′. Thus the m × n

sign matrices are the vertices of P (m,n).
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Figure 2.5. Four of the 26 partial sum graphs corresponding to the sign matrices that are vertices
in P (2, 3) but not in P ([2, 2], 3).

Example 2.3.4. Let Mh be the sign matrix corresponding to the graph in Figure 2.5(h). So

HMh
(X) = 2X11 + X12, and therefore HMh

(Ma) = HMh
(Mb) = HMh

(Me) = HMh
(Mh) =

HMh
(Mi) = HMh

(Mj) = 3. This shows that the hyperplane of Theorem 2.2.6 does not sepa-

rate M from all the other m × n sign matrices. But using Theorem 2.3.3, we find the needed

hyperplane to be KMh
(X) = X11 + (X11 + X21) − X12 + (X12 + X22) − X13 − (X13 + X23) =

2X11 +X21−2X12−X22−2X13−X23 = |CM |−
1

2
= 3− 1

2
= 2.5. One may calculate the following:

KMh
(Ma) = KMh

(Mb) = KMh
(Me) = 0; KMh

(Mh) = 3; KMh
(Mi) = KMh

(Mj) = −1. This

illustrates how the hyperplane KM (X) = |CM |−
1

2
separates M from the other m×n sign matrices,

even though HM (X) = |CM | −
1

2
fails to.

In the following remark, we give some properties and non-properties of P (m,n) and P (λ, n).

Definitions of these properties can be found at the end of Subsection 1.3.2.

Remark 2.3.5. Both P (λ, n) and P (m,n) are integral polytopes, as all vertices have integer values.

Neither P (λ, n) nor P (m,n) are regular polytopes. For example, some of the vertices in P (2, 2) from

Figure 2.14 are adjacent to 4 edges, while others are adjacent to 5 or 6 edges. These polytopes are

not simplicial, since the facets of these polytopes have varying numbers of vertices. For example,
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the facets of P (2, 2) have between 4 and 7 vertices. These polytopes are not simple; the vertices

corresponding to δ5 and δ6 in Figure 2.14 are contained in 20 and 14 facets, respectively.

2.4. Inequality descriptions

In analogy with the Birkhoff polytope [5, 32] and the alternating sign matrix polytope

[3, 31], we find an inequality description of P (λ, n).

Theorem 2.4.1. P (λ, n) consists of all λ1 × n real matrices X = (Xij) such that:

0 ≤
i∑

i′=1

Xi′j ≤ 1, for all 1 ≤ i ≤ λ1, 1 ≤ j ≤ n (2.6)

0 ≤
j∑

j′=1

Xij′ , for all 1 ≤ i ≤ λ1, 1 ≤ j ≤ n (2.7)

n∑
j′=1

Xij′ = aλ1−i+1, for all 1 ≤ i ≤ λ1. (2.8)

Proof. This proof builds on techniques developed by Von Neumann in his proof of the inequality

description of the Birkhoff polytope [32]. First we need to show that any X ∈ P (λ, n) satisfies

(2.6)− (2.8). Suppose X ∈ P (λ, n), thus X =
∑
γ

µγMγ where
∑
γ

µγ = 1 and the Mγ ∈M(λ, n).

Since we have a convex combination of sign matrices, by Definition 2.1.3 we obtain (2.6) and (2.7)

immediately. (2.8) follows from (2.3) in the definition of M(λ, n) (Definition 2.1.4). Thus P (λ, n)

fits the inequality description.

Let X be a real-valued λ1 × n matrix satisfying (2.6), (2.7), and (2.8). We wish to show

that X can be written as a convex combination of sign matrices in M(λ, n), so that it is in P (λ, n).

Consider the corresponding graph X̂ of Definition 2.2.4. Let ri0 = 0 = c0j for all i, j. Then for all

1 ≤ i ≤ λ1, 1 ≤ j ≤ n, we have Xij = rij − ri,j−1 = cij − ci−1,j . Thus,

rij + ci−1,j = cij + ri,j−1. (2.9)

If X has no non-integer partial sums, then X is a λ1 × n sign matrix, since (2.6), (2.7), and (2.8)

reduce to Definitions 2.1.3 and 2.1.4.

So we assume X has at least one non-integer partial sum rij or cij . We may furthermore

assume X has at least one non-integer column partial sum, since if all column partial sums of X
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were integers, Xij = cij − ci−1,j would imply the Xij would be integers, thus all row partial sums

would also be integers.

We construct an open or closed circuit in X̂ whose edges are labeled by non-integer partial

sums. We say a closed circuit is a simple cycle in X̂, that is, it begins and ends at the same vertex

with no repetitions of vertices, other than the repetition of the starting and ending vertex. We say

an open circuit is a simple path in X̂ that begins and ends at different boundary vertices along the

bottom of the graph, that is, it begins at a vertex (λ1 + 1, j) and ends at vertex (λ1 + 1, j0) for

some j0 6= j.

We create such a circuit by first constructing a path in X̂ as follows. If there exists j such

that 0 < cλ1j < 1, we start the path at bottom boundary vertex (λ1 + 1, j). If there is no such j,

we find some cij such that 0 < cij < 1 and start at the vertex corresponding to Xij . By (2.9), at

least one of ci±1,j , ri,j±1 is also a non-integer. Therefore, we may form a path by moving through

X̂ vertically and horizontally along edges labeled by non-integer partial sums.

Now X̂ is of finite size and all the boundary partial sums on the left, right, and top are

integers (since for all i and j, ri0 = c0j = 0 and rin = aλ1−i+1). So the path eventually reaches one

of the following: (1) a vertex already in the path, or (2) a vertex (λ1 +1, j0). In Case (2), this means

cλ1j0 is not an integer. But the total sum of the matrix is

λ1∑
i=1

rin =

λ1∑
i=1

aλ1−i+1. Each aλ1−i+1 is an

integer, so the total sum of all matrix entries is an integer. Since cλ1j0 is not an integer, there must

be some other column sum cλ1j that is also not an integer. By construction, the path began at a

bottom boundary vertex (λ1 + 1, j) with cλ1j not an integer, for some j 6= j0. So this process yields

an open circuit whose edge labels are all non-integer. In Case (1), the constructed path consists of

a simple closed loop and possibly a simple path connected to the closed loop at some vertex Xi0j0 .

We delete this path, and keep the closed loop. This process yields a closed circuit in X̂ whose edge

labels are all non-integer. See Figures 2.6 and 2.7 for examples.

Let the following denote a circuit constructed as above, where the circled c and r values

denote the edge labels as we traverse the circuit, and the boxed Xij ’s denote the matrix entries

corresponding to the vertices on the corners of the circuit where the path changes from vertical to

horizontal or vice versa. (Note how the boxes and circles appear in Figures 2.6 and 2.7.)
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(
c0 , . . . , c

′
0 , Xi1,j0 , r1 , . . . , r

′
1 , Xi1,j1 , c1 , . . . , c

′
1 , Xi2,j1 , r2 , . . .

)

Using this circuit, we are able to write X as the convex combination of two new matrices, call

them X+ and X−, that each have at least one more partial sum equal to its maximum or minimum

possible value.

Construct a matrix X+ by setting

X+
iα,jβ

=


Xiαjβ + `+ if α+ β is odd

Xiαjβ − `
+ if α+ β is even

and setting all other entries equal to the corresponding entry of X. That is, construct X+ by

alternately adding and subtracting a number `+ from each entry in X that corresponds to a corner

in the circuit and leaving all other matrix entries unchanged. `+ is chosen to be the maximum

possible value that preserves (2.6), (2.7), and (2.8) when added and subtracted from the corners as

indicated above. That is, `+ equals the minimum value of the union of the following sets:

{cij | the edge labeled by cij is below a circuit corner Xiαjβ with α+ β even},

{1− cij | the edge labeled by cij is below a circuit corner Xiαjβ with α+ β odd},

{rij | the edge labeled by rij is to the right of a circuit corner Xiαjβ with α+ β even}.

Note `+ > 0 since all the partial sums in the circuit are non-integer.

Construct a matrix X− by setting

X−iα,jβ =


Xiαjβ − `

− if α+ β is odd

Xiαjβ + `− if α+ β is even.

and setting all other entries equal to the corresponding entry of X. That is, construct X− by

alternately subtracting and adding a number `− from each entry in X that corresponds to a corner

in the circuit and leaving all other matrix entries unchanged. `− is chosen to be the maximum
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possible value that preserves (2.6), (2.7), and (2.8) when subtracted and added from the corners as

indicated above. That is, `− equals the minimum value of the union of the following sets:

{cij | the edge labeled by cij is below a circuit corner Xiαjβ with α+ β odd},

{1− cij | the edge labeled by cij is below a circuit corner Xiαjβ with α+ β even},

{rij | the edge labeled by rij is to the right of a circuit corner Xiαjβ with α+ β odd}.

Note `− > 0 since all the partial sums in the circuit are non-integer.

Now in the case of either an open or closed circuit, there will be an even number of corners

in the circuit. Note that for open circuits, each row has an even number of corners and there will be

two columns with an odd number of corners, namely the columns where the path begins and ends.

Whenever there is an even number of circuit corners in a row or column, this means that the same

number is alternately added to and subtracted from the corners, thus the total row or column sum

is not changed. Whenever there is an odd number of circuit corners in a column, this means that

the total column sum will change, however it will stay between 0 and 1. Thus our constructions of

X+ and X− above are well-defined.

Both X+ and X− satisfy (2.6)–(2.8) by construction. Also by construction,

X =
`−

`+ + `−
X+ +

`+

`+ + `−
X−

and
`−

`+ + `−
+

`+

`+ + `−
= 1. This is shown as follows: First notice that if Xi,j is unchanged in X+

it is also unchanged in X−. Thus in this case,

`−

`+ + `−
X+
i,j +

`+

`+ + `−
X−i,j =

(
`−

`+ + `−
+

`+

`+ + `−

)
Xi,j =

(
`+ + `−

`+ + `−

)
Xi,j = Xi,j .

If Xi,j is changed to Xi,j + `+ in X+, then in X−, Xi,j becomes Xi,j − `−. Thus in this case,

`−(Xi,j + `+)

`+ + `−
+
`+(Xi,j − `−)

`+ + `−
=
`−Xi,j + `−`+ + `+Xi,j − `+`−

`+ + `−
=

(`+ + `−)Xi,j

`+ + `−
= Xi,j .
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Again, if Xi,j is changed to Xi,j− `+ in X+, then in X−, Xi,j becomes Xi,j + `−. Thus in this case,

`−(Xi,j − `+)

`+ + `−
+
`+(Xi,j + `−)

`+ + `−
=
`−Xi,j − `−`+ + `+Xi,j + `+`−

`+ + `−
=

(`+ + `−)Xi,j

`+ + `−
= Xi,j .

So X is a convex combination of the two matrices X+ and X− that still satisfy the inequal-

ities and are each at least one step closer to being sign matrices, since they each have at least one

more partial sum attaining its maximum or minimum bound. Hence, by iterating this process, X

can be written as a convex combination of sign matrices in M(λ, n).

 .9 0 .3 .8
0 .1 .6 −.7
0 .9 −.1 .2

 =⇒

0

.9 0 .3 .8

0 .1 .6 -.7

0 .9 -.1 .2

.9

.9

.9

.9

.9

.9

.9

1.2 2

0

0

0

.3 .8

.1 .7

.1 .1

.8

.81

1

.3

Figure 2.6. Left: A matrix X in P ([3, 3, 1], 4); Right: An open circuit in X̂.

 1 0 0 1
0 .4 .6 −1
0 −.6 −.6 0

 =⇒

0

1 0 0 1

0 .4 .6 -1

0 .6 -.6 0

1

1

1

1

1 1

1

1

1

0

0

0 0 0

0

0

0 .4

.4 .6

.6

2

0

Figure 2.7. Left: A matrix X in P ([3, 3, 1], 4); Right: A closed circuit in X̂.

Example 2.4.2. We use the open circuit in Figure 2.6 to show how to find X+, X−, `+ and `−. The

circuit is
(

.9 , .9 , .9 , .9 , .9 , .9 , .3 , .3 , .6 , .7 , -.7 , .1 , .3
)

, where the circled

and bold entries are the partial column sums and the circled non-bold entries are the row partial
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 .9 0 .3 .8
0 .1 .6 −.7
0 .9 −.1 .2

 =
.7

.1 + .7

 1 0 .2 .8
0 .1 .7 −.8
0 .9 −.1 .2

+
.1

.1 + .7

 .2 0 1 .8
0 .1 −.1 0
0 .9 −.1 .2


Figure 2.8. The decomposition of the matrix from Figure 2.6 as the convex combination of X+ and
X−; see Example 2.4.2.

sums of the circuit. The matrix entries at the corners of the circuit are boxed for emphasis. To

construct X+, we label the corner entries alternately plus and minus, so the plus value goes on the

.9 and .6 corners and the minus on the .3 and -.7 corners. Looking at the partial sums, we see

that `+ will be the minimum of {.3, .1, .3}∪{1− .9, 1− .9, 1− .9}∪∅. Thus `+ = .1, so .1 will be

added to plus corners and subtracted from minus corners with X+ as the result. We now switch the

plus and minus corners. `− will be the minimum of {.9, .9, .9}∪{1− .3, 1− .1, 1− .3}∪{.9, .9, .7}

so `− = .7. So then .7 is added to the plus corners and subtracted from the minus corners to get

X−. Thus we may write the matrix as the convex combination of the matrices X+ and X− as in

Figure 2.8.

We now find an inequality description of P (m,n).

Theorem 2.4.3. P (m,n) consists of all m× n real matrices X = {Xij} such that:

0 ≤
i∑

i′=1

Xi′j ≤ 1 for all 1 ≤ i ≤ m, 1 ≤ j ≤ n. (2.10)

0 ≤
j∑

j′=1

Xij′ for all 1 ≤ i ≤ m, 1 ≤ j ≤ n. (2.11)

Proof. The proof follows the proof of Theorem 2.4.1, with a few differences. The open circuits are

no longer restricted to start and end at the bottom of the matrix; they may also start and end at

vertices (i, n + 1) and (i0, n + 1) (i 6= i0) on the right border of Γ(m,n), or they may start at the

bottom at vertex (m+ 1, j) and end on the right at vertex (i, n + 1). Therefore the evenness of

corners is not needed here, since unlike in Theorem 2.4.1, there is no analogue of Equation (2.8)

that specifies the row sums. With these less restrictive exceptions, the matrices X− and X+ will

be found in the same way as in the proof of Theorem 2.4.1.
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2.5. Facet enumerations

In this section, we use the inequality descriptions of the previous section to enumerate the

facets in P (m,n) and P (λ, n). Note this is not as straightforward as counting the inequalities in

the theorems of the previous section, as these inequality descriptions are not minimal.

Theorem 2.5.1. P (m,n) has 3mn− n− 2(m− 1) facets.

Proof. We have three defining inequalities in the inequality description of Theorem 2.4.3 for each

entry Xij of X ∈ P (m,n): 0 ≤
i∑

i′=1

Xi′j ,

i∑
i=1

Xi′j ≤ 1, and 0 ≤
j∑

j′=1

Xij′ . Therefore there are at

most 3mn facets, each made by turning one of the inequalities to an equality. We now determine

which of these inequalities give unique facets.

Notice first that 0 ≤ X1j (from the column partial sums) is always present. This implies

that the partial sums of the first row are all nonnegative, since each entry in the first row must be

nonnegative. Thus the inequalities 0 ≤
j∑
j=1

X1j′ for 1 ≤ j ≤ n are all unnecessary; and there are n

inequalities of this form.

We have already counted 0 ≤ X11 in the column partial sums. From the partial row sums,

we have that 0 ≤ X21. But in the partial column sum we have 0 ≤ X11 + X12; this is implied by

0 ≤ X11 and 0 ≤ X21. Similarly, the partial column sums 0 ≤
i∑

i′=1

Xi′1 for 2 ≤ i ≤ m are all implied

by the partial row sums 0 ≤ Xi′1. There are m− 1 inequalities of this form.

Note that

m∑
i′=1

Xi′1 ≤ 1. Furthermore, note that 0 ≤ Xm1 from the row partial sums.

Therefore we have that
m−1∑
i′=1

Xi′1 ≤ 1 −Xm1 ≤ 1. Similarly, the m − 1 inequalities in the form of

i∑
i′=1

Xi′1 ≤ 1 for 1 ≤ i < m are all implied by the partial row sums 0 ≤ Xi′1.

Therefore we have the number of facets to be at most 3mn− n− 2(m− 1). (See Figure 2.9

for an illustration of the discarded inequalities.) We claim this upper bound is the facet count.

That is, a facet can be defined as all X ∈ P (m,n) which satisfy exactly one of the following:

rij =

j∑
j′=1

Xij′ = 0, 2 ≤ i ≤ m and 1 ≤ j ≤ n (2.12)
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cij =
i∑

i′=1

Xi′j = 0, 1 ≤ i ≤ m and 2 ≤ j ≤ n (2.13)

cij =
i∑

i′=1

Xi′j = 1, 1 ≤ i ≤ m and 2 ≤ j ≤ n (2.14)

r11 = c11 = X11 = 0 (2.15)

cm1 =

m∑
i′=1

Xi′1 = 1. (2.16)

Note each equality fixes exactly one entry, thus lowering the dimension by one. Let two

generic equalities of the form (2.12)-(2.16) be denoted as αij = γ and βde = δ for α, β ∈ {r, c}

and γ, δ ∈ {0, 1}, where the choice of r or c for each of α and β indicates whether the equality

involves a row partial sum rij or column partial sum cij , and the indices (i, j) and (d, e) must be

in the corresponding ranges indicated by (2.12)-(2.16). To finish the proof, we construct an m× n

sign matrix M , such that M satisfies αij = γ and not βde = δ. We work with M̂ rather than M

itself, recalling the bijection between M and M̂ . Recall from Definition 2.2.4, M̂ is a graph whose

horizontal edges are labeled by the partial row sums of M and whose vertical edges are labeled by

the partial column sums of M . Since all of the equalities in (2.12)-(2.16) are given by setting a cij

equal to 0 or 1 or a rij equal to 0, set the edge label of M̂ corresponding to αij equal to γ and the

edge label corresponding to the equality βde equal to 1− δ. Now we transform M̂ back to M and if

we can fill in the rest of the matrix so it is a sign matrix, the proof will be complete. In the cases

below, we construct such a sign matrix M satisfying equality α and not equality β.

Case 1 : αij = 0 and βde = 1. So in M̂ , βde = 0. It suffices to set M equal to the zero

matrix.

Case 2: αij = 0 and βde = 0. So in M̂ , βde = 1. If i 6= d and j 6= e, let Mde = 1 and the

rest of the entries equal to zero.

Suppose α = β = c. If j 6= e, let Mde = 1 and the rest of the entries equal to zero. If j = e

and i < d, let Mde = 1 and the rest of the entries equal to zero. If j = e and i > d, let Mde = 1,

Md+1,e = −1, Md+1,e−1 = 1, and the rest of the entries equal to zero. (Note e ≥ 2 since β = c.)

Suppose α = β = r. If i 6= d, let Mde = 1 and the rest of the entries equal to zero. If i = d

and j < e, let Mde = 1 and the rest of the entries equal to zero. If i = d and j > e, let Mde = 1,
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Md,e+1 = −1, Md−1,e+1 = 1, and the rest of the entries equal to zero. Note since β = r, d ≥ 2, so

d− 1 ≥ 1.

If α = r and β = c, let M1e = 1 and the rest of the entries equal to zero. (Note since α = r,

i ≥ 2.)

If α = c and β = r, let Md1 = 1 and the rest of the entries equal to zero. (Note since α = c,

j ≥ 2.)

Case 3: αij = 1 and βde = 1. So in M̂ , βde = 0. Note only column partial sums are set

equal to 1 in the above list of equalities, so α = c and β = c. If j 6= e, set Mij = 1 and the rest of

the entries of M equal to zero. If j = e and i < d, set Mij = Mi+1,j−1 = 1 and Mi+1,j = −1 and

all other entries equal to zero. Note j − 1 ≥ 1 since (2.14) requires that 2 ≤ j ≤ n. If j = e and

i > d, set Mij = 1 and the rest of the entries of M equal to zero.

Case 4: αij = 1 and βde = 0. So in M̂ , βde = 1. Note α = c, so j ≥ 2. If j 6= e, let

Mij = Mde = 1 and the rest of the entries zero. If j = e and β = c, let M1j = 1 and the rest of the

entries equal to zero. If j = e and β = r, if i 6= d, let Mij = 1 and Md1 = 1 (we noted above that

j ≥ 2, so these ones are not in the same column) and the rest of the entries equal to zero. If j = e,

β = r, and i = d, set Mij = 1 and the rest of the entries equal to zero.

Thus we may always complete to a sign matrix. M is constructed to satisfy αij = γ but

not βij = δ, thus each of the equalities in (2.12)-(2.16) gives rise to a unique facet.

We now state a theorem on the number of facets of P (λ, n). We then give simpler formulas

as corollaries in the special cases of two-row shapes, rectangles, and hooks.

Figure 2.9. Γ(m,n) decorated with symbols that represent the inequalities that do not determine

facets of P (m,n). Squares represent partial column sums of the form
∑

Xij ≤ 1 and dots represent

partial row or column sums of the form
∑

Xij ≥ 0.
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Theorem 2.5.2. The number of facets of P (λ, n) is:

3nλ1 − n− 3(λ1 − 1)− (n− 2)(λ1 − λ2 + λn−1)− (k − aλ1)− 2(λ1 −D(λ))− C(λ) (2.17)

where D(λ) is the number of distinct part sizes of λ (each part size counts once, even though there

may be multiple parts of a given size), we take λi = 0 if k < i, and C(λ) equals the following:

C(λ) =



2 if k = 1,

1 if 1 < k < n− 1 and λ1 6= λ2,

0 if 1 < k < n− 1 and λ1 = λ2,

2 if k = n− 1 and either λ1 6= λ2 or λ = λk1,

1 if k = n− 1, λ1 = λ2, and λ 6= λk1.

Proof. By Theorem 2.5.1, since P (λ, n) satisfies all the inequalities satisfied by P (m,n) for m = λ1,

we have at most 3nλ1 − n− 2(λ1 − 1) facets, given by the equalities (2.12)–(2.16). See Figure 2.9.

But note equalities of the form (2.12) with j = n no longer give facets, since by (2.8) the

total sum of each matrix row is fixed. There are λ1 − 1 such inequalities, so we now have at most

3λ1n− n− 3(λ1 − 1) facets. See Figure 2.10.

To prove our count in (2.17), we determine which of the remaining equalities in (2.12)–(2.16)

are unnecessary. We discuss each remaining term of (2.17) below. Let X ∈ P (λ, n).

1. −(n− 2)(λ1 − λ2 + λn−1): First, suppose λ1 6= λ2, otherwise (n − 2)(λ1 − λ2) = 0. Since

λ1 6= λ2, the first row of X sums to 1 and the next λ1 − λ2 − 1 rows sum to 0. So the first

i rows all together sum to 1 for any 1 ≤ i ≤ λ1 − λ2. That is, for any fixed i ∈ [1, λ1 − λ2],
i∑

i′=1

n∑
j′=1

Xi′j′ = 1. Also, by (2.6),
i∑

i′=1

Xi′j ≥ 0, and by (2.7),

j∑
j′=1

Xij′ ≥ 0. So we have the

following sum:

1 =

i∑
i′=1

n∑
j′=1

Xi′j′ =
i∑

i′=1

j−1∑
j′=1

Xi′j′︸ ︷︷ ︸
≥0

+

n∑
j′=j

i∑
i′=1

Xi′j′︸ ︷︷ ︸
≥0

.

Since we have all positive terms summing to 1, none of these terms may exceed 1. Therefore,
i∑

i′=1

Xi′j ≤ 1 for all 1 ≤ i ≤ λ1 − λ2, 1 ≤ j ≤ n.
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Thus the partial sums of the form
i∑

i′=1

Xi′j ≤ 1 for 1 ≤ i ≤ λ1−λ2, 1 ≤ j ≤ n are unnecessary.

We have already disregarded these inequalities for j = 1, 1 ≤ i ≤ n−1 in Theorem 2.5.1. Now

consider j = 1, i = n in Case 4, to count the partial column sums in the nth column in Case

3. Thus, for this term we count the (n− 2)(λ1−λ2) unnecessary inequalities

i∑
i′=1

Xi′j ≤ 1 for

1 ≤ i ≤ λ1 − λ2, 2 ≤ j ≤ n− 1.

Now suppose k = n−1 so that λn−1 6= 0, otherwise (n−2)λn−1 = 0. Since λn−1 6= 0, the last

λn−1 rows of X sum to 0. That is, for any fixed i ∈ [λ1 − λn−1 + 1, λ1],

λ1∑
i′=i+1

n∑
j′=1

Xi′j′ = 0.

Also, by (2.8),

λ1∑
i′=1

n∑
j′=1

Xi′j′ =

λ1∑
i′=1

aλ1−i+1 = k = n − 1, since λ has n − 1 parts. Also, by

(2.6),
i∑

i′=1

Xi′j ≤ 0. So we have the following sum:

n− 1 =

n∑
j′=1

λ1∑
i′=1

Xi′j′ =

n∑
j′=1

i∑
i′=1

Xi′j′︸ ︷︷ ︸
≤1

+
n∑
j=1

λ1∑
i′=i+1

Xi′j′︸ ︷︷ ︸
=0

Since we have n terms
i∑

i′=1

Xi′j′ summing to n− 1, each at most 1, none of these terms may

be negative. Therefore,
i∑

i′=1

Xi′j ≥ 0 for all λ1 − λn−1 + 1 ≤ i ≤ λ1, 1 ≤ j ≤ n.

Thus the partial sums of the form
i∑

i′=1

Xi′j ≥ 0 for λ1 − λn−1 + 1 ≤ i ≤ λ1, 1 ≤ j ≤ n

are unnecessary. We have already disregarded these inequalities for j = 1, 2 ≤ i ≤ n in

Theorem 2.5.1. Now the partial column sums in the nth column will be counted in Case

3. Thus, for this term we count the (n − 2)λn−1 unnecessary inequalities

i∑
i′=1

Xi′j ≤ 1 for

λ1 − λn−1 + 1 ≤ i ≤ λ1, 2 ≤ j ≤ n− 1. See Figure 2.10.

2. −(k − aλ1): Let i > 1. By (2.8),

n∑
j′=1

Xij′ = aλ1−i+1. Now 0 ≤
i−1∑
i′=1

Xin and

i∑
i′=1

Xin ≤ 1

imply Xin ≤ 1, so we have
n−1∑
j′=1

Xij′ ≥ aλ1−i+1 − 1. This implies the inequality
n−1∑
j′=1

Xij′ ≥ 0

whenever aλ1−i+1 > 0. Similarly,
n−z∑
j′=1

Xij′ ≥ aλ1−i+1− z for all 1 ≤ z ≤ aλ1−i+1 since the last
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z entries in that row sum to at most z (since entries can be no more than 1, by the column

partial sums). Thus, the aλ1−i+1 inequalities
n−z∑
j′=1

Xij′ ≥ 0, 1 ≤ z ≤ aλ1−i+1, are unnecessary.

By reindexing, this is equivalent to

j∑
j′=1

Xij′ ≥ 0, n− aλ1−i+1 ≤ j ≤ n− 1.

We already discarded all the row partial sum inequalities in the first row in Theorem 2.5.1, so

we do not count those here. Thus aλ1 is not included. So we have

λ1−1∑
i′=1

ai′ unnecessary partial

sum inequalities. This equals the total number of parts of λ minus the number of parts with

part size λ1, that is, k − aλ1 . See Figure 2.11.

3. −2(λ1 −D(λ)): Suppose aλ1−i+1 = 0 so that the total sum of row i of X equals 0. Then the

last entry Xin may not be greater than 0, since this would contradict
n−1∑
j′=1

Xij′ ≥ 0. So the

inequality
i∑

i′=1

Xi′n ≤ 1 is unnecessary. Also, since the total sum of row i of X equals 0, we

have then Xin = −
n−1∑
j=1

Xij . In addition,

i∑
i′=1

Xi′n ≥ 0. We substitute the previous equality

into this inequality to obtain
i−1∑
i′=1

Xi′n −
n−1∑
j=1

Xij ≥ 0. We know
n−1∑
j=1

Xij ≥ 0, so this implies

i−1∑
i′=1

Xi′n ≥ 0.

So for each aλ1−i+1 = 0 we have two unnecessary inequalities:
i∑

i′=1

Xi′n ≤ 1 and

i−1∑
i′=1

Xi′n ≥ 0.

The number of row sums equal to zero is given by the number of integers ` with 1 ≤ ` ≤ λ1

such that a` = 0. This count equals λ1 − D(λ), where D(λ) equals the number of distinct

part sizes of λ. Thus, we have 2(λ1 −D(λ)) unnecessary inequalities. See Figure 2.11.

4. −C(λ): We now have a few more border inequalities to discard, depending on λ. We take

each case in turn. See Figure 2.12.

(a) When λ1 6= λ2, we may also discard the inequality X1n ≤ 1, as this is a partial sum of the

form

i∑
i′=1

Xi′n ≤ 1 for 1 ≤ i ≤ λ1 − λ2, which by reasoning in Case 1 may be discarded.

The other inequalities of that form have already been counted in Case 3, thus we have
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one additional unnecessary inequality whenever λ1 6= λ2. Note, since λ2 = 0 6= λ1 for

k = 1, this inequality is also discarded in the case k = 1.

(b) When k = 1, since
n∑

j′=1

X1j′ = 1 and
n∑

j′=1

Xij′ = 0 for all 2 ≤ i ≤ λ1, we have that the

sum of all the entries in the matrix is 1. This, together with the inequalities

λ1∑
i′=1

Xi′j ≥ 0,

2 ≤ j ≤ n, implies

λ1∑
i′=1

Xi′1 ≤ 1. So we have one additional unnecessary inequality when

k = 1.

(c) When 1 < k = n− 1, by the reasoning in the k = n− 1 case of Case 1 we may discard

the inequality

λ1∑
i′=1

Xi′n ≥ 0. If k = 1, n = 2, we may not discard this inequality, since in

this case we have already discarded the inequality in (4b).

(d) Suppose k = n − 1 and λ is a rectangle, so λn−1 = λ1. In this case, we may also

discard the inequality X11 ≥ 0; this is a partial sum of the form
i∑

i′=1

Xi′1 ≥ 0 for

λ1 − λn−1 + 1 ≤ i ≤ λ1 which by the reasoning in Case 1 may be discarded. The

other inequalities of that form have already been counted in Case 3, thus we have one

additional unnecessary inequality whenever λ1 = λn−1
1 and k > 1. If k = 1, n = 2, we

may not discard this inequality, since we have already discarded the inequality in (4a).

Figure 2.10. Γ(λ1,n) decorated with symbols that represent inequalities that do not determine facets

of P (λ, n). Squares represent partial column sums of the form
∑

Xij ≤ 1 and dots represent partial

row or column sums of the form
∑

Xij ≥ 0. The filled-in shapes represent inequalities that were

already removed in the facet proof for P (m,n). The crosses represent the fixed row sums in P (λ, n).
The open squares and gray squares represent inequalities that are removed in Case 1.
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Thus the total number of facets is at most (2.17). We claim this upper bound is the facet

count. That is, a facet can be defined as all X ∈ P (λ, n) which satisfy exactly one of the following:

rij =

j∑
j′=1

Xij′ = 0, 2 ≤ i ≤ λ1 and 1 ≤ j ≤ n− aλ1−i+1 − 1 (2.18)

cij =
i∑

i′=1

Xi′j = 0, 1 ≤ i ≤ λ1 and 2 ≤ j ≤ n− 1 (2.19)

cin =

i∑
i′=1

Xi′n = 0, (i = λ1 and k < n− 1) or (1 ≤ i ≤ λ1 − 1 and aλ1−i > 0) (2.20)

cij =
i∑

i′=1

Xi′j = 1, λ1 − λ2 + 1 ≤ i ≤ λ1 and 2 ≤ j ≤ n− 1 (2.21)

cin =
i∑

i′=1

Xi′n = 1, λ1 − λ2 + 1 ≤ i ≤ λ1 and aλ1−i+1 > 0 (2.22)

r11 = c11 = X11 = 0 if λ = λn−1
1 and k > 1 (2.23)

cλ11 =

λ1∑
i′=1

Xi′1 = 1 if k = 1. (2.24)

Note each equality fixes exactly one matrix entry, lowering the dimension by one. By an

argument similar to that given in Theorem 2.5.1, given any two equalities above, we may construct

a sign matrix in M(λ, n) that satisfies one but not the other.

3 0

Figure 2.11. Examples of portions of Γ(λ1,n) that represent inequalities removed based on the fixed
row sums. The left diagram shows removed inequalities discussed in Case 2, aλ1−i+1

> 0. The right
diagram shows removed inequalities discussed in Case 3, aλ1−i+1

= 0.

Corollary 2.5.3. The number of facets of P ([λ1, λ2], n) when λ1 6= λ2 is as follows:

• 3nλ1 − n− 5(λ1 − 1)− (n− 2)(λ1 − λ2), when n > 3;

• 3nλ1 − n− 5(λ1 − 1)− (n− 2)λ2 − 1, when n = 3.
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A B

C D

Figure 2.12. Γ(λ1,n) decorated with symbols that represent inequalities removed in Case 4. A is
discussed in (4d), B is discussed in (4a), C is discussed in (4b), and D is discussed in (4c).

Proof. Suppose λ1 6= λ2 and n > 3. Then aλ1 = 1, D(λ) = 2, and C(λ) = 1 from 4a. Thus since

k = 2, the formula of Theorem 2.5.2 specializes to 3nλ1 − n− 3(λ1 − 1)− (n− 2)(λ1 − λ2)− (2−

1) − 2(λ1 − 2) − 1, which reduces to the above formula. Now suppose λ1 6= λ2 and n = 3. In this

case λn−1 = λ2 and C(λ) = 2 but the rest of the values remain the same. Thus, the formula of

Theorem 2.5.2 specializes to the above.

In the above corollary, we required λ1 6= λ2. The case λ = [λ1, λ1] is a special case of the

next corollary, which enumerates the facets when λ is a rectangle.

Corollary 2.5.4. The number of facets of P (λk1, n) is as follows:

• 0, when k = n;

• 2nλ1 − n− 3(λ1 − 1), when k = n− 1;

• 3nλ1 − n− 5(λ1 − 1), when 1 < k < n− 1;

• 2nλ1 − n− 3(λ1 − 1), when k = 1.

Proof. Suppose k = n. By Proposition 2.2.2, since k = n we have that the dimension of P (λk1) =

(λ1−λn)(n−1) = (λ1−λ1)(n−1) = 0. Since the polytope is zero dimensional, there are no facets.

Suppose k = n−1. We then have the following: λ1 = λ2, λn−1 = λ1, aλ1 = k = n−1, D(λ) =

1, and C(λ) = 2. Therefore by Theorem 2.5.2 the number of facets is 3nλ1 − n− 3(λ1 − 1)− (n−

1)(0 + λ1)− 0− 2(λ1 − 1)− 2 which reduces to the formula above.

For 1 < k < n − 1, by Theorem 2.5.2 the number of facets is 3nλ1 − n − 3(λ1 − 1) − (n −

2)(λ1 − λ2 + λn−1)− (k − aλ1)− 2(λ1 −D(λ))− C(λ). Since λ1 = λ2 and λn−1 = 0, the 4th term
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equals 0. The 5th term equals 0 since aλ1 = k. Note D(λk1) = 1, so the 6th term equals 2(λ1 − 1).

C(λ) = 0, so the resulting count follows.

When k = 1, by Theorem 2.5.2 the number of facets is 3nλ1−n−3(λ1−1)−(n−2)(λ1−λ2+

λn−1)−(k−aλ1)−2(λ1−D(λ))−C(λ) = 3nλ1−n−3(λ1−1)−(n−2)(λ1−0+0)−(1−1)−2(λ1−1)−2,

since aλ1 = D(λ) = 1 and λ2 = 0. The resulting count follows.

Finally, we have the following corollary in the case that λ is hook-shaped.

Corollary 2.5.5. The number of facets of P ([λ1, 1
k−1], n) is as follows:

• 2n(λ1 − 1)− n− 3(λ1 − 2), when k = n;

• 2nλ1 − 2n− 3(λ1 − 1) + 4, when k = n− 1;

• 2nλ1 − 3(λ1 − 1)− k + 2, when 1 < k < n− 1.

Proof. When k = n, the first column of the tableau corresponding to any sign matrix in the

polytope is fixed as 1, 2, . . . , n, so this reduces to the case of rectangles of one row, that is, shape

[λ1 − 1]. So by Corollary 2.5.4, we have 2n(λ1 − 1) − n − 3((λ1 − 1) − 1) = 2nλ1 − 3n − 3λ1 + 6

facets.

When k = n− 1, in formula in Theorem 2.5.2 we have that λ2 = 1, aλ1 = 1, D(λ) = 2 and

C(λ) = 2. Therefore, by Theorem 2.5.2 the number of facets is 3nλ1−n− 3(λ1− 1)− (n− 2)(λ1−

1 + 1)− (n− 1− 1)− 2(λ1 − 2)− 2, which when simplified yields the desired result.

When 1 < k < n − 1, aλ1 = 1, D(λ) = 2, and λ1 6= λ2 so C(λ) = 1. So by Theorem 2.5.2

the number of facets is 3nλ1−n− 3(λ1− 1)− (n− 2)(λ1− 1)− (k− 1)− 2(λ1− 2)− 1, which when

simplified yields the desired result.

2.6. Face lattice descriptions

In this section, we determine the face lattice of the P (m,n) and P (λ, n) polytope families.

We also show that given any two faces, we may determine the smallest dimensional face in which

they are contained. The ideas for proving the face lattice were inspired by [31] and [1].

Recall the definition of face lattice from Definition 1.3.25.
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Definition 2.6.1. We define the complete partial sum graph denoted Γ(m,n) as the following labeling

of the graph Γ(m,n). The horizontal edges are labeled with {0, ?}, while the vertical edges are labeled

{0, 1, {0, 1}}. An example is shown for P (3, 5) in Figure 2.13.

{0, ?}

{0,1,{0,1}}

{0,1,{0,1}}

{0,1,{0,1}}

{0,1,{0,1}}

{0,1,{0,1}}

{0,1,{0,1}}

{0,1,{0,1}}

{0,1,{0,1}}

{0,1,{0,1}}

{0,1,{0,1}}

{0,1,{0,1}}

{0,1,{0,1}}

{0,1,{0,1}}

{0,1,{0,1}}

{0,1,{0,1}}

{0, ?} {0, ?} {0, ?} {0, ?}

{0, ?} {0, ?} {0, ?} {0, ?} {0, ?}

{0, ?} {0, ?} {0, ?} {0, ?} {0, ?}

Figure 2.13. The complete partial sum graph Γ(3,5).

Definition 2.6.2. A 0-dimensional component of Γ(m,n) is a labeling of Γ(m,n) such that the edge

labels are one element subsets of the edge labels of Γ(m,n) and such that the edge labels come from

the partial sums of a sign matrix as follows: Let the edges be labeled as in M̂ for some m × n

sign matrix M , with the exception that horizontal edges labeled by nonzero numbers in M̂ are now

labeled as ?. For any m × n sign matrix M , let g(M) be the 0-dimensional component of Γ(m,n)

associated to M .

Lemma 2.6.3. The set of 0-dimensional components of Γ(m,n) are in bijection with m × n sign

matrices.

Proof. Recall we may recover a sign matrix M from its column partial sums. Thus, even though

we are not keeping the exact values of the row partial sums, we still have enough information to

recover a sign matrix M from g(M). Thus, given sign matrices M1 6= M2, g(M1) 6= g(M2).

Definition 2.6.4. Let δ and δ′ be labelings of Γ(m,n) such that the edge labels are subsets of

the corresponding edge label sets in Γ(m,n). Define the union δ ∪ δ′ as the labeling of Γ(m,n) such

that each edge is labeled by the union of the corresponding labels on δ and δ′, where we consider

0 ∪ ? = ?. Define the intersection δ ∩ δ′ to be a labeling of Γ(m,n) such that each edge is labeled
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by the intersection of the corresponding labels on δ and δ′, where we consider 0 ∩ ? = 0. So the

vertical edges will have labels of ∅, 0, 1, or {0, 1} and the horizontal edges will have labels of 0 or ?.

In our figures, vertical edges labeled {0, 1} and horizontal edges labeled ? will be darkened (blue).

Definition 2.6.5. Let δ be a labeling of Γ(m,n) such that the edge labels are subsets of the corre-

sponding edge label sets in Γ(m,n).

1. δ is a component of Γ(m,n) if it is either the empty labeling of Γ(m,n) (we call this the empty

component) or if it can be presented as the union of any set of 0-dimensional components.

2. For two components δ and δ′ of Γ(m,n), we say δ is a component of δ′ if the edge labels of δ

are each a subset of the corresponding edge labels of δ′, where we consider 0 to be a subset

of ?.

Remark 2.6.6. Note if δ and δ′ are components of Γ(m,n), δ∪δ′ is also a component. This is because

each of δ and δ′ is a union of 0-dimensional components, so δ ∪ δ′ is as well.

Next, we define a partial order on components of Γ(m,n).

Definition 2.6.7. Define a partial order Λ(m,n) on components of Γ(m,n) by containment. That

is, δ ≤ δ′ in Λ(m,n) if and only if δ is a component of δ′. Say δ′ covers δ, denoted δ l δ′, if δ is

contained in δ′ and there is no component δ′′ of Λ(m,n) such that δ < δ′′ < δ′.

Remark 2.6.8. For components δ and δ′ of Γ(m,n), we may define δ ∨ δ′ = δ ∪ δ′. By Remark 2.6.6,

this is itself a component of Γ(m,n). Also, it is the smallest component containing both δ and δ′ as

subcomponents, so this is the join operator of Λ(m,n). Theorems 2.6.14 and 2.6.15 show that Λ(m,n)

is the face lattice of P (m,n), thus there also exists a well-defined meet operator, since Λ(m,n) is a

lattice. The meet δ ∧ δ′ will be the maximal component contained in the intersection δ ∩ δ′; note

this could be the empty component.

Remark 2.6.9. Note the maximal component of Λ(m,n) is the union of all 0-dimensional components.

Thus, it has labels {0, 1} on the vertical edges of Γ(m,n) and ? on the horizontal edges.

Example 2.6.10. We show examples of several of the above definitions using Figure 2.14 (which

by the upcoming Theorems 2.6.14 and 2.6.15 is the face lattice of one of the 3-dimensional faces of

P (2, 2)).
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δ0 δ1 δ2 δ3

δ4 δ5 δ6

0 1 1

0 0

0 0

1 2

Seven of the ten Γ(2,2) 0-dimensional components

0 0?

0 0, 1

0 0

0 0, 1

0

0

? ?

0, 1

0

0

?0

0

0

0 0

0

0, 1

?0

0 0, 1
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0, 1

0

0
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0, 1

?0

0 1

0

0

0

0

?

?

1

?

0, 1

δ01 δ02 δ03 δ05 δ13 δ14

δ15 δ25

0

0

??

1 0, 1

0

0

0

0

?

0

0

?

0, 1

δ26 δ36 δ45 δ46

1 0

0 ?

0 0, 1

? ?

0, 1 0, 1

0 ?

0 1

? 0

1 0, 1

0 ?

0 1

? ?

1 1

0 ?

0 0, 1

? ?

1

1

Twelve of the 23 Γ(2,2) 1-dimensional components

0 ?0

0 0

? ?

0, 1 0, 1

0

0

0 ?

0

0, 1

0, 1

??

0, 1

0

0 ?

0, 1

0

?0

0 0, 1

?

0, 1

0

0, 1

?

0, 1

??

0, 1 1

0

0

0

0

?

?

1

?

0, 1

δ0236 δ013 δ025 δ015 δ1346

δ145 δ2456

0, 1 1 0, 1

0 ?

0 0, 1

? ?

Seven of the 21 Γ(2,2) 2-dimensional components

0 ?

? ?

0, 1

0, 1 0, 1

0

δ0123456

{0, ?} {0, ?}

{0, ?} {0, ?}

{0,1,(0,1)}

{0,1,(0,1)} {0,1,(0,1)}

{0,1,(0,1)}

δ0123456789

One of the eight 3-dimensional components The complete partial sum graph Γ(2,2)

Figure 2.14. A set of components of Γ(2,2).
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i). We first exhibit a component as a union of 0-dimensional components: δ025 = δ0 ∪ δ2 ∪ δ5.

ii). We now show how the union of two components can contain more 0-dimensional components

than are contained in the original component: δ14 ∪ δ46 = δ0123456. Note δ0123456 is the join.

iii). Next we intersect two components: δ2456 ∩ δ015 = δ5. Note δ5 is the meet.

iv). To illustrate containment of components, note the 1-dimensional components δ01, δ03, and δ13

are all contained in the 2-dimensional component δ013.

Definition 2.6.11. Given a component δ ∈ Λ(m,n), consider the planar graph G composed of the

darkened edges of δ; we regard any darkened edges on the right and bottom as meeting at a point

in the exterior region. We say a region of δ is defined as a planar region of G, excluding the exterior

region. Let R(δ) denote the number of regions of δ. For consistency we set R(∅) = −1.

See Figure 2.15 for an example of this definition and see Definition 1.6.1 for the definition

of a planar graph.

We now state a lemma which shows that moving up in the partial order Λ(m,n) increases

the number of regions. This lemma is used in the proof of Theorem 2.6.15.

Lemma 2.6.12. Suppose a component δ ∈ Λ(m,n) has R(δ) = ω. If δ l δ′ then R(δ′) ≥ ω + 1.

Proof. By convention, the empty component has R(∅) = −1. If λ is a 0-dimensional component,

R(λ) = 0, as there are no regions in a 0-dimensional component. Suppose a component δ ∈ Λ(m,n)

hasR(δ) = ω. We wish to show if δlδ′ thenR(δ′) ≥ ω+1. δlδ′ implies that the labels of each edge

of δ are subsets of the labels of each edge of δ′. Thus all the 0-dimensional components contained

in δ are also contained in δ′. δ′ must contain at least one more 0-dimensional component than δ,

otherwise δ′ would equal δ. This 0-dimensional component differs from any other 0-dimensional

component in δ by at least one circuit of differing partial sums: consider a 0-dimensional component

in δ′ that has a partial column sum that differs from the corresponding partial sum in any 0-

dimensional component in δ. By Equation (2.9), at least one adjacent row or column partial sum

of δ′ must also differ from the corresponding partial sum in δ. Thus, δ′ has at least one new open

or closed circuit of darkened edges, creating at least one new region. So R(δ′) ≥ ω + 1.
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We now define a map, which we show in Theorem 2.6.14 gives a bijection between faces of

P (m,n) and components of Γ(m,n).

Definition 2.6.13. Given a collection of sign matricesM = {M1,M2, . . . ,Mq}, we define the map

g(M) =

q⋃
i=1

g(Mi).

Theorem 2.6.14. Let F be a face of P (m,n) and M(F ) equal to the set of sign matrices that are

vertices of F . The map ψ : F 7→ g(M(F )) is a bijection between faces of P (m,n) and components

of Γ(m,n).

Proof. Let F be a face of P (m,n). Then g(M(F )) is a component of Γ(m,n) since g(M(F )) =
q⋃
i=1

g(Mi) is a union of 0-dimensional components. We now construct the inverse of ψ, call it ϕ.

Given a component ν of Γ(m,n), let ϕ(ν) be the face that results as the intersection of the facets

corresponding to the not darkened edges of ν.

We wish to show ψ(ϕ(ν)) = ν. First, we show ν ⊆ ψ(ϕ(ν)). Let M be a sign matrix such

that g(M) is a 0-dimensional component of ν. M is in the intersection of the facets that yields

ϕ(ν), since otherwise g(M) would not be a 0-dimensional component of ν. Thus g(M) is in ψ(ϕ(ν))

as well. So ν ⊆ ψ(ϕ(ν)), which means the edge labels of ν must be subsets of the edge labels of

ψ(ϕ(ν)).

Next, we show ν = ψ(ϕ(ν)). Suppose not. Then there exists some edge e of Γ(m,n) whose

label in ψ(ϕ(ν)) strictly contains the label of e in ν. Suppose e is a horizontal edge, then the label

of e in ν is 0 and the label of e in ψ(ϕ(ν)) is ?. Then the facet corresponding to the label 0 on e

would have been one of the facets intersected to get ϕ(ν). Therefore the matrix partial row sum

corresponding to edge e would be fixed as 0 in each sign matrix in ϕ(ν). So in the union ψ(ϕ(ν)),

this edge label would be the union of the edge labels of all the sign matrices in ϕ(ν), and this union

would be 0. This is a contradiction. Now suppose e is a vertical edge. Then the label of e in ν is

0 or 1 and the label of e in ψ(ϕ(ν)) is {0, 1}. Let γ denote the label of e in ν. As in the previous

case, the facet corresponding to the label γ on e would have been one of the facets intersected to

get ϕ(ν). Therefore the matrix partial column sum corresponding to edge e would be fixed as γ in

each sign matrix in ϕ(ν). So in the union ψ(ϕ(ν)), that edge label would be the union of the edge

labels of all the sign matrices in ϕ(ν), and this union would be γ. This is a contradiction. Thus

ν = ψ(ϕ(ν)).
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Figure 2.15. A dimension 5 face of P (3, 5), where the five regions are numbered.

Theorem 2.6.15. The map ψ: Faces of P (m,n)→ Components of Γ(m,n) is a poset isomorphism.

Moreover, we have

dim F = dim ψ(F )

for every face F in P (m,n).

Proof. Let F1 and F2 be faces of P (m,n) such that F1 ⊆ F2. Then F1 is an intersection of F2 and

some facet hyperplanes. In other words, F1 is obtained from F2 by setting one of the inequalities

in Theorem 2.4.3 to an equality. We have that ψ(F1) is obtained from ψ(F2) by changing at least

one darkened edge to a non-darkened edge. Therefore we have ψ(F1) ⊆ ψ(F2).

Conversely, suppose that ψ(F1) ⊆ ψ(F2). Recall the inverse of ψ is ϕ, where for any

component ν of Γ(m,n), ϕ(ν) is the face of P (m,n) that results as the intersection of the facets

corresponding to the not darkened edges of ν. Now if ψ(F1) ⊆ ψ(F2), the darkened edges of ψ(F1)

are a subset of the darkened edges of ψ(F2), so the not darkened edges of ψ(F2) are a subset of the

not darkened edges of ψ(F1). So ϕ(ψ(F1)) is an intersection of the facets intersected in ϕ(ψ(F2))

and some additional facets (if F1 6= F2). Thus F1 = ϕ(ψ(F1)) ⊆ ϕ(ψ(F2)) = F2.

Now, we prove the dimension claim. Recall that dim(P (m,n)) = mn. Since ψ is a poset

isomorphism, ψ maps a maximal chain of faces F0 ⊂ F1 ⊂ · · · ⊂ Fmn to the maximal chain

ψ(F0) ⊂ ψ(F1) ⊂ · · · ⊂ ψ(Fmn) in the components of Γ(m,n). We know that the maximal component
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of Λ(m,n) has mn regions, thus the result follows by Lemma 2.6.12 and by noting ν ( ν ′ implies

dim ν < dim ν ′ for every ν, ν ′ ∈ the components of Γ(m,n).

We now discuss the face lattice of P (λ, n). The main result is restated in this new setting,

but since most of the definitions and proofs are exactly analogous, we only note where additional

notation or arguments are needed.

Definition 2.6.16. Define the shape-complete partial sum graph denoted Γ(λ,n) as the following

labeling of the graph Γ(λ1,n). The vertical edges are labeled {0, 1, {0, 1}} as before. The horizontal

edges are labeled with the fixed row sum {0, ?}, except the last horizontal edge in row i is labeled

with aλ1−i+1. An example is shown in Figure 2.16.

{0, ?}

{0,1,{0,1}}

{0,1,{0,1}}

{0,1,{0,1}}

{0,1,{0,1}}

{0,1,{0,1}}

{0,1,{0,1}}

{0,1,{0,1}}

{0,1,{0,1}}

{0,1,{0,1}}

{0,1,{0,1}}

{0,1,{0,1}}

{0,1,{0,1}}

{0,1,{0,1}}

{0,1,{0,1}}
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{0, ?} {0, ?} {0, ?} 3

{0, ?} {0, ?} {0, ?} {0, ?} 0

{0, ?} {0, ?} {0, ?} {0, ?} 1

Figure 2.16. The shape-complete partial sum graph of P ([3, 3, 3, 1], 5).

Remark 2.6.17. 0-dimensional components, components, containment of components, and regions

are defined analogously. Let Λ(λ,n) denote the partial order on components of Γ(λ,n) by containment.

See Figure 2.17 for an example of a component of Λ(λ,n).

Remark 2.6.18. Note the maximal component of Λ(λ,n) is the union of all 0-dimensional components.

Thus, it has labels {0, 1} on the vertical edges of Γ(λ1,n) and ? on the horizontal edges, but with

the fixed row sums in the nth column.

Theorem 2.6.19. Let F be a face of P (λ, n) and M(F ) equal to the set of sign matrices that are

vertices of F . The map ψ(M(F )) is a bijection between faces of P (λ, n) and components of Γ(λ,n).

Moreover, ψ is a poset isomorphism, and the dimension of F is equal to the dimension of ψ(F ).
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Proof. The proof is analogous to the proofs of Theorems 2.6.14 and 2.6.15; we need only check that

the dimension of the maximal component of Λ(λ,n) matches the dimension of P (λ, n). Recall the

dimension of P (λ, n) equals λ1(n−1) when 1 ≤ k < n, and (λ1−λn)(n−1) when k = n. Note that

when 1 ≤ k < n, there are λ1(n− 1) regions in the maximal component of Λ(λ,n). When k = n the

column partial sums in the last λn rows of Γλ,n are all fixed to be one, due to the first λn columns

of the tableau being 1, . . . , n. Thus there will be no darkened vertical edges in the bottom λn rows.

This means that there are no open regions in these rows, so there will be (λ1 − λn)(n− 1) regions

in the maximal component of Λ(λ,n).

0
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0,1

1

?

0,1

0,1

0,1

0,1

0,1

0,1

0,1

0,1

0,1

0,1

0,1

0,1

0,1

? ? ?

? ? ?

? ? ? ? ?

? ? ? ?

0

0

0

1

1 11

1

0

0

0 0

0

3

2

1

2 3
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7 7 8 8 8

Figure 2.17. An 8-dimensional component of P ([4, 4, 4, 1, 1], 6).

2.7. Connections and related polytopes

In this section, we describe connections between sign matrix polytopes and related poly-

topes. First we describe how P (λ, n) and P (m,n) are related.

Lemma 2.7.1. Suppose λ1 ≤ m. Then P (λ, n) is the intersection of a λ1(n− 1)-dimensional

subspace of Rmn and P (m,n).

Proof. The only difference between the inequality descriptions in Theorem 2.4.1 and Theorem 2.4.3

is (2.8), which fixes the row total sums in P (λ, n). So P (λ, n) is the intersection of P (m,n) and

the subspace defined by (2.8).
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See Figure 2.18 for an example.

(0, 0, 0) (1, 0, 0)

(0, 1, 0)

(0, 0, 1)

(1, 1, 0)

(1, 1, 1)(0, 1, 1)

(1, 0, 1)

1

2

3

3
2

3
1

3

1
2

2
1

∅

P ([1], 3)

P ([1, 1], 3) P ([1, 1, 1], 3)

P ([ ], 3)

Figure 2.18. The cube above is P (1, 3); the P (λ, 3) polytopes for each partition shape λ in a
1× 3 box are also indicated. P ([ ], 3) and P ([1, 1, 1], 3) are each a single point, while P ([1], 3) and
P ([1, 1], 3) are the indicated triangles cutting through P (1, 3).

The following lemma is implicit in Aval’s paper on sign matrices. Recall from Defini-

tion 1.3.39 that A(n) denotes the set of n× n alternating sign matrices.

Lemma 2.7.2 ([2]). A(n) is the set of sign matrices M = (Mij) in M([n, n − 1, . . . , 2, 1], n)

satisfying the additional requirement:

j∑
j′=1

Mij′ ∈ {0, 1} for all i, j. (2.25)

Proof. Let M ∈ A(n). Then the nonzero entries of M alternate between 1 and −1 across any row

or column. The first nonzero entry in a row or column must be a 1, since otherwise that row or

column would not sum to 1. Thus (2.1) and (2.2) from Definition 2.1.3 of a sign matrix and (2.25)

above are satisfied. Also in an alternating sign matrix, all of the total row sums are 1. Recall from

(2.3) that the row sums of a sign matrix equal aλ1−i+1, so since each row sum of M is 1, M must

be in M([n, n− 1, . . . , 2, 1], n).

Now let M ∈M([n, n− 1, . . . , 2, 1], n) satisfy (2.25). M is an n×n matrix whose rows each

sum to 1 since M ∈M([n, n− 1, . . . , 2, 1], n). By (2.1) and the fact that the sum of all the matrix
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entries is n, we have that the columns must each sum to 1. Then (2.1) and (2.25) imply that the

nonzero entries of M alternate in sign along each row and column.

Remark 2.7.3. It is well-known (see e.g. [23]) that alternating sign matrices are in bijection with

monotone triangles, which are equivalent to semistandard Young tableau of staircase shape with

first column [1, 2, . . . , n] and such that each northeast to southwest diagonal is strictly increasing.

This bijection is a specialization of the bijection of Theorem 2.1.5.

Recall from Definition 1.3.41 that ASMn denotes the nth alternating sign matrix polytope.

We see the connection between P (λ, n) and ASMn in the following theorem.

Lemma 2.7.4. P ([n, n− 1, · · · , 2, 1], n) contains ASMn.

Proof. Lemma 2.7.2 gives that the set of n × n alternating sign matrices is a subset of M([n, n −

1, · · · , 2, 1], n). So the convex hull of n×n alternating sign matrices will be contained in the convex

hull of M([n, n− 1, · · · , 2, 1], n), which is P ([n, n− 1, · · · , 2, 1], n).

Recall from Remark 1.3.38 that the Birkhoff polytope contains no lattice points except the

permutation matrices, which are its vertices. We show something similar happens in the case of

sign matrices and alternating sign matrices.

Theorem 2.7.5. There are no lattice points in P (m,n), P (λ, n), or ASMn other than the matrices

used to construct them.

Proof. Let M be an integer-valued matrix inside the polytope P (m,n). Then M fits the inequality

description of P (m,n). From the inequalities, all partial column sums are either 0 or 1, thus the

entries of M must be in {−1, 0, 1}. Also, all partial row sums are nonnegative, so M satisfies the

definition of an m× n sign matrix.

By Lemma 2.7.1, P (λ, n) is contained in P (λ1, n). By Lemma 2.7.4, ASMn is contained

in P ([n, n − 1, · · · , 2, 1], n) which by Theorem 2.7.1 is contained in P (n, n). Thus, the results

follow.

2.8. P (v, λ, n) and transportation polytopes

Thus far in this paper, we have defined and studied the sign matrix polytope P (m,n) and

the polytope P (λ, n) whose vertices are the sign matrices with row sums determined by λ. We may
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furthermore restrict to sign matrices with prescribed column sums; we define this polytope below,

calling it P (v, λ, n). We show in Theorem 2.8.11 that the nonnegative part of this polytope is a

transportation polytope.

Definition 2.8.1. Let λ be a partition and v a vector of length k with strictly increasing entries at

most n. Let SSY T (v, λ, n) denote the set of semistandard Young tableaux of shape λ with entries

at most n and first column v.

For example, the tableau of Figure 1.21 is in SSY T ((1, 2, 3, 6), [6, 3, 3, 1], n) for any n ≥ 7.

Remark 2.8.2. We do not know an enumeration for SSY T (v, λ, n), although the numbers we have

calculated look fairly nice.

Definition 2.8.3. Fix λ and n ∈ N and v a vector of length k with strictly increasing entries at

most n. Let M(v, λ, n) be the set of M ∈M(λ, n) such that:

λ1∑
i=1

Mij = 1, if j ∈ v and 0 otherwise. (2.26)

Theorem 2.8.4. M(v, λ, n) is in explicit bijection with SSY T (v, λ, n).

Proof. We know that M(λ, n) is in bijection with SSY T (λ, n) from Theorem 2.1.5. So we only need

to check (2.26). Consider M ∈ M(v, λ, n) and follow the bijection of Theorem 2.1.5 to construct

the corresponding T ∈ SSY T (λ, n). Recall that in M(v, λ, n), v records which columns of M

have a fixed sum of 1. Thus, the numbers in v are the entries of T in the first column of λ, so

T ∈ SSY T (v, λ, n).

Now consider T ∈ SSY T (v, λ, n) and its corresponding sign matrix M ∈M(λ, n). The first

column of T is fixed to be the numbers in v. The first column of T gets mapped to the last row of

M . That is, for each number in the first column of T , the corresponding column of M will sum to

1. The rest of the columns of M will sum to 0. Thus M ∈M(v, λ, n).

Definition 2.8.5. Let P (v, λ, n) be the polytope defined as the convex hull, as vectors in Rλ1n, of

all the matrices in M(v, λ, n). We say this is the sign matrix polytope with row sums determined

by λ and column sums determined by v.
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We now prove analogous properties to those proved in the rest of the paper regarding

P (m,n) and P (λ, n). Since many of these proofs are very similar to proofs we have already

discussed, we only note how the proofs differ from those in the other cases.

Proposition 2.8.6. The dimension of P (v, λ, n) is (λ1− 1)(n− 1) if 1 ≤ k < n. When k = n, the

dimension is (λ1 − λn)(n− 1).

Proof. Since each matrix in M(v, λ, n) is λ1 × n, the ambient dimension is λ1n. However, when

constructing the sign matrix corresponding to a tableau of shape λ, as in Theorem 2.1.5, the last

column is determined by the shape λ via the prescribed row sums (2.3) of Definition 2.1.4. The last

row of the matrix is determined by v using (2.26). These are the only restrictions on the dimension

when 1 ≤ k < n, reducing the free entries in the matrix by one column and one row. Thus, the

dimension is (λ1 − 1)(n − 1). When k = n, it must be that v = (1, 1, . . . , 1) and P (v, λ, n) equals

P (λ, n), so we reduce to this case.

Theorem 2.8.7. The vertices of P (v, λ, n) are the sign matrices M(v, λ, n).

Proof. The hyperplane constructed in the proof of Theorem 2.2.6 separates a given sign matrix

from all other sign matrices in M(λ, n), which includes M(v, λ, n).

Theorem 2.8.8. P (v, λ, n) consists of all λ1 × n real matrices X = (Xij) such that:

0 ≤
i∑

i′=1

Xi′j ≤ 1, for all 1 ≤ i ≤ λ1, 1 ≤ j ≤ n (2.27)

0 ≤
j∑

j′=1

Xij′ , for all 1 ≤ j ≤ n, 1 ≤ i ≤ λ1 (2.28)

n∑
j′=1

Xij′ = aλ1−i+1, for all 1 ≤ i ≤ λ1 (2.29)

λ1∑
i′=1

Xi′j = 1, if j ∈ v and 0 otherwise. (2.30)

Proof. This proof follows the proof of Theorem 2.4.1, except since both the row and column sums

are fixed, only closed circuits are needed.
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Definition 2.8.9. Define Γ(v,λ,n) as the following labeling of the graph Γ(λ1,n). All edges are

labeled as in Γ(λ,n), except the last vertical edge in column j is labeled 1 if j ∈ v and 0 other-

wise. 0-dimensional components, components, containment of components, and regions are defined

analogously. Let Λ(v,λ,n) denote the partial order on components of Γ(v,λ,n) by containment.

Theorem 2.8.10. Let F be a face of P (v, λ, n) and M(F ) equal to the set of sign matrices that

are vertices of F . The map ψ(M(F )) is a bijection between faces of P (v, λ, n) and components of

Γ(v,λ,n). Moreover, ψ is a poset isomorphism, and the dimension of F is equal to the dimension of

ψ(F ).

Proof. The proof is analogous to the proof of Theorem 2.6.19; we need only check the dimension

of the maximal component of Λ(v,λ,n) matches the dimension of P (v, λ, n). Recall the dimension of

P (v, λ, n) equals (λ1−1)(n−1) when 1 ≤ k < n, and (λ1−λn)(n−1) when k = n. Note that when

1 ≤ k < n, there are (λ1 − 1)(n − 1) regions in the maximal component of Λ(v,λ,n). When k = n,

the only possible first column of T ∈ SSY T (λ, n) is v = (1, 2, . . . , n), thus P (v, λ, n) = P (λ, n) and

we may use Theorem 2.6.19.

Theorem 2.8.11 relates sign matrix polytopes to transportation polytopes. See Defini-

tion 1.3.59 for the definition of transportation polytopes.

Theorem 2.8.11. The nonnegative part of P (v, λ, n) is the transportation polytope P(y,z), where

yi = aλ1−i+1 for all 1 ≤ i ≤ λ1 and zj = 1 if j ∈ v and 0 otherwise.

Proof. By Theorem 2.8.8, P (v, λ, n) is contained in P(y,z), since for these choices of y and z, (1.6)

and (1.7) are exactly (2.29) and (2.30). For the reverse inclusion, note in addition that any matrix

with nonnegative entries and column sums at most 1 satisfies (2.27) and (2.28).

This is analogous to the fact that the non-negative part of the alternating sign matrix

polytope is the Birkhoff polytope [3, 31].
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3. CATALAN AND ORDER POLYTOPES

In Chapter 2, two polytope families with origins in semistandard Young tableaux were

discussed. In this chapter, similar theory and techniques will be used to discuss polytopes that

are formed from standard Young tableaux. The focus of the discussion in this chapter will revolve

around a special shape of SY T that is a Catalan object and the polytope family made from these

SY T . The main theorem, Theorem 3.4.2, states that this new polytope family is in bijecction with

a specific order polytope. The general class of order polytopes was discussed in Subsection 1.3.8;

recall that order polytopes are a unique class of polytopes where volume can be combinatorially

interpreted. Other properties of this new polytope family that will be discussed in this chapter

include: the enumeration of vertices and facets, the inequality description, and the face lattice

description. All of these properties are proved as corollaries of the main theorem.

3.1. Standard Young tableaux and standard sign matrices

A bijection between semistandard Young tableaux and sign matrices was discussed in the

previous chapter. This subsection introduces a special type of sign matrices, which will be shown

to be in bijection with standard Young tableaux.

Definition 3.1.1. A standard sign matrix is an m × n sign matrix M with the added properties

that there is exactly one 1 in each column and if Mi,j = 1 then Mi+1,j = −1 for 1 ≤ i ≤ m − 1.

Standard sign matrix will be denoted as SSM .

In other words, whenever there is an entry of 1 in a SSM, the entry directly below it is a

−1. Thus there is always a −1 below a 1, with the exception of the bottom row, as there is no

place for a −1 to be below a 1 in the last row.

Recall from Definition 1.4.3 that a standard Young tableau is defined as a filling of a Young

diagram with the numbers 1 through n (where n is the number of boxes). Each of the numbers is

used exactly once, and the rows and columns are strictly increasing. Also recall SY T (λ) denotes

the set of standard Young tableaux of shape λ. This is similar to the notation SSY T (λ, n) in

Chapter 2.
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Definition 3.1.2. Define SSM(λ) to be the λ1 × n standard sign matrices that are formed from

standard Young tableaux of shape λ, where λ has n boxes.

Theorem 3.1.3. SY T (λ) is in bijection with SSM(λ).

Proof. Theorem 2.1.5 gives a bijection between SSY T (λ, n) and M(λ, n). Since SY T (λ) are a

special case of SSY T (λ, n) and SSM(λ) are a special case of M(λ, n), all that needs to be proved

are the added properties of both SY T and SSM .

Starting with a T ∈ SY T (λ), follow the algorithm of Theorem 2.1.5 to get a sign matrix M .

A SY T uses only one of each number so there will be only one 1 in each column of M . In the

bijection algorithm, if the number ν is in the (λ1− i+ 1)st column of T when moving from column

λ1 − i + 1 to λ1 − i in T , there will be a 1 in the ith row and νth column of M and a −1 in the

(i+ 1)st row, νth column. Thus the property of having only one of each number in T implies there

must by a −1 in M directly below a 1 that is not in the bottom row. Notice further that if ν is in

the first column of T , then there will be a 1 in the λ1st row of M without a −1 below it. Therefore

we have obtained a SSM .

Now start with M ∈ SSM(λ) and follow the reverse algorithm to get a tableau T . M was

a standard sign matrix, so there is only one 1 in each column and a −1 is directly below; thus each

number will only appear once in T . Also, the columns of the 1’s in the bottom row of M become

the first column of T . From the original bijection in Theorem 2.1.5, it is known that the columns

of M are strictly increasing and the rows will be weakly increasing. However since there is only

one 1 in each column of M , there will be only one of each number to appear in T , therefore the

rows of T strictly increase. Thus a standard Young tableau is obtained.

An example of this bijection is shown in Figure 3.1.

1 3 4 7

2 6 9

5

8

⇐⇒


0 0 0 0 0 0 1 0 0
0 0 0 1 0 0 −1 0 1
0 0 1 −1 0 1 0 0 −1
1 1 −1 0 1 −1 0 1 0



Figure 3.1. Example of the bijection between SY T ([4, 3, 1, 1]) and SSM([4, 3, 1, 1]).
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Two basic shapes of tableaux are rows and columns, since given any single row or column,

there is only one SY T of that shape. The following is a remark about specifying their standard

sign matrices. Notice that there is only one tableau, thus one matrix for each λ. Examples of each

item in the remark can be found in Figures 3.2 and 3.3.

Remark 3.1.4. • Let λ be the one row shape λ = [λ1] . Then SSM([λ1]) is the λ1 × λ1 matrix

with 1’s on the anti-diagonal and −1’s along the subanti-diagonal.

• Let λ be the one column shape λ = [1n]. Then SSM([1n]) is the 1× n matrix filled with all

ones.

1 2 3 4 5 ⇐⇒


0 0 0 0 1
0 0 0 1 −1
0 0 1 −1 0
0 1 −1 0 0
1 −1 0 0 0



Figure 3.2. An example of a row tableau and its corresponding standard sign matrix.

1

2

3

4

5

⇐⇒
[

1 1 1 1 1
]

Figure 3.3. An example of a column tableau and its corresponding standard sign matrix.

The standard sign matrix polytope is defined next.

Definition 3.1.5. Let SSMP (λ) be the polytope defined as the convex hull, as vectors in Rλ1n,

of all the matrices in SSMP (λ). Call this the standard sign matrix polytope of shape λ.

There is not much known about SSMP (λ) in general, however the rest of this chapter

discusses SSMP (λ) for specific shapes. The following conjecture is about the polytope made from

SY T of hook shape and was found using Sage [30].
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Conjecture 3.1.6. The number of facets of SSM([λ1, 1
k]) is 2kλ1 − 3λ1 − 3k + 6.

3.2. Catalan sign matrices and polytopes

The previous subsection introduced SSMP (λ) and now special SY T of rectangular shape

with two rows will be discussed. These special tableaux will be used to make the polytope

SSMP ([m,m]). In Section 1.5 it was noted that SY T of this shape are Catalan objects. Since

these SY T are Catalan objects, their corresponding standard sign matrices will be Catalan objects

as well.

Definition 3.2.1. Define the set of Catalan sign matrices, denoted CSM(m), as SSM([m,m]).

That is, a Catalan sign matrix is an m× 2m standard sign matrix X = (Xi,j) such that:

2m∑
j=1

X1,j = 2, (3.1)

2m∑
j=1

Xi,j = 0, 2 ≤ i ≤ m. (3.2)

Corollary 3.2.2. CSM(m) is in bijection with SY T ([m,m]).

Proof. This follows from Theorem 3.1.3 by setting λ = [m,m].

The following proposition shows some properties of CSM(m) that result from the bijection

with standard Young tableaux.

Proposition 3.2.3. Given M ∈ CSM(m), the following hold:

• Mm,1 = 1 and M1,2m = 1.

• Mi,j = 0 for 1 ≤ j ≤ m− i.

• Mi,j = 0 for 2m− i+ 3 ≤ j ≤ 2m.

• The second 1 in each row is determined by the placement of the first 1 in all rows.

Proof. Recall that each M ∈ CSM(m) is in bijection with T ∈ SY T ([m,m]). In T , when the

Young diagram is filled, the 1 is fixed in the upper left and 2m is fixed in the lower right. In M ,

this correlates to Mm,1 = 1 and M1,2m = 1.
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If the first row of T is 1, 2, . . . ,m, then the corresponding sign matrix is the second example

of Figure 3.4. Notice that for every row i in M , there are at least m − i zeros at the beginning,

since the (λ1 − i + 1)st column of T corresponds to the ith row in M . Since the largest number

that can be in the 1st column of T is m+ 1, the mth row of M has more than 2m− (m+ 1) zeros

at the end; therefore at least m− 2 zeros at the end of the mth row of M . As i gets smaller, there

is one less minimal zero per row, thus Mi,j = 0 for 2m− i+ 3 ≤ j ≤ 2m.

The last item holds because after the top row of T is decided, the bottom row is fixed.

The top row of T corresponds to the first 1 in each row of M and the second 1 in each row of M

corresponds to the bottom row of T . Therefore all four items hold for all M ∈ CSM(m).



0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0

 1
1

1
1 1

1
1

1
11

1
1

1
1

1



0 0 0 0 0 1 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 1 0 0 0 0
1 0 0 0 0 0 1 0 0 0 0 0

 0
0

0
0 0

0
0

0
00

0
0

0
0

0

Figure 3.4. Examples of the extreme cases of partial column sum matrices of CSM(6) and their
corresponding f ∈ O(Q6).



0 0 0 0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 1 0 0 0 1 0
0 0 0 0 0 1 0 0 0 1 0 0
0 0 0 1 0 0 0 1 0 0 0 0
0 1 0 0 1 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0

 1
1

1
0 0

0
1

0
00

1
1

1
1

0

Figure 3.5. Examples of a middle case of a partial column sum matrix of CSM(6) and the corre-
sponding f ∈ O(Q6).
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Using the same ideas as in Chapter 2, the polytope that is formed by Catalan sign matrices

will be discussed. Since Catalan sign matrices have been shown to be a Catalan object, the Catalan

polytope is defined next.

Definition 3.2.4. Let CPm be the polytope defined as the convex hull, as vectors in R2m2
, of all

Catalan sign matrices. CPm is called the Catalan polytope.

Remark 3.2.5. Note in the notation of Definition 3.1.5, CPm = SSMP ([m,m]).

Theorem 3.2.6. The vertices of CPm are the Catalan sign matrices CSM(m).

Proof. Catalan sign matrices are vertices of P ([m,m], 2m), so since the hyperplane from that proof

separates each sign matrix from all other sign matrices in M([m,m], 2m), it also separates it from

all other Catalan sign matrices in CSM(m). The following hyperplane:

HM (X) :=
∑

(i,j)∈CM

i∑
i′=1

Xi′j = |λ| − 1

2
. (3.3)

separates an individual sign matrix from all the other sign matrices in CPm. Thus all Catalan sign

matrices CSM(m) are necessarily vertices.

The dimension of CPm will be discussed next.

Theorem 3.2.7. The dimension of CPm is

(
m

2

)
=
m(m− 1)

2
.

Proof. The binomial coefficient

(
m

2

)
counts the triangle numbers, {1, 3, 6, 10, 15 . . . }. This can

also be thought of as 1, 1 + 2, 1 + 2 + 3, 1 + 2 + 3 + 4, . . . ,

m−1∑
i=1

i. Consider M ∈ CSM(m). Using the

bijection to tableaux, the columns of the corresponding SY T T will be used. The 1 is fixed to the

upper left of T , thus a 1 is fixed in the last row of M ; this is row m. The 2 has two columns of T in

which it could be placed (the column next to the 1, or directly below the 1), so there are two rows

of M that could have a 1 in the second column. There are three possible columns to put a 3 in

T , thus there are three possible rows to put a 1 in the third column of M . This pattern continues

until the (m + 1)st number, there are only m places left with the possibility of m columns. Now

the number decreases with each number as there are less and less places left in T . So the number

of places to put a 1 in the matrix is 1 + 2 + 3 + · · ·+m+m+ · · ·+ 2 + 1. Since the row sums of the
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matrix are determined, the dimension decreases by the number of rows, which is 2m; we subtract

2m from this sum to obtain 1 + 2 + · · ·+m− 1 +m− 1 + · · ·+ 2 + 1. However, when filling a two

row rectangular SY T , once the top row is complete the bottom row is determined. Therefore, only

half of the possible spots need to be counted, resulting in 1 + 2 + 3 + · · ·+m− 1 =

(
m

2

)
.

3.3. Building blocks of CPm and O(Qm)

The order polytope is a family of polytopes with particular properties, some of which are

discussed in Subsection 1.3.8. Theorem 3.4.2 is the main theorem of Chapter 3; this subsection

will lay the groundwork for proving the theorem which shows the equivalence between the Catalan

polytope and the order polytope of a certain poset. In this subsection, there are two maps given in

Definitions 3.3.4 and 3.3.9 which detail how the two polytopes are connected. The graph ∆(Qm) is

introduced, in Definition 3.3.3, as a means to utilize the poset Qm. The partial sum matrix Ĉ(X)

from Definition 1.6.4 is recalled to be used with the Catalan sign matrix.

3.3.1. Properties of Qm and O(Qm)

This subsection will focus the discussion around a particular poset Qm that was introduced

in Definition 1.3.19 and its corresponding set of order ideals J(Qm) from Definition 1.3.17. As

stated in Proposition 1.3.53, the convex hull of J(Qm) forms the order polytope O(Qm). The

function f ∈ O(Qm) is a labeling of the elements of the poset Qm with values. Figure 3.6 shows

one such labeling of the order ideals of Q4 with the corresponding vector (read from left to right

and bottom to top in the poset).

1
1 1

1 1 1

1
1 1
1 1

1
1 1

1

1
1 1

1
1 1
0

1
1
0

1
1

1
0
1

0
0
1

1
1 0

1

1
0 1

0 0

1
0 0

00

1 0 1 1 0 0 1

1
0 0

1
100

11
0 0 0010

11
1 0

0 0 1 0

0
0 0

0 0 0

(1, 1, 1, 1, 1, 1) (0, 1, 1, 1, 1, 1) (1, 0, 1, 1, 1, 1) (1, 1, 0, 1, 1, 1) (0, 0, 1, 1, 1, 1)

(1, 0, 0, 1, 1, 1) (0, 1, 0, 1, 1, 1) (0, 0, 0, 1, 1, 1) (0, 0, 1, 0, 1, 1) (0, 0, 0, 0, 1, 1)

(1, 0, 0, 1, 0, 1) (0, 0, 1, 0, 1, 1) (0, 0, 0, 0, 0, 1) (0, 0, 0, 0, 0, 0)

0

Figure 3.6. The 14 order ideals in J(Q4) and their corresponding vectors in O(Qm).
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A labeling f of the poset Qm can be expressed as an n-tuple in generic terms, so it

can be denoted as a vector. Following the order of vectors in O(Qm) (left to right and bot-

tom to top), a vector in O(Q3) is of the form (f(a2,1), f(a1,1), f(a2,2)), in O(Q4) is of the form

(f(a3,1), f(a2,1), f(a1,1), f(a3,2), f(a2,2), f(a3,3)), in O(Q5) is of the form

(f(a4,1), f(a3,1), f(a2,1), f(a1,1), f(a4,2), f(a3,2), f(a2,2), f(a4,3), f(a3,3), f(a4,4)) and so on. Exam-

ples of these posets are in Figure 3.7.

a1,1

a1,1

a1,1

a2,2
a2,1

a3,3

a3,2
a3,1

a4,4

a4,3

a4,2
a4,1

a2,2
a2,1

a2,1

a2,2 a3,3

a3,2
a3,1

Figure 3.7. Qm for m = 3, 4, 5, respectively.

From Stanley [25] it is known how to construct the polytope inequalities of O(Qm) from

the cover relations of Qm. The following is a corollary which states them explicitly for this case.

Theorem 3.3.1 ([25]). O(Qm) is defined by the following inequalities:

f(as,t−1) ≤ f(as,t) 1 ≤ t ≤ s ≤ m− 1 (3.4)

f(as−1,t−1) ≤ f(as,t) 1 ≤ t ≤ s ≤ m− 1 (3.5)

0 ≤ f(as,1) 1 ≤ s ≤ m− 1 (3.6)

f(am−1,m−1) ≤ 1 (3.7)

These inequalities can be seen in Figure 3.8.

In the proofs in this chapter, the following notation is used.

Definition 3.3.2. Given f ∈ O(Qm), set f(as,t) :=


1 s = m or t > s

0 t = 0

.

The following labeled graph is defined as a way to visualize the proofs.

Definition 3.3.3. Define a labeled graph ∆(Qm) to be the Hasse diagram of Qm with m elements

added at the bottom, as,0 for 0 ≤ s ≤ m − 1, and m − 1 elements added above the sides of the
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f(a1,1)f(a2,1)· · ·f(am−2,1)f(am,1)

f(a2,2)f(a3,2)f(am−1,2)

f(am−1,m−2) f(am−2,m−2)

f(am−1,m−1)

f(a3,3)

f(a3,1)

f(am−2,m−3) f(am−3,m−3)f(am−1,m−3)

f(am−1,3)

f(am−2,2)

f(am−3,1)

Figure 3.8. An illustration of the inequalities for the order polytope O(Qm).

triangular poset: am,t for 2 ≤ t ≤ m and as,s+1 for 1 ≤ s ≤ m − 1. The edge set is the cover

relations of Qm with the following edges added when the elements are defined:

Additional Edges :=


as,t to as,t+1 s = t or t = 0

as,t to as+1,t+1 s = m− 1 or t = 0

An example of ∆(Q6) is in Figure 3.9.

a1,1

a2,2

a2,1

a3,3

a3,2

a3,1

a4,4

a4,3

a4,2

a4,1a5,1

a5,2

a5,3

a5,4

a5,5

0

1

1

1

1

1

1

1

1

1

1

0 0 0 0 0

a1,1

a2,2

a2,1

a3,3

a3,2

a3,1

a4,4

a4,3

a4,2

a4,1a5,1

a5,2

a5,3

a5,4

a5,5

a5,0

a6,6

a6,5

a6,4

a6,3

a6,2

a5,6

a4,5

a3,4

a2,3

a1,2

a4,0 a3,0 a2,0 a1,0 a0,0

Figure 3.9. The graph ∆(Q6) before and after specifying boundary vertex labels as in Defini-
tion 3.3.3.

3.3.2. Order polytope to Catalan polytope

In this subsection, a map from the order polytope to m × 2m matrices will be discussed.

Lemma 3.3.8 will show the image of this map is in CPm.
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Definition 3.3.4. Define a map ξ : O(Qm) → Rm×2m on f ∈ O(Qm) . The first step of the map

is as follows:

ci,j :=



0, 1 ≤ i ≤ m, 1 ≤ j ≤ m− i,

0, 2 ≤ i ≤ m, 2m− i+ 2 ≤ j ≤ 2m,

1, i = m, j = 1 or i = 1, j = 2m

f(a(2m−j−i)+1,(2m−j−2i)+2)− f(a2m−j−i,(2m−j−2i)+1), m− i+ 1 ≤ j ≤ 2m− 2i+ 1,

f(ai−1,j−(2m−2i)−1)− f(ai−1,j−(2m−2i)−2), 2m− 2i+ 2 ≤ j ≤ 2m− i+ 1

.

The second step of the map is to apply Ĉ−1.

In other words, considering ∆(Qm) take the difference of the labels for two vertices at a

time and the difference of these labels will become the entries in the partial column sum matrix

Ĉ(X) from Definition 1.6.4. Figure 3.10 shows the pattern of these differences and Figure 3.14

shows the resulting general partial column sum matrix for m = 6. The top row of the matrix

comes from differences starting at the top of the graph and going down the solid black line on the

right. The second row of the matrix follows the dashed line, the second line from the top, and so

on down the left side. Notice that some paths make a check mark; when the bottom is reached the

differences continue up the other side, however, the difference will still be between the bigger (or

higher) element and the smaller. The bottom, or mth row, of the matrix follows the gray solid line

up the left side of ∆(Qm), taking differences of bigger and smaller elements as before. This partial

column sum matrix will be an m× 2m matrix. Recall that any matrix can be recovered uniquely

from the corresponding column partial sum matrix of Definition 1.6.6. The map ξ is demonstrated

in Example 3.3.5 and in Figure 3.11.

Example 3.3.5. Using the ∆(Qm) and matrix in Figure 3.11, examples of some Ĉ(X) entries

for the first step of the map ξ are shown. Figure 3.10 demonstrates the line of differences being

followed.

• c2,2 = 0 since 2 < 6− 2 = 4.

The next few entries are the differences following the top, solid black, line of Figure 3.10.

• c1,6 = f(a2(6)−6−1+1,2(6)−6−2(1)+2)− f(a2(6)−6−1,2(6)−6−2(1)+1) = f(a6,6)− f(a5,5) = 1− 0.8 = 0.2
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a1,1

a2,2

a2,1

a3,3

a3,2

a3,1

a4,4

a4,3

a4,2

a4,1a5,1

a5,2

a5,3

a5,4

a5,5

a6,6 := 1

a6,5 := 1

a6,4 := 1

a6,3 := 1

a6,2 := 1

a5,6 := 1

a4,5 := 1

a3,4 := 1

a2,3 := 1

a2,1 := 1

a5,0 := 0
a4,0 := 0

a3,0 := 0
a2,0 := 0

a1,0 := 0
a0,0 := 0

Figure 3.10. A way to visualize Definition 3.3.4, explained in Example 3.3.5.

• c1,7 = f(a2(6)−7−1+1,2(6)−7−2(1)+2)− f(a2(6)−7−1,2(6)−7−2(1)+1) = f(a5,5)− f(a4,4) = 0.8− 0.8 = 0

• c1,11 = f(a2(6)−11−1+1,2(6)−11−2(1)+2)− f(a2(6)−11−1,2(6)−11−2(1)+1) = f(a1,1)− f(a0,0) = 0−0 = 0

The next few entries are from the middle of Ĉ(X) in row 3 and follow the line third from the top,

which is dotted in Figure 3.10. The first step in the calculation will no longer be shown.

• c3,7 = f(a3,1)− f(a2,0) = 0.4− 0 = 0.4

• c3,8 = f(a2,1)− f(a2,0) = 0− 0 = 0

• c3,9 = 0.1− 0 = 0.1

• c3,10 = f(a2,3)− f(a2,2) = 1− 0.1 = 0.9

The last few example entries are from the bottom row of the matrix, m = 6, and follow the gray

line back up the left side of Figure 3.10.

• c6,1 = cm,1 = 1

• c6,2 = f(a5,1)− f(a5,0) = 0.1− 0 = 0.1

• c6,3 = f(a5,2)− f(a5,1) = 0.1− 0.1 = 0

• c6,7 = f(a5,6 − f(a5,5) = 1− 0.8 = 0.2

It may be helpful to have the map to a matrix X in CPm directly from O(Qm). The

following lemma gives this map and shows the linearity of the matrix.
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0 .9 .1 0 .4 0 .4 .2 0 0 0 0
1 .1 0 .4 0 .3 .2 0 0 0 0 0



Figure 3.11. Example of the maps between an element of ∆(Q6) and a matrix in ξ(f) used in
Examples 3.3.5 and 3.3.10.

Lemma 3.3.6. The map ξ of Definition 3.3.4 can be described in a single step as follows.

Xi,j =



0, 1 ≤ i ≤ m, 1 ≤ j ≤ m− i,

0, 2 ≤ i ≤ m, 2m− i+ 2 ≤ j ≤ 2m,

1, i = m, j = 1 or i = 1, j = 2m

−1, i = 2, j = 2m

f(a2m−j,2m−j)− f(a2m−j−1,2m−j−1) 1 ≤ j ≤ 2m− 1

f(a2m−j−i+1,2m−j−2i+2)− f(a2m−j−i,2m−j−2i+1)

−f(a2m−j−i+2,2m−j−2i+4) + f(a2m−j−i+1,2m−j−2i+3) 2 ≤ i ≤ m,

1 ≤ j ≤ 2m− 2i+ 1

f(ai−1,j−2m+2i−1)− f(ai−1,j−2m+2i−2)

−f(a2m−j−i+2,2m−j−2i+4) + f(a2m−j−i+1,2m−j−2i+3) 2 ≤ i ≤ m,

2m− 2i+ 2 ≤ j ≤ 2m− 2i+ 3

f(ai−1,j−2m+2i−1)− f(ai−1,j−2m+2i−2)

−f(ai−2,j−2m+2i−3) + f(ai−2,j−2m+2i−4) 2 ≤ i ≤ m,

2m− 2i+ 4 ≤ j ≤ 2m

Proof. All calculations follow the map Ĉ−1 in Remark 1.6.6 and use the following two statements

from Definition 3.3.4:
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I. ci,j = f(a2m−j−i+2,2m−j−2i+2)− f(a2m−j−i+1,2m−j−2i+1) for m− i+ 1 ≤ j ≤ 2m− 2i+ 1

II. ci,j = f(ai−1,j−2m+2i−1) − f(ai−1,j−2m+2i−2) for 2m − 2i + 2 ≤ j ≤ 2m − i + 1 Notice

that the first three statements follow directly.

• Case 1: i = 1, 1 ≤ j ≤ 2m.

Xi,j = ci,j = f(a2m−j−i+2,2m−j−2i+2)− f(a2m−j−i+1,2m−j−2i+1)

• Case 2: 2 ≤ i ≤ m, 1 ≤ j ≤ 2m− 2i+ 1. (This calculation uses equation I.)

Xi,j = ci,j − ci−1,j = f(a2m−j−i+1+1,2m−j−2i+2)− f(a2m−j−i+1,2m−j−2i+1)

−f(a2m−j−i+1+2,2m−j−2i+4) + f(a2m−j−i+2,2m−j−2i+3)

• Case 3: 2 ≤ i ≤ m, 2m− 2i+ 2 ≤ j ≤ 2m− 2i+ 3. (This calculation uses equations I and II.)

Xi,j = ci,j − ci−1,j = f(ai−1,j−2m+2i−1)− f(ai−1,j−2m+2i−2)

−f(a2m−j−i+3,2m−j−2i+4) + f(a2m−j−i+2,2m−j−2i+3)

• Case 4: 2 ≤ i ≤ m, 2m− 2i+ 4 ≤ j ≤ 2m. (This calculation uses equation II.)

Xi,j = ci,j − ci−1,j = f(ai−1,j−2m+2i−1)− f(ai−1,j−2m+2i−2)

−f(ai−2,j−2m+2i−3) + f(ai−2,j−2m+2i−4)

From a partial column sum matrix, applying Ĉ−1 recovers the matrix X as just discussed.

Then by applying R̂ the partial row sum matrix is obtained. The matrix that results from R̂(X)

will be used in the proof of Lemma 3.3.8. The direct map follows:

Lemma 3.3.7. The composite map R̂ ◦ ξ can be described as follows to obtain the following partial

row sum matrix R̂(ξ(f)),(all statements are for 2 ≤ i ≤ m unless stated otherwise.):

ri,j =



0, 1 ≤ i ≤ m, 1 ≤ j ≤ m− i,

0, 2m− i+ 2 ≤ j ≤ 2m,

1, i = m, j = 1

1− f(a2m−j−1,2m−j−1) i = 1, 1 ≤ j ≤ 2m− 1

2 i = 1, j = 2m

f(a2m−j−i+1,2m−j−2i+3)− f(a2m−j−i,2m−j−2i+1) 1 ≤ j ≤ 2m− 2i+ 1

2f(ai−1,1) j = 2m− 2i+ 2

f(ai−1,2i−2m+j−1)− f(ai−2,2i−2m+j−3) 2m− 2i+ 3 ≤ j ≤ 2m− i+ 1
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.

Proof. All calculations follow the map R̂ in Definition 1.6.5 applied to X from Lemma 3.3.6,

therefore there are four cases. Notice that the first three statements, and the fifth follow directly.

• Case 1: i = 1, 1 ≤ j ≤ 2m− 1.

r1,j =

j∑
k=1

X1,k =

j∑
k=1

(f(a2m−k,2m−j)− f(a2m−k−1,2m−k−1))

= (f(a2m−1,2m−1)− f(a2m−2,2m−2)) + (f(a2m−2,2m−2)− f(a2m−3,2m−3)) + · · ·

+ (f(a2m−j+1,2m−j+1) +−f(a2m−j,2m−j)) + (f(a2m−j,2m−j)− f(a2m−j−1,2m−j−1))

= (f(a2m−1,2m−1)− f(a2m−j−1,2m−j−1)) = 1− f(a2m−j,2m−j)

Notice when i = 1 and j = m, the calculation is 1− f(a2m−j,2m−j) +X1,2m = 1− 0 + 1 = 2.

• Case 2: 2 ≤ i ≤ m, 1 ≤ j ≤ 2m− 2i+ 1.

ri,j =

j∑
k=1

Xi,k =

j∑
k=1

(f(a2m−k−i+1,2m−k−2i+2)− f(a2m−k−i,2m−k−2i+1)+

− f(a2m−k−i+2,2m−k−2i+4) + f(a2m−k−i+1,2m−k−2i+3))

= f(a2m−i,2m−2i+1)− f(a2m−i−1,2m−2i)− f(a2m−i+1,2m−2i+3) + f(a2m−i,2m−2i+2)

+ f(a2m−i−1,2m−2i)− f(a2m−i−2,2m−2i−1) +−f(a2m−i,2m−2i+2) + f(a2m−i−1,2m−2i+1) + · · ·

+ f(a2m−j−i+1,2m−j−2i+2)− f(a2m−j−i,2m−j−2i+1)

− f(a2m−j−i+2,2m−2i+3) + f(a2m−j−i+1,2m−j−2i+3)

+ f(a2m−i,2m−2i+1)− f(a2m−i+1,2m−2i+3) +−f(a2m−j−i,2m−j−2i+1) + f(a2m−j−i+1,2m−j−2i+3)

= 1− 1 + f(a2m−j−i+1,2m−j−2i+3)− f(a2m−j−i,2m−j−2i+1)

= f(a2m−j−i+1,2m−j−2i+3)− f(a2m−j−i,2m−j−2i+1)
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• Case 3: 2 ≤ i ≤ m, j = 2m− 2i+ 2.

ri,j =

j∑
k=1

Xi,k =

j∑
k=1

(f(ai−1,k−2m+2i−1)− f(ai−1,k−2m+2i−2)− f(a2m−k−i+2,2m−k−2i+4)

+ f(a2m−k−i+1,2m−k−2i+3))

= f(ai−1,2i−2m)− f(ai−1,2i−2m−1)− f(a2m−i+1,2m−2i+3) + f(a2m−i,2m−2i+2)

+ f(ai−1,2i−2m)− f(ai−1,2i−2m−1)− f(a2m−i+1,2m−2i+3) + f(a2m−i,2m−2i+2)

+ f(ai−1,2i−2m+1)− f(ai−1,2i−2m)− f(a2m−i,2m−2i+2) + f(a2m−i−1,2m−2i+1) + · · ·

+ f(ai−1,1)− f(ai−1,0)− f(ai,2) + f(ai−1,1)

= f(ai−1,1)− f(ai−1,2i−2m−1) + f(ai−1,1)− f(a2m−i+1,2m−2i+3)

= 2f(ai−1,1)

• Case 4: 2 ≤ i ≤ m, 2m− 2i+ 3 ≤ j ≤ 2m.

ri,j =

j∑
k=1

Xi,k =

j∑
k=1

(f(ai−1,k−2m+2i−1)− f(ai−1,k−2m+2i−2)− f(ai−2,k−2m+2i−3)

+ f(ai−2,k−2m+2i−4))

= f(ai−1,2i−2m)− f(ai−1,2i−2m−1)− f(ai−2,2i−2m−2) + f(ai−2,2i−2m−3)

+ f(ai−1,2i−2m+1)− f(ai−1,2i−2m)− f(ai−2,2i−2m−1) + f(ai−2,2i−2m−2) + · · ·+

+ f(ai−1,2i−2m+j−2)− f(ai−1,2i−2m+j−3)− f(ai−2,2i−2m+j−4) + f(ai−2,2i−2m+j−5)

+ f(ai−1,2i−2m+j−1)− f(ai−1,2i−2m+j−2)− f(ai−2,2i−2m+j−3) + f(ai−2,2i−2m+j−4)

= f(ai−1,2i−2m−3)− f(ai−1,2i−2m−1) + f(ai−1,2i−2m+j−1)− f(ai−2,2i−2m+j−3)

= 0− 0 + f(ai−1,2i−2m+j−1)− f(ai−2,2i−2m+j−3)

= f(ai−1,2i−2m+j−1)− f(ai−2,2i−2m+j−3)

Thus the formula is established.

Each row of the matrix from R̂(X) can be seen as a pattern on ∆(Qm) in Figure 3.12. The

differences are still top to bottom as in Ĉ(X). In the figure, three of the paths are shown. The

top path, shown in red dashed lines, corresponds to row two of the matrix from R̂(X) which can
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be seen in Figure 3.13. The second path, shown in gray lines, corresponds to row three of the

matrix from R̂(X). The third path, shown in blue dotted lines, corresponds to the fourth row of

the matrix from R̂(X). All paths are not shown. An example of the matrix from R̂(X) for m = 6

is shown in Figure 3.13.

a1,1

a2,2

a2,1

a3,3

a3,2

a3,1

a4,4

a4,3

a4,2

a4,1a5,1

a5,2

a5,3

a5,4

a5,5

a6,6 := 1

a6,5 := 1

a6,4 := 1

a6,3 := 1

a6,2 := 1

a5,6 := 1

a4,5 := 1

a3,4 := 1

a2,3 := 1

a2,1 := 1

a5,0 := 0
a4,0 := 0

a3,0 := 0
a2,0 := 0

a1,0 := 0
a0,0 := 0

Figure 3.12. Example of the differences between labels of ∆(Qm) to get entries of R̂(X).



0 0 0 0 0 1− a5,5 a5,5 − a4,4 a4,4 − a3,3 a3,3 − a2,2 a2,2 − a1,1 a1,1 2
0 0 0 0 1− a5,4 a5,5 − a4,3 a4,4 − a3,2 a3,3 − a2,1 a2,2 − a1,0 2a11 1 0
0 0 0 1− a5,3 a5,4 − a4,2 a4,3 − a3,1 a3,2 − a2,0 2a2,1 a2,2 − a1,0 1− a1,1 0 0
0 0 1− a5,2 a5,3 − a4,1 a4,2 − a3,0 2a1,1 a3,2 − a2,0 a3,3 − a2,1 1− a2,2 0 0 0
0 1− a5,1 a5,2 − a4,0 2a4,1 a4,2 − a3,0 a4,3 − a3,1 a4,4 − a3,2 1− a3,3 0 0 0 0
1 2a5,1 a5,2 − a4,0 a3,3 − a4,1 a5,4 − a4,2 a5,5 − a4,3 1− a4,4 0 0 0 0 0



Figure 3.13. The general version of R̂(X) for m = 6 using f(ai,j) values, written without the f due
to space constraints.

The next lemma considers a vertex of O(Qm), f ∈ J(Qm), then applies the map ξ. The

resulting ξ(f) is shown to be a Catalan sign matrix. The process is then extended to show that for

any f in O(Qm), ξ(f) results in a matrix in CPm.

Lemma 3.3.8. Let f ∈ O(Qm). Then ξ(f) = X where X ∈ CPm.

Proof. First it will be shown that ξ maps the order polytope vertices J(Qm) to CSM(m). Then

the proof will be given that ξ maps O(Qm) into CPm.
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Let f ∈ O(Qm) such that f(as,t) ∈ {0, 1} for all s, t. So f ∈ J(O(P )). Let M = ξ(f).

It is necessary to show M ∈ CSM(m). Recall that a matrix is a sign matrix if two conditions

are satisfied: The partial column sums are between 0 and 1 (2.1) and the partial row sums are

nonnegative (2.2). A Catalan sign matrix requires that the total row sum for the top row is 2 (3.1)

and the other rows sum to 0 (3.2). It is also necessary to show that there is exactly one 1 in each

column of M and below each 1 there is a −1.

Apply the first step of ξ to obtain a matrix Ĉ(M). Notice that all entries in Ĉ(M) are

nonnegative, since all f in the order polytope are positive and the differences in Definition 3.3.4 are

of the form f(ax,y) − f(ax−1,y−1) or f(ax,y) − f(ax,y−1). These are nonnegative since f ∈ O(Qm)

so that f(ax−1,y−1) ≤ f(ax,y) since ax−1,y−1 ≤ ax,y, and f(ax,y−1) ≤ f(ax,y) since ax,y−1 ≤ ax,y.

Further notice that since all values of f(as,t) are 0 and 1 and follow the form just noted, the

differences are not just nonnegative, they are either 1 or 0. The total column sum is cm,j for all

j; this is also between 0 and 1, so (2.2) is satisfied. For (2.1), refer to R̂(M) in Lemma 3.3.7 and

notice that all entries are either differences of f(as,t) that are defined to be nonnegative or a single

nonnegative value, thus all partial row sums of M are nonnegative.

To see (3.1), consider the top row of Ĉ(M). In row 1 the partial column sums are the same

as the entries in M . Thus each matrix entry in the top row of M is nonnegative and the total sum

of the top row is:

2m∑
j=1

x1,j =

2m∑
j=1

c1,j =

m−1∑
j=1

c1,j +

2m−1∑
j=m

c1,j + c1,2m = 0 +

2m−1∑
j=m

c1,j + 1

= 0 +
2m−1∑
j=m

(f(a2m−j,2m−j)− f(a2m−j−1,2m−j−1) + 1

= 0 + (f(am,m)− f(am−1,m−1) + (f(am−1,m−1)− f(am−2,m−2))

+ (f(am−2,m−2)− f(am−3,m−3) + · · ·

+ (f(a3,3)− f(a2,2)) + (f(a2,2)− f(a1,1)) + +(f(a1,1)− f(a0,0)) + 1

= 0 + (f(am,m)− f(a0,0)) + 1 = 0 + (1− 0) + 1 = 2

as needed. Thus (3.1) is satisfied.
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For (3.2), again consider R̂(M). Notice that for each row in 2 ≤ i ≤ m of M there are m− i

zeros at the beginning and i− 1 zeros at the end of the row, thus only the entries in between need

to be in the summation. First consider when 2 ≤ i ≤ m− 1 and j ≤ 2m− i+ 2, the calculation is

as follows:

ri,2m−i+2 = f(ai−1,2i−2m+2m−i+2−1)− f(ai−2,2i−2m+2m−i+2−3)

= f(ai−1,i+1)− f(ai−2,i−1)

= 1− 1 = 0.

Now consider when i = m then need j = m+ 2, the calculation is:

rm,m+2 = f(am−1,m+2−2m+2m−1)− f(am−1,m+2−2m+2m−2) = am−1,m+1 − am−1,m = 1− 1 = 0.

Recall that if s < t then f(as,t) = 0 and 2m− 1 > m− 1 and 2m− 3 > m− 2 for m > 0 and m > 1

respectively. Therefore condition (3.2) is satisfied.

Now it is left to show that there is exactly one 1 in each column of M and that below

each 1 there is a −1. This condition translates to the following: if ci,j = 1 then ci+1,j = 0. Use

Proposition 3.2.3 as a reference. Figures 3.4 and 3.5 show examples.

Let fv ∈ J(Qm) be a vertex in O(Qm) and consider ξ(fv). Now let ci,j = 1; it needs to

be shown that ci+1,j = 0. Notice for 2 ≤ i ≤ m − 1 the row of the matrix Ĉ(M) is divided into

three parts based on the map (in Figure 3.10 it is the left side of the check mark, the bottom of

the checkmark and the right side). Row i = m will not need to be considered as there is no row

below it. The fourth expression of Definition 3.3.4 corresponds the the beginning of the row and

will be considered first.

• Case 1: 1 ≤ i ≤ m and j ≤ m− 2i+ 1.

ci,j = fv(a2m−j−i+1,2m−j−2i+2)− fv(a2m−j−i,2m−j−2i+1)

ci+1,j = fv(a2m−j−i,2m−j−2i)− fv(a2m−j−i−1,2m−j−2i−1).

The only way a difference can be 1 is of the form 1 − 0 = 1 since all entries of fv are

either 1 or 0. Therefore fv(a2m−j−i+1,2m−j−2i+2) = 1 and fv(a2m−j−i,2m−j−2i+1) = 0. No-

tice that in Qm, a2m−j−i,2m−j−2i+1 covers both a2m−j−i,2m−j−2i and a2m−j−i−1,2m−j−2i−1 thus
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fv(a2m−j−i,2m−j−2i+1) = 0 = fv(a2m−j−i,2m−j−2i) = fv(a2m−j−i−1,2m−j−2i−1). Therefore if ci,j = 1

then ci+1,j = 0 for all ci,j .

• Case 2: 1 ≤ i ≤ m− 1 and 2m− 2i+ 1 ≤ j ≤ 2m− 2i+ 2.

The middle of the checkmark results from one entry in the fourth expression and one entry

in the fifth expression, but when looking at row i + 1, both entries are a result of expression five

only.

• Case 2a: j = 2m− 2i+ 1

ci,2m−2i+1 = fv(a2m−(2m−2i+1)−i+1,2m−(2m−2i+1)−2i+2)

−fv(a2m−(2m−2i+1)−i,2m−(2m−2i+1)−2i+2) = fv(ai,1)− fv(ai−1,0) = fv(ai,1)

ci+1,2m−2i+1 = fv(ai+1−1,2m−2i+1−2m+2(i+1)−1)− fv(ai+1−1,2m−2i+1−2m+2(i+1)−2)

= fv(ai,2)− fv(ai,1)

Let ci,2m−2i+1 = fv(ai,1) = 1. If fv(ai,1) = 1, then fv(ai,2) = 1 also. Therefore if

ci,2m−2i+1 = fv(ai,1) = 1 then ci+1,2m−2i+1 = fv(ai,2)− fv(ai,1) = 1− 1 = 0.

• Case 2b: j = 2m− 2i+ 2

ci,2m−2i+2 = fv(ai−1,2m−2i+2−2m+2i−1)− fv(ai−1,2m−2i+2−2m+2i−2)

= fv(ai−1,1)− fv(ai−1,0) = fv(ai−1,1)

ci+1,2m−2i+2 = fv(ai+1−1,2m−2i+2−2m+2(i+1)−1)− fv(ai+1−1,2m−2i+2−2m+2(i+1)−2)

= fv(ai,3)− fv(ai,2) Let ci,2m−2i+1 = fv(ai−1,1) = 1, then notice that

1 ≥ fv(ai,3) ≥ fv(ai,2) ≥ ai−1,1 = 1 therefore fv(ai,2) = fv(ai,3) = 1.

Thus if ci,2m−2i+1 = fv(ai−1,1) = 1 then ci+1,2m−2i+2 = 1− 1 = 0.

• Case 3: 1 ≤ i ≤ m− 1 and 2m− 2i+ 2 ≤ j ≤ 2m− i+ 1

For this case the entries are to the right of the checkmark and thus only expression five is

used. Notice that when j > 2m− i+ 1 the rest of the row is zeros and does not apply.

ci,j = fv(ai−1,j−2m+2i−1)− fv(ai−1,j−2m+2i−2)

ci+1,j = fv(ai+1−1,j−2m+2(i+1)−1)− fv(ai+1−1,j−2m+2(i+1)−2)

= fv(ai,j−2m+2i+1)− fv(ai,j−2m+2i). Let ci,j = fv(ai−1,j−2m+2i−1)− fv(ai−1,j−2m+2i−2) = 1. Since

fv(ai−1,j−2m+2i−1) ≥ fv(ai−1,j−2m+2i−2), the only way the difference is 1 is if fv(ai−1,j−2m+2i−1) =

1 and fv(ai−1,j−2m+2i−2) = 0. Now notice that 1 = fv(ai−1,j−2m+2i−1) ≤ fv(ai,j−2m+2i) ≤

fv(ai,j−2m+2i+1). Therefore all three entries are 1. Thus if ci,j = fv(ai−1,j−2m+2i−1)

−fv(ai−1,j−2m+2i−2) = 1, then ci+1,j = fv(ai,j−2m+2i+1)− fv(ai,j−2m+2i) = 1− 1 = 0.

92



Consequently, no matter where there is a 1 in Ĉ(M), there is a 0 directly below it. Therefore

in X, where there is a 1, directly below it is a −1.

It is now established that for any f ∈ J(Qm), ξ(f(as,t)) = M is in CSM . Now consider

any f ∈ O(Qm). Each f can be written as a convex combination of the vertices {fv1 , fv2 , . . . , fvd}

where fv ∈ J(Qm). Since the convex combination is a summation, this result can be shown by

linearity.

ξ(f) = ξ(µ1fv1 + µ2fv2 + · · ·+ µdfvd)

= ξ(µ1fv1) + ξ(µ2fv2) + · · ·+ ξ(µdfvd)

= µ1ξ(fv1) + µ2ξ(fv2) + · · ·+ µdξ(fvd)

= µ1(M1) + µ2(M2) + · · ·+ µd(Md)

This is the convex combination of vertices of CPm, completing the proof.

3.3.3. Catalan polytope to order polytope

In this subsection, a map from the Catalan polytope to the order polytope will be explored.

Lemma 3.3.11 will show the image of this map is in O(Qm).

Definition 3.3.9. Define a map ξ̂ : CPm → R(m2 ) on X ∈ CPm. The first step of the map is to

apply Ĉ. The second step is as follows:

f(as,t) =
2m−2s+2t−1∑
k=2m−2s+t

c(s−t)+1,k for 1 ≤ t ≤ s ≤ m− 1. (3.8)

Notice in Figure 3.14 of ˆC(X) each row i is a pair of differences where the difference

between s and t values of f(as,t) are constant. In Figure 3.10 notice that on each checkmark, the

same differences of s and t appear, with s − t = 0 as the rightmost diagonal, s − t = 1 the next

checkmark to the left, etc.. Thus each of these diagonals equates to one row of the matrix Ĉ(X)

where s−t+1 = i. The map uses the summation of the rows starting at ci,j = f(ai,1) and summing

left until the desired value is reached.

Example 3.3.10. The graph and matrix in Figure 3.11 are used to show examples of the map ξ̂

from Definition 3.3.9.
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

0 0 0 0 0 1− a5,5 a5,5 − a4,4 a4,4 − a3,3 a3,3 − a2,2 a2,2 − a1,1 a1,1 1
0 0 0 0 1− a5,4 a5,4 − a4,3 a4,3 − a3,2 a3,2 − a2,1 a2,1 a1,1 1− a1,1 0
0 0 0 1− a5,3 a5,3 − a4,2 a4,2 − a3,1 a3,1 a2,1 a2,2 − a2,1 1− a2,2 0 0
0 0 1− a5,2 a5,2 − a4,1 a4,1 a3,1 a3,2 − a3,1 a3,3 − a3,2 1− a3,3 0 0 0
0 1− a5,1 a5,1 a4,1 a4,2 − a4,1 a4,3 − a4,2 a4,4 − a4,3 1− a4,4 0 0 0 0
1 a5,1 a5,2 − a5,1 a5,3 − a5,2 a5,4 − a5,3 a5,5 − a5,4 1− a5,5 0 0 0 0 0



Figure 3.14. The general version of Ĉ(X) for m = 6 using f(ai,j) values, written without the f due
to space constraints.

The first calculations give s − t = 0 values of f(as,t) which come from row i = 1 of the

matrix. The full calculation will be shown for the first few only.

• f(a1,1) =

2(6)−2(1)+2(1)−1∑
k=2(6)−2(1)+1

c(1−1)+1,k =
11∑

k=11

c1,k = c1,11 = 0

• f(a2,2) =

2(6)−2(2)+2(2)−1∑
k=2(6)−2(2)+1

c(2−2)+1,k =
11∑

k=10

c1,k = c1,10 + c1,11 = 0 + 0.1 = 0.1

• f(a3,3) =

2(6)−2(3)+2(3)−1∑
k=2(6)−2(3)+1

c(3−3)+1,k =
11∑
k=9

c1,k = c1,9 + c1,10 + c1,11 = .7 + 0 + 0.1 = 0.8

• f(a4,4) =
11∑
k=8

c1,k = c1,8 + c1,9 + c1,10 + c1,11 = 0 + .7 + 0 + 0.1 = 0.8

• f(a5,5) =

11∑
k=7

c1,k = c1,7 + c1,8 + c1,9 + c1,10 + c1,11 = 0 + 0 + .7 + 0 + 0.1 = 0.8

The next calculations give s− t = 1 which come from row i = 2 of the matrix.

• f(a2,1) =
9∑
9

c2,k = c2,9 = 0

• f(a3,2) =

9∑
8

c2,k = c2,8 + c2,9 = 0.4 + 0 = 0.4

• f(a4,3) =

9∑
7

c2,k = c2,7 + c2,8 + c2,9 = 0.4

• f(a5,4) = c2,6 + c2,7 + c2,8 + c2,9 = 0.5
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The next calculations give s− t = 2 values which come from row i = 3 of the matrix.

• f(a3,1) =
7∑

k=7

c3,k = c3,7 = 0.4

• f(a4,2) = c3,6 + c3,7 = 0.4

• f(a5,3) = c3,5 + c3,6 + c3,7 = 0.5

The next calculations give s− t = 3 values which come from row i = 4 of the matrix.

• f(a4,1) =
5∑

k=5

c4,k = c4,5 = 0

• f(a5,2) = c4,4 + c4,5 = 0.1

The last calculation gives s− t = 4 values which come from row i = 5 of the matrix.

• f(a5,1) =

3∑
k=3

c5,k = c5,3 = 0.1

It remains to be shown that the resulting f is actually in O(Qm).

Lemma 3.3.11. Let X ∈ CPm. Then ξ̂(X) = f where f ∈ O(Qm).

Proof. It needs to be shown that if ξ̂(X) = f then f fits the inequality description for O(Qm).

First this will be shown for M ∈ CSM(m), then for all X ∈ CPm. f(as,t) in Definition 3.3.9 will

be shown to fit each inequality in Theorem 3.3.1. There are four cases, as the definition of f(ai,j)

needs to fit in the inequalities of (3.4), (3.5), (3.6), and (3.7).

• Case (3.4): f(as,t−1) ≤ f(as,t).

f(as,t−1) =
2m−2s+2t−3∑
k=2m−2s+t−1

cs−t+2,k and f(as,t) =
2m−2s+2t−1∑
k=2m−2s+t

cs−t+1,k.

First notice that the row sums of these two cases are in adjacent rows of Ĉ(M); the top row

from f(as,t) will be called A and bottom row from f(as,t−1) will be called B. Figure 3.15 shows

this relationship, using boxes to help visualize. In row A there are a total of t boxes, while in row

B there are t− 1 boxes. Notice if t = 1, as,t−1 = as,0 = 0, thus the inequality is trivial. Therefore

assume t ≥ 2. Notice row A extends two more boxes to the right than row B and row B extends
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one more box to the left than A. So the length of the overlap in the boxes is t − 2, where there

would be no overlap if t = 2.

· · ·
· · ·

Figure 3.15. The visual representation of rows A and B for a large t and t = 2 in the proof of
Lemma 3.3.11.

Consider the two CSM(6) matrices in Figure 3.4; the top one shows the farthest right

the first 1 in every row can occur and the bottom one shows the farthest left the first 1 in every

row can occur. These are the extreme cases as they correspond to the empty order ideal and the

entire order ideal (this can also be seen in the SY T ; if the top row is 1, . . . ,m this corresponds

to the entire order ideal and if the top row of tableau is all odd numbers, this corresponds to the

empty order ideal). For the extreme cases in general, the 1’s in row i occur at j = 2m− 2i + 1 =

2m−2(s−t+1)+1 = 2m−2s+2t−1 and j = 2m−2i+2 = 2m−2(s−t+1)+2 = 2m−2s+2t for

the full order ideal case (pictured on top in Figure 3.4 for m = 6), while in the empty order ideal

case there is one 1 which occurs at m− i+1 = m−s+ t and the second 1 at 2m− i+1 = 2m−s+ t.

Therefore in all other M ∈ CSM(m) the first 1 will occur between these values. An example of a

Catalan sign matrix between the extremes is shown in Figure 3.5.

Now consider the equation from Definition 3.3.9 for f(as,t). The summation ends at j =

2m − 2s + 2t − 1, which is where there is the first 1 in the first extreme case. Thus the boxes in

A are guaranteed to have a summation of 1 in this case, as the second 1 in the row is to the right.

Next notice in the second extreme case that both 1’s in every row are outside the bounds on both

f(as,t−1) and f(as,t). Now consider the equation for f(as,t−1) which is row B; the summation ends

at 2m− 2s+ 2t− 3 = 2m− 2i− 1, which is two to the left of A. Therefore, the only way that a 1

can be in this box is if at least the columns to the left follow the first extreme case and this would

be the second 1. In that case f(as,t) = 1 also since this is the next column to the right in A after

the second 1 in row B. If the pattern follows the top extreme case in columns of M until this point

in B, but not after, notice that the only option for the next 1 is ci−1,j+1, which is in A. Any other

case results in row B as all zeros. Therefore it is always the case that f(as,t−1) ≤ f(as,t).
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• Case (3.5): f(as−1,t−1) ≤ f(as,t)

f(as−1,t−1) =
2m−2s+2t−1∑
k=2m−2s+t+1

cs−t+1,k

f(as,t)− f(as−1,t−1) =
2m−2s+2t−1∑
k=2m−2s+t

cs−t+1,k −
2m−2s+2t−1∑
k=2m−2s+t+1

cs−t+1,k

= cs−t+1,2m−2s+t ≥ 0

Since all 0 ≤ ci,j ≤ 1 for all i, j, f(as−1,t−1) ≤ f(as,t).

• Case (3.6): 0 ≤ f(as,1)

f(as,1) =
2m−2s+1∑

k=2m−2s+1

cs,k = cs,2m−2s+1 ≥ 0.

Therefore 0 ≤ f(as,1).

• Case (3.7): f(am−1,m−1) ≤ 1

f(am−1,m−1) =
2m−1∑
k=m+1

c1,k ≤
2m−1∑
k=1

c1,k = 1.

Therefore f(am−1,m−1) ≤ 1.

It is now established that for any M ∈ CSM , ξ̂(M) = f is in O(Qm). Now consider

any X ∈ CPm. Each X can be written as a convex combination of Mi ∈ CSM(m) such that

X = µ1M1 +µ2M2 + · · ·+µdMd where
d∑
i=1

µi = 1 and µi ≥ 0 for all i. Since the convex combination

is a summation, this result can be shown by linearity.

ξ̂(X) = ξ̂(µ1M1 + µ2M2 + · · ·+ µdMd)

= ξ̂(µ1M1) + ξ̂(µ2M2) + · · ·+ ξ̂(µdMd)

= µ1ξ̂(M1) + µ2ξ̂(M2) + · · ·+ µdξ̂(Md)

= µ1(f1(as,t)) + µ2(f2(as,t)) + · · ·+ µd(fd(as,t))
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Therefore the result is the convex combination of vertices of O(Qm), completing the proof.

3.4. The Catalan polytope and order polytope connection

This section contains the main theorem. The previous sections defined the maps and tools

needed to prove that the Catalan polytope is integrally equivalent to O(Qm), which ensures equiv-

alent volume of the polytopes.

Definition 3.4.1 ([29]). Two integral polytopes P in Rd and Q in Rm are integrally equivalent,

if there is a transformation ψ : Rd → Rm whose restriction to P is a bijection ψ : P → Q that

preserves the lattice.

Note: It can be shown that two integral polytopes are integrally equivalent if the determi-

nant of the reduced transformation matrix is 1 or −1.

Theorem 3.4.2. The Catalan polytope CPm is integrally equivalent to the order polytope O(Qm).

Proof. To show the bijection between the polytopes, an invertible map between O(Qm) and CPm

needs to be established. The proof proceeds by showing the maps ξ and ξ̂ are inverses.

Start with f ∈ O(Qm). It needs to be shown that for any as,t ∈ (Qm), ξ̂(ξ(f(as,t))) = f(as,t).

Now consider an individual f(as,t); there are two possible cases to address in Definition 3.3.4.

Consider the bounds of the fourth statement; the upper bound is j ≤ 2m − 2i + 1. Notice the

maximum j in the summation defining ξ̂ is j = 2m−2s+2t−1 = 2m−2(s−t+1)+1 = 2m−2i+1,

thus only statement four needs to be shown. The calculation is as follows:

ξ̂ξ(f(as,t)) = ξ̂

(
2m−2s+2t−1∑
k=2m−2s+t

cs−t+1,k

)

=
2m−2s+2t−1∑
k=2m−2s+t

(f(a2m−k−(s−t+1)+1,2m−k−2(s−t+1)+2)− f(a2m−k−(s−t+1),2m−k−2(s−t+1)+1)

=
2m−2s+2t−1∑
k=2m−2s+t

f(a2m−s+t−k,2m−2s+2t−k − a2m−s+t−k−1,2m−2s+2t−k−1)

= (f(as,t)− f(as−1,t−1) + (f(as−1,t−1)− f(as−2,t−2)) + · · ·

+ (f(as−t+2,2)− f(as−t+1,1)) + (f(as−t+1,1)− f(as−t,0)) = f(as,t).

Therefore, ξ̂(ξ(f(as,t))) = f(as,t) for all f ∈ O(Qm).
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Now it will be shown that ξ(ξ̂(ci,j)) = ci,j for all ci,j ∈ Ĉ(M) for all M ∈ CPm. The

calculation is as follows:

ξ(ξ̂(ci,j)) = ξ(f(a2m−j−i+1,2m−j−2i+2)− f(a2m−j−i,2m−j−2i+1))

=

2m−2(2m−j−i+1)+2(2m−j−2i+2)−1∑
k=2m−2(2m−j−i+1)+2m−j−2i+2

c(2m−j−i+1)−(2m−j−2i+2)+1,k

−
2m−2(2m−j−i)+2(2m−j−2i+1)−1∑
k=2m−2(2m−j−i)+2m−j−2i+1

ci,k =
2m−2i+1∑
k=j

ci,k −
2m−2i+1∑
k=j+1

ci,k = ci,j

Therefore, since ξ̂(ξ(f(as,t))) = f(as,t) and ξ(ξ̂(ci,j)) = ci,j , the maps ξ and ξ̂ are inverses.

It remains to be shown that CPm and O(Qm) are integrally equivalent.

The map ξ considers one row of a matrix X ∈ CPm at a time. Since X to Ĉ(X) could be

thought of as a series of row operations that would not change a determinant, therefore the matrix

Ĉ(X) will be used. Notice that each row of Ĉ(X) is determined by the value of s−t. Notice further

that for every Xi,j , i = s − t + 1. The proof proceeds by considering the first row of Ĉ(X), then

considering a row in general, to make a transformation matrix of the f(as,t) coefficients. The first

row of Ĉ(X) will be considered first where s = t. Notice that ignoring zeros, the top row of Ĉ(X)

is the following:

1− am−1,m−1 am−1,m−1 − am−2,m−2 am−2,m−2 − am−3,m−3

· · · a3,3 − a2,2 a2,2 − a1,1 a1,1 1

When this row of Ĉ(X) is put into a transformation matrix, the last entry will be all zeros

and one 1 to represent the 1, as shown in the matrix below. The second to the last entry will be

all zeros and one 1 to represent the a1,1. The transformation matrix for the first row is as follows

(the labels above show which coefficients are represented by that column):
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

am−1,m−1 am−2,m−2 am−3,m−3 · · · a3,3 a2,2 a1,1 1

−1 0 0 0 0 0 · · · 0 0 1

1 −1 0 0 0 · · · 0 0 0 0

0 1 −1 0 0 · · · 0 0 0 0

...
...

... · · · · · · · · ·
...

...
...

...

0 0 0 · · · 0 1 −1 0 0 0

0 0 0 · · · 0 0 1 −1 0 0

0 0 0 · · · 0 0 0 1 −1 0

0 0 0 · · · 0 0 0 0 1 0

0 0 0 · · · 0 0 0 0 0 1


Notice this is a m+ 1×m+ 1 matrix. Notice further that if row reducing from the bottom,

all row reduction proceeds by adding rows, which does not change the determinant. In this fashion,

the determinant of this matrix is ±1 (the ±1 is due to possible row swaps). Notice that there are

none of the same entries in row two that were also in row one. Thus each row of Ĉ(X) can be

considered as an independent block in the transformation matrix. The completed transformation

matrix will have a square block for each row of Ĉ(X), and zeros to fill in the upper right and

lower left. Therefore the determinant of the entire matrix is the product of the determinants of the

smaller blocks, as the matrix will be block diagonal. Row one was discussed above; the blocks for

the rest of Ĉ(X) are now discussed.

Consider a row in 2 ≤ i ≤ m − 1, and notice all entries of row m have been in previous

rows, thus row m of Ĉ(X) is a linear combination of rows in previous blocks of the final transition

matrix. A typical row in 2 ≤ i ≤ m− 1, ignoring zeros looks like the following:

1− am−1,m−1−(s−t) am−1,m−1−(s−t) − am−2,m−2−(s−t) am−2,m−2−(s−t) − am−3,m−3−(s−t)

· · · as−t+1,2 − as−t,1 as−t,1 as−t−1,1 as−t−1,s−t−1 − as−t−1,1 as−t−1,s−t − as−t−1,s−t−1)

· · · as−t−1,s−t−2 − as−t−1,s−t−3 as−t−1,s−t−1 − as−t−1,s−t−2 1− as−t−1,s−t−1

Notice that in the middle there are two entries as−t,1 and as−t−1,1. These entries equate

to rows of all zeros and one 1 in the transformation matrix for this block. As with the row one
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case, there is a telescopic effect with row reduction to reduce the transformation matrix to be a

(m+ 2)× (m+ 2) square. Notice that again after row reduction, all rows will be all zeros with one

1, therefore the determinant is ±1.

Since each block gives a determinant of ±1, the entire determinant is also ±1. Therefore

CPm and O(Qm) are integrally equivalent.

The following is a corollary of Theorem 3.4.2 and Theorem 1.3.56.

Corollary 3.4.3. The facets of CPm are enumerated by the formula (m− 1)2 + 1 = m2 − 2m+ 2.

Proof. From Stanley [25], it is known that for an order polytope, the number of facets equals the

number of cover relations plus the number of minimal elements plus the number of maximal elements

in the poset, as discussed in Theorem 1.3.56. Consider the triangle poset Qm. The cover relations

can be counted from the top down: 2 + 4 + 6 + 8 + · · ·+ 2(m− 2) = 2(1 + 2 + 3 + 4 + · · ·+m− 2) =

2

(
m− 1

2

)
= (m− 1)(m− 2) = m2 − 3m+ 2. The number of minimal elements is m− 1 and there

is one maximal element. Therefore the number of facets is m2− 3m+ 2 +m− 1 + 1 = m2− 2m+ 2

as needed.

3.5. Inequality description of CPm.

When the inequality description of the order polytope is converted via ξ to the Catalan

polytope, these inequalities are converted to Ĉ(X) and the following inequalities are obtained for

CPm.

Theorem 3.5.1. CPm consists of all m× 2m real matrices X = (Xi,j) such that the entries of the

partial column sum matrix Ĉ(X) satisfy:

2m−2s+2t−3∑
k=2m−2s+t−1

cs−t+2,k ≤
2m−2s+2t−1∑
k=2m−2s+t

cs−t+1,k, 2 ≤ t ≤ s ≤ m− 1, (3.9)

0 ≤ cs−t+1,2m−2s+t, 2 ≤ t ≤ s ≤ m− 1, (3.10)

0 ≤ cs,2m−2s+1, 1 ≤ s ≤ m− 1, (3.11)

2m−1∑
k=m+1

c1,k ≤ 1. (3.12)
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Proof. The calculations for these inequalities are shown in the proof of Lemma 3.3.11. It remains to

be shown that they are a minimal set. It is known from Corollary 3.4.3 that the number of facets is

given by m2−2m+2. Thus the same number of inequalities needs to be establish to have a minimal

set of inequalities. Notice that for the top two inequalities there are m− 1 elements between 2 and

m−1 for both s and t to pick, thus there are

(
m− 1

2

)
= (m−1)(m−2) = m2−3m+2 choices for

each inequality. The third inequality has m− 1 choices and the last is a single inequality. Together

there are m2 − 3m+ 2 +m− 1 + 1 = m2 − 2m+ 2 choices of inequalities to change to an equality

and obtain a facet.

3.6. Face lattice of CPm

In the last section it was shown that CPm is integrally equivalent to an order polytope.

Using the properties of order polytopes, the face lattice of CPm is now presented. This discussion

will follow Stanley [25].

Every face is an intersection of facets, therefore a face Fπ of O(P ) corresponds to a certain

partition of P̂ . Recall from Definition 1.3.54 that P̂ is obtained from P by adjoining a 1̂ element

above the poset and adjoining a 0̂ element below the poset.

Definition 3.6.1. π = {B1, B2, . . . , Bk} is a partition of P̂ if the blocks Bi are all nonempty and

pairwise disjoint, and B1 ∪B2 ∪ · · · ∪Bk = P̂ .

Definition 3.6.2. Let a partition of P̂ be called connected if every block B of π is connected as

an (induced) subposet of P̂ .

Definition 3.6.3. Define a binary relation ≤π on π by setting Bi ≤ Bj if x ≤ y for some x ∈ Bi

and y ∈ Bj . Call π compatible if the transitive closure of ≤π is a partial order.

The following theorem gives a description of the face lattice of O(P ).

Theorem 3.6.4 ([25]). The lattice of faces of O(P ) is isomorphic to the lattice of connected

compatible partitions of P̂ , ordered by reverse refinement. (In particular, the partition π into a

single block P̂ yields the empty set Fπ = ∅, which is regarded as a face.)

Now a corollary of this theorem and Theorem 3.4.2 is given.

Corollary 3.6.5. The face lattice of CPm is isomorphic to the lattice of connected compatible

partitions of Q̂m, ordered by reverse refinement.
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An example of the face lattice of CP3 can be seen in Figures 3.16 and 3.17.

1̂

0̂

a b

c

Figure 3.16. The poset Q3 with added 1̂ and 0̂ to obtain Q̂3.

0bc− a− 1

0− abc− 1

0b− ac− 1

0b− a− c1

0− b− ac1

0− a− bc10a− b− c1

0ac− b− 1

0a− bc− 1

0ab− c− 1

0a− bc1 0b− ac1 0− abc10ab− c10abc− 1

0abc1

0− ac− b− 1 0− a− bc− 1 0− a− b− c10b− a− c− 10a− b− c− 1

0− a− b− c− 1

Figure 3.17. The face lattice for the poset in Figure 3.16.

3.7. Ehrhart polynomial and volume

The following corollaries are obtained from Stanley’s theory of order polytopes [25] and

Theorem 3.4.2.

Corollary 3.7.1. The Ehrhart polynomial of CPm is Ω(Qm, t+ 1).

Corollary 3.7.2. The normalized volume of CPm is e(Qm), where e(Qm) is the number of linear

extensions of Qm.
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Remark 3.7.3. Notice that e(Qm) is equal to the number of SY T of staircase shape [m− 1, ..., 2, 1].

Recall that SY T are counted by the hook-length formula introduced in Definition 1.4.6. Thus

volO(Qm) = volCPm = e(Qm) =

(
m
2

)
!

1m−13m−2 · · · (2m− 3)1

Notice that since the poset Qm has m − 1 minimal elements, this does not contradict what was

calculated in Subsection 1.4.3. In that example, SY T of staircase shape [m,m−1, ..., 2, 1] was used.
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4. FUTURE WORK

The following chapter is a discussion of possible future work.

4.1. Tableaux polytopes

This study of sign matrices is the beginning of research of polytopes from tableaux. Further

exploration of sign matrix polytopes from semistandard and standard Young tableaux is possible.

Other shapes of tableaux or types such as increasing tableau, defined next, are of interest.

Definition 4.1.1. An increasing tableau is a filling of a Young diagram with positive integers such

that the rows are strictly increasing and the columns are strictly increasing.

Recall that standard Young tableaux have a similar definition. However, for a SY T , each

number can only be used once, and the maximum entry is the number of boxes in the Young

diagram. An increasing tableau can leave out numbers, or repeat numbers, just not in the same

row like SSY T . Figure 4.1 shows the eight tableaux in SSY T ([2, 1], 3). The set {C,D,E, F,H} is

the set of all increasing tableau, and the set {D,E} is SY T ([2, 1]).

A =
1 1

2
B = 1 1

3
C = 1 2

2
D = 1 2

3

E =
1 3

2
F =

1 3

3
G =

2 2

3
H =

2 3

3

Figure 4.1. The 8 tableaux in SSY T ([2, 1], 3).

Polytopes from increasing tableaux could be a stepping stone to learn more about by poly-

topes from standard Young tableaux, using techniques from research on SSY T (λ, n).

4.2. Sign matrices

Another area of possible future work is with sign matrices. Since sign matrices are in

bijection with SSYT, they could be further bijected to the row or column word of a SSYT. The

column word of a SSYT is formed by the numbers in a semistandard Young tableau by reading the

words from the bottom to top and left to right across a tableau. Thus the exploration of research
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on words can be now studied using sign matrices. Robinson-Schensted-Knuth (RSK) insertion is

an operation on words of particular interest. It would be intriguing to study the effect of RSK on

a sign matrix.

Permutations of words would be interesting to study on sign matrices, specifically pattern

avoidance cases. Pattern avoidance in a permutation is the study of all permutations that do not

contain a certain pattern. It is possible there is a way to see these patterns on sign matrices.

4.3. Connection to Gelfand-Tsetlin polytopes

The Gelfand-Tsetlin polytope is another polytope that may have connections to the sign

matrix polytopes from this research. Gelfand-Tsetlin polytopes have been studied in [12, 16, 18].

Definition 4.3.1 ([26, p. 313]). A Gelfand-Tsetlin pattern is a triangular configuration of nonneg-

ative integers where the entries must satisfy the conditions xi+1,j ≥ xij and xij ≥ xi+1,j+1 for all

values of i, j where 1 ≤ i ≤ n and 1 ≤ j ≤ i.

An example of a Gelfand-Tsetlin pattern and its inequalites are shown in Figure 4.2. The

Gelfand-Tsetlin polytope is formed as the convex hull of all Gelfand-Tsetlin patterns satisfying

certain properties (e.g. entries at most n or with prescribed top row). The inequalities in the figure

are the inequalities that describe such a polytope. It is worth mentioning that, in general, not all

Gelfand-Tsetlin patterns included in the convex hull are vertices of this polytope.

xn1 xn2 · · · xn,n−1 xn,n

xn−1,1 xn−1,2 xn−1,n−1

x22x21

x11

Figure 4.2. The inequalities of the Gelfand-Tsetlin pattern are shown.

It is well known that SSY T (λ, n) are in bijection with Gelfand-Tsetlin patterns [26, p. 314].

Since Gelfand-Tsetlin patterns are in bijection with SSY T , it is likely that there is a connection

between their respective polytopes. It is also possible that SSY T (λ, n) projects onto the Gelfand-

Tsetlin polytope.
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6 3 3 1 0 0 0

5 3 3 1 0 0

5 3 3 0 0

4 3 2 0

3 3 1

3 2

2

1 1 2 4 5 7

2 2 3

3 4 5

6

Figure 4.3. Example of the bijection between the Gelfand-Tsetlin pattern on the left and the SSY T
on the right.
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