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ABSTRACT 

This research examines the power of the Kolmogorov-Smirnov two-sample test.  The 

motivation for this research is a large data set containing soil salinity values.  One problem 

encountered was that the power of the Kolmogorov-Smirnov two-sample test became extremely 

high due to the large sample size.  This extreme power resulted in statistically significant 

differences between two distributions when no practically significant difference was present.  

This research used resampling procedures to create simulated null distributions for the test 

statistic.  These null distributions were used to obtain power approximations for the 

Kolmogorov-Smirnov tests under differing effect sizes.  The research shows that the power of 

the Kolmogorov-Smirnov test can become very large in cases of large sample sizes. 
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1. INTRODUCTION 

With modern electronic data collection methods, it is common to have very large data 

sets.  It is important to understand how large sample sizes can affect the results of different 

analysis methods.  If a researcher fails to understand how large sample sizes affect the results of 

a specific method, the results could be confusing or unmeaningful in a practical sense.  This 

thesis will specifically focus on the two-sample Kolmogorov-Smirnov test and how sample size 

affects the test’s power.   

It may be desirable to test if two population distributions differ significantly.  One way to 

approach this type of problem is to use the Kolmogorov-Smirnov two-sample test.  This test 

allows one to compare the empirical distributions of the two populations.  The hypothesis 

statements that may be used with the Kolmogorov-Smirnov two-sample test are as follows: 

1 2

1 2

: ( ) ( )   For all 

: ( ) ( )   For at least one 

Ho x x x

Ha x x x

F F
F F  

In this case, F1(x) represents the cumulative distribution function of the first population and F2(x) 

represents the cumulative distribution function of the second population.   

The test statistic for the two-sided test is the absolute value of the maximum distance 

between the empirical distributions of the two populations.   

1 2
D max S S  

S1 represents the empirical distribution for population one and S2 represents the empirical 

distribution of population two.  D is the maximum absolute value of the distances between the 

two empirical distributions. 
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 The null hypothesis is rejected if the test statistic is larger than the, 1 - α, quantile of the 

null distribution (Daniel, 1990).  α represents the desired level of significance.  In this thesis α of 

0.05 will be the only level of significance considered.  Rejecting the null hypothesis indicates 

that there is a statistically significant difference between the two empirical distributions.  If the 

null hypothesis is not rejected, it indicates that we do not have evidence to say the two 

populations differ significantly. 

 The motivational data set used in this thesis came from soil salinity research, in North 

Dakota.  Data was collected by Hopkins and Steele using a veris machine, which was attached to 

the rear of a pickup (Hopkins & Steele, 2011).  This machine collects soil electrical 

conductivities, which is “a measurement of how much electrical current soil can conduct”  (Veris 

Technologies, Inc., 2014).  The veris machine collects soil conductivity data by running 

electrical current through coulters in the soil.  The electrical conductivity values are then 

recorded electronically at two different levels, shallow and deep.  Shallow represents the depth 

from 0 to 12 inches and deep represents the depth from 0 to 36 inches.  In general, the higher 

levels of soil conductivity represent higher levels of salinity in the soil.  Other variables recorded 

with the veris include, GPS latitude and longitude, elevation, and a sample identification number.  

This thesis focuses mainly on the electrical conductivity variables, deep and shallow.  The focus 

is mainly on a few selected sites.  These sites are analyzed to get a better understanding of how 

the sample size and absolute effect size affects the power of the Kolmogorov-Smirnov two-

sample test.   

 Hopkins and Steele (2011) collected data from sites once in the spring and once in the fall 

from the years 2005 to 2009, when access to the land was available.  Because of access issues 

researchers were unable to obtain data for every season.  Data was collected from a total of eight 
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sites.  The goal of the original analysis was to determine if there was a difference in the site’s soil 

salinity levels over time.  The Kolmogorov-Smirnov test was used to determine if there was a 

difference within sites over time.  When the original tests were performed the null hypothesis 

was always rejected, which indicates a statistically significant difference in the salinity levels 

was present.   

This thesis investigates why the null hypothesis may have been rejected so frequently.  It 

is suspected that the large sample sizes are responsible for a substantial increase in the power of 

the test.  The goal is to determine how the sampling effort affects the power of the test.  The 

method used to determine if this is in fact the case, will be simulations using SAS software.  The 

methodology of these simulations is explained in greater detail in Chapter 3 of this thesis. 
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2. LITERATURE REVIEW 

Extensive research has been done on the power of the Kolmogorov-Smirnov two-sample 

test.  This section will highlight some of the research on the power of the Kolmogorov-Smirnov 

test that has previously been published.  There has been a large amount of research done on the 

power of the KS test compared to the power of other similar tests.  One of the most recent 

research papers focused on using Monte Carlo simulations to find the power of the Kolmogorov-

Smirnov test for different types of distributions and different distribution parameters (Boyerinas , 

2016). 

Boyerina’s simulation research focused on normal, lognormal, and exponential 

distributions.  He looked at the power of the KS test and the Anderson-Darling test.  He shows 

that the Kolmogorov-Smirnov test is more sensitive to differences near the center of the 

empirical distribution functions than the Anderson-Darling test.  However, the Anderson-Darling 

test is more sensitive in the tails of the empirical distribution functions.  It is necessary to 

simulate data from the distributions, under different distribution parameters, to get an accurate 

estimation of the power of a test.   

The results of Boyerina’s Monte Carlo simulations showed that the power of the two-

sample KS test varied significantly depending on the mean and variance parameters.  It was 

shown that the Anderson-Darling test, in general, has a slightly higher power than the two-

sample KS test under the same distribution parameters.  The power of the KS test was found to 

change significantly depending on the distribution parameters of mean and variance.  The power 

always increases with larger sample sizes, as can be expected.  The absolute effect size affects 

the power of the KS test significantly.   

The power of a statistical test is very important.  If the power is too low the inferences 

made from the test may not be correct (Massey Jr., 2012).  It is important to analyze not only the 
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statistical significance of a test, but also its practical significance.  Ellis (2010) notes that, most 

studies are completed, and conclusions are drawn without even considering the power of their 

inferential tests.  If the power of a test is too low, for the sampling effort in a study, a practically 

significant result may not be detected when it should be.   

Absolute effect size refers to the difference of the sample means divided by the sample 

standard deviation.  If the absolute effect size is large enough the results of a test will be 

practically significant (Ellis & Steyn, 2013).  Smaller absolute effect sizes may not necessarily 

be practically significant.  If the power of a test is high the test may find small absolute effect 

differences to be statistically significant.  These statistically significant differences may not 

necessarily be significant is a practical sense. 

“Effect size can be considered an index of the degree to which the findings have practical 

significance in the population study” (Hojat & Xu, 2004).  Actual effect size for the estimate of 

mean differences is the ratio of the differences in the means over the standard deviation of the 

control group (Nakagawa & Cuthill, 2007).  Hojat and Xu note that many research journals have 

started to recommend or even require authors to submit effect size estimates.   

It is notable that the Kolmogorov-Smirnov test does not result in continuous test statistics 

for two samples of equal size (Daniel, 1990).  If the sample sizes are equal the test will result in 

discrete test statistics (Boyerinas , 2016).  It desirable to use continuous test statistics for the null 

distribution, so it is important to use unequal sample sizes in simulation studies of the two-

sample KS test. 

Statistical significance represents an improbable result, but practical significance 

represents a difference that is meaningful in a real-world sense (Ellis P. D., 2010).  Ellis notes in 

his book that few researchers “distinguish between the statistical and practical significance of 
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their results.”  Practical significance refers to the usefulness of a result in a real world situation, 

but statistical significance is related to the ability to detect differences between two samples.   

Research has been done to compare the Kolmogorov-Smirnov test power to the power of 

other tests.  There are also many papers on the efficiency of the KS test (Klotz, 2012) (Capon, 

1965) (Ramachandramurty, 1966) (Yu, 1971).  Simulations have been used to determine the 

power of the test under different distribution parameters.  It is difficult to find any publications 

on the effect of large sample sizes for the KS tests.  This thesis examines the extreme power 

caused by large sample sizes as well as the importance of practical vs statistical significance. 
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3. METHODOLOGY 

3.1. Data Description 

The data used in this thesis was briefly discussed in the introduction of this paper.  This 

section gives a more detailed description of the data used in this thesis.  The data from the 

motivational data set came from a research study conducted by Hopkins and Steele (2011).  They 

collected soil electrical conductivity data using a veris machine.  This machine was attached to 

the back of a pickup.  The pickup followed a GPS system to cross a field in a back and forth 

pattern with equal distances between each parallel pass.  As the machine moves it pulls coulters 

through the soil.  These coulters periodically record the soil’s electrical conductivity at two 

different depths.  The shallow depth is defined from 0 to 12 inches and deep refers to the depth 

from 0 to 36 inches.  This data was recorded once in the fall and once in the spring for each field, 

when conditions allowed.  

Each measurement that is recorded also has an ID number, latitude, longitude, and 

elevation value.  The electrical conductivity values are measured as apparent electrical 

conductivity.  The values of EC recorded from the selected sites ranged from 0.2 to 626.3.  The 

smallest number of observations from the selected sites was 2,917 and the largest number of 

observations was 15,906.  Most of the electrical conductivity data has a substantial amount of 

variation.  The data sets also tend to be very right skewed.   

3.2. Site Selection 

The sites chosen to analyze were determined based on certain criteria.  It was decided that 

sites with different distribution parameters, mean and variance, and with different distribution 

types would be selected.  Site 12 fall 2007 deep data was chosen because the number of 

observations is high, 15,906.  The deep EC values from this data were used for the simulations.  

Site 35 spring 2008 was chosen because the values of deep EC had a somewhat bimodal 
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distribution.  Site 35 spring 2007 shallow data was chosen because it has a large variation 

compared to the other chosen sites.  This data is also very right skewed.  The last site chosen for 

the simulations was the shallow values for site 20 fall 2008.  This site was chosen because it was 

very right skewed with a very small variance in comparison to the other sites.  Appendix C 

contains more information on the selected sites and their distributions including descriptive 

statistics. 

3.3. Simulation Procedure 

The procedures used in this thesis can be broken down into three major steps.  The three 

steps involved are: 

• Simulations to calculate approximate null distributions 

• Simulating samples and calculating test statistics 

• Calculation of rejection rates for samples, using the approximated null distribution 

The following section of the thesis explains in detail how each step above can be implemented in 

order to obtain useful results.   

3.3.1 Calculation of Approximate Null Distributions 

The null distributions of the test statistic are simulated for each sample size used in this 

thesis.  For every combination of sample sizes, 100,000 test statistic values are calculated when 

the condition of the null hypothesis is true.  The 95th percentile of each set of 100,000 test 

statistic values is used as the critical value for tests performed at that site for the particular 

sample size combination.  The distribution of the test statistic is only continuous when the 

sample sizes comparing two distributions are not equal (Boyerinas , 2016).  Because of this, the 

combinations of sample sizes used in this thesis are (25, 26), (50, 51), (100, 101), (200, 201), 

(500, 501), (1000, 1001), and (2000, 2001).  It is assumed that this slight difference in sample 
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sizes will have minimal effect on accuracy of the power calculations, as unequal sample sizes are 

actually an assumption of the two-sample KS test (Daniel, 1990).   

The basic form of the SAS code used for the reference distributions is found in Appendix 

D.1.  This code uses a seed of 0 to randomly select observations from the desired data set.  

Setting the seed to zero tells SAS to use the clock value as the random seed.  Observations are 

randomly selected for sample 1 and sample 2.  Once the samples are obtained, the test statistics 

are calculated for the two-sample Kolmogorov-Smirnov tests using proc npar1way in SAS (SAS 

Institute Inc., 2010).  There are 100,000 test statistics calculated for each sample size at each of 

the chosen site’s distribution.  This collection of test statistics is the approximated null 

distribution for its corresponding site and sample size.  The percentiles of these approximate null 

distributions are then found using the code in Appendix D.2.  The 95th percentile value of the 

null distribution is saved for use as a critical value in future steps of this thesis.   

For an example we will look at the sample size of 25 and how this null distribution was 

calculated.  Two random samples are taken from the original data set.  Sample one has a sample 

size of 26 and sample two has a sample size of 25.  These two samples are then run through the 

npar1way procedure in SAS.  This procedure calculates the test statistic for the two-sample KS 

test.  This test statistic is the maximum difference between the empirical distributions of the two 

samples.  This process of taking two samples and calculating the test statistic is done 100,000 

times.  This results in 100,000 test statistics for the sample size of 25.  The 95th percentile of the 

100,000 test statistics is then calculated.  This 95th percentile value is the critical value of the test.  

This process is repeated for each of the sample sizes we wish to approximate power for. 

The test statistic that is used in this thesis is called the KSa.  The KSa is calculated from 

the empirical distributions.  The empirical distribution calculation is shown below. 
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1
F( )= ( ( ))

i i

i

x n F x
n  

 “Where ni is the number of observations in the ith class level and n is the total number of 

observations” (SAS Institute Inc., 2010).  The formula for the KS test statistic used in SAS 

follows. 

21
max ( ( ) ( ))

i i j j
j

i

KS n F x F x
n

 

The KSa value is what is obtained from the simulations in this thesis.  The KSa is just the square 

root of n times the KS value.  This KSa test statistic is simply an asymptotic version of the KS 

test statistic. 

21
max ( ( ) ( ))

i i j j
j

i

KSa KS n n n F x F x
n  

3.3.2. Simulating Samples and Calculating Test Statistics 

 The samples are created using a bootstrapping type of approach.  This method involves 

sampling with replacement.  The code used to create these samples is provided in Appendix D.  

The same sample sizes were used as those used in the approximate null distribution creation, 

with n1= n2+1.  Sample sizes for n2 were 25, 50, 100, 200, 500, 1000, and 2000.  These sample 

size values are the n2 values.  10,000 samples were taken for each combination of absolute effect 

size and sample size at each site.  These samples are then run through proc npar1way in SAS to 

calculate their KSa test statistics.  The calculated test statistics are saved for use in the last step of 

the procedure. 
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 These test statistics are calculated for different absolute effect sizes.  Absolute effect size 

in this thesis is defined below. 

ES
 

Where ES denotes absolute effect size and delta mu is the difference between the means.  As 

shown in the above formula, absolute effect sizes are related to the original sample’s mean and 

standard deviation.  The absolute effect sizes chosen for this thesis are 0, 0.1, 0.2, 0.5, and 0.8.  

These absolute effect sizes are simulated for each of the sample sizes, 25, 50, 100, 200, 500, 

1000, and 2000, for each site.   

The term “actual effect” will be used in this thesis to describe the magnitude of the 

difference in the means.  This actual effect is simply the change in means.  Actual effect will be 

denoted as Δµ.   

 To see how actual effect size affects the power, data will be simulated for site 35 spring 

2007’s shallow distribution using the actual effects from site 20.  These actual effects are the Δµ 

values used in the simulations of site 20.  This simulation using actual effects will be useful in 

understanding how the actual effect affects the power of the KS two-sample test. 

Following the above steps will provide the simulation data needed to calculate the power 

of the two-sample KS test.  It is essential to combine the samples by effect size using the code in 

Appendix D.4 to plot all of the data on one plot.  In the next step these test statistics are 

compared to the 95th percentile of the corresponding simulated null distribution to calculate the 

power of the KS test.  The power will be calculated for each combination of sample size and 

effect size. 
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3.3.3. Calculation of Rejection Rates 

 The power will be found by finding the proportion of rejections of Ho when Ha is true.  

This proportion is found by comparing the sample KSa test statistics to the 95th percentile of the 

KSa test statistics from the approximated null distribution, for the corresponding sample size.  

This proportion is also calculated for the absolute effect size of 0, which represents the type one 

error.  This type one error is expected to be approximately 5%.  The estimated type one errors 

from these simulations are provided in Appendix A. 

3.4. Power Plot Creation 

The power of the KS tests is plotted using the gplot procedure in SAS (SAS Institute Inc., 

2016).  These plots are made for each site separately.  The x-axis is the sample size and the y-

axis is the power.  These power plots contain four different lines.  Each line represents one of the 

effect sizes.  These power plots are provided in the results section of this thesis.  

 The plots for the type one error are created using the same method.  Type one error 

should be very close to a 5% rejection rate.  It is important that the type one errors be consistent 

so that results from different simulations will be comparable.  These type one error plots should 

result in a horizontal line at the 5% rejection rate.  The code used to create these plots is in 

Appendix D.5.   The critical values calculated from the null distribution are hard coded into this 

code.  The power plots are shown in Chapter four of this thesis.   
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4. RESULTS 

4.1. Site 35 Spring 2008 Deep Distribution 

Site 35’s spring 2008 deep distribution was chosen as one of the data sets used to 

simulate power for.  This distribution was chosen because it is somewhat bimodal with a large 

variance.  The histogram of this distribution can be seen in Figure 1.  The mean for this 

distribution is 103.2 with a standard deviation of 77.79.  The original number of observations for 

the site 35 distribution was 3077.   

 

 

Figure 1. Site 35 Spring 2008 Deep Distribution 
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The procedures in chapter 3 were followed to create the null distribution for each of the 

chosen sample sizes 25, 50, 100, 200, 500, 1000, and 2000.  The percentiles of the KSa test 

statistics were found using the code in Appendix D.  Data was then resampled for each of the 

absolute effect sizes 0, 0.1, 0.2, 0.5, and 0.8.  These effect sizes were implemented by adding 

each effect size times sample standard deviation of 77.79 to each value simulated in sample 2.  

The Δµ for each effect size is 0, 7.78, 15.56, 38.89, and 62.23 respectively.  The KSa values for 

each of these simulations was compared to the 95th percentile of the KSa values in the 

approximated  null distribution, with the corresponding sample size.  The power was calculated 

as the percent of rejections when the absolute effect size was not equal to 0.  This percent 

represents the correct rejection rate.  The power plot that was created is shown in Figure 2. 

 

Figure 2. Site 35 Spring 2008 Deep Power Plot 
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The power plot clearly shows that the power increases with sample size for all absolute 

effect sizes.  Larger absolute effect sizes indicate a larger level of practical significance.  The 

smaller the effect size the smaller the power is, for a given sample size.  A power of 100% is 

reached at fairly small sample sizes.  Even the lowest absolute effect size of 0.1 yields about 100 

percent power at sample sizes of only 500.  With a larger absolute effect size, such as 0.8, the 

power of the test is high even at the smallest sample size of 25.  These results show that the 

power of the KS test can be very high even with small sample sizes.  This was the result we 

expected based on the results of the original KS tests done on the salinity data. 

4.2. Site 35 Spring 2007 Shallow Distribution 

This distribution at site 35 was chosen because it has a very large variance compared to 

the other distributions.  This distribution is right skewed which can be seen in Figure 3.  The 

mean for this distribution is 110.77 and the standard deviation is 114.4.  Since this site has such a 

large variance the difference in the means will be greater.  This results in larger actual effect 

sizes, which will cause the power of the test to increase.   
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Figure 3. Site 35 Spring 2007 Shallow Distribution 

 

The actual effect values added were 0, 11.44, 22.88, 57.20, and 91.52.  These correspond 

to the absolute effect sizes of 0, 0.1, 0.2, 0.5, and 0.8 respectively.  The power plot that was 

created for this distribution is presented in Figure 4. 



 

17 

 
Figure 4. Site 35 Spring 2007 Shallow Power Plot 

 Looking at the power plot for this distribution it is easy to see that there is very high 

power for small sample sizes.  Even with the smallest absolute effect size of  0.1 the power is 

over 80 percent with a sample size of only 50.  For larger absolute effect sizes the power is 

almost 100 percent at the smallest sample size of 25.  If the KS test was used for a distribution 

like this with large sample sizes it may result in practically insignificant rejections of Ho.  This 

plot helps to explain how the large power could cause practically insignificant rejections. 

4.3. Site 20 Fall 2008 Shallow Distribution 

The fall 2008 shallow distribution was chosen for site 20 in the original data.  This 

distribution was chosen because it has a lower variance than most of the other distributions.  
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Since it has lower variance, the difference between the means for the two samples will be 

smaller, for a given absolute effect size.  The mean of this distribution is 28.8 and the standard 

deviation is 9.33.  This histogram for this distribution is provided in Figure 5. 

 
Figure 5. Site 20 Spring 2008 Shallow Distribution 

 

The values that were added to the sample two to create the absolute effect sizes were, 

0.93, 1.87, 4.67, 7.47.  Using the methods that are outlined in the procedure section, the power 

plot in Figure 6 was created.   
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Figure 6. Site 20 Fall 2008 Shallow Power Plot 

 

The power plot for site 20 has much lower power for the same absolute effect sizes when 

compared to the previous distributions.  With an absolute effect size of 0.1 the power of the test 

is not even 70% for the sample size of 1000, but the power still increases to over 90% at sample 

sizes of 2000.  For larger absolute effect sizes the power is much higher.  With an absolute effect 

size of 0.8 it is only necessary to have sample sizes of 50 to get a power greater then 90%.  It 

becomes very apparent that the effect magnitude, actual effect, one desires to detect must be 

known before choosing the most appropriate sampling effort for this test.   
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4.4. Site 12 Fall 2007 Deep Distribution 

This site is right skewed with a mean of 52.6 and a standard deviation of 37.86.  The 

number of original observations for this distribution was 15,906.  The histogram for this 

distribution is provided in Figure 7.  The values that were added to the sample two values, to 

create the effect sizes were, 3.79, 7.57, 18.93, and 30.29.  This means that the change in the 

mean, Δµ, is not as large as some distributions at other sites.  The power plot for this distribution 

can be seen in Figure 8. 

 

Figure 7. Site 12 Fall 2007 Deep Distribution 
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Figure 8. Site 12 Fall 2007 Deep Power Plot 

 

The power plot shows that the power is quite high for large absolute effect sizes, like 0.8, 

even with relatively small sample sizes.  The absolute effect size of 0.1 does not have a high 

power until sample sizes reach approximately 1,500.  The next result is the power plot for actual 

effect size.  With this result it is easier to see how actual effect changes the power of the KS two-

sample test.    
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4.5. Site 35 Spring 2007 Shallow Distribution with Actual Effects 

The actual effect refers to the actual magnitude of the difference of means, Δµ.  It was 

desired to see how this actual effect changes the power of the two-sample KS test.  The data used 

for this simulation is that from site 35’s spring 2007 shallow distribution.  In this case, instead of 

adding the absolute effect size, which was done in section 4.2, we add the Δµ from the site 20 

distribution, from section 4.3.  These Δµ values are 0.93, 1.87, 4.67, and 7.47.  When these 

actual effects are used it creates the power plot in Figure 9. 

 

Figure 9. Site 35 Spring 2007 Shallow Power Plot for Actual Effects 
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When comparing this power plot to the power plot created using absolute effects we see 

that this plot has lower power.  This is the expected result, because the values of Δµ for site 20 

are smaller than the differences of the means that were used when finding the power for the 

absolute effect size.   

Comparing this power plot to the one created for absolute effect sizes for site 20, Figure 

6, we see that there is lower power for this plot of actual effects.  This result makes sense 

because site 35’s spring 2007 distribution has a much larger variance than that of site 20.  It can 

be expected that the power of a test will decrease as the variance of the population’s distribution 

increases.  This result helps explain how the power of the two-sample KS test reacts to actual 

differences between the means. 
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5. CONCLUSION 

After completing the simulation procedures, outlined in the methodology section, and 

creating the power plots, displayed in the results section, some conclusions can be made.  It is 

obvious that the mean and variance of the distributions being tested has an extreme effect on the 

power of the test in terms of absolute effect size.  It is important, for researchers, to have an 

understanding of how these parameters of mean and variance may affect the power of the two-

sample Kolmogorov-Smirnov test.  Without this understanding a researcher may make 

impractical claims about the differences between two populations.   

To better explain how this understanding is important, an example using the site 12 fall 

2008 shallow distribution is given.  If a researcher desires to compare two distributions, say fall 

2008 to fall 2007, the number of observations for each distribution would be more than 1,000.  

Let us also assume that the electrical conductivity values are only accurate within 5 units.  If the 

researcher then uses a computer program to run the two-sample KS test, with each population 

having more than 1,000 data points, the result will likely be to reject the null hypothesis even for 

a very small difference.  This statistically significant difference could be much smaller than the 

accuracy of the veris machine’s electrical conductivity values.  This could be a problem because 

the null hypothesis will essentially be rejected when no practically significant difference is 

present.  The only real difference being detected could be the natural variation in the data.  This 

problem of large sample size has the possibility of making the statistical inference useless in a 

practical sense.  Refer to Figure 6 from site 12, to see how small differences in Δµ will cause a 

rejection at larger sample sizes.  

The absolute effect size of 0.1 in the power plot in Figure 6 represents an actual effect of 

approximately 3.8 units of electrical conductivity.  The ability to detect this difference of 3.8 

units is over 95% with sample sizes of only 2000.  It is easy to see that the power would 
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essentially reach 100% with the sampling effort in our example with over 1,000 observations.  

This example clearly shows that it is possible for a two-sample KS test, with large sample sizes, 

to lead to rejections that are not practically useful.  If the sample sizes were even larger this large 

power would likely cause practically insignificant rejections of Ho. 

This thesis shows the importance of understanding how sample size can affect the power 

of the two-sample Kolmogorov Smirnov test and can possibly lead to statistically significant 

results when no practical difference is actually present.  It is important that a researcher does not 

conclude that there is a significant difference between two samples when the actual difference is 

only due to the natural variation in the data.  It may be advisable, when possible, for a researcher 

to consider the magnitude of difference that is practically significant for the data they are 

attempting to analyze before actually analyzing the data.  They can then use simulations, or some 

other method, to estimate the power of their test before making inferences.    

It may be possible to use subsampling procedures in order to obtain more practically 

significant results for the two-sample KS test.  This method would be easy to implement if a 

researcher had a power plot similar to the ones created in this thesis and an understanding of the 

practical difference in the magnitude they would like to reject for.  Of course, this would only 

work properly if the variances of the two samples could be considered identical and differences 

in the mean were the primary concern.  It is clear that the power of a two-sample Kolmogorov-

Smirnov test can become very large in cases of large sample sizes.  A prudent researcher should 

consider this when using the two-sample Kolmogorov Smirnov test for analysis. 
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APPENDIX A. TYPE ONE ERROR PLOTS 

 

Figure A1. Site 35 Spring 2008 Deep Type One Error 
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Figure A2. Site 35 Spring 2007 Shallow Type One Error 
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Figure A3. Site 20 Fall 2008 Shallow Type One Error 
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Figure A4. Site 12 Fall 2007 Deep Type One Error 
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APPENDIX B. POWER TABLES 

Table B1. Site 35 Spring 2008 Deep Power Table 

 

 

 

 

 

 

Effect Size Sample Size Rejection Rate / Power

0 25 5.29%

0 50 4.89%

0 100 4.79%

0 200 4.82%

0 500 4.80%

0 1000 4.88%

0 2000 5.32%

0.1 25 13.24%

0.1 50 27.67%

0.1 100 68.63%

0.1 200 97.27%

0.1 500 100.00%

0.1 1000 100.00%

0.1 2000 100.00%

0.2 25 43.96%

0.2 50 82.12%

0.2 100 99.71%

0.2 200 100%

0.2 500 100%

0.2 1000 100%

0.2 2000 100%

0.5 25 92.89%

0.5 50 99.99%

0.5 100 100%

0.5 200 100%

0.5 500 100%

0.8 25 98.87%

0.8 50 100%

0.8 100 100%

0.8 200 100%

Site 35 Spring 2008 Deep
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Table B2. Site 35 Spring 2007 Shallow Power Table 

 

 

 

 

 

 

 

Effect Size Sample Size Rejection Rate / Power

0 25 4.99%

0 50 4.95%

0 100 4.99%

0 200 5.12%

0 500 4.94%

0 1000 5.28%

0 2000 4.80%

0.1 25 44.17%

0.1 50 81.26%

0.1 100 99.56%

0.1 200 100%

0.1 500 100%

0.1 1000 100%

0.1 2000 100%

0.2 25 91.86%

0.2 50 99.95%

0.2 100 100%

0.2 200 100%

0.2 500 100%

0.2 1000 100%

0.2 2000 100%

0.5 25 99.81%

0.5 50 100%

0.5 100 100%

0.5 200 100%

0.8 25 99.98%

0.8 50 100%

0.8 100 100%

0.8 200 100%

Site 35 Spring 2007 Shallow



 

34 

Table B3. Site 20 Fall 2008 Shallow Power Table 

 

 

 

 

 

 

 

Effect Size Sample Size Rejection Rate / Power

0 25 5.40%

0 50 5.12%

0 100 4.86%

0 200 5.21%

0 500 4.91%

0 1000 5.29%

0 2000 5.31%

0.1 25 6.56%

0.1 50 7.86%

0.1 100 11.43%

0.1 200 18.30%

0.1 500 37.62%

0.1 1000 65.66%

0.1 2000 93.42%

0.2 25 10.13%

0.2 50 15.31%

0.2 100 28.09%

0.2 200 50.12%

0.2 500 89.05%

0.2 1000 99.62%

0.2 2000 100%

0.5 25 37.72%

0.5 50 65.29%

0.5 100 92.75%

0.5 200 99.90%

0.5 500 100%

0.8 25 75.65%

0.8 50 96.64%

0.8 100 99.98%

0.8 200 100%

Site 20 Fall 2008 Shallow
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Table B4. Site 12 Fall 2007 Deep Power Table 

 

 

 

 

 

 

 

Effect Size Sample Size Rejection Rate / Power

0 25 5.25%

0 50 4.91%

0 100 4.96%

0 200 5.17%

0 500 5.35%

0 1000 4.99%

0 2000 5.08%

0.1 25 6.69%

0.1 50 8.21%

0.1 100 10.64%

0.1 200 17.43%

0.1 500 37.99%

0.1 1000 67.95%

0.1 2000 95.90%

0.2 25 10.48%

0.2 50 16.53%

0.2 100 31.70%

0.2 200 56.81%

0.2 500 94.88%

0.2 1000 100%

0.2 2000 100%

0.5 25 43.81%

0.5 50 75.35%

0.5 100 98.57%

0.5 200 100%

0.5 500 100%

0.8 25 84.80%

0.8 50 99.19%

0.8 100 100%

0.8 200 100%

Site 12 Fall 2007 Deep
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Table B5. Site 35 Spring 2007 Shallow with Actual Effects 

 

 

 

 

 

 

 

 

 

 

Actual Effect Sample Size Rejection Rate / Power

0.93 25 5.17%

0.93 50 5.68%

0.93 100 5.98%

0.93 200 7.41%

0.93 500 10.67%

0.93 1000 18.26%

0.93 2000 37.60%

1.87 25 5.41%

1.87 50 6.21%

1.87 100 9.35%

1.87 200 14.17%

1.87 500 30.79%

1.87 1000 64.52%

1.87 2000 94.67%

4.67 25 10.08%

4.67 50 16.45%

4.67 100 38.76%

4.67 200 71.67%

4.67 500 99.41%

4.67 1000 100%

7.47 25 20.96%

7.47 50 42.11%

7.47 100 82.23%

7.47 200 99.09%

Site 35 Spring 2007 Shallow for Actual Effects
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APPENDIX C. ADDITIONAL INFORMATION ON SELECTED SITES 

C.1. Site 35 Spring 2008 Deep 

Site 35 2008 Deep Spring 

 

The UNIVARIATE Procedure 

Variable: Deep 

Moments 

N 3077 Sum Weights 3077 

Mean 102.245141 Sum Observations 314608.3 

Std Deviation 77.7849869 Variance 6050.50419 

Skewness 0.81812368 Kurtosis -0.6845994 

Uncorrected SS 50778521 Corrected SS 18611350.9 

Coeff Variation 76.0769518 Std Error Mean 1.40227127 

 

Figure C.1. Site 35 Spring 2008 Deep Summary Statistics 

 

C.2. Site 35 Spring 2007 Shallow 

Site 35 2007 Shallow Spring 

 

The UNIVARIATE Procedure 

Variable: Shallow 

Moments 

N 2917 Sum Weights 2917 

Mean 110.765924 Sum Observations 323104.2 

Std Deviation 114.397093 Variance 13086.695 

Skewness 1.70159438 Kurtosis 2.19174881 

Uncorrected SS 73949737.7 Corrected SS 38160802.5 

Coeff Variation 103.278237 Std Error Mean 2.11810154 

 

Figure C.2. Site 35 Spring 2007 Shallow Summary Statistics 
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C.3. Site 20 Spring 2008 Shallow 

Site 20 2008 shallow fall 

 

The UNIVARIATE Procedure 

Variable: Shallow 

Moments 

N 3254 Sum Weights 3254 

Mean 28.8161647 Sum Observations 93767.8 

Std Deviation 9.33122425 Variance 87.071746 

Skewness 1.07415302 Kurtosis 4.82832509 

Uncorrected SS 2985272.76 Corrected SS 283244.39 

Coeff Variation 32.381909 Std Error Mean 0.16357987 

 

Figure C.3. Site 20 Spring 2008 Shallow Summary Statistics 

 

C.4. Site 12 Fall 2007 Deep 

Site 12 Fall 2007 Deep 

 

The UNIVARIATE Procedure 

Variable: Deep 

Moments 

N 15906 Sum Weights 15906 

Mean 52.6025525 Sum Observations 836696.2 

Std Deviation 37.8623627 Variance 1433.55851 

Skewness 1.09918963 Kurtosis 1.34742676 

Uncorrected SS 66813103.9 Corrected SS 22800748.1 

Coeff Variation 71.9781854 Std Error Mean 0.30021143 

 

Figure C.4. Site 12 Fall 2007 Deep Summary Statistics 
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APPENDIX D. SAS CODE 

D.1. Example Null Distribution Code 

%let samples=100000;          /*How many samples (100000 for reference distribution) */ 

%let seed0=0;            /*Seed (set default to zero)*/ 

%let n=;                /*Sample size*/ 

 

sasfile Work.site20fall08 load;  

data abc.gen_data (keep=sample iter trt shallow); 

 

  call streaminit(&seed0);  *** Initialize with desired seed. ***; 

     

  do sample=1 to &samples; 

    do iter=1 to &n+1; 

      trt='A';    

      p = ceil(NObs * rand("Uniform"));    /* random integer 1-NObs */ 

      set Work.site20fall08 nobs=NObs point=p;  /* 2. POINT= observation; */ 

      output; 

    end;    

  do iter=1 to &n; 

      trt='B';    

      p = ceil(NObs * rand("Uniform"));    /* random integer 1-NObs */ 

      set Work.site20fall08 nobs=NObs point=p;  /* 2. POINT= observation; */ 

   shallow=shallow; 

      output; 

    end;   

  end; 

  STOP; 

  run; 

sasfile Work.site20fall08 close; 

 

ods graphics off;  ods exclude all;  ods noresults; 

*ods trace on; 

ods output KSTest=KS_out 

           KS2Stats=abc.site20reference&n. (where=(Name1='_KSA_')); 

proc npar1way data=abc.gen_data  edf; 

  by sample; 

  class trt; 

  var shallow; 

  run; 
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D.2. Example Percentile Calculation Code 

 

Proc Univariate data=site20reference&n.; 

  var nValue1; 

  Histogram nValue1; 

  output out=qtls pctlpre=P_ pctlpts=1 to 99 by 1; 

Run; 

 

Proc transpose data=qtls out=UVqtls(rename=(Col1=KSD_value)) name=Percentile; 

RUN; 

 

proc print data=UVqtls; 

Run; 

 

D.3. Example Sample and Test Statistic Code 

%let samples=10000;          /*How many samples (10000 for samples) */ 

%let seed0=0;            /*Seed (set default to zero)*/ 

%let n=;                /*Sample size*/ 

%let effectadd=0;      /*How much to add to trt B in order to get desired effect size*/ 

 

sasfile Work.site20fall08 load;  

data abc.gen_data (keep=sample iter trt shallow); 

 

  call streaminit(&seed0);  *** Initialize with desired seed. ***; 

     

  do sample=1 to &samples; 

    do iter=1 to &n+1; 

      trt='A';    

      p = ceil(NObs * rand("Uniform"));    /* random integer 1-NObs */ 

      set Work.site20fall08 nobs=NObs point=p;  /* 2. POINT= observation; */ 

      output; 

    end;    

  do iter=1 to &n; 

      trt='B';    

      p = ceil(NObs * rand("Uniform"));    /* random integer 1-NObs */ 

      set Work.site20fall08 nobs=NObs point=p;  /* 2. POINT= observation; */ 

   shallow=shallow + &effectadd; 

      output; 

    end;   

  end; 

  STOP; 

  run; 

sasfile Work.site20fall08 close; 

 

ods graphics off;  ods exclude all;  ods noresults; 

*ods trace on; 

ods output KSTest=KS_out 

           KS2Stats=abc.site20effectpoint0&n. (where=(Name1='_KSA_')); 

proc npar1way data=abc.gen_data  edf; 

  by sample; 

  class trt; 

  var shallow; 
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  run; 

ods graphics on;  ods exclude none;  ods results; 

 

 

D.4. Example Combining Code 

 

/*effect=0.8*/ 

Title1 '0.8 effect size'; 

DATA site20shalloweffectpoint8; 

  SET site20effectpoint825 (IN=N1) 

      site20effectpoint850 (IN=N2) 

      site20effectpoint8100 (IN=N3) 

      site20effectpoint8200 (IN=N4); 

  IF N1 THEN N=25; 

    ELSE IF N2 THEN N=50; 

    ELSE IF N3 THEN N=100; 

    ELSE IF N4 THEN N=200; 

     

  RUN; 

 

/*effect=0.5*/ 

Title1 '0.5 effect size'; 

DATA site20shalloweffectpoint5; 

  SET site20effectpoint525 (IN=N1) 

      site20effectpoint550 (IN=N2) 

      site20effectpoint5100 (IN=N3) 

      site20effectpoint5200 (IN=N4) 

      site20effectpoint5500 (IN=N5) 

      site20effectpoint51000 (IN=N6); 

 

 

  IF N1 THEN N=25; 

    ELSE IF N2 THEN N=50; 

    ELSE IF N3 THEN N=100; 

    ELSE IF N4 THEN N=200; 

    ELSE IF N5 THEN N=500; 

    ELSE IF N6 THEN N=1000;    

 

  RUN; 

 

 

  /*effect=0.2*/ 

Title1 '0.2 effect size'; 

DATA site20shalloweffectpoint2; 

  SET site20effectpoint225 (IN=N1) 

      site20effectpoint250 (IN=N2) 

      site20effectpoint2100 (IN=N3) 

      site20effectpoint2200 (IN=N4) 

      site20effectpoint2500 (IN=N5) 

      site20effectpoint21000 (IN=N6) 

      site20effectpoint22000 (IN=N7); 

  IF N1 THEN N=25; 

    ELSE IF N2 THEN N=50; 
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    ELSE IF N3 THEN N=100; 

    ELSE IF N4 THEN N=200; 

    ELSE IF N5 THEN N=500; 

    ELSE IF N6 THEN N=1000; 

    ELSE IF N7 THEN N=2000; 

  RUN; 

 

 

 

 

 

/*effect=0.1*/ 

Title1 '0.1 effect size'; 

DATA site20shalloweffectpoint1; 

  SET site20effectpoint125 (IN=N1) 

      site20effectpoint150 (IN=N2) 

      site20effectpoint1100 (IN=N3) 

      site20effectpoint1200 (IN=N4) 

      site20effectpoint1500 (IN=N5) 

      site20effectpoint11000 (IN=N6) 

      site20effectpoint12000 (IN=N7); 

  IF N1 THEN N=25; 

    ELSE IF N2 THEN N=50; 

    ELSE IF N3 THEN N=100; 

    ELSE IF N4 THEN N=200; 

    ELSE IF N5 THEN N=500; 

    ELSE IF N6 THEN N=1000; 

    ELSE IF N7 THEN N=2000; 

  RUN; 

 

 

  /*effect=0*/ 

 

Title1 '0 effect size'; 

DATA site20shalloweffectpoint0; 

  SET site20effectpoint025 (IN=N1) 

      site20effectpoint050 (IN=N2) 

      site20effectpoint0100 (IN=N3) 

      site20effectpoint0200 (IN=N4) 

      site20effectpoint0500 (IN=N5) 

      site20effectpoint01000 (IN=N6) 

      site20effectpoint02000 (IN=N7); 

  IF N1 THEN N=25; 

    ELSE IF N2 THEN N=50; 

    ELSE IF N3 THEN N=100; 

    ELSE IF N4 THEN N=200; 

    ELSE IF N5 THEN N=500; 

    ELSE IF N6 THEN N=1000; 

    ELSE IF N7 THEN N=2000; 

  RUN; 
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D.5. Example Power Plot Code 

DATA ALL; 

  SET site20shalloweffectpoint1 (IN=E1) 

      site20shalloweffectpoint2 (IN=E2) 

   site20shalloweffectpoint5(IN=E3) 

   site20shalloweffectpoint8(IN=E4); 

 

  IF E1 THEN E=.1; 

    ELSE IF E2 THEN E=.2; 

 ELSE IF E3 THEN E=.5; 

 ELSE IF E4 THEN E=.8;  

 

 IF N=25 & nValue1 >= 1.30718 then reject=1; 

 Else reject=0; 

 If N=50 & nValue1 >= 1.32021 then reject=1; 

 If N=100 & nValue1 >= 1.30754 then reject=1; 

 If N=200 & nValue1 >= 1.31993 then reject=1; 

 If N=500 & nValue1 >= 1.31474 then reject=1; 

 If N=1000 & nValue1 >= 1.32349 then reject=1; 

 If N=2000 & nValue1 >= 1.31876 then reject=1; 

 

RUN; 

 

PROC SORT; 

  BY N; 

RUN; 

 

PROC FREQ DATA=ALL; 

  BY N E; 

  Tables reject/OUT=Percent2; 

  RUN; 

TITLE1 'POWER OF EFFECT SIZES'; 

TITLE2 'Site 20 Fall 2008 Shallow Distribution'; 

 

 

axis2 label=(angle=90 "Power")(order=0 to 100 by 10) minor=(n=1); 

legend1 label = ('Effect Size'); 

 

PROC GPLOT Data=Percent2; 

  WHERE reject=1; 

  PLOT Percent*N=E/Haxis=0 to 2000 by 100 Vaxis=axis2 legend=legend1; 

  SYMBOL1 V=DOT I=JOIN C=RED; 

  SYMBOL2 V=PLUS I=JOIN C=BLACK; 

  SYMBOL3 V=Triangle I=JOIN C=GREEN; 

  SYMBOL4 V= CIRCLE I=JOIN C=BLUE; 

  RUN; 

  

 


