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ABSTRACT

The purpose of this dissertation is to provide a direct microscopic underpinning for

lattice Boltzmann (and lattice gas) methods. Lattice gases are idealized discrete models

that conserve mass and momentum. These conservation laws imply, through the formalism

of kinetic theory, that on a macroscopic scale these methods recover the continuity and

Navier-Stokes equations. As part of the kinetic theory approach, an ensemble average of

the lattice gas is taken leading to a lattice Boltzmann equation. These lattice Boltzmann

equations can be implemented directly leading to the new how ubiquitous lattice Boltzmann

methods. In this dissertation we step away from justifying lattice Boltzmann methods and

the ability of recovering suitable macroscopic equations. Rather, their correspondence to

coarse-grained Molecular Dynamics simulations is examine and can be cast in the form of

a lattice gas evolution equation. We call this lattice gas the Molecular Dynamic Lattice

Gas (MDLG). We use this MDLG to derive the exact formulation for lattice Boltzmann

equilibrium distributions, relaxation parameters, and fluctuating properties.
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1. GENERAL INTRODUCTION

Lattice Boltzmann equation (LBE) and Lattice-gas automata (LGA) are relatively

novel methods having originated about three decades ago. However, they have gained the

attention of a lot of physicists, mathematicians and engineers related to different disciplines.

The reason for the increased interest is the methods have demonstrated high potentials in

different complex systems including chemical reactive flows, magneto hydrodynamics, and

multi-component and multi-phase fluid hydrodynamics. The methods have proven effective

in areas where other methods were simply too difficult to implement or were impractical

[3, 4, 5, 6].

Although LBE and LGA methods have been subjected, by different groups of re-

searchers, a true definition of LB density is still controversial. This issue has been solved

to a large extent by our new Molecular Dynamic Lattice Gas (MDLG) approach. This

study will highlight the achievements of the new model over the traditional understanding

of equilibrium density function.

This dissertation has been divided into three chapters. Chapter 1 contains the intro-

duction of the LBE and LGA models, including the details of the hydrodynamics feature.

Chapter 2 introduces the MDLG model along with the mathematical derivation [7]. The

moments of the new model as well as the equilibrium equation function are discussed in

detail. Chapter 3 contains the correct fluctuations for lattice Boltzmann methods using the

MDLG approach.

1.1. Historical Overview

Prior to the introduction of the LBE and LGA models, similar models used. Broadwell

proposed the Boltzmann equation in 1964 to study aerodynamics using only a few discrete

velocities [8]. Later in 1973, Hardy, dePazzis, and Pomeau (HPP) introduced a single speed

lattice gas cellular automation model to study the statistical mechanical properties of 2-
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dimentional fluids including the divergence of 2D transport coefficients. The model was

proposed on a 2D square lattice to achieve the study objective. At this point, it must be

stressed that both the HPP and Broadwell models were more theoretical than computational

[9].

Frisch, Hasslacher, and Pomeau and Wolfram suggested the first 2D LGA model in

1986 [10, 11]. The model was proposed for computational fluid dynamics. This led to the

development of a 3D LGA model a few years later. The first proposal for the use of the

LBE model was made in 1988 [1]. The proof that simple models, such as LGA and the

floating number counterpart the LBE models, can stimulate hydrodynamics to a high degree

of accuracy opened a new chapter in computational physics. Some of the main ideas of the

models were indeed revolutionary in nature [12, 13].

While the models are relatively recent, LBE and LGA models have already shown

their capabilities in different areas of computational physics, including multi-component and

multi-phase fluids through porous media, chemical reactive flows, turbulent external flow

over structures with complicated geometries, and other complex systems.There are many

advantages of LBE and LGA models over traditional models such as solving the Navier-

Stokes equation. Having said that, it is important to remain careful when identifying the

areas where these methods are more suitable due to the nature of the issues [3, 4, 5, 6, 14].

Before we go on to discuss the technical details relating to the LBE and LGA methods,

it is important to first overview the history of the methods. In order to truly appreciate the

benefits of the methods, it is important that we find out how the methods evolved over time.

A classic example of fluid dynamics using the LBE and LGA methods is the simulation

of the 2D flow past a cylinder. In Fig. (1.1), the LGA is indeed seen to mimic hydrodynamics.

It shows von Karman vortex street behind a cylinder. However, the simulation was not

quantitative, and rather qualitative in nature. It was He and Doolen who demonstrated the

LBE method can accurately simulate hydrodynamics [1, 2].
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Figure 1.1. Lattice gas automata simulation of fluid in two dimensions [1].

Figure 1.2. Lattice Boltzmann simulation of fluid flow [2].

Fig. (1.2) represents the von Karman vortex street behind a cylinder with a Reynolds

number of 100. Different quantities such as lift and drag coefficients had accurately compared

and measured existing experimental and numerical results. In addition, the computational

speed of the LBE was found to be comparable to traditional methods in solving Navier-

Stokes equations. Moreover, accurate results have been obtained by using the LBE method

in simulating the 2D flow past impulsively started cylinder having a much higher Reynolds

number (Re = 10 000) [15, 16].

Attempts have been made to recover external and internal flows through porous media

and low Mach regimes using the LBE method by certain companies such as Exa Corporation,

which develops and distributes computer-aided software programs for engineers. There are

many other examples of using the LBE method for direct numerical simulation, including

turbulent flows [17, 18, 19, 20]. It can be conciliated that LBE and LGA have matured over

the years and can be effectively used in many different cases.
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1.2. The Origins of LGA and LBE Methods

A fluid is really a discrete system having a large number of molecules (∼ 1023).

A system that contains many molecules can be described either as a hierarchy of kinetic

equations such as, the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy (BBGKY) or the

Newtonian equation, which leads to molecular dynamics (MD). These two accurately describe

the behavior of particles in fluid.

The molecular chaos assumption allows closing of the BBGKY hierarchy choosing a

single equation called the Boltzmann equation for the single particle distribution function.

Also, a fluid can also be referred to as a continuum that is described by partial differential

equations for fluid velocity, density, and temperature or the Navier-Stokes equations.

Navier-Stokes equations can be conveniently used to solve a number of fluid prob-

lems. However, the equations cannot be easily solved under certain conditions including the

granular flow and multi-component or multi-phase flows. The interfaces between different

phases (water and vapor) and components (water and oil) cause difficulties in solving the

equations for multi-phase or multi-component flow.

While computationally one might be able to monitor a few interfaces, tracking a lot

of interfaces is not easy. It is impractical to create realistic simulations of fluid systems with

composition in homogeneity or densities. This issue can be looked at from different perspec-

tives that is phases of a fluid system or interfaces between different phases or components of

a fluid system are thermodynamic effects that result from molecular interaction. In order to

solve the Navier-Stokes equations, it is important to know about the equation of state that

is mostly unknown at an interface. That is why it’s difficult to include thermodynamics in

the Navier-Stokes equations in a priori or consistent fashion. Thus, there are fundamental

difficulties involved with the system.

While Navier-Stokes equations are difficult to solve, neither the Boltzmann equation

nor molecular dynamics are practical alternatives since solving the equations is a formidable

task that requires a lot of computation efforts. Theses three methods are particularly diffi-
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cult to solve, however if the hydrodynamic moments are known they may be used in place

of LBE and LGA methods. The fact is that hydrodynamics are insensitive to the underly-

ing mesoscopic or microscopic dynamics. The Navier-Stokes equations are in reality state-

ments of conservation laws representing the same conservation laws in microscopic dynamics.

Moreover, they represent constitutive relations that represent the irreversible nature of the

macroscopic dynamics.

Since the microscopic dynamics details are not a fundamental issue, if only hydrody-

namic system behavior is being studied. This leads to the question about what constitutes

a minimal mesoscopic or microscopic dynamic system that can provide the required physics

at the macroscopic level (thermodynamics, hydrodynamics, etc.). The vital element in such

a mesoscopic or microscopic dynamic system is the associated symmetries and conservation

laws. In the next sections, we will look at how the LBE and LGA equations were realized

[21, 22, 23, 24].

1.2.1. The Lattice Gas Automata

Wolfram published a number of articles in the 1980s showing cellular automata, while

having a simple construction, is sufficiently complex to achieve universal computing. At the

initial state, the evolution of certain automaton can be implemented at any chosen finite

algorithm. However, based on the previous experience of the HPP model [9] whereby it was

realized that the 2D square lattice does not have symmetry for hydrodynamics as well as the

kinetic theory. Wolfram and Frisch et al. [10, 11, 25, 26] independently discovered a two-

dimensional triangular lattice based on a simple cellular automaton can be able to stimulate

the Navier-Stokes equations. The scholars proposed the LGA model was developed on a

2D triangular lattice space. The particles possess momenta that allow them to move from

one site to another on the lattice in discrete time steps. On a particular site at the lattice,

there is either no particle present or one particle is present having a momentum that points

to a neighboring site. In this way there are, at the maximum, six particles at any one site

simultaneously. As a result, this model is also known as the Frisch, Hasslacher and Pomeau

(FHP) or the 6-bit model.
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Figure 1.3. Collision process for FHP model.

The development of the LGA model consist of two main steps i.e. collision and

streaming. The first step is depicted in Fig. (1.3). For instance, two particles that strike with

opposite momenta will tend to rotate their momenta either counter-clockwise or clockwise

direction. An important point to note is that the particle momentum, particular number,

and the energy are conserved in the collision process both locally and accurately. Since

the FHP model has only a single speed, the energy is not an independent variable. It

is equivalent to the number of particles. That being said, the energy is an independent

variable for multi-speed models.

The LGA evolution equation can be written as

ni(x + viδt, t+ δt) = ni(x, t) + Ξi (1.1)

where x represents a vector in the lattice space having a lattice constant of δx, viδt is a lattice

vector, ni represents the Boolean particle number having a velocity vi, t represents discrete

time with step size δt, and Ξi represents that collision operator. Generally, we set both δt

and δx to unity. The subscript i represents an index for velocity, as depicted in Fig. (1.3).

The i range is from 1 to 6 for the FHP model. The particles after colliding stream to the

next site according to the velocities.
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Based on the collision rules depicted in Fig. (1.3), the collision operator Ξi can be

written as follows

Ξi({ni(x, t)}) =
∑
m,m′

(m′i −mi)ηmm′
∏
α

nmαα (1− nα)(1−mα) (1.2)

where m′ and m are possible outgoing and incoming configurations at a given time t and

site x, respectively. ηmm′ that is a Boolean random number in time and space determines

the transition between m′ and m as per the following normalization condition

∑
m′

ηmm′ = 1 ∀m. (1.3)

For any states between m′ and m, the Boolean random number ηmm′ must have rotational

symmetry. In other words, the random number ηmm′ is invariant if states m′ and m are

both subjected to improper or proper rotations simultaneously. It is therefore obvious that

the following equation holds for the Boolean numbers nα and mα

nmαα (1− nα)(1−mα) = δnαmα (1.4)

where δnαmα is the Kronecker delta symbol having two indices. Thus, we can write Eq. (1.2)

as follows

Ξi({ni(x, t)}) =
∑
m,m′

(m′i −mi)ηmm′δnm (1.5)

where δnm = δn1m1δn2m2 · · · δnbmb .

Eqs. (1.2) or (1.5) are static to a certain extent. For a two-body collision, the

following is an example of the collision operator

Ξ
(2)
i =η(2)

r ni+1ni+4n̄in̄i+2n̄i+3n̄i+5+

η
(2)
l ni+2ni+5n̄in̄i+1n̄i+3n̄i+4−

(η(2)
r + η

(2)
l )nini+3n̄i+1n̄i+2n̄i+4n̄i+5 (1.6)

7



where n̄i = 1 − ni and represents the complement of ni, while η
(2)
r and η

(2)
l reflect Boolean

random numbers. The numbers represent the head-on two-body collision outcomes. They

represent the random nature of the two-body collision outcomes. It is obvious that in order

for the collision operator to satisfy the complete lattice symmetry group statistically, the

following must hold true

〈η(2)
r 〉 = 〈η(2)

l 〉 (1.7)

where 〈·〉 represents the ensemble average. The energy, momentum, and the conservation

laws of the particle number of the LGA micro-dynamics can be written as follows (u repre-

sents the macroscopic velocity)

∑
i

ηmm′(m
′
i −mi) =0 (1.8)

∑
i

ηmm′(m
′
i −mi)vi =0 (1.9)

∑
i

ηmm′(m
′
i −mi)(vi − u)2 =0. (1.10)

The collision in practice can be simulated using different algorithms. One can either

make use of a table to look-up or use the logical operation that is indicated by Eq. (1.6).

In Fig. (1.3), the collision rule can also be depicted by the collision table that is shown by

Table (1.1). In this table, each bit in a binary represents a particle number ni from right to

left i.e. i = 1, 2, · · · , 6.

The shortcoming of the table look-up method is the table size, which is 2b, where

b represents bits of the model. Both the table look-up and the logic operation can be

particularly fast on digital computers particularly the dedicated computers [27, 28, 29, 30].
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Table 1.1. Collision rules for FHP model.

Input (m) Output (m′)
011011 110110

101101
001011 100110
010101 101010
001001 010010

100100

1.2.2. The Hydrodynamics of Lattice Gas Automata

The ensemble average that is depicted in Eq. (1.1) resulted in the development of

the lattice Boltzmann equation

fi(x + viδt, t+ δt) = fi(x, t) + Ωi (1.11)

where Ωi = 〈Ξi〉 and fi = m〈ni〉, and m is the particle mass. Moreover, the assumptions are

that there are negligible correlations among the colliding particles exist where

〈n1n2 · · ·nn〉 = 〈n1〉〈n2〉 · · · 〈nn〉. (1.12)

The above approximation is similar to the molecular chaos assumption put forward by Boltz-

mann (Strosszahlansatz). The lattice Boltzmann collision operator with the molecular chaos

approximation can be written in equation form as follows

Ωi({fi(x, t)}) =
∑
m,m′

(m′i −mi)Θmm′

∏
α

fmαα (1− fα)(1−mα) (1.13)

where Θmm′ = 〈ηmm′〉 represents the probability of transition from the state m′ and m.
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The following equations depict the hydrodynamic moments

∑
i

fi =ρ (1.14)

∑
i

fivi =ρu (1.15)

∑
i

fi(vi − u)2 =2ρε (1.16)

where ρ, ε and u are the mass density, the internal energy density, and velocity, respectively.

The Eq. (1.11) can be extended in a Taylor series of δt as per the following equation

(∂t + vi · ∇)fi + (∂t + vi · ∇)2fi = Ωi. (1.17)

The f
(eq)
i that represents the equilibrium distribution and is a solution of Ωi({fi}) = 0 must

be a Fermi-Dirac distribution since the system is a binary one. This is represented in the

following equation

f
(eq)
i = [1 + exp(a+ bu · vi)]−1 (1.18)

where coefficients a and b represent the function of u2 and ρ in general. Since the coefficients

a and b in f
(eq)
i cannot be exactly determined, the f

(eq)
i should be expanded in a Taylor series

of u small velocity expansion or low Mach number. The following hydrodynamic equations

are derived from the FHP-LGA model using the small velocity expansion of f
(eq)
i equilibrium

position through Chapman-Enskog analysis [27, 11, 31, 32, 33, 34]

∂tρ+∇ · ρu =0 (1.19)

∂tρu +∇(gρuu) =−∇P + ν∇2ρu (1.20)
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where g represents a function of ρ,

P =c2
sρ

[
1− g(

u

c
)2

]
(1.21)

cs =
c√
2

(1.22)

ν =− 1

8
(2λ−1 + 1)cδx (1.23)

c =
δx
δt
. (1.24)

λ represents the eigen value of the liberalized collision operator, and cs represents the sound

speed [27].

The shortcomings of the LGA hydrodynamics model are clearly evident from the

above equations. These include:

1. Factor g(ρ) does not have unity because the Galilean invariance is not valid.

2. Large fluctuations in ni means that the simulations are intrinsically noisy.

3. Increasing Reynolds number Re is not easy.

4. Equation of state is dependent upon u2, which is not physical

5. A spurious conserved quantity is present due to the simple symmetry of LGA The

above issues can be solved by using more complex LGA models, or other alternative models

such as the LBE method [35, 36, 37, 38].

1.2.3. The Lattice Boltzmann Equation

The LBE model equations have evolved from the Boolean counterparts i.e. LGA

model. Eq. (1.11) represents the original LBE model that replaces the corresponding hydro-

dynamics LGA model. It was later realized that a simple relaxation model can replace the

collision operator and that it can be linearized. More recently, it has been found out that

the LBE is a special discretized form of the continuous Boltzmann equation. For simplifying

the equation, the following analysis shows the application of the LBE with the Bhatnagar-

Gross-Krook (BGK) approximation [13, 39, 40].
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We can write the Boltzmann BGK equation as follows

Df

Dt
+

1

λ
f =

1

λ
f (eq) (1.25)

in which, Dt = ∂t+v·∇ represents the Lagrangian derivation along the microscopic v velocity,

λ represents the relaxation time during collision, f (eq) represents the Maxwell-Boltzmann

distribution function, and f = f(x,v, t) represents the single particle distribution function

and

f (eq) =
ρ

(2πkBT )d/2
e−

(v−u)2

2θ (1.26)

where, d represents the dimension of the space; kB, T , and m represent the Boltzmann

constant, temperature, and particle mass, respectively, and ρ, u, θ = kBT/m represent the

macroscopic density of the mass, velocity, and normalized temperature. The following equa-

tion represents the macroscopic variables that are the moments of the distribution function

f based on the v velocity

∫
fdv =ρ (1.27)∫
fvdv =ρu (1.28)∫

f(v − u)2dv =2ρθ. (1.29)

We can integrate Eq. (1.25) over a time interval δt as follows

f(x + vδt,v, t+ δt) = e(−δt/λ)

[
f(x,v, t) +

1

λ

∫ δt

0

e(t′/λ)f (eq)(x + vt′,v, t+ t′)dt′
]
. (1.30)

The following equation can be derived if we assume that f (eq) is smooth locally, and δt is

small and we neglect the terms of the order O(δ2
t ) or smaller that is used in the Taylor
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expansion of the right hand side of the above equation

f(x + vδt,v, t+ δt)− f(x,v, t) = −1

τ

[
f(x,v, t)− f (eq)(x,v, t)

]
(1.31)

in which, τ = λ
δt

represents the dimensionless relaxation of time. We can expand the equi-

librium distribution function f (eq) to achieve a Taylor series in u. Thus, we can obtain the

following equation by retaining the Taylor expansion up to u2

f (eq) =
ρ

(2πθ)d/2
e−

v2

2θ

[
1 +

(v · u)

θ
+

(v · u)2

2θ2
− u2

2θ

]
. (1.32)

The above equation represents a sufficient expansion for deriving the Naiver Stoke equations.

In addition, the following moment integral must be analyzed exactly to derive the Navier-

Stokes equations

∫
f (eq)vkdv (1.33)

where 0 ≤ k ≤ 3 for the isothermal models. In the above equation, the following integral is

present that can be evaluated by using the Gaussian-type quadrature

I =

∫
e(−v2

2θ
)ψ(v)dv =

∑
i

Wie
(−v2

i
2θ

)ψ(vi) (1.34)

where vi and Wi represent the discrete velocities (or abscissas) of the quadrature and weights,

respectively, and ψ(v) is a polynomial in v. The hydrodynamic moments depicted in Eqs.

(1.27–1.29) can be calculated by quadrature as well

∑
i

fi =ρ (1.35)

∑
i

fivi =ρu (1.36)

∑
i

fi(vi − u)2 =2ρθ (1.37)
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where fi = fi(x, t) = Wi(x,vi, t). In order to derive the LBE models, we shall use the

9-velocity isothermal LBE model on square lattice space as an example. The derivation of

Eq. (1.31) on a discretized phase time and space along with proper equilibrium distribution

function results in the Navier-Stokes equations. In order to derive the 9-velocity LBE model,

we have used a Cartesian coordinate system, and set ψ(v) = vmx v
n
y . The integral Eq. (1.34)

thus becomes

I = (2θ)
(m+n+2)

2 ImIn (1.38)

where

Im =

∫ ∞
−∞

e−σ
2

σmdσ (1.39)

σ =
vx√
2θ

or
vy√
2θ
. (1.40)

The third-order Hermite formal is therefore the best choice to assess Im in order to

derive the 9-velocity LBE model, or Im =
∑3

i=1 ωiσ
m
i . The corresponding weights ωi and the

three abcissas σi of the quadrature are represented in equation form as follows

σ1 =

√
3

2
(1.41)

σ2 =0 (1.42)

σ3 =

√
3

2
(1.43)

ω1 =

√
π

6
(1.44)

ω2 =2

√
π

6
(1.45)

ω3 =

√
π

6
. (1.46)
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Moreover, the integral of Eq. (1.38) becomes

I = 2θ

[
ω2

2ψ(0) +
4∑
i=1

ω1ω2ψ(vi) +
8∑
i=5

ω2
1ψ(vi)

]
(1.47)

where vi represents the zero-vector velocity for i = 0, α = 1 − 4 represents the vectors

of
√

3θ(±1, 0) and
√

3θ(0,±1), while α = 5 − 8 represents vectors of
√

3θ(±1,±1). An

important point to note is that the above quadrature is true for (m+ n) ≤ 5. Nine discrete

velocities i.e. {vi | i = 0, 1, · · · 8} represent momentum space. In order to obtain the 9-

velocity model, the configuration space is accordingly discretized into a square lattice having

a lattice constant of δx =
√

3θδt. It is important to note that the temperature θ is not

physically significant here since only the isothermal model is relevant. Thus, we can choose

δx to be a significant quantity, and so,
√

3θ = c = δx/δt, or θ = c2
s = c2/3, where c represents

the models’ sound speed. After comparing Eqs. (1.34) and (1.47), we can recognize the

weights that are defined in the Eq. (1.34)

Wi = 2πθ exp(
v2
i

2θ
)ωi (1.48)

ωα =


4/9 α = 0

1/9 α = 1, 2, 3, 4

1/36 α = 5, 6, 7, 8.

(1.49)

The equilibrium distribution function of the 9-velocity model is depicted by the equations

f
(eq)
i = Wif

(eq)(x,vi, t) = ωiρ

[
1 +

3(vi · u)

c2
+

9(vi · u)2

2c4
− 3u2

2c2

]
(1.50)

vα =


(0, 0) α = 0

(cos θα, sin θα)c α = 1, 2, 3, 4

(cos θα, sin θα)
√

2c α = 5, 6, 7, 8

(1.51)
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Figure 1.4. Schematic of 9-velocity model for lattice Boltzmann equation.

and θi = (i − 1)π/2 for i = 1 − 4 and (i − 5)π/2 + π/4 for i = 5 − 8, as is depicted in Fig.

(1.4). The following equation represents the Navier-Stokes equation that has been derived

from the LBE model

ρ∂tu + ρu · ∇u = −∇P + ρν∇2u (1.52)

where P = c2
sρ represents the equation of ideal gas, cs = c/

√
3 represents the sound speed,

and ν = (2τ − 1)cδx/6 represents the viscosity for the 9-velocity model. Similarly, the 2D 6-

and 7-velocity and 3D 27-velocity LBE models can be derived [41, 42, 43, 44, 45].

The above derivation equations show that the discretion of space is achieved by dis-

cretizing momentum space in a way that allows lattice structure in configuration space to

be simultaneously accomplished. The discretization of configuration space is possible by the

momentum space. This discretization of configuration space and momentum space can be

done independently that has two immediate consequences: significant improvement of the

Reynolds number in the LBE hydrodynamic simulations and the arbitrary mesh grids.

1.3. Molecular Dynamics

Molecular Dynamics is considered as an important theoretical tool for physicists and

chemists which allows them to simulate the microscopic dynamic of different complex sys-

tems. In MD solving the equations of motion for all individual atoms describes the detailed

microscopic behavior of the given system. Moreover, MD was used for measuring equilibrium

properties by sampling from a statistical ensemble of the N-body system.
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For starting the simulation, MD requires initial structure of the system and inter-

particle interaction rules or force field which allows MD to predict accurately the behavior

of the system. Ab initio molecular dynamics is the alternative approach for force field which

is not the subject of this dissertation [46, 47, 48, 49].

The initial structure includes size of the simulation box, number, type, and the initial

distance of particles. In this research, a two dimensional square box with one type of particle

was used for simulation. Particles were equilibrated in the box before the actual simulation

and eventually results were collected in the form of position and velocity in two dimensions

for each individual particle.

Moreover, particles interacted through the standard Lennard-Jones potential

V (x) = 4ε

[
(
σ

x
)12 − (

σ

x
)6

]
. (1.53)

Eq. (1.53) represents the Lennard-Jones potential energy where x is the distance between

two particles, ε is the interaction strength, and σ represents the spatial scaling. In general

the first and second terms in Eq. (1.53) describe the repulsive and the attractive dipole-

dipole interaction respectively. It should be noticed that in the Lennard-Jones potential σ

and ε are units for length and energy. By assuming m as a unit for mass, τ or the time scale

can be shown by Eq. (1.54)

τ =

√
mσ2

ε
. (1.54)

In this dissertation, Molecular Dynamics simulation was performed using the Large-

scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) [50] package for 100 000

particles in a two dimensional box with the length of 1000σ. A homogeneous distribution of

particles was used for the initial point with the kinetic energy corresponding to a temperature

of 50 in the unit of Lennard-Jones. The simulation was run for 21 000 000 and 3 000 000 and

then the early time data of 1 000 000 was discarded, to ensure that we were only probing the
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equilibrium dynamics. The following code shows a simple LAMMPS implementation of the

current simulation [51, 52, 53, 54].

#2d Lennard-Jones

dimension 2

units lj

atom_style atomic

timestep 0.0001

read_data initialStructure.input

mass 1 1.0

change_box all boundary pp pp pp units box

velocity all create 50 87287 loop geom

pair_style lj/cut 2.5

pair_coeff 1 1 1.0 1.0 2.5

neigh_modify delay 0 every 20 check no

fix 1 all nvt temp 50.0 50.0 50.0

thermo 10000

thermo_style custom step temp pe ke

run 1000000

reset_timestep 0

dump 1 all custom 1000 dump.relax id type xs ys zs vx vy vz

run 200000000
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“dimension” command specifies the dimensionality of the simulation. This command

should be used before defining the simulation box. For simplicity, two dimensional simulation

was used in this dissertation.

“unit” command defines the unit of simulation for the output files. Since we have

hard spherical particles in our system, lj (Lennard-Jones) style was used for the output file.

It should be noted that lj style uses unit-less quantities which means ε, σ, m, and kB are

equal to 1 and all masses, distances, and energies are a magnitude of theses fundamental

values.

“atom style” command describes the style of atoms and types of interactions during

the simulation. atomic style represents our system since there is no interaction or bond

between particles.

“timestep” command shows the time-step size in the unit of τ .

“read data” command helps LAMMPS to read the initial information for starting

the simulation. This command could be used several times during the simulation to make

changes in the structure of system. We used this command for defining the initial simulation

box with the length of 1 000σ and the initial position of particles. A complicated system

with multiple types of molecules, bonds, and angles requires a more sophisticated input file.

“mass” command specifies the mass of each type of particles. For example in this

case, the mass of particle type 1 is equal to 1 unit of Lennard-Jones.

“velocity” command sets the velocity of all particles by using a random number

generator at a specific temperature (in our case 50).

“dump” command stores requested data for further analysis. In this simulation, the

coordination and velocity of all particles in two dimensions were saved at each 1 000 time

step.

“pair style” command computes the standard Lennard-Jones potential (Eq. (1.53))

for less than specific distance. In the current model, 2.5σ was used for the cutoff.
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“neigh modify” command allows us to build a new neighbor list after specific time

steps. This command is vital for the previous cutoff command.

“fix” command generates velocities of all particles from a requested ensemble. Canon-

ical ensemble with the temperature of 50 unit of Lennard-Jones was set for the current model.

“thermo” and “thermo style” commands print requested information on the screen.

“run” command continues the simulation for the certain time steps.
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2. LATTICE GAS WITH MOLECULAR

DYNAMICS COLLISION OPERATOR

2.1. Abstract

We introduce a lattice gas implementation that is based on coarse-graining a Molec-

ular Dynamics (MD) simulation. Such a lattice gas is similar to standard lattice gases, but

its collision operator is informed by an underlying MD simulation. This can be considered

an optimal lattice gas implementation because it allows for the representation of any system

that can be simulated with MD. We show here that equilibrium behavior of the popular lat-

tice Boltzmann algorithm is consistent with this optimal lattice gas. This comparison allows

us to make a more accurate identification of the expressions for temperature and pressure

in lattice Boltzmann simulations which turn out to be related not only to the physical tem-

perature and pressure but also to the lattice discretization. We show that for any spatial

discretization we need to choose a particular temporal discretization to recover the lattice

Boltzmann equilibrium.

2.2. Introduction

Lattice Boltzmann methods are an important computational tool that is most com-

monly employed to simulate hydrodynamic systems [55], and it has been adapted to address

many complex phenomena from turbulence [56, 57] over multi-phase and multi-component

flow [6, 40, 58, 59, 60] to pore-scale simulations of porous media [61, 62] and simulations of

immersed boundaries [63, 64]. It derives its power from an underlying mesoscopic description

that ensures exact mass and momentum conservation. The exact physical meaning of the

lattice Boltzmann densities, however, remains poorly understood.

The content of this chapter has been published in “M. Reza Parsa and Alexander J. Wagner. Lattice
gas with molecular dynamics collision operator. Physical Review E, 96(1): 013314, 2017.”
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The lattice Boltzmann method was derived as a theoretical tool for the analysis of

lattice gas methods [13]. Lattice gas methods consist of particles moving on a lattice with

velocities that connect neighboring sites. After the particles have moved a stochastic collision

step rearranges the particles. If these collisions conserve both the number of particles and the

total momentum there will be a hydrodynamics limit for mass and momentum conservation

equation. The introduction of a hexagonal instead of a square lattice by Frisch, Hasslacher

and Pomeau [10] recovered the necessary isotropy to allow the momentum equation to be

related to the Navier-Stokes equation.

These lattice gas models had some deficiencies, one unfavorable feature was a large

and essentially uncontrolled amount of noise that required a significant amount of averaging.

To derive the Navier-Stokes equations from the lattice gas dynamics a theoretical ensemble

average was performed, leading to a lattice Boltzmann representation. Higuera then proposed

to simulate the ensemble averaged lattice Boltzmann evolution equation directly, and thereby

avoid the need to average results of the lattice gas equation [65, 66]. The collision operation

of this first lattice Boltzmann method could be mapped one-to-one to the lattice gas and

shared some of the positive features of the lattice gas, like the existence of an H-theorem with

unconditional stability, and also some of its deficiencies like velocity dependent viscosities.

It was then realized that there existed much more freedom in the choice of the collision

operator, and in particular the relaxation towards a local equilibrium function, often called

the Bhatnagar-Gross-Krook (BGK) approach, allowed the full recovery of the Navier-Stokes

equation to second order [67].

At this time a second approach to derive the lattice Boltzmann equation directly

from the continuous Boltzmann equation with a BGK collision operator gained popularity

[40]. Over the years several different local equilibrium distributions have been proposed, and

currently the most popular method is a standard form of a second order expansion in terms

of velocities.
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Typically these lattice Boltzmann methods are validated by their ability to recover

the Navier-Stokes equation. Here, however, we want to establish a relation to an underlying

Molecular Dynamics simulation. For any Molecular Dynamics simulation, we can bin the

particles into lattice cells corresponding to the lattice Boltzmann lattice. We can then

observe where the particles in cell x migrate to after a time ∆t, and associate these particles

with a lattice velocity vector vi = x(t)− x(t+ ∆t). These particles will collect at their new

lattice cells. After another timestep ∆t these particles are re-distributed to new lattice sites,

and can be associated with new lattice velocities. We call this representation of the MD

simulation Molecular-Dynamics-lattice-gas (MDLG). This redistribution can be understood

to be an effective MDLG-collision operator. In some very fundamental sense this is the

collision operator that the lattice Boltzmann approach is trying to mimic. The purpose of

this paper is to understand the physical meanting of the lattice Boltzmann densities in terms

of this fundamental MDLG representation.

The paper is organized as follows: we first introduce a general idea of a lattice gas

and then derive a new lattice gas which consists of a coarse-graining of an underlying MD

simulation. We then apply this general idea to a specific MD simulation of a Lennard Jones

gas in two dimensions. We analyse the equilibrium properties of the associated MDLG

method and show that we are able to predict its mathematical form analytically. We then

introduce the lattice Boltzmann method and compare the equilibrium properties of the

MDLG method to the lattice Boltzmann equilibrium. We show that there are particular

choices for the coarse-graining time and space discretization that lead to equilibria that are

compatible with the lattice Boltzmann results.

2.3. Lattice Gas

At its very basis a lattice gas consists of particles, all located on lattice points, that

move with a lattice velocity vi. What we mean by lattice velocity is that if x is a lattice

point, so it x + vi. There are ni(x, t) particles at time t at position x moving with velocity

vi. The evolution consists of two steps. A collision step that redistributes the particles at
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the lattice point x to different velocities is shown below

n∗i (x, t) = ni(x, t) + Ξi({nj(x, t)}) (2.1)

where the collision operator Ξi is a function of all the particles and their velocities that are

located at lattice point x at time t. This collision operator will ensure that none of the

locally conserved quantities are changed in the collision process. These locally conserved

quantities will vary, depending on the desired physical system that one wants to model. In

the majority of cases one will ensure mass and momentum conservation. Early lattice gases

restricted the number of particles to at most one per velocity vi at a lattice site, and the

velocity vectors all had the same length, ensuring that mass and energy conservation were

synonymous. Each conserved quantity will lead to a corresponding hydrodynamic equation.

Most applications focused on the fluid flow, and the key hydrodynamic equations to recover

were the continuity and Navier-Stokes equations. Energy conservation is often abandoned in

favor of an isothermal condition for many practical applications. Local mass and momentum

densities are defined as

ρ =
∑
i

ni (2.2)

ρuα =
∑
i

viαni (2.3)

and the conservation of these quantities then implies

∑
i

Ξi = 0 (2.4)

∑
i

viαΞi = 0. (2.5)

For the new kind of lattice gas collision operator proposed in section 2.4 we will see that

mass conservation of Eq. (2.4) is indeed fulfilled, but the momentum conservation of Eq.
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(2.5) is not strictly obeyed. Because the new algorithm is based on MD, however, the

algorithm conserves momentum rigorously. Its representation of momentum through Eq.

(2.3), however, is inexact. This collision is then followed by a streaming step

ni(x+ vi, t+ 1) = n∗i (x, t) (2.6)

where the particles move to the lattice site indicated by the velocity index i, i.e. they move

from x to x+ vi. The full evolution equation for these densities can then be written as

ni(x+ vi, t+ 1) = ni(x, t) + Ξi. (2.7)

Of course to make this description complete we need to define the collision operator. Origi-

nally lattice gases were defined such that there could be at most one particle for each ni [10].

For the purpose of this paper, however, we will make no such restriction. Instead we inves-

tigate a collision operator that is defined by an underlying molecular dynamic simulation.

2.4. Lattice Gas with Molecular Dynamics Collision Operator

In principle most systems of interest for a lattice gas (LG) simulation could be sim-

ulated using a Molecular Dynamics (MD) approach as well. MD is a standard tool which

follows classical particle trajectories for particles interacting with a pair-potential by numer-

ically integrating Newton’s equation of motion.

To construct a lattice gas method from a molecular dynamics simulation we overlay

a lattice onto our MD simulation. The number of particles in each reciprocal lattice cell

around the lattice position x then corresponds to the lattice gas density ρ(x), as shown in

Fig. (2.1). If we then choose a time-step ∆t we can observe where particles ending up in cell

x came from. The number of particles moving from cell x− vi to cell x then corresponds to

the lattice gas occupation number ni(x, t). What is important to note is that this resulting

lattice gas model is fundamentally correct in the sense that will obey the continuity and

Navier-Stokes equations simply because the molecular dynamics simulation does so.
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Figure 2.1. Sketch of the MDLG algorithm: a lattice (blue line) is superimposed on the
domain of the MD simulation. Particles in the reciprocal lattice cells (indicated by the
red boundaries), are associated with the corresponding lattice point. Particles then get
associated with the ni for the vi which corresponds to their lattice displacement in the
time-interval ∆t.

The initial condition for a set of N particles in a finite container with periodic bound-

ary conditions is given by their initial positions xi(0) and velocities vi(0). These particles

then interact through an interaction pair-potential that we take here to only depend on

the distance between the two particles: Vij = V (|xi(t) − xj(t)|). The MD simulation then

provides (to good accuracy) the trajectories xi(t) which solve Newton’s second law

dxi(t)

dt
= vi(t) (2.8)

dvi(t)

dt
= − ∂

∂xi

(
1

2

∑
j 6=i

Vij

)
. (2.9)

We now superimpose a lattice onto the computational domain of the MD simulation. For

simplicity we can imagine a cubic lattice of lattice spacing ∆x, although any lattice will do

here. Let us define a function that determines if a particle resides in a specific cell of the
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reciprocal lattice associated with a lattice point x

∆x(x
′) =

 1 xα < x′iα(t) ≤ xα + ∆x ∀α ∈ {x, y, z}

0 otherwise.
(2.10)

Next we pick a time step ∆t. We can now determine the lattice displacement each particle

originally residing in a lattice point x experiences. The set of all such displacements makes

up the minimal set of lattice velocities vi for our lattice gas method, and the number of

particles associated with this displacement makes up the lattice gas densities ni(x, t). We

define

ni(x, t) =
∑
j

∆x(xj(t))∆x−vi(xj(t−∆t)). (2.11)

This definition ensures that the particle numbers ni(x, t) will undergo a streaming step given

by Eq. (2.6). For any given MD simulation we then know all ni(x, t). From Eq. (2.7) we

see that the collision operator is then given by

Ξi = ni(x+ vi, t+ 1)− ni(x, t). (2.12)

This fully defines the MDLG algorithm, a lattice gas with a collision operator that is defined

through an underlying MD simulation. In some sense this is an ideal lattice gas model that

can handle even the most complex situations, i.e. anything that can be addressed by MD,

correctly. The key question is whether this collsion operator can be reduced to some stochas-

tic collision operator that only depends on the local ni(x, t). Clearly this will only be the

case for very simple systems since the MDLB collision operator contains information about

temporal and spatial correllations of the underlying MD algorithm and can, in principle, deal

with many complex phenomena like liquid-gas-solid coexistence, large varieties of transport

parameters, including phenomena at high Knudsen, high Mach, and/or high Reynolds num-

bers, which we don’t expect to be accessible to a simple lattice gas algorithm of Eq. (2.7)

with a local collision operator. Such extensions will be subject of future research, but are

outside the scope of the current paper.
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The local number of particles in lattice cell x at time t is give by

N(x, t) =
∑
j

∆x(xj(t)). (2.13)

This is consistent with the lattice gas definition of the local density because

N(x, t) =
∑
i

ni(x, t)

=
∑
i

∑
j

∆x(xj(t))∆x−vi(xj(t−∆t))

=
∑
j

∆x(xj(t)). (2.14)

The last equality follows because

∑
i

∆x−vi(xj(t−∆t)) = 1 (2.15)

i.e. every particle will be found somewhere on the lattice. Note that we have not yet

restricted the velocity set. We will use as many velocities as needed. Mass conservation of

Eq. (2.4) is clearly fulfilled since

∑
i

Ξi

=
∑
i

[ni(x+ vi, t+ 1)− ni(x, t)]

=
∑
i

{∑
j

∆x+vi [xj(t+ ∆t)]∆x(xj(t))

−
∑
k

∆x(xk(t))∆x−vi(xk(t−∆t))]

}

=ρ(x, t)− ρ(x, t)

=0. (2.16)
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t=6 f0 = 0 f0 = 0 f0 = 0

f1 = 0 f1 = 0 f1 = 1

Figure 2.2. Simple thought experiment for lattice gas representation of a particle moving
with a constant velocity. Clearly the lattice gas definition of momentum will fluctuate as a
function of time even though the underlying MD momentum is conserved. Averaging over
all lattice placements, however, will recover the correct momentum.

The definition of momentum in the lattice gas sense is typically defined as

N(x, t)u(x, t) =
∑
i

ni(x, t)vi. (2.17)

However, relating this to the underlying momentum of the MD simulation is not exact, as

can be seen in the example of a single MD particle moving with a velocity less that is not

a lattice velocity shown in Fig. (2.2). The correspondence could be made exact if we were

to introduced an average over all possible placements of the lattice. Such an average would

make no difference to the global equilibrium distribution, which is the main focus of the

remaining paper. We therefore avoid this additional complication for the current paper.

Similarly, momentum conservation of Eq. (2.5) is only exact if we introduce an

average over lattice placements

∑
i

viαΞi 6= 0 in general. (2.18)

Of course this does not mean that there is a problem with momentum conservation. Instead

the problem arises due to the definition of momentum through measured mass transfer

between sites for a fixed lattice.
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Despite the apparent lack of momentum conservation the MDLG collision rules are

still correct, even without the averaging, since the underlying MD simulation respects mo-

mentum conservation. As such the apparent violation of momentum conservation of the

MDLG model is benign. We reserve a closer examination of this averaged lattice gas imple-

mentation for a followup paper.

The key question is then whether the collision operator (Eq. (2.12)) can take the

form of Eq. (2.1), i.e. a stochastic collision operator that only depends on the current local

occupation numbers nj(x, t). Since there is a whole ensemble of MD simulations that is

consistent with a set of nj(x, t), and these different MD simulations will lead to different

collision terms, it is clear that there can be no exact mapping. However, it is reasonable

to hope that we will be able to construct a stochastic lattice gas collision operator that is

statistically equivalent to the collision operators for the ensemble of corresponding molecular

dynamics simulations. Establishing this is not a trivial task, and we will focus on the easier

problem of showing that these collision operators are consistent with the equilibrium behavior

of the lattice gas. In the next section we will present the lattice Boltzmann method which

conceptually represents the ensemble average of a lattice gas method. Given the complexity

of the task we focus in this paper on examining for which, if any, discretizations the MDLG

and the standard lattice Boltzmann method give an equivalent equilibrium behavior.

2.5. MDLG for an Two-Dimensional Lennard-Jones Gas

As a test case we use for our underlying MD simulations particles interacting with

the standard Lennard-Jones interaction potential, which is given by

V (x) = 4ε

[(σ
x

)12

−
(σ
x

)6
]
. (2.19)
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Figure 2.3. The numbering convention for the velocities vi in two dimensions. The central
point is 0 and corresponds to velocity v0 = (0, 0), and the other velocities are given by the
connecting vector between the central point and the lattice point in question.

The interaction strength is controlled by ε and the spatial scaling by σ. If m is the mass of

a particle we can construct the time-scale

τ =

√
mσ2

ε
. (2.20)

We performed a molecular dynamics simulation using LAMMPS for 100 000 particles in a

two-dimensional box with the length of 1000σ, corresponding to a nominal volume fraction

of 0.0785 if we approximate the particles as circles with diameter σ. The system was ini-

tialized with a homogeneous distribution of particles with a kinetic energy corresponding

to a temperature of 50 in the LJ units defined above. This corresponds to a gas at a high

temperature, dense enough so that there are a significant number of collisions. The temper-

ature is well above the critical temperature for a liquid-gas coexistence of Tc = 1.3120(7)

[68]. We ran an simulation of an equilibrium system with a time-step of 0.0001τ for 3 000 000

time-steps, i.e. up to τ = 300. Early time data of 1 000 000 timesteps was discarded, to

ensure that we were only probing the equilibrium dynamics.
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We then analyse the resulting MD trajectories to obtain the resulting averaged MDLG

occupation numbers ni(x, t) from Eq. (2.11). We should note here that results for different

mean velocities U can be obtained simply be using a lattice displaced by −U ∆t for the

MDLG analysis. It is therefore not necessary to re-run the MD simulations to examine

different mean velocities.

The first information to be gleaned from this is the resulting velocity set for the

vi. For small times ∆t, only the nearest neighbors have non-negligible contributions, but

as ∆t is increased more densities get populated. We identify the velocities vi using the

numbering scheme shown in Fig. (2.3). So for ∆t→ 0 only v0 − v8 will have contributions.

These velocities form a complete shell around the central point v0. Most standard lattice

Boltzmann methods work hard to make due with this minimal velocity set. This comes at

some cost, the most important one is that only one temperature, θ = 1/3 in lattice unites,

is allowable in lattice units to recover the correct viscous stress tensor (see Eq. (2.49)).

For larger ∆t particle will travel further and a larger velocity set is required. The average

occupation numbers are given by the global equilibrium distribution. The next subsection

discusses how these equilibrium distribution can be obtained analytically.

2.5.1. Global Equilibrium Distribution

For a system in thermal equilibrium, sufficient averaging will give an equilibrium

distribution

f eqi =〈ni〉

=
∑
j

〈∆x(xj(t))∆x−vi(xj(t−∆t))〉. (2.21)

We can numerically approximate this equilibrium density by averaging the values of the ni

from Eq. (2.11) over the whole lattice and for the duration of the simulation. For a given

MD simulation the results will depend both on the lattice spacing ∆x and on the time step

∆t. As mentioned above the MD simulations considered in this paper deal with fairly hot

gases, that should be reasibably well approximated by an ideal gas.
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To theoretically calculate this expectation value we assume that the particles are

uniformly distributed, so only the displacement during the time-interval ∆t will enter the

averaging

δx = x(t)− x(t−∆t). (2.22)

The key for our averaging will then be the probability density of finding such a displacement

P (δx), and this allows us to write the average as

f eqi =
ρeq

(∆x)d

∫
dx

∫
d(δx)∆x(x)∆x−vi(x− δx)P (δx)

=
ρeq

(∆x)d

∫
dx

∫
d(δx)∆x(x)∆x(x+ vi − δx)P (δx)

=ρeq
∫
d(δx)P (δx)W (vi − δx)

=ρeq
∫
d(δx)P (δx+ vi)W (δx) (2.23)

where W (x) is the d-dimensional wedge function defined as

W (x) =
d∏

α=1

Wα(x)

=
d∏

α=1

(
1− |xα|

∆x

)
Θ

(
1− |xα|

∆x

)
(2.24)

where Θ is the Heaviside function and α denotes cartesian coordinate index.

For very short times ∆t, i.e. times shorter than the mean free time between two

collisions, particles simply undergo ballistic motion. The velocity distribution of the particles

is given by the Maxwell-Boltzmann distribution

P (v) =
1

(2πkBT )d/2
exp

(
−(v − u)2

2kBT

)
. (2.25)

With this, and neglecting any collisions between the particles, we get for the mean squared
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displacement in one dimension

〈(δxα)2〉bal = kBT (∆t)2. (2.26)

The probability density distribution for the displacement is then given by

P bal(δx) =
1

(2πkBT )d/2(∆t)d
exp

(
−(δx− u∆t)2

2kBT (∆t)2

)
. (2.27)

For times much longer than the mean free time particles undergo multiple collisions and

instead of following a ballistic motion they will diffuse. If we call the self-diffusion constant

D we when have

〈(δxα)2〉dif = 2D(∆t). (2.28)

This implies that the probability density of the discplacement is given by

P diff (δx) =
1

(4π(∆t)D)d/2
exp

(
−(δx− u∆t)2

4D(∆t)

)
. (2.29)

Now since both limiting displacements are given by Gaussian distributions is it reasonable

to expect that the intermediate probabilities are also well approximated by a Gaussian and,

if we know the mean squared displacement in one dimension 〈(δxα)2〉 (and assume isotropy),

we get for the probability density

P (δx) =
1

(2π〈(δxα)2〉)d/2
exp

(
−(δx− u∆t)2

2〈(δxα)2〉

)
. (2.30)

In all of these cases the probability density distribution factorizes

P (δx) =
d∏

α=1

Pα(δx) (2.31)
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where

Pα(δx) =
1√

2π〈(δxα)2〉
exp

(
−(δxα − uα∆t)2

2〈(δxα)2〉

)
(2.32)

and we can write Eq. (2.23) as a product of Gaussian integrals

f eqi = ρeq
d∏

α=1

∫
d(δxα)P (δxα + viα)Wα (δx) . (2.33)

The solution is given by

f eqi
ρeq

=
d∏

α=1

f eqi,α (2.34)

where

f eqi,α =N

(
e−

(ui,α−1)2

2a2 − 2e−
u2
i,α

2a2 + e−
(ui,α+1)2

2a2

)
+
ui,α − 1

2

[
erf(

ui,α − 1√
2a

)− erf(
ui,α√

2a
)

]
+
ui,α + 1

2

[
erf(

ui,α + 1√
2a

)− erf(
ui,α√

2a
)

]
(2.35)

where

a2 =
〈(δxα)2〉
(∆x)2

(2.36)

N =
a√
2π

(2.37)

ui,α = viα − uα. (2.38)

This is a lattice equilibrium distribution function derived from first principles. At first glance

it looks different than other lattice equilibrium distributions, and we will examine its relation

to know equilibrium distribution functions below.

First we need to fully define the lattice equilibrium distribution. To do so we need to

obtain the mean square displacement 〈(δxα)2〉. In general the mean square displacement can

be measured in our MD simulations, but this would require us to consider a whole function of
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Figure 2.4. (a) Measured velocity correlation function from MD simulation data compared
to the exponential fit. (b) Measured mean square displacement from MD simulation data
compared to the predicted value according to the Eq. (2.39).
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∆t as in input parameter. For our simple ideal gas system we can obtain a simpler dependence

on a single parameter by expressing it in terms of the velocity correlation function as

〈(δxα)2〉 = 2

∫ t

0

dt′ (t− t′)〈vα(t′)vα(0)〉. (2.39)

For gases this velocity correlation function is typically well approximated by a simple expo-

nential decay. There is also a long range 1/t contribution to the velocity correlation function

for our two dimensional system, but for the times ∆t that are of interest here this divergent

contribution does not yet contribute noticeably

〈vα(t)vα(0)〉 = kBT exp

(
− t
τ

)
. (2.40)

For our system we compare this prediction of an exponentially decaying velocity correlation

function to the measured correlation function in Fig. (2.4)(a). We see that for early times

we see good agreement with this prediction for τ = 0.5(0). We also see the long time-

tale typcical for a two dimensional system, which we ignore here. This is justified below

[69, 70, 71, 72, 73, 74]. Then the mean squared displacement can be predicted according to

Eq. (2.39) as

〈(δxα)2〉 = 2kBTτ
2

(
e−

t
τ +

t

τ
− 1

)
. (2.41)

We show that this prediction recovers the measured mean squared displacement well in Fig.

(2.4)(b). Deviations resulting from the long time tails of the velocity correlation function

only show up for later times and larger displacements considered in this paper, which justifies

our ignoring these long time tails here.

This fully completes the definition of the MDLG equilibrium function in the case of

gases. To verify our results we compare a numerically measured equilibrium distribution
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with the theoretically predicted one for different discretizations. The results are shown in

Fig. (2.5). The agreement between our theoretical results and the experimental ones is

excellent.

In the next section we introduce the lattice Boltzmann method and then examine

the relation of this MDLG equilibrium function with existing lattice equilibrium distribution

functions derived for lattice Boltzmann methods.

2.6. Lattice Boltzmann

Lattice Boltzmann methods were derived as ensemble averages of lattice Boltzmann

methods. The variables in a lattice Boltzmann method are distribution functions

fi = 〈ni〉neq (2.42)

where the 〈· · · 〉neq represents a non-equilibrium ensemble average over microscopic lattice gas

states. Taking the same ensemble average, the evolution equation for these lattice Boltzmann

densities derives from the underlying lattice gas evolution Eq. (2.7)

fi(x+ vi, t+ 1) = fi(x, t) + Ωi (2.43)

where the collision operator Ωi = 〈Ξi〉 is a deterministic function of all the densities at lattice

point x. We will investigate later if this collision operator can be, at least approximately

and for some suitable discretization, be cast in the standard BGK form typically employed

for lattice Boltzmann simulations. This question is a crucial first step if one wants to relate

lattice Boltzmann to an explicit molecular system which will be represented by our MDLB

algorithm.

This standard LB collision operator is a first order BGK approximation and can be

written as

Ωi =
∑
j

Λij(f
0
j − fj) (2.44)
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where f 0
j is a local equilibrium distribution which depends only on the locally conserved

quantities

ρ =
∑
i

fi (2.45)

ρuα =
∑
i

viαfi. (2.46)

Although other collision operators are also being used [75, 76, 77, 78] and it is a longer

term goal of the MDLG method to help identify which of these collision operators are most

realistic.

To ensure that the lattice Boltzmann equation reproduces the continuity and Navier-

Stokes equations in the hydrodynamic limit it is necessary that the equilibrium distribution

matches the first four (apart sometimes from a u3 term) velocity moments of the Maxwell-

Boltzmann distribution

∑
i

f 0
i = ρ (2.47)

∑
i

(viα − uα)f 0
i = 0 (2.48)

∑
i

(viα − uα)(viβ − uβ)f 0
i = ρθδαβ (2.49)

∑
i

(viα − uα)(viβ − uβ)(viγ − uγ)f 0
i = Qαβγ (2.50)

where Qαβγ should be zero. For velocity sets including only one shell we have viα ∈ {−1, 0, 1}.

For these velocity sets these moments overconstrain the equilibrium distributions. In par-

ticular we have v3
iα = viα, which couples the first and the third moment. This is a key

source of Galilean invariance violations in lattice Boltzmann [79]. These moments can only

be reconciled for the special choice of

θ = 1/3 (2.51)
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and the third order tensor Qαβγ = ρuαuβuγ � 1 which is assumed to be small because

u < 0.1 in typical situations. The equilibrium distribution is typically given in terms of an

expansion in terms of the local velocity u up to second order as

f 0
i = ρwi

(
1 +

viαuα
θ

+
1

2

viαuαviβuβ
θ2

− 1

2

uαuα
θ

)
(2.52)

where the weights wi depend on the velocity set and summation over repeated Greek indices

is implied. In this article we focus on the question whether this form of an equilibrium

distribution is compatible with a concrete MDLB implementation.

This collision operator together with the local equilibrium distribution implies mass

and momentum conservation

∑
i

Ωi = 0 (2.53)

∑
i

viαΩi = 0 (2.54)

which is consistent with the typical conditions for lattice gases of Eqs. (2.4) and (2.5).

In the following we will examine the MDLG method for the example of a hot, dilute

gas. For this lattice gas we examine the resulting distribution functions and see under which

circumstances this lattice gas can reproduce (to some approximation) the lattice Boltzmann

method equilibrium distribution Eq. (2.52).

2.7. Relation of MDLG Equilibrium Functions to Lattice Boltzmann Equilibria

We are now in a position to predict for which set of parameters ∆x,∆t, if any, we can

recover the traditional form of the lattice Boltzmann equilibrium from our MDLB algorithm.

Most lattice Boltzmann methods use a limited velocity set that corresponds to a single shell

in Fig. (2.3). For our two dimensions this corresponds to 9 velocities. The corresponding

equilibrium distribution is typically given as a second order polynomial in the velocities, as

we have presented earlier in Eq. (2.52). For the two dimensional D2Q9 lattice Boltzmann
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Figure 2.5. Measured equilibrium distributions f eqi as a function of the mean-squared dis-
placement measure a from Eq. (2.36). They are compared to the analytic solution given by
Eq. (2.34). We find excellent agreement between the predicted and measured equilibrium
distributions. The horizontal lines indicate the value of D2Q9 lattice Boltzmann weights,
and the green vertical line indicates the value of a2 = 1/6 for which these weights agree with
the MDLG results.

method we consider here the weights wi in Eq. (2.52) are given by

w0 = 4/9 (2.55)

w1−4 = 1/9 (2.56)

w5−8 = 1/36 (2.57)

where the velocity indices correspond to the numbering of Fig. (2.3).
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small times and the diffusive regime (∆t)2 ∝ ∆x for large times.

In Fig. (2.5) we show the lattice Boltzmann weights wi as horizontal lines. To match

the MDLG and LB equilibria we require

f eqi (a2)/ρeq = wi. (2.58)

This is a over-determined system of equations.

Fortuitously the solutions for the three distinct wi for a D2Q9 lattice Boltzmann give

the same value for a2 ≈ 1/6 to very good approximation. This is shown as the green vertical

line in Fig. (2.5).

This suggests that matching lattice Boltzmann and MD simulations would likely

benefit from using the conditions where the f eqi match up, and the methodology explained
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Figure 2.7. Dependence of the equilibrium distribution function on an imposed velocity U
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prediction of Eq. (2.34) (solid lines) agrees perfectly with the measured averages of the ni
(symbols). These results are compared to the lattice Boltzmann equilibrium distribution for
D2Q9 (dashed lines). We find good agreement between the MDLG equilibrium distribution
and the LB equilibrium distribution for velocities below about 0.2.

above would give guidance on the appropriate time step ∆t for a given spatial discretization

∆x. Given a ∆x can numerically solve Eq. (2.58) for ∆t for a system with zero mean

momentum. This is shown in Fig. (2.6). We find that there is close agreement between the

solutions for different velocities vi. Corresponding to the transition from ballistic to diffusive

regime around ∆t = τ that we saw in Fig. (2.4)(b) we also see a transition here from a

∆t ∝ t regime for ∆t � 1 to a ∆t ∝ t2 regime for ∆t � 1. We expect this relation that

gives ∆t in terms of ∆x to be valuable when one tries to generate a coarse-graining transition

between an MD and LG region in a multi-scale numerical method.
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So far we have only matched the equilibrium distribution at zero velocity. The the-

ory contains the mean velocity as u in Eq. (2.35). For the measurements we could set up

different simulations for mean velocities using the algorithm described above in Eq. (2.11).

It is more practical, however, to move the Grid instead or equivalently use Galilean trans-

formed particle positions of x̂i(t) = xi(t) + ut instead. Using this approach to find the

equilibrium distribution for different mean velocities u we show our comparison between the

measured discrete equilibria (Eq. (2.11)), their theoretical prediction (Eq. (2.34)), and the

lattice Boltzmann equilibrium distribution (Eq. (2.52)) in Fig. (2.7). For small velocities

|u| < 0.1 we find good agreement between all three densities. This is the relevant range,

as lattice Boltzmann is only considered reliable for small enough velocities. The agreement

between the measured and predicted MDLG equilibrium distributions continues to be excel-

lent throughout the whole regime. Note, that the agreement would continue to be excellent

for larger velocities. We would only need to adapt the velocity set we consider as velocities

with magnitude larger than 0.5 are the same as velocities with magnitude larger than 0.5

plus an additional integer lattice displacement.

2.7.1. Moments of the Equilibrium Distribution

The key property of the equilibrium distribution in kinetic theory are the velocity

moments. For the derivation of the Navier-Stokes equation moments up to third order are

required. It is therefore helpful to examine the moments of the discrete MDLG equilibrium

distribution, compare them to the expected moment for a lattice Boltzmann equilibrium

distribution and examine how these moments relate to the continuous velocity distribution

function for the MD simulation.

Let us spend a moment considering these different concepts, since they are not usually

clearly separated in a LB derivation. Firstly we have the velocity distribution of the MD

simulation, given by Eq. (2.25). The moments of this velocity distribution are usually used

as a rational for constructing LB equilibrium distributions such that the relevant moments
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of the discrete LB equilibrium distribution function match those of the continuous Maxwell

Boltzmann distribution. This is the rational behind the moment Eqs. (2.47–2.50) for the

lattice Boltzmann equilibrium function.

The moments of the discrete MDLG method are not a priori constrained to obey

such a constraint, and indeed we don’t expect such an agreement for two reasons. First the

underlying displacement probability densities (Eq. (2.30)) are in general different from the

displacement probability densities (Eq. (2.27)) directly related to the Maxwell-Boltzmann

distribution (Eq. (2.25)). Second there is no reason to believe that the averaging procedure

of Eq. (2.33) will preserve the moments in general.

Now let us consider the first three velocity moments specifically. The zeroth moment

relates to the total mass. Since the algorithm conserves mass exactly we expect all three

approaches to agree on this moment. Indeed, as we saw in Eq. (2.16) mass is clearly

conserved, and consequently this moment will agree for all of the above approach.

The first moment relates to the local momentum. Even if the MDLG approach does

not locally conserve the momentum, the averaged momentum of the equilibrium distribution

remains exact. This simply follows from the fact that this discrete moment corresponds to

the net mass flow through the lattice. Even though this flow can be inexact at any instance

in time (since particles may not cross a boundary despite the fact that they are moving) on

average the count of particles crossing boundaries has to give the exact mass current.

Let us next consider the second moment. This second moment in the lattice Boltz-

mann approach (Eq. (2.49)) is related ideal gas equation of state p = ρθ. We calculate the

second moment of our discrete MDLG equilibrium distribution

Ψαβ(a, u) =

∑
i f

eq
i (viα − uα)(viβ − uβ)

ρeqa2
. (2.59)

For an equilibrium distribution that obeys the lattice Boltzmann moment (Eq. (2.49)) with

a temperature θ = a2 this expression would give exactly one. For the MDLG equilibrium
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Figure 2.8. The normalized second moment of Eq. (2.59) as a function of the second moment
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distribution moment the value of Ψ should be independent of u. This is compared to a
standard lattice Boltzmann second moment with θ = 1/3.

distribution this second moment is shown in Fig. (2.8). This shows that the discrete second

moment does only agree with the MD temperature for large a2 � 1. As we see in Fig. (2.5)

this corresponds to a situation where the populated set of velocities encompasses several

shells in Fig. (2.3). For lower values of a2 we find that the second moment diverges. The

reason lies in the way we define the discrete equilibrium distribution. Even for very small

〈(δx)2〉, corresponding to very small ∆t, we will identify a fraction of particles that happen

to cross from one lattice point to the next and are therefore assigned a lattice velocity vi

of order one. This appearance of apparent large displacements causes the divergence of the

discrete second moment. This effect is significantly enhanced by imposed velocites u.

For a2 < 0.1 we see that we get significantly diverging values of Ψ for different

velocities u. This implies that this discrete second moment is not Galilean invariant. It is

important to note that despite such violations of Galilean invariance of the discrete moments

the full MDLG algorithm does not suffer from a Galilean invariance problem. Instead this is
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Figure 2.9. Third velocity moment given by Eq. (2.60) for an unrestricted velocity set and
a velocity set restricted to only a single shell of velocities for 10 equally spaced velocities ux
between 0 and 0.001.

an indication that the collision operator Eq. (2.12) must exactly compensate this apparent

Galilean invariance violation. For lattice Boltzmann methods one typically tries to avoid

Galilean invariance violations by ensuring that both the local equilibrium distributions and

the collision operator independently obey Galilean invariance.

For the lattice Boltzmann method we expect this second moment to be Ψαβ = θ/a2δαβ.

As we saw above [see Eq. (2.51)] lattice Boltzmann methods which have a velocity set

consisting of a single shell in velocity space require θ = 1/3. This value of θ is consistent

with the moment of the MDLG equilibrium for a value of a2 ≈ 1/6. We find θ ≈ 2a2 =

〈(δx)2〉/(∆x)2. This corresponds to about the lowest value for a2 where Ψ does not strongly

depend on u and would therefore violate Galilean invariance.
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The condition that θ = 1/3 came out of a consideration for the third moment for a

minimal velocity set with vix = v3
ix. We can define a third moment as

Φαβγ =

∑
i f

eq
i (viα − uα)(viβ − uβ)(viγ − uγ)

ρeqa3
. (2.60)

We examine the behavior of Φxxx in Fig. (2.9). In fact this third moment should be zero, and

for sufficiently large a it converges to zero exponentially. However, if we artificially restrict

our velocity set to a single shell, neglecting the small densities for discrete velocities outside

the first shell, we find that there is a collapse of Φxxx to zero for the same a2 ≈ 1/6 that we

found in Fig. (2.8). For the full velocity set, however, nothing special occurs at a2 = 1/6.

This initially surprised us because we see in Fig. (2.5) that the densities associated with

the second shell are still a factor of 30 smaller than the densities of the first shell and might

therefore be taken to be negligible. The second shell velocities that are about a factor 2

larger than the first shell velocities, so these densities get multiplied by a factor of 23 which

allows these densities to contribute enough that we now have

∑
i

f eqi vix 6=
∑
i

f eqi v
3
ix (2.61)

and they are different enough that the cancellation of terms that is supposed to lead to for

Φxxx = 0 at a2 = 1/6 no longer exists. Instead Φxxx monotonously approaches zero.

The second and third moments of the distribution functions both relate to the lattice

Boltzmann temperature of Eq. (2.49). We can derive two expressions for the temperature

θ2 = a2Ψxx (2.62)

θ3 =
1

3ρeq
∂ux
∑
i

f eqi (ρeq, u)(vix)
3. (2.63)

The dependence of these two quantities on the mean-square displacement is shown in Fig.

(2.10). We see that these two definitions only agree with each other for large a2, where
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agreement is facilitated by utilizing a large set velocity for the discretization of f eqi . For

small a2, and therefore a minimal velocity set, we get θ3 = 1/3, for the same reason that was

discussed before, i.e. vix = v3
ix.

If we artificially restrict the velocity set to a single shell (e.g. 9 velocities in our

two-dimensional example) we affect both definitions of the LB temperature. In this case the

agreement for large a2 disappears, and we have exactly one point for θ = 1/3 corresponding

to a2 = 1/6 for which both expressions for the temperature agree. This corresponds to the

special point in Fig. (2.9) where the results for the one-shell velocity set become independent

of u (for small enough u).

This suggests that there is a serendipitous agreement between the MDLG equilibrium

distribution and the standard LB equilibrium distribution for one-shell velocity sets. It allows

us to recover velocity moments up to order 3, which is exactly the order required by kinetic

theory to recover the continuity and Navier-Stokes equations. As seen in Figs. (2.8) and

(2.9), this value is just large enough to avoid apparent Galilean-invariance violations in the
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moments of the MDLG equilibrium distribution, and just small enough so that the values

of the fi for velocities with viα > 1 are small enough not to contribute considerably to the

moments of the equilibrium distributions. These effects can only be noticed for the third

moment, where they conspire to induce agreement between the measures of temperature

implied by the second and third moments, as seen in Fig. (2.10).

2.8. Consistent Discretizations

Up to now we have seen how the moments of the equilibrium distribution depend on

a2 which is a measure of the mean squared displacement. We saw that the discrete moments

of f eqi differ from the continuous moments of the Maxwell-Boltzmann distribution even in

the ballistic regime. The underlying reason for this disagreements result from two conspiring

effects. Firstly we only know the position of our particles to lie somewhere within their

assigned lattice cell. This uncertainty enters the definition of the f eqi in Eq. (2.23). Secondly

we use a discrete second moment. Here we show how both of these give an offset of 1/12 in

a2 giving rise to a total shift of 1/6 observed in the previous numerical results.

For simplicity let us consider large times away from the ballistic regime. This occurs

without loss of generality if our assumption of a Gaussian distribution in Eq. (2.30) remains

correct. We can then assume the motion of the particles is entirely diffusive with some

diffusion constant D

∂tρ(x, t) = D∂2
xρ(x, t). (2.64)

If we had known the position of the particle initially, i.e. ρc(x, 0) = δ(x), then the particle

probability density would evolve as

ρc(x, t) =
1√

4πDt
e−

x2

4Dt (2.65)

which has a second moment of

1√
4πDt

∫ ∞
−∞

x2e−
x2

4Dtdx = 2Dt. (2.66)
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If we only know that at time t = 0 the particle is inside a lattice cell centered around the

origin with width ∆x, then the density ρ as a function of time is given by

ρd(x, t) =
1

2∆x

[
erf

(
x+ ∆x/2

2
√
Dt

)
− erf

(
x−∆x/2

2
√
Dt

)]
(2.67)

which for t→ 0 gives a density that is 1/∆x inside the interval [−∆x,∆x] and zero outside

it. This probability density distribution then spreads out and approaches a Gaussian at late

times. The second moment of the position is then given by

∫ ∞
−∞

x2ρd(x, t)dx = 2Dt+
(∆x)2

12
(2.68)

i.e. a simple offsett of (∆x)2/12 that does not depend on time. We can identify

a2 =
2Dt

(∆x)2
(2.69)

from the definition of Eq. (2.36). We then we see that the results are expected to be shifted

by 1/12. However, in Fig. (2.10) we clearly see that this only represents half of the observed

shift 1/6.

The second effect relates to discretizing the position into displacement bins. We now

calculate the discrete second moment (normalized by (∆x)2) as

m2 =
∞∑

i=−∞

i2
∫ i∆x+ ∆x

2

i∆x−∆x
2

ρd(x, t) dx. (2.70)

In Fig. (2.11) we show that this discrete moment quickly converges to a2 + 1/6. We clearly

see that the missing additional offset of 1/12 that we observed in Fig. (2.10) is the result of

taking the discrete moment.

This shows that there are two effects of discretization. Firstly the initially broader

distribution of particles confined to a lattice site rather than a point shifts the second moment
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Figure 2.11. The difference of the discrete second moment m2 of Eq. (2.70) minus a2

converges quickly to a constant 1/6.

by exactly 1/12. The second effect of discretization is more complicated, particularly for

small a2. But for a2 > 0.2 this effect quickly converges to another offset in a2 of 1/12.

Together they make up the offset of 1/6, seen repeatedly in our numerical results of Figs.

(2.5), (2.8), (2.9), and (2.10).

2.9. Outlook

In this paper we have introduced a new tool for comparing the results of Molecular

Dynamics simulations with those of coarse-grained lattice gas or lattice Boltzmann methods.

It consists of re-interpreting the MD results as a lattice gas which we call the MDLG. The

dynamics of this special kind of lattice gas is entirely given by the MD simulation, and

therefore will be able to give a coarse-grained picture for any results that are obtainable

with MD simulations.

The approach bears a superficial similarity with the direct simulation Monte Carlo

(DSMC) method, a particle-based method where a grid is placed on the lattice and two-
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particle collisions are performed between random particles within one cell [80, 81]. This

similarity has been remarked upon by both reviewers of this article. It has been shown

that DSMC will simulate the Boltzmann equation, and by extension also reproduce the

Navier-Stokes equation using kinetic theory arguments similar to those typically used when

analyzing the lattice Boltzmann method [82, 83]. This coarse-graining approach to the MD

method leads to an approximate approach that is much faster than any hypothetical MD

implementation. The MDLG approach, however, is fundamentally different. Since it relies

on an underlying MD simulation there are no savings in computational time, and since it

continues to track the exact MD result it does not loose accuracy apart from the information

lost by projecting onto lattice densities. The key aspect of the MDLG method is that it

reproduces an exactly correct lattice gas method which can then be used to compare it

to other, efficient, LG or LB methods and validate (or invalidate) their behavior by direct

comparison. We believe that this is an important new tool that allows us to analyze an LG

or LB method directly rather than go through the usual indirect method of recovering the

hydrodynamic equations through some kinetic theory approach.

In this paper, we focus entirely on the averaged equilibrium behavior and show that

there exists a close connection between the equilibria of lattice Boltzmann methods and

the equilibrium for the MDLG method, when applied to a hot dilute gas. We were able to

determine this equilibrium distribution analytically and were able to verify this analytical

solution with the results of the MDLG method. Importantly there is a surprisingly good

agreement between our equilibrium distribution and the standard lattice Boltzmann result

for carefully chosen (and analytically known) pairs of time and space discretizations ∆t and

∆x. We were able to understand the observed offset of 1/6 in the dimensionless measure of

the mean squared displacement a2 in terms of our discretization procedure.

This opens the way for a more careful analysis of the fundamental underpinnings

of lattice gas and lattice Boltzmann methods. We intend to utilize our MDLG method to

investigate the fundamental properties of the collision operator, including its fluctuating
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properties. Further down the line we hope to investigate how the behavior of liquids alters

the behavior of the MDLG method and examine if MDLG can also be matched with lattice

Boltzmann methods. We anticipate that this method will also be instrumental in putting

lattice Boltzmann methods for non-ideal and multi-component systems on a firmer footing.
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3. ESTABLISHING CORRECT FLUCTUATIONS

FOR LATTICE BOLTZMANN METHODS USING

THE MOLECULAR DYNAMICS LATTICE GAS

METHODS

3.1. Abstract

Using the recently introduced Molecular Dynamics Lattice Gas (MDLG) method we

investigate the fluctuating properties of lattice Boltzmann methods. In standard fluctuating

lattice Boltzmann methods noise terms are derived by assuming that the densities are Poisson

distributed. We show that this assumption can be validated for dilute gases and we show

how this assumption starts to break down for denser systems.

3.2. Introduction

In this chapter we investigate the fundamental fluctuating properties of an equilib-

rium lattice gas or lattice Boltzmann simulation by relating these method to the recently

introduced Molecular Dynamics Lattice Gas (MDLG) approach. The fluctuations in this

method are directly related to an underlying Molecular Dynamics simulation and therefore

represent the real behavior of particles.

A property of the general LBM is that, unlike the discrete particle behavior of LGA,

fluctuations are not inherently included. In LGA methods, the discrete particle behavior

gives rise to particle noise which can be thought of as fluctuations. LBM resolves this

issue by implementing the distribution functions. The fi in LBM can be thought of as

non equilibrium ensemble averages of the states of the discrete particles. Due to this fact,

LBM is devoid of fluctuations. To model systems where fluctuations play an important role,

these fluctuations must be reintroduced into the LBM. There is an active sub-field of lattice
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Boltzmann research which studies the reintroduction of fluctuations in to the method. These

revised methods are known as fluctuating lattice Boltzmann methods (FLBM) [84, 85, 86].

3.2.1. The Fluctuating Lattice Boltzmann Equation

The general LBM collision operator can be written as follow (this equation can be

extracted from Eq. (1.31))

Ωi({fj}) =
∑
j

Λij(f
0
j − fj)∆t. (3.1)

Eq. (3.1) includes collisions and streaming of the distribution functions at each time step. At

its core, there is nothing which would contribute fluctuations to the method. To remedy this,

the collision operator can be modified to include a fluctuating term ξi which has moments

∑
i

ξi = 0 (3.2)

∑
i

viαξi = 0. (3.3)

These noise terms are correlated. The multi-relaxation time (MRT) collision operator is

desired since it allows for each degree of freedom to be relaxed by its own independent

relaxation time τi. The fluctuating MRT collision operator takes the form

Ωi({fj}) =
∑
j

Λij(f
0
j − fj) + ξi (3.4)

where Λij is the collision matrix which contains the independent relaxation time parame-

ters. This revision gives a new form of the LBM which is known as the fluctuating lattice

Boltzmann equation

fi(x + vi, t+ 1) = fi(x, t) +
∑
j

Λij(f
0
j − fj) + ξi. (3.5)

With proper forms of Λij and ξi, fluctuations will be reintroduced into the LBM.
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By transforming into a moment space representation, the noise terms can be de-

coupled and dealt with individually thus leading to uncorrelated noise terms. This will be

discussed in the following section.

3.2.2. The Multi Relaxation Time Collision Operator and Moment Space Rep-

resentation

The multi-relaxation time (MRT) collision operator in Eq. (3.1) follows the idea

that for each individual degree of freedom in the distribution function, the collision will

relax each relevant degree of freedom towards equilibrium by a specific relaxation time τi,

where the subscript i corresponds to the quantity of interest. The MRT collision allows for

independent access to each moment. In the case of FLBM, the independent relaxation of each

mode is highly desirable since the MRT collisions can offer a higher degree of accuracy and

numerical stability. To gain access to the individual moments, a moment space representation

is introduced. The moment space representation is a transformation of the fi from velocity

space in to moment space. The MRT collision operator will revise the lattice Boltzmann

algorithm so that the collisions will take place in moment space. The fi are first transformed

into moment space where the collisions are performed. Then, they distribution functions are

transformed back into velocity space where streaming can take place [87, 88, 89, 90].

The transformation of the fi from velocity to moment space is written as

Ma =
∑
i

ma
i fi (3.6)

where Ma is the distribution function moment corresponding to a specific parameter and

ma
i is a transformation matrix. To transform back to velocity space from moment space, the

back transform is

fi =
∑
a

naiM
a. (3.7)

In the back transform, nai is also a transformation matrix. In many cases, this is equivalent

to the matrix in the forward transformation, but in general ma
i 6= nai .
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These transformations have the orthogonality relations

∑
i

naim
b
i = δab (3.8)

∑
a

ma
i n

a
j = δij. (3.9)

The subscripts refer to a velocity space representation and the superscripts refer to the

moment space representation. These transformations allow for the free movement of the

distribution functions between velocity and moment space.

The elements of the transformations matrices must be known to properly transform

between fi and Ma. As is the case in the single-relaxation time BGK collision, the collisions

must not modify the conserved quantities of the system. For example, the zeroth moment

which we denote as mass will give the transformation

M0 = ρ =
∑
i

1fi (3.10)

which is equivalent to saying that the first, second and third row of the transformation matrix

is

m0
i = (1, ..., 1) (3.11)

m1
i = Vix (3.12)

m2
i = Viy (3.13)

for a system of n velocities. For any DdQq representation, a Gram-Schmidt orthonormaliza-

tion can be performed to find the remaining elements of the transformation matrix.

If a single-relaxation time is assumed for all moments, the velocity space collision

matrix takes the form

Λij =
1

τ
δij. (3.14)
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In moment space, the single relation time collision matrix is written

Λab =
∑
ij

ma
iΛijn

b
j =

1

τ
ma
i δijn

b
j =

1

τ
δab. (3.15)

To generalize this to a multi-relaxation time method, it is imposed that Λab be a diagonal

matrix

Λab =
1

τa
δab (3.16)

where τa is the relaxation time which corresponds to moment a.

In the moment space representation, the collision operator in Eq. (3.4) will become

Ωa({Ma}) =
1

τa
(Ma,0 −Ma) + ξa. (3.17)

This moment space collision operator will now decouple the noise and still satisfies the

conservation of mass and momentum [91, 92, 93, 94, 95].

In moment space, the noise terms are defined in terms of a correlation function

< ξaξb >. This correlation function can be written terms of densities of the system and

is written as

< ξaξb >= ρ
2τa − 1

(τa)2
(1− δa0δb0 − δa1δb1 − δa2δb2)δab (3.18)

which is a fully diagonal matrix representing uncorrelated noise terms [96, 97, 98, 99, 100].

The basic conjecture of the fluctuating lattice Boltzmann method is to assume that

the densities have the same second moment as uncorrelated Poisson distributed noise. In

particular this implies

〈fifj〉 = f eqi f
eq
j + f eqi δij (3.19)

which is, at least to good approximation, fulfilled by modern fluctuating lattice Boltzmann

methods. To validate this fundamental assumption we now utilize our MDLG approach by
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measuring

Eij =
〈ninj〉 − f eqi f

eq
j√

f eqi f
eq
j

(3.20)

and we observe the deviation (if any) from a δij function. Deviations will indicate situations

where the fluctuations of a real system deviate from those of the FLBM, and also of those

expected for an ideal gas.

In Fig. (3.1)(a) we see that for small enough densities we recover the expected

ideal gas behavior, but that the fluctuations develop a dependence on the timestep ∆t for

higher densities Fig. (3.1)(b). Interestingly, for both small and large timesteps the ideal gas

behavior is recovered, but for intermediate timesteps we find noticeable correlations.

The first idea one might have as to what causes these correlations might be to assume

that the velocities of the molecules at short distances become correlated. We tested this

assumption by measuring the velocity correlation as a function of distance. In particular we

measured

〈vi(t)vj(t)〉(∆X) (3.21)

by binning the velocity products for different particle displacements ∆X = |xi(t) − xj(t)|.

However, as shown in Fig. (3.2), no such correlation exists for the velocities.

This leads us to examine the origin of these correlations from a fundamental perspec-

tive. In the next section we briefly recap the relevant properties of the MDLG method, and

then we go on to examine the fundamental properties of the 〈ni(x, t)nj(x, t)〉.

3.3. Lattice Gas, Lattice Boltzmann and Molecular Dynamics Lattice Gas

Lattice gas methods consist of discrete particles associated with discrete lattice sites.

In one time-step these particles move from one lattice site x to another lattice site x + vi

where the lattice displacement vi is typically referred to as a lattice velocity. These lattice

gas methods typically only allow a restricted velocity set consisting of displacements that

lead to bordering lattice sites. The particles moving from lattice point x to lattice point
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Figure 3.1. Measured correlations Eij for different densities (a) Low density (φ = 0.01) (b)
Medium density (φ = 0.08). These data obtained for 99 856 particles with box size of 1 000
and 8 000 and 25× 25 lattice.
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Figure 3.2. (a) Measured 〈vivj〉 for different mean densities: low density (green), medium
density (black), medium density for longer simulation (blue), high density (red). (b) Focused
on medium density.
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x + vi between time t and t + 1 are denoted by ni(x, t). After moving to a new lattice site

the particles at this lattice site are re-distributed in a collision step that respects mass and

momentum conservation. This means that the local mass and momentum are defined as

N(x, t) =
∑
i

ni(x, t) (3.22)

N(x, t)Uα(x, t) =
∑
i

ni(x, t)viα (3.23)

where Greek indices are used to represent the spatial dimensions in standard tensor notation.

Traditional lattice gas methods have only one speed, which means that mass conservation

and energy conservation are synonymous. A recently introduced lattice gas method with

a Monte Carlo collision operator recovers an isothermal condition for velocities |Uα| < 0.2

[101], which is the approach typically employed for lattice Boltzmann methods. In any case

the lattice gas methods can then be written in the form of the evolution equation

ni(x+ vi, t+ 1) = ni(x, t) + Ξi (3.24)

where the collision operator consists of a set of collision rules with (typically) probabilistic

outcomes. These collisions both relax the states towards an equilibrium state and also add

fluctuations. Therefore LG methods are fluctuating methods which recover many of the

fluctuating properties of an ideal gas.

We earlier introduced a coarse-graining of Molecular Dynamics (MD) simulations

that allows us to relate the MD simulations to lattice gas (LG) and lattice Boltzmann (LB)

methods [7]. The basic idea is that in a LG (or LB) simulation particles move from one

lattice site to another lattice site and the number (or density) is associated by their lattice

displacement vi and denoted as ni (or fi).
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3.4. Molecular Dynamics Lattice Gas

Correlation between two particles in MDLG system follows the same principles of

one particle distribution. Finding the proper function and probability density for correlation

between two particles are the main change in this part. For better understanding of this

correlation first we review one particle distribution function. Given a set of trajectories for

N particles xl(t), the lattice gas occupation numbers was defined in Eq. (2.11) as

ni(x, t) =
N∑
l=1

∫
dx∆x[xl(t)]∆x−vi [xl(t−∆t)] (3.25)

where we defined

∆x(y) =
∏
α

∆xα(yα) (3.26)

and the one-dimensional ∆ function was previously defined in Eq. (2.10) as

∆x(y) =

 1 if x < y ≤ x+ ∆x

0 otherwise.
(3.27)

For a system at equilibrium we will have a translationally invariant state. If P (x, δx) is the

probability density that a particle moves by a displacement δx in a time ∆t (this proba-

bility does not depend on initial position x since we assumed particles are homogeneously

distributed) then we can write the expectation value as

f eqi =〈ni(x, t)〉

=
ρeq

(∆x)D

∫
dx′
∫
d(δx′)∆x[x

′]∆x−vi [x
′ + δx′]P (δx′)

=ρeq
∫
d(δx′)W (vi − δx′)P (δx′) (3.28)
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where the wedge function W was defined in Eq. (2.24) as

W (x) =

∫ ∞
−∞

dy∆0(y)∆0(y + x)

=

∫ min(∆x,∆x+x)

max(0,x)

1dy

=

 min(∆x,∆x+ x)−max(0, x) if positive

0 otherwise

=

 ∆x− |x| if x < ∆x

0 otherwise.
(3.29)

3.5. Two Particle Correlations

Correlation between two particles can be divided in two different parts: first, cor-

relation between two different particles and second, correlation of particle and itself. The

following equation shows theses parts in two different integrals

〈ninj〉 =
∑
k

∑
l

〈∆x[xk(t)]∆x−vi [xk(t−∆t)]

∆x[xl(t)]∆x−vj [xl(t−∆t)]〉

=
ρeq

(∆x)d

∫
dx1

∫
d(δx1)∆x[x1]∆x−vi [x1 + δx1]P (x1, δx1)δij

+
ρeqρeq

(∆x)2d

∫
dx1

∫
d(δx1)

∫
dx2

∫
d(δx2)

∆x[x1]∆x−vi [x1 + δx1]∆x[x2]∆x−vj [x2 + δx2]

P (x1, δx1, x2, δx2). (3.30)

Since in ideal gas we can assume particles are independent then we can write

P id(x1, δx1, x2, δx2) = P (δx1)P (δx2) (3.31)
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and also in ideal gas it would be expected that these fluctuations are independent so by

replacing Eq. (3.31) in Eq. (3.30), two integrals are independent and are equal to f eqi f
eq
j , so

that we would find

〈ninj〉 = f eqi f
eq
j + f eqi δij (3.32)

where we have analytical expressions for the global equilibrium distribution f eqi .

To understand this behavior, the key is now to determine the two-particle probability.

Here we hope that we can find a set of variables that both explains the observed corellations

and at the same time factorizes. Our ansatz is

P (x1, δx1, x2, δx2) = P+(δx+; ∆X)P−(δx−; ∆X)P∆(∆X) (3.33)

where

2δx+ = δx1 + δx2 (3.34)

2δx− = δx1 − δx2. (3.35)

In theory the probability for correlation of two particles after timestep ∆t depends on initial

position of particles (x1 and x2) and the distance for each particle during timestep ∆t. For

simplicity we assume the initial position of particles can be replaced by initial distance of

two particles (∆X) since particles distributed homogeneously. Also because of correlation

between δx1 and δx2 we cannot factorize the probability based on these two variables. Two

new variables δx+ and δx− can represent the correlation and factorization property at the

same time.
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We make the ansatz that

P+(δx+) =
1

(2πσ+)D/2
exp

(
− (δx+)2

2(σ+)2

)
(3.36)

P−(δx−) =
1

(2πσ−)D/2
exp

(
− (δx−)2

2(σ−)2

)
(3.37)

P∆(∆x) =
N − 1

V − πr2
Θ(∆x− r) (3.38)

where r is the effective radius of our Lennard-Jones particles and there is a ∆X dependence

in the variances σ+(|∆X|) and σ−(|∆X|) . We know that for large distances the particles

have to be uncorrelated, so

lim
∆X→∞

σ+(|∆X|) = 〈δx2〉 (3.39)

lim
∆X→∞

σ−(|∆X|) = 〈δx2〉. (3.40)

To obtain σ+(|∆X|) and σ−(|∆X|) we examine the correlations of two displacements

as

< δx1 · δx2 > (∆x)

=

∫
P (δx1, δx2; ∆x)δx1 · δx2 dδx1dδx2

=

∫
P (δx+; ∆X)P (δx−; ∆X) · (δx+ · δx+ − δx− · δx−)dδx+dδx−

= σ+ − σ−. (3.41)

We also have the condition that integrating over the second particle coordinate we recover
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the one-particle distribution function

P (δx1) =

∫
P (δx1, δx2; ∆X)dδx2

=

∫
exp

(
−(δx1 + δx2)2

2(σ+)2

)
exp

(
−(δx1 − δx2)2

2(σ−)2

)
dδx1

= exp

(
− 2(δx1)2

σ+ + σ−

)
(3.42)

from which we can see that

σ+ + σ− = 2〈δx2〉. (3.43)

Now we can measure this correlator directly and we obtain for σ+ and σ−

σ+ = 〈δx2〉+ 〈δx1 · δx2〉 (3.44)

σ− = 〈δx2〉 − 〈δx1 · δx2〉. (3.45)

Measurements of these correlators are shown in Fig. (3.3). With these measurements we

can predict the two free parameters σ+ and σ− as a function of ∆X.

In the other hand we should be able to capture the correlation between two particles by

measuring the value of 〈vivj〉 at the same timestep. Fig. (3.2) shows 〈vivj〉 for three different

densities. Blue data represent the same density as black data just for longer simulation time.

This graph suggests the value of 〈vivj〉 does not depend on correlation of two particles. In

theory for very short timestep (τ = 0.2), 〈vivj〉 = 〈δx1δx2〉.

Now we examine what our ansatz (Eq. (3.33)) predicts for the correlators for the

occupation numbers. The system is still translationally invariant, so the probability will

only depend on the distance between the two particles. We can pick two new variables

X = (x1 + x2)/2 and ∆X = (x2 − x1)/2. With this change in variables, and noting that P
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Figure 3.3. Measured correlators 〈δx1δx2〉 for different timesteps ∆t and different mean
densities (a) high density (b) medium density (c) low density.

69



has no dependence on X, we can now write

< ni(x)nj(x
′) >=

∫
dX

∫
d∆X

∫
d(δx+)

∫
d(δx−)

∆x[X + ∆X]∆x−vi [X + ∆X + δx+ + δx−]

∆′x[X −∆X]∆x′−vj [X −∆X + δx+ − δx−]

P+(δx+)P−(δx−)P∆(∆X)

=

∫
d∆X

∫
d(δx+)

∫
d(δx−)

Z(δx+ − vi − vj, δx− − vj + vi,∆x+ x− x′)

P+(δx+)P−(δx−)P∆(∆X) (3.46)

where we introduced the Z function which is a generalization of the wedge function W

defined through

Z(δx+, δx−,∆X)

=

∫ ∞
−∞

dX∆0[X]∆0[X + δx+ + δx−]

∆0[X − 2∆X]∆0[X − 2∆X + δx+ − δx−]

=

∫ min(∆x,∆x+δx++δx−,∆x−2∆X,∆x+2∆X+δx+−δx−)

max(0,δx++δx−,−2∆X,−2∆X+δx+−δx−)

1dX

= min(∆x,∆x+ δx+ + δx−,∆x− 2∆X,∆x+ 2∆X + δx+ − δx−)

−max(0, δx+ + δx−,−2∆X,−2∆X + δx+ − δx−) if > 0. (3.47)

Based on Fig. (3.3), we can assume correlators 〈δx1δx2〉 approximately follow an exponential

function for large distances. Then by plotting σ+ and σ−, we are able to predict the joint

probability. After measuring Z function for the given value, we could predict two particles
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fluctuation by the following equation

< ni(x)nj(x
′) >=

∫
d(δx1)

∫
d∆X

∫
d(δx2)

Z(δx1 − vi, δx2 − vj,∆x+ x− x′)

P (∆x, δx1, δx2)

=

∫
d(δx1)

∫
d∆X

∫
d(δx2)

Z(δx1 − vi, δx2 − vj,∆x+ x− x′)

P (δx1)P (δx2)

[
1 + δx1 · δx2A exp

(
−∆x

ξ

)]
=f eqi f

eq
j +

∫
d(δx1)

∫
d(δx2)

∫
d∆x

Z(vi + δx1, vj + δx2,∆x)P (δx1)P (δx2)

δx1 · δx2A exp

(
−∆X

ξ

)
. (3.48)

However, there is an additional difficulty since the 〈δx1δx2〉 correlator has a strong negative

contribution for distances smaller than the Lenard-Jones interaction radius (1 in the units

used here). We believe that a full model of this correlation function would allow us to

predict the observed correlations of the ni. Unfortunately we were unable to complete this

calculation in time.
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4. FURTHER RESEARCH

The motivation for this work was to gain a better understanding of the lattice Boltz-

mann and lattice gas methods through an explicit coarse-graining procedure that relates

lattice Boltzmann densities to Molecular Dynamics particles moving between coarse-graining

boxes.

The coarse-graining procedure gave us a lattice gas method with a Molecular Dynam-

ics collision operator (MDLG). This is in principle an exact representation for the underlying

physics that is rendered by the Molecular Dynamics simulation. Therefore we can take this

new MDLG method as a standard to evaluate other lattice gas and lattice Boltzmann meth-

ods.

The main contribution of this research has been to propose and analyze, for the

first time, an averaged equilibrium behavior and were able to relate the lattice Boltzmann

equilibrium distribution to the behavior of the Molecular Dynamics simulation.

4.1. Examination of the Fluctuating Behavior of the MDLG Model

Our initial analyses have assumed no correlation between particles that led us to

the expected Poisson distribution behavior for dilute gases. Our later results indicated this

assumption is not true for denser gases. Strong correlation during the simulation process

was observed for higher density that proved the need for a reformulation of the probability

distribution function of the particles. This important piece of information could lead us

to true understanding of lattice Boltzmann fluctuation. It should be noticed that previous

models neglected any correlation between particles due to the Boltzmann molecular chaos

assumption. Based on direction, particles show positive and negative correlation for higher

density. Positive correlation for same direction and negative correlation for opposite direction

indicate the importance of local equilibrium for higher densities. Our results suggest, strong

correlation between a group of particles create a local equilibrium that keeps these particles

together.
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On the other hands, there is much discussion about the correct way of introducing fluc-

tuations into non-ideal systems. Non of the existing methods appears entirely satisfactory.

The MDLG method could provide a useful benchmark to evaluate the correct fluctuations

for such non-ideal systems. These systems are of particular interest, since all nucleation

phenomena rely on the interplay of a non-ideal phase-separating system with fluctuations.

4.2. Formulation of the Collision Operator of the MDLG Model

During the simulation, particles are moving after each time-step and the new distri-

bution represents the connection between the current and previous position of particles. This

looks like the collision process in a lattice Boltzmann method. Ideally this new proposed

collision operator could be fomulised like as lattice gas. The main goal of this part would to

relate the transport coefficients of a liquid to this collision process and to evaluate how good

an approximation the current LB collision operators are to this MDLG collision operator.

4.3. Multi-Phase Behavior

The application of lattice Boltzmann methods to non-ideal gases, and in particular

phase-separating systems is of intense interest. However, there is much debate about the cor-

rect implementation of non-ideal terms. Several methods have been proposed from altering

the equilibrium distribution to include a non-ideal Pressure tensor, over the introduction of

pseudo-potentials who’s gradient terms result in a forcing term derived from gradients of a

chemical potential. The MDLG method could allow us to extract the correct method for in-

cluding the non-ideal parts by examining which, if any, of the existing methods is consistent

with the behavior of the MDLG method for a phase-separating Lennard-Jones system.
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APPENDIX. SUPPLEMENTARY CODE

A.1. Code for Molecular Dynamic Lattice Gas

The input file contains Molecular Dynamics data for 99 856 particles with initial box

size of 1 000 and temperature of 50 unit of Lennard-Jones for 2 000 000 time steps. This box

was divided by 25× 25 lattice (length of each lattice is 40).

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <string.h>

#include <errno.h>

#define LX 25

#define LY 25

#define velvecX 7

#define velvecY 7

#define maxatoms 99856

#define Box 1000

typedef struct pos {int x; int y;} pos;

pos c[2][maxatoms];

int atoms=0;

int velvec[velvecX][velvecY][2];

double n[2000][velvecX][velvecY][LX][LY];

double f[velvecX][velvecY];

double pr[velvecX][velvecY];
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double xmin,xmax,ymin,ymax,zmin,zmax,p,sum,velvecn,a1;

void ReadFile(double ns,int dt){

int first=0;

FILE *fp;

char *str;

int it=0,er=0,pno,type;

memset(&n[0][0][0][0][0],0,2000*velvecX*velvecY*LX*LY*sizeof(double));

for (int i=0; i<velvecX; i++)

for (int j=0; j<velvecY; j++)

for (int k=0; k<2; k++)

velvec[i][j][k]=(1-k)*(i-((velvecX-1)/2))+k*(j-((velvecY-1)/2));

a1=(26.1068*(exp(-1.96*tau)-1)+51.1694*tau);

fp=fopen("dump.relax","r");

for (int j=0; j<20001; j++){

errno = 0;

er=fscanf(fp,"%ms\n",&str);

free(str);

errno = 0;

er=fscanf(fp,"%ms\n",&str);

free(str);

errno = 0;

er=fscanf(fp,"%i",&it);

printf("iteration: %i\n",it);

errno = 0;

er=fscanf(fp,"%ms\n",&str);

free(str);
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er=fscanf(fp,"%ms\n",&str);

free(str);

er=fscanf(fp,"%ms\n",&str);

free(str);

er=fscanf(fp,"%ms\n",&str);

free(str);

errno = 0;

er=fscanf(fp,"%i",&atoms);

printf("no atoms: %i\n",atoms);

er=fscanf(fp,"%ms\n",&str);

free(str);

er=fscanf(fp,"%ms\n",&str);

free(str);

er=fscanf(fp,"%ms\n",&str);

free(str);

er=fscanf(fp,"%ms\n",&str);

free(str);

er=fscanf(fp,"%ms\n",&str);

free(str);

er=fscanf(fp,"%ms\n",&str);

free(str);

fscanf(fp,"%le",&xmin);

fscanf(fp,"%le",&xmax);

fscanf(fp,"%le",&ymin);

fscanf(fp,"%le",&ymax);

fscanf(fp,"%le",&zmin);

fscanf(fp,"%le",&zmax);
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er=fscanf(fp,"%ms\n",&str);

free(str);

er=fscanf(fp,"%ms\n",&str);

free(str);

er=fscanf(fp,"%ms\n",&str);

free(str);

er=fscanf(fp,"%ms\n",&str);

free(str);

er=fscanf(fp,"%ms\n",&str);

free(str);

er=fscanf(fp,"%ms\n",&str);

free(str);

er=fscanf(fp,"%ms\n",&str);

free(str);

er=fscanf(fp,"%ms\n",&str);

free(str);

er=fscanf(fp,"%ms\n",&str);

free(str);

er=fscanf(fp,"%ms\n",&str);

free(str);

for (int i=0; i<maxatoms; i++){

fscanf(fp,"%i",&pno);

fscanf(fp,"%i",&type);

fscanf(fp,"%le",&p);

if (it % dt==0) {

c[0][pno-1].x=(int) c[1][pno-1].x;

c[1][pno-1].x=(int) fmod(floor(p*LX),LX);
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}

fscanf(fp,"%le",&p);

if (it % dt==0){

c[0][pno-1].y=(int) c[1][pno-1].y;

c[1][pno-1].y=(int) fmod(floor(p*LY),LY);

}

if ((it % dt==0)){

if (first==1){

int dx= c[1][pno-1].x-c[0][pno-1].x;

if (abs(dx+LX)<abs(dx)) dx=dx+LX;

if (abs(dx-LX)<abs(dx)) dx=dx-LX;

int dy= c[1][pno-1].y-c[0][pno-1].y;

if (abs(dy+LY)<abs(dy)) dy=dy+LY;

if (abs(dy-LY)<abs(dy)) dy=dy-LY;

for (int i=0; i<velvecX; i++)

for (int j=0; j<velvecY; j++)

if ((dx==velvec[i][j][0])&&(dy==velvec[i][j][1]))

n[(it/dt)-1][i][j][c[1][pno-1].x][c[1][pno-1].y]++;

}

}

fscanf(fp,"%le",&p);

fscanf(fp,"%le",&p);

fscanf(fp,"%le",&p);

fscanf(fp,"%le",&p);

}

first=1;

}
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memset(&f[0][0],0,velvecX*velvecY*sizeof(double));

memset(&pr[0][0],0,velvecX*velvecY*sizeof(double));

for (int i=0; i<velvecX; i++){

for (int j=0; j<velvecY; j++){

for (int t=0; t<(ns); t++){

for (int k=0; k<LX; k++){

for (int l=0; l<LY; l++){

f[i][j]+=n[t][i][j][k][l];

if (n[t][i][j][k][l]>0) pr[i][j]+=1;

}

}

}

}

}

memset(&velvecn,0,sizeof(double));

for (int i=0; i<velvecX; i++)

for (int j=0; j<velvecY; j++)

if (f[i][j]>0) velvecn+=1;

memset(&sum,0,sizeof(double));

for (int i=0; i<velvecX; i++)

for (int j=0; j<velvecY; j++)

sum+=f[i][j];

}

void writefiles(double ns,int dt){

FILE *res;

res=fopen("output.dat","a");
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fprintf(res,"%g %g",dt*0.0001,a1/((Box/LX)*(Box/LX)));

for (int i=0; i<velvecX; i++)

for (int j=0; j<velvecY; j++)

fprintf(res," %g",f[i][j]/(LX*LY*(ns)));

fprintf(res," %g",sum/(LX*LY*(ns)));

for (int i=0; i<velvecX; i++)

for (int j=0; j<velvecY; j++)

fprintf(res," %g",f[i][j]/(LX*LY*(ns)*(maxatoms/(LX*LY))));

fprintf(res," %g",sum/(LX*LY*(ns)*(maxatoms/(LX*LY))));

fprintf(res," %g",velvecn);

for (int i=0; i<velvecX; i++)

for (int j=0; j<velvecY; j++)

fprintf(res," %g",pr[i][j]/(LX*LY*(ns)));

fprintf(res,"\n");

fclose(res);

}

void main(){

for (int i=1 ;i<2000; i=ceil(i*1.1)){

int timestep=(i*1000);

double n=(floor(2000000/timestep));

ReadFile(n,timestep);

writefiles(n,timestep);

}

}
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A.2. Code for Mean Square Displacement

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <string.h>

#include <errno.h>

#define maxatoms 99856

#define SaveSteps 100

double sum[SaveSteps];

int atoms=0,TimeCount=0;

typedef struct state {int it; double r[maxatoms][2];} state;

state c[SaveSteps];

double xmin,xmax,ymin,ymax,zmin,zmax,p;

void ReadFile(){

int st=-1;

FILE *fp;

char *str;

int it=0,er=0,pno,type;

memset(&sum[0],0,SaveSteps*sizeof(double));

fp=fopen("dump.relax","r");

for (int j=0;j<20001;j++){

errno = 0;

er=fscanf(fp,"%ms\n",&str);

free(str);
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errno = 0;

er=fscanf(fp,"%ms\n",&str);

free(str);

errno = 0;

er=fscanf(fp,"%i",&it);

printf("iteration: %i\n",it);

errno = 0;

er=fscanf(fp,"%ms\n",&str);

free(str);

er=fscanf(fp,"%ms\n",&str);

free(str);

er=fscanf(fp,"%ms\n",&str);

free(str);

er=fscanf(fp,"%ms\n",&str);

free(str);

errno = 0;

er=fscanf(fp,"%i",&atoms);

printf("no atoms: %i\n",atoms);

er=fscanf(fp,"%ms\n",&str);

free(str);

er=fscanf(fp,"%ms\n",&str);

free(str);

er=fscanf(fp,"%ms\n",&str);

free(str);

er=fscanf(fp,"%ms\n",&str);

free(str);

er=fscanf(fp,"%ms\n",&str);
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free(str);

er=fscanf(fp,"%ms\n",&str);

free(str);

fscanf(fp,"%le",&xmin);

fscanf(fp,"%le",&xmax);

fscanf(fp,"%le",&ymin);

fscanf(fp,"%le",&ymax);

fscanf(fp,"%le",&zmin);

fscanf(fp,"%le",&zmax);

er=fscanf(fp,"%ms\n",&str);

free(str);

er=fscanf(fp,"%ms\n",&str);

free(str);

er=fscanf(fp,"%ms\n",&str);

free(str);

er=fscanf(fp,"%ms\n",&str);

free(str);

er=fscanf(fp,"%ms\n",&str);

free(str);

er=fscanf(fp,"%ms\n",&str);

free(str);

er=fscanf(fp,"%ms\n",&str);

free(str);

er=fscanf(fp,"%ms\n",&str);

free(str);

er=fscanf(fp,"%ms\n",&str);

free(str);

94



er=fscanf(fp,"%ms\n",&str);

free(str);

if (st==SaveSteps-1){

memmove(&c[0].it,&c[1].it,(SaveSteps-1)*sizeof(state));

TimeCount++;

}

else st++;

c[st].it=it;

double Dx=xmax-xmin;

double Dy=ymax-ymin;

for (int i=0;i<maxatoms;i++){

fscanf(fp,"%i",&pno);

fscanf(fp,"%i",&type);

fscanf(fp,"%le",&p);

c[st].r[pno-1][0] = p;

fscanf(fp,"%le",&p);

c[st].r[pno-1][1] = p;

if (st==SaveSteps-1){

for (int dt=0; dt<SaveSteps; dt++){

double dist=1*1+1*1;

for (int dx=-1;dx<2;dx++)

for (int dy=-1;dy<2;dy++){

double dist_tmp=

pow((c[st].r[pno-1][0]-c[st-dt].r[pno-1][0]+dx)*1,2)

+pow((c[st].r[pno-1][1]-c[st-dt].r[pno-1][1]+dy)*1,2);

if (dist_tmp<dist) dist=dist_tmp;

}
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sum[dt] +=dist;

}

}

fscanf(fp,"%le",&p);

fscanf(fp,"%le",&p);

fscanf(fp,"%le",&p);

fscanf(fp,"%le",&p);

}

}

}

void writefiles(){

FILE *res;

res=fopen("output.dat","w");

for (int dt=1;dt<SaveSteps;dt=ceil(dt*1.1))

fprintf(res,"%g %g\n",((double)dt*(c[1].it-c[0].it)/10000),

(sum[dt]/(2.*maxatoms*TimeCount))*1000*1000);

fclose(res);

}

void main(){

ReadFile();

writefiles();

}
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A.3. Code for Velocity Autocorrelation Function

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <string.h>

#include <errno.h>

#define maxatoms 99856

#define SaveSteps 100

int TimeCount=0;

double sum[SaveSteps][2],R[SaveSteps];

int atoms=0;

double p;

typedef struct state {int it; double r[maxatoms][2];} state;

state c[SaveSteps];

double xmin,xmax,ymin,ymax,zmin,zmax;

void ReadFile(){

int st=-1;

FILE *fp;

char *str;

int it=0,er=0,pno,type;

memset(&sum[0],0,SaveSteps*sizeof(double));

fp=fopen("dump.relax","r");

for (int j=0;j<2001;j++){

errno = 0;
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er=fscanf(fp,"%ms\n",&str);

free(str);

errno = 0;

er=fscanf(fp,"%ms\n",&str);

free(str);

errno = 0;

er=fscanf(fp,"%i",&it);

printf("iteration: %i\n",it);

errno = 0;

er=fscanf(fp,"%ms\n",&str);

free(str);

er=fscanf(fp,"%ms\n",&str);

free(str);

er=fscanf(fp,"%ms\n",&str);

free(str);

er=fscanf(fp,"%ms\n",&str);

free(str);

errno = 0;

er=fscanf(fp,"%i",&atoms);

printf("no atoms: %i\n",atoms);

er=fscanf(fp,"%ms\n",&str);

free(str);

er=fscanf(fp,"%ms\n",&str);

free(str);

er=fscanf(fp,"%ms\n",&str);

free(str);

er=fscanf(fp,"%ms\n",&str);
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free(str);

er=fscanf(fp,"%ms\n",&str);

free(str);

er=fscanf(fp,"%ms\n",&str);

free(str);

fscanf(fp,"%le",&xmin);

fscanf(fp,"%le",&xmax);

fscanf(fp,"%le",&ymin);

fscanf(fp,"%le",&ymax);

fscanf(fp,"%le",&zmin);

fscanf(fp,"%le",&zmax);

er=fscanf(fp,"%ms\n",&str);

free(str);

er=fscanf(fp,"%ms\n",&str);

free(str);

er=fscanf(fp,"%ms\n",&str);

free(str);

er=fscanf(fp,"%ms\n",&str);

free(str);

er=fscanf(fp,"%ms\n",&str);

free(str);

er=fscanf(fp,"%ms\n",&str);

free(str);

er=fscanf(fp,"%ms\n",&str);

free(str);

er=fscanf(fp,"%ms\n",&str);

free(str);
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er=fscanf(fp,"%ms\n",&str);

free(str);

er=fscanf(fp,"%ms\n",&str);

free(str);

if (st==SaveSteps-1){

memmove(&c[0].it,&c[1].it,(SaveSteps-1)*sizeof(state));

TimeCount++;

}

else st++;

c[st].it=it;

for (int i=0;i<maxatoms;i++){

fscanf(fp,"%i",&pno);

fscanf(fp,"%i",&type);

fscanf(fp,"%le",&p);

fscanf(fp,"%le",&p);

fscanf(fp,"%le",&p);

fscanf(fp,"%le",&p);

c[st].r[pno-1][0] = p;

fscanf(fp,"%le",&p);

c[st].r[pno-1][1] = p;

if (st==SaveSteps-1){

for (int dt=0; dt<SaveSteps; dt++){

sum[dt][0]+=(c[dt].r[pno-1][0]*c[0].r[pno-1][0]);

sum[dt][1]+=(c[dt].r[pno-1][1]*c[0].r[pno-1][1]);

}

}

fscanf(fp,"%le",&p);
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}

}

memset(R,0,SaveSteps*sizeof(double));

for (int i=0;i<SaveSteps;i++){

for (int j=0;j<SaveSteps;j++){

if ((i-j)>0) R[i]+=(sum[j][0]+sum[j][1]

+sum[j+1][0]+sum[j+1][1])*(i-j)*.01;

}

}

}

void writefiles(){

FILE *res;

res=fopen("output.dat","w");

for (int dt=1;dt<SaveSteps;dt=ceil(dt*1.1))

fprintf(res,"%g %g %g\n",((double)dt*(c[1].it-c[0].it)/10000),

sum[dt][0]/(maxatoms*TimeCount),R[dt]/(maxatoms*TimeCount));

fclose(res);

}

void main(){

ReadFile();

writefiles();

}
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A.4. Code for Measured Correlators 〈δx1δx2〉

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <string.h>

#include <errno.h>

#define maxatoms 99856

#define nohist 10000

#define tau .2

double c[2][maxatoms][2],n[nohist],delx[nohist],r[4];

int atoms=0,time=0;

double xmin,xmax,ymin,ymax,zmin,zmax,p,sum,a1,delt;

void ReadFile(){

FILE *fp;

char *str;

int it=0,er=0,pno,type;

memset(&n[0],0,nohist*sizeof(double));

memset(&delx[0],0,nohist*sizeof(double));

a1=(26.1068*(exp(-1.96*tau)-1)+51.1694*tau);

delt=tau*10000;

fp=fopen("dump.relax","r");

for (int t=0; t<20001; t++){

errno = 0;
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er=fscanf(fp,"%ms\n",&str);

free(str);

errno = 0;

er=fscanf(fp,"%ms\n",&str);

free(str);

errno = 0;

er=fscanf(fp,"%i",&it);

printf("iteration: %i\n",it);

errno = 0;

er=fscanf(fp,"%ms\n",&str);

free(str);

er=fscanf(fp,"%ms\n",&str);

free(str);

er=fscanf(fp,"%ms\n",&str);

free(str);

er=fscanf(fp,"%ms\n",&str);

free(str);

errno = 0;

er=fscanf(fp,"%i",&atoms);

printf("no atoms: %i\n",atoms);

er=fscanf(fp,"%ms\n",&str);

free(str);

er=fscanf(fp,"%ms\n",&str);

free(str);

er=fscanf(fp,"%ms\n",&str);

free(str);

er=fscanf(fp,"%ms\n",&str);
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free(str);

er=fscanf(fp,"%ms\n",&str);

free(str);

er=fscanf(fp,"%ms\n",&str);

free(str);

fscanf(fp,"%le",&xmin);

fscanf(fp,"%le",&xmax);

fscanf(fp,"%le",&ymin);

fscanf(fp,"%le",&ymax);

fscanf(fp,"%le",&zmin);

fscanf(fp,"%le",&zmax);

er=fscanf(fp,"%ms\n",&str);

free(str);

er=fscanf(fp,"%ms\n",&str);

free(str);

er=fscanf(fp,"%ms\n",&str);

free(str);

er=fscanf(fp,"%ms\n",&str);

free(str);

er=fscanf(fp,"%ms\n",&str);

free(str);

er=fscanf(fp,"%ms\n",&str);

free(str);

er=fscanf(fp,"%ms\n",&str);

free(str);

er=fscanf(fp,"%ms\n",&str);

free(str);
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er=fscanf(fp,"%ms\n",&str);

free(str);

er=fscanf(fp,"%ms\n",&str);

free(str);

for (int i=0;i<maxatoms;i++){

fscanf(fp,"%i",&pno);

fscanf(fp,"%i",&type);

fscanf(fp,"%le",&p);

c[0][pno-1][0]= p;

fscanf(fp,"%le",&p);

c[0][pno-1][1]= p;

fscanf(fp,"%le",&p);

fscanf(fp,"%le",&p);

fscanf(fp,"%le",&p);

fscanf(fp,"%le",&p);

}

if ((it>0)&&((fmod(it,delt))==0)){

for (int i=0;i<maxatoms;i++){

for (int j=i+1;j<maxatoms;j++){

double dx= c[0][j][0]-c[0][i][0];

if (fabs(dx+1)<fabs(dx)) dx=dx+1;

if (fabs(dx-1)<fabs(dx)) dx=dx-1;

dx=fabs(dx);

double dy= c[0][j][1]-c[0][i][1];

if (fabs(dy+1)<fabs(dy)) dy=dy+1;

if (fabs(dy-1)<fabs(dy)) dy=dy-1;

dy=fabs(dy);
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double d=sqrt(dx*dx+dy*dy);

int k=d*sqrt(2)*nohist;

if (k<nohist){

n[k]++;

r[0]=c[0][i][0]-c[1][i][0];

if (fabs(r[0]+1)<fabs(r[0])) r[0]=r[0]+1;

if (fabs(r[0]-1)<fabs(r[0])) r[0]=r[0]-1;

r[1]=c[0][j][0]-c[1][j][0];

if (fabs(r[1]+1)<fabs(r[1])) r[1]=r[1]+1;

if (fabs(r[1]-1)<fabs(r[1])) r[1]=r[1]-1;

r[2]=c[0][i][1]-c[1][i][1];

if (fabs(r[2]+1)<fabs(r[2])) r[2]=r[2]+1;

if (fabs(r[2]-1)<fabs(r[2])) r[2]=r[2]-1;

r[3]=c[0][j][1]-c[1][j][1];

if (fabs(r[3]+1)<fabs(r[3])) r[3]=r[3]+1;

if (fabs(r[3]-1)<fabs(r[3])) r[3]=r[3]-1;

delx[k]+=(( (r[0])*(r[1]) )+( (r[2])*(r[3]) ))

*(xmax-xmin)*(xmax-xmin);

}

}

}

time+=1;

}

if((fmod(it,delt))==0){

for (int i=0;i<maxatoms;i++){

c[1][i][0]=c[0][i][0];

c[1][i][1]=c[0][i][1];
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}

}

}

for (int k=0; k<nohist; k++) if (n[k]>0) delx[k]/=n[k];

for (int k=0; k<nohist; k++)

sum+=n[k];

}

void writefiles(){

FILE *res;

res=fopen("output.dat","a");

for (int i=0;i<nohist;i++) {

fprintf(res,"%g %g %g %g\n",(xmax-xmin)*i*sqrt(2)/((2*nohist)),

delx[i],n[i]/time,sum/time);

}

fclose(res);

}

void main(){

ReadFile();

writefiles();

}
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