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ABSTRACT 

The accelerated degradation test methods have proven to be a very effective approach to 

quickly evaluate the reliability of highly reliable products. However, the modeling of accelerated 

degradation test data to estimate reliability at normal operating condition is still a challenging 

task especially in the presence of multi-stress factors. In this study, a nonstationary gamma 

process is considered to model the degradation behavior assuming the strict monotonicity and 

non-negative nature of the product deterioration. It further assumes that both the gamma process 

parameters are stress dependent. A maximum likelihood method has been used for the model 

parameter estimation. The case study results indicate that traditional models that assume only 

shape parameter as stress dependent underestimate the product reliability significantly at normal 

operating conditions. This study further revealed that the scale parameter at a higher stress level 

is very close to the traditional constant assumption. However, at the normal operating condition, 

scale parameter value differs significantly with the traditional constant assumption value. This 

difference leads to the larger difference of reliability and lifetime estimates provided by the 

proposed approach. A Monte Carlo simulation with the Bayesian updating method has been 

incorporated to update the gamma parameters and reliability estimates when additional 

degradation data become available. A generalized reliability estimation framework for using the 

ADT data is also presented in this work.  

Further, in this work, an optimal constant-stress accelerated degradation test plan is 

presented considering the gamma process. The optimization criteria are set by minimizing the 

asymptotic variance of the maximum likelihood estimator of the lifetime at operating condition 

under total experimental cost constraint. A heuristic based more specifically genetic algorithm 

approach has been implemented to solve the model. Additionally, a sensitivity analysis is 
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performed which revealed that increasing budget causes longer test duration time with smaller 

sample size. Also, it reduces the asymptotic variance of the estimation which is very intuitive as 

more budget increase the possibility to generate more degradation information and helps to 

increase the estimation accuracy. The overall reliability assessment methodology and the test 

design has been demonstrated using the carbon-film resistor degradation data.  
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CHAPTER 1. INTRODUCTION 

1.1. Overview 

In this cutting-edge technological era, the manufacturers are increasingly under pressure 

to produce highly reliable products due to the immense pressure of global competition, 

increasing customer expectation, and maintain several regulatory compliances. This requires that 

manufacturers properly understand the failure behavior of the product and analyze product 

reliability for ensuring reliable design before it launches new products into the marketplace. 

Reliability is the probability that a product or a system will perform its intended function without 

failure for a specified period of time under specific operating conditions (O’Conor and Kleyner, 

2012). The higher reliability of a product is not only a unique selling point (USP) of the product 

but it also reduces a huge amount of warranty related costs (Limon et al., 2016). For example, in 

the United States, manufacturers spend more than $25 billion per year towards warranty claims 

related issues (Mann et al., 2007). 

 It is, therefore, evident that predicting lifetime and reliability estimation during the 

product design and development (PDD) phases is a very critical issue. However, estimating 

reliability under normal operating conditions for sophisticated products is very time consuming 

and cumbersome effort due to the advancement of material technology and manufacturing 

processes. In most cases products are designed and built for working years without any failures 

and it is, therefore, difficult to get failure data or related information during the design phases. 

To overcome this difficulty, an accelerated test (AT) methods are being used to generate failure 

data, which have proven to be extremely useful not only to evaluate the reliability of highly 

reliable products but also to understand the failure behavior of the products. 
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In traditional AT methods, products are subjected to harsher than the normal operating 

condition to get the products fail and generate time-to-failure data, which is known as 

accelerated life test (ALT). Several acceleration and statistical methods are then utilized to model 

this time-to-failure information for estimating reliability under normal operating conditions. 

However, for highly reliable products, it is difficult even for ALT approach to make the product 

fail and generate time-to-failure data. To overcome these issues, an alternative approach known 

as an accelerated degradation test (ADT) has been employed to develop a better understanding of 

failure behavior and estimate the reliability of highly reliable products. The underlying 

assumption here is that the given product shows a measurable degradation characteristic before 

complete failure. The predetermined degradation threshold is used to obtain the time-to-failure 

data. Lu et al. (1996) argued that degradation approach provides more precise estimates of 

lifetime compared to the traditional failure time data analysis. Ling et al. (2015) also proposed to 

monitor the health and quality of a system and used observed accelerated degradation data to 

estimate several reliability metrics such as mean lifetime, reliability, and conditional reliability. 

The advantages of ADT is that it provides better reliability information than the traditional life 

test, requires fewer test samples, and observation of failures during the test is not required. 

Further, in ADT, the failure mechanism of the product can be visualized clearly, which provides 

better and clear insight into the degradation process that can be valuable information for the 

design improvement. Recently, several studies have used degradation data to assess the 

reliability parameters of highly reliable products such as aerospace electrical connector (Wenhua 

et al., 2011), LEDs (Liao and Elsayed, 2006), lithium-ion batteries (Tang et al., 2014b), and 

semiconductor ICs (Luo et al., 2014). 
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1.2. Dissertation Objectives 

The ADT methods are used to expedite the failure mechanism of the product under 

higher stress levels. The degradation information from the test has been used to extrapolate the 

product-life under suitable physics, statistics, or combined model. However, modeling of 

accelerated degradation data to estimate reliability at normal operating condition is a challenging 

task. In the literature, the general degradation path and stochastic process approaches have been 

used to model the degradation behavior. The general degradation path model is a regression-type 

approach where the degradation of a product characteristic or functionality is considered as a 

linear or nonlinear function of time and applied stresses (Lu and Meeker, 1993). Recently, 

stochastic processes are becoming more popular for degradation modeling due to their capability 

of capturing the temporal variation in the degradation process and well established mathematical 

models (Limon et al., 2017a). 

Among several stochastic processes, the gamma process is a suitable stochastic process to 

model the monotonic and strictly positive degradation behavior. However, the literature on 

gamma process to model ADT modeling is not plenty (Lawless and Crowder, 2004; Park and 

Padgett, 2005; Pan and Balakrishnan, 2011; Limon et al., 2017b). Most of the earlier studies on 

degradation modeling have considered single stress factor and linear degradation process under 

the assumption that only gamma shape parameter is dependent on stress factors (Lawless and 

Crowder, 2004; Park and Padgett, 2005). However, the increasing trend of using multiple 

stresses in ADT highlights the issues of interaction effects and nonlinearity affecting degradation 

process (Limon et al. 2017a).  The recent studies have also revealed that consideration of only 

shape parameter as stress dependent may not be realistic (Bayel and Mettas, 2010; Balakrishnan 

and Ling, 2014; Limon et al., 2017b). Therefore, in this work, we aim to capture the interaction 
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effects of multiple stress factors and construct a nonlinear degradation model using the stochastic 

gamma process. Further, to get a more realistic assessment, it is assumed that both gamma 

parameters (shape and scale) are stress dependent and are also affected by the interaction effect if 

it exists. Finally, the gamma parameters are estimated under normal operating conditions and 

approximated Birnbaum-Sanders failure model is used for assessing the reliability parameters.  

To further improve the estimation accuracy of model parameter estimates, a Monte Carlo 

simulation study is conducted using initially estimated model parameters. We also propose a 

Bayesian framework to update model parameters when additional degradation data become 

available. Both the conjugate and non-conjugate Bayesian analysis have been proposed to update 

the gamma parameters and reliability estimates. The case example results indicate that the 

Bayesian update significantly reduces the estimation variability. A framework is presented to 

successfully model the ADT data for reliability parameter estimation considering the nonlinear 

degradation, multi-stress with interaction effect, and for both gamma parameters are dependent 

on multi-stresses. The proposed framework is also equally capable to model linear degradation 

behavior considering single stress effect.  The case study example is discussed to demonstrate 

the applicability of the proposed approach and analyze the results. 

Another important issue is that an ADT test is expensive and a poorly designed test will 

eventually yield wrong reliability estimation, which is a waste of both time and money. More 

importantly, inaccurate results could lead to poor decision making and increase warranty and 

liability issues for the manufacturer. Therefore, it is necessary to have an effective test plan that 

involved with optimal sample allocation at each stress level, incorporate the budget constraint, 

and simultaneously obtained a precise estimation. Realizing the importance of ADT planning, a 

constant-stress ADT design is proposed in this work considering the gamma process to capture 
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the degradation behavior. The multiple stress loadings with possible interaction between stresses 

are also considered. To make the design more realistic, it is assumed that both the gamma 

parameters are stress dependent. To the best of our knowledge, there exists no research work that 

has attempted to consider both the gamma parameters as stress dependent on designing an ADT 

plan. Due to the multiple stresses, interaction effect, and assuming both gamma parameters are 

stress dependent, the Fisher information matrix as well as the asymptotic variance of the MTTF, 

become mathematically complex. To obtain the optimal solution analytically with the complex 

asymptotic variance, it is almost impossible to achieve an analytical solution of the objective 

function. Therefore, a heuristic search approach using the Genetic algorithm (GA) has been 

proposed to obtain the optimal solution. The sensitivity analysis of the budget constraint and 

model pre-estimates also shows that our proposed model is robust against these variables.  

In summary, the primary research objectives of this work are: 1) to develop a realistic 

degradation modeling to estimate the reliability of a highly reliable product under normal 

operating condition using the ADT data and Bayesian approach, and 2) design an optimal ADT 

plan so that the reliability estimate become accurate under the budget constraints and constant 

stress loadings.  

1.3. Dissertation Organization 

Chapter two provides a detail of the accelerated test basics for example different 

accelerated loading conditions and life-stress models. Chapter three presented a literature review 

of accelerated tests, modeling approach of accelerated test especially for ADT test data and 

designing of AT plans. Chapter four provides the degradation modeling considering the gamma 

degradation process for accelerated degradation test data. The multi-stress acceleration with both 

gamma parameters are stress dependent model is described in this section. The possible 
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interaction effects of stresses and the nonlinearity behavior also investigated. The Bayesian 

parameter updating methods and estimating remaining useful lifetime is discussed in chapter 

five. Chapter six consist of the optimal design of the constant-stress ADT considering the gamma 

process. Finally, chapter seven summarizes the whole work by describing the future research 

direction.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

7 
 

CHAPTER 2. FUNDAMENTALS OF AT METHODS 

In an AT, products degradation as well as the failure mechanism are expedite to get 

failure information quickly. An effective test plan requires careful considerations of several 

issues, such as the type of AT methods, stress loadings, underlying product lifetime distribution, 

and the life-stress relationships. It is crucial that AT successfully imitates the field failure 

mechanisms in a laboratory environment. Therefore, to design effective AT methods, FMEA 

documents along with available failure/warranty data and engineering knowledge should be 

utilized to identify and select the relevant stress variables to reproduce failures during tests. In 

this chapter, the basic concepts of the AT methods and related general mathematical models are 

explained briefly under several sub-sections.   

2.1. Accelerated Test (AT) Methods 

AT methods can be broadly classified into two categories: accelerated life test (ALT) and 

accelerated degradation test (ADT). In ALT, the samples of a product are tested and the resulting 

failure times and censoring times are recorded. The data is then used to develop an ALT model 

for extrapolating the reliability of the product under the normal operating conditions. Usually, 

two censoring schemes are widely used in ALT: time censoring (type-I) where the number of 

actual failures is random upon the completion of the test (see Figure 2.1) and failure censoring 

(type-II) where the total test duration is random at the end of the test when a certain number of 

failures is observed. Compared to ALT, ADT methods are more suitable for highly reliable 

products that exhibit degradation before failure. In ADT, a performance or product characteristic 

is identified to measure the amount of degradation of the product. The degradation path is 

modeled and failure is defined when the degradation path reaches a pre-defined threshold. In a 

nondestructive ADT, several repetitive measurements can be taken during the experiment to 
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continuously monitor the product’s degradation behavior. In the case of destructive testing, only 

a single data point per unit can be observed leading to an accelerated destructive degradation test 

(ADDT) (Shi and Meeker, 2012). In the related literature, it is strongly argued the necessity of 

using the degradation tests for assessing the reliability of highly reliable products, if feasible (Lu 

and Meeker, 1993).  

 

Figure 2.1: A graphical illustration of time-censored ALT 

2.2. Acceleration Methods 

An acceleration method is a way of increasing the usage rate or utilizing higher levels of 

stresses during AT. The method of usage rate acceleration is more applicable for products that 

are not in constant use, such as tires, light bulbs, and other similar products (Elsayed, 2012). The 

tests can be accelerated by simply increasing the operating hours per unit time (Yang, 2008). 

When it is not possible and/or efficient to make the product fail at a higher usage rate, 

accelerated stress test methods may be considered.  
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Figure 2.2: Different types of accelerated stress loadings 

Regarding accelerated stress tests, four types of stress loading have been widely used: 

constant-stress, step-stress, progressive-stress, and cyclic-stress (Nelson, 2004). Figure 2.2 shows 

different types of stress loading usually applied in ATs. Among these stress loadings, constant-

stress is the most commonly applied in AT (Nelson, 1981; Yang, 2008; and Zhu and Elsayed, 

2013). Furthermore, the computational time, ease of stress application, and availability of 

existing theoretical models are the main factors that make the use of a constant-stress loading 

favorable. Nevertheless, the use of constant-stress loading sometimes may not result in failures 

during a specified test period and usually requires a lengthy test duration. To address this issue, 

step-stress loading yields failures relatively quicker than a constant-stress test (Miller and 

Nelson, 1983 and Xu and Fei, 2007). In a step-stress AT, the test specimen is subject to a 

constant-stress for a specific period of time, and then the stress is increased to the next higher 

level. This process continues until the specimen fails or is censored. The drawbacks of step-stress 

AT include the difficulty in parameter estimation and reliability extrapolation to the normal 

operating conditions, and the chances of introducing new failure modes. As another alternative, 

progressive-stress loading (a.k.a. ramp-stress loading) is also applied in AT. In a progressive-

stress test, the units are subjected to a continually increasing stress over the test period (Nelson, 
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2004 and Yin and Sheng, 1987). For products that undergo cyclic-stresses in actual field 

operating conditions, cyclic-stress AT becomes the first choice, where test specimens are 

exposed to higher repetitive cyclic loadings, such as electrical sinusoidal voltage or fatigue 

stresses (Nelson, 2004).  

2.3. Accelerating Stress Factors 

The application of stress depends on the type of component under test and the stresses at 

the normal operating condition. For instance, vibration is often used to accelerate failures of 

mechanical components. In addition, humidity and random shock are other types of stresses 

applied to various mechanical components, such as bearing, shaft, and spring. For electronic 

components, temperature, humidity, vibration, electrical current, and voltage are common 

accelerating stress variables. In general, the most commonly applied stresses are temperature 

(Nelson, 1981; Munikoti and Dhar, 1998; and Wang and Chu, 2012), voltage (Munikoti and 

Dhar, 1998), current (Wang and Chu, 2012), humidity (Klinger, 1991), and UV radiation (Koo 

and Kim, 2005). The combination of these stress variables can also be applied according to 

actual operating conditions and the mechanisms behind a failure process (Vázquez et al., 2010).   

Indeed, the number of accelerating stress variables to be used in AT is another important 

issue. The most common and preferable approach is a single-stress test. However, multiple-stress 

tests are receiving more attention in recent years (Zhu and Elsayed, 2013). The single-stress test 

method is simple to use and thus well documented and verified, whereas the multiple-stress test 

method has some issues, such as interaction effects, and the availability of appropriate models 

that relate life and stress. Despite these challenges, investigations on the multiple-stress ATs 

considering humidity and temperature (Klinger, 1991), and current and temperature (Vázquez et 

al., 2010) have been conducted.  
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2.4. Life-stress Relationship  

The life-stress relationship plays an important role in data analysis and planning of an 

AT. For example, considering the lifetime of a product follows the normal or lognormal 

distribution, the simplest life-stress relationship that relates the product’s mean or median life is 

a linear function (Kielpinski and Nelson, 1975 and Bai et al., 1989a) or log-linear function 

(Miller and Nelson, 1983 and Fard and Li, 2009) of applied stress as:  

𝜇(𝑆) =  𝛽0 + 𝛽1𝑆    (2.1) 

ln[𝜇(𝑆)] =𝛽0 + 𝛽1𝑆   (2.2) 

respectively, where µ is the mean or median life, S represents the accelerating stress variable, and 

β0 and β1 are constants. The life-stress relationship for more than one stress variable considering 

an interaction effect can be expressed as (Park and Yum, 1997):  

ln[𝜇(𝑆1, 𝑆2)] =𝛽0 + 𝛽1𝑆1 + 𝛽2𝑆2 + 𝛽3𝑆1𝑆2  (2.3) 

S1 and S2 are applied stresses. Unlike such purely statistical approaches, a life-stress relationship 

can also be obtained from various physics-based or empirical models. For example, the impact of 

temperature or thermal stress can be modeled by the Arrhenius law (Nelson and Kielpinski, 1976 

and Gouno, 2007), and the inverse power law (Bai et al., 1992 and Bai et al., 1997) and 

exponential model (Park and Yum, 1997), which are appropriate for explaining the impact of 

non-thermal stresses on product lifetime. To capture a combined effect of thermal and non-

thermal stresses, the generalized Eyring model is a popular choice (Park and Yum, 1996 and Tsai 

et al., 2014). The following transformations are often used to standardize stress variables in 

respective physical models: 
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For Arrhenius model:     𝑆𝑖 =

1
𝑆0

′⁄ −1
𝑆𝑖

′⁄

1
𝑆0

′⁄ −1
𝑆𝑀

′⁄
   (2.4) 

For power law model:     𝑆𝑖 =
𝑙𝑜𝑔(𝑆𝑖

′)−𝑙𝑜𝑔(𝑆0
′)

𝑙𝑜𝑔(𝑆𝑀
′ )−𝑙𝑜𝑔(𝑆0

′)
   (2.5) 

For exponential model:    𝑆𝑖 =
𝑆𝑖

′−𝑆0
′

𝑆𝑀
′ −𝑆0

′   (2.6) 

where 𝑆𝑖
′,  𝑆0

′ , and 𝑆𝑀
′  represent the applied stresses of accelerated, normal, and maximum stress 

levels, respectively, whereas 𝑆𝑖 𝑖𝑠 the transformed standardized stress ranging from zero to one.  

2.5. Degradation Models 

In ADT, degradation processes are usually modeled by either a general path (GP) model 

(Lu and Meeker, 1993) or a stochastic process model (Tang et al., 2014). Figure 2.3 illustrates a 

schematic of the degradation path. 

 

Figure 2.3:  Schematic of a degradation path with the failure threshold  

When using the GP model, the degradation path of a product is described by a linear or 

nonlinear function of time with the stress-dependent parameter(s). For example, a linear GP 

model states that the degradation measurement yij of unit i at time 𝑡𝑗  can be described by: 
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𝑦𝑖𝑗 = 𝜂𝑖𝑗(𝑡𝑗,𝜙, Θ𝑖) + 𝜖𝑖𝑗  (2.7) 

𝜂𝑖𝑗(𝑡𝑗,𝜙, Θ𝑖) = 𝜙 + Θ𝑖𝑡𝑗  (2.8) 

where  𝜂𝑖𝑗 is the actual degradation path of unit i at time 𝑡𝑗,  𝜖𝑖𝑗  is the measurement error having 

constant variance, ϕ is the fixed-effect parameter for all units, and Θ𝑖 represents the random 

effect that varies from unit-to-unit and follows a certain distribution. In ADT, these parameters 

could be stress-dependent. 

Sometimes appropriate physics-of-failure or empirical models, specific to a given 

product, are available to describe the degradation processes. For example, Wang and Chu (2012) 

used a nonlinear model for light emitting diode (LED) luminosity degradation and Tsai et al. 

(2013) proposed an exponential model to describe the degradation path of a polymer material. In 

a stochastic process model, the degradation measurements over time and the inherent variability 

of the degradation process are incorporated into a stochastic process. Recently, several popular 

stochastic processes have been used in modeling ADT data, such as the Wiener process (Tang et 

al., 2014a), Brownian motion process (Ge et al., 2010), gamma process (Tseng et al., 2009), and 

inverse Gaussian (IG) process (Ye et al., 2014). For example, using the Wiener process the 

degradation path 𝑦(𝑡, 𝑠) of a product is expressed in terms of time t and stress s as: 

 

𝑦(𝑡, 𝑠) = 𝜈𝜂(𝑡, 𝑠) + 𝜎𝐵(𝜂(𝑡, 𝑠)) + 𝜖  (2.9) 

 

where ν is the drift parameter, σ is the diffusion or volatility parameter, 𝐵(∙) is the standard 

Brownian motion, 𝜂(𝑡, 𝑠) is a time and stress scale function, and 𝜖 is the measurement error with 

zero mean and a constant variance.  
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Among different stochastic processes, the gamma process has some attractive features, 

such as the monotonous increasing nature, that are suitable for modeling many degradation 

phenomena. Essentially, the degradation path 𝑦(𝑡, 𝑠) is described by the probability density 

function (pdf) of a gamma distribution as: 

 

𝑓𝐺𝑎,   (𝑦(𝑡,𝑠)) =
𝛽𝛼(𝑠)𝜂(𝑡)

Γ(𝛼(𝑠)𝜂(𝑡))
𝑦𝛼(𝑠)𝜂(𝑡)−1𝑒(−𝑦𝛽)  (2.10) 

  

where α and β represent the shape and scale parameters, respectively, 𝜂(∙) is a time scale 

function, and 𝛼(𝑠) represents a shape parameter that is a function of stress s. The degradation 

increment and product lifetime both follow gamma distributions in the gamma process model.  

The IG process has recently been used to model degradation phenomena. In particular, 

the probability density function of degradation path 𝑦(𝑡, 𝑠) is expressed as : 

𝑓𝐼𝐺,   (𝑦(𝑡,𝑠)) = (
𝑏

2𝜋𝑦3)
1

2⁄

𝑒
[−

𝑏(𝑦−𝑎(𝑠))2

2𝑎2(𝑠)𝑦
]
  (2.11) 

where 𝑎(𝑠) is the stress-dependent mean and b is the shape parameter. The degradation rate and 

the lifetime both follow IG distributions in the IG process model. For more detailed discussions 

on modeling of ADT data refer to (Meeker et al., 1998a; Escobar and Meeker, 2006; and Ye and 

Xie, 2015).  

2.6. Lifetime Distribution 

Besides life-stress relationships, another important aspect that requires due consideration 

is the underlying lifetime distribution for a product. The popular accelerated failure time (AFT) 

models include the normal distribution, lognormal distribution (Nelson and Kielpinski, 1976), 

exponential distributions (Park and Yum, 1996), Weibull distribution (Meeker, 1984), and 

extreme value distribution (Nelson and Meeker, 1978). For the normal (or lognormal) 
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distribution, it is often assumed that the distribution mean (or log-mean) depends on the stress 

level, and the variance is a constant (Nelson and Kielpinski, 1976). In earlier work considering 

the Weibull distribution, it was assumed that only the scale parameter is a stress-dependent while 

the shape parameter remains constant (Nelson and Meeker, 1978). The reason behind the 

constant shape parameter is that it is dependent on material properties and thus remains constant 

for all the stress levels (Klinger, 1992). However, recent studies question this assumption 

realizing that the variation in manufacturing processes, plants, and suppliers, and also a rapid 

improvement in the field of material science might cause stress-dependent shape parameter 

(Joyce et al., 1985 and Bayle and Mettas, 2010). Furthermore, Joyce et al. (1985) considered a 

log-linear relationship between the variance of lifetime and temperature stress for laser life 

analysis, and Seo et al. (2009) provided several examples where the shape parameter changes at 

higher stress levels. Subsequently, researchers considered that both the scale and shape 

parameters depend on stresses, which is more general and practical (Seo et al., 2009; Meeter and 

Meeker, 1994; and Hunt and Xu, 2012).   

There are other probability distributions that have been considered in ALT data analysis, 

especially for periodic inspection-type ALT. These distributions include the Rayleigh 

distribution (Ahmad et al., 1994), exponentiated-Weibull distribution (Ahmad et al., 2006a), 

generalized-exponential distribution (Ahmad, 2010), and different kinds of Burr-type 

distributions (Ahmad and Islam, 1996; Ahmad et al., 2006b; and Ahmad et al., 2013). Ismail 

(2006) assumed that the lifetime follows the Gompertz distribution which is a relatively new 

distribution used in survival analysis. On the other hand, Elsayed and Zhang (2007) considered 

the proportional hazards (PH) model that does not assume any lifetime distribution.  
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In modeling ADT, a failure occurs when the product’s degradation path crosses a pre-

determined threshold for the first time (i.e., the first passage time). Let D be the failure threshold, 

the time to failure tf under the linear GP model (Eqn. 2.8) is given by:  

𝑡𝑓 = (
𝐷−𝜙

Θ
)  (2.12) 

where a probability distribution, such as lognormal, Weibull, and normal can be utilized to 

model the random-effect parameter (Wang and Chu, 2012 and Tsai et al., 2013).  
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CHAPTER 3. LITERATURE REVIEW 

Accelerated tests have been getting much attention from the manufacturing and academic 

researcher during the late 1960s. This attention becomes more vibrant during the 1980s while 

there is a revolution in the quality management system, for example, customer satisfaction and 

warranty of the product is part of the quality assurance program. The methods and modeling of 

AT to predict lifetime and reliability have been investigated from different aspects. The existing 

literature can sharply categorize into two parts: AT for reliability matrices prediction and design 

of AT planning.  

3.1. AT for Reliability Predictions 

The initial works are heavily dominated in the area of ALT with constant stress loadings. 

Chernoff (1962) proposed accelerated life testing considering parametric distribution and 

censored data. The underlying lifetime is considered to follow the exponential distribution. 

Nelson (1975) demonstrated a lifetime estimation using ALT data with the least square method 

and inverse power law for complete type data. The two-parameter Weibull is assuming to 

represent the product lifetime in their work. However, the importance and superiority of the 

degradation data over failure-life data motivated researchers into the ADT to predict reliability 

measures. For instance, Nelson (1981) investigated the life-prediction of an insulator using its 

dielectric breakdown degradation due to temperature stress effect. The Arrhenius-lognormal 

model is chosen to model the ADT data and the maximum likelihood estimation (MLE) used for 

parameter estimates. Finally, insulator lifetime at normal operating condition is estimated using 

the model parameters. In another early work, Carey and Koenig (1991) also estimated the 

lifetime of an electrical component at normal use condition utilizing the degradation data 

measured at elevated temperature. Lu and Meeker (1993) first time proposed the regression-
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based general path (GP) model considering a two-stage method. In the first stage, model 

unknown parameters are estimated using the regression method and next, variances are estimated 

to obtain the overall estimates. Su et al. (1999) improved the estimation using the MLE instead 

of the least-square method and argued that MLE is statistically more efficient especially in case 

of small sample sizes. Shiau and Lin (1999) proposed a nonparametric regression method to 

assess the accelerated degradation path for reliability estimates. Meeker et al. (1998a) provide 

detail on the general path model for both linear and nonlinear degradation behavior.  

 3.1.1. Reliability assessment by stochastic processes 

 Because of several advantages mentioned in chapter 2, stochastics processes getting 

more attention in ADT data analysis. Whitmore and Schenkelberg (1997) considered the Wiener 

process to model the degradation behavior of ADT data. While modeling degradation behavior 

as Wiener process, several attempts have been made to capture the error in degradation 

measurement during the test (Whitmore 1995, Peng and Hsu 2012, Tang et al. 2014b) and also 

the variation within sample units known as random effects (Peng and Tseng, 2009; Si et al., 

2013; Tang et al., 2014a). Liao and Elsayed (2006) consider the variation of the stress effect to 

model LED ADT data for reliability inferences. The author considered temperature and current 

as stress factors and their simulation results show that their method provides close to the actual 

lifetime prediction compared to the traditional method. The Geometric Brownian motion process 

is used by Park and Padgett (2005) for modeling ADT data. The authors argued that their model 

can approximate the failure time by Birnbaum–Saunders, and inverse Gaussian distributions 

efficiently.  

To model monotonic degradation behavior, Gamma process is very suitable for reliability 

practitioners.  For example, Bagdonavicius and Nikulin (2001) studied the effects of stress 
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factors on product deterioration considering the gamma process. The authors also considered the 

intense stress effects (traumatic events) on the degradation process. Lawless and Crowder (2004) 

extended the gamma process model by capturing random effects or covariates and presented a 

tractable gamma process model. Realizing that lifetime estimation in gamma distribution is 

mathematically not tractable, Park and Padgett (2005) proposed the inverse Gaussian and 

Birnbaum-Saunders distributions as an efficient approximation of the gamma process model 

considering single stress factor. This work was further extended to consider two stress factors in 

degradation modeling (Park and Padgett, 2006). Recently, van Noortwijk (2009) presented a 

survey on the successful applications of the gamma process model in maintenance optimization. 

Pan and Balakrishnan (2011) introduced the reliability model for products subjected to the 

degradation of two performance characteristics by assuming the degradation of these two 

characteristics is governed by gamma processes. Very recently, the inverse Gaussian process has 

been getting attention to model the product deterioration (Wang and Xu, 2010; Ye and Chen, 

2014; and Wang et al., 2016). Similar to the gamma process, the inverse Gaussian process also 

considers the nonnegative and monotonic changes in degradation. 

3.2. Design of AT Planning 

Selecting an appropriate AT method and proper test plan is essential for the effective use 

of available resources for ATs. There are several decision variables to be considered, such as the 

type of stress loading, number of stress levels, number of test units to be allocated to each stress 

level, and censoring schemes. Clearly, these decision variables must be determined under several 

constraints, such as the limited test time, budget, and availability of resources required for 

conducting the test. The optimal design of AT plan formulates and solves an optimization model 
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considering these constraints. The rest of this section summarizes the state-of-the-art of optimal 

design of AT plans.  

3.2.1. Designing ALT plan with constant stress 

As the earliest effort in planning ALT, Chernoff (1962) developed an optimal ALT plan 

considering both complete and type-I censored data. It was assumed that the product’s lifetime 

follows the exponential distribution and the failure rate is either a quadratic function or an 

exponential function of stress.  Mann (1972) proposed a least-square curve fitting method to 

determine the stress levels and sample allocation for each stress level when the product’s lifetime 

follows the Weibull distribution. Other optimal ALT plans were developed by assuming other 

lifetime distributions (Kielpinski and Nelson, 1975; Meeker and Nelson, 1975; and Nelson and 

Kielpinski, 1976). These optimal designs recommended two stress levels with a higher number 

of test units being allocated to the lower stress level (Kielpinski and Nelson, 1975). Because two-

level ALT plans do not allow for validation of the life-stress relationship (Meeker, 1984), Nelson 

and Kielpinski (1976) proposed a robust compromise test plan with at least three stress levels. 

They also presented the compromise test plan theory that determines the third stress level as well 

as a sample allocation procedure. Meeker and Hahn (1985) presented 4:2:1 sample allocation 

ratio for the three-level compromise plan. Further, Yang (1994) presented a constant-stress ALT 

method with four stress levels and unequal censoring times. The result suggested a longer 

censoring time at the lower stress level and a shorter censoring time at a higher stress level. It 

also showed that the four-level ALT is more robust and shortens the test duration compared to 

the existing three-level tests. 

Escobar and Meeker (1995) considered two stress variables in designing ALT with 

censoring. Park and Yum (1996) developed a test plan with two stress variables for the 
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exponential lifetime distribution. The interaction effects of the two stresses were also considered 

using the generalized Eyring model. The experimental setup was arranged by a factorial design 

method, and the optimal test plan was obtained by minimizing the asymptotic variance of MLE 

of the mean life at the normal operating conditions. There are numerous applications on the use 

of multiple stresses in ALT (Zhu and Elsayed, 2013; Elsayed and Zhang, 2007; Elsayed and 

Zhang, 2009; Yang and Pan, 2013; and Balakrishnan and Ling, 2014). 

In quality engineering, sampling is widely used as a tool for making an acceptance or 

rejection decision. The goals of designing a sampling plan are not only to reduce the cost of 

inspection but also reduce the risk of making the wrong decision. Similarly, in ALT it is 

important to reduce the time and cost of tests and assure that the tests are able to provide accurate 

reliability estimates. Bai et al. (1993a and 1995) developed ALT-based sampling plans that 

minimize the asymptotic variance of the test statistic for lot acceptability. The earlier research 

work on designing sampling plans assumed that the shape parameter of the Weibull distribution 

is constant at all stress levels, and later, cases with a non-constant shape parameter were 

considered. In particular, Seo et al. (2009) investigated both the time and failure censoring 

schemes. The optimal test criteria were chosen to satisfy both the producer’s and consumer’s risk 

requirements that minimize the asymptotic variance of the test statistic for lot acceptability. 

A product may fail in more than one failure mode. The product fails whenever one of the 

competing failure modes occurs. For example, the piston-cylinder assembly of a hydraulic pump 

can fail due to wear-out or corrosion. Pascual (2007, 2008, and 2010) addressed the planning of 

ALT in the presence of independent competing risks under the Weibull (Pascual, 2007 and 

Pascual, 2008) or lognormal distribution (Pascual, 2010). The difference between the optimal 

test plans developed in (Pascual, 2007) and (Pascual, 2008) is whether or not the shape 



 

22 
 

parameter of the Weibull distribution is known. A D-optimality criterion was considered to 

maximize the determinant of the Fisher information matrix of parameter estimates. Unlike most 

work on ALT, Liu and Tang (2010a) considered multiple independent risks for a repairable 

system. A power law life-stress relationship and Bayesian approach were used in test planning. 

The efficiency of the optimal test plan was compared with the compromise 4:2:1 test plan. It is 

worth pointing out that existing ALT plans considered independent competing risks. The most 

recent work by Zhang et al. (2014) considered the dependency of competing failures using the 

copula theory. They assumed a constant-stress loading and used the MLE for parameter 

estimation. It is obvious that the accuracy of statistical inference heavily relies on the choice of 

the copula model.  

3.2.2. ALT design other than constant stress 

To reduce the test duration further, step-stress ALT (SSALT) has attracted much 

attention in recent years. The drawback of SSALT is that the accuracy of reliability estimates 

from such tests is inversely proportional to the total testing time (Nelson, 2004). There are two 

ways to shift stress levels during SSALT. The popular way is to increase the stress to the next 

higher level after a certain period of time, and this process continues until all test units fail or at 

the end of the test. As an alternative, one can increase the stress to the next higher level upon a 

predetermined number or fraction of samples has failed under the current accelerated stress level. 

The popular cumulative exposure (CE) model is most commonly applied in analyzing SSALT 

data. According to this model, the remaining product life depends on the total stress exposure a 

product has experienced. 

Among the early effort, Miller and Nelson (1983) considered the optimal design of 

simple SSALT for the exponential distribution with complete failure times. Bai et al. (1989a) 



 

23 
 

extended the work by Miller and Nelson (1983) by introducing pre-determined censoring times. 

Bai and Kim (1993) developed an optimal simple SSALT considering the Weibull life 

distribution and type-I censoring. They also compared the simple SSALT plan to the three-level 

compromise test plan. They concluded that the simple SSALT plan suffers from the same 

drawback as two-level CSALT on the linear life-stress relationship and the use of two high 

stresses might introduce new failure modes. 

To overcome the drawbacks of simple SSALT, Khamis and Higgins (1996) proposed a 

three-step SSALT plan considering a linear or quadratic life-stress relationship. Xu and Fei 

(2007) extended the earlier work by Escobar and Meeker (1995) into multi-stress SSALT plan. 

The extension of the model for an SSALT plan considering the CE model for the step-stress and 

the optimal test plan was obtained by minimizing the asymptotic variance of the MLE of a 

specific lifetime quantile. Ma and Meeker (208) considered a multi-step SSALT plan for both the 

Weibull and lognormal distributions and the CE model. 

The progressive-stress loading can be applied to test units under a continuously 

increasing stress. The progressive-stress is also known as the ramp-stress loading when the stress 

linearly increases over time. Yin and Sheng (1987) first introduced progressive-stress ALT 

(PSALT) plans considering both the exponential and Weibull life distributions. Bai et al. (1992 

and 1997) investigated PSALT with a simple ramp-stress loading. They assumed the Weibull 

lifetime distribution and the inverse power law as the life-stress relationship. The optimal test 

plan in (Bai et al., 1992) was obtained by minimizing the asymptotic variance of the MLE of a 

specific life quantile at the use stress level. 

For a step-stress loading, a sudden change in stress level can cause shocks that might also 

introduce new failure modes of the product. To overcome this problem, Park and Yum (1998) 
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introduced modified stress changing strategies. They proposed a finite rate of stress change 

instead of a sudden change in step-stress loading. It was claimed that the statistical efficiency of 

the model is not affected by the modified stress-loading except that the rate of stress change is 

extremely low. Liao and Elsayed (2010) developed an optimal ALT plan considering a ramp-

stress loading and compared it with the equivalent CSALT plan. Zhu and Elsayed (2011) 

developed optimal step and ramp-stress ALT plans such that its estimation precision is 

equivalent to the CSALT plan. The advantage of these equivalent ALT plans is that they result in 

the same reliability estimation precision with fewer test resources. Hong et al. (2010) developed 

an optimal ALT method that determines both the ramp-rate and lower starting stress level 

simultaneously.  

3.3. Designing ADT Plan 

For highly reliable products that exhibit degradation before failure, ADT is more 

appropriate and effective than the ALT alternative.  Compared to ALT, a few more decision 

variables need to be determined in ADT, such as measurement frequencies and the total number 

of measurements. Like ALT, constant stress, step stress, and progressive stress have been 

utilized in conducting ADT. The initial efforts in the design of ADT plans used an equal spacing 

of stress levels with equal sample allocation (Nelson, 1981). To improve the efficiency of ADT 

plan, Boulanger and Escobar (1994) developed an optimal ADT plan considering a constant-

stress loading. The optimal test plan was obtained by minimizing the variance of the weighted 

least squares estimate (LSE) of the mean life at the use condition. Measurement times were 

determined under the D-optimality criterion, and several heuristic plans were also discussed. 

Another important issue in ADT planning is to determine the appropriate termination time of a 

test because it affects both the experimental cost and the estimation accuracy. Tseng and Yu 
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(1997) and Yu and Tseng (1998) developed several termination rules for a degradation test. They 

proposed an intuitive method that utilizes ALT and MLE for estimating the MTTF at normal 

operating conditions and determines degradation test termination time using the limiting property 

of estimator of MTTF. In addition to stress acceleration, the critical threshold value determines 

the times to failure in ADT. Yang and Yang (2002) suggested that tightening the critical 

threshold value can produce more failure data and reduces the asymptotic variance of reliability 

estimate. They also developed an approach to estimate the model parameters, which is more 

robust compared to the existing two-level ADT plans.  

3.3.1. Destructive type ADT design 

In planning ADT, the total budget has been considered as a major constraint (Wu and 

Chang, 2002; Yu, 2003; and Li and Kececioglu, 2004). For example, a nonlinear regression 

model (Wu and Chang, 2002) and nonlinear mixed integer programming methods (Yu, 2003) 

were used to obtain the optimal ADT plans. The test parameters were selected to minimize the 

mean squared error (MSE) of the estimated percentile of the product life at the operating 

conditions under the budget constraint. In another work, Li and Kececioglu (2006) studied ADT 

of LEDs and developed an analytical and simulation method to design the optimal test plan.   

In an ADDT, only one degradation measurement can be collected from each test unit. 

Park and Yum (1997) and Shi et al. (2009) were the first few who attempted to design optimal 

ADDT plans. In these efforts, the optimal test plan was obtained by minimizing the variance of 

the MLE of a specific quantile of product lifetime. In particular, Park and Yum (1997) developed 

a non-linear constrained optimization model for the ADDT test plan. Similar to non-destructive 

tests, experimental costs were also taken into consideration in many ADDT plans (Tsai et al., 

2013; Wang et al., 2009; and Yu and Peng, 2014). Wang et al. (2009) used the Monte Carlo 
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simulation to design an optimal test plan. In addition, both linear and non-linear degradation 

models were considered in the design of optimal ADDT plans (Tsai et al., 2013 and Yu and 

Peng, 2014). The misspecification of lifetime distribution in ADDT method was also considered 

by Jeng et al. (2011). 

3.3.2. Step and progressive-stress ADT design 

The step and progressive-stress loadings were also considered in recently developed ADT 

methods. For instance, Park and Yum (2001) and Park et al. (2004) considered a step-stress 

accelerated degradation test (SSADT) plans with a constant degradation rate. The remaining 

useful life of a component under the step-stress loading was modeled by the popular CE model. 

The optimal test plans were determined by minimizing the asymptotic variance of the MLE of a 

specified quantile of the lifetime under the use condition. Haghighi (2014b) considered 

competing risks in designing an SSADT test plan. The author considered that the intensity 

functions of competing risks depend on the amount of degradation of the component. It is also 

assumed that the degradation process follows a known concave degradation path. Recently, Peng 

and Tseng (2010) investigated the progressive-stress ADT (PSADT) plan by assuming a non-

linear degradation process. The exact relationship between the lifetime distributions of the 

PSADT and the CSADT was established to estimate the product lifetime under the normal 

operating conditions.   

  3.4. Bayesian Method        

In many cases, information about the underlying degradation process and model 

parameters can be obtained from past studies. However, only little effort has been focused on 

Bayesian-based ADT plans. Recently, Liu and Tang (2010c) proposed a Bayesian approach to 

the optimal design of ADT plan considering the power law. The objective was to minimize the 
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expected pre-posterior variance of model parameters under the use conditions. The results 

showed that the test plan is quite robust against model parameter uncertainty compared to a non-

Bayesian approach. Shi and Meeker (2012) also investigated the Bayesian method and a non-

linear degradation model to develop an ADDT plan. This work utilized the Bayesian method to 

incorporate the available historical information using a prior distribution. The large sample 

approximation was also used for analyzing the posterior distribution. Most recently, Li et al. 

(2017) proposed a Bayesian optimal ADT design considering the inverse Gaussian process to 

model the degradation behavior. The MCMC technique along with a surface fitting method was 

used to obtain the optimal design. It was claimed that the resulting Bayesian optimal design is 

more robust than the relative entropy and quadratic loss method.  

3.5. Stochastic Processes           

In recent years, stochastic process models are widely used in degradation modeling. 

Among those models, the Wiener process has been the most popular (Lim and Yum, 2011; Lim, 

2012; Tang et al., 2004; and Hu et al., 2015). Tang et al. (2004) and Hu et al. (2015) considered 

the Wiener process in SSADT to capture unit-to-unit variation in a non-linear degradation 

process. They investigated both the constant and step-stress loadings in these tests. Both the 

budget constraint and estimation precision were taken into account in planning ADT (Lim, 2012 

and Tang et al., 2004). Liao and Elsayed (2004) proposed an ADT method using the geometric 

Brownian motion to model the degradation rate that provides better statistical efficiency. In a 

similar work, Zhang et al. (2010) assumed the degradation path follows the drift Brownian 

motion in designing the ADT method. To further accelerate the test, step-stress loading was also 

considered in planning ADT (Zhang and Jiang, 2010 and Zhang et al., 2011). The optimal test 

plans were obtained using Monte Carlo simulation to minimize the MSE of reliability estimate at 
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the normal operating conditions under a budget constraint. Liao and Tseng (2006) considered the 

Weiner process in designing an optimal SSADT plan. The asymptotic variance of the estimated 

percentile of the lifetime was minimized under a cost constraint.  Moreover, Peng and Tseng 

[154] considered the Wiener degradation process and the linear drift rate to design an optimal 

PSADT plan. 

Recently, gamma process (Tseng et al., 2009; Tsai et al., 2012; and Zhang et al., 2015) 

has been considered along with unit-to-unit variation (i.e., random effects) (Tsai et al., 2016) in 

modeling ADT and test plans. It has also been used in multi-stress ADT plans (Tsai et al., 2014 

and  Pan and Balakrishnan, 2010). For instance, Pan and Balakrishnan (2010) investigated both 

the Weiner and gamma degradation processes in multiple-step SSADT and used the Bayesian 

MCMC method to obtain efficient reliability estimates. The inverse Gaussian (IG) process has 

recently been taken into consideration to model degradation phenomena. Ye et al. (2014) 

investigated the IG degradation process in designing CSADT plans. The research considered the 

scenarios with and without random effects. The sensitivity analysis showed the robustness of the 

model to the presumed model parameters.  

3.6. Others ADT Designs 

Yu and Chiao (2002) proposed an ADT plan by considering a degradation process 

following the lognormal distribution. The optimal test plan was obtained such that the width of 

the confidence interval for the MTTF at the use condition was minimized. Similarly, Yu (2006) 

designed an optimal ADT plan where the degradation rate follows a reciprocal Weibull 

distribution. The MSE of the specified percentile of lifetime estimate at the normal operating 

conditions was minimized under a budget constraint. Tseng and Lee (2016) proposed a sample 

allocation method assuming the degradation model belongs to an exponential dispersion class. 
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They argued that their model is a generalized model that includes other stochastic models as its 

special cases. The optimal plan was obtained by minimizing the variance, and both two- and 

three- level ADTs were investigated.   
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CHAPTER 4. RELIABILITY ASSESSMENT BY ADT DATA 

4.1. Degradation Modeling: Gamma Process 

Abdel-Hameed (1975) first time considered the gamma process for modeling the 

deteriorating wear process. The gamma process represents the degradation behavior in a form of 

cumulative damage where the deterioration occurs gradually over the period of time. The 

increment of the degradation process is always considered to be monotonic and nonnegative. The 

schematic of a gamma deterioration process is illustrated in Figure 4.1. Assuming a random 

variable Y represents the deterioration then the gamma process that is a continuous-time 

stochastic process has the following mathematical properties (O’Connor and Kleyner, 2012) 

a. 𝑦(0) = 0 

b. 𝑦(𝑡) follow a gamma distribution with 𝐺𝑎 ~(𝛼𝑡, 𝛽)  

c. 𝑦(𝑡) has an independent increment in a time interval ∆𝑡 (∆𝑡 = 𝑡𝑖 − 𝑡𝑖−1)  

d. The independent increment ∆𝑦(𝑡) = 𝑦𝑖 − 𝑦𝑖−1 also follows the gamma distribution 

𝐺𝑎 ~(𝛼∆𝑡, 𝛽) with probability density function (PDF):   

𝑓∆𝑦(𝑡) =
𝛽𝛼∆𝑡

Γ(𝛼∆𝑡)
 ∆𝑦𝛼∆𝑡−1 𝑒−(𝛽∆𝑦)  (4.1) 

where, 𝛼 > 0 and 𝛽 > 0 represent the gamma shape and scale parameters, respectively, and Г(.) 

is a gamma function with Γ(𝑎) = ∫ 𝑥𝑎−1𝑒−(𝑥)𝑑𝑥
∞

0
. While using the gamma process for 

degradation modeling, it is also important to capture the relationship between deterioration and 

time. Several empirical studies on engineering applications show that expected deterioration 

(𝐸(𝑦(𝑡)) =
𝛼

𝛽
𝑡𝑐) follows the power model and given as (van Noortwijk, 2009): 

𝑦(𝑡)  = 𝑏𝑡𝑐  (4.2) 
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where 𝑡 represents time and 𝑐 is a nonlinearity parameter. To capture the nonlinearity in the 

degradation process, the equation (4.1) is modified by incorporating the nonlinearity parameter 

as given below:  

𝑓∆𝑦(𝑡) =
𝛽𝛼(𝑡𝑖

𝑐−𝑡𝑖−1
𝑐 )

Γ(𝛼(𝑡𝑖
𝑐−𝑡𝑖−1

𝑐 ))
 ∆𝑦𝛼(𝑡𝑖

𝑐−𝑡𝑖−1
𝑐 )−1 𝑒−(𝛽∆𝑦)  (4.3) 

 

Figure 4.1: Schematic of a degradation process with gamma increment 

4.2. Accelerated Degradation Modeling 

In an accelerated test, to expedite the degradation process, product samples are subjected 

to higher stress levels than the normal operating conditions. The underlying assumption for 

designing an accelerated test is that it only expedites the identified failure process without 

introducing any new failure mechanism. There exist several physical or empirical life-stress 

models to express the effect of stresses on product lifetime. For example, the Arrhenius model 
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provides a well-recognized relationship to capture the effect of temperature on the median life of 

the product. Equation (4.4) provides several well established life-stress models (Nelson, 2004):  

𝑡𝑚(𝑠) = 𝑎1𝑒
−

𝑎2
𝑇  ;     𝐴𝑟𝑟ℎ𝑒𝑛𝑖𝑢𝑠 𝑚𝑜𝑑𝑒𝑙 (𝑠 = 𝑇) 

 = 𝑎1𝑉
𝑎2;       𝑃𝑜𝑤𝑒𝑟 𝑙𝑎𝑤 𝑚𝑜𝑑𝑒𝑙 (𝑠 = 𝑉) 

= 𝑎1𝑒
𝑎2𝑊;    𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 𝑚𝑜𝑑𝑒𝑙 (𝑠 = 𝑊)   (4.4) 

Since the magnitude of stress measurement units may differ significantly in the multi-stress 

scenario, it is important to use standardized transform stresses to disregard the influence of stress 

measurement units. Chapter 2 provides an appropriate transformation formula for different life-

stress models.  

Suppose in an accelerated degradation test, 𝑦𝑖𝑗𝑘 represents the 𝑖𝑡ℎ observation of the 𝑗𝑡ℎ 

sample under the 𝑘𝑡ℎ stress level at the time period 𝑡𝑖𝑗𝑘 . If the degradation increment can be 

expressed by Δ𝑦𝑖𝑗𝑘 = 𝑦𝑖𝑗𝑘 − 𝑦(𝑖−1)𝑗𝑘, then, according to the properties of the gamma process and 

equation (4.3), the likelihood function of the degradation increment can be given as: 

𝐿(𝛼𝑗𝑘 , 𝛽𝑗𝑘) = ∏
𝛽

𝑗𝑘

𝛼𝑗𝑘 (𝑡𝑖𝑗𝑘
𝑐 −𝑡(𝑖−1)𝑗𝑘

𝑐 )

Γ(𝛼𝑗𝑘 (𝑡𝑖𝑗𝑘
𝑐 −𝑡(𝑖−1)𝑗𝑘

𝑐 ))

𝑛
𝑖=1 Δ𝑦

𝑖𝑗𝑘

𝛼𝑗𝑘 (𝑡𝑖𝑗𝑘
𝑐 −𝑡(𝑖−1)𝑗𝑘

𝑐 )−1
𝑒(−Δ𝑦𝑖𝑗𝑘𝛽𝑗𝑘)  (4.5) 

Here 𝛼𝑗𝑘 and 𝛽𝑗𝑘 represent the shape and scale parameter of 𝑗𝑡ℎ sample at  𝑘𝑡ℎ stress level, 

respectively. The estimates of shape and scale parameters for each sample can then be utilized to 

understand the random effects of the degradation.  

Most of the earlier work on gamma degradation process had assumed that the only shape 

parameter (𝛼) depends on stress factor while the scale parameter (𝛽) remains constant (Park and 

Padget, 2005; Lawless and Crowder, 2004; Tseng et al., 2009). This assumption was based on 

the understanding that the activation energy for all samples is constant. The activation energy 
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represents the minimum energy required to initiate the failure mechanism. The higher activation 

energy suggests the requirement of higher energy and higher stress levels to initiate failure. 

However, recent studies show that the activation energy can not only change over time due to 

improvement in product design, but also acquire different values for different failure 

mechanisms, production lots coming from the different manufacturing process, and different 

versions of the product (Bayel and Mettas, 2010). This implies that activation energy might vary 

from unit to unit and also could be dependent on stress levels. Additionally, the physical 

degradation rate is expressed by the ratio of shape and scale parameters by a gamma process. 

The variation of the degradation rate and increment process also can be expressed in terms of 

gamma parameters. Several recent studies have concluded that both the degradation rate and 

variability in degradation are stress dependent (Limon et al., 2017a; Rathod et al., 2011). It is, 

therefore, reasonable to assume that both the shape and scale parameters depend on stress 

factors. Moreover, several studies considered the non-constant scale parameter during the 

accelerated life test design considering different lifetime distribution (Meeter and Meeker, 1994; 

Balakrishnan and Ling, 2014). Further, in the presence of multiple stress conditions, the 

interaction between stresses could also be causing changes scale parameter. Thus, the effect of 

stress variables and their interactions on gamma parameters can be modeled using the general 

Eyring law as follows:   

𝛼(𝑠) = 𝑒𝑥𝑝
(𝑎0+∑ 𝑎𝑖𝑆𝑖+∑ 𝑎𝑖𝑗𝑆𝑖𝑆𝑗

𝑞
𝑖,𝑗=1,𝑖≠𝑗

𝑟
𝑖=1 ) 

  (4.6) 

𝛽(𝑠) = 𝑒𝑥𝑝
(𝑏0+∑ 𝑏𝑖𝑆𝑖+∑ 𝑏𝑖𝑗𝑆𝑖𝑆𝑗

𝑞
𝑖,𝑗=1,𝑖≠𝑗

𝑟
𝑖=1 )

  (4.7) 

where 𝑆𝑖 represents the standardized transformed stress, a and b represent the corresponding 

stress coefficients that need to be estimated using the test data and r and q represent the number 

of stress factors and the number of interactions between stresses, respectively. Now considering 
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the parameter-stress relationship in equations (4.6-4.7), the likelihood function of all degradation 

increments data is written as: 

𝐿 (𝜃) =  ∏∏∏

[𝑒𝑥𝑝
(𝑏0+∑ 𝑏𝑖𝑆𝑖+∑ 𝑏𝑖𝑗𝑆𝑖𝑆𝑗

𝑞
𝑖,𝑗=1,𝑖≠𝑗

𝑟
𝑖=1 )

]
𝑒𝑥𝑝

(𝑎0+∑ 𝑎𝑖𝑆𝑖+∑ 𝑎𝑖𝑗𝑆𝑖𝑆𝑗
𝑞
𝑖,𝑗=1,𝑖≠𝑗

𝑟
𝑖=1 ) 

 (𝑡𝑖𝑗𝑘
𝑐 −𝑡(𝑖−1)𝑗𝑘

𝑐 )

Γ [𝑒𝑥𝑝
(𝑎0+∑ 𝑎𝑖𝑆𝑖+∑ 𝑎𝑖𝑗𝑆𝑖𝑆𝑗

𝑞
𝑖,𝑗=1,𝑖≠𝑗

𝑟
𝑖=1 ) 

(𝑡𝑖𝑗𝑘
𝑐 − 𝑡(𝑖−1)𝑗𝑘

𝑐 )]
 

Δ𝑦
𝑖𝑗𝑘

[𝑒𝑥𝑝
(𝑎0+∑ 𝑎𝑖𝑆𝑖+∑ 𝑎𝑖𝑗𝑆𝑖𝑆𝑗

𝑞
𝑖,𝑗=1,𝑖≠𝑗

𝑟
𝑖=1 ) 

(𝑡𝑖𝑗𝑘
𝑐 −𝑡(𝑖−1)𝑗𝑘

𝑐 )−1]

𝑒𝑥𝑝
[−Δ𝑦𝑖𝑗𝑘𝑒𝑥𝑝

(𝑏0+∑ 𝑏𝑖𝑆𝑖+∑ 𝑏𝑖𝑗𝑆𝑖𝑆𝑗
𝑞
𝑖,𝑗=1,𝑖≠𝑗

𝑟
𝑖=1 )

]

       
 

𝑝

𝑘=1

𝑚

𝑗=1

𝑛

𝑖=1

 

 (4.8) 

where 𝜃 = (𝑎̂0, 𝑎̂𝑖, 𝑎̂𝑖𝑗, 𝑏̂0, 𝑏̂𝑖, 𝑏̂𝑖𝑗, 𝑐̂). Depending on the applied stresses and degradation behavior, 

the number of parameters in equation (4.8) will vary. Further, the nonlinear equation with 

multiple unknown parameters presents a greater challenge to estimate parameter values. The 

maximum likelihood method with advance optimization software R can be utilized to solve this 

complex equation. The built–in ‘mle’ function that uses the Nelder-Mead algorithm (optim) to 

optimize the equation can be used to estimate model parameters. Once the model parameter 

values (𝑎̂0, 𝑎̂𝑖, 𝑎̂𝑖𝑗 , 𝑏̂0, 𝑏̂𝑖, 𝑏̂𝑖𝑗 , 𝑐̂) are obtained, the gamma shape and scale parameters at any stress 

level can be estimated using equations (4.6-4.7).  

4.3. Lifetime and Reliability Estimates 

In a stochastic process, the failure is determined when the first passage of time reaches 

the threshold degradation value. Now assuming that a failure occurs while the degradation path 

reaches the threshold ω, then the time to failure, 𝑡𝜔, is define the time when degradation path 

cross the threshold ω and the reliability function at time t will be,  
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𝑅(𝑡) = 𝑃(𝑡 < 𝑡𝜔) = 1 −
Γ(𝛼𝑡𝑐,𝜔𝛽)

Γ(𝛼𝑡𝑐)
  (4.9) 

where, ωβ =(ω-y0)β and  y0 is the initial degradation value. The cumulative distribution function 

(CDF) of 𝑡𝜔 is given as, 

𝐹(𝑡) =
Γ(𝛼𝑡𝑐,𝜔𝛽)

Γ(𝛼𝑡𝑐)
  (4.10) 

Because of the gamma function, the evaluation of the CDF becomes mathematically intractable. 

To deal with this issue, Park and Padgett (2005) proposed an approximation of time-to-failure 

(𝑡𝜔) with Birnbaum-Saunders (BS) distribution and proposed the following CDF and PDF, 

respectively:   

𝐹𝐵𝑆(𝑡) ≈ 𝜙 [
1

𝑎
(√

𝑡𝑐

𝑏
− √

𝑏

𝑡𝑐)]  (4.11) 

𝑓𝐵𝑆(𝑡) =
1

2√2𝑎𝑏
[√

𝑏

𝑡𝑐 + √
𝑏

𝑡𝑐

3
] 𝑒

[−
(𝑏−𝑡𝑐)

2

2𝑎2𝑏𝑡𝑐
]
   (4.12) 

where a =1/√ (ωβ) and b= ωβ /α. Considering Birnbaum-Saunders approximation, the expected 

failure time can be estimated as: 

𝑡𝜔 = (
𝜔𝛽

𝛼
+

1

2𝛼
)

1

𝑐
   (4.13) 

The equations (4.11) and (4.13) can be used to estimate the reliability and mean lifetime at the 

normal operating conditions, respectively.  

The overall reliability assessment framework considering ATD data with stochastic 

gamma process and Bayesian inference is illustrated in Figure 4.2.  
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Figure 4.2:  Reliability assessment framework for ADT data and Bayesian updates 

4.5. Case Example of ADT Data Modeling 

To demonstrate the proposed method, accelerated test data on carbon-film resistors is 

considered as a case study example and test data has been taken from the literature (Park and 

Padgett, 2006 and see Appendix A). There are several missing data points which have been 

simulated using the methods mentioned in Park and Padgett (206).  A carbon-film resistor 

consists of carbon-film placed around the ceramic substrate is widely used in electronic circuits 

to restrict the electric current flow.  The resistance of the carbon-film changes over time under 

applied temperature and voltage stresses and it is, therefore, considered as a degradation of the 

performance characteristic. For convenience, the relative resistance of carbon-film is taken as 

degradation measures with an initial relative resistance 𝑦0 = 1 and a threshold value is 

determined at 20% increase of the relative resistance (𝜔 = 0.20). For accelerated degradation 

test, three levels of each stress factor are considered and ten samples are allocated at each 
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treatment combination of two stress factors.  The temperature levels are 350 K, 400 K, and 450 

K and voltage levels include 10 V, 15 V, and 20 V. The normal operating conditions are set as a 

323 K temperature and 5 V voltage. The degradation observations were taken at every hundred 

hour intervals. 

4.5.1. Degradation data analysis 

The effect of each stress factor and stress levels on the degradation process is illustrated 

in Figure 4.3. The data also shows the continuous deteriorating behavior of the relative 

resistance. The probability plot of degradation increment provides a good fit to gamma 

distribution compared to the normal distribution (see Figure 4.4). This justifies our assumption of 

considering gamma process to model the degradation path instead of using the Weiner process or 

Brownian motion process where degradation increment is assumed to follow the normal 

distribution.  It is very critical to select the appropriate model in stochastic degradation analysis 

to ensure reduced model uncertainty and avoid wrong inferences. 

 

a. Average degradation path at 350 K            b. Sample degradation path at 350 K and  10 V 

Figure 4.3: Effect of stresses on carbon-film resistors degradation path 
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Figure 4.4: Comparative probability plot of degradation increment 

To estimate model parameters, it is essential to first estimate overall model coefficient 

values of the likelihood function given in equation (4.8). However, due to a large number of 

unknown model coefficients in equation (4.8), it is extremely difficult to get the exact solution of 

the proposed likelihood function. Therefore, the nonlinear built-in optimization function optim, 

which is based on the Nelder-Mead algorithm, is used to maximize the log-likelihood function. 

Table 4.1 presents the estimated values of overall model coefficients considering all sample 

datasets. 

Table 4.1: Estimated model coefficient parameters considering all datasets 

 
Overall model parameter estimates 

â0 𝑎̂1 𝑎̂2 𝑎̂12 𝑏̂0 𝑏̂1 𝑏̂2 𝑏̂12 𝑐̂ 

-0.4543 0.6672 1.5475 0.052 5.2107 -0.6791 -0.8338 1.0161 0.986 
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These model coefficient estimates are then utilized to estimate the stress-dependent 

gamma process parameters using Eqns. (4.6-4.7). Looking at the estimated model coefficient 

values, it seems stress factors acted differently on the shape and scale parameters. The estimated 

coefficient values suggest that both the temperature and voltage stresses have an increasing 

effect on the shape parameter and having a negative effect on scale parameter.  Further, we also 

observe some significant interaction effect especially in the case of scale parameter, which is 

also illustrated in Figure 4.5. 

 

Figure 4.5: Effects of stresses on gamma parameter  

This clearly supports our assumption that both the parameters are stress dependent though 

the effect of stress factors on the scale parameter is not straightforward. We believe this could be 

due to the possible interaction effect of stress factors. The presence of an interaction effect might 

be the reason behind the irregular pattern of gamma scale parameter values in Figure 4.5. It is, 

therefore, fair to infer that in the multi-stress environment, the gamma parameters, as well as 

other reliability measures, are impacted by stress levels and interaction effect of multiple 

stresses.  

To validate our initial inference on significant interaction effect, the likelihood ratio (LR) 

test is performed to investigate the presence of the interaction between temperature and voltage 
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stresses. The estimated LR test statistics is 8.69 that is greater than the critical chi-square value 

(𝜒1,0.05
2 = 3.841) supporting the hypothesis of the presence of interaction. We, therefore, are 

fairly confident to conclude that there exists a statistically significant interaction between 

temperature and voltage stresses in this particular case example.  

4.5.2. Reliability estimates using example data 

Using the estimates of overall model coefficient parameters given in Table 4.1 and 

equations (4.6-4.7), the shape and scale parameters are estimated as 0.63 and 183.22, 

respectively. The expected lifetime of carbon-film resistor is estimated to be 62.47 hundred 

hours. Both the expected life and reliability estimates clearly demonstrate the highly reliable 

nature of the carbon-film products. The existing method in the literature (Park and Padgett, 2006) 

that considers only shape parameter is stress dependent and assumes linear model provides the 

expected lifetime estimate as 23.48 hundred hours, much lower estimate than the proposed 

approach. It seems the method proposed by Park and Padgett (2006) underestimates reliability 

parameters at operating conditions. 

To further validate and improve the estimation accuracy, a Monte Carlo simulation study 

is conducted using the estimated model parameters (Liao and Elsayed, 2006). The flowchart of 

the MC simulation is provided in Figure 4.6.  The simulation study provides an expected lifetime 

estimate as 61.45 hundred hours, which is close to the expected lifetime estimate given by the 

proposed approach. 
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Figure 4.6: The MC simulation steps for robust estimates 

Figure 4.7 shows the reliability plots obtained using the proposed approach, a simulation-

based approach, and the existing method that considers the scale (𝛽) parameter as a constant. 

The difference in reliability estimates provided by the proposed approach and existing method is 

mainly attributed to the assumptions in the proposed approach that both gamma parameters are 

stress dependent and the consideration of nonlinearity in the degradation process.  



 

42 
 

   

 

Figure 4.7: Reliability of carbon-film resistor at the normal operating condition 

To further investigate this huge difference in reliability estimates, let us consider the 

expected degradation increment 𝐸(𝑦(𝑡)) =
𝛼

𝛽
𝑡𝑐.  For a given time and nonlinearity parameter, it 

is clear from this relationship that the degradation behavior depends on gamma parameters only. 

It is also observed that the assumption of stress dependent gamma parameters leads to a higher 

estimated value of the scale parameter (β) at normal operating conditions as compared to the 

assumption of constant scale parameter. It seems this higher value of scale parameter represents 

slower degradation increment rate at normal operating conditions as compared to higher stress 

levels. To further understand this behavior, we plotted the changes in estimated values of scale 

parameters against different stress levels considering individual stress levels as well as combined 

levels as shown in Figure 4.8. We also plotted the constant scale parameter value to provide a 

visual comparison.  
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a. Individual stress effect                                               b. Combined stress effect 

 

Figure 4.8: Change in scale parameter values with stresses levels 

As shown in Figure 4.8, the stress-dependent scale parameter values, for both individual 

stress levels and combined stress effect, are higher at lower stress levels and then continuously 

decreasing as stress levels go up. After a certain level(s) of stress (we can call it steady stress 

level at which scale parameter value is same for both cases), the stress-dependent scale 

parameter value goes even below the constant scale parameter value obtained using existing 

method (Park and Padgett, 2006) or stays close to it.  As mentioned earlier, the higher scale 

parameter value signifies the lower degradation rate meaning higher lifetime and reliability 

estimates. Since the stress levels at normal operating conditions are much lower than steady 

stress levels, the above rationale explains the reasoning for getting higher reliability estimate 

using the proposed approach as shown in Figure 4.7. The stress-dependent scale parameter value 

is lower than or close to constant scale parameter value beyond steady stress level, though the 

difference may not be very significant as shown in Figure 4.8b. This clearly explains that the 

methods based on the assumption of constant scale parameter will underestimate reliability 

parameters if operating conditions are below steady stress levels and sometimes overestimate 

reliability parameters above the steady stress levels though the difference may not be significant. 
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The same phenomenon is explained in Figure 4.9 where the difference is the lifetime estimate is 

very high at lower stress levels but not very significant at higher stress levels. This understanding 

justifies the consideration of stress-dependent gamma parameters that can provide more realistic 

reliability parameter estimates using ADT data.  The overall pattern of a shift in lifetime 

estimates shown in these plots (see Figure 4.9) also indicates the effect of stress levels and their 

interaction. 

 

Figure 4.9: Illustration of lifetime comparison of the existing and proposed method 

For the given data set, the nonlinearity parameter is not very strong mainly because the 

original data set is transformed into the relative measurement. However, to investigate the impact 

of nonlinearity on reliability parameter estimates, a sensitivity analysis was performed 

considering different values of nonlinearity parameter. Figure 4.10 shows the effect of 

nonlinearity on the degradation process and subsequently on product reliability. The analysis 

results show that higher nonlinearity in the degradation process means increasing degradation 

rate and a faster drop in reliability or lifetime. The results are intuitive because in a gamma 
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process the expected degradation rate or increment is proportional to its time function 

(𝐸(𝑦(𝑡)) ∝ 𝑡𝑐) for given gamma process parameters.  

 

Figure 4.10: Effects of nonlinearity on reliability estimates considering remaining parameter 

constant 
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CHAPTER 5. BAYESIAN INFERENCE AND RUL ESTIMATION  

Since initial model parameters are estimated based on the limited data available from 

ADT and hence will have higher uncertainty in the parameter estimates. Therefore, to further 

refine and update model parameter estimates if additional degradation data become available, we 

propose a Bayesian parameter updating approach. Especially, condition monitoring data has 

significant importance to predict remaining useful life estimation and decision making on 

maintenance planning.  Seeing the practical importance, gamma parameters need to be updated 

when additional degradation data is available.  In Bayesian updating, previously estimated model 

parameters are treated as random variables and uncertainty in these parameters is captured as the 

prior distribution. The prior distribution plays an important role that can also affect the overall 

Bayesian inference method. Therefore, a careful assumption and estimation are necessary to 

obtain the prior distribution. It is generally recommended to get the prior distribution using the 

past historical data or expert’s opinion.   

5.1. Conjugate Prior Distribution 

In a conjugate prior distribution, both prior and posterior distributions belong to the same 

conjugate family of distributions (Martz and Waller, 1982). For analysis purpose, the scale 

parameter (β) is treated as a random variable and is assumed to follow the gamma distribution, β 

| α ~Ga (γ, η).  The shape parameter (α) is assumed to be known. The newly observed 

degradation data are represented as 𝑦𝑖 (𝑖 = 1,2, … , 𝑛) at the corresponding time 𝑡𝑖 and the 

degradation increment at time increment ∆𝑡𝑖(= 𝑡𝑖
𝑐 − 𝑡𝑖−1

𝑐 ) is denoted as ∆𝑦𝑖.  Now, suppose 

𝑃(𝛽)  and 𝐿(∆𝑦|𝛽) represent the prior distribution and maximum likelihood function, 

respectively, the posterior distribution is given as (Martz and Waller, 1982): 

𝑃(𝛽|∆𝑦) =
𝐿(∆𝑦|𝛽) 𝑃(𝛽)

∫ 𝐿(∆𝑦|𝛽) 𝑃(𝛽) 𝑑𝛽
∞
0

  (5.1) 
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For n observed data and considering the kernel density function, the posterior relation can be 

written as: 

 𝑃(𝛽|∆𝑦) ∝ ∏ 𝐿(∆𝑦|𝛽) 𝑃(𝛽)𝑛
𝑖=1   (5.2) 

As both the data and scale parameter are considered to follow the gamma distribution, the 

maximum likelihood and prior distribution functions are given as: 

𝐿(∆𝑦𝑖|𝛽) = ∏
𝛽𝛼∆𝑡𝑖

Γ(𝛼∆𝑡𝑖)

𝑛
𝑖=1 Δ𝑦𝑖

𝛼∆𝑡𝑖−1
𝑒−(𝛽Δ𝑦𝑖)  (5.3) 

𝑃(𝛽) =
𝜂𝛾

Γ(𝛾)
𝛽𝛾−1𝑒−𝜂𝛽  (5.4) 

Considering equations (5.3) and (5.4), the posterior relation equation (5.2) can be presented as:  

𝑃(𝛽|∆𝑦) ∝ 𝛽𝛼 ∑ ∆𝑡𝑖+𝛾−1𝑛
𝑖 𝑒−𝛽(𝜂+∑ Δ𝑦𝑛

𝑖 )  (5.5) 

According to the property of the conjugate prior distribution, the posterior distribution is 

𝛽|𝛼 ~𝐺𝑎(𝛾′, 𝜂′), where 𝛾′ = 𝛾 + 𝛼 ∑ Δ𝑡𝑖
𝑛
𝑖  and 𝜂′ = 𝜂 + ∑ Δ𝑦𝑖

𝑛
𝑖 . Thus, the posterior estimate of 

β can be written as, 

𝐸(𝛽|Δ𝑦𝑖) =
𝛾+𝛼 ∑ Δ𝑡𝑖

𝑛
𝑖

𝜂+∑ Δ𝑦𝑖
𝑛
𝑖

  (5.6) 

Equation (5.6) can now be used to update the posterior estimate of 𝛽 whenever new degradation 

data become available. 

5.2. Non-conjugate Prior Distribution 

When both the shape and scale parameters of the gamma distribution are random 

variables, there exists no conjugate prior distribution. Suppose 𝑃(𝛼, 𝛽) represent the joint prior 

distribution function and 𝐿(∆𝑦 |𝛼, 𝛽) is the maximum likelihood function of the data, the 

posterior distribution of unknown parameters is given as (Martz and Waller, 1982): 
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𝑃(𝛼, 𝛽|∆𝑦) =
𝐿(∆𝑦 |𝛼, 𝛽) 𝑃(𝛼,𝛽)

∫ ∫ 𝐿(∆𝑦 |𝛼, 𝛽) 𝑃(𝛼,𝛽) 𝑑𝛼 𝑑𝛽
∞
0

∞
0

   (5.7) 

In statistically independent cases, the joint PDF of 𝛼 and 𝛽 can be expressed as, 

𝑃(𝛼, 𝛽) = 𝑃(𝛼)𝑃(𝛽). The best fitted distribution can be utilized to describe the randomness of 𝛼 

and 𝛽 parameters. Considering the statistical independence, the posterior estimates of parameter 

𝛼 and 𝛽 than can be given as: 

𝐸(𝛼|∆𝑦) = ∫ 𝛼 𝑃(𝛼|∆𝑦) 𝑑𝛼
∞

0
  (5.8) 

𝐸(𝛽|∆𝑦) = ∫ 𝛽 𝑃(𝛽|∆𝑦) 𝑑𝛽
∞

0
  (5.9) 

where 𝑃(𝛼|∆𝑦) and 𝑃(𝛽|∆𝑦) are known as the marginal distribution functions that are usually in 

unknown forms. To deal with an unknown form of the posterior distribution, a numerical 

computation method is required to estimate the posterior parameter values. The Markov Chain 

and Monte Carlo (MCMC) simulation with Gibbs sampler provides an efficient estimate of the 

posterior parameters (Gelman and Stren, 2004). The MCMC simulation is proposed in the 

following steps:  

Step 1: Obtain the distribution of gamma parameters from ADT sample data 

Step 2: Set prior distribution of parameters e.g. 𝛽 ~𝐺𝑎(𝛾′, 𝜂′) and new degradation increment 

Δyi for time interval Δti 

Step 3: Generate a large number (B) of sample observation using prior and newly available data 

from the proposed distribution until the equilibrium is reached 

Step 4: Cut off the first T (say T =1000) number of initial observation to omit the noise effect 

Step 5: Monitor the convergence of the posterior equilibrium, if not, generate more sample 

observation 
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Step 6: Obtain the mean value of parameters from the observed samples that will be the posterior 

estimates. 

5.3. Remaining Useful Life Estimation 

In the previous chapter, a reliability and lifetime estimation method has been developed 

using the accelerated degradation test data and gamma process for highly reliable products. The 

sudden failure of his highly valued critical components incurs huge costs including fatalities and 

environmental damages. Before any catastrophic failure, products usually deteriorates that 

reflects on the product performance or other condition monitoring parameters. These parameters 

as a measure of deterioration process can be captured by using modern sensor technology as a 

degradation data. A pre-defined threshold value of the product performance or these condition 

monitoring parameter values is set to obtain the mean-time-to-failure. Therefore, the inspections 

and condition-based maintenance (CBM) are critically important to the maintenance of highly 

reliable and critical components. The time left for failure occurs is predicted based on the current 

operating condition (Jardine et al., 2006). The time between the next failure and the current time 

is known as the remaining useful life (RUL). The RUL estimates provide critical information to 

predict and manage catastrophic failure, spare parts management, and maintenance strategies. 

Also, it is the key to the modern prognostics and health management (PHM) concept. 

Prognostics and health management is broadly divided into two categories: physics-based 

and data-driven approach. In reality, getting the exact physics-of-failure model for product 

specific is difficult, sometimes impossible. On the other hand, the statistical data-driven 

approach is more accessible and therefore widely used. Considering the deterioration is a 

continuous process, it further divided the RUL prediction into two categories: general path model 
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and the stochastic process model. In this work, we only focus on the stochastic process especially 

the gamma process model.  

From the previous section, the lifetime according to the gamma process can be written as, 

𝜉𝜔 = (
𝜔𝛽

𝛼
+

1

2𝛼
)

1

𝑐
  (5.10) 

Assume the field degradation data of a product is collected as y1, y2, …..,yn. Then if yi <ωβ, the 

mean remaining useful life is given as: 

           𝜉𝑦𝑖
= (

(𝜔−𝑦𝑖)𝛽

𝛼
+

1

2𝛼
)

1

𝑐
    (5.11) 

However, by updating the gamma parameter at each new degradation point using the Bayesian 

inference (previous sub-section), the Eqn. (5.10) can be also used to estimate the reaming useful 

life before its failures.  

5.4. Bayesian Parameter Updates and RUL: Case Studies 

To further reduce the uncertainty in parameter estimates obtained from ADT data, we 

update these initial parameter estimates once more data become available. The initial parameter 

estimates obtained from ADT data are 0.63 [0.28, 1.45] and 183.22 [73.30, 457.97], which are 

treated as prior information and provide a good fit to the gamma distribution. The prior gamma 

distribution parameters of 𝛼 and 𝛽 were obtained as 𝛼̂ ~𝐺𝑎 (5.714, 9.2592) 

and 𝛽̂ ~𝐺𝑎 (11.19, 0.0645) (Appendix B).  Table 5.1 shows degradation data obtained at normal 

operating conditions, which will be treated as additional information to obtain the posterior 

distribution of gamma parameters.  

For conjugate prior, only the scale parameter is treated as a random variable to capture 

random effects with prior distribution parameters 𝛽̂ ~𝐺𝑎 (11.19, 0.0645).   The updated scale 

parameter with posterior estimates were given in Table 5.1.  
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Table 5.1: Posterior estimate of scale parameter using conjugate analysis 

 
Time(x100) 15 25 35 

y(t) 1.0523 1.0874 1.125 

E (β|Δy) 173.702 172.785 169.759 

 

For non-conjugate analysis, both shape and scale parameters are treated as random 

variables to capture random effects. As stated earlier, for both of these parameters gamma 

distribution is considered as a prior distribution with parameters estimates given as 

𝛼̂ ~𝐺𝑎 (5.714, 9.2592) and 𝛽̂ ~𝐺𝑎 (11.19, 0.0645). Because of the mathematical complexity, a 

numerical simulation method is used to obtain non-conjugate posterior distribution and 

subsequently estimates of the model parameters. The WinBUGS software, which is an excellent 

platform to carry out the MCMC simulation, is used to estimate posterior parameters (Ntzoufras, 

2009). Table 5.2 provides the updated values of both the shape and scale parameters based on 

additional degradation information.   

Table 5.2: Posterior estimate of shape and scale parameter using non-conjugate analysis 

 
Time (x100) 15 25 35 

y(t) 1.0523 1.0874 1.125 

E(α|Δy) 0.616 

[ 0.27, 0.96] 

0.630 

[0.33, 0.93] 

0.651 

[0.38, 0.92] 

E(β|Δy) 170.90 

[85.39, 256.41] 

171.60 

[95.16, 248.04] 

170.40 

[101.72, 239.08] 
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Figure 5.1: Uncertainty reduction of gamma parameter estimates with Bayesian updating 

Table 5.2 and Figure 5.1 show reduction in the uncertainty of model parameters as a 

range of parameter estimates decreases when additional degradation information becomes 

available. It shows that the accuracy of model parameter estimates improves when more 

information or data on degradation become available. Reduction in the uncertainty of model 

parameter estimates leads to more precise reliability estimates and provides more confidence in 

reliability analysis efforts. Figure 5.2 shows the Bayesian updating process for the alpha 

parameter.  
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b. quantile value                                          d. autocorrelation 

Figure 5.2: Posterior α parameter updating for a new degradation data with MCMC simulation  

Now in the presence of new degradation observation with an updated model parameter, it 

is obvious that the remaining useful life (RUL) of the product can be predicted. Table 5.3 shows 

the RUL estimation using both the updated parameter and initial ADT estimate. Figure 5.3 shows 

that the distribution of the RUL at different time observation.  

Table 5.3: Estimates of RUL using initial and updated parameter 

 

Time (x100) 0 15 25 35 

y(t) 1 1.0523 1.0874 1.125 

RUL, updated 62.47 44.06 33.01 21.28 

RUL, initial 62.47 46.16 35.26 23.63 
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a. RUL vs time                                     b. RUL distribution 

Figure 5.3: RUL and its distribution at different time observation  
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CHAPTER 6. ADT DESIGN AND PLANNING 

To get the effective reliability estimation using the ADT method, it is necessary to have 

an effective test plan that involved with optimal sample allocation at each stress level, 

incorporate the budget constraint, and simultaneously obtained a precise estimation. A recent 

review by Limon et al. (2017a) provides the necessary and several other important issues on 

accelerated test designs. 

Despite the fact that the gamma process is a suitable model for monotonic deterioration 

though ADT work considering the gamma process is not plenty. Most of the exiting work 

considered the single stress factor loadings, however, recent studies shows a necessity and 

inclination towards the multiple stress factor loading considering the actual product uses. 

Further, multiple stress factors arise the issue of interaction effect on the degradation process. 

Also, the above-mentioned works considered only the gamma shape parameter is stress 

dependent while the gamma scale parameter remains constant at different stress levels. The 

recent studies also show the drawback of this assumption. Therefore, to bridge the gap of 

existing literature, a constant-stress ADT design is proposed in this work. The multiple stress 

loadings with possible interaction between stresses are also considered in this work. To make the 

design more realistic, it is assumed that both the gamma parameters are stress dependent.  

6.1. The ADT Design Optimization Model 

6.1.1. Maximum-likelihood estimates 

In this study, two stress factors, leveled by S1 and S2 are considered for a constant-stress 

ADT plan to accelerate the samples’ degradation as well as the failure process. Suppose, 𝑦𝑖𝑗𝑘 

represents the 𝑖𝑡ℎ observation of the 𝑗𝑡ℎ sample under the 𝑘𝑡ℎ stress level at the time period 𝑡𝑖𝑗𝑘 . 

It is assumed that the number of measurements for jth sample unit at kth stress level is same that is 
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𝑚𝑗𝑘 = 𝑚 for all units. Also, measurement time tijk for jth sample at kth stress level are in equal 

interval that is ∆𝑡𝑖𝑗𝑘 = ∆𝑡 for all units. The initial time 𝑡0𝑗𝑘 = 0 and the terminal observation 

time 𝑡𝑚𝑗𝑘 = 𝑚 ∆𝑡. In a gamma process, the degradation increment ∆𝑦𝑖𝑗𝑘 = 𝑦𝑖𝑗𝑘 − 𝑦(𝑖−1)𝑗𝑘 in 

time interval ∆𝑡𝑖𝑗𝑘=𝑡𝑖𝑗𝑘 − 𝑡(𝑖−1)𝑗𝑘  follow the gamma distribution with a PDF, 

𝑓∆𝑦𝑖𝑗𝑘
=

𝛽(𝑆𝑘)

𝛼(𝑆𝑘)Δ𝑡

Γ(𝛼(𝑆𝑘)Δ𝑡)
Δ𝑦𝑖𝑗𝑘

(𝛼(𝑆𝑘)Δ𝑡−1)
𝑒−(Δ𝑦𝑖𝑗𝑘 𝛽(𝑆𝑘))  (6.1) 

For n number of test units (𝑛 = ∑ 𝑛𝑘
𝑧
𝑘=1 ) the log-likelihood function becomes, 

log 𝐿(𝜃) = ∑ ∑ ∑ [𝐴𝑘 ∗ log(𝛽𝑘) − log Γ(𝐴𝑘) + (𝐴𝑘 − 1) ∗ log(Δ𝑦𝑖𝑗𝑘) − Δ𝑦𝑖𝑗𝑘 ∗ 𝛽𝑘]𝑧
𝑘=1

𝑛𝑘
𝑗=1

𝑚
𝑖=1    (6.2) 

Here, 𝐴𝑘 = 𝛼(𝑠𝑘)Δt = 𝑒(𝛾0+𝛾1𝑆1𝑘+𝛾2𝑆2𝑘+𝛾3𝑆1𝑘𝑆2𝑘)Δt  and  𝛽(𝑠𝑘) = 𝑒(𝛿0+𝛿1𝑆1𝑘+𝛿2𝑆2𝑘+𝛿3𝑆1𝑘𝑆2𝑘) =

𝛽𝑘. The 𝛾 and 𝛿 represents the co-efficient of shape and scale parameters, respectively. Now, 

taking the expectations of the negative second partial derivatives of the Eqn. (6.2) with respect to 

the unknown parameters 𝜃 = (𝛾0, 𝛾1, 𝛾2, 𝛾3, 𝛿0, 𝛿1, 𝛿2, 𝛿3), the Fisher information matrix (F) can 

be derived as follows (see Appendix C).  

𝑭(𝜃) =

[
 
 
 
 
 
 
 
𝑎11  𝑎12  𝑎13  𝑎14  𝑎15  𝑎16  𝑎17  𝑎18 
        𝑎22  𝑎23  𝑎24  𝑎25  𝑎26 𝑎27  𝑎28

                  𝑎33  𝑎34  𝑎35  𝑎36  𝑎37  𝑎38

                          𝑎44  𝑎45  𝑎46  𝑎47  𝑎48

                                   𝑎55  𝑎56  𝑎57  𝑎58

                                            𝑎66   𝑎67  𝑎68

                                                     𝑎77   𝑎78

      𝑆𝑦𝑚𝑚𝑒𝑡𝑟𝑦                                   𝑎88]
 
 
 
 
 
 
 

 

 

Then the asymptotic variance of the lifetime of the MLE at normal operating condition is 

obtained as, 

𝐴𝑠𝑣𝑎𝑟(𝜉𝑆0
) = 𝒉𝑇𝑭−𝟏(𝜃)𝒉    (6.3) 

Here, 𝒉𝑻 = [
𝜕𝜉𝑆0

𝜕𝛾0
,
𝜕𝜉𝑆0

𝜕𝛾1
,
𝜕𝜉𝑆0

𝜕𝛾2
,
𝜕𝜉𝑆0

𝜕𝛾3
,
𝜕𝜉𝑆0

𝜕𝛿0
,
𝜕𝜉𝑆0

𝜕𝛿1
,
𝜕𝜉𝑆0

𝜕𝛿2
,
𝜕𝜉𝑆0

𝜕𝛿3
]. 
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6.1.2. The optimization model 

At normal operating conditions, the lifetime can be rewritten as 𝜉𝑆0
= (

𝜔𝛽0

𝛼0
+

1

2𝛼0
) and 

subsequently, 𝒉𝑻 = [𝑎, 0,0,0, 𝑏, 0,0,0] (See Appendix C). While the Fisher information matrix is 

derived, the inverse of the Fisher information matrix than can be expressed as follows, 

 

𝑭−𝟏(𝜃̂) =

[
 
 
 
 
 
 
 
𝐴11  𝐴12  𝐴13  𝐴14  𝐴15  𝐴16  𝐴17  𝐴18 
        𝐴22  𝐴23  𝐴24  𝐴25  𝐴26 𝐴27  𝐴28

                  𝐴33  𝐴34  𝐴35  𝐴36  𝐴37  𝐴38

                          𝐴44  𝐴45  𝐴46  𝐴47  𝐴48

                                   𝐴55  𝐴56  𝐴57  𝐴58

                                            𝐴66   𝐴67  𝐴68

                                                     𝐴77   𝐴78

      𝑆𝑦𝑚𝑚𝑒𝑡𝑟𝑦                                   𝐴88]
 
 
 
 
 
 
 

 

 

Now, using the expression of the 𝒉𝑻, 𝑭−𝟏(𝜃), and 𝒉 matrices in the equation (6.3), the objective 

function of the model can be derived as 𝐴𝑠𝑣𝑎𝑟(𝜉𝑆0
(𝒙̂)) = 𝑎2𝐴11 + 2𝑎𝑏𝐴51 + 𝑏2𝐴88 (more 

detail in Appendix C). The objective function Asvar is a function of 𝒙̂ =

[∆𝑡 𝑚 𝑛1 𝑛2 𝑛3 𝑛4 𝑆11 𝑆12 𝑆21 𝑆22], where 𝒙̂ represents the decision variable vector of the ADT 

plan.  

The total accelerated degradation test cost can be divided into three categories: operating 

cost, degradation measurement cost, and sample units fixed cost. Considering Cop is the 

operating cost per unit, including the labor, the total experimental operating cost expression is 

𝐶𝑜𝑝  ∑ ∆𝑡𝑘 𝑚
𝑧
𝑘=1 . The degradation measurement cost of the test can be found by the expression 

𝐶𝑚 𝑚 𝑛 where Cm represents the unit cost of measurement. Finally, if each sample unit costs Cs 

then the total fixed cost would be 𝐶𝑠𝑛. Therefore, the total experimental cost can be written as, 

𝑇𝐶 = 𝐶𝑜𝑝  ∑ ∆𝑡𝑘 𝑚
𝑧
𝑘=1 + 𝐶𝑚𝑚 𝑛 + 𝐶𝑆 𝑛   (6.4) 
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Now, the ADT design optimization model considering two stress levels is formulated as 

follows, 

               𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐴𝑠𝑣𝑎𝑟 (𝜉𝑆0
(𝒙̂)) = 𝑎2𝐴11 + 2𝑎𝑏𝐴51 + 𝑏2𝐴88   (6.5) 

 
              Subject to,   

                                                𝑇𝐶 = 𝐶𝑜𝑝  ∑ ∆𝑡𝑘 𝑚
𝑍
𝑘=1 + 𝐶𝑚𝑚 𝑛 + 𝐶𝑆 𝑛 ≤ 𝐶𝑏 

 

                                                                                                     ∑ 𝑛𝑘
𝑧
𝑘=1 ≤ 𝑛 

 

                                                                                                     0 ≤ 𝑆1𝑘 ≤ 1 

                                                                                                     0 ≤ 𝑆2𝑘 ≤ 1                   
 

                                                                                     𝑛𝑘 ,𝑚 ∈ 𝑁(𝑖𝑛𝑡𝑒𝑔𝑒𝑟)  

 

 

6.2. The Solution Approach 

The objective function in Eqn. (6.5) depends on the unknown model parameters of 𝜃 =

(𝛾0, 𝛾1, 𝛾2, 𝛾3, 𝛿0, 𝛿1, 𝛿2, 𝛿3). Before, solving the optimization model, it is required to get the pre-

estimates of these parameter values. The historical test data and the MLE method can be used to 

obtain the initial pre-estimate values.  The sensitivity analysis of the initial parameter estimates 

can provide an insight about the effect of these estimates in the overall ADT plan.  

Further, the proposed model presented in Eqn. (6.5) is a complex nonlinear problem and 

it is very difficult or sometimes impossible to obtain an analytical solution in a reasonable time. 

To resolve this problem, a heuristic based search genetic algorithm (GA) method is proposed to 

obtain near-optimal solutions. The GA method is known as an evolutionary algorithm where the 

optimal solution is approached by a multiple search method. The decision variables are indicated 

as genetics and the objective function of the model is defined as the fitness function. As a first 

step, a population is randomly generated where each member represents a feasible solution also 

known as chromosomes. A set of chromosomes produced in an iteration of the algorithm is 

named as generation and the next generation is produced by the parents (eligible chromosomes 
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of the previous generation) based on the fitness value. The GA search approach has the following 

steps (Schmitt, 2001) that also showed in Figure 6.1.  

1. Randomly generate initial solutions of decision variables based on the population size 

2. Generated solutions are evaluated by the fitness function  

3. The selection and crossover of genes (decision variables) 

4. Mutations of genes (partial) 

5. Generated solution for the next generation and repeat from step 2 

6. The evolution process continues until a convergent optimal solution is obtained 

The GA requires several parameter settings to successfully obtain the optimal solution 

such as population size, crossover rate, and mutation rate. The larger population size helps to get 

a faster optimal solution. On the other hand, the complexity of the optimal search also increases 

with the population size. Similarly, a higher crossover rate expedites the optimal search method 

as well as increases the danger of breaking the solution at a higher fitness value. Further, there is 

always a chance to converge the solution into local optima rather than a global solution. The 

mutation rate resolves this problem. However, the excessively low mutation rates may cause 

failure to reach an optimal solution and a high mutation rate can break a better solution. 

Therefore, the moderate GA parameter settings are required to obtain the best solution in due 

time. The moderate GA parameter settings can be found by tuning and calibrating the parameters 

based on the desire fitness function value.  
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Figure 6.1: The algorithm flowchart of the GA search method 

In this work, the GA is used to determine the optimal settings of the ADT design 

parameters. The decision variables (𝒙̂) are considered the gene, and initial feasible solution of 

multiple sets of decision variables are generated based on the population size. The asymptotic 

variance (AsVar) is calculated using each of the chromosomes that results in the fitness function 

value. The smaller values of the AsVar have a better fitness as a solution. By iterating the above 

GA procedure, the optimal ADT design is achieved when the AsVar values of all feasible 

solutions converge to the same value.  

6.3. Case Example and Sensitivity Analysis 

The carbon film resistor used in electric circuits is taken as a case example in this study. 

The temperature and voltage cause the increase in resistance of the film-resistor. Therefore, the 

relative resistance is considered as a degradation characteristic and a 20% increase in the relative 
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resistance is treated as the threshold value.  The operating conditions of the film resistor are 

defined as 323 K and 5 V and the maximum stress level is set at 450 K and 20 V. Appendix A 

presented the relative resistance data of carbon film resistor at elevated stress level (Park and 

Padgett, 2006).  

Since the increase in resistance is monotonic in nature, the assumption of the gamma 

process is justifiable. The initial pre-estimates of the unknown parameters are obtained using the 

MLE method to the existing test data set. Further, the cost coefficients are considered as Cop= 

$3/hours, Cm = $2/measurement, Cs=$1/unit. The existing test data have been used to obtain the 

initial model coefficients as (𝛾0, 𝛾1, 𝛾2, 𝛾3) = (-5.0824, 0.6827, 1.5398, 0.0269) and 

(𝛿0, 𝛿1, 𝛿2, 𝛿3) = (5.2179, -0.6638, -0.8413, 0.9914). It is assumed that the total sample 

availability is 100. Two accelerated stress factors with two stress level will make a total of four 

accelerated stress test level combinations and four samples assigned at each combination. The 

optimization model is solved to obtain the optimal values of design variables 𝒙̂ =

[∆𝑡 𝑚 𝑛1 𝑛2 𝑛3 𝑛4 𝑆11 𝑆12 𝑆21 𝑆22]. As mentioned earlier that the objective function has no 

analytical solution and hence, a heuristic GA search is performed to obtain the optimal solution 

under the given constraint. The GA parameters are calibrated after several optimization runs and 

selected the parameter settings that provide the best objective function value. Table 6.1 provides 

several optimal ADT plans under different budget constraints.  
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Table 6.1: Optimal ADT plans under several budget conditions 

 
Cb ($) Δt m n1 n2 n3 n4 S11 S12 S21 S22 AsVar Cost ($) 

2000 34.693 3 19 27 23 20 0.809 0.120 1 0.221 6.942 x 10 6 1872 

2500 37.315 4 20 28 16 11 1 0.476 1 0.416 5.506 x 10 6 2466 

3000 35.053 5 13 25 20 9 1 0.286 0.890 0.336 3.669 x 10 6 2840 

3500 42.063 5 28 10 19 24 0.830 0.087 0.858 0.321 2.784 x 10 6 3415 

 

The optimal ADT plan for a budget constraint of $2000 has an objective function value 

of 6.942 x 10 6 and decision variable values are   𝒙̂ =

[34.693, 3 ,19, 27,23, 20, 0.809, 0.120, 1, 0.221]. This optimal result suggests four accelerated 

test combinations of standardized temperature and voltage stress as (0.809, 1); (0.809, 0.221); 

(0.120, 1); and (0.120, 0.221). These standardized stress test combinations can easily be 

transformed into nominal stress values by using Eqns. (2.4-2.6). For example, the standardized 

stress combination (0.809, 1) will have normal stress combination as (418.56 K, 20 V). The total 

test time for each accelerated stress test would be 104.079 hours, and the number of samples 

allocated for each test combination levels are 19, 27, 23, and 20, respectively. The optimal test 

plan also suggests that during each accelerated test, three degradation measurements are taken 

(excluding the initial measurement) at a time interval of 34. 693 hours.  Under this optimal test 

plan, the total costs of the experiment become $1872. 

From the sensitivity analysis of the ADT model under different budget constraint (See 

Table 6.1), it is observed that the relaxing the budget constraint (increasing budget) resulted in 

longer test duration. The test duration increases in terms of the measurement frequency (m) or 

the observation interval time (Δt) or increases both the frequency and interval time. However, 

longer test durations result in reduced sample size requirements at each accelerated test 
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combination, which is in line with the standard practice of having a smaller sample size for a 

longer test duration.  The optimal stress level does not have any significant changes due to the 

budget variations. It is also observed that the AsVar decreases while the budget is increased. The 

higher budget increases the test duration as well as the degradation inspection that provides 

relatively more information about the degradation process, and eventually, more information 

helps reduce the variation.  

Since the algorithm requires initial parameter values to start the search for an optimal 

solution, we used historical test data to get the MLE of the model parameters and treated them as 

initial parameter values also known as pre-estimates. To understand the impact of these initial 

pre-estimates on the optimal solution, a sensitivity analysis is performed by changing the initial 

parameter values. Different scenarios were created by changing the shape parameter coefficients 

(𝛾) and scale parameter coefficients (𝛿)  by ±5%  of the original pre-estimates. Table 6.2 

presents the optimal solution under a different scenarios of pre-estimates considering a budget 

constraint of $2000.  

Table 6.2: Optimal ADT plans under different initial parameter settings 

 
Scenario Δt m n1 n2 n3 n4 S11 S12 S21 S22 AsVar Cost 

($) 

+5% 𝛾𝑖 29.210 4 10 6 20 26 1 0.091 1 0.552 5.531 x 10 6 1960 

-5% 𝛾𝑖 35.661 3 25 15 23 17 1 0.340 0.899 0.510 3.426 x 10 6 1844 

+5% 𝛿𝑖 31.310 3 24 14 26 15 0.789 0.210 1 0.572 1.363 x 10 7 1680 

-5% 𝛿𝑖 36.193 3 6 21 20 23 0.731 0.591 0.842 0.645 3.963 x 10 6 1793 

 

The sensitivity analysis results (see Table 6.2) indicate that for all scenarios the total test 

duration varies from 93.93 to 116.84 hours in comparison to the original optimal test duration of 
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104.079 hours. Similarly, the measurement frequency interval variation is in the range of 29.210 

to 36.193 hours with the earlier optimal frequency interval of 34.693 hours. The total number of 

measurements during the test remains almost constant as 3 with the exception of 4 measurements 

in one scenario only. It seems the variation in these variables (test duration, measurement 

frequency interval, and the total number of measurements) is not very significant as compared to 

initial optimal design variables obtained considering pre-estimates. Similarly, the accelerated 

stress level settings at different scenarios are very close to the original optimal plan except for 

the low voltage level (S22), which does not seem to be very critical. The number of the sample 

varies from 62 to 81 whereas it is 89 in the original design. The AsVar value also changes 

(reduced in most cases) for the new setting conditions, which correlates to variation in total test 

duration. Increase in total test duration results in lowering AsVar that confirms with the earlier 

inference of decrease in uncertainty with longer test duration. It is also important to note that this 

slight increase in total test duration resulted in a reduction of sample requirements as expected. 

The total cost constraint varies from $ 1793 to $ 1960 indicating no significant difference from 

optimal cost ($1872) obtained from original pre-estimates.  Overall comparison of sensitivity 

analysis results with our optimal solution indicates that there is some variation in optimal values 

of decision variables but it does not seem to be very significant. However, authors would like to 

emphasize the importance of getting more accurate pre-estimates as sensitivity analysis results 

do show some variability.  
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CHAPTER 7. CONCLUSION AND SUMMARY 

This dissertation presents a reliability assessment framework under normal operating 

conditions using the ADT data. The stochastic gamma process is considered to capture 

degradation behavior for multiple stress factors assuming that both the gamma parameters (shape 

and scale parameters) are stress dependent. The multiple stress factors with interaction effects 

have been investigated in the life-stress model to capture the effect of stress factors on gamma 

parameters and finally on reliability parameters. The case study results revealed that the 

assumption of only shape parameter is stress dependent leads to an underestimation of the 

reliability and lifetime parameters. To reduce the estimation bias, a Monte Carlo simulation 

study and Bayesian parameter updating method have been applied to reduce the uncertainty in 

reliability parameter estimation at the normal operating conditions. Both conjugate and non-

conjugate cases were investigated with simulated data. The use of MCMC simulation technique 

with WinBUGS software provides an efficient Bayesian updating process. The updated 

parameters were further utilized to estimate the remaining useful lifetime for a particular 

component/product.  

As the effectiveness of ADT models mostly depend on efficient test planning and 

therefore, an optimal ADT plan is developed considering the stochastic gamma process to model 

the degradation behavior. To represent the practical usage conditions, a multi-level and multiple 

stress ADT capturing possible interaction effects between stresses is incorporated in the model. 

Also, based on recent literature, both the gamma parameters are considered dependent on stress 

levels. The log-likelihood function, as well as the Fisher information matrix, has been developed 

for the model. The objective function is set as minimizing the asymptotic variance of the MLE of 

the lifetime under normal operating conditions. The total experimental cost also considered as a 
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budget constraint in the optimization model. Due to the complexity of the objective function, a 

heuristic GA search algorithm has been used to obtain the optimal solution of the test plan. The 

sensitivity analysis is also performed under different budget constraint and for the different 

scenario of model pre-estimates. The results show the robustness of the model against this 

budget and pre-estimates. 

Based on the research conducted in this dissertation, there exist numerous scope for 

further investigation and extensions in various area. In the following, several future scopes have 

been discussed briefly. 

1. This work considered the gamma stochastic process with constant accelerated stress 

conditions. The methods can be investigated for other stochastic models, for example, 

Weiner and inverse Gaussian process. The different types of stress loadings, for instance, 

step or progressive type stress could also be implemented to further investigate the 

methods. For the proposed method, the effect of proper degradation model selection in 

terms of misspecification analysis will be a good research outcome.  

2. This work considers two stress factors with their possible interaction effects. More than 

two stress factors would be more interesting as the interaction effect between stresses 

become more complicated. Also, more than one degradation indicator will make the 

computational complexity further especially to design the ADT. More efficient and 

advanced algorithms are needed to solve these complex optimization problems. 

3. The existing proposed framework can be exhaustively extended for predicting the 

lifetime and RUL. This real-time prediction of the lifetime can be a very useful tool for 

prognostic health management of high valued assets. Also, lifetime prediction can be 

combined with maintenance optimization problem and extend it to several logistical 
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decision making such as spare parts inventory management, resource allocation, and 

warranty policy design.  

4. The advancement in sensors and wireless technologies provides the scope of collecting 

multidimensional degradation data in real-time. More advanced data analytics tools, for 

example, machine learning and deep learning techniques can be implemented along with 

the Bayesian inference to constantly update the model parameters.  
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APPENDIX A. CARBON FILM RESISTORS DEGRADATION DATA  

Stress\Hours 

(1000) 

0 1 2 3 4 5 6 7 8 9 10 

 1.000 1.005 1.034 1.062 1.077 1.104 1.124 1.141 1.149 1.153 1.158 

 1.000 1.008 1.018 1.021 1.042 1.06 1.082 1.102 1.114 1.14 1.165 

 1.000 1.005 1.011 1.019 1.029 1.034 1.035 1.058 1.065 1.09 1.11 

 1.000 1.009 1.015 1.033 1.037 1.038 1.058 1.068 1.082 1.089 1.103 

 1.000 1.002 1.016 1.034 1.042 1.06 1.069 1.08 1.099 1.11 1.114 

350 K/10 V 1.000 1.001 1.032 1.044 1.089 1.105 1.11 1.119 1.121 1.133 1.143 

 1.000 1.011 1.017 1.044 1.064 1.073 1.091 1.105 1.129 1.137 1.155 

 1.000 1.028 1.032 1.058 1.077 1.11 1.127 1.129 1.142 1.165 1.186 

 1.000 1.004 1.007 1.010 1.046 1.066 1.088 1.103 1.138 1.143 1.154 

 1.000 1.011 1.012 1.019 1.033 1.05 1.062 1.071 1.1 1.109 1.111 

            

 1.000 1.032 1.052 1.059 1.075 1.09 1.119 1.124 1.133 1.15 1.16 

 1.000 1.020 1.042 1.058 1.073 1.084 1.146 1.167 1.231 1.272 1.333 

 1.000 1.017 1.055 1.068 1.084 1.111 1.128 1.18 1.214 1.225 1.27 

 1.000 1.005 1.014 1.082 1.104 1.132 1.151 1.182 1.186 1.248 1.283 

 1.000 1.042 1.049 1.062 1.067 1.086 1.134 1.145 1.185 1.205 1.265 

350 K/15 V 1.000 1.012 1.049 1.103 1.111 1.12 1.134 1.162 1.214 1.226 1.278 

 1.000 1.049 1.065 1.094 1.115 1.151 1.173 1.181 1.187 1.228 1.293 

 1.000 1.007 1.011 1.014 1.039 1.057 1.064 1.083 1.087 1.153 1.157 

 1.000 1.063 1.092 1.144 1.161 1.201 1.228 1.264 1.302 1.33 1.487 

 1.000 1.014 1.033 1.071 1.094 1.121 1.141 1.179 1.201 1.227 1.299 
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Stress\Hours 

(1000) 

0 1 2 3 4 5 6 7 8 9 10 

 1.000 1.045 1.075 1.124 1.143 1.199 1.277 1.303 1.332 1.358 1.394 

 1.000 1.078 1.107 1.214 1.25 1.295 1.351 1.386 1.402 1.449 1.479 

 1.000 1.048 1.093 1.171 1.205 1.242 1.267 1.302 1.331 1.393 1.504 

 1.000 1.049 1.074 1.132 1.169 1.204 1.225 1.247 1.262 1.273 1.377 

 1.000 1.049 1.070 1.083 1.122 1.152 1.196 1.269 1.315 1.351 1.454 

350 K/20 V 1.000 1.067 1.139 1.194 1.204 1.252 1.302 1.324 1.35 1.394 1.453 

 1.000 1.044 1.086 1.109 1.162 1.22 1.261 1.275 1.304 1.374 1.437 

 1.000 1.034 1.049 1.092 1.132 1.153 1.225 1.26 1.3 1.337 1.412 

 1.000 1.036 1.071 1.091 1.095 1.143 1.204 1.257 1.272 1.287 1.322 

 1.000 1.027 1.039 1.082 1.105 1.164 1.211 1.238 1.274 1.316 1.32 

            

 1.000 1.032 1.038 1.061 1.084 1.112 1.178 1.191 1.197 1.22 1.256 

 1.000 1.019 1.033 1.046 1.077 1.124 1.133 1.174 1.262 1.309 1.33 

 1.000 1.017 1.045 1.058 1.060 1.07 1.09 1.11 1.113 1.141 1.155 

 1.000 1.014 1.024 1.059 1.085 1.106 1.117 1.12 1.194 1.207 1.266 

 1.000 1.025 1.039 1.045 1.058 1.079 1.115 1.118 1.151 1.159 1.174 

400 K/10 V 1.000 1.013 1.023 1.057 1.081 1.097 1.142 1.145 1.167 1.171 1.184 

 1.000 1.016 1.115 1.119 1.126 1.145 1.152 1.173 1.216 1.23 1.242 

 1.000 1.041 1.044 1.078 1.088 1.152 1.16 1.179 1.189 1.195 1.229 

 1.000 1.007 1.023 1.035 1.049 1.066 1.101 1.107 1.124 1.128 1.133 

 1.000 1.010 1.024 1.043 1.078 1.101 1.113 1.124 1.146 1.161 1.197 
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Stress\Hours 

(1000) 

0 1 2 3 4 5 6 7 8 9 10 

 1.000 1.027 1.047 1.074 1.135 1.152 1.188 1.217 1.232 1.268 1.275 

 1.000 1.047 1.101 1.127 1.176 1.2 1.224 1.251 1.268 1.279 1.299 

 1.000 1.071 1.098 1.133 1.149 1.171 1.227 1.25 1.271 1.294 1.304 

 1.000 1.072 1.104 1.135 1.169 1.191 1.213 1.223 1.244 1.269 1.276 

 1.000 1.028 1.048 1.114 1.154 1.167 1.221 1.245 1.295 1.337 1.364 

400 K/15 V 1.000 1.024 1.101 1.124 1.168 1.26 1.275 1.308 1.327 1.335 1.338 

 1.000 1.077 1.089 1.101 1.110 1.145 1.159 1.176 1.187 1.236 1.25 

 1.000 1.021 1.034 1.046 1.092 1.152 1.166 1.2 1.238 1.288 1.29 

 1.000 1.018 1.057 1.097 1.120 1.155 1.178 1.206 1.235 1.29 1.328 

 1.000 1.024 1.084 1.138 1.162 1.191 1.235 1.285 1.304 1.348 1.352 

            

 1.000 1.061 1.095 1.131 1.161 1.196 1.267 1.275 1.28 1.294 1.338 

 1.000 1.074 1.103 1.175 1.220 1.237 1.256 1.263 1.277 1.313 1.322 

 1.000 1.048 1.080 1.123 1.241 1.263 1.272 1.327 1.334 1.396 1.412 

 1.000 1.097 1.134 1.217 1.232 1.242 1.26 1.279 1.299 1.301 1.312 

 1.000 1.053 1.094 1.160 1.224 1.226 1.239 1.3 1.332 1.377 1.381 

400 K/20 V 1.000 1.028 1.076 1.148 1.204 1.281 1.295 1.31 1.323 1.358 1.37 

 1.000 1.028 1.068 1.148 1.188 1.245 1.257 1.261 1.277 1.289 1.298 

 1.000 1.043 1.095 1.148 1.202 1.225 1.246 1.257 1.283 1.305 1.311 

 1.000 1.038 1.074 1.186 1.242 1.268 1.271 1.285 1.302 1.336 1.354 

 1.000 1.054 1.087 1.102 1.123 1.188 1.275 1.299 1.345 1.354 1.384 
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Stress\Hours 

(1000) 

0 1 2 3 4 5 6 7 8 9 10 

 1.000 1.034 1.071 1.082 1.138 1.173 1.177 1.18 1.202 1.244 1.276 

 1.000 1.013 1.055 1.073 1.096 1.132 1.158 1.174 1.194 1.214 1.229 

 1.000 1.017 1.027 1.059 1.105 1.117 1.165 1.192 1.216 1.221 1.225 

 1.000 1.016 1.041 1.048 1.065 1.096 1.12 1.153 1.162 1.198 1.222 

 1.000 1.023 1.042 1.054 1.090 1.108 1.166 1.199 1.267 1.294 1.337 

450 K/10 V 1.000 1.010 1.019 1.060 1.120 1.149 1.152 1.17 1.188 1.252 1.275 

 1.000 1.006 1.018 1.038 1.054 1.078 1.088 1.104 1.17 1.185 1.203 

 1.000 1.019 1.033 1.052 1.070 1.097 1.112 1.117 1.138 1.151 1.216 

 1.000 1.028 1.063 1.073 1.117 1.129 1.155 1.184 1.244 1.258 1.32 

 1.000 1.022 1.036 1.049 1.072 1.082 1.102 1.133 1.148 1.162 1.201 

            

 1.000 1.040 1.072 1.133 1.186 1.211 1.219 1.223 1.272 1.295 1.314 

 1.000 1.043 1.075 1.134 1.162 1.168 1.183 1.216 1.226 1.258 1.259 

 1.000 1.031 1.092 1.136 1.153 1.179 1.195 1.222 1.233 1.258 1.277 

 1.000 1.006 1.039 1.052 1.089 1.129 1.158 1.179 1.219 1.23 1.247 

 1.000 1.041 1.079 1.121 1.141 1.169 1.202 1.26 1.289 1.308 1.32 

450 K/15 V 1.000 1.063 1.087 1.140 1.193 1.248 1.286 1.291 1.31 1.318 1.35 

 1.000 1.078 1.099 1.121 1.171 1.207 1.244 1.25 1.279 1.303 1.321 

 1.000 1.041 1.068 1.109 1.189 1.241 1.272 1.297 1.319 1.323 1.358 

 1.000 1.035 1.076 1.122 1.142 1.19 1.213 1.247 1.26 1.282 1.305 

 1.000 1.015 1.037 1.066 1.090 1.125 1.156 1.183 1.19 1.202 1.216 
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Stress\Hours 

(1000) 

0 1 2 3 4 5 6 7 8 9 10 

 1.000 1.049 1.153 1.217 1.228 1.238 1.254 1.289 1.35 1.397 1.441 

 1.000 1.103 1.126 1.226 1.253 1.289 1.29 1.31 1.336 1.344 1.394 

 1.000 1.051 1.110 1.165 1.227 1.252 1.259 1.328 1.338 1.368 1.412 

 1.000 1.059 1.138 1.247 1.253 1.274 1.29 1.348 1.373 1.388 1.392 

 1.000 1.076 1.157 1.225 1.26 1.282 1.296 1.339 1.357 1.392 1.473 

450 K/20 V 1.000 1.057 1.112 1.142 1.185 1.309 1.327 1.373 1.395 1.403 1.448 

 1.000 1.031 1.110 1.180 1.248 1.291 1.306 1.322 1.37 1.391 1.392 

 1.000 1.069 1.133 1.172 1.221 1.227 1.242 1.28 1.327 1.331 1.357 

 1.000 1.068 1.146 1.204 1.252 1.261 1.269 1.29 1.33 1.338 1.388 

 1.000 1.106 1.160 1.254 1.271 1.275 1.28 1.285 1.314 1.338 1.34 
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APPENDIX B. GAMMA PARAMETER ESTIMATES FOR EACH SAMPLE  

Stress levels Alpha (α) Beta (β) Constraint (c) -2Log-like AIC Mean(α) Mean (β) 

 1.597 87.124 0.986 -65.086 -59.086   

 0.809 102.214 1.389 -68.353 -62.353   

 0.636 83.753 1.251 -70.955 -64.955   

 1.797 197.976 1.060 -74.265 -68.265   

 1.196 147.797 1.196 -74.004 -68.004   

350 K/10 V 0.793 72.981 1.141 -65.419 -59.419 1.290 114.539 

 2.281 165.758 1.087 -71.015 -65.015   

 2.104 93.997 0.934 -62.316 -56.316   

 0.681 95.023 1.356 -66.342 -60.342   

 1.005 98.765 1.095 -70.857 -64.857   

        

 4.581 134.177 0.728 -69.814 -63.814   

 1.136 95.199 1.461 -55.398 -49.398   

 2.445 102.571 1.073 -59.100 -53.100   

 0.973 65.355 1.280 -54.033 -48.033   

 1.230 73.119 1.198 -54.884 -48.884   

350 K/15 V 1.585 75.904 1.127 -54.640 -48.640 2.148 89.840 

 3.773 85.950 0.826 -54.650 -48.650   

 0.662 64.932 1.207 -63.555 -57.555   

 2.744 55.193 0.991 -44.692 -38.692   

 2.350 145.998 1.287 -61.632 -55.632   
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Stress levels Alpha (α) Beta (β) Constraint (c) -2Log-like AIC Mean(α) Mean (β) 

 5.253 108.728 0.929 -55.154 -49.154   

 5.938 74.714 0.797 -50.058 -44.058   

 4.131 79.503 0.998 -48.548 -42.548   

 3.707 66.431 0.840 -50.180 -44.180   

 1.716 79.031 1.326 -49.906 -43.906   

350 K/20 V 5.091 65.902 0.798 -49.807 -43.807 3.830 84.197 

 4.511 102.754 1.007 -52.097 -46.097   

 2.782 117.089 1.250 -54.922 -48.922   

 2.656 72.151 0.944 -52.101 -46.101   

        

 2.087 76.532 0.990 -54.421 -48.421   

 1.215 75.135 1.314 -53.288 -47.288   

 2.386 108.810 0.874 -65.908 -59.908   

 1.179 59.908 1.131 -53.848 -47.848   

 2.626 104.604 0.867 -64.247 -58.247   

400 K/10 V 2.036 92.282 0.933 -62.059 -56.059 1.856 85.815 

 1.535 54.002 0.930 -54.892 -48.892   

 1.981 62.658 0.865 -56.503 -50.503   

 1.540 93.568 0.982 -68.481 -62.481   

 1.976 130.650 1.184 -66.811 -60.811   

 2.087 76.532 0.990 -54.421 -48.421   
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Stress levels Alpha (α) Beta (β) Constraint (c) -2Log-like AIC Mean(α) Mean (β) 

 3.749 108.565 0.916 -58.603 -52.603   

 5.947 101.849 0.752 -61.361 -55.361   

 8.366 115.225 0.655 -60.885 -54.885   

 6.150 84.602 0.626 -62.315 -56.315   

 3.149 91.662 1.047 -54.693 -48.693   

400 K/15 V 2.598 47.780 0.794 -49.754 -43.754 4.381 89.358 

 5.147 87.394 0.643 -58.549 -52.549   

 1.721 57.872 0.990 -52.223 -46.223   

 3.517 126.488 1.108 -61.699 -55.699   

 3.468 72.145 0.874 -51.672 -45.672   

        

 5.199 70.574 0.679 -53.309 -47.309   

 5.467 65.868 0.620 -56.131 -50.131   

 3.004 46.542 0.805 -46.303 -40.303   

 7.344 63.434 0.475 -58.074 -52.074   

 3.015 41.267 0.717 -47.533 -41.533   

400 K/20 V 3.562 67.026 0.845 -50.203 -44.203 4.439 64.482 

 3.399 64.616 0.754 -53.425 -47.425   

 6.685 109.678 0.717 -58.247 -52.247   

 3.198 52.759 0.767 -49.508 -43.508   

 3.517 63.053 0.849 -49.803 -43.803   
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Stress levels Alpha (α) Beta (β) Constraint (c) -2Log-like AIC Mean(α) Mean (β) 

 2.775 65.251 0.813 -53.899 -47.899   

 3.748 150.067 1.000 -65.971 -59.971   

 2.230 81.103 0.917 -58.095 -52.095   

 2.284 134.796 1.138 -64.141 -58.141   

 2.596 160.258 1.320 -58.180 -52.180   

450 K/10 V 1.178 63.373 1.173 -53.849 -47.849 2.279 108.209 

 1.395 109.954 1.240 -63.814 -57.814   

 1.859 95.916 1.066 -60.814 -54.814   

 2.363 90.662 1.094 -54.199 -48.199   

 2.360 130.706 1.079 -66.450 -60.450   

        

 3.943 70.040 0.759 -53.576 -47.576   

 4.386 73.464 0.642 -57.490 -51.490   

 5.505 114.279 0.797 -61.164 -55.164   

 1.530 95.947 1.217 -60.315 -54.315   

450 K/15 V 4.882 91.535 0.826 -58.502 -52.502 4.520 90.748 

 4.900 63.550 0.682 -52.852 -46.852   

 8.245 115.328 0.664 -58.033 -52.033   

 4.099 70.976 0.805 -51.935 -45.935   

 4.517 86.275 0.814 -59.144 -53.144   

 3.195 126.085 0.954 -64.454 -58.454   
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Stress levels Alpha (α) Beta (β) Constraint (c) -2Log-like AIC Mean(α) Mean (β) 

 3.333 52.546 0.844 -46.102 -40.102   

 4.646 41.046 0.551 -48.715 -42.715   

 4.375 61.210 0.773 -49.117 -43.117   

 3.806 43.469 0.653 -48.288 -42.288   

 6.026 64.890 0.730 -48.921 -42.921   

450 K/20 V 4.182 55.439 0.782 -46.927 -40.927 4.686 54.067 

 2.904 41.326 0.747 -47.315 -41.315   

 6.292 74.085 0.629 -52.783 -46.783   

 5.466 60.180 0.647 -50.660 -44.660   

 5.826 46.478 0.450 -55.438 -49.438   
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APPENDIX C. FISHER MATRIX AND OPTIMIZATION MODEL FORMULATION  

1st derivative of the log-likelihood function: 

Here, 𝜓1(𝐴𝑘) is a digamma function as defined by  𝜓1(𝐴𝑘) =
𝛿 logΓ(𝐴𝑘)

𝛿𝐴𝑘
=

Γ′(𝐴𝑘)

Γ(𝐴𝑘)
. 

𝜕 log 𝐿

𝜕𝛾0
= ∑∑ ∑[𝐴𝑘 ∗ log(𝛽𝑘) − 𝐴𝑘𝜓1(𝐴𝑘) + 𝐴𝑘 ∗ log(Δ𝑦𝑖𝑗𝑘)]

𝑧

𝑘=1

𝑛𝑘

𝑗=1

𝑚

𝑖=1

 

𝜕 log 𝐿

𝜕𝛾1
= ∑∑ ∑[𝐴𝑘𝑆1𝑘 ∗ log(𝛽𝑘) − 𝐴𝑘𝑆1𝑘𝜓1(𝐴𝑘) + 𝐴𝑘𝑆1𝑘 ∗ log(Δ𝑦𝑖𝑗𝑘)]

𝑧

𝑘=1

𝑛𝑘

𝑗=1

𝑚

𝑖=1

 

𝜕 log 𝐿

𝜕𝛾2
= ∑∑ ∑[𝐴𝑘𝑆2𝑘 ∗ log(𝛽𝑘) − 𝐴𝑘𝑆2𝑘𝜓1(𝐴𝑘) + 𝐴𝑘𝑆2𝑘 ∗ log(Δ𝑦𝑖𝑗𝑘)]

𝑧

𝑘=1

𝑛𝑘

𝑗=1

𝑚

𝑖=1

 

𝜕 log 𝐿

𝜕𝛾3
= ∑∑ ∑[𝐴𝑘𝑆1𝑘𝑆2𝑘 ∗ log(𝛽𝑘) − 𝐴𝑘𝑆1𝑘𝑆2𝑘𝜓1(𝐴𝑘) + 𝐴𝑘𝑆1𝑘𝑆2𝑘 ∗ log(Δ𝑦𝑖𝑗𝑘)]

𝑧

𝑘=1

𝑛𝑘

𝑗=1

𝑚

𝑖=1

 

𝜕 log 𝐿

𝜕𝛿0
= ∑∑ ∑[𝐴𝑘 − Δ𝑦𝑖𝑗𝑘𝛽𝑘]

𝑧

𝑘=1

𝑛𝑘

𝑗=1

𝑚

𝑖=1

 

𝜕 log 𝐿

𝜕𝛿1
= ∑∑ ∑[𝐴𝑘𝑆1𝑘 − Δ𝑦𝑖𝑗𝑘𝛽𝑘𝑆1𝑘]

𝑧

𝑘=1

𝑛𝑘

𝑗=1

𝑚

𝑖=1

 

𝜕 log 𝐿

𝜕𝛿2
= ∑∑ ∑[𝐴𝑘𝑆2𝑘 − Δ𝑦𝑖𝑗𝑘𝛽𝑘𝑆2𝑘]

𝑧

𝑘=1

𝑛𝑘

𝑗=1

𝑚

𝑖=1

 

𝜕 log 𝐿

𝜕𝛿3
= ∑∑ ∑[𝐴𝑘𝑆1𝑘𝑆2𝑘 − Δ𝑦𝑖𝑗𝑘𝛽𝑘𝑆1𝑘𝑆2𝑘]

𝑧

𝑘=1

𝑛𝑘

𝑗=1

𝑚

𝑖=1
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2nd derivative of log-likelihood function: 

Here, 𝜓2(𝐴𝑘) is a trigamma function as defined by  𝜓2(𝐴𝑘) =
𝛿2 logΓ(𝐴𝑘)

𝛿𝐴𝑘
2 =

Γ′′(𝐴𝑘)

Γ(𝐴𝑘)
= 𝐷𝑘. 

𝜕2 log 𝐿

𝜕𝛾0
2 = ∑∑ ∑[𝐴𝑘 ∗ log(𝛽𝑘) − 𝐴𝑘𝜓1(𝐴𝑘) − 𝐴𝑘

2 ∗ 𝜓2(𝐴𝑘)+𝐴𝑘 ∗ log(Δ𝑦𝑖𝑗𝑘)]

𝑧

𝑘=1

𝑛𝑘

𝑗=1

𝑚

𝑖=1

 

𝜕2 log 𝐿

𝜕𝛾1
2 = ∑∑ ∑[𝐴𝑘𝑆1𝑘

2 ∗ log(𝛽𝑘) − 𝐴𝑘𝑆1𝑘
2 𝜓1(𝐴𝑘) − 𝐴𝑘

2𝑆1𝑘
2 ∗ 𝜓2(𝐴𝑘)+𝐴𝑘𝑆1𝑘

2 ∗ log(Δ𝑦𝑖𝑗𝑘)]

𝑧

𝑘=1

𝑛𝑘

𝑗=1

𝑚

𝑖=1

 

𝜕2 log 𝐿

𝜕𝛾2
2 = ∑∑ ∑[𝐴𝑘𝑆2𝑘

2 ∗ log(𝛽𝑘) − 𝐴𝑘𝑆2𝑘
2 𝜓1(𝐴𝑘) − 𝐴𝑘

2𝑆2𝑘
2 ∗ 𝜓2(𝐴𝑘)+𝐴𝑘𝑆2𝑘

2 ∗ log(Δ𝑦𝑖𝑗𝑘)]

𝑧

𝑘=1

𝑛𝑘

𝑗=1

𝑚

𝑖=1

 

𝜕2 log 𝐿

𝜕𝛾3
2 = ∑∑ ∑[𝐴𝑘𝑆1𝑘

2 𝑆2𝑘
2

𝑧

𝑘=1

𝑛𝑘

𝑗=1

𝑚

𝑖=1

∗ log(𝛽𝑘) − 𝐴𝑘𝑆1𝑘
2 𝑆2𝑘

2 𝜓1(𝐴𝑘) − 𝐴𝑘
2𝑆1𝑘

2 𝑆2𝑘
2 ∗ 𝜓2(𝐴𝑘)+𝐴𝑘𝑆1𝑘

2 𝑆2𝑘
2 ∗ log(Δ𝑦𝑖𝑗𝑘)] 

𝜕2 log 𝐿

𝜕𝛿0
2 = ∑∑ ∑[−Δ𝑦𝑖𝑗𝑘𝛽

𝑘
]

𝑧

𝑘=1

𝑛𝑘

𝑗=1

𝑚

𝑖=1

 

𝜕2 log 𝐿

𝜕𝛿1
2 = ∑∑ ∑[−Δ𝑦𝑖𝑗𝑘𝛽

𝑘
𝑆1𝑘

2 ]

𝑧

𝑘=1

𝑛𝑘

𝑗=1

𝑚

𝑖=1

 

𝜕2 log 𝐿

𝜕𝛿2
2 = ∑∑ ∑[−Δ𝑦𝑖𝑗𝑘𝛽

𝑘
𝑆2𝑘

2 ]

𝑧

𝑘=1

𝑛𝑘

𝑗=1

𝑚

𝑖=1

 

𝜕2 log 𝐿

𝜕𝛿3
2 = ∑∑ ∑[−Δ𝑦𝑖𝑗𝑘𝛽

𝑘
𝑆1𝑘

2 𝑆2𝑘
2 ]

𝑧

𝑘=1

𝑛𝑘

𝑗=1

𝑚

𝑖=1

 

 



 

94 
 

Other combination derivatives of the log-likelihood function: 

𝜕2 log 𝐿

𝜕𝛾0𝛿0
= ∑∑ ∑[𝐴𝑘]

𝑧

𝑘=1

𝑛𝑘

𝑗=1

𝑚

𝑖=1

 

𝜕2 log 𝐿

𝜕𝛾0𝛿1
= ∑∑ ∑[𝐴𝑘𝑆1𝑘]

𝑧

𝑘=1

𝑛𝑘

𝑗=1

𝑚

𝑖=1

 

𝜕2 log 𝐿

𝜕𝛾0𝛿2
= ∑∑ ∑[𝐴𝑘𝑆2𝑘]

𝑧

𝑘=1

𝑛𝑘

𝑗=1

𝑚

𝑖=1

 

𝜕2 log 𝐿

𝜕𝛾0𝛿3
= ∑∑ ∑[𝐴𝑘𝑆1𝑘𝑆2𝑘]

𝑧

𝑘=1

𝑛𝑘

𝑗=1

𝑚

𝑖=1

 

𝜕2 log 𝐿

𝜕𝛾1𝛿0
= ∑∑ ∑[𝐴𝑘𝑆1𝑘]

𝑧

𝑘=1

𝑛𝑘

𝑗=1

𝑚

𝑖=1

 

𝜕2 log 𝐿

𝜕𝛾1𝛿1
= ∑∑ ∑[𝐴𝑘𝑆1𝑘

2 ]

𝑧

𝑘=1

𝑛𝑘

𝑗=1

𝑚

𝑖=1

 

𝜕2 log 𝐿

𝜕𝛾1𝛿2
= ∑∑ ∑[𝐴𝑘𝑆1𝑘𝑆2𝑘]

𝑧

𝑘=1

𝑛𝑘

𝑗=1

𝑚

𝑖=1

 

𝜕2 log 𝐿

𝜕𝛾1𝛿3
= ∑∑ ∑[𝐴𝑘𝑆1𝑘

2 𝑆2𝑘]

𝑧

𝑘=1

𝑛𝑘

𝑗=1

𝑚

𝑖=1

 

𝜕2 log 𝐿

𝜕𝛾2𝛿0
= ∑∑ ∑[𝐴𝑘𝑆2𝑘]

𝑧

𝑘=1

𝑛𝑘

𝑗=1

𝑚

𝑖=1
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𝜕2 log 𝐿

𝜕𝛾2𝛿1
= ∑∑ ∑[𝐴𝑘𝑆1𝑘𝑆2𝑘]

𝑧

𝑘=1

𝑛𝑘

𝑗=1

𝑚

𝑖=1

 

𝜕2 log 𝐿

𝜕𝛾2𝛿2
= ∑∑ ∑[𝐴𝑘𝑆2𝑘

2 ]

𝑧

𝑘=1

𝑛𝑘

𝑗=1

𝑚

𝑖=1

 

𝜕2 log 𝐿

𝜕𝛾2𝛿3
= ∑∑ ∑[𝐴𝑘𝑆1𝑘𝑆2𝑘

2 ]

𝑧

𝑘=1

𝑛𝑘

𝑗=1

𝑚

𝑖=1

 

𝜕2 log 𝐿

𝜕𝛾3𝛿0
= ∑∑ ∑[𝐴𝑘𝑆1𝑘𝑆2𝑘]

𝑧

𝑘=1

𝑛𝑘

𝑗=1

𝑚

𝑖=1

 

𝜕2 log 𝐿

𝜕𝛾3𝛿1
= ∑∑ ∑[𝐴𝑘𝑆1𝑘

2 𝑆2𝑘]

𝑧

𝑘=1

𝑛𝑘

𝑗=1

𝑚

𝑖=1

 

𝜕2 log 𝐿

𝜕𝛾3𝛿2
= ∑∑ ∑[𝐴𝑘𝑆1𝑘𝑆2𝑘

2 ]

𝑧

𝑘=1

𝑛𝑘

𝑗=1

𝑚

𝑖=1

 

𝜕2 log 𝐿

𝜕𝛾3𝛿3
= ∑∑ ∑[𝐴𝑘𝑆1𝑘

2 𝑆2𝑘
2 ]

𝑧

𝑘=1

𝑛𝑘

𝑗=1

𝑚

𝑖=1

 

𝜕2 log 𝐿

𝜕𝛾0𝛾1
= ∑∑ ∑[𝐴𝑘𝑆1𝑘 ∗ log(𝛽𝑘) − 𝐴𝑘𝑆1𝑘𝜓1(𝐴𝑘) − 𝐴𝑘

2𝑆1𝑘 ∗ 𝜓2(𝐴𝑘) +𝐴𝑘𝑆1𝑘 ∗ log(Δ𝑦𝑖𝑗𝑘)]

𝑧

𝑘=1

𝑛𝑘

𝑗=1

𝑚

𝑖=1

 

𝜕2 log 𝐿

𝜕𝛾0𝛾2
= ∑∑ ∑[𝐴𝑘𝑆2𝑘 ∗ log(𝛽𝑘) − 𝐴𝑘𝑆2𝑘𝜓1(𝐴𝑘) − 𝐴𝑘

2𝑆2𝑘 ∗ 𝜓2(𝐴𝑘) +𝐴𝑘𝑆2𝑘 ∗ log(Δ𝑦𝑖𝑗𝑘)]

𝑧

𝑘=1

𝑛𝑘

𝑗=1

𝑚

𝑖=1
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𝜕2 log 𝐿

𝜕𝛾0𝛾3
= ∑∑ ∑[𝐴𝑘𝑆1𝑘𝑆2𝑘 ∗ log(𝛽𝑘) − 𝐴𝑘𝑆1𝑘𝑆2𝑘𝜓1(𝐴𝑘) − 𝐴𝑘

2𝑆1𝑘𝑆2𝑘 ∗ 𝜓2(𝐴𝑘) +𝐴𝑘𝑆1𝑘𝑆2𝑘

𝑧

𝑘=1

𝑛𝑘

𝑗=1

𝑚

𝑖=1

∗ log(Δ𝑦𝑖𝑗𝑘)] 

𝜕2 log 𝐿

𝜕𝛾1𝛾2

= ∑∑ ∑[𝐴𝑘𝑆1𝑘𝑆2𝑘 ∗ log(𝛽𝑘) − 𝐴𝑘𝑆1𝑘𝑆2𝑘𝜓1(𝐴𝑘) − 𝐴𝑘
2𝑆1𝑘𝑆2𝑘 ∗ 𝜓2(𝐴𝑘) +𝐴𝑘𝑆1𝑘𝑆2𝑘 ∗ log(Δ𝑦𝑖𝑗𝑘)]

𝑧

𝑘=1

𝑛𝑘

𝑗=1

𝑚

𝑖=1

 

𝜕2 log 𝐿

𝜕𝛾1𝛾3

= ∑∑ ∑[𝐴𝑘𝑆1𝑘
2 𝑆2𝑘 ∗ log(𝛽𝑘) − 𝐴𝑘𝑆1𝑘

2 𝑆2𝑘𝜓1(𝐴𝑘) − 𝐴𝑘
2𝑆1𝑘

2 𝑆2𝑘 ∗ 𝜓2(𝐴𝑘) +𝐴𝑘𝑆1𝑘
2 𝑆2𝑘 ∗ log(Δ𝑦𝑖𝑗𝑘)]

𝑧

𝑘=1

𝑛𝑘

𝑗=1

𝑚

𝑖=1

 

𝜕2 log 𝐿

𝜕𝛾2𝛾3

= ∑∑ ∑[𝐴𝑘𝑆1𝑘𝑆2𝑘
2 ∗ log(𝛽𝑘) − 𝐴𝑘𝑆1𝑘𝑆2𝑘

2 𝜓1(𝐴𝑘) − 𝐴𝑘
2𝑆1𝑘𝑆2𝑘

2 ∗ 𝜓2(𝐴𝑘) +𝐴𝑘𝑆1𝑘𝑆2𝑘
2 ∗ log(Δ𝑦𝑖𝑗𝑘)]

𝑧

𝑘=1

𝑛𝑘

𝑗=1

𝑚

𝑖=1

 

𝜕2 log 𝐿

𝜕𝛿0𝛿1
= ∑∑ ∑ [−Δ𝑦

𝑖𝑗𝑘
𝛽

𝑘
𝑆1𝑘]

𝑧

𝑘=1

𝑛𝑘

𝑗=1

𝑚

𝑖=1

 

𝜕2 log 𝐿

𝜕𝛿0𝛿2
= ∑∑ ∑ [−Δ𝑦

𝑖𝑗𝑘
𝛽

𝑘
𝑆2𝑘]

𝑧

𝑘=1

𝑛𝑘

𝑗=1

𝑚

𝑖=1

 

𝜕2 log 𝐿

𝜕𝛿0𝛿3
= ∑∑ ∑ [−Δ𝑦

𝑖𝑗𝑘
𝛽

𝑘
𝑆1𝑘𝑆2𝑘]

𝑧

𝑘=1

𝑛𝑘

𝑗=1

𝑚

𝑖=1

 

𝜕2 log 𝐿

𝜕𝛿1𝛿2
= ∑∑ ∑ [−Δ𝑦

𝑖𝑗𝑘
𝛽

𝑘
𝑆1𝑘𝑆2𝑘]

𝑧

𝑘=1

𝑛𝑘

𝑗=1

𝑚

𝑖=1

 

𝜕2 log 𝐿

𝜕𝛿1𝛿3
= ∑∑ ∑ [−Δ𝑦

𝑖𝑗𝑘
𝛽

𝑘
𝑆1𝑘

2 𝑆2𝑘]

𝑧

𝑘=1

𝑛𝑘

𝑗=1

𝑚

𝑖=1

 

𝜕2 log 𝐿

𝜕𝛿2𝛿3
= ∑∑ ∑ [−Δ𝑦

𝑖𝑗𝑘
𝛽

𝑘
𝑆1𝑘𝑆2𝑘

2 ]

𝑧

𝑘=1

𝑛𝑘

𝑗=1

𝑚

𝑖=1
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The expected value of derivatives: 

𝐸(log Δ𝑦𝑖𝑗𝑘) = ∫ log ∆𝑦𝑖𝑗𝑘

𝛽𝑘
𝐴𝑘

Γ(𝐴𝑘)

∞

0

Δ𝑦𝑖𝑗𝑘
(𝐴𝑘−1)

𝑒−Δ𝑦𝑖𝑗𝑘𝛽𝑘 𝑑Δ𝑦𝑖𝑗𝑘 

                      =
1

Γ(𝐴𝑘)
(∫ log 𝑥

∞

0
 𝑥𝐴𝑘−1𝑒−𝑥 𝑑𝑥 − ∫ log 𝛽𝑘 𝑥

𝐴𝑘−1𝑒−𝑥 𝑑𝑥
∞

0
)    ; 𝑥 = ∆𝑦𝑖𝑗𝑘𝛽𝑘 

                      =
1

Γ(𝐴𝑘)
(Γ′(𝐴𝑘) − log 𝛽𝑘Γ(𝐴𝑘)) 

𝐸(log Δ𝑦𝑖𝑗𝑘) = 𝜓
1
(𝐴𝑘) − log 𝛽𝑘 

And 𝐸(Δ𝑦𝑖𝑗𝑘) = 𝐴𝑘/𝛽𝑘 

Ε(−
𝜕2 log 𝐿

𝜕𝛾0
2 ) = 𝑚 ∑ 𝑛𝑘𝐴𝑘

2𝐷𝑘

𝑧

𝑘=1

 

Ε(−
𝜕2 log 𝐿

𝜕𝛾
1
2

) = 𝑚 ∑ 𝑛𝑘𝐴𝑘
2𝑆1𝑘

2 𝐷𝑘

𝑧

𝑘=1

 

Ε(−
𝜕2 log 𝐿

𝜕𝛾
2
2

) = 𝑚 ∑ 𝑛𝑘𝐴𝑘
2𝑆2𝑘

2 𝐷𝑘

𝑧

𝑘=1

 

Ε(−
𝜕2 log 𝐿

𝜕𝛾
3
2

) = 𝑚 ∑ 𝑛𝑘𝐴𝑘
2𝑆1𝑘

2 𝑆2𝑘
2 𝐷𝑘

𝑧

𝑘=1

 

Ε(−
𝜕2 log 𝐿

𝜕𝛿0
2 ) = 𝑚 ∑ 𝑛𝑘𝐴𝑘

𝑧

𝑘=1

 

Ε(−
𝜕2 log 𝐿

𝜕𝛿1
2 ) = 𝑚 ∑ 𝑛𝑘𝐴𝑘𝑆1𝑘

2

𝑧

𝑘=1
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Ε(−
𝜕2 log 𝐿

𝜕𝛿2
2 ) = 𝑚 ∑ 𝑛𝑘𝐴𝑘𝑆2𝑘

2

𝑧

𝑘=1

 

Ε(−
𝜕2 log 𝐿

𝜕𝛿3
2 ) = 𝑚 ∑ 𝑛𝑘𝐴𝑘𝑆1𝑘

2 𝑆2𝑘
2

𝑧

𝑘=1

 

Ε(−
𝜕2 log 𝐿

𝜕𝛾
0
𝛾

1

) = 𝑚 ∑ 𝑛𝑘𝐴𝑘
2

𝑧

𝑘=1

𝑆1𝑘𝐷𝑘 

Ε(−
𝜕2 log 𝐿

𝜕𝛾
0
𝛾

2

) = 𝑚 ∑ 𝑛𝑘𝐴𝑘
2

𝑧

𝑘=1

𝑆2𝑘𝐷𝑘 

Ε(−
𝜕2 log 𝐿

𝜕𝛾
0
𝛾

3

) = 𝑚 ∑ 𝑛𝑘𝐴𝑘
2

𝑧

𝑘=1

𝑆1𝑘𝑆2𝑘𝐷𝑘 

Ε(−
𝜕2 log 𝐿

𝜕𝛾0𝛿0
) = −𝑚 ∑ 𝑛𝑘𝐴𝑘

𝑧

𝑘=1

 

Ε(−
𝜕2 log 𝐿

𝜕𝛾0𝛿1
) = −𝑚 ∑ 𝑛𝑘𝐴𝑘

𝑧

𝑘=1

𝑆1𝑘 

Ε(−
𝜕2 log 𝐿

𝜕𝛾0𝛿2
) = −𝑚 ∑ 𝑛𝑘𝐴𝑘

𝑧

𝑘=1

𝑆2𝑘 

Ε(−
𝜕2 log 𝐿

𝜕𝛾0𝛿3
) = −𝑚 ∑ 𝑛𝑘𝐴𝑘

𝑧

𝑘=1

𝑆1𝑘𝑆2𝑘 

Ε(−
𝜕2 log 𝐿

𝜕𝛾1𝛾2
) = 𝑚 ∑ 𝑛𝑘𝐴𝑘

2

𝑧

𝑘=1

𝑆1𝑘𝑆2𝑘𝐷𝑘 
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Ε(−
𝜕2 log 𝐿

𝜕𝛾1𝛾3
) = 𝑚 ∑ 𝑛𝑘𝐴𝑘

2

𝑧

𝑘=1

𝑆1𝑘
2 𝑆2𝑘𝐷𝑘 

Ε(−
𝜕2 log 𝐿

𝜕𝛾1𝛿0
) = −𝑚 ∑ 𝑛𝑘

𝑧

𝑘=1

𝐴𝑘𝑆1𝑘 

Ε(−
𝜕2 log 𝐿

𝜕𝛾1𝛿1
) = −𝑚 ∑ 𝑛𝑘

𝑧

𝑘=1

𝐴𝑘𝑆1𝑘
2  

Ε(−
𝜕2 log 𝐿

𝜕𝛾1𝛿2
) = −𝑚 ∑ 𝑛𝑘

𝑧

𝑘=1

𝐴𝑘𝑆1𝑘𝑆2𝑘 

Ε(−
𝜕2 log 𝐿

𝜕𝛾1𝛿3
) = −𝑚 ∑ 𝑛𝑘

𝑧

𝑘=1

𝐴𝑘𝑆1𝑘
2 𝑆2𝑘 

Ε(−
𝜕2 log 𝐿

𝜕𝛾2𝛾3
) = 𝑚 ∑ 𝑛𝑘

𝑧

𝑘=1

𝐴𝑘
2𝑆1𝑘𝑆2𝑘

2 𝐷𝑘 

Ε(−
𝜕2 log 𝐿

𝜕𝛾2𝛿0
) = −𝑚 ∑ 𝑛𝑘

𝑧

𝑘=1

𝐴𝑘𝑆2𝑘 

Ε(−
𝜕2 log 𝐿

𝜕𝛾2𝛿1
) = −𝑚 ∑ 𝑛𝑘

𝑧

𝑘=1

𝐴𝑘𝑆1𝑘𝑆2𝑘 

Ε(−
𝜕2 log 𝐿

𝜕𝛾2𝛿2
) = −𝑚 ∑ 𝑛𝑘

𝑧

𝑘=1

𝐴𝑘𝑆2𝑘
2  

Ε(−
𝜕2 log 𝐿

𝜕𝛾2𝛿3
) = −𝑚 ∑ 𝑛𝑘

𝑧

𝑘=1

𝐴𝑘𝑆1𝑘𝑆2𝑘
2  
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Ε(−
𝜕2 log 𝐿

𝜕𝛾3𝛿0
) = −𝑚 ∑ 𝑛𝑘

𝑧

𝑘=1

𝐴𝑘𝑆1𝑘𝑆2𝑘 

Ε(−
𝜕2 log 𝐿

𝜕𝛾3𝛿1
) = −𝑚 ∑ 𝑛𝑘

𝑧

𝑘=1

𝐴𝑘𝑆1𝑘
2 𝑆2𝑘 

Ε(−
𝜕2 log 𝐿

𝜕𝛾3𝛿2
) = −𝑚 ∑ 𝑛𝑘

𝑧

𝑘=1

𝐴𝑘𝑆1𝑘𝑆2𝑘
2  

Ε(−
𝜕2 log 𝐿

𝜕𝛾3𝛿3
) = −𝑚 ∑ 𝑛𝑘

𝑧

𝑘=1

𝐴𝑘𝑆1𝑘
2 𝑆2𝑘

2  

Ε(−
𝜕2 log 𝐿

𝜕𝛿0𝛿1
) = 𝑚 ∑ 𝑛𝑘

𝑧

𝑘=1

𝐴𝑘𝑆1𝑘 

Ε(−
𝜕2 log 𝐿

𝜕𝛿0𝛿2
) = 𝑚 ∑ 𝑛𝑘

𝑧

𝑘=1

𝐴𝑘𝑆2𝑘 

Ε(−
𝜕2 log 𝐿

𝜕𝛿0𝛿3
) = 𝑚 ∑ 𝑛𝑘

𝑧

𝑘=1

𝐴𝑘𝑆1𝑘𝑆2𝑘 

Ε(−
𝜕2 log 𝐿

𝜕𝛿1𝛿2
) = 𝑚 ∑ 𝑛𝑘

𝑧

𝑘=1

𝐴𝑘𝑆1𝑘𝑆2𝑘 

Ε(−
𝜕2 log 𝐿

𝜕𝛿1𝛿3
) = 𝑚 ∑ 𝑛𝑘

𝑧

𝑘=1

𝐴𝑘𝑆1𝑘
2 𝑆2𝑘 

Ε(−
𝜕2 log 𝐿

𝜕𝛿2𝛿3
) = 𝑚 ∑ 𝑛𝑘

𝑧

𝑘=1

𝐴𝑘𝑆1𝑘𝑆2𝑘
2  
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Fisher information matrix: For two stress level  

[

𝑆11  𝑆12   →  𝑘1

𝑆11  𝑆22   →  𝑘2

𝑆12  𝑆21   →  𝑘3

𝑆12  𝑆22   →  𝑘4

] 

 

𝑎11 = 𝑎11 = 𝑚(𝑛1𝐴1
2𝐷1 + 𝑛2𝐴2

2𝐷2 + 𝑛3𝐴3
2𝐷3 + 𝑛4𝐴4

2𝐷4) 

𝑎12 = 𝑎21 = 𝑚(𝑛1𝐴1
2𝑆11𝐷1 + 𝑛2𝐴2

2𝑆11𝐷2 + 𝑛3𝐴3
2𝑆12𝐷3 + 𝑛4𝐴4

2𝑆12𝐷4) 

𝑎13 = 𝑎31 = 𝑚(𝑛1𝐴1
2𝑆21𝐷1 + 𝑛2𝐴2

2𝑆22𝐷2 + 𝑛3𝐴3
2𝑆21𝐷3 + 𝑛4𝐴4

2𝑆22𝐷4) 

𝑎14 = 𝑎41 = 𝑚(𝑛1𝐴1
2𝑆11𝑆21𝐷1 + 𝑛2𝐴2

2𝑆11𝑆22𝐷2 + 𝑛3𝐴3
2𝑆12𝑆21𝐷3 + 𝑛4𝐴4

2𝑆12𝑆22𝐷4) 

𝑎15 = 𝑎51 = −𝑚(𝑛1𝐴1 + 𝑛2𝐴2 + 𝑛3𝐴3 + 𝑛4𝐴4) 

𝑎16 = 𝑎61 = −𝑚(𝑛1𝐴1𝑆11 + 𝑛2𝐴2𝑆11 + 𝑛3𝐴3𝑆12 + 𝑛4𝐴4𝑆12) 

𝑎17 = 𝑎71 = −𝑚(𝑛1𝐴1𝑆21 + 𝑛2𝐴2𝑆22 + 𝑛3𝐴3𝑆21 + 𝑛4𝐴4𝑆22) 

𝑎18 = 𝑎81 = −𝑚(𝑛1𝐴1𝑆11𝑆21 + 𝑛2𝐴2𝑆11𝑆22 + 𝑛3𝐴3𝑆12𝑆21 + 𝑛4𝐴4𝑆12𝑆22) 

𝑎22 = 𝑎22 = 𝑚(𝑛1𝐴1
2𝑆11

2 𝐷1 + 𝑛2𝐴2
2𝑆11

2 𝐷2 + 𝑛3𝐴3
2𝑆12

2 𝐷3 + 𝑛4𝐴4
2𝑆12

2 𝐷4) 

𝑎23 = 𝑎32 = 𝑚(𝑛1𝐴1
2𝑆11𝑆21𝐷1 + 𝑛2𝐴2

2𝑆11𝑆22𝐷2 + 𝑛3𝐴3
2𝑆12𝑆21𝐷3 + 𝑛4𝐴4

2𝑆12𝑆22𝐷4) 

𝑎24 = 𝑎42 = 𝑚(𝑛1𝐴1
2𝑆11

2 𝑆21𝐷1 + 𝑛2𝐴2
2𝑆11

2 𝑆22𝐷2 + 𝑛3𝐴3
2𝑆12

2 𝑆21𝐷3 + 𝑛4𝐴4
2𝑆12

2 𝑆22𝐷4) 

𝑎25 = 𝑎52 = −𝑚(𝑛1𝐴1𝑆11 + 𝑛2𝐴2𝑆11 + 𝑛3𝐴3𝑆12 + 𝑛4𝐴4𝑆12) 

𝑎26 = 𝑎62 = −𝑚(𝑛1𝐴1𝑆11
2 + 𝑛2𝐴2𝑆11

2 + 𝑛3𝐴3𝑆12
2 + 𝑛4𝐴4𝑆12

2 ) 

𝑎27 = 𝑎72 = −𝑚(𝑛1𝐴1𝑆11𝑆21 + 𝑛2𝐴2𝑆11𝑆22 + 𝑛3𝐴3𝑆12𝑆21 + 𝑛4𝐴4𝑆12𝑆22) 
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𝑎28 = 𝑎82 = −𝑚(𝑛1𝐴1𝑆11
2 𝑆21 + 𝑛2𝐴2𝑆11

2 𝑆22 + 𝑛3𝐴3𝑆12
2 𝑆21 + 𝑛4𝐴4𝑆12

2 𝑆22) 

𝑎33 = 𝑎33 = 𝑚(𝑛1𝐴1
2𝑆21

2 𝐷1 + 𝑛2𝐴2
2𝑆22

2 𝐷2 + 𝑛3𝐴3
2𝑆21

2 𝐷3 + 𝑛4𝐴4
2𝑆22

2 𝐷4) 

𝑎34 = 𝑎43 = 𝑚(𝑛1𝐴1
2𝑆11𝑆21

2 𝐷1 + 𝑛2𝐴2
2𝑆11𝑆22

2 𝐷2 + 𝑛3𝐴3
2𝑆12𝑆21

2 𝐷3 + 𝑛4𝐴4
2𝑆12𝑆22

2 𝐷4) 

𝑎35 = 𝑎53 = −𝑚(𝑛1𝐴1𝑆21 + 𝑛2𝐴2𝑆22 + 𝑛3𝐴3𝑆21 + 𝑛4𝐴4𝑆22) 

𝑎36 = 𝑎63 = −𝑚(𝑛1𝐴1𝑆11𝑆21 + 𝑛2𝐴2𝑆11𝑆22 + 𝑛3𝐴3𝑆12𝑆21 + 𝑛4𝐴4𝑆12𝑆22) 

𝑎37 = 𝑎73 = −𝑚(𝑛1𝐴1𝑆21
2 + 𝑛2𝐴2𝑆22

2 + 𝑛3𝐴3𝑆21
2 + 𝑛4𝐴4𝑆22

2 ) 

𝑎38 = 𝑎83 = −𝑚(𝑛1𝐴1𝑆11𝑆21
2 + 𝑛2𝐴2𝑆11𝑆22

2 + 𝑛3𝐴3𝑆12𝑆21
2 + 𝑛4𝐴4𝑆12𝑆22

2 ) 

𝑎44 = 𝑎44 = 𝑚(𝑛1𝐴1
2𝑆11

2 𝑆21
2 𝐷1 + 𝑛2𝐴2

2𝑆11
2 𝑆22

2 𝐷2 + 𝑛3𝐴3
2𝑆12

2 𝑆21
2 𝐷3 + 𝑛4𝐴4

2𝑆12
2 𝑆22

2 𝐷4) 

𝑎45 = 𝑎54 = −𝑚(𝑛1𝐴1𝑆11𝑆21 + 𝑛2𝐴2𝑆11𝑆22 + 𝑛3𝐴3𝑆12𝑆21 + 𝑛4𝐴4𝑆12𝑆22) 

𝑎46 = 𝑎64 = −𝑚(𝑛1𝐴1𝑆11
2 𝑆21 + 𝑛2𝐴2𝑆11

2 𝑆22 + 𝑛3𝐴3𝑆12
2 𝑆21 + 𝑛4𝐴4𝑆12

2 𝑆22) 

𝑎47 = 𝑎74 = −𝑚(𝑛1𝐴1𝑆11𝑆21
2 + 𝑛2𝐴2𝑆12𝑆22

2 + 𝑛3𝐴3𝑆12𝑆21
2 + 𝑛4𝐴4𝑆12𝑆22

2 ) 

𝑎48 = 𝑎84 = −𝑚(𝑛1𝐴1𝑆11
2 𝑆21

2 + 𝑛2𝐴2𝑆11
2 𝑆22

2 + 𝑛3𝐴3𝑆12
2 𝑆21

2 + 𝑛4𝐴4𝑆12
2 𝑆22

2 ) 

𝑎55 = 𝑎55 = 𝑚(𝑛1𝐴1 + 𝑛2𝐴2 + 𝑛3𝐴3 + 𝑛4𝐴4) 

𝑎56 = 𝑎65 = 𝑚(𝑛1𝐴1𝑆11 + 𝑛2𝐴2𝑆11 + 𝑛3𝐴3𝑆12 + 𝑛4𝐴4𝑆12) 

𝑎57 = 𝑎75 = 𝑚(𝑛1𝐴1𝑆21 + 𝑛2𝐴2𝑆22 + 𝑛3𝐴3𝑆21 + 𝑛4𝐴4𝑆22) 

𝑎58 = 𝑎85 = 𝑚(𝑛1𝐴1𝑆11𝑆21 + 𝑛2𝐴2𝑆11𝑆22 + 𝑛3𝐴3𝑆12𝑆21 + 𝑛4𝐴4𝑆12𝑆22) 
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𝑎66 = 𝑎66 = 𝑚(𝑛1𝐴1𝑆11
2 + 𝑛2𝐴2𝑆11

2 + 𝑛3𝐴3𝑆12
2 + 𝑛4𝐴4𝑆12

2 ) 

𝑎67 = 𝑎76 = 𝑚(𝑛1𝐴1𝑆11𝑆21 + 𝑛2𝐴2𝑆11𝑆22 + 𝑛3𝐴3𝑆12𝑆21 + 𝑛4𝐴4𝑆12𝑆22) 

𝑎68 = 𝑎86 = 𝑚(𝑛1𝐴1𝑆11
2 𝑆21 + 𝑛2𝐴2𝑆11

2 𝑆22 + 𝑛3𝐴3𝑆12
2 𝑆21 + 𝑛4𝐴4𝑆12

2 𝑆22) 

𝑎77 = 𝑎77 = 𝑚(𝑛1𝐴1𝑆21
2 + 𝑛2𝐴2𝑆22

2 + 𝑛3𝐴3𝑆21
2 + 𝑛4𝐴4𝑆22

2 ) 

𝑎78 = 𝑎87 = 𝑚(𝑛1𝐴1𝑆11𝑆21
2 + 𝑛2𝐴2𝑆11𝑆22

2 + 𝑛3𝐴3𝑆12𝑆21
2 + 𝑛4𝐴4𝑆12𝑆22

2 ) 

𝑎88 = 𝑎88 = 𝑚(𝑛1𝐴1𝑆11
2 𝑆21

2 + 𝑛2𝐴2𝑆11
2 𝑆22

2 + 𝑛3𝐴3𝑆12
2 𝑆21

2 + 𝑛4𝐴4𝑆12
2 𝑆22

2 ) 

The Fisher information matrix thus, 

𝑭(𝜃) =

[
 
 
 
 
 
 
 

𝑎11  𝑎12  𝑎13  𝑎14  𝑎15  𝑎16  𝑎17  𝑎18 
        𝑎22  𝑎23  𝑎24  𝑎25  𝑎26 𝑎27  𝑎28

                  𝑎33  𝑎34  𝑎35  𝑎36  𝑎37  𝑎38

                          𝑎44  𝑎45  𝑎46  𝑎47  𝑎48

                                   𝑎55  𝑎56  𝑎57  𝑎58

                                            𝑎66   𝑎67  𝑎68

                                                     𝑎77   𝑎78

      𝑆𝑦𝑚𝑚𝑒𝑡𝑟𝑦                                   𝑎88]
 
 
 
 
 
 
 

 

 

The lifetime, 

𝜉𝑆 =
𝜔𝛽

𝛼
+

1

2𝛼
 

Here, 𝜔𝛽 = (𝜔1 − 𝑦0)𝛽 

At use condition, 𝛼(𝑆0) = 𝑒𝛾0 = 𝛼0      

                              𝛽(𝑆0) = 𝑒𝛿0 = 𝛽0    

                              𝜔𝛽 = (𝜔1 − 𝑦0)𝛽0 = 𝜔𝛽0
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Therefore,             𝜉𝑆0
= (

𝜔𝛽0

𝛼0
+

1

2𝛼0
) 

Now,  

                 
𝜕𝜉𝑆0

𝜕𝛾0
= −(

𝜔𝛽0

𝛼0
+

1

2𝛼0
) 

                
𝜕𝜉𝑆0

𝜕𝛾1
=

𝜕𝜉𝑆0

𝜕𝛾2
=

𝜕𝜉𝑆0

𝜕𝛾3
=

𝜕𝜉𝑆0

𝜕𝛿1
=

𝜕𝜉𝑆0

𝜕𝛿2
=

𝜕𝜉𝑆0

𝜕𝛿3
= 0 

                 
𝜕𝜉𝑆0

𝜕𝛿0
=

𝜔𝛽0

𝛼0
 

So, 𝒉𝑻 = [
𝜕𝜉𝑆0

𝜕𝛾0
, 0,0,0,

𝜕𝜉𝑆0

𝜕𝛿0
, 0,0,0] = [= −(

𝜔𝛽0

𝛼0
+

1

2𝛼0
) , 0,0,0,

𝜔𝛽0

𝛼0
, 0,0,0] 

The asymptotic variance of 𝜉𝑆0
 can be written as follows, 

𝐴𝑠𝑣𝑎𝑟(𝜉𝑆0
) = 𝒉𝑻𝑭−𝟏(𝜃)𝒉 

𝑭−𝟏(𝜃) =

[
 
 
 
 
 
 
 
𝐴11  𝐴12  𝐴13  𝐴14  𝐴15  𝐴16  𝐴17  𝐴18 
        𝐴22  𝐴23  𝐴24  𝐴25  𝐴26 𝐴27  𝐴28

                  𝐴33  𝐴34  𝐴35  𝐴36  𝐴37  𝐴38

                          𝐴44  𝐴45  𝐴46  𝐴47  𝐴48

                                   𝐴55  𝐴56  𝐴57  𝐴58

                                            𝐴66   𝐴67  𝐴68

                                                     𝐴77   𝐴78

      𝑆𝑦𝑚𝑚𝑒𝑡𝑟𝑦                                   𝐴88]
 
 
 
 
 
 
 

 

 

Considering, 𝒉𝑻 = [
𝜕𝜉𝑆0

𝜕𝛾0
, 0,0,0,

𝜕𝜉𝑆0

𝜕𝛿0
, 0,0,0] = [𝑎, 0,0,0, 𝑏, 0,0,0] 

Therefore,  

𝐴𝑠𝑣𝑎𝑟(𝜉𝑆0
(𝒙̂)) = 𝒉𝑻𝑭−𝟏(𝜃)𝒉 =   𝑎2𝐴11 + 𝑎𝑏𝐴51 + 𝑎𝑏𝐴15 + 𝑏2𝐴88  

                                                                             =  𝑎2𝐴11 + 2𝑎𝑏𝐴51 + 𝑏2𝐴88                  

 


