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ABSTRACT 

Mechanical circulatory support devices (MCSDs) have gained widespread clinical 

acceptance as an effective heart failure (HF) therapy. The concept of harnessing the kinetic energy 

(KE) available in the forward aortic flow (AOF) is proposed as a novel control strategy to further 

increase the cardiac output (CO) provided by MCSDs.  A complete mathematical development of 

the proposed theory and its application to an example MCSDs (two-segment extra-aortic cuff) are 

presented. To achieve improved device performance and physiologic benefit, the example MCSD 

timing is regulated to maximize the forward AOF KE and minimize retrograde flow. The proof-

of-concept was tested to provide support with and without KE control in a computational HF model 

over a wide range of HF test conditions. The simulation predicted increased stroke volume (SV) 

by 20% (9 mL), CO by 23% (0.50 L/min), left ventricle ejection fraction (LVEF) by 23%, and 

diastolic coronary artery flow (CAF) by 55% (3 mL) in severe HF at a heart rate (HR) of 60 beats 

per minute (BPM) during counterpulsation (CP) support with KE control. This research also 

explains how selection of inflation and deflation timing points for extra-aortic two-segmented cuff 

counterpulsation device (CPD) can affect the hemodynamic of the cardiovascular system (CVS). 

A comprehensive analysis of compliance profile timings generated through exhaustive search 

technique and the one selected through steepest descent method is carried out to predict and 

compare the difference in SV via computer simulation models. The influence of control modes 

(timing and duration) of deflation and inflation for extra-aortic two-segmented CPD on 

hemodynamic factors compared to no-assist HF were investigated. Simulation results (P < 0.05) 

predicted that the two-segmented CPD with late deflation and early inflation mode would be a 

suitable mode with 80% augmentation in peak diastolic aortic pressure (AOP), reduction in peak 

systolic pressure up to 15%, increases in CO by 60% and mean CAF by 80%. The proposed KE 
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control concept may improve performance of other MCSDs to further enhance their potential 

clinical benefits, which warrants further investigation. The next step is to investigate various assist 

technologies and determine where this concept is best applied.  
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1. INTRODUCTION 

1.1. Heart Failure 

Heart failure (HF) is a challenging clinical condition described by reduction of blood in 

ventricles either filling or ejection due to various cardiac disorders [1]. In high income countries, 

the incident of HF is one of the major unsolved healthcare concern challenging medical 

professionals nowadays. HF is a real epidemic, liable for 5% of hospitalization globally and is the 

leading cause of hospitalization in the United States affecting more than five million patients with 

approximately 670,000 new cases diagnosed annually [1]–[6]. HF, in its severe forms, can be 

remarked as two deadly clinical entities: (1) end-stage chronic HF, with less than a year mortality 

of approximately 80% which is even worse than many cancer types [7]; and (2) acute HF with 

cardiogenic shock (CS) with post-myocardial infraction (MI), CS mortality rates nearly 

approaching 50% [8]. 

With modern management of cardiac disorders, quality of life of HF patients has improved 

and more patients are living. Despite significant improvement in development of pharmacologic 

and device related therapy including cardiac resynchronization therapy (CRT) for HF treatment, 

majority of patients eventually deteriorate to the level where they required the used of advanced 

cardiac therapies such as mechanical circulatory support (MCS) or heart transplant. Heart 

transplant is the gold standard for end-stage HF and offers the best chance for long-term survival 

but is limited by the donor heart shortage (~2500) and cannot meet the growing demand (up to 

100,000 per year) [9], generating a necessity for effective therapy with short- or long-term, partial 

or full MCS that can improve functional capacity, quality of life, and survival of these patients 

[10]. 
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1.1.1. Acute Heart Failure Recovery 

Any acute or severe dysfunction of left ventricle (LV) or right ventricle (RV) may possibly 

lead to CS. However, in most cases the primary reason of CS is LV dysfunction resulting in an 

acute MI [11]. Although, the fact that the majority of these patients undergo ST elevation MI, CS 

also take place in about 2.5% of non-ST elevation MI [12]. In addition to this mechanical 

complications like ventricular septal rift, severe spewing in mitral valve and wall rift may result in 

CS and probably expected in patients with CS obscuring non-anterior MI [13]. Other rare causes 

may comprise of acute pericardial inflammatory syndrome, isolated failure of RV, transient 

cardiac syndrome also known as Takostsubo cardiomyopathy (TCM), acute valvular spewing, 

hypertrophic cardiomyopathy (heart muscles becomes abnormally thick), excess beta, dilated 

cardiomyopathy (heart ability to pump more is decreased), cardiac tamponade (compression of the 

heart caused by fluid gathering in the sac surrounding the heart), perioperative low cardiac output 

(CO) syndrome, and cardiac catheterization difficulties related with CS [14]. 

 The treatment objective (or recovery) of acute HF, is hemodynamic support during cardiac 

disintegration, involving actions that allow the incapacitated myocardium to recover and overcome 

the necessity for acute support [15]. 

1.1.2. Chronic Heart Failure Recovery 

The treatment objective of cardiac restoration is a deadly component of HF development 

linked with poor diagnosis [16], [17] consisting of cellular, molecular and interstitial changes, 

demonstrated clinically as variations in shape, size, and function of the heart resulting in cardiac 

injury [18]. Critical variations at the organ level consist of alteration in LV geometry [19], [20], 

thinning of LV wall [21], increase in LV end-diastolic volume (EDV) and end-systolic volume 

(ESV), and consequent decrease in ejection fraction (EF) of LV [22]. Molecular and cellular 
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variations constitute of myocyte hypertrophy, shortage of myocytes because of necrosis (which 

usually activates with an impairment of the cell’s capacity to maintain homeostasis to an influx of 

water and extracellular ions) [23] or apoptosis (in contrast to necrosis, it is a way of cell death that 

happens under normal physiological conditions and the cell is an active member in its own demise) 

[24], fibrosis fibroblast [25], and proliferation [26].   

The goal of chronic HF treatment is to improve indications and quality of life, which can 

be attained by prevention of the critical mechanisms of LV restoration and reversal of already 

completed LV restoration. As of today, we are aware of the fact that any level of reverse LV 

restoration is linked with an equivalent increase in the survival of patients suffering from HF [27]. 

According to Kontogiannis et al. 2016 cardiac surgeons introduced the term “bridge to 

transplantation” for the patients with chronic HF undergoing mechanical assistance with left 

ventricular assist device (LVAD), because of the unavailability of the donor heart at the time of 

heart transplantation. Consequently, the term “recovery” for chronic HF refers to persistent 

reversal of the above-mentioned variations, a procedure known as reverse remodeling with near 

stabilization of the LV functions in patients on LVAD followed by a “safe” LVAD implantation. 

In other words the LV recovery assumes that the patient can survive a big cardiac operation for 

implantation of LVAD and remain stable afterward both clinically and hemodynamically [28]. 

However, this assumption does not apply to patients on MCS device that is easily implantable and 

like the percutaneous intra-aortic balloon pump (IABP). For example, one of the patients of 

Kontogiannis et al. with chronic HF because of idiopathic dilated cardiomyopathy (IDC) needing 

MCS by IABP. They found that after 3 months of continuous support, the patient was successfully 

stopped from the assistance and after 5 years there was no symptoms of HF. Moreover, the patient 

didn’t have to go through a major cardiac surgery to remove the device, which could be the reason 
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he did so fine. The patient mentioned in the study is now 25 years old and he had a past record of 

gradually worsening HF when he was first diagnosed at age 21 with IDC complicated by CS, a left 

ventricle ejection fraction (LVEF) of 17%, brain natriuretic peptide (BNP) of 2800 pg/mL. The 

patient was placed on IABP support although he had the option of biventricular assist device 

(BiVAD), he preferred support with IABP. After 3 months IABP improvements in LVEF = 25% 

and BNP = 207 pg/dL allowed to stop IABP support, and later 5 years LVEF = 30% and VO2peak 

= 29 mL/kg per minute without any support [28]. 

Kontogiannis et al. also concluded that patients who undergo safe and easy MCS to implant 

(like IABP which is a counterpulsation device (CPD)), the support can be terminated for 

myocardial recovery when the conditions (Table 1) are met. However, for LVADs implantation 

required complicated surgery, the recovery can only be considered if the conditions (Table 1) are 

satisfied [28]. 

Table 1. Conditions of recovery with easily implantable CPDs and continuous flow LVADs. 

CPDs  

   Ejection fraction    5% 

   Brain natriuretic peptide < 500 pg/dL 

Continuous flow left ventricle assist devices  

   Left ventricle end- diastolic dimension < 60 mm 

   Left  end-systolic diameter < 50 mm 

   Ejection fraction > 45% 

   Left ventricle end-diastolic pressure < 12 mmHg 

   Cardiac index (resting) > 2.8 L/min per square 

1.2. Counterpulsation Devices for Myocardial Support 

Myocardial support with counterpulsation devices (CPDs) is the earliest and most common 

form of MCS. In past four decades, counterpulsation by IABP has been successfully and widely 

used for short-term treatment. Every year worldwide more than 160,000 patients receive this 
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treatment, and with a very promising successful clinical rate of 43% to 65%. IABP is often used 

for CS or severe LV dysfunction following heart surgery [29]–[32]. 

Counterpulsation was initially presented in early 1950’s when Kantrowitz et al. verified 

augmentation of coronary blood flow through increase in diastolic pressure [33]. Later in 1959, he 

added that diaphragm contraction wrapped around the descending thoracic aorta during diastole 

managed to reduce the LV stress. Other long-term counterpulsation approaches tried involved 

IABP through a synthetic graft attached to left subclavian artery [34], a descending aortic patch 

sewn into the descending thoracic aorta, and by wrapping the pedicle latissimus dorsi muscle 

around the aorta. However each of these approach has its limitations [35].  

The hemodynamic advantages of counterpulsation therapy in patients with acute cardiac 

dysfunction is the major reason using IABP as an effective temporary MCS device. In 1962, 

Moulopoulos et al. developed the IABP [36], which was implanted in human subject 6 year later 

for the management of post MI CS [35]. Since then IABP has been widely used in patients with 

CS, those waiting for advanced cardiac care, and those undergoing coronary artery bypass surgery 

[34]. However, the application of long-term IABP counterpulsation in the setting of chronic HF 

remains incomplete; the prospective of long-term counterpulsation may be improved by 

implementation of novel, fully implantable CPDs. With the recent mission for more effective, 

smaller and long-term MCSDs, a number of other CPDs have been under examination [10]. These 

CPDs include the para-aortic counterpulsation device (PACD) [37], representing the early version 

of the pressure unloading LVAD (PULVAD) named Kantrowitz CardioVAD (KCV)  (LVD 

Technology, Detroit, MI) [38], the Symphony  device (Abiomed (Danvers, MA) and SCR 

(Louisville, KY)) [9], [39], and C-Pulse (Sunshine Heart Inc., Eden Prairie, MN) [40]. 
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1.3. Dissertation Outline 

The dissertation is organized as follows. In Chapter 2, we present the background and 

related literature. Chapter 3 presents a novel idea to improve cardiac output of mechanical 

circulatory support devices by optimizing kinetic energy (KE) available in forward moving aortic 

blood flow. Chapter 4 presents optimal timing control of extra-aortic two-segmented 

counterpulsation device using exhaustive search mechanism. 
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2. RELATED WORK 

2.1. Counterpulsation Theory of Application 

The main functionality of any counterpulsation therapy is to augment the aortic pressure 

(AOP) during the native heart diastole with the use of mechanical circulatory support device 

(MCSD) to achieve an increase in coronary artery flow (CAF) known as myocardial perfusion as 

well as decreases AOP during native heart systole to achieve reduction in ventricle afterload and 

external work [41]. There are numerous CPDs in clinical use and in development phase that work 

on the above-mentioned principle. For example, an IABP placed in the descending aorta inflates a 

balloon with bursts of shuttle gas during native diastole pushing blood to the heart, and deflates 

the balloon before the native heart systole, and deflates the balloon just before the native heart 

systole thus reducing the AOP. Likewise, Symphony device achieves similar effects by displacing 

the blood and C-Pulse by squeezing the aorta. The effectiveness of the Counterpulsation therapy 

rely generally on the control algorithms, i.e. the timing and synchronization of the device to native 

cardiac beat, which is usually accomplished with the help of electrocardiograph (ECG) or AOP 

waveform to trigger the device for inflation and deflation. Generally, the ECG waveform is used 

to detect R-wave to find out the beginning of the ventricle systole however, AOP waveform can 

be used to observe the placement, timing, and efficacy of the counterpulsation therapy by 

calculating the peak diastolic and end-diastolic pressure (EDP) as shown in Figure 1.  

 

Figure 1. Effect of assistance with counterpulsation on AOP waveform during diastole and systole 

[42]. 
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In order to account of time delays finer adjustments in CPD timing can be made manually 

for optimization [42]. 

2.2. Physiological Benefits of Counterpulsation 

Counterpulsation therapy offers great clinical advantages for the heart, end organs and 

peripheral circulation for the patients with myocardial dysfunction. Reduces the ventricle afterload 

and external work because of the decreased ventricle pressure. Counterpulsation therapy increases 

the diastolic AOP by 30% to 70% and provide significant improvement in coronary perfusion [29], 

[43], [44].The peak systolic pressure is reduced by 5-15%, while EDP is decreased up to 30%  

[29], [31], [45]. Counterpulsation therapy also reduces native heart rate (HR) by 10% [30] and 

may reduce LV EDV up to 10 to 15% [46]. Counterpulsation improves oxygen supply to heart 

through increased coronary perfusion and decrease oxygen consumption by reducing ventricle 

afterload and external work [30], [47], [48]. Counterpulsation increases CO and stroke volume 

(SV) up to 20% [43], [49]. Counterpulsation therapy also helps in improving metabolic function 

and in regaining of end organ functions [30] e.g. cerebral, renal, mesenteric and pulmonary blood 

[50]–[53]. Table 2 lists the summary of hemodynamic and metabolic benefits of Counterpulsation 

therapy. 

Table 2. Summary of counterpulsation therapy hemodynamic and metabolic benefits. 

Hemodynamic Benefits Metabolic Benefits 

Coronary Perfusion   0 to 100% Myocardial Oxygen Consumption [54] 

MVO2 = CBF x (CaO2 – CvO2) 

25% 

Diastolic AOP  30 to 70% Myocardial Oxygen Supply   

LV Peak Systolic Pressure   5 to 15% End Organ Perfusion   

LV End-Diastolic Pressure    5 to 30%   

HR   0 to10%   

LV EDV   5 to 15%   

CO   0 to 20%   



 

9 

Counterpulsation therapy is very effective in patients with HR between 80 to 110 BPM 

[55], [56], systolic AOP between 40 to 70 mmHg [57], and have high arterial stiffness [58]–[60]. 

Optimal preformation of counterpulsation is gained when its volume is equal to the SV of LV 

[61]and is effective as close the device is near to aortic wall. However, due to minor risk of 

obstruction or embolization to the aortic vessels CPDs are usually positioned at three different 

locations 1) IABP is implanted in the descending aorta and 2) Symphony device near to axillary 

artery and C-Pulse around the ascending aorta. 

2.3. Types of Counterpulsation Devices 

2.3.1. Extracorporeal Counterpulsation Devices 

Enhanced external counterpulsation (ECP) technique is used to provide non-invasive 

extracorporeal counterpulsation therapy. During ECP pneumatic cuffs placed externally on patient 

lower extremities are inflated and deflated. Mostly ECP (Figure 2) is performed by placing three 

cuffs on each leg i.e. on the upper thighs, lower thighs and the calf and like every counterpulsation 

the inflation and deflation is ECG triggered (R-wave detection). During deflation period of cycle, 

the upper thighs cuffs deflate first, then the lower thighs and lastly the calf cuffs and in inflation 

the sequence is reversed. A pressure monitor is used to control the inflation pressure and the cuffs 

are inflated up to 300 mmHg. ECP has shown to be effective in providing relief to angina, reducing 

the level of ischemia in a cardiac stress test, improving exercise tolerance and improving CO for 

HF patients. ECP is recommended for patients who have symptoms of ischemic cardiomyopathy 

(IC) but are not willing to go for coronary artery bypass surgery. It is not recommended for patients 

with severe peripheral vascular disease, aortic insufficiency, significant artery disease, aortic 

insufficiency, uncontrolled hypertension, phlebitis, deep vein thrombosis, bleeding diathesis and 

stasis ulcers. 
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Figure 2. Non-invasive counterpulsation therapy with series of cuff placed externally on patient 

lower extremities to provide ECP for reducing afterload and increasing CO [42].  

2.3.2. Percutaneous Counterpulsation Devices 

2.3.2.1. Intra-aortic balloon pump 

As explained earlier, the hemodynamic and metabolic advantages of the counterpulsation 

therapy in patients suffering from acute and chronic HF led to the development of IABP MCSD. 

IABP consist of a polyethylene balloon that is placed in the aorta about 0.8 inches away from the 

left subclavian artery. The inflation and deflation is performed by shuttling helium gas in the 

balloon [10].  

IABP is recommended for the patients experiencing CS, reversible mechanical cardiac 

complications following MI, post craniotomy failure, angina pectoris, injury to myocardial tissue, 

substantial risk coronary artery bypass surgery, preoperative use for patients with unstable angina 

with stenosis greater than 70% of main coronary artery, LV dysfunction (LVEF < 35 %). IABP is 

not recommended for patients with severe aortic valve insufficiency and aortic dissection. Relative 
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contraindications are prosthetic vascular aortic grafts, aortic aneurysm, and aortofemoral grafts. 

IABP is a blood contacting device hence required anticoagulation regimen with heparin [42].   

IABP is a short-term counterpulsation this is implanted in the descending aorta (Figure 3) 

using a percutaneous access to the femoral artery into descending aorta, and therefore requires 

patient to supine during the course of therapy. The location of an IABP in descending aorta and 

biocompatibility issues do not allow IABP to be used for longer period typically (> 14 days) [62], 

[63]. Prolonged support of IABP results in increased vascular complications, bleeding and 

infection [63], [64]. Timing of IABP inflation and deflation plays an important role to make sure 

balloon doesn’t block the aortic flow (AOF) therefore, IABP needs to be rapidly deflated before 

the ventricle ejection starts [65], and this rapid deflation causes retrograde flow restraining the 

maximum hemodynamic and metabolic advantages of IABP counterpulsation. Recent 

technological advancement greatly refined the IABP counterpulsation and now it consists of sheath 

less insertion technique, smaller sizes of balloon catheter and optical fiber based pressure sensors. 

The revised insertion and advanced pressure sensor enabled improved distal limb perfusion by 

reducing the outer diameter lumen of the IABP catheter. The variety of balloon sizes allows 

surgeon to select the balloon that better match patient internal diameter and height of the aorta. 

Given the limitations of IABP and proven hemodynamic and metabolic advantages of 

counterpulsation, several new CPDs are being developed for long-term therapy, including 

(Kantrowitz CardioVAD, Symphony device and extra-aortic C-Pulse). These CPDs provide long-

term support of chronic HF along with implantation system and are less invasive than current 

ventricular assist devices (VADs). Like IABP all these CPDs provide improved coronary artery 

perfusion and reduce ventricle workload.  
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Figure 3. IABP placed in the descending aorta, timed to inflate during diastole to augment the 

coronary perfusion and deflate during systole before the onset of ventricular ejection to decrease 

the LV afterload and external work [66]. 

2.3.3. Modern Implantable Counterpulsation Devices 

2.3.3.1. The Kantrowitz CardioVAD 

Kantrowitz CardioVAD (KCV) is a chronic MCSD (currently in clinical trials) designed 

(by LVAD Technologies Detroit, MI) to provide long-term assistance to severe to moderate HF 

patients. This CPD is designed especially for the patients who are unable to qualify for heart 

transplant but still have some cardiac function. This device delivers systolic unloading and 

diastolic augmentation of the failing heart.  

This device (Figure 4) is pneumatically driven and consists of Cardioplus pump (60 cc), 

percutaneous access device (PAD), and a wearable unit for control and has a similar physiological 

function to IABP. The CardioPlus pump weighs less than an ounce and is approximately 6.5 inches 

in length [42]. The Cardioplus pump is surgically implanted in the descending aorta with patient 

on cardiopulmonary bypass which increase the risk of morbidity and mortality.  

This device is a non-obligatory and can be turned on/ off for minutes or hours from external 

unit when the patient’s wishes without the increasing risk of thromboembolism. Patients on this 



 

13 

device showed immediate and sustained major improvements in exercise capacity [38], [66], [67]. 

However, this device can’t be implanted in patients experiencing severe biventricular dysfunction 

and uncontrolled tachyarrhythmia [38]. 

 

Figure 4. Illustration of Cardioplus patch surgically implanted, to provide counterpulsation the 

patch inflates during diastole and deflates during systole by a wearable pneumatic driver [42]. 

 

2.3.3.2. Symphony device 

The Symphony device (currently in pre-clinical trials) designed by Abiomed (Danvers, 

MA) and SCR (Louisville, KY) to fit comfortably in a pacemaker like pocket. It consists of 30 mL 

SV polyurethane-lined pumping chamber placed in the right side [9], [68] of a patient and a 

percutaneous driveline that runs form pumping chamber and exists the skin and connects to an 

external pneumatic driver (weighs about 2.2 kg can be carried or worn on belt).  A relatively simple 

procedure (surface surgical implantation) is required for chamber implantation, the pumping 

chamber is connected to the systemic circulation by a short graft anastomosed to the right artery.  

The Symphony device ejects blood into the circulation during diastole to provide diastolic 

augmentation and coronary perfusion, and during systole the air is evacuated from the pumping 
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chamber by the driver thus removing blood from the circulation and reducing external work. The 

timing of the Symphony device filling and ejection was adjusted to maximize the performance.  

Pre-clinical studies have revealed that this device provides superior hemodynamic and 

metabolic advantages compared to a 40 mL IABP [9], [39], [68]–[71]. 

This device is typically recommended for patients with NYHA class IIIB and IV HF 

recovering from acute MI or with chronic angina. However, this device is not recommended for 

patients with end-stage HF, aortic insufficiency, severe hypertension, infection, severe vascular 

disease and tiny or blocked axillary or brachiocephalic arteries [10]. 

This is a blood contacting device therefore requires anticoagulation regimen of initial 

Heparin in the immediate postoperative period which shifts to chronic Warfarin and antiplatelet 

therapy with Plavix [42]. 

2.3.3.3. C-Pulse 

The C-Pulse (currently in clinical trials) is an implantable extra-aortic counterpulsation 

device, designed by Sunshine Heart Inc., Eden Prairie, MN to provide permanent, long-term, 

continuous and or on-demand partial MCS for class III and ambulatory class IV HF patients. The 

C-Pulse system includes non-blood contacting (first of its type), ECG-trigged, pneumatically 

driven, implantable cuff (consisting of balloon and combination wrap) linked to an air tube; a 

bipolar epicardia ECG sensing lead (attached to RV outflow tract) for transmitting the signals from 

heart to C-Pulse controller; and a wearable external AC-powered control unit [72]. 

The C-Pulse cuff consists of a polyurethane balloon and polyester covering designed to 

follow to the ascending aorta as shown in Figure 5. The air tube and ECG sensing lead passes 

internally through the abdominal wall and is linked to the external drive unit (which pumps air in 

and out of the balloon for inflation and deflation synchronized to heart beat). The external unit is 
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programmable and adjustments can be made in inflation and deflation rate as well as an inflation 

volume. The C-Pulse cuff inflates inwardly producing a “thumb printing” bend of the outer 

curvature of the ascending aorta as shown in Figure 5. Depending upon the cuff size and aortic 

diameter approximately the cuff can displace 20 to 30 mL of blood volume per beat. The C-Pulse 

balloon is inflated at the closure of aortic valve, which represents the time when the dicrotic notch 

appears in the AOP waveform and is deflated at the onset of R-wave on the ECG, which take place 

before the opening of the aortic valve. The device is implanted through median sternotomy [72], 

requiring a short 15 to 20 minutes implantation procedure and total operation time is approximately 

between 60 to 90 minutes.  

 

Figure 5. Extra-aortic balloon wrapped around the ascending aorta (deflated (right) and inflated 

(left) showing thumb print effect [74]. 

 

2.4. Exploring Extra-Aortic Balloon (C-Pulse) 

2.4.1. Research Studies on Extra-Aortic Balloon Counterpulsation (C-Pulse) 

Davies et al. compared the effects of extra-aortic balloon (EAB) counterpulsation with 

IABP [41]. An EAB with 17 mL volume around the ascending aorta compared to IABP with a 

balloon volume of 25 mL in the descending aorta. Measurement of arterial and central venous 

pressures, flow in coronary and descending aorta at baseline and after EAB or an IABP using (1:1) 
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and (1:2) modes were performed. During (1:1) mode baseline data was compared with EAB and 

IAB, and during (1:2) mode assisted beat data was compared and analyzed with unassisted beat. 

The results of Davies et al. suggested that both the CPDs augmented the peak diastolic 

pressure and decreased the LV afterload. EAB counterpulsation was found to increase diastolic 

CAF in both modes by 69% in (1:1) and by 63% in (1:2) assisted versus unassisted beat. IABP 

significantly increased diastolic CAF by 28% in (1:2) mode. Both devices shown augmentation in 

total CAF and some increase was observed in AOF as well. This study suggested that EAB could 

be used as a better option in patients suffering from mild to severe HF because of its non-blood 

contacting nature and easy implantation.  

Later Legget et al. performed a study of EAB in humans [73]. The goal of this was to 

conclude the safety and performance of EAB in six patents with normal LV function enduring off-

pump coronary bypass surgery. EAB was implanted and attached to standard counterpulsation 

counsel. At baseline with (1:1) and (1:2) modes hemodynamic and echocardiographic parameters 

of ventricle function and CAF were measured. It was found that systolic, diastolic and venous 

pressures were comparable to baseline during counterpulsation. However, during (1:1) 

counterpulsation mode HR fall down from (76 ± 1.2 to 72 ± 1.1, P = 0.055) but there was no 

significant change in HR. However, an increase of 67% in diastolic CAF, 13% improvement in 

fractional area change and reduction of 6% in end-diastolic area, 16% in end-systolic area and 31% 

in LV wall stress was reported with EAB (1:1) compared to baseline. EAB also shown 26% rise 

in velocity of fiber shortening and inverse correlation between wall stress and fiber shortening was 

observed during EAB (1:1) counterpulsation, representing that EAB improves LV function 

(velocity of fiber shortening) by decreasing the LV afterload (wall stress). Finally, it was 
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concluded in this study [73] that EAB augments CAF, decreases afterload, and there were no 

complications noticed during EAB short-term use 35. 

Similarly, Hayward et al. tested C-Pulse on humans to further explore the feasibility, safety, 

and hemodynamics effects in five severe HF patients (NYHA class III or IV) aged between 54 and 

73 years [72]. All the patients shown improvement by one NYHA class, and major hemodynamics 

improvement were found in three patients. One patient was successfully transplanted after a month, 

one patient remained on C-Pulse for six months and shown significant improvements in 

hemodynamics but suffered complications [72]. However, in remaining three patient’s infectious 

complications were developed.    

At present, a potential, randomized test to access the safety and efficacy of C-Pulse in 

patients with NYHA class III or ambulatory class IV HF is in progress. Solanki P reported 

estimated sample for this study was about 388 subjects (estimated completion is in 2017) and 

patients were randomized to test and control groups [10]. Food and Drug Administration (FDA) 

approval to market this device in USA is subject to the demonstration of safety and efficacy of C-

Pulse system through this study. 

2.4.2. Possible Candidates for Extra-Aortic Balloon Counterpulsation (C-Pulse) 

C-Pulse system is an implantable MCSD that is non-blood contacting and non-obligatory 

for providing short- or long-term, partial or full support for moderate to severe HF patients. 

According to the studies performed by Davies et al., Legget et al., and Hayward et al. ACC/AHA 

stage C and NYHA class III or ambulatory class IV patients with LVEF < 35% symptoms despite 

optimal medical and device related therapies can be considered possible candidates for C-Pulse 

device. Investigational studies (echocardiography, computed tomography (CT) chest, etc.) are 

performed before possible candidacy eligibility to eliminate any chronic diseases that can restrict 
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patients for getting C-Pulse. Timing of candidate selection is very important because once patients 

move in to NYHA class IV HF, the implantation of C-Pulse system is too late.  For the C-Pulse 

system implantation ascending aortic outside diameter should need to be greater than 28 mm and 

less than 42 mm [10]. C-Pulse can be implanted if the candidate has mild degree of aortic atheroma 

and mild aortic spewing. 

C-Pulse system implantation is not recommended to patients with moderate to severe aortic 

insufficiency, ascending aorta calcification, aortocoronary bypass grafts, history of aortic 

dissection or disorder of other connective tissues to aorta, prior LVAD or heart transplant and 

ACC/AHA stage D or NYHA non-ambulatory class IV HF patients [10].  

2.4.3. Advantages and Disadvantages of Extra-Aortic Balloon Counterpulsation 

Extra-aortic balloon counterpulsation is a non-blood contacting device and it does not 

required anticoagulation hence minimizing the risk of thrombus. It is easily implantable device 

(wrapped around the ascending aorta), minimally invasive designed to implant without the need 

of cardiopulmonary bypass and is usually implanted via small incision of the size of pacemaker 

through the ribs and sternum or through traditional full sternotomy allowing patient to ambulate 

soon after its implantation. No significant embolic actions reported with the use of this device, 

since it is non-obligatory CPD it can be disconnected for hours. Moreover it is also reported that 

diastolic augmentation is more effective at ascending aorta than descending aorta [74]. The 

deflation of extra-aortic balloon CPD on the anterior of aorta reduces strain and produces no 

mechanical injury to the aortic wall unlike IABP which forms mechanical injury to endothelium 

due to the location of its implantation [75]. 

Extra-aortic devices are contraindicated in patients who had past heart surgeries, severe 

atherosclerosis of the ascending aorta, aortic insufficiency, significant vascular disease and 
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coronary artery bypass. Driveline infection remains the most contrary incident in extra-aortic 

devices [40]. The long-term effect of extra-aortic device on the aortic wall is still unknown, 

although in an animal model study, the cuff compression indicated only mild inflammatory 

alteration of the adventitia and normal media and intima of ascending aorta [75]. However, Legget 

et al. reported acute adverse effects in a human study due to cuff compression [73]. It is also 

reported that the degree of CO improvement in NYHA class III and ambulatory class IV HF may 

be insufficient [10]. 

2.4.4. Improving the Hemodynamics of Counterpulsation Devices 

Considering the physiological advantages of CPDs for long-term therapy for acute and 

chronic HF patients and the short coming of limited improvement in CO for NYHA class III and 

ambulatory class IV, we proposed the novel idea of improving the CO of MCSDs by harnessing 

the KE of the forward moving aortic blood flow and used extra-aortic CPD as an example. The 

next chapter elaborates the mathematical modeling of the proposed system and demonstrates the 

increase in CO attained from this model.  
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3. A NOVEL IDEA TO IMPROVE CARDIAC OUTPUT OF MECHANICAL 

CIRCULATORY SUPPORT DEVICES BY OPTIMIZING KINETIC ENERGY 

TRANSFER AVAILABLE IN FORWARD MOVING AORTIC BLOOD FLOW 

This paper is published in Cardiovascular Engineering and Technology journal and is 

currently under revision process. This chapter discusses the modeling of two-segmented cuff CPD 

to optimize the KE available in forward moving aortic blood flow, and compares the hemodynamic 

improvements with no device and single cuff CPD. 

3.1. Introduction 

Congestive heart failure (CHF) is a complex condition characterized by reductions in either 

filling or ejection of blood in the ventricles due to various cardiac disorder [76]. Currently, 

treatment for CHF begins with medications to increase pumping efficiency of the heart and/or 

followed by implantable pacing devices, before progressing to MCSDs and heart transplants as the 

last viable option. MCSDs can work by direct systolic augmentation of the heart, mechanically 

diverting blood from the LV directly into the aorta or via counterpulsation therapy with diastolic 

augmentation.  

Counterpulsation pumps when the heart is in the diastolic state to increase blood flow and 

oxygen to the heart. Counterpulsation stops pumping when the heart is in the systolic state to 

decrease the workload and lessen oxygen demand. MCSDs with extra-aortic counterpulsation 

enables a minimally invasive, non-blood contacting therapy, in which the device may be implanted 

without the need for extensive dissection facilitating patient ambulation, and is designed to provide 

long-term partial circulatory support in HF patients (Figure 6). Improvements in diastolic CAF 

and reductions in the LV afterload with the extra-aortic CPD have been well-documented in many 

short-term studies [73]. However, it has also been shown that MCSDs with extra-aortic 
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counterpulsation may produce retrograde flow during diastole that can reduce the CO and CAF 

[69]. Overall, CPDs are considered insufficient to meet the needs of NYHA ambulatory class IV 

HF patients [10]. 

 

 

Figure 6. Illustration of typical CPD consisting of a cuff that is wrapped around the ascending 

aorta; a bipolar ECG sense lead placed on the left ventricle; an exchangeable wire-wound 

percutaneous interface lead (PIL) (redrawn from Starck et. al. [77]). 
 

3.2. Materials and Methods 

3.2.1. Overview of Cardiovascular System Modeling  

A previously reported, a lumped parameter electrical-analog model of the cardiovascular 

system (CVS) was implemented in Simulink, Matlab 2016 [78]. Single and two-segmented CPD 

computational models were developed and integrated into the CVS model. The extra-aortic two-

segmented cuff CPD was modeled by adding a second cuff of small compliance distal to the single 

cuff CPD model, and it was controlled by an external timer. Hemodynamic and LV pressure-

volume (PV) loops were simulated over a wide range of physiological test conditions mimicking 

early and late-stage HF. The efficacy of the single and two-segmented extra-aortic CPDs were 

simulated and compared to quantify CO and characterize retrograde flows.  

3.2.2. Electrical Analog Computational Model of the Cardiovascular System 

The human circulatory system is divided into a number of lumped parameter blocks in 

which each block is defined by its own resistance, compliance, pressure, and volume of blood [78], 

(a) (b) 
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[79]. Typically, a simplified human circulatory model consists of four valves represented by diodes 

and six blocks as shown in Figure 7.  

 

Figure 7. Illustration of human circulatory system. 

 

Among these six blocks, four are considered as active blocks because of their varying 

compliance. Every block of the model is defined by its resistance (R) to the flow of blood and its 

compliance (C) which is the capability of a block to store the blood volume (V). 

Even though a complete heart model can be appended with a model of assist device, for 

simplicity we assume that the right heart and pulmonary network are healthy and working under 

normal conditions. To produce the LV hemodynamics, a second order lumped parameter electrical 

model of arterial system is developed as shown in Figure 8.  

 

Figure 8. Illustration of lumped parameter electrical equivalent model of the CVS.  
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In this model, a constant source of 8 mmHg represents the left atrium pressure (LAP), and 

the mitral valve is represented by a diode that has an internal resistance (RM) and forward pressure 

(PM). The aortic valve is represented by a diode, which also has an internal resistance (RA) and 

forward pressure (PA). Both PM and PA are used to simulate the opening pressure of the mitral and 

the aortic valves. Resistance (RC) is used to model the coronary arteries of the CVS (so that 

augmentation of coronary blood flow can be simulated using counterpulsation). The aortic valve 

is followed by a three element Windkessel model comprised of inductor (LS), resistance (RS), and 

compliance (CS) for the representation of systemic circulation. 

Table 3. Cardiovascular system model parameters for healthy heart. 

Parameter Value Detail 

LAP 8 mmHg Left Atrium Pressure 

RM 0.0005 mmHg.s/mL Mitral Valve Resistance 

RA 0.0225 mmHg.s/mL Aortic Valve Resistance 

C(t) Time-varying Left Ventricle Compliance 

RS 2 mmHg.s/mL Systemic Resistance 

RC 4 mmHg.s/mL Coronary Resistance 

CS 1.5 mL/mmHg Systemic Compliance 

LS 0.0002 mmHg.s2/mL Blood Inertia in Aorta 

PM 0.040 mmHg Forward Pressure of Mitral Valve 

PA 0.080 mmHg Forward Pressure of Aortic Valve 

For model simplicity only three elements have been employed, while maintaining enough 

complexity to produce the desired LV hemodynamics. Complete details of the CVS model 

parameters and their corresponding values, [80]–[82] are listed in Table 1. 

These values of resistances and compliances differ in different patients; here typical values 

are used for the LV chamber model. The LV chamber of the heart is modeled as a time varying 

compliance represented by C(t). The varying compliance C(t) is used since the walls of the heart 

chambers are elastic and their elastance changes over time through the cardiac cycle. The elastance 
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function E(t), which is the reciprocal of C(t), describes the relation between the pressure and 

volume of the LV and is given by the following relation [83]. 

 
E(t) =

LVP(t)

LVV(t) − V0
 

  (1) 

where LVP(t) represents the LV pressure, LVV(t) represents the volume of the LV, and V0 is the 

dead volume of the LV at zero pressure. Various expressions of the LV elastance have been 

reported [78], [84], [85]. In this study, an exponential function was used, which provides 

symmetrical responses for the ejection and filling cycles of the heart and can be mathematically 

represented as: 

 
E(t) = (Emax − Emin) ∗ exp (

(−t − μ)2

2σ2
) + Emin 

(2) 

where Emax and Emin are the constants representing the maximum and minimum elastance E(t) of 

the LV and are related to the end systolic pressure volume relationship (ESPVR) and end diastolic 

pressure volume relationship (EDPVR), respectively. The other constant parameters 𝜇 and 𝜎 are 

used to center the mean at ½ of the cardiac cycle and spread the curve to 50% of the duty cycle. A 

plot of normal LV elastance E(t) with Emax = 2 mmHg/mL and Emin = 0.06 mmHg/mL is shown 

in Figure 9. 

 

Figure 9. Elastance of LV for normal heart (Emax = 2 mmHg/mL) over a period of one cardiac 

cycle at a HR of 60 and 75 BPM, respectively. 
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3.2.3. Cardiovascular Model Verification 

The capability of the CVS electrical model to match the hemodynamic response of the LV 

is verified by simulating the model in reaction to changes in parameters. The CVS model is found 

to be consistent with hemodynamic data in normal heart conditions. Figure 10 shows the 

simulation waveforms at a HR of (a) 60 and (b) BPM with LV elastance E(t) = 2 mmHg/mL, 

which corresponds to healthy heart based on its SV and CO. The normal CO range of healthy 

human heart falls between 4 to 8 L/min. 

 
 

  

 

Figure 10. Simulated waveforms of electrical model of the CVS representing the hemodynamic 

response of normal heart at 60 BPM. 

 

For the specific scenario of 60 BPM with LV elastance E(t) = 2 mmHg/mL as shown in 

Figure 10, diastolic pressure, systolic pressure, EDV, and ESV are found to be 78.16 mmHg, 118.6 

mmHg, 142.7 mL and 69.25 mL respectively under the initial conditions of 120 mL for LVV, 120 

mmHg for arterial pressure and 10 mL for LV dead volume. Substituting the values of systolic 

pressure, diastolic pressure, ESV and EDV in the equations below.  

SV = EDV − ESV   (3) 
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CO = HR ∗ SV   (4) 

Pulse Pressure = Systolic Pressure − Diastolic Pressure   (5) 

Mean Arterial Pressure = Diastolic Pressure + (
1

3
∗ pulse pressure) 

  (6) 

The pulse pressure calculated is 40.44 mmHg/ml, mean arterial pressure (MAP) is 91.50 

mmHg, SV is 73.41 mL/beat and CO is 4.40 L/min. 

 The model of CVS was further verified by altering the afterload and preload conditions 

and generating the PV-loop, while keeping the elastance and dead volume of the LV constant at 

Emin = 0.06 mmHg/ml, Emax = 2 mmHg/ml and V0 = 10 mL. Despite the alterations in afterload 

and preload conditions, linearity between end systolic pressure (ESP) and the LVV (also called 

ESPVR) validates the behavior of the CVS model similar to the hemodynamic response of the 

normal LV.  

We simulated the afterload conditions for four different values of RS. The preload 

conditions were also simulated four different values of RM. Error! Reference source not found. (

a) and (b) show the PV-loop for varying afterload and preload conditions with linearity in the 

ESPVR at a HR of 60 BPM and for Emax = 2 mmHg/mL.  

 

 

Figure 11. Linearity of ESPVR in response to alterations in afterload and preload conditions of 

CVS model are shown in (a) and (b), respectively. 

 

(a) 
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Figure 11. Linearity of ESPVR in response to alterations in afterload and preload conditions of 

CVS model are shown in (a) and (b), respectively (continued). 

3.2.4. Simulating Heart Failure 

A wide range of HF scenarios was simulated ranging from mild to severe (Table 4). The 

level of HF is represented by the stiffness of the LV muscle [86] the patient’s activity level by 

adjusting RS, and variations in the HR from 60 to 75 BPM. 

Table 4. Heart failure scenarios for 60 and 75 BPM [87]. 

HR 

(BPM) 

Systemic Resistance 

(mmHg.s/mL) 
Activity Level 

Emax = 1.00 

(mmHg/mL) 

Emax = 0.75 

(mmHg/mL) 

Emax = 0.50 

(mmHg/mL) 

60 2.00 Inactive Mild HF Moderate HF Severe HF 

75 1.75 Active Mild HF Moderate HF Severe HF 

120 1.00 Very Active Mild HF Moderate HF Severe HF 

 

3.2.5. Modeling the Extra-Aortic Single Cuff CPD 

The extra-aortic single cuff CPD is modeled with three elements: (1) time-varying 

compliance (Ccuff(t), Equation (7)), (2) inductance (Lcuff, Equation (8)) representing the inertia 

of blood, and (3) a small internal resistance to model the frictional losses. In this model, the CPD 

displaces 10 to 30 mL of blood volume per cardiac beat [87], and has a length l = 8 cm with an 

outside radius r = 2.82 cm, which varies depending on the cuff size [40]. 

(b) 
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Ccuff(t) =

dV(t)

dP(t)
 

(7) 

 
Lcuff =

ρl

πr2
 

(8) 

The capacity of the extra-aortic single cuff CPD was limited to a maximum of 30 mL using 

a compliance that is dependent on the AOP. This corresponds to a piece-wise linear CPD pressure-

volume relationship where at low pressures the compliance will be higher and at high pressures 

the compliance will be lower. The maximum cuff compliance will be 0.85 mL/mmHg (severe HF) 

and 0.45 mL/mmHg (mild HF) for cuff pressures of 35 and 60 mmHg, respectively using Equation 

(7) (Table 4. Heart failure scenarios for 60 and 75 BPM [87]. An inductance value of 0.003 

mmHg. s2/mL was obtained by substituting the length and radius of the cuff (Figure 12(a)) and 

blood density (ρ) of 1.06 gm/cm3 in Equation (8). The electrical-analog model of extra-aortic 

single cuff CPD (Figure 12(b)) and its time-varying compliance function were used (Figure 13(a)) 

for HR of 60 and 75 BPM respectively. The cuff compliance was varied from 0.45 to 0.85 

mL/mmHg to limit the maximum filling volume to 30 mL/beat as shown in (Figure 13(a)). The 

saturation of maximum cuff compliance of 0.85 to 0.45 mL/mmHg (Figure 13(b)), which were 

obtained using the saturated compliance profile, are the same as unsaturated compliance.  

  

Figure 12. A geometrical representation of cuff and its electrical equivalent (a) shows inner and 

outer dimension of a typical extra-aortic cuff wrapped around the aorta and (b) shows the electrical 

equivalent model of extra-aortic single cuff consisting of time-varying compliance, inductance, 

and resistance. 

(a) (b) 
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Figure 13. Extra-aortic cuff compliance profiles to inflate and deflate the proximal compartment 

(cuff) (a) shows the time varying cuff compliance at a HR of 60 and 75 BPM for LV elastance of 

0.50 and 1 mmHg/mL, respectively (b) To limit the cuff volume to 30 mL the cuff compliance is 

restricted to 0.45 mL/mmHg for mild LV pressures (LV elastance of 1 mmHg/mL). 

 

3.2.5.1. Cuff Compliance Deflation and Inflation Timing Optimization for single- and two-

segmented CPDs 

To optimize CO, the steepest descent technique was used to select deflation and inflation 

timing landmarks for the single- and two-segmented CPDs. Initially, the range of deflation and 

inflation times of the cuff compliance were referenced to the onset of AOF. The timing landmarks 

for cuff compliance deflation varied from 0.10 to 0.44 seconds, and inflation from 0.45 to 0.80 

seconds. The rationale for choosing these ranges is to ensure the cuff compliance starts to increase 

at the opening of the aortic valve, and once the cuff is filled with 30 mL of blood volume, the 

compliance remains constant and then decreases, thereby optimizing KE. Initially, the area of AOF 

or stroke volume (SV) over a period of one beat was calculated between the deflation time of 0.40 

seconds and inflation time of 0.70 seconds. A time shift (e.g. .0025 sec) was introduced to the 

deflation time of cuff compliance and the SV re-calculated to determine if the time shift resulted 

in an increased SV. The derivative calculated from the time shifts are given by: 
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d1 =

area2 − area1

shift
 

d2 =
area3 − area1

shift
 

 

(9) 

where ‘shift’ is a small value of time (rate of change), ‘area1’ corresponds to the SV over a period 

of one cardiac cycle calculated on the initial points, ‘area2’ corresponds to the SV calculated after 

introducing small time shift in deflation time.  Likewise, ‘area3’ corresponds to the SV calculated 

by shifting the inflation time with small time. In Equation (9), ‘d1’ is the search direction of 

deflation time and ‘d2’ is the search direction of inflation time to find the global maxima. 

Normalization of the derivatives was performed to make the directional vectors unity. Next, a new 

step size was calculated for deflation and inflation times to start moving in the direction of ‘d1’ 

and ‘d2’ (Equation (10)).   

                 d1 > 0 

stepsize = (T1max − T1)/d1 

                d1 < 0 

stepsize = (T1 − T1min)/d1 

                d2 > 0 

stepsize = (T2max − T2)/d2 

                d2 < 0 

stepsize = (T2 − T2min)/d2 

stepsize = min (abs(stepsize)) 

 

(10) 

where ‘T1max’ is the maximum value of the deflation time and ‘T1’ is the initial value of deflation 

time used to start the optimization process. Similarly, ‘T2max’ is the maximum value of inflation 
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time and ‘T2’ is the initial value of inflation time. The step size was divided into eight linearly 

spaced points and SV was calculated as shown in (Figure 14) to determine step size interval that 

results in maximum SV. The golden section method reduces the search space of step size interval. 

The step size interval with maximum SV further divided into two more points. In (Equation (11)) 

‘f1’ and ‘f2’ are the functions used to generate two new step sizes between ‘a’ and ‘d’, the step 

size interval range. The SV was calculated for all four step sizes ‘a’, ‘b’, ‘c’, ‘d’, and these points 

were updated until the condition (abs(d − a)) > 1e−3 was satisfied. 

f1 =
3 − sqrt(5)

2
 

f2 =
(sqrt(5) − 1)

2
 

a = a0 

b = a0 + f1(d0 − a0) 

 c = a0 + f2(d0 − a0) 

d = d0 

(11) 

 

 

 

 

 

 

 

 

Figure 14. Optimization process of single cuff deflation and deflation timings (a) shows 

downstream AOF waveforms and (b) shows the corresponding SV at HR of 60 BPM and LV 

elastance (Emax = 0.50 mmHg/mL) for eight different deflation and inflation triggering times. 
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Finally, the optimal step size ‘P’ was chosen to correspond to maximum SV. The update 

equation of deflation ‘T1’ and inflation ‘T2’ time (Equation (12)) is iteratively adjusted until the 

difference between the updated and previous deflation and inflation times are greater than 1e−4. 

T1 = T1 + P ∗ d1 

T2 = T2 + P ∗ d2 

 

(12) 

3.2.6. Concept of Optimizing Kinetic Energy 

The experimental evidence established in [88] supports the idea that the LV actively draws 

the blood from left atrium (LA) during early diastole as the LV compliance is still increasing. 

Importantly, in terms of the flow’s driving energy expenditure, diastolic suction contributes to 

filling more than one order of magnitude above passive atrial decompression. The analysis has 

shown that diastolic suction in humans is initiated during isovolumic ventricular relaxation and 

continues during rapid filling. The diastolic nature of the LV has been well established in literature 

and we see that the variable compliance of the proximal compartment acting as a similar kind of 

suction (increasing compliance while filling).  

To address the issues of modest increases in CO and retrograde flow associated with 

current MCSDs such as extra-aortic CPDs, we propose the development of an extra-aortic two-

segmented CPD (Figure 15) designed to the idea of systolic suction and provide greater 

improvements in CO by harnessing the kinetic energy (KE) available in the forward aortic flow 

(AOF). The concept of optimizing the KE of forward AOF is taken from Bernoulli’s principle 

which says that total energy in a steady, frictionless, flow stream is the static pressure + the kinetic 

energy + the energy due to gravity. The actual AOF is neither steady nor frictionless, but 

Bernoulli’s equation shows, in a relatively straightforward way, how the various energies in a flow 

can be inter-converted for illustrative purposes.  
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Figure 15. Side view illustration of extra-aortic two-segmented cuff consisting of proximal and 

distal compartments (a) represents the deflation of proximal compartment while the distal 

compartment remains fully inflated unless the proximal compartment is filled with 30 mL blood 

volume (during early systole), (b) shows proximal and distal compartments are fully deflated 

(during systole) and (c) shows proximal compartment is fully inflated and distal compartment is 

in deflation mode (during diastole). Timing of the cuffs are optimized to maximize the forward 

moving AOF and KE. 

 

Simulations of cardiovascular system (CVS) assisted with extra-aortic single cuff CPD 

were carried out to determine the maximum dynamic pressure (or KE) presence in forward moving 

AOF. PV-Loops were generated for an assisted cardiac beat and maximum available dynamic 

pressure was added to it during the ejection phase. As shown in Figure 16 the difference between 

the total and static pressure in PV-Loop which is the dynamic pressure or KE (1/2  mv2) present 

in forward AOF during ejection. Total pressure of blood in vessel constitutes of static + dynamic 

pressure. An increase in the external work of LV can be achieved by optimizing the dynamic 

pressure or KE of forward AOF. In other words, the resulting dynamic pressure or KE yields a 

significant increase in CO. Table 5 lists several different scenarios for HR of 60 and 75 BPM with 

LV elastance of 0.50 to 1 mmHg/mL where a small percentage increase in the external work of 

LV due to dynamic pressure or KE in forward AOF produces a rise in CO. 

(a) (b) (c) 
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Figure 16. Demonstration of increase in external work of the LV, the difference between the total 

and static pressure is the dynamic pressure which represents the amount of KE energy that is 

available for optimization. 

Table 5. Effect of left ventricle external work increase on cardiac output. 

HR 

(BPM) 

LV End-Systolic 

Elastance 

(mmHg/mL) 

Maximum 

Dynamic Pressure 

(mmHg) 

% Increase in 

ELVW 

Increase in CO 

(L/min) 

 

60 

0.50 5.44 2.36 0.55 

0.75 7.64 2.57 0.35 

1.00 9.48 2.72 0.23 

 

75 

0.50 6.06 2.94 0.93 

0.75 9.07 3.59 0.88 

1.00 11.18 3.30 0.50 

 

In concept, a large proximal CPD compartment will fill with forward-moving AOF, and an 

inflated distal CPD compartment will act as a control valve to prevent backflow from the aorta 

downstream of the CPD. Any retrograde flow will reduce proximal compartment volume capacity 

while also reducing forward AOF KE. Once the proximal compartment has been filled, the distal 

CPD compartment will open in a manner to optimize the forward AOF KE, thereby increasing the 

effectiveness of the assist device. In this paper, we present the optimization of KE to increase 
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device effectiveness and show, by way of an example, the hemodynamic and LV pressure–volume 

responses to extra-aortic single and two-segmented CPD for sever and mild HF cases. 

3.2.7. Modeling the Extra-Aortic Two-Segmented Cuff CPD 

The extra-aortic two-segmented CPD was modeled using an electrical switch to represent 

the distal compartment, with the opening and closing of this switch regulated by an external 

controller (Figure 17). During LV systole, the proximal compartment was filled with upstream 

AOF with the switch open (modeled as small compliance), such that there is no downstream 

retrograde flow back-filling the proximal compartment of the CPD. When the proximal CPD 

compartment reached both its maximum compliance and was filled with 30 mL of blood volume, 

the distal compartment deflates (switch closes), which results in minimum backflow of 

downstream AOF into the proximal compartment volume. The opening of the switch and the 

subsequent filling of an extra-aortic cuff with upstream flow helps to maintain KE moving from 

the LV to the aorta.  

 

Figure 17. Integration of the CVS model with the extra-aortic two-segmented cuff CPD consisting 

of: 1) proximal segment and 2) distal segment. 

3.3. Results  

Simulated hemodynamic waveforms and LV PV-loop for the severe HF test condition (60 

BPM HR, 3 cardiac beats, 7-10 sec) are shown in Figure 18. The simulated waveform data 
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produced clinically equivalent responses for a decrease in LV elastance from 2 mmHg/mL 

(normal, healthy) to 0.50 mmHg/mL (HF).  Specifically, reductions in LV diastolic (33 mmHg) 

and systolic (51 mmHg) pressures, CO (1.85 L/min), LVEF (22%), diastolic CAF (3 mL/s), MAP 

(38.7 mmHg) and peak LVP systolic (52.1 mmHg) were predicted. 

 

Figure 18. Severe HF test condition at HR of 60 BPM (a) shows the pressure waveform of aorta, 

LV and LA (b) shows the AOF and LVV (c) shows the PV-loop of LV and (d) shows the diastolic 

CAF and the augmentation in flow during systole. 

The extra-aortic single cuff CPD simulation during the severe HF test condition predicted 

a maximum compliance of 0.85 mL/mmHg is required to displace 30 mL of volume per beat into 

the cuff to reduce LV workload, increase diastolic CAF, and increase the CO (Figure 19). The 

pressure waveforms demonstrate the potential for diastolic augmentation (increases of 24-69 

mmHg) and 10 mmHg increase in peak LV systolic pressure. Similarly, the flow waveforms 

predict increases in downstream AOF and LVV, 2 mL/s increase in diastolic CAF, and 33% 

improvement in LVEF. The PV-loop data suggest a 33% improvement in CO with the single-cuff 

CPD. 
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Figure 19. Extra-aortic single cuff CPD for severe HF at HR of 60 BPM (a) shows the pressure 

waveforms of upstream and downstream aorta, LV and left atrium (b) shows the upstream and 

downstream AOF (retrograde flow can be seen) and LVV (c) shows the pressure and volume in 

cuff (d) shows the PV-loop of the LV and (e) shows the diastolic CAF and the augmentation in the 

flow during systole. 

The predicted hemodynamic and LV PV-loop data for the extra-aortic two-segmented cuff 

CPD during severe HF model test condition are shown in Figure 20. Importantly, the flow 

waveforms demonstrate that the two-segment cuff minimizes the reverse flow that was observed 

with single-cuff CPD. Oscillations in the hemodynamic waveforms with the two-segmented CPD 

were likely due to the abrupt opening and closing of the switch, which was used to model the 

behavior of the distal CPD segment. The additional increase in AOF supports the concept of 

optimizing forward KE transfer. The pressure waveforms also predict an additional increase in 

diastolic augmentation (30 to 89 mmHg) with a reduction in peak LVP systolic (56 mmHg). The 

flow data also suggest additional increases in diastolic CAF (8 mL/s) and LVEF (35%), and CO 

(3.0 L/min, 23% improvement) compared to the single-cuff CPD. Computer simulations with 

single-cuff and two-cuff CPD were repeated during mild HF (Figure 21), which also showed 

improvements in cardiac function as shown in single-cuff (Figure 22) and two-cuff (Figure 23) 

respectively. 
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Figure 20. Extra-aortic two-segmented cuff CPD for severe HF at HR of 60 BPM (a) shows the 

pressure waveforms of upstream and downstream aorta, LV and left atrium (b) shows the upstream 

and downstream AOF (retrograde flow is minimized) and LVV (c) shows the cuff compliance of 

proximal segment, the switching signal waveform indicates the opening and closing of distal 

segment and the LV elastance (d) shows the pressure and volume in cuff (e) shows the PV-loop of 

the LV and (f) shows the diastolic CAF and the augmentation in the flow during systole. 

 

 

Figure 21. Mild HF test condition at HR of 60 BPM (a) shows the pressure waveform of aorta, LV 

and LA (b) shows the AOF and LVV (c) shows the PV-loop of LV and (d) shows the diastolic 

CAF and the augmentation in flow during systole. 
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Figure 22. Extra-aortic single cuff CPD for mild HF at HR of 60 BPM (a) shows the pressure 

waveforms of upstream and downstream aorta, LV and left atrium (b) shows the upstream and 

downstream aortic flow (retrograde flow can be seen) and LVV (c) shows the pressure and volume 

in cuff (d) shows the PV-loop of the LV and (e) shows the diastolic CAF and the augmentation in 

the flow during systole. 

 

 

Figure 23. Extra-aortic two-segmented cuff CPD for mild HF at HR of 60 BPM (a) shows the 

pressure waveforms of upstream and downstream aorta, LV and LA (b) shows the upstream and 

downstream AOF (retrograde flow is minimized) and LVV (c) shows the cuff compliance of the 

proximal segment, the switching signal waveform indicates the opening and closing of distal 

segment and LV elastance (d) shows the pressure and volume in cuff (e) shows the PV-loop of the 

LV and (f) shows the diastolic CAF and the augmentation in the flow during systole. 
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 Computer simulations were then repeated for HR of 75 and 120 BPM with Emax  of 0.50 

and 1 mmHg/mL respectively have also shown improvement in cardiac function (Figure 24). The 

hemodynamic responses to single and two-segmented CPD for HR of 60 and 75 BPM with Emax  

of 0.50 mmHg/mL are shown in Figure 25, demonstrating that the two-segmented CPD increased 

the AOF velocity, optimized the KE of AOF to increase SV and CO, and minimized the retrograde 

AOF. 

 

(a) 

 

(b) 

Figure 24. Shows the comparison of SV, CO, LVEF and CAF for no-assist, single cuff and two-

segmented cuff CPD at HR of 75 and 120 for LV elastance of 0.5 and 1 mmHg/mL representing 

severe and mild HF. 
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(c) 

 

(d) 

Figure 24. Shows the comparison of SV, CO, LVEF and CAF for no-assist, single cuff and two-

segmented cuff CPD at HR of 75 and 120 for LV elastance of 0.5 and 1 mmHg/mL representing 

severe and mild HF (continued). 

 

For sensitivity analysis of the reported results ±10% uniform variations were introduced in 

the CVS arterial parameters and simulations were performed for no-assist and with device (single 

cuff and two-segmented cuff) assistance. Figure 26. Sensitivity analysis of CVS Simulink HF 

model with no-assist, single cuff and two-segmented cuff assist models. The top three plots in 
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figure shows the variation in parameters of arterial compliance, resistance and inductance at HR 

of 60 BPM at LV elastance of 0.5 mmHg/mL (severe HF). Similarly, bottom three plots are for 

LV elastance of 1 mmHg/mL (mild HF). The dotted line in plot shows the CO for tuned CVS HF 

model (no-assist) with no parameter variation. Figure 26 shows the plots of variation in arterial 

compliance (CS), arterial resistance (RS) and arterial inductance (LS) of the no-assist, single cuff 

and two-segmented cuff system at a HR of 60 BPM and LV elastance of 0.5 and 1 mmHg/mL 

respectively. Similar responses were achieved for the sensitivity analysis of 75 and 120 BPM. 

During each sensitivity analysis one arterial parameter was varied at a HR of 60, 75 and 120 BPM 

for LV elastance of 0.5 to 1 mmHg/mL. 

 

Figure 25. Increase in AOF velocity and enhancement of forward KE (a) and (b) show the AOF 

velocity and corresponding KE increase using extra-aortic two-segmented CPD over a period of 

three cardiac beats at HR of 60 and 75 BPM for LV elastance of 0.50 mmHg/mL. 
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Figure 26. Sensitivity analysis of CVS Simulink HF model with no-assist, single cuff and two-

segmented cuff assist models. The top three plots in figure shows the variation in parameters of 

arterial compliance, resistance and inductance at HR of 60 BPM at LV elastance of 0.5 mmHg/mL 

(severe HF). Similarly, bottom three plots are for LV elastance of 1 mmHg/mL (mild HF). The 

dotted line in plot shows the CO for tuned CVS HF model (no-assist) with no parameter variation. 
 

3.4. Discussion 

Some patients with moderate to severe HF require advanced therapy once optimal medical 

(OMM) and (CRT) are no longer effective. Once the safety, reliability, and efficacy of MCSDs 

has been demonstrated and clinically accepted, their utility may expand to class III and ambulatory 

class IV HF patients [40]. CPDs, such as IABP, can only provide short-term, modest improvements 

in cardiac function, blood contacting with added risk of adverse events, restrict patient mobility, 

and at risk for limb ischemia. MSCDs with extra-aortic CPD are non-blood contacting and may 

provide better hemodynamic advantages, enable patient mobility, and offer long-term ambulatory 

use [69]. Giridharan et al. reported that two counterpulsation devices, one that wraps around the 

aorta and the other that is anastomosed to the aorta, provided hemodynamic improvements 

comparable to IABP [73]. During the rapid deflation of a MCSDs e.g. IABP/extra-aortic CPD, 
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aortic end-diastolic pressure drops rapidly producing a “steal” phenomena (retrograde blood flow), 

which limits the amount of diastolic CAF and CO augmentation [89]. 

Sensitivity analysis of the reported results suggest that an increase in arterial compliance 

and inductance of the CVS model (no-assist) slightly increased the CO whereas increases in 

arterial resistance decreased the CO, independent of HR and LV elastance. However, for the case 

where the CVS model is integrated with single and two-segmented models (assisted), increase in 

arterial compliance and inductance reduced the CO and the variation in arterial resistance behaved 

the same as in case of no-assist. In summary of the sensitivity analysis we concluded that ±10% 

uniform variation in arterial parameters of the CVS model has a minimum effect on the system 

performance and CO. 

In a study conducted by Schulz et al., C-Pulse system was implanted for 6 months in 8 

patients, 4 of which had ischemic and 4 had non-ischemic cardiomyopathy and preliminary site 

reported data was presented. No device related injury like stoke, myocardial infraction, major 

bleeding or major infection were reported. Within 6 months of observation the functional status of 

patients enhanced from NYHA class III to II for 5 patients while 2 remained in class III. It is also 

reported in this study that with C-Pulse system the mean LVEF for NYHA class III patients 

improved from 24±8% to 45±5% [90] which is comparable to our reported results. In our 

simulation, the baseline (no-assist) LVEF (35%) for mild HF patient (class III) increased with 

single (45%) and two-segmented (49%) CPDs.  

KE of blood in the aorta is given by the relationship (1/2𝜌𝑣2), where 𝜌 is the density and 

𝑣 is the velocity of blood flow. Tortora et.al. reported that the total cross sectional area of human 

aorta normally varies between 3 to 5 cm2 and has a velocity of 40 cm/s [91]. David et al. reported 

that in mammals the maximum blood velocity occurs at the base of aorta at a peak of ventricular 



 

45 

ejection and is about 50 cm/s [92]. He also reported that the KE of blood in aorta during peak 

ejection is 1319 dynes*mL/cm2 (without any assist device). In our simulation results, the velocity 

of AOF is given by the relationship 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 = (𝐴𝑂𝐹 𝐴𝑟𝑒𝑎)⁄ . The AOF at the peak of ventricular 

ejection was found to be 378 mL/s for severe HF at HR of 60 BPM using single cuff and 468 mL/s 

using two-segmented cuff CPD for a cross sectional area of 4.91 cm2. The peak AOFs found are 

relatively high for heart in failure, however the average SV is well under normal limit and this is 

mainly due to the LV elastance narrow ejection period. The velocity of AOF was calculated to be 

76 cm/s and 96 cm/s for single and two-segmented cuff CPDs. The higher AOF velocity (+20 

cm/s) with the two-segmented CPD generates greater KE. Specifically, the KE of forward moving 

AOF at a blood density of 1.06 gm/cm3 during peak ejection was calculated to be 3061 

dynes*mL/cm2 for single and 4834 dynes*mL/cm2 for two-segmented CPD. 

In a study conducted by Schulz et al., C-Pulse system was implanted for 6 months in 8 

patients 4 of which had ischemic and 4 had non-ischemic cardiomyopathy and preliminary site 

reported data was presented. No device related injury like stoke, myocardial infraction, major 

bleeding or major infection were reported. Within 6 months of observation the functional status of 

patients enhanced from NYHA class III to II for 5 patients while 2 remained in class III. It is also 

reported in this study that with C-Pulse system the mean LVEF for NYHA class III patients 

improved from 24±8% to 45±5% [90] which is comparable to our reported results. In our 

simulation, the baseline (no device) LVEF (35%) for mild HF patient (class III) increased with 

single (45%) and two-segmented (49%) CPDs. 

The predicted hemodynamic responses represent a significant improvement compared to 

Legget et al [73]. During 1:1 counterpulsation the peak diastolic augmentation pressure was found 

to be 111 mmHg and 127 mmHg for extra-aortic single and two-segmented CPDs, respectively 



 

46 

compared to 94 mmHg reported by Legget et al. Also, a two-segmented CPD may prevent 

retrograde flow by using a distal compartment of the CPD as a valve until the filling of the proximal 

compartment cuff occurs. Moreover, there is evidence that CP is more effective when performed 

with a counterpulsation sac (volume displacement) than with an IABP (pressure displacement) of 

the same or larger size [9]. 

Many clinical studies have been performed to assess the effect of extra-aortic CPD aortic 

wall structure. Cheng et al. examined the histological and clinical data of patient supported on C-

Pulse for a period 21 months [93]. One month after implantation patient symptoms improved from 

NYHA class III to class I, and the CO increased from 3.5 to 5.5 L/min, which is comparable to the 

simulation results predicted in our study. Specifically, for LV elastance of 1 mmHg/ml at HR of 

75 BPM, and baseline CO of 3.7 L/min, the CO increased to 4.8 L/min with extra-aortic single 

CPD and 5.2 L/min with extra-aortic two-segmented CPD. Cheng et al. also showed that extra-

aortic CPDs do not appear to alter aortic wall structures [93]. In conclusion, the results of this 

study demonstrate that the concept of KE optimization may enhance the CO of assist devices such 

as an extra-aortic CPD that reduces backflow and times the forward KE. 

3.5. Limitations  

The simulation model relies on a number of simplifying assumptions that may impact our 

study results; however, this work provides an initial step in device development and evaluation of 

control algorithms. For example, the computer model assumes ideal valves that open and close 

instantaneously, Newtonian fluid, and does not account for inertial or gravitational effects. Also, 

only the left heart was programmed to be dysfunctional in this model with the right heart 

programmed with normal function. As the simulation model relies on number of simplifying 

assumptions, this limits the capability of the model. In this computational study, a switch was used 
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to represent the inflation and deflation of the distal compartment. Certainly, the HF model is a 

simplification of complex dynamics.  However, the primary value of the computer simulation was 

the development of the timing algorithm and device control strategies and demonstration of proof-

of-concept. Future work is to assess the best device for implementation of the KE concept (or the 

types of devices that may benefit from optimizing KE) followed by a bench-top demonstration and 

finally an animal model verification. 
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4. OPTIMAL TIMING CONTROL OF EXTRA-AORTIC TWO-SEGMENTED 

COUNTERPULSATION DEVICE BY EXHAUSTIVE SEARCH 

This paper will be submitted to Cardiovascular Engineering and Technology journal. This 

chapter discusses the exhaustive search technique to find out the best compliance profile and the 

increase in CO achieved through this optimized timing cuff compliance profile as compared to the 

optimization performed previously with steepest decent and golden section method. This chapter 

also discusses the four different timing modes of cuff compliance inflation and deflation, and 

statistically compares the significant difference in hemodynamic parameters of no-assist device 

with four timing modes of two-segmented CPD. 

4.1. Introduction 

HF is the most common diagnosis of hospital admission in patients above 65 years in high-

income countries. The incidence of CHF is increasing worldwide, with more than 1 million 

admissions diagnosed annually in the United States and with the comparable percentage in Europe 

[90]. Even with well-managed therapies such as pharmacologic or CRT sometimes it is inadequate 

to ensure a satisfactory level of cardiac function for most patients with severe HF. Only cardiac 

transplantation offers the optimal treatment for long-term survival, however, it is limited by donor 

availability [9]. In some cases MCSDs are considered as a bridge to recovery for severe HF patients 

[94]. 

Counterpulsation therapy is the earliest form of  MCSD and is widely used in the form of 

IABP for short-term treatments with up to 65% successful clinical results [68]. Counterpulsation 

provides important clinical benefits for the heart including diastolic augmentation with increased 

coronary perfusion and reduces the LV workload. However, the biocompatibility issues associated 

with IABP limits the application of an IABP to short periods (<14 days), for over (>20 days) the 
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rate of vascular complications were potentially greater [9], [90]. To overcome these limitations 

and utilize the proven benefit of counterpulsation therapy extra-aortic CPDs have been developed 

that are non-blood contacting, less invasive and don’t require the patient to remain supine during 

the time of therapy unlike IABP [90]. 

Extra-aortic balloon (EAB) counterpulsation is a pneumatically driven balloon cuff that 

can be surgically positioned around the ascending aorta through a marginally invasive approach, 

consisting of a bipolar ECG lead, and a percutaneous driveline connecting the system to an external 

driver (Figure 6). The inflation and deflation of a balloon is ECG triggered. The deflation starts 

before the opening of aortic valve i.e. pre-R-wave deflation and continues during systole, whereas 

inflation starts after the closure of aortic valve i.e. post-dicrotic notch inflation. This therapy is 

recommended for patients with moderate to severe HF according to American college of 

cardiology/ American Heart Association (ACC/AHA), typically for stage C and NYHA functional 

class III or ambulatory class IV HF patients. 

Improvements in diastolic CAF and reductions in LV afterload and external work has been 

well-documented in many short-term studies [73]. However, it has also been reported that MCSDs 

with EAB counterpulsation may produce retrograde flow during diastole that can reduce the CO 

and coronary flow to arteries. Overall, CPDs  are considered insufficient to meet the needs of 

NYHA ambulatory class IV HF patients [10]. 

To address these issues with current MCSDs of modest increases in CO and retrograde 

flow associated such as EAB CPDs, Qureshi et al. proposed the development of an extra-aortic 

two-segmented CPD simulation model to provide greater improvements in CO by harnessing the 

KE available in the forward AOF [95]. This idea of optimizing KE of forward AOF was taken 

from Bernoulli’s principle which says that total energy in a flow steam is the sum of static pressure, 
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KE and PE. Simulation results of PV-loop presented in this work strengthen the concept that even 

a few percent increment in dynamic pressure or KE yields a more significant increase in CO. The 

authors presented the optimization of KE to increase device effectiveness and showed, by way of 

an example, the hemodynamic and LV-PV responses to no-assist, extra-aortic single and two-

segmented CPD for severe to the mild HF cases. However, this work didn’t address the optimal 

timing of extra-aortic CPD (deflation and inflation) to provide optimal hemodynamic 

improvements. Therefore, we present the predicted hemodynamic and LV-PV response to severe 

to mild HF of extra-aortic two-segmented CPD using steepest descent and exhaustive search 

optimization techniques. We also compare the hemodynamic response for sick heart and with two-

segmented CPD support for four control modes through a computer model of left heart of the 

cardiovascular system (CVS).  

4.2. Materials and Methods 

4.2.1. Overview of Two-Segmented Cuff Counterpulsation Device  

The goal of counterpulsation therapy is to utilize mechanical device to augment the 

pressure during diastole to increase CAF by pushing the blood (inflation) and lowering the LV 

workload during systole by reducing the aortic pressure (AOP) (deflation). The two-segmented 

CPD works exactly on the same principles of single cuff CPD to achieve similar hemodynamic 

benefits. However, this device also optimizes the KE of the forward moving blood and minimizes 

retrograde flow which was a major impeding factor in achieving greater CO in previous extra-

aortic CPDs. The extra-aorta two-segmented model consists of two compartments: (1) proximal 

and (2) distal. In concept, a large proximal compartment is filled with forward moving AOF during 

native heart systole (deflation), and an inflated distal compartment acts as a control valve to prevent 

backflow from the aorta downstream of the CPD. The proximal compartment starts ejecting 
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(inflation) once filled with required volume and distal compartment deflates during native heart 

diastole. Any retrograde flow will reduce proximal compartment volume capacity while also 

reducing the forward AOF KE. The objective here is to open distal compartment in a manner to 

optimize the forward AOF by maintaining the KE, thereby increasing the effectiveness of the assist 

device. 

4.2.2. Computer Simulation Model 

A thorough explanation of the computer simulation electrical equivalent model of the CVS 

used in this article has been previously provided (Qureshi et al., 2016) and used to develop and 

test physiologic responses of single and two-segmented CPD [95]. In this model, every chamber 

in the CVS is defined by its resistance (R) to the flow of blood and its compliance (C) that 

represents the ability to store blood volume (V). The right heart and pulmonary network parameter 

were assumed to mimic healthy state. In its simplest configuration, the model has one pressure 

source (left atrium pressure), two heart valves (mitral and aortic), and three blocks including LV, 

aorta, and coronary circulation. The proximal compartment of extra-aortic two-segmented CPD 

was modeled with three elements: (1) time-varying compliance (Ccuff(t)), (2) inductance (Lcuff) 

representation the inertia of blood, and (3) a small internal resistance to model the frictional losses 

and the distal compartment is modeled with the help of electrical switch to mimic the behavior of 

small cuff compliance. 

In this model, the proximal compartment displaces up to 30 mL of blood volume per 

cardiac cycle [96]. The relationship of proximal compartment filling and ejection is given by the 

relationship dV(t)/dt = Flowin - Flowout, where V(t) is the blood volume in the proximal 

compartment, Flowin is the flowrate into the proximal compartment during systole, Flowout the 

flow out of the proximal compartment during diastole. Flowout is zero during the systole when the 
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proximal compartment is being filled (30 mL) with forward moving AOF (deflation) and the distal 

compartment is fully inflated (switch open), to make sure that no downstream AOF going into the 

proximal compartment to minimize the retrograde flow and Flowin is zero during diastole when 

the proximal compartment (inflation) starts ejection and the distal compartment deflates (switch 

close). The opening of the switch and the subsequent filling of the proximal compartment with 

upstream flow helps to maintain KE moving from LV to the aorta. A wide range of HF scenarios 

was simulated ranging from mild to severe (Table 6) [83]. The level of HF is represented by the 

stiffness of the LV muscle [86] the patient’s activity level by adjusting systemic resistance (Rs), 

and variations in the HR from 60 to 100 BPM. 

Table 6. Heart failure scenarios for 60, 75, and 100 BPM [86]. 

HR 

(BPM) 

Systemic Resistance 

(mmHg.s/mL) 

Activity 

Level 

Emax = 1.00 

(mmHg/mL) 

Emax = 0.75 

(mmHg/mL) 

Emax = 0.50 

(mmHg/mL) 

60 2.00 Inactive Mild HF Moderate HF Severe HF 

75 1.75 Active Mild HF Moderate HF Severe HF 

100 1.50 Very Active Mild HF Moderate HF Severe HF  

 

4.2.3. Optimal Timing Exhaustive Search 

In this study 1:1 support mode (1 counterpulsation per cardiac cycle) was used. CPD filling 

and ejection morphology (bell-shaped) was generated using cubic spline interpolation. This 

method requires a minimum of three-time points to represent the process of deflation (increase in 

compliance of proximal compartment) and inflation (decrease in compliance of proximal 

compartment) of extra-aortic two-segmented CPD. Depending on the HR (Table 7) cardiac beat is 

divided into three time slots (Figure 27): (1) deflation start time (40% of the cardiac beat), (2) 

deflation end time and inflation start time (20% of the cardiac beat), and (3) inflation end time 

(40% of the cardiac beat). Seven linearly spaced time points are generated in each time slot and 
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each slot is further divided from the median point into two sub time slots early and late with three 

time points in each sub-slot. For three-time slots with seven time points in each slot a total of 343 

unique combinations were obtained. Similarly, for each combination of three time points the cuff 

compliance profile was generated, and through exhaustive search timing relative to maximum CO 

was determined. 

 

Figure 27. Various combinations of three-time slots to map out exhaustive search. These 

combinations of time slots were used to create compliance waveforms for inflation and deflation 

of proximal cuff (compartment).  

 

For each profile, ten cardiac beats were assisted and hemodynamic data were recorded 

before the end of 10th cardiac beat to allow the circulation to reach equilibrium before loading a 

new profile. The simulation was continued for all 343 different profiles which required 3430 

cardiac beats. Each profile is then categorized into four distinct triggering algorithms based on the 
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deflation start and inflation end times: (1) early deflation late inflation (ED-LI), (2) late deflation 

and early inflation (LD-EI), (3) early deflation early inflation (ED-EI), and (4) late deflation late 

inflation (LD-LI). For example, if deflation start time point is 0.066 and inflation end time point 

is 0.868 this combination results in early deflation and late inflation (ED-LI) algorithm. 

Table 7. Control modes for two-segmented counterpulsation device. 

HR (BPM) Time Slots Early Time Slots Middle Slot Late Time Slots 

 

60 

DST  0 0.06 0.13 0.20 0.26 0.33 0.40 

DET / IST 0.40 0.43 0.47 0.50 0.53 0.56 0.60 

IET 0.60 0.67 0.73 0.80 0.86 0.93 1.00 

 

70 

DST  0 0.53 0.10 0.16 0.21 0.26 0.32 

DET / IST 0.32 0.35 0.37 0.40 0.42 0.45 0.47 

IET 0.48 0.53 0.58 0.64 0.69 0.74 0.80 

 

100 

DST  0 0.04 0.08 0.15 0.16 0.20 0.24 

DET / IST 0.24 0.26 0.28 0.30 0.32 0.33 0.35 

IET 0.36 0.40 0.44 0.48 0.52 0.56 0.60 

DST: Deflation Start Time, DET: Deflation End Time, IST: Inflation Start Time, IET: Inflation 

End Time. 

4.3. Data Analysis 

4.3.1. Indices of Assistance Effectiveness 

Extra-aortic two-segmented CPD assistance effectiveness was accessed through variations 

in hemodynamic parameters, dynamic pressure (or alternatively KE) enhancement, and LV PV-

loops. At every 10th cardiac beat pressure, flow and volume data were recorded to calculate the 

effect of cuff compliance timing on LV PV-loops and hemodynamic parameters: SV, CO, EF, 

mean AOF, CAF, aortic systolic and diastolic pressures, MAP, LV peak pressure and ELVW [97]. 

The dynamic pressure increments were demonstrated through LV PV-loops, and a linear 

relationship between the CO and percentage increase in the ELVW was established. EDV, ESV, 

SV, and CO were also determined through PV-loops. 
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MAP = Diastolic Pressure + 0.33 * (Systolic Pressure – Diastolic Pressure)  (9) 

 

ELVW = LV Peak Systolic Pressure – Mean LAP * (CO * 13.6 * 9.08 * 0.001) (10) 

 

Results are presented as mean ± standard error. Statistical analysis was performed for 

unequal variances in Matlab 2016b after exporting the data from Simulink. Student t-test was used 

to compare the mean of hemodynamic parameters of sick heart with all four timing algorithms of 

extra-aortic two-segmented CPD for 95% confidence interval (significance level = 0.05).  

 

4.4. Results 

4.4.1. PV-loop Comparison 

LV PV-loops were used to compare the improvement in CO of: a sick heart (no assist); 

with single cuff assist; two-segmented cuff (filling and ejection optimized using steepest descent 

method); and optimized two-segmented cuff assist (the best result of achieved using exhaustive 

search technique). The LV PV-loop for all three cases of HR i.e. 60, 75, and 100 BPM with a LV 

maximum elastance of (severe to mild HF) 0.5, 0.75, and 1 mmHg/mL respectively, shows that 

optimized two-segmented CPD has lowered the ESV and lowered the left ventricle ejection 

pressure (LVEP), resulting in an increased SV as compared to two-segmented cuff and single cuff 

CPD (Figure 28). However, it can be seen in the LV PV-loops that the filling and ejection profile 

of optimized two-cuff from exhaustive search produced almost similar improvements (< 2.5% 

increase in CO) compared to two-segmented cuff CPD profile (presented in (Qureshi et al., 2016)) 

[95]. 
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(a) (b) (c) 

   

(d) (e) (f) 

   

(g) (h) (i) 

Figure 28. PV-loop comparison of CO increase in optimized two-segmented cuff as compared to 

sick heart (no assist (baseline)), single cuff and two-cuff, plot (a-b) shows the PV-loop of severe 

to mild HF for HR of 60 BPM, plot (d-f) shows the PV-loop of severe to mild HF for HR of 75 

BPM and plot (g-i) shows the PV-loop of sever to mild HF for HR of 100 BPM. In all three cases 

optimized two-cuff CPD achieved better SV, decreased peak LVP, and increase EWLV. 

 

4.4.2. Two-Segmented CPD Timing Effect on Hemodynamic  

The waveforms of left ventricle pressure (LVP), AOP, AOF, CAF, LV elastance and CPD 

proximal cuff compliance profile pressure and volume were analyzed for all four timing modes. 

Figure 29 (a) show a case of severe HF at a HR of 60 BPM where 1st beat in the waveforms 

corresponds to LD-EI mode, 2nd beat corresponds to ED-LI mode, 3rd beat corresponds to ED-EI 
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mode, and 4th beat corresponds to LD-LI mode. These 4 beats were chosen out of 343 beats as 

explained earlier, each CPD profile was set to run for 10 cardiac beats to make sure the CVS 

system settles down to steady state). It was observed that ED-LI, EE-LI and LD-LI timing modes 

lowered the LVEP considerably, however, the CO achieved with these timings modes is less as 

compared to LD-EI mode (Figure 29 (b)). 

LD-EI Mode ED-LI Mode ED-EI Mode LD-LI Mode 

 

(a) 

 

(b) 

Figure 29. AOP, LVP, AOF, CAF, LV elastance and CPD compliance, pressure and volume with 

extra-aortic two-segmented CPD operating in four different timing modes (a): late deflation and 

early inflation (LD-EI Mode), early deflation and late inflation (ED-LI Mode), early deflation and 

early inflation (LD-EI Mode), and late deflation and late inflation (LD-LI Mode), while the 

corresponding PV-loop are shown in (b). 
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From these plots it is clear that all four timing algorithms provide comprehensive diastolic 

augmentation and lowered LVEP. However, the corresponding plot PV-loop shows that LD-EI 

Modes provides a better improvement in CO as compared to ED-LI, ED-EI, and LD-LI Modes 

which provide greater improvement in lowering LVEP.  

The four best compliance profiles of LD-EI timing mode with maximum CO are shown in 

Figure 30. Figure 30 (a) shows the LV elastance waveform of severe HF with four different LD-

EI timings. Figure 30 (b) shows the changes in AOF and LVV with a change in timings of LD-EI 

mode. The AOF and LVV plots in Figure 30 (b) show similar responses of how AOF was reduce 

with change in compliance profile timing within a specific mode even. Similarly, the alterations 

in AOP diastolic augmentation and LVEP (Figure 30 (c)). The corresponding PV-loop (Figure 30 

(d)) clearly shows that the changes in CO for similar timing mode are not more than 2.5% however, 

the compliance profile with symmetrical orientation with LV elastance provides better CO 

increase. It has also been determined that CO is directly proportional to: 1) dynamic pressure area 

(DPA) calculated at standard blood density (ρ) (Equation  (13)), and 2) the percentage increase of 

EWLW (Equation (14)) shown in Figure 30 (e) and (f) respectively.  

 

AOF Velocity = AOF / (Area of Aorta) 

DPA = 0.5 (ρ) (AOF Velocity)2 

 

 (13) 

Total LVP =LV Static Pressure + DPA 

Change = Area (PV-loop with Total LVP) – Area (PV-loop with LV Static Pressure) 

% Increase EWLW = (Change / Area (PV-loop with LV Static Pressure) 

(14) 

4 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 30. LV elastance, CPD compliance profile (timing mode LD-EI, HR = 60 BPM, and Emax 

= 0.5 mmHg/mL) (a) shows the relationship between the elastance waveform of LV and CPD 

inflation and deflation timings and their effect on AOF which reduces with increase in time 

duration between deflation and inflation as shown in (b) which directly affects AOP and LVP 

waveforms shown in (c), PV-loop shows the increase in ESV and decreases in SV and CO. 

Table 8 shows the hemodynamic data of sick heart (no-assist) compared to four timing 

modes of two-segmented CPD with variations in HR from 60 to 100 BPM and in LV elastance 

from 0.5 to 1 mmHg/mL. Compared with no-assist (p < 0.05) significant improvements were found 

for all timing modes of two-segmented CPD with increases in SV, CO, EF, AOF, diastolic pressure 
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augmentation peak (DPApeak), mean coronary artery flow (MCAF) and ELVW and decreases in 

aortic systolic peak pressure (ASPpeak), LVEP, and mean arterial pressure (MAP) as shown in 

Figure 31. 

Table 8. Summary of hemodynamic parameters for no-assist and extra-aortic two-segmented 

counterpulsation device with the four timing modes. 

HR = 78.33 ± 20.20 (BPM) 

Emax = 0.75 ± 0.250 (mmHg/mL) 

 

No-Assist 

Extra-aortic Two-Cuff CPD Assistance 

   LD-EI      ED-LI      ED-EI      LD-LI 

SV (mL) 42.3 ±  7.5 54.2 ± 7.8 51.6 ± 5.0 51.8 ± 4.0 51.9 ± 6.5 

CO (L/min) 2.9 ±  0.7 4.2 ± 0.8 3.9 ± 0.8 3.9 ± 0.8 4.0 ± 0.9 

EF (%) 26.4 ±  6.0 38.0 ± 5.4 35.5 ± 4.4 35.7 ± 4.1 36.0 ± 04.8 

AOFMean (mL/s) 33.7 ±  9.6 48.3 ± 10.5 44.6 ± 12.6 35.9 ± 2.6 47.8 ± 12.0 

ASPPeak(mmHg) 77.8 ± 13.7 70.9 ± 19.7 66.2 ± 18.7 62.3 ± 16.3 68.2 ± 17.9 

LVEP (mmHg) 53.4 ± 10.3 30.7 ± 12.7 14.5 ± 4.2 11.0 ± 1.9 23.2 ± 9.9 

LVPPeak (mmHg) 82.9 ± 14.6 78.7 ± 20.0 75.3 ± 18.6 73.1 ± 18.0 77.2 ± 20.0 

MAP (mmHg) 61.5 ± 11.3 44.0 ± 13.5 31.5 ± 8.7 27.9 ± 6.5 38.1 ± 11.02 

DPAPeak (mmHg) 53.4 ± 10.3 102.0 ± 13.5 95.6 ± 14.7 85.8 ± 4.3 98.0 ± 13.2 

MCAF (mL/s) 2.5 ± 0.6 5.2 ± 0.4 6.8 ± 1.8 6.6 ± 1.0 4.6 ± 0.1 

ELVW (J/min) 24.6 ± 12.1 38.3 ± 17.6 33.8 ± 15.6 33.1 ± 15.4 36.1 ± 17.0 

All values are expressed as mean ± standard error. 

 Bigger improvements were recorded for SV with LD-EI (11.89 ± 0.35, 95% CI: 52.49, 

56.03) & LD-LI (9.59 ± 0.95, 95% CI: 50.43, 53.49) than with ED-LI (9.23 ± 2.49, 95% CI: 50.22, 

52.97) & ED-EI (9.46 ± 3.51, 95% CI: 50.30, 53.35) which ultimately resulted in increased CO 

and EF respectively. Similarly, compared to no-assist the AOF increase was significant with LD-

EI (14.66 ± 0.87, 95% CI: 46.00, 50.73) than that with ED-LI (10.92 ± 2.99, 95% CI: 41.18, 48.07) 

and LD-LI (14.1 ± 2.39, 95% CI: 45.02, 50.59) but no significant difference between no-assist and 

ED-EI (P = 0.255). The decrements in ASPpeak compared to no-assist were bigger with ED-EI 

(15.45 ± 2.64, 95% CI: 56.15, 68.59) and ED-LI (11.6 ± 5.08, 95% CI: 61.09, 71.35) than that 

with LD-LI (9.59 ± 4.27, 95% CI: 64.03, 72.42) and LD-EI (6.87± 6.00, 95% CI: 66.50 75.39).  
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(a) (b)  (c) 

   

(d) (e) (f) 

   

(g) (h) (i) 

  

(j) (k) 

Figure 31. Comparison of changes in no-assist SV, CO, EF, AOF, ASPpeak, LVEP, LVPpeak, 

MAP, DPApeak, MCAF, and ELVW versus two-segmented CPD timing modes. It is shown that 

LD-EI timing mode delivers best results for CO increase. 

Similarly, compared to no-assist the decrease in LVEP was bigger with ED-EI (42.46 ± 

8.44, 95% CI: 10.30, 11.75) and ED-LI (38.98 ± 6.09, 95% CI: 13.34, 15.66) than that with LD-
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LI (30.23 ± 0.37, 95% CI: 20.92, 25.58) and LD-EI (22.75 ± 2.38, 95% CI: 27.86, 33.61). 

Promising reductions in LVPpeak compared to no-assist with ED-EI (9.80 ± 3.45, 95% CI: 69.34, 

76.95) and ED-LI (7.63 ± 3.98, 95% CI: 71.42 79.22) but LD-EI (p = 0.148) and LD-LI (p = 0.081) 

failed to show significance differences. Significant reductions in MAP with all four timings modes 

compared to no-assist however, bigger reductions with ED-EI and ED-EI than that with LD-LI 

and LD-EI. Compared to no-assist bigger increments of DPApeak with LD-EI and LD-LI than that 

with ED-LI and ED-EI. Compared to no-assist all modes significantly increased MCAF with ED-

LI being best and LD-EI, LD-LI, and ED-LI showed significant increments with ELVW but ED-

EI mode failed to show a significant difference (p = 0.535). Figure 32 shows the overall best timing 

mode (late deflation and early ejection timing mode) with arrows indicating the time of deflation 

and inflation in accordance with LV elastance, LVP, AOP and LVV it can be seen the CPD filling 

starts at the beginning of the LV systole and ejection starts at the dicrotch notch. 

 

Figure 32. Late deflation and early ejection timing mode with arrows (cuff compliance, LV 

elastance, LVP, AOP and LVV) indicating the time of filling and ejection of two-segmented CPD. 
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4.5. Discussion 

IABP has become most widely used form of CPD. However, it is limited due to its blood 

contacting nature, restricts patient mobility, and its potential for limb ischemia. Whereas, extra-

aortic CPDs are non-blood contacting, minimally invasive and don’t restrict patient mobility. The 

extra-aortic CPDs are relatively new and are still in clinical trial, however, it has been reported 

that these devices are incapable of providing sufficient CO for NYHA class III and ambulatory 

class IV HF patients [10]. Giridharan et al. reported that two counterpulsation devices, one that 

wraps around the aorta and the other that is anastomosed to the aorta, provided hemodynamic 

improvements comparable to IABP. During the rapid deflation of MCSDs e.g. IABP/extra-aortic 

CPD, aortic end-diastolic pressure drops rapidly producing a “steal” phenomena (retrograde blood 

flow), which limits the amount of diastolic CAF and CO augmentation [87] and Qureshi et al. 

proposed a two-segmented extra-aortic CPD concept to minimize the retrograde flow and optimize 

KE of the forward moving AOF [95]. Computer simulation suggested that two-segmented CPD 

provided better hemodynamic benefits, including increased CO and diastolic coronary 

augmentation when compared to single cuff CPDs.  

The key finding of this study is how variation in deflation and inflation timings of two-

segmented CPD affects the hemodynamic parameters. Earlier Giridharan et al. verified CPD with 

three  timing modes: 1) early filling and late ejection (filling before the end of LV diastole and 

ejection after aortic valve is closed), 2) late filling early ejection (filling is initiated just before the 

systole and ejection at aortic valve closure, and 3) early filling and early ejection (filling just before 

the beginning of LV systole and ejection right at the time of aortic valve closure [68]. The 

simulation results of this study suggested that the early filling and late ejection mode could be 

more affected as compared to early filling and early ejection in reducing ELVW at the cost of 
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slightly reduced augmentation in CPD. It has also been reported that shorter filling times reduced 

ELVW and shorter ejection times lead to diastolic AOP augmentation and increased CAF. Later 

on  Zhang et al. presented a more comprehensive timing algorithms for CPD and reported that in 

an animal model of the HF, the optimal timing algorithm is filling at the beginning of LV systole 

and ejection at the end of the isovolumic relation phase [94]. The study also reported that if 

suboptimal timing algorithm is performed, the advantages of CPD would be diminished or even 

inverted with more deficiency of LV function, which pointed that timing algorithm for CPD is 

important for better hemodynamic effects. The results of this study concluded that CPD filling 

before LV systole leads to a retrograde flow of blood from a distal part of the aorta in Pre-R-wave-

deflation and dicrotic notch-inflation and Pre-R-wave-deflation and post-dicrotic notch-inflation 

mode because the smash between the retrograde and forwarding moving AOF will increase LV 

afterload. Therefore, the completion of CPD filling instantaneously followed by LV systole can 

cause severe damage of cardiac function.  

In the present study, four timing modes were explored for two-segmented cuff CPD and 

the data summarized (Table 8) revealed that the optimal timing mode of two segmented CPD is 

filling at the beginning of systole and ejection at the dicrotic notch, which is similar to the 

conclusion made by Zhang et al [94]. Ejection of two-segmented CPD after the dicrotic notch (ED-

LI timing mode) provides more coronary perfusion and lower LVEP than ejection at the dicrotic 

notch. However, the result shows that LD-EI mode has the ability to achieve maximum CO 

increase at the cost of more LVEW which causes slightly higher LVEP and LVPpeak. 

These computer simulations of two-segmented CPD suggest that timing control and 

duration of deflation and inflation may allow additional improvement in hemodynamic responses. 
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In conclusion, the results of optimized two-segmented CPD didn’t provide much 

improvement in CO and out of four timing, late deflation and early inflation (LD-EI) showed 

optimal hemodynamic responses. Future experiments with prototype devices are required to 

demonstrate the feasibility of the proposed two-segment cuff CPD. 
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