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ABSTRACT

Deep learning has yielded immense success on many different scenarios. With the success

in other real world application, it has been applied into big medical data. However, discovering

knowledge from these data can be very challenging because they normally contain large amount

of unstructured data, they may have lots of missing values, and they can be highly complex and

heterogeneous. In these cases the deep neural network itself is not applicable enough. To solve

these problems we propose a Collaborative Filtering-Enhanced Deep Learning Approach. In par-

ticular, first we estimate missing values based on the information mining from the structured and

unstructured data. Secondly, a deep neural network-based method is applied, which can help us

handle complex and multi-modality data. The proposed algorithm is applied to analyze big medical

data and make personalized health risk prediction. Extensive experiments on real-world datasets

show improvements of our proposed algorithm over the state-of-the-art methods.
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1. INTRODUCTION

Deep learning (DL, also known as deep structured learning, hierarchical learning or deep

machine learning) is a branch of machine learning based on a set of algorithms that attempts to

model high level abstractions in data. Deep neural network (DNN) has been applied to a bunch of

prediction and classification applications.

In many real world problems, however, one drawback of the deep neural network is that it

requires a full set of input data, and real world data is sometimes incomplete. Missing values in input

data are a particular problem in many fields and this phenomenon is of particular consequence in

many applications. In this case, the ability to learn from data with uncertain or missing information

is a fundamental requirement for DNN.

Collaborative filtering (CF) is a typical way to find out the hidden value in the system.

CF is especially used in recommendation system to analyze relationships between users and inter-

dependencies among products or items to identify new user-item associations. The fundamental

assumption behind CF is that other users preference can be selected and aggregated to provide a

reasonable prediction for the active user. CF has different ways like matrix factorization, probability

matrix factorization and Bayesian probability matrix factorization.

In this paper, we try to combine the Collaborative filtering and Deep neural network to-

gether to form an approach for the applications which have missing data. In the proposed approach,

the CF is firstly introduced to mine the hidden value for the missing data. To overcome the data

sparsity problem which conventional CF-based methods may suffer, auxiliary information such as

the structured data and info stored in the unstructured data (patient’s demographic data, social

economic data) will be utilized. This information will help us to uncover unexpected relationships.

We choose collaborative topic regression (CTR) [16] approach to tightly couple the patients factor

and health factor. CTR is a probabilistic model combining topic model and probabilistic matrix

factorization (PMF). Since the CTR can utilize the hidden information in the structured data as

well as unstructured data and estimate missing data based on patients’ similarity, we integrate the

CTR into the deep learning to enhance the efficiency and accuracy of deep neural network. By
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integrating the combined strength of CRT-based CF with deep learning, we expect to overcome

the shortcomings of existing approaches and provide a more accuracy result.

In this paper, we apply our proposed methodology to a real-life dataset to predict risk of

hospital readmission for diabetic patients. Diabetes is one of the most common and costly chronic

diseases. It is estimated that 23.1 million people in the U.S. are diagnosed with diabetes at a cost

of more than $245 billion per year[1]. Hospital inpatient care accounts for the largest proportion

of medical expenses of diabetes care are(about 43% ) [11]. With about 25% patients being read-

mitted within 30 days of discharge [3], unplanned sessions have become a serious issue. For lots

of hospitals, diabetic patients’ readmission is becoming one of the biggest concerns. Therefore,it is

very important to study the possibility and risks of diabetes patients’ readmission. To save hos-

pital cost, diabetic patients’ readmission should be given high-priority. This has made healthcare

professionals, scientists, and policymakers increasingly focus on the readmission rates to determine

the complexity of patient populations, prepare for procedures and interventions, and eventually

improve healthcare quality and reduce cost. Although there is increasing interest in hospital read-

mission rate, not much research effort has been applied to study the readmission rate of diabetes

patients.

As diabetes patient readmission rate is becoming one of the major concerns for many na-

tional hospitals in the U.S., it is of great significance to study the possibility and risks of diabetes

patients readmission. Hospital readmission is a high-priority health care quality measure and target

for cost reduction, particularly readmission rate within 30 days of discharge (30-day readmission,

aka early readmission). Despite the broad interest in readmission, relatively little research has

focused specifically on readmission of patients with diabetes. In recent years, government agencies

and healthcare systems have increasingly focused on 30-day readmission rates to determine the

complexity of their patient populations and to improve quality.

This paper makes the following five major contributions:

1. It proposes a Collaborative Filtering-Enhanced Deep Learning Approach (CFDL) which can

combine the collaborative filtering with deep learning.

2. It provides a way for how to utilize the structured and unstructured data to find the potential

value if the input data of deep learning neural network is incomplete.
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3. It discusses a new method for the prediction in the diabetes patient readmission rate.

4. With the application of the proposed approach in a real diabetes patient readmission rate, it

demonstrate the performance boosting with the introduction of proposed approach. Simula-

tion results show that the proposed algorithm can achieve good performance.

5. The proposed algorithm is compared with other intelligent methods like Support Vector

Machine, Decision Tree and Naive Bayes.

Although this paper’s experiments focus on diabetes case, we believe that the proposed

methodology would be general enough to be used more broadly.
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2. RELATED WORK

Nowadays the healthcare sector has generated a huge volume of patient data. Machine

learning provides a way to automatically find patterns and make predictions about data. There are

many recent works on data mining and data analytics with different types of digital patient data.

To deal with the complex feature selection problem, deep learning has been used as an

analysis approach. As pointed out in [18], deep learning has been applied in medical data to

automatically select and generate complex features from the input data. For example, Cheng et

al. [6] proposed a deep learning-based prediction model using Electronic Health Records (EHRs).

In this model, EHRs for patients were represented as a matrix with multiple dimensions including

time and event. They employed a convolutional neural network (CNN) of four layers to extract

features and assess risks.

In another work, to make healthcare decisions Liang et al. [8] applied a deep learning

model to EHRs database to enhance feature representations. They proposed an approach that

integrated both unsupervised and supervised learning. Specifically, they applied deep belief network

(DBN) to extract complex features, and then performed support vector machine (SVM). In their

work, Nie et al. [15] proposed a deep learning scheme to infer people’s possible diseases given the

questions of that people asks online. The proposed scheme constructed a deep neural network with

three hidden layers which are connected sparsely. These three layers were constructed through an

iterative process by alternating signature mining and pre-training. At first, medical signatures were

discovered from raw features. Then the raw features and their signatures were passed to one layer

as input nodes and the next layer as hidden nodes. This process repeated until the model was well

tuned. The relations between these two layers can be learned from this process. More applications

of deep learning can be found in medical informatics and public health domains [5, 9, 12, 13, 19].

Various methods have been studied to address the data sparsity problem of medical data.

For example, to process sparse and non-vector input data, Wang et al. [20] proposed a high order

extension of sparse logistic regression model, MulSLR, (for Multilinear Sparse Logistic Regression)

to predict clinical risk. Unlike conventional logistic regressions, their approach solved K classifica-

tion vectors.
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To determine patient acuity using incomplete, sparse and heterogeneous clinical data, Ghas-

semi et al. [7] proposed an approach that transformed this clinical data into a new latent space using

the hyperparameters of multi-task GP (MTGP) models. In this way, patients can be compared

based on their similarity in the new hyperparameter space. Information in this hyperparameter

space could be viewed as timeseries data, and abstracted features can represent the series dynamics.

This approach has been approved to increase classification performance on mortality prediction of

ICU patients, however, the computational cost of this approach was very high.

Lipton et al. [10] proposed an approach to model missing clinical data using recurrent neural

networks (RNNs). Unlike classical approaches that treat missing data via heuristic imputation, in

their approach, the authors modeled missingness as a feature. The proposed RNN can use only

simple binary indicators for missingness.

GRU-D [4], a deep learning models, was developed to exploit the missing patterns of missing

data for effective imputation and improving prediction performance. GRU-D was developed based

on the Gated Recurrent Unit (GRU) which was a recurrent neural network. GRU-D took masking

and time interval as two representations of missing patterns, and then integrated them into a deep

model architecture. This model can capture the long-term temporal dependencies in time series.

In addition, it can estimate the missing value patterns to achieve better prediction results.

Some artificial intelligent techniques have been applied to the identification and prediction

of diabetes disease. For example, Mario et al.[14] proposed the modeling analysis of the radial

basis function network (RBF Network) to identify possible cases of gestational diabetes that can

lead to multiple risks for both the pregnant women and the fetus. The paper in [17] investigated

the different roles of pixels in the image-level predictions of ConvNets when applied to the diabetic

retinopathy (DR) screening dataset.

In spite of the numerous efforts and achievements of existing research in analyzing digital

medical data, analyzing medical data is still an important and challenging task. Accurate and

efficient risk prediction has always been an important topic attracting many researchers’ interests.
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3. METHODOLOGY

In this section we present the detailed methodology of our proposed Collaborative Filtering-

enhanced Deep Learning (CFDL) approach.

3.1. Problem formulation

Let X = {(x1, y1) , (x2, y2) , (x3, y3) , . . . , (xP , yP )} be the data set, where P is the number

of patients; xi ∈ Rd is the i-th instance; and yi ∈ {1, . . . , Q} represents its label, where Q > 2

is the number of classes. (xi)j is the j-th feature of patient i; for example, it can be one of a

patient’s demographic features, or disease symptoms, or vital signs. yi represent the target label,

for example, it can be a particular health risk.

To model the missing data, we divide the data set X into an observed component X o and

a missing component Xm. Similarly, for some data vector, xi is divided into (xoi ,x
m
i ) where these

data vector may have different missing components. Note that xmi should not be a subset of xoi .

For some data vector, the whole data instance is lost, hence xi = xmi .

To model unstructured data, in our case text data (such as doctor’s notes, open-question

survey), we can model them as a corpus D of M documents {w1,w2, . . . ,wM} consisting of un-

structured data, with a vocabulary of size V .

Given these data, we have two goals. Firstly, we aim to learn the missing data of Xm

from the observed data X o and unstructured data of M documents {w1,w2, . . . ,wM}. Secondly,

we want to predict the estimated label for the dataset. To realize these two goals, we propose a

two-stage methodology presented in the following subsections.

3.2. Identify missing data

The goal of this step is to learn the missing data Xm from the existing observed and

unstructured data. The main idea is that if an important feature is missing for a particular instance,

it can be estimated from similar data that are present. Consider we have the unstructured data,

we hypothesize that there is rich information within the unstructured data, which can provide

additional source of information for the estimation.

We apply the topic model on the unstructured data of M documents. To do this, we assume

there exists a fixed number of latent topics that appear across multiple documents. Each topic is
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characterized by a multinomial distribution over the vocabulary of the corpus D, drawn from a

Dirichlet distribution denoted as φk ∼ Dir(β). Each document is characterized by a multinomial

distribution over the set of topics in the corpus, which is also assumed to have a Dirichlet prior

denoted as θj ∼ Dir(α). The topic distribution has the following probability density:

p(θ|α) =
Γ
(∑k

i=1 αi

)
∏k
i=1 Γ(αi)

θα1−1
1 · · · θαk−1

k , (3.1)

where the parameter α is a k-vector with components αi > 0, and where Γ(x) is the Gamma

function.

We follow the CF-based recommendation algorithm, the matrix of patient and health-related

features can be decomposed by Matrix Factorization (MF), by denoting a set of values correspond to

a set of patients with index i ∈ {1, 2, . . . , N} to a set of health factors with index j ∈ {1, 2, . . . ,M},

each entry of the value Xij can be expressed as the inner product of a patient matrix and a health

factor matrix:

Xij ≈< Ui, Vj >≡
K∑
k=1

UikVkj (3.2)

where Ui , Vj represent the k-dimensional patient-specific and health factor-specific latent feature

vectors of patient i and health factor j, respectively.

Collaborative topic regression (CTR) additionally molds the health factor vector as the

combining of a latent variables that offsets the topic proportion. According to CTR, for each vj

vj = εj + θj (3.3)

where θj is the topic proportion computed by latent dirichlet allocation (LDA), therefore the values

can be expressed as:

Xt
ij ≈< Ui, εj + θj >≡

K∑
k=1

Uik(εkj + θkj) (3.4)
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CTR places prior distribution on U, V. Specifically zero-mean, independent Gaussian priors

are imposed on patient and health factor vector:

Ui ∼ N (0, σ2uI), i = 1 . . .N,

Vj ∼ N (0, σ2vI), j = 1 . . .M

(3.5)

where I is the D−by−D identity matrix.

The conditional distribution over the observed ratings and the prior distributions are given

by

Xij |U,V ∼ N ( Ui, εj + θj , α
−1) (3.6)

In this way, the original complex matrix can be decomposed into simpler computations

involving the corresponding patient related matrix and health factor related matrix, as well as the

topic proportions.

CTR combines the matrix factorization with the topic modeling to collaboratively predict

values and to learn topics. After we have trained our LDA implementation on a separate training

corpus and learned the model parameters α and β, the whole model can be learned by maxi-

mizing the log-posterior distribution, which takes the following form assuming ratings are made

independently conditioned on latent factors:

ln p(U, V |X,σ2X , σ2U , σ2V )

=

N∑
i=1

M∑
j=1

Itij ln p(XT
ij |Ui, Vj) +

N∑
i=1

ln p(Ui)

+
m∑
j=1

ln p(Vj − θj)

= −
N∑
i=1

M∑
j=1

Itij(X
T
ij− < Ui, Vj >)

2

2σ2X

− 1

2

 N∑
i=1

M∑
j=1

Itij

 lnσ2X

− 1

2σ2U

N∑
i=1

UTi Ui −
1

2σ2V

M∑
j=1

(Vj − θj)T (Vj − θj)
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+

M∑
j=1

W (j)∑
s=1

ln(

K∑
k=1

θjkβk,wjs
)− lnσ0 + C (3.7)

where C is a constant that does not depend on the parameters. Maximizing the log-posterior over

the latent features with hyperparameters (i.e. the observation noise variance and prior variances)

kept fixed is equivalent to minimizing the following sum-of-squared-errors objective functions with

quadratic regularization terms:

N∑
i=1

M∑
j=1

ctij(x
t
ij− < Ui, Vj >)

2

2
+
λu
2

N∑
i=1

UTi Ui

+
λv
2

M∑
j=1

(Vj − θj)T (Vj − θj) (3.8)

where λu = σ2X/σ
2
U , λv = σ2X/σ

2
V , and λ0 = σ2X/σ

2
0 and Dirichlet prior (α) is set to 1. Note that

ctij is the confidence parameter for rating xtij .

After the parameters have been learned, we can do the prediction for the missing data. For

one data instance if only some parts of the feature data are missing, the point estimate can be used

to approximate their expectations as:

E[xtij |X] ≈ E[uti|X](E[θtj |X] + E[εtj |X]) (3.9)

xtij
∗ ≈ (u∗i )

T v∗j (3.10)

If the whole data instance is lost, E[εtj |X] = 0 and the missing values can be predicted as:

E[xtij |X] ≈ E[uti|X](E[θtj |X]) (3.11)

xtij
∗ ≈ (u∗i )

T θ∗j (3.12)

Using this approach, the missing data can be estimated and added back to the dataset for

further processing.

9



Figure 3.1. The deep neural network.

3.3. Deep neural network training and prediction process

After the missing values have been filled by CTR, deep neural network can be used for the

model prediction. Figure 3.1 describes the architecture of the deep neural network that we used

for classification. The system does not need any complicated syntactic or semantic preprocessing.

The feature vector is fed into the input nodes of the network. Each node generates an output with

an activation function, and the linear combinations of the outputs are linked to the next hidden

layers. The activation functions among different layers are different. The training data is defined

as {(x1, y1) , (x2, y2) , (x3, y3) , . . . , (xP , yP )} of P samples. x is the input feature vector, y is the

class label information. In succession, the features are respectively extracted and then directly

concatenated to form the final feature vector. Finally, to compute the confidence of each relation,

the feature vector is fed into a softmax classifier. The output of the classifier is a vector, the

dimension of which is equal to the number of predefined classification types. The value of each

dimension is the confidence score of the corresponding classification.

In the training process, the input feature goes through the input nodes at the bottom of the

deep learning network, where the weights are initialized with random values. Thereafter the weight
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vectors are fine-tuned in sequence. The training goal of this process is to minimize a comprehensive

cost function given as the mean squared error function between the prediction value and the real

output value:

C(w;x, y) = ‖hw(x)− y‖ (3.13)

where w is the set of the weights in the deep learning network, which needs to be trained in this

phase, y is the label, hw(x) is a hypothesis function which will yield an estimated output, and ‖•‖

denotes the Frobenius norm.

The overall cost function for a batch training is defined as:

J(w) =
1

P

∑
p

C(w;xp, yp) (3.14)

We want to obtain the optimal parameter set to achieve the minimization of the objective

function as:

W∗ = arg min
w

J(w) (3.15)

This can be achieved by the back propagation algorithm. In the back propagation algorithm, we

use the stochastic gradient method to update the weight vectors from the top layer to the bottom

layer as

wnji = wn−1ji + η
∂

∂wn−1ji

J(w) (3.16)

where η is an adaption parameter.

After the neural network structure and the weighted parameter are determined, the deep

neural network can make prediction directly.

3.4. Algorithm design and implementation

Given i for the number of patients, j for health-related items/factors and K for topics, the

proposed algorithm is summarized as:
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Algorithm 1 Algorithm for CFDL

Input: The training dataset in
Output: The architecture and weights for DNN out

Initialization : Initialize the network weights to random number
1: for each patient i do
2: Draw patient latent vector ui ∼ N (0, λ−1u IK)
3: end for
4: for each health-related item j do
5: Draw topic proportions θj ∼ Dirichlet(α)
6: Draw item latent offset vector εj ∼ N (0, λ−1v I) , and set the item latent vector as vj = εj+θj

7: for each word wjn do
8: Draw topic assignment zjn ∼Mult(θ)
9: Draw word assignment wjn ∼Mult(βzjn)

10: end for
11: end for
12: for each patient-health-related item pair (i, j) do
13: Draw the rating xij ∼ N (ui

Tvj , c−1ij ), where cij is a confidence parameter for rating xij ,
a > b . cij = a. (higher confidence), if xij = 1 and cij = b, if xij = 0.

14: end for

15: while the iteration number is greater than 0 do
16: for each of the input data
17: {(x1, y1) , (x2, y2) , (x3, y3) , . . . , (xP , yP )} do
18: Form the vector of input, run the network forward with the input data to get the network

output
19: end for
20: for each output node do
21: Compute ‖hw(x)− y‖
22: end for
23: for each of the layer do
24: Update the weight as wnji = wn−1ji + η ∂

∂wn−1
ji

J(w)

25: end for
26: end while
27: return the network structure and weights

12



4. EXPERIMENTS

In this section, we present our initial efforts on evaluating the proposed methodologies.

4.1. Datasets

We have been working on a project studying diabetes disease and its risk factors among

American Indian men and women. Data collected from this project include patients’ vital signs from

their body sensors, their daily life style information including diet, workout and social activities,

and other demographical data. The data format is heterogeneous including unstructured data,

noise and missing values, and the large number of features are complex. However as our data

collection is in the initial stage, currently we do not have statistically enough data for analyzing.

Therefore, in this paper we have to turn to public available data to test our methodology.

We applied our proposed methodology on the UCI dataset [2]. This dataset contains real

medical records of patients diagnosed with diabetes, collected over a period of 10 years (1999-2008)

from 130 hospitals in USA. The medical records of each patient included 55 different attributes

and a label indicating whether the patient was readmitted to the hospital within 30 days, after 30

days, or never readmitted. The distribution is as follows - 11% of patients were readmitted within

30 days, 35% after 30 days and 54% patients were never readmitted. In total, there were 101,765

encounters available for analysis that satisfy these criteria. Each encounter was labeled with one

of three classes (’<30’, ’>30’, ’NO’) based on whether the patient was readmitted within 30 days

(’<30’), readmitted in more than 30 days (’>=30’), or did not have a recorded readmission (’NO’).

4.2. Pre-processing

For the 10173 patients, they have 24 medicine features, which have four kinds of discrete

values, No, Up, Down, and Steady. we map these values to numerical values from 1 to 4 respectively.

To verify the performance of our proposed method on dealing with missing values, we intentionally

removed 20% of these medicine values. We molded the medicine feature matrix as a collaborative

filtering problem with 10173 users and 24 items. Therefore, in this step, 1,791,064 points of data

were used for training and 447,766 points of data were used for prediction of the CTR model. As

there is no unstructured data in our dataset, our model has been degenerated to a PMF (probability

matrix factorization) problem.
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Table 4.1. List of feature descriptions

Feature name Type

Gender Nominal
Race Nominal
Age Nominal

Weight Numeric
Medical specialty Nominal
Time in hospital Numeric

Number of lab procedures Numeric
Number of procedures Numeric

Number of medications Numeric
Number of outpatient visits Numeric
Number of emergency visits Numeric

Number of inpatient visits Numeric
Diagnosis 1 Nominal
Diagnosis 2 Nominal
Diagnosis 3 Nominal

Number of diagnoses Numeric
Glucose serum test result Nominal

A1c test result Nominal
Change of medications Nominal

Diabetes medications Nominal
24 features for medications Nominal

To avoid over-fitting the model, we removed some of the attributes in the original dataset

such as a patient’s Encounter ID and patient number. The features we used are summarized in

Table 4.1 Some of the features were processed. For example, age is divided into 10 ranges and is

calculated as the mean of the interval. The target variable (class label) is readmission or not. It

has three levels: ’<30’ (patient is readmitted within 30 days), ’>30’ (patient is readmitted after 30

days) and ’no’ (patient was not readmitted). In this paper, the target variable has been re-coded

to ’1’ (patient is readmitted) and 0 (patient is not readmitted) as a binary variable.

4.3. Training and testing

We train a five-layer deep neural network with 1 input layer, 1 output layer and 3 hidden

layers. The output layer’s active function is softmax. Each layer consists of some neurons. The

number of neurons of the input layer is the same as the input feature dimension, and the number

of neurons of the output layer is the same as the output classes. For the neurons in the input layer,

they receive a single value on their input and are sent to all of the hidden nodes. The nodes of

the hidden and output layers are active, and each layer is fully interconnected. The output layer is
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responsible for producing and presenting the final network outputs, which are generated from the

procedure performed by neurons in the previous layers.

In the deep learning prediction step, we split the dataset into two parts: a training dataset

(70%) and a testing dataset (30%). To conduct the experiment, we take an average of 10 runs by

shuffling the dataset. We have used 10 folds cross validation by subdividing the original dataset.

For all these folds we got similar results which indicates the stability of the score.

4.4. Result and discussion

To measure the performance of the proposed algorithm, CFDL, we compare it with the

state-of-the-art classification approaches, namely Support Vector Machine (SVM), Decision Tree,

and Naive Bayes. The result is represented based on the most commonly used metrics: accuracy,

precision, recall, micro-averaged F1, macro-averaged F1, which are defined as follows:

accuracy =
TP + TN

TP + FP + TN + FN
(4.1)

precision =
TP

TP + FP
(4.2)

recall =
TP

TP + FN
(4.3)

micro− avg.F1 =
TP

num
(4.4)

macro− avg.F1 =
2× recall × precision
recall + precision

(4.5)

All these measurements are being calculated using the confusion matrix in Figure 4.1 based

on two possible outcomes: positive (p) and negative (n).

Summaries of these performance measurements for the above-mentioned approaches can be

found in Table 4.2 and 4.3. Table 4.2 shows the prediction results using the original UCI dataset,

while Table 4.3 presents the prediction results using a dataset that were intentionally deleted 20%

of the random selected medication data from the UCI dataset. For both scenarios, CFDL is the
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Figure 4.1. Confusion matrix

winner among all of these comparisons. The findings in these two tables clearly indicate that the

proposed approach CFDL outperforms other approaches in almost all of the five metrics.

Although the experiments performed on the UCI dataset demonstrate the good perfor-

mance of our proposed approach, we expect that the proposed method would performs even better

compared with other approaches on more complex, heterogeneous, and unstructured data, as our

algorithm was designed to overcome the challenges of such dataset.

Table 4.2. Performance measurements for different prediction methods - original dataset

Approach Micro-avg. F1 Macro-avg. F1 Accuracy Precision Recall

CFDL 0.107 0.64 0.8894 0.5018 0.9637
SVM 0.077 0.593 0.8706 0.448 0.875

Decision Tree 0.087 0.35 0.6774 0.2258 0.7788
Naive Bayes 0.077 0.263 0.5693 0.1629 0.6908

Table 4.3. Performance measurements for different prediction methods - 20% missing data

Approach Micro-avg. F1 Macro-avg. F1 Accuracy Precision Recall

CFDL 0.087 0.568 0.869 0.448 0.7788
SVM 0.098 0.477 0.78 0.328 0.875

Decision Tree 0.087 0.292 0.5756 0.1796 0.787
Naive Bayes 0.096 0.327 0.634 0.216 0.867
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5. CONCLUSION

A novel collaborative filtering-enhanced deep learning approach was proposed in this paper.

In the proposed approach, the collaborative topic regression (CTR) was first utilized to mine the

hidden value for the missing data from the structured and unstructured data. Thereafter the deep

neural network was employed and trained for the prediction. The proposed approach was applied

to a big complex medical problem, specifically, a real-world diabetes patient readmission dataset.

Our experiment and result showed that our algorithm can effectively utilize both struc-

tured and unstructured data to find hidden relationship from these data; it can accurately estimate

missing values of the dataset, it can also integrate feature learning for prediction in the complex

data. We also analyzed and compared with other intelligent algorithm such as Support Vetector

Machine (SVM), Decision Tree and Naive Bayes. It is observed that the proposed method out-

performed these approaches, the comprehensive comparative experiments results demonstrated the

superiority.
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