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ABSTRACT 

Wen, Chao, Ph.D., Department of Civil Engineering, College of Engineering and 
Architecture, North Dakota State University, March 2011. Bounding Surface 
Approach to the Fatigue Modeling of Engineering Materials with Applications to 
Woven Fabric Composites and Concrete. Major Professor: Dr. Frank Yazdani. 

It has been known that the nucleation and growth of cracks and defects dominate the 

fatigue damage process in brittle or quasi-brittle materials, such as woven fabric 

composites and concrete. The behaviors of these materials under multiaxial tensile or 

compression fatigue loading conditions are quite complex, necessitating a unified 

approach based on principles of mechanics and thermodynamics that offers good 

predictive capabilities while maintaining simplicity for robust engineering 

calculations. A unified approach has been proposed in this dissertation to simulate the 

change of mechanical properties of the woven fabric composite and steel fiber 

reinforced concrete under uniaxial and biaxial fatigue loading. The boundary surface 

theory is used to describe the effect of biaxial fatigue loading. A fourth-order 

response tensor is used to reflect the high directionality of the damage development, 

and a second-order response tensor is used to describe the evolution of inelastic 

deformation due to damage. A direction function is used to capture the strength 

anisotropic property of the woven fabric composite. The comparisons between model 

prediction results and experimental data show the good prediction capability of 

models proposed in this dissertation. 
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1. INTRODUCTION 

1.1. Material fatigue 

The tendency of material to break under repeated stress is called material 

fatigue. Usually, the applied maximum stress is less than the ultimate tensile strength 

of the material. Material fatigue, especially metal fatigue, which has caused a large 

percentage of engineering failures, has been intensively studied, after researchers 

began to notice this phenomenon in the early 19' century. (Refer to Figure 1.1.) 

© M M t r i t l i Engineering ® Materials Engineering 

Figure 1.1. Fatigue failure in spring (http://materials.open.ac.uk/mem/mem_mf.htm) 

However, the research and studies on material fatigue are still highly limited, 

because of the complex nature of the fatigue process and the number of influencing 

factors, such as the uncertainty of real loading cycles, variations of loading 

combinations, change of temperature, impact of corrosive environment, and different 

rates of material degradation. For example, the spring shown on Figure 1.1 suffers a 
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complex loading combination of bending, torsion and fatigue in the working 

environment. Fortunately, design data have been accumulated for different 

engineering metals and alloys, and a series of rules, empirical or based on scientific 

understanding, has been set up for design. 

To meet higher engineering requirements, many new materials have been 

developed and widely applied, such as composite material, because they show very 

different mechanical properties from those of traditional metal and alloy, especially 

under fatigue conditions. For example, as shown on Figure 1.2, composites are only 

about 12 percent of the total materials by weight in the Boeing 777 plane. However, 

composites and fiberglass are about 50 percent of the total materials by weight in the 

newer Boeing 787 plane. 

Materials used in 787 body 

Fiberglass U Carbon laminate composite 
• Aluminum Carbon sandwich composite 

Aluminum/steel/titanium 

/ 

/ 

/ 

Total materials used 
8y weight 

Other 

Steel 5% Composites 
50% 

M J 

-^ Titan tuiT^ 
15% 

Akimmum 
20% * 

By comparison i+e777us« 1?pcic"nt 
composites and SO peieeni dlufTtfnum 

Figure 1.2. Application of composites in aerospace: Material used in 787 body, 
(http: //seattlepi .n wsource .com/boeing/7 8 7/7 8 7primer. asp) 
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Although composites' micro-structure and fabrication processes are very 

different than metallic materials, the methods used to study the fatigue of these 

materials are similar. Therefore, the application of the existing design methodology 

for the new materials may become questionable and even unsafe. Lack of 

understanding of the mechanical properties of the new materials has led to many 

engineering failures, such as the rudder of the Airbus A310 shown on Figure 1.3 that 

is a composite reinforced 28 feet high structure and fell off just after the aircraft took 

off. 

Figure 1.3. Rudder failure of Airbus 
A310 model plane. 
(http://www.yachtsurvey.com/compo 
site_troubles_in_aircraft.htm) 
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1.2. Composite materials 

Composite materials consist of two or more physically distinct and 

mechanically separable constituents. The term "composite" implies that the 

constituents are not only different at the molecular level but also have distinctive 

component properties, and they are generally mechanically separable. Usually, the 

composite material is a combination of a reinforcing material, such as a particle or a 

fiber, and a matrix or a binder material. The largest subdivision of composites is the 

fiber reinforced plastics (FRP) in which the matrix is a polymer (or plastic) and the 

reinforcement is always a fiber. With superior properties of fiber, the FRP displays 

many advantages over the traditional materials. These advantages include lower 

corrosion, lower density, higher specific stiffness and strength, better opportunity to 

tailor material properties by choosing different fibers. Other design objectives may be 

met also by varying fiber resin ratio or resin formulation, selecting different 

processes, and applying various fabrication methods. With these advantages the FRP 

has been widely used especially in weight critical and corrosion related industries. 

The comparison of mechanical properties between composite materials and 

conventional materials is listed in Table 1.1. 

The most commonly used fiber-reinforcement forms are uni-directional 

lamina and woven fabric (Figure 1.4). Woven fabric composite is widely used in 

engineering applications for its better mechanical properties than the uni-directional 

lamina. Woven fabrics have higher resistance to impact loading, show high strength 
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and dimensional stability, offer high heat and fire resistance, and are preferred in 

applications where a biaxial stress state exists. 

Table 1.1. Composite Materials v.s. Conventional Materials 

Material 

Al-Zn-Mg Alloy 

Low Alloy Steel 

Nylon 66 

Carbon/Epoxy 

Glass/Polyester 

Density, p 

(g/cm3) 

2 8 

7 85 

1 14 

1 62 

1 93 

Modulus, E, 

(GPa) 

72 

207 

2 

220 

38 

Strength, at 

(GPa) 

503 

2050-2600 

70 

1400 

750 

efra 

(%) 

11 

11-28 

60 

0 8 

1 8 

E/p 

(GPa/Kg) 

25 7 

26 4 

1 8 

135 

19 7 

(GPa/Kg) 

180 

261-276 

61 

865 

390 

I itw 

Ttm iu-

Figure 

Matnx 

V\I3l 

am i n a 

sure en fabric composite (http //nathanscars wordpress com/2008/08/04/) 

However, due to a more complex reinforcement form and production 

technique, the mechanical behaviors of the woven fabric composite are much more 

complicated than those of uni-directional composite, especially under fatigue loading 



conditions. Figure 1.5 shows some common reinforcing forms of woven fabrics, and 

Figure 1.6 shows the properties of woven fabrics with different reinforcing forms. It 

can be seen that one specific reinforcing form may show excellent properties in some 

aspects but very poor properties in some other aspects. 

1.3. Fatigue behaviors of woven fabric composites 

Fatigue damage in metallic materials usually begins initially from a single 

micro-crack or micro-defect, and propagates as one crack until the final failure 

without warning. In common low-level stress fatigue, only the metal properties in the 

vicinity of the crack are impacted, and those far away from the crack almost has no 

change. 

Figure 1.5. Reinforcement forms of woven fabric composites. 
(http://autospeed.com/cms/title_Complete-Guide-to-Composites-Part-
4/A_108696/article.html) 
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Figure 1.6. Properties of woven fabric composites with different reinforcement 
forms. (http://autospeed.com/cms/title_Complete-Guide-to-Composites-Part-
4/A_l 08696/article.html) 

The fatigue in woven fabric composites is quite different from that in metallic 

materials. The reinforcement plays an important role in determining the fatigue 

behaviors of composite materials due to the presence of reinforcement/matrix 

interface. The interface determines the inter-laminar shear strength, delamination 

resistance, fatigue resistance, and corrosion resistance, and makes the damage a 

strong directionality process as shown in Figure 1.7. 

There are three types of interfaces in woven composites: resin-rich area to 

longitudinal fiber group, resin-rich area to transverse fiber group, and longitudinal 

fiber group to transverse fiber group. When the fatigue load is applied in the 

longitudinal direction, it is shown (Smith and Pascoe, 1989) that only the first and 

third types of interfaces described above tend to stop the development of cracks 
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perpendicular to the loading direction. This is attributed to the strength and stiffness 

of the longitudinal fiber group. The resultant stress concentration would then lead 

cracks into the weak interface area around the longitudinal fiber group and promote 

the breaking of interfaces between adjacent layers. After a number of the weak 

interfaces are broken down, and resultant separate interface areas are joined together, 

delamination emerges. 

Figure 1.7. Damage directionality. (Samborsky, 2008) 

Under these complex phenomena, several different damage modes are present: 

micro-cracking, cracking, debonding, delamination, fiber fracture, etc. (Smith and 

Pascoe 1989). These damage modes can be divided into two groups: micro-structural 

damage mechanisms within the impregnated strand, and macro-structural damage 

mechanisms between different phases. The first type includes matrix micro-cracking, 

fiber/matrix interfacial debonding, fiber breakage and crack coupling. The second 

type of damage mechanisms includes transverse cracking, shear failure in 

longitudinal fibers, cracking in pure matrix regions, delamination between adjacent 

layers, longitudinal fiber tensile failure and final fracture. 
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Many observations show that the fatigue process can be divided into three 

stages (Hansen, 1999; Natarajan et al., 2005), as shown on Figure 1.8. The abscissa is 

the loading cycles, and the y-axis can be several mechanical properties and variations, 

such as longitudinal specimen stiffness (Hansen, 1999), expended energy (Natarajan 

et al., 2005). In the first stage, the main damage modes are micro damage 

mechanisms. The rapid damage accumulates and stiffness reduces attribute to the 

release of the geometrically stress and strain concentrations. This rapid reduction in 

stiffness is called as the "knee effect." as shown in Figure 1.9. The square dots are the 

experimental data of the longitudinal stiffness at different number of loading cycles of 

one fatigue test (Hansen, 1999.) This process continues until the micro-crack 

saturates, which means that the geometrically stress and strain concentrations are 

almost totally released. 

Variation of expended energy under fatigue loading 

i 

1 

I 
1 

1 
1 

Matrix cracking 
Stage 1 

1 
i 
1 

i 
i 
! 
1 

Matrix cracking, intertacial 
cracks, delamination 
Stage II 
(linear) 

i 
Failure i 

! 

! J 
r— 
i 
i 1 
J Fiber failure 

I Stage III 
I 
1 
i 
1 
1 
1 
i 
I 

0 1000 2000 3000 4000 5000 6000 7000 8000 

Cycles to failure (N) 

Figure 1.8. Three stages of fatigue process in woven fabric composite. 
(Natarajan et al., 2005) 
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Figure 1.9. Illustration of "knee effect". (Hansen, 1999) 

The second stage is controlled by a combination of matrix cracking, interfacial 

cracking and delamination. In this stage, damage accumulates slower and more stable 

rate than the first stage due to the interlock between different phases, such as between 

longitudinal and transverse fibers. The mechanical properties change approximately 

in a linear rule under logarithmic coordinates. (Natarajan et al., 2005) 

With further loading, at over-stressing or over-straining concentrations, the 

last stage occurs. During the last stage, various kinds of damage mechanisms grow 

rapidly and cause a high rate of damage accumulations. When the stress or strain 

states reach critical values, fiber fracture occurs and the composite fabric fails. 

Another important characteristic of woven fabric is the strength anisotropy. 

Fiber type or fiber density of woven fabric can be different in different directions to 

meet various strength requirements, especially in weight-critical situation. Thus, the 
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strength of the woven fabric is anisotropy as shown in Figure 1.10. The square dots 

are the experimental data of ultimate tensile strengths of woven fabric in various 

biaxial loadings (Franklin 1968.) All of these phenomena demonstrate that the fatigue 

of woven composites is a very complex process. 

• 

0 1000 2000 3000 4000 

strength in direction 1 (Psi) 

Figure 1.10. Strength anisotropy. (Franklin 1968) 
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2. LITERATURE REVIEW 

2.1. Introduction 

The complex properties and damage modes make the modeling of the fatigue 

process a very difficult task. However, many researchers have put much effort into 

this area, and many models have been proposed during the last several decades. 

Based on the different main parameters, these models can be divided into three 

categories: fatigue life models, phenomenological residual strength/stiffness models, 

and progressive damage models (Degrieck et al., 2001). 

2.2. Categories of existing models 

2.2.1 Fatigue life models 

The fatigue life models are the earliest type of models. This type does not 

consider the damage accumulation, but extracts the information about the fatigue life 

from the "S-N" curves or Goodman-type diagrams. Although this type cannot show 

the details of the fatigue damage development, it gives the information that most 

concerns the industry. Thus, this type is widely used in many computer codes, such as 

ANSYS, and in many engineering standards. 

The basic forms of "S-N" curves are power function and logarithm function. 

The first one can be shown as 

eaSN = c (2.1) 

where a and c are material constants that are determined by material 

properties, specimen configurations, and loading methods; e is the base of natural 
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logarithm; S is the applied stress; and N is the fatigue life corresponding to the 

applied stress. Taking the natural logarithm to both sides of Equation 2.1, one obtains 

aSlge + lgN = lgc (2.2) 

Setting alge = A, lgc = B, one obtains 

AS + lgN = B (2.3) 

This equation shows that the applied stress, S, and fatigue life, N, are in a 

linear relation in the semi-logarithm coordinate system. 

The logarithm function can be written as 

SaN = c (2.4) 

where a and c are material parameters that are also determined by material 

properties, specimen configurations, and loading methods; S is the applied stress; and 

N is the fatigue life corresponding to the applied stress. Taking the natural logarithm 

to both sides of Equation 2.4, one obtains 

algS + lgN = lgc (2.5) 

This equation shows that the applied stress, S, and fatigue life, N, are in a 

linear relation in the bi-logarithm coordinate system. 

Based on these two basic forms, many models proposed with considerations 

of some other factors that affect the material fatigue life, such as the stress ratio 

between maximum applied stress and minimum applied stress, mean stress, and 

fatigue limit. 

Caprino and Giorleo (1999) established a model with the influence of the 

stress ratio. 
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(2.6) 

where R is the stress ratio; a and P are material parameters determined 

experimentally; GQ is the monotonic tensile strength of virgin material; amax is the 

maximum applied stress; N is the fatigue life. This model shows good correlations for 

long life prediction as shown on Figure 2.1, but for short life prediction the results are 

not sure. 

1.25 
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Figure 2.1. Semi-log plot of the non-dimensional 
maximum applied stress- the number of cycles to 
failure. Continuous lines: theoretical predictions. 
(Caprino and Giorleo, 1999) 

2.2.2. Phenomenological models 

Phenomenological models are also called as Continuum Damage Mechanics 

(CDM) models and can be divided into two categories: residual stiffness model and 

residual strength model. 
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Residual stiffness models describe the degradation of the elastic properties of 

material during the fatigue process. A variable D is often used to name damage, but 

different people used different definitions for D. In the uniaxial fatigue condition, one 

popular definition is D=l-E/Eo, where Eo is the initial or undamaged Young's 

modulus. Although these models use D as a damage variable, they do not take the 

actual damage mechanisms into account, but use a macro scale mathematical 

expression to describe the change of the damage rate, dD/dN. It seems desirable and 

accurate to predict the fatigue behaviors by monitoring the development of an 

individual crack; nevertheless it is formidable, if not impossible, because the crack-

developing manner of woven fabric is not only an increase of the crack length, as it 

happens in metals, but also a multiplication of the crack numbers. And the latter 

dominates the main part (first and second stages) of the fatigue life, due to the 

stunting of the interlock between different phases. Therefore, the macro scale 

mathematical expression of the damage seems to be a good implement to simulate the 

fatigue development of composites. 

The residual strength models describe the fatigue process through the 

degradation of the material strength and generally assume that the material fails when 

the residual strength reaches the applied stress. Two types of residual strength models 

can be distinguished: sudden death model and wearout model. The former one is 

suitable for high strength unidirectional composites where the residual strength acts 

as a function of the number of cycles with nearly the same value as the initiation and 

decreases dramatically when the number of cycles reaches the number of failure. The 
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latter one is more suitable for lower level states of stress where the residual strength 

decreases more gradually. 

The two kinds of models have their advantages and disadvantages. The 

residual stiffness models show the whole fatigue process with a real material property 

which can be used in structural analysis and material evaluation, but it is difficult for 

these models to provide the final failure criteria. On the other hand, the residual 

strength models give a very clear failure criterion, but cannot show the fatigue 

process with a meaningful parameter through which the degraded material properties 

for a given loading cycle number can be determined. Considering these advantages 

and disadvantages, some researchers developed models that combined the advantages 

of these two models. Since it is difficult to divide these models into either group, they 

are not specifically categorized in this paper. The following models can be either kind 

or a combination of both. 

Van Paepegem and J. Degrieck (2001) proposed a CDM model to predict the 

stiffness degradation. The model was too simple to be used in complex conditions, 

and the model had no theoretical background. 

In the next year, they proposed another model (Van Paepegem et al., 2002). In 

this model, the authors considered the advantages and disadvantages of residual 

stiffness models and residual strength models, and took their advantages to simulate 

the stiffness degradation and give the final failure criteria. They developed a set of 

equations to picture the damage growth, and modified the Tsai-Wu static failure 

criterion as their failure criterion. The results were well correlated with the 

16 



experimental data as shown on Figure 2.2. However, the model still had no theoretical 

background but was just established based on experimental results. Also, this model 

had five parameters that needed to be determined and did not include the influence of 

either fiber direction or stress direction. 
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Figure. 2.2. Experimental and simulated force-
cycle history. (Van Paepegem et al., 2002) 

One year later, Paepegem et al. (2003) developed their model by taking the 

impact of stress directions and possible permanent strain into account. This model 

derived a multi-dimensional damage relationship from a one-dimensional damage 

relationship. The developments of the damages in different directions were expressed 

in a matrix form, and every element was given in a specific form. However, the 

expressions of damage developments made the model quite complex, although the 

predictions well matched the experimental data as shown on Figure 2.3. 
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Mao and Mahadevan (2002) proposed a model with a new damage variable 

for considering the influence of the final Young's modulus Ef and used a fatigue 

damage accumulation equation as follow 

(2.7) 
b 0 b f 

D = q 
^n> 

vNy 

f r. > 

• 0 - q ) - (2.8) 

where q, mi, and iri2 are material dependent parameters. 

Their predictions were good for woven composites as shown on Figures 2.4. 

However, the three parameters are defined by three other equations, and their model 

did not consider the difference between uniaxial loading and multiaxial loading 
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conditions. This disadvantage severely undermined the capability of the model, 

although the damage variable, D, is often used as nondimensional. 

0.4 0.6 
Cycle Ratio 

Figure 2.4. Experimental observation and model 
prediction for the AS4/PR500 woven composite. (Mao 
and Mahadevan, 2002) 

Hansen (1999) pointed out that the impact on the surface of composite 

material plays an important role in the fatigue behavior of composite material. Thus, 

he used 3 levels of impact damage: undamaged, barely visible impact damaged 

(BVID), and penetrated damaged, in both static and fatigue testing. Hansen applied 

continuum damage mechanics to simulate the fatigue process. He considered a linear 

elastic isotropic solid for which the mechanical properties changed with the number 

of fatigue cycles. The change in mechanical properties was described through a 
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damage parameter p\ He assumed the following relationship between the mechanical 

properties and (3. 

E = Eo(l-/3)andv=vo(l-0) (2.9) 

where EQ and v0are the initial Young's modulus and Poisson's ratio. 

Furthermore, the model was given a damage evolution function of the form 

Y 
dN p<pVm (2.10) 

where A and n are material parameters; se is the effective strain measure given as 

se = v s : £ , and where eo corresponds to the peak strain level during a fatigue cycle. 

Based on these theories, Hansen predicted the degradation of the longitudinal 

stiffness with respect to the number of cycles as shown in Figure 2.5. Although 

Hansen's model was based on continuum damage mechanics and easy to be fulfilled 

by a computer program, the model did not involve the impact of the fiber directions 

and the stress directions, and the prediction results were not as good as those of other 

models. 

2.2.3. Progressive damage models 

These models differ from the models mentioned above because of the chosen 

damage variables, such as damage area, crack surface, and strain energy release rate, 

to describe the degradation of the materials. 

Natarajan et al. (2004) proposed a fatigue damage model which was based on 

the internal strain energy release rate. They gave the formula of the energy release 

rate as 
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dU 
dN = a (2.13) 

V buh J 

where 8max is the maximum induced strain of the material, euit is the static ultimate 

strain of the material, and a and b are the fatigue coefficients. 
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N, = 

Based on this expression, the failure life was predicted as 

0.5Un 

« O m a x / O 
(2.14) 

where Uo is the initial internal strain energy. This model has a good correlation with 

the experiments as shown in Figure 2.6. However, for different loading types and 

materials, different formulas of strain energy and values of parameters are needed. 
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The failure criterion is assumed to be 50% increase in the total energy expended 

based on experimental observations. 
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Yoshioka and Seferis (2002) developed a model to predict the modulus 

deterioration based on a combination of the crimp model and the shear-lag model. 

With the micro level experiments, they proposed an idealized unit cell of plain woven 

composite containing fatigue damage as shown in Figure 2.7. With this idealized unit 

cell, they established equations to estimate the stiffness. 

They also gave the expression of the effective transverse modulus with 

transverse cracking. 
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F' = • 

1 tanh 
aL m 

2 E2t2 , (erf, Y 
1 + ^ t a n h —-

alc Extx V 2 J 

(2.15) 

where a is the shear-lag parameter, lc is the crack spacing in the 90-deg lamina. Ei 

and E2 are the original longitudinal and transverse moduli, respectively, ti is the 

thickness of the adjacent 0-deg laminae and t2 is the half thickness of the 90-deg 

lamina. 
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Figure. 2.7. Idealized unit cell of plain woven composite 
containing fatigue damage. (Yoshioka and Seferis, 2002) 

This model is a very good attempt at modeling based on micro-level 

phenomena. However, many different phenomena are presented in the woven 

composite fatigue process. Therefore, modeling each phenomenon is not a practical 

method. 
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2.3. Conclusion of existing models 

The fatigue life model is simple and easy to use, but it is not able to give 

information, such as the change of the modulus, that is required by engineering 

design, because of its inherent disadvantages as described above. 

The progressive damage model is a good attempt to apply some new damage 

variables. The authors noticed that the propagation of cracks and microcracks is the 

main type of fatigue damage and dominates the fatigue process of composite 

materials; therefore, these authors logically try to picture the fatigue process by 

modeling the details of the evolution and growth of the crack or defect. However, 

from previous chapters it is obvious that modeling the evolution and growth of every 

crack or defect is a formidable task, if not an impossible one, because of the 

scatteration of the cracks and defects. 

The phenomenological model gives the information which mostly interests 

design engineers and avoids the tedious work of monitoring every crack development 

and every damage mode. Therefore, the phenomenological model is a good method 

for modeling the composite fatigue. 

2.4. Fatigue models for steel fiber reinforced concrete 

Steel fiber reinforced concrete (SFRC) is a kind of composite composed of 

cement as the matrix, aggregate as the granular reinforcement, and steel fiber as the 

fiber reinforcement. Similar to the woven fabric, the properties of SFRC are also 

determined by the properties of matrix and reinforcement and the interfaces between 
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them. Before loading, micro-cracks scatteringly exist at the interfaces attribute to the 

cement contraction during hydration and the volume change during cement drying. 

During loading, the micro-cracks develop and finally connect to each other and cause 

the material fails. Since the fatigue load causes more micro-cracks than the 

monotonic load; and this effect is more pronounced in fiber reinforced concrete 

(Zhang et al., 1999,) successful description of the evolution of micro-cracks is 

essential to understand the evolution of the properties of SFRC under fatigue 

loadings. Based on the discussion of models of woven fabric composite, the 

phenomenological model or CDM model is also the best method to describe the 

evolution of the properties of SFRC. 

2.5. Fatigue tests for woven fabric and steel fiber reinforced concrete 

For better understanding of the behaviors of woven fabric composites and 

steel fiber reinforced concrete, calibrating parameters, and verifying proposed 

models, many experimental tests were performed. 

Hansen (1999) performed a series of static and tension-tension proportional 

fatigue tests for woven fabric composites with three levels of damage, undamaged, 

barely visible impact damaged (BVID), and penetrated. 

The specimens were made up of plain woven glass/epoxy prepreg fabrics with 

a lay-up sequence [(+45#-45)/(90#0)]s. The symbol "#" indicates the bi-directional 

reinforcement of each prepreg. The dimension of the specimen were 100mm width, 

190mm gage length, and 0.9mm thickness. Specimen manufacture consisted of 
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vacuum bagging and autoclaving. The Young's moduli of the woven fabric were 

26.2GPa in direction 1 and 24.2GPa in direction 2, respectively. The Poison's ratio 

was 0.138. The tensile strengths were 400MPa in direction 1 and 381MPa in direction 

2, respectively. The failure strains were 1.52% in direction 1 and 1.56% in direction 

2, respectively. Hansen (1999) also measured the properties of the specimen and 

obtained that the tensile strength of the specimen was 330MPa, and the failure strain 

was 2.2%. 

The impact of the BVID and penetrated specimen was performed in a drop-

weight tower using a spherical indenter with a radius of 12.5mm. The impact energies 

were 9 Joules and 20 Joules for the BVID and penetrated specimen, respectively. All 

tests were performed in a servo hydraulic Instron 1333 with hydraulic grips, and a 

250 KN load cell. To record overall strains and displacements, HBM 6/350XY11 

strain gages and an Instron 2620-602 extensometer were used. Static testing was 

generally performed at an actuator speed of lmm/min. The tensile fatigue testing was 

performed in load control mode at a frequency of 5 Hz and with a load ratio of R = 

o"min/ °max = 0. Material hysteresis at this frequency leads to specimen surface 

temperatures of approximately 35 degree. A thermal imaging system (IT45) was 

included in the experimental set-up of the present work to estimate the surface 

temperature of the specimen over a region of dimensions of approximately 25mm 

x30mm by registering the infrared radiation. 

Smith and Pascoe (1989) studied the fatigue of woven fabric composites with 

a series of fatigue tests of nine proportional biaxial and three uniaxial stress states. 
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One batch of test materials was used for the whole program. The laminate was 

laid up from reinforcement of glass-fiber woven roving, Marglass 266 24 oz 

(Fothergill and Harvey Ltd), and an isophthalic polyester resin, BP 2785 CV (BP 

Chemicals). The warp and weft fibers were balanced and the roving had a weave of 

5mm width. Lamina thickness as laid up averaged 0.9mm and the test laminate 

contained 13 laminae. The nominal resin content was 46 per cent. The biaxial 

cruciform specimens were 300mm x 300mm and of 12mm nominal thickness with a 

60mm square flat working section and bolted to the four loading arms. The parallel-

sided uniaxial specimens were 50mm wide and bolted to the two loading arms. Grip 

reinforcement with duralumin plate is used to avoid fracture in the arms. 

The properties of the specimen under monotonic loadings were listed as 

follows. The Young's moduli of the specimen were 17.07GPa and 18.31GPa in weft 

and warp directions, respectively. The Poison's ratios were 0.155 and 0.167 in weft 

and warp directions, respectively. The tensile strengths were 238MPa and 257MPa in 

weft and warp directions, respectively. The failure strains were 1.7% and 2.4% in 

weft and warp directions, respectively. 

A biaxial hydraulic servo-controlled rig developed at the Cambridge 

University Engineering Department was used for all the tests. This machine is able to 

test biaxial cruciform specimens for any phase of principal in-plane loadings up to 

±200KN. A special extensometers based on bending of a short resistance-strain-

gauged double cantilever beam were developed to measure and monitor the specimen 

strain throughout the fatigue tests. All tests were under load control with a load ratio 
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R equals to -1 . The fatigue test frequencies were generally kept in the range 0.1 to 0.6 

Hz to prevent excessive cyclic induced heating. 

Yin and Hsu (1995) tested the fatigue behaviors of steel fiber reinforced 

concrete plates under uniaxial or proportional biaxial compressive fatigue loadings. 

The concrete specimens were made of type III Portland cement. The mix proportion 

was 1:2.16:1.88, by weight, for cement, sand, and coarse aggregate, respectively. The 

water cement ratio was 0.6 and the maximum size of aggregate was 0.5in. For fiber 

concrete specimens, the aggregate consisted of quartz and flint, with some feldspar. 

The carbon steel fibers were smooth, straight, slit-type, with a cross section of 0.01 x 

0.022in. The length of fiber was lin. and the percentage of fiber volume used in all 

fiber concrete specimens was 1.0 per cent. The average tensile strength of steel fibers 

was 60ksi. Concrete mixing was done in a 5-ft rotary drum mixer, while the fibers 

were gradually sprinkled into the drum by hand. After all the fibers were added, 

mixing continued for about 1 minute. Two 6x6x20in and three 6x6x40in steel molds 

were used for casting fiber concrete blocks. One 6x6x20in mold was used for the 

companion plain concrete block. The molds were laid with their longest dimensions 

horizontally for casting. The concrete blocks were stored in a water tank in the moist-

room at 780 F and 100 percent relative humidity until sawing at 1 week before 

testing. The plate specimens were cut from the cast concrete blocks by a precision 

diamond saw. The dimensions of the specimen were 6x6x1.5 in. After sawing, the 

concrete specimens were coated with two thin layers of sealant to prevent evaporation 

of water. By examining the cut surfaces and failure regions of the plate specimens, 
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the random orientation of the fibers was verified. Companion uniaxial compression 

tests of the plate specimens were carried out at regular time intervals to ascertain 

strength gain with age. 

Specimens were tested in a specially designed biaxial test machine. The load 

was supplied by a hydraulic actuator with the capacity of 220kips, mounted on top of 

the testing frame. The downward load passed through a load cell and a spherical 

bearing hinge, and was then resolved into a pair of forces by a load bifurcation 

mechanism. The load bifurcation mechanism transformed a uniaxial load into two 

mutually perpendicular loads, thus creating a biaxial stress condition. Brush loading 

platens, rather than solid platens, were used to minimize the frictional confinement of 

the test specimens. Deformations in the three principal axes were measured by a pair 

of capacitance type transducers in each direction. 

Four principal compression stress ratios were used in the tests, 0, 0.2, 0.5, and 

1.0. For each principal stress ratio, the first test was at the maximum stress level of 

1.0. The maximum stress level means the ratio of the maximum applied stress to the 

compression strength of plain concrete. And subsequent stress levels were taken at 

1.1, 1.2, and so on, at an increment of 0.1, up to the test where the number of cycles at 

failure reached 1. After that, tests were carried out at stress levels of 0.9, 0.8, 0.7, and 

so on, at a decrement of 0.1, down to the test where the number of cycles at failure 

reached 2 million. At least two specimens were tested at each stress level for each 

stress ratio. The load ratio R equals to 0.05. The loading rate is 1 Hz. The loading 

wave form is triangular. 
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3. OBJECTIVE 

As discussed in previous chapters, many researchers have modeled material 

behavior under fatigue loadings. However, many of these models were based on 

empirical equations without solid theoretical foundations. Some researchers proposed 

models that were based on general theories, but did not take into account many 

important characteristics of the material. Others introduced so many variables that the 

model was too complex to be applied to engineering. To overcome these 

disadvantages, three new continuum damage mechanical models based on the laws of 

thermodynamics have been developed in this dissertation to capture the 

characteristics of brittle or quasi-brittle materials under fatigue loadings by 

introducing limited material parameters. The advantages and details of continuum 

damage mechanics and thermodynamics are explained in Chapter 4. 

One main characteristic of fatigue damage in brittle or quasi-brittle materials 

is that damage development is anisotropic. Therefore, the change of the compliance 

or stiffness and the development of the inelastic strain, if it exists, should be 

anisotropic, too. A fourth-order response tensor and a second-order response tensor 

are introduced in Chapter 5 to capture the effects of the anisotropic damage 

development on the compliance and the inelastic strain, respectively. 

Another main characteristic of the fatigue process is the "knee effect," which 

means that the stiffness of the material has a rapid drop after a very short part of the 

fatigue life. After that, the reduction of the stiffness becomes stable and close to 

linearity. In the dissertation, a damage evolutionary law is proposed in Chapter 5 to 
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describe the process of the change of the material state and reflect the phenomenon of 

the "knee effect." 

Although the model presented in Chapter 5 is able to describe several aspects 

of the fatigue process, its scope was limited and lacks generality the present work 

seeks. Therefore, a new model utilizing the bounding surface theory is established in 

Chapter 6 to improve upon the model introduced in Chapter 5. Another advantage of 

the bounding surface theory is that once the limit surface is established, the fatigue 

life of the material under any load combination can be determined through a simple 

loading path, such as a uniaxial loading path. The details of the model and the 

bounding surface theory are discussed in Chapter 6. 

Usually, components in service are not in pure uniaxial or equal multiaxial 

loading conditions, but in nonequal multiaxial loading conditions. Using the same 

fibers in different loading directions is a waste of materials for components under 

nonequal, biaxial loadings. Therefore, choosing different fibers or different fiber 

densities in different directions can save some materials and, at the same time, tailor 

the mechanical properties of the woven composite to match the requirements of 

complex loading conditions. However, this adjustment will cause strength anisotropy 

in woven composite materials. To model this feature, a strength function is introduced 

in Chapter 6. 

The damage that occurs in the first cycle should be treated as quasi-static 

damage rather than as fatigue damage. A shape function to capture the damage in the 

first cycle is discussed in Chapter 6 for a composite material model, and fully 
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explained in Chapter 7 for a concrete model. The damage in the first cycle is 

negligible for composite materials, but important for concrete. 

Since the model proposed is a unified approach to the damage mechanics 

modeling of quasi-static and fatigue loading of brittle or quasi-brittle materials in 

general, it is natural to apply the established model to concrete, which is also a quasi-

brittle material. However, compared to composite materials that are mainly applied in 

tension loading conditions because of their high tensile strengths, concrete is widely 

used in compression conditions for its relatively high compression strength to its 

tensile strength. Under compression loadings, the damage develops in a different 

manner from that of composite material under tensile loadings. A new fourth-order 

response tensor and a new second-order response tensor reflecting the effect of 

compression loadings are introduced in Chapter 7 to explain this difference. 
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4. CONTINUUM DAMAGE MECHANICS AND 

THERMODYNAMICS 

4.1. Introduction 

For a successful model that is able to describe the fatigue process of materials, 

two kinds of modeling are necessary. One process is the kinetic or mechanical 

modeling that deals with the motion and the force in the material and leads to 

consistent definitions of stresses, strains, and equations of equilibrium; another is the 

phenomenological modeling that is used to characterize the fatigue process by 

selecting suitable variables. Therefore, an approach of thermodynamics of irreversible 

processes and continuum damage mechanics by introducing state variables has been 

used. This chapter introduces the theories that are used in the following chapters. 

4.2. Continuum mechanics and thermodynamics 

The approach of the thermodynamics of irreversible processes is used here for 

two reasons: one reason is that this approach is able to provide a formalism that is 

directly accessible to the methods of functional analysis, and another is that the 

thermodynamic framework will be useful to guide and limit the possible choices in 

phenomenological modeling (Lemaitre and Chaboche, 1990). 

Thermodynamics was initiated by chemists and was applied to continuum 

mechanics by Eckart and Biot around 1950 (Lemaitre and Chaboche, 1990). Through 

this method, the state of material can be described by defining associated variables 
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from observable variables and internal variables selected to study the phenomena. 

This, then, leads to the state laws. The dissipation inequality furnishes the laws of 

evolution for the variables that describe the irreversible processes. 

It should be mentioned, however, that the thermodynamics applied here is 

without the consideration of thermal or true dynamic effects. 

4.2.1. Cauchy's first law of motion 

It is assumed that the total force acting on an isolated continuum body is 

composed of a body force fb and a contact force fc 

f=fc + fb (4.1) 

and further assumed that the body force could be obtained from a vector field b(r,t). 

fb = Jbpdv (4.2) 
R 

where, R is the volume of the body, p is the density of the material, dv is the 

infinitesimal volume of the material, r is the position vector with respect to the origin 

in the Eulerian coordinates, and t is current time. 

Similarly fc could be obtained by a vector field representing a force per unit area, 

stress vector t, acting on <9R, the surface of the body. 

fc=Jt(r,n)ls (4.3) 
5R 

where n is the unit normal vector, and ds is the infinitesimal surface of the material. 

The total force acting on the body causes the body to move with an acceleration a, so 

f = Japdv (4.4) 
R 
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Thus, the relationship in Equation 4.1 can be expressed as follows by substituting 

Equation 4.2, 4.3, and 4.4 into Equation 4.1 

Japdv= Jbpdv+ Jt(r,n)is (4.5) 
dR 

Cauchy's fundamental theorem states that at the boundary of the body: 

t = o n (4.6) 

where, a is Cauchy's stress tensor. 

So, with preceding equation, Equation 4.5 is as follows: 

[apdv = fbpdv + [<r • nds (4.7) 
3R 

With the application of the divergence theorem, Equation 4.5 becomes the following: 

japdv = Jbpdv + Jtr • Vdv (4.8) 
R R R 

where () • V is the divergence of the function or tensor in the bracket. 

Since this relation holds for any dv, Cauchy's first law of motion can be expressed as 

follows: 

ap = bp + w-V (4.9) 

4.2.2. Thermodynamics 

4.2.2.1. First principle of thermodynamics 

The first principle of thermodynamics is the conservation of energy, which 

can be represented as following equation: 

E = Pi„Pu,+Qmpu, (4-10) 
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where E is the rate of change of the total energy of the system, P,nput is the power 

input due to the mechanical work performed on the system, and Q,nput is the heat 

change rate in the system. 

Pinput is the sum of the powers made by the body force fb and contact force fc. With 

the same formalism used in section 4.2, P,nput can be represented as follows: 

Plnput = Jbp-Vdv+ Jt-Vds (4.11) 
SR 

where V is an arbitrary vector of displacement rate. 

Qmput is the sum of the heat rate of internal source of the system and the heat flux 

through the boundary of the system, and it can be represented as follows: 

Q,nPU, = Jrdv- Jq-nds (4.12) 
SR 

where r is the heat source per unit volume, and q is the heat fleet vector. 

By applying the divergence theorem, Equation 4.12 becomes 

Q,„pUt = Jrdv-Jq-Vdv (4.13) 
R R 

With Equation 4.6, P,nput becomes 

P,nPU, = jbp.Vdv+ j V n n d s (4.14) 
3R 

With the divergence theorem which has been applied in preceding section, P,nput 

becomes 

P,„pUt-Jbp-Vdv+J(V-a)-Vdv (4.15) 
R R 

It can be demonstrated that 
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(V-a)-V = V-(o-V)+7r[(VV)-o] (4.16) 

Thus, Equation 4.15 becomes to 

P,nPu, = J V Vdv+ j (a -V)-Vdv+ {Tr[(VV).0Jiv 
R R R 

= J(bp + a • V) • Vdv + JTr[(VV) • a]dv (4.17) 
R R 

Introducing Equation 4.9 into Equation 4.17, we obtain 

P,nput = Jpa-Vdv+jTr[(VV).<r]dv 
R R 

= JpV • Vdv + JTr [(VV) • cjiv (4.18) 
R R 

With Equation 4.13 and 4.18, the rate of change of the total energy of this system, E, 

can be expressed as 

E = JpV • Vdv + JTr[(VV) • o]dv + Jrdv - Jq • Vdv (4.19) 
R R R R 

In another respect, the rate of change of the total energy of this system, E, is 

the sum of the rate of change of internal energy and rate of change of kinetic energy. 

This relationship can be expressed as below 

E= fudv + - — fpV-Vdv 
R J 2 d t f 

= Judv+JpV-Vdv (4.20) 
R R 

where it is the rate of change of internal energy per unit volume. 

With Equation 4.19 and 4.20, the following relationship is established 
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Judv + JpV • Vdv = JpV • Vdv + JTr [ (w) • oJiv + Jrdv - Jq • Vdv (4.21) 
R R 

Since this relationship holds for any dv, the first law of thermodynamics can be 

represented as 

u = Tr[(w)-<y] + r - q V (4.22) 

By decomposing VV into its symmetric and anti-symmetric parts, we obtain the rate 

of deformation tensor D and the rate of rotation tensor W as follows 

D = I [ w + (VV)T] 

w-I 
2 

VV - (W)T (4.23) 

For most of the fatigue life of brittle or quasi brittle materials concerned in this work, 

the strains are small, so that, D = £, and Equation 4.22 becomes 

u = o:c + r -q -V (4.24) 

where ":" represents the tensor contraction operation. 

4.2.2.2. Second principle of thermodynamics 

The second principle states that the rate of entropy production of the system is 

always greater than the rate of heating divided by the absolute temperature. 

— fsdv> fAlv- f-5-nds (4.25) 
d t R J R J T

 5 R T 

r 
where s is the entropy, T is the absolute temperature, — is the rate of change of 

entropy by internal heat source, and — is the rate of change of entropy by heat flux. 
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With the divergence theorem, this equation changes to 

Jsdv > j ^ d v - J-5- • Vdv (4.26) 
R R ^ R *• 

Since dv is arbitrary, 

s > - - - - V (4.27) 

T T 

The difference between the left side and right side of the preceding equation can be 

defined as the internal entropy production rate as follows 

f) = s - - + ̂ - -V>0 (4.28) 

So that the second law can be stated as 

f| > 0 (4.29) 

If f) = 0, the process is said to be reversible. 

With a little further deduction, Equation 4.28 can be written as 

r 1 _ q-TV 
— + — q-V--=—r fi = s - - + — q - V - - ^ — > 0 (4.30) 

Including Equation 4.24 into Equation 4.30, the second principle becomes 

u 1 . q-TV 
—+—a:s ; f1 = s - ^ + - a : £ - - ^ - > 0 (4.31) 

This equation is also known as Clausius-Duhem Inequality. 

4.3. Continuum damage mechanics 

Continuum damage mechanics is a class of theories that is structured to 

describe the weakening of solids in the presence of multiple defects. It introduces one 
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or more scalar or tensor damage variables into the constitutive equations as a measure 

of the degradation of the material. Damage can be described in the form of 

microcracks for surface discontinuities, or micro-cavities for volume discontinuities. 

Continuum damage mechanics is primarily used to describe the evolution of 

the properties of materials between the virgin state and the initiation of macroscopic 

cracks where the evolution is in the microscopic stage. Between these two stages, the 

representative volume element can be treated as a continuous medium. The size of the 

crack that falls into the macroscopic scale is out of that of the representative volume 

element. Different materials have different sizes of the volume element. Usually, the 

size is 0.1 to 1mm for metals or polymers, 1cm for wood, and 10cm for concrete. 

From the initiation of a macroscopic crack to the complete failure, the best theory to 

describe the material behavior is fracture mechanics. 

For a brittle or quasi-brittle material, most of the fatigue life is between the 

virgin state and the macroscopic crack initiation, because the crack develops very 

quickly after the macroscopic crack initiates, and the part of the fatigue life 

corresponding to this part is very short. Therefore, continuum damage mechanics is a 

suitable theory to describe the fatigue behavior of the brittle or quasi-brittle material, 

such as composite materials and concrete. 

In the past several decades, continuum damage mechanics has been well 

developed and widely applied in modeling behaviors of materials (Krajcinovic, 1985; 

Ortiz and Popov, 1982; Ortiz, 1985; Simo and Ju, 1987 a and b; Yazdani and 

Schreyer, 1988; Yazdani and Karnawat, 1996; Hansen, 1999; Vojiadjis et al., 2009; 
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and Gude et al., 2010). Ortiz and Popov (1982) established a model in the framework 

of thermodynamics to study the consequences of the composite nature of concrete. 

Ortiz (1985) presented a novel idea of representing damage through the continuous 

degradation of elastic moduli. Yazdani and Schreyer (1988) presented a bi-surface 

plasticity and damage mechanics model for concrete in the framework of 

thermodynamics and on the foundation set up by Ortiz. Yazdani and Karnawat (1996) 

developed the model of Yazdani and Schreyer (1988) with a single flow surface 

unifying damage mechanics and plasticity. This set of theories has been well 

developed for quasi-brittle solids in general and concrete in particular under 

monotonic loadings. The extension of this set of theories into modeling the behaviors 

of quasi-brittle solids under fatigue loadings, which is the objective of this 

dissertation, is natural. For a better understanding of the models presented in the 

following chapters, the basic details of this set of theories are explained in the next 

subsections. 

4.3.1. General constitutive equations 

4.3.1.1. Thermodynamic potential 

The Gibbs free energy, G, is chosen to derive the state law of the materials. 

The relationship between internal energy and Gibbs free energy can be expressed as 

follows 

U = O:E + T S - G (4.32) 

Intruducing this equation into Equation 4.31, the Clausius-Duhem Inequality becomes 

41 



G - d : E - t s - ^ ^ > 0 (4.33) 

For stress space approach, the Gibbs free energy can be written as a function 

of temperature, T, stress, a, and damage, k. Thus, G is as follows: 

, dG- dG . dG, 
G = — x + — :a +— k 

5T da dk 

Including this equation into Equation 4.33, we get 

(4.34) 

5G 

5T 
- s T + 

8G 

da 

. dG, q-TV . 
:CT + k-- >0 

dk T 

(4.35) 

Since f and a are arbitrary: 

dG 
= s 

5T 

dG 

da 

dk T 

(4.36) 

(4.37) 

(4.38) 

Equation 4.38 is also known as the dissipation inequality. 

Let us define C(k) as the compliance tensor of the material, P(k) as the tensor 

of thermal expansion coefficient, and £(k) as specific heat under constant volume, so 

that 

dG 

dada 

dG 

dadT 

= C(k) 

= P(k) 

(4.39) 

(4.40) 
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T ^ f - S M (4.4„ 

Then, with some deduction, the general form of Gibbs free energy can be expressed 

as 

G(o,k,T) = -a:C:CT + o:p(kXT-T0)+o:£ i(k)-A'(T,k) (4.42) 

where To is the reference temperature, and A'(T,k) is a scalar function. 

For low frequency fatigue loading, it can be assumed that thermal effects could be 

ignored, so that t and TV equal zero. Thus, Equation 4.38 becomes 

— k > 0 (4.43) 
3k 

and the form of the Gibbs free energy is then 

G(c,k,T)= -a : C : CT + O : e !(k)-A'(T,k) (4.44) 

4.3.1.2. Stress strain relation 

With Equation 4.37 and 4.39, the stress strain relation corresponding to the 

Equation 4.44 is given as follows: 

£ = — = C(k):o + £'(k) (4.45) 

da 

Ortiz (1985) proposed a novel idea that the values of the elastic compliances 

themselves be taken as a characterization of the state of damage of the material and 

assumed that the elastic compliances have an addictive structure: 
C(k) = C°+C c ( k ) (4.46) 
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where Co is the initial elasticity tensor of the material and Cc is the added flexibility 

caused by active microcracks. This formulation allows the induced elastic anisotropy. 

With Equation 4.46, the total strain of Equation 4.45 is identified as follows: 

E = C°:ff + Cc(k):a + £i(k) = £°+£D(k) + £i(k) (4.47) 

where 8° = C :<r is the elastic strain tensor for uncracked material; £D = Cc:o is the 

additional recoverable strain caused by elastic damage. 

4.3.1.3. Damage flow rule and damage criteria 

Based on observations on the opening and closing of microcracks, Ortiz (1985) 

suggested decomposing the added flexibility 

Cc =CJ+CJ, (4.48) 

where CJis due to the response of microcracks in Mode I on Figure 4.1 (a); CJ, is 

due to the response of microcracks in Mode II on Figure 4.1 (b). 

a 

(a) (b) 

Figure 4.1. Crack opening in mode I and II. 
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Ortiz (1985) also suggested a rate independent damage rule: 

C J = k R , , CJ,=kRM (4.49) 

where Ri and Rn are response tensors of the material, which determine the direction 

in which damage takes place; k is a scalar parameter, which may be regarded as a 

measure of accumulated damage. Usually, the damage is irreversible, which 

necessitates the following: 

k > 0 (4.50) 

Similar to Equation 4.49, Yazdani and Karnawat (1996) suggested the 

following: 

£ ' = k M (4.51) 

For further deduction, it is assumed that the following is true: 

v2 - dA' 
t ( k r = 2 - — (4.52) 

dk 

where t(k) is termed the softening law. 

With the form of Gibbs Free energy, Equation 4.44, and Equation 4.49, 4.51, 

and 4.52, the dissipation inequality is as follows: 

<D(o,k) = - o + :R, : < T + + - ( T :R„ :<T +<r : M - - t ( k ) 2 >0 (4.53) 

where <t>(c, k) is termed the damage function; <r+ and o- are termed the positive and 

negative cones of the stress tensor, a, respectively. For further damage to occur, this 

equation must be satisfied. Otherwise, the material must behave elastically. 
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Therefore, this equation can be regarded as a damage criterion, which signals the 

onset of damage. Without viscosity, the following state of stress is unattainable: 

0(o,k) = - o + :R, : a + + - < T : R„ : <T +a : M - - t ( k ) 2 >0 (4.54) 

Therefore, the onset of damage is characterized by the following criteria: 

0(<r, k) = 0 

SO . n (4.55) 
— :o >0 

So 

These two equations are amenable to a revealing geometric interpretation. The locus 

of points in stress space that satisfy the first equation may be viewed as a damage 

surface enclosing an elastic domain in which the material behaves elastically. In 

another words, no new damage occurs. For damage to progress, two conditions must 

be satisfied. One condition is that the stress point must be on the surface; another 

condition is that the stress increment must point outside of the elastic domain. 

4.3.1.4. Response tensors 

The response tensors Ri and Rn are derived from the classical conjugacy 

arguments of kinetic theory. From the dissipation inequality Equation 4.53, the 

thermodynamic fluxes conjugate to the variables CJ and CJ, are as follows: 

J, = a+ ® c+ , J„ = <T ® o", (4.56) 

respectively. Therefore, it is appropriate to postulate that the response tensors depend 

on the state of stress through the conjugate thermodynamic fluxes. The simplest 

forms of the response tensors are given as follows: 
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R JL.^®*!, R J , _ . C ! L ® « L (4.57, 
TrJ, o : o TrJ„ o : a 

where Tr denotes the trace operation; c is a coefficient that governs the extent of 

Mode II damage. 

4.3.1.5. Softening law 

With Equation 4.57, and ignoring the effect of the inelastic strain, the damage 

function reads as follows: 

0(c , k) = - o + : o+ +-c<T : <T - - t ( k ) 2 (4.58) 

For a uniaxial tension loading condition, the damage criterion reduces to a = t(k). 

Therefore, the softening law t(k) is considered the critical stress for the extent of 

damage. 

For the damage model defined by Equation 4.58, the relationship between the 

softening law, t(k), and the cumulative damage parameter, k, can be determined 

solely on the basis of the uniaxial tensile test as follows: 

a, = - ^ \ (4.59) 
( l /E0)+k 

where Eo is the initial Young's modulus. 

For computational purpose, Ortiz (1985) recommended a convenient 

expression for the stress-strain relation of mortar, which was proposed by Smith and 

Young (1955). 
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5. ANISOTROPIC DAMAGE MODEL FOR WOVEN 

FABRIC COMPOSITES 

5.1. Introduction 

Inelastic deformation of woven fabric composites is attributed to the 

formation of a multitude of cracks that develop in the material in the fatigue 

environment. Cracks destroy material bonds and render composites more compliant. 

Under tension-tension fatigue, cracks in the plane whose normal is perpendicular to 

the loading direction tend to close and stop propagating as shown on Figure 5.1; and 

cracks in the plane whose normal is not perpendicular to the loading direction tend to 

develop as shown on Figure 5.2. These phenomena show that the crack development 

in woven fabric composites is a highly directional behavior. The capability of a model 

to describe the damage anisotropy is very important. 

a 

normal direction 

i 

Figure 5.1. Schematic representation of 
crack closing under tension-tension loading. 
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1 1 ^ u 

w 1 

Figure 5.2. Schematic representation of 
crack opening under tension-tension 
loading. 

As discussed in Chapter 4, continuum damage mechanics is a very suitable 

theory to describe the fatigue process of composite materials which are saturated with 

cracks. Some researchers have described this process with the continuum damage 

mechanics. Hansen (1999) investigated damage nucleation and growth in glass-

reinforced woven composites in both quasi-static and fatigue environments. He 

proposed a continuum damage mechanics model for the fatigue damage relation and 

growth in tensile stress load paths. His model considered the material compliance 

tensor as an internal variable evolving with damage. The approach of reflecting 

damage through the fourth-order compliance tensor has gained wide acceptance and 

popularity and has also been applied to other materials such as ceramics (Ortiz and 

Giannakopoulos, 1990 a; Ortiz and Giannakopoulos, 1990 b) and concrete (Yazdani, 

1993; Karnawat and Yazdani, 2001). However, the proposed model was isotropic and 

therefore could not capture the induced anisotropy effects of cracking. The predicted 

results did not capture the characteristics of the fatigue process very well. Also 
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lacking was the model's capability to capture permanent deformation during fatigue 

damage. 

This chapter aims at overcoming the perceived shortcomings of Hansen's 

model by proposing a mathematical framework of damage mechanics whereby 

anisotropic behavior is modeled. Damage is reflected through the material 

compliance tensor involving a damage parameter whose increment is obtained from 

the second invariant of the stress tensor. The formulation is also capable of predicting 

permanent deformation that may arise due to imperfect fracturing processes. 

5.2. Formulation 

With the assumption of small deformations which is valid for brittle materials 

and for low frequency fatigue where thermal effects could be ignored, we consider 

the state of composite material to be given as that shown in Equation 4.44. For 

convenience, Equation 4.44 is listed as below. 

G(<r,k,T) = - o : C : o + a : £ !(k)- A'(T,k) (4.44) 

By differentiating Equation 4.44 to the stress tensor, o, we obtain the strain 

tensor as 

e = — = C(k):<T + £'(k) (5.1) 

da 

where the strain and average stress tensors are given by 8, and a, respectively, G 

denotes the Gibbs free energy, C designates the material compliance tensor, and k is 

the cumulative fatigue damage parameter. The tensor contraction operation is denoted 
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by ":", and the inelastic component of deformation due to damage processes is given 

by s1. Implied in the constitutive form of Equation 5.1 is that damage is recorded in 

the fourth-order material compliance tensor and the second-order inelastic strain 

tensor. 

To account for induced anisotropy, we adopt an additive decomposition of the 

compliance tensor as 

C(k) = C°+Cc(k) (5.2) 

where Cc(k) denotes the added flexibility due to damage and C° corresponds to the 

initial undamaged state of the material. 

With this decomposition, Equation 5.1 becomes 

£ = — = C° :o + Cc(k):o + £,(k) = E°+8D(k) + £1(k) (5.3) 

da 

where C° : a = £° is the initial elastic strain corresponding to the undamaged 

condition; Cc(k) :<r = £D(k) is the added elastic strain caused by the damage. The 

relation in Equation 5.3 can be shown on Figure 5.3. Eo is the initial Young's 

modulus; Ei is the final Young's modulus after a fatigue loading. The accumulated 

damage renders the material to be more compliant so that Eo > Ei and causes inelastic 

strain. Two extreme conditions are considered for better understanding on the 

physical meaning of Equation 5.3. For a perfect brittle behavior where no inelastic 

strain exists, the material returns to the origin after unloading as shown on Figure 5.4. 

The damage in this process is elastic damage that does not cause any inelastic strain. 

On the other hand, for an idea inelastic behavior where no damage records in the 
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compliance, the final Young's modulus equals the initial Young's modulus as shown 

on Figure 5.5. 

< X =»<= > 

Figure 5.3. Schematic illustration of strains in fatigue 
process of general condition. 

Figure 5.4. Schematic illustration of strains in fatigue 
process of perfect brittle condition. 
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Figure 5.5. Schematic illustration of strains in fatigue 
process of ideal inelastic condition. 

Therefore, the rate form of the total strain tensor is given below: 

E=C°:o + C°:d + Cc(k):o + Cc(k):d + £'(k) (5.4) 

We may notice that C° equals zero, because the initial compliance tensor does not 

change with the increase of fatigue loading cycles. Then, Equation 5.4 becomes 

e = C(k):a + Cc(k):<F + e'(k) = se(k) + sd(k) + 8,(k) (5.5) 

where C(k): a = £e(k) is the rate form of the elastic strain tensor in one cycle without 

any further micro-cracking; Cc(k): o = £d(k) is the rate form of the strain tensor due 

to elastic damage. Components of rate form of total strain tensor of Equation 5.5 are 

shown on Figure 5.6 for better understanding. Ei is the Young's modulus after m 

cycles of fatigue loading; E2 is the Young's modulus after n+1 cycles of fatigue 

loading; Eo is the initial Young's modulus. 
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n=nj+l 

«—><H> 

Figure 5.6. Schematic illustration of components of rate 
of total strain. 

The rates of the added flexibility and the inelastic strain tensors are regarded 

as fluxes in the thermodynamic state sense and are given below with respect to 

response tensors R and M: 

C c=kR and j ' = kM (5.6) 

To progress further specific forms of the response tensors R and M must be 

specified. One should note that if R is chosen to be an isotropic tensor, such as the 

formulation implied in Hansen's work (1999), the model will be isotropic. To predict 

anisotropic behavior due to damage, R should be formulated such that anisotropy is 

achieved. To do this, we assume that damage takes place in directions of applied 

stresses and in tension regimes only. To expand this to other situations is feasible and 
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has been reported elsewhere (Ortiz and Giannakopoulos, 1990 a; Ortiz and 

Giannakopoulos, 1990 b; Yazdani, 1993; Karnawat and Yazdani, 2001). An elegant 

mathematical way is to decompose the stress tensor into its positive and negative 

cones. The mathematical formulation to achieve this has been published in (Ortiz and 

Giannakopoulos, 1990). Let the positive cone of the stress tensor be given as <r+ 

whereby all the negative eigen-stresses are removed from the stress tensor o. 

Similarly, let <r represent the negative cone of the stress tensor. Note that a+ + a = a. 

As it was stated, damage is assumed to occur in the cleavage mode of cracking which 

is shown schematically on Figure 5.2. To generalize this and with a further 

assumption of no coupling between cleavage type cracks in orthogonal directions, the 

following response tensors are postulated for R and M: 

where the symbol " ® " signifies the tensor product operation. 

The next step is to establish an evolutionary expression for damage. One 

particular form proposed by Hansen (1999) is given below which represents the 

damage rate in terms of second invariant of strain tensor. 

k = A 
£„ 

vEoy 
(5.9) 
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with 80 being the reference strain level, and se being an effective strain measure 

given as se = Vs '•£ • Although, this form is simple to use, the results predicted were 

not quite satisfactory as shown on Figure 5.7. In this chapter, an alternate and new 

damage evolution law is proposed based on the second invariant of the stress tensor. 

Let 

-rfe . + \ 

NBdN k < k lim (5.10) 
'o J 

where A, B, and m are material constants, N is the cyclic number, and ao is a 

reference stress. 

By differentiating Equation 5.10 with respect to N, the increment of damage 

in one cycle is given as 

k = A 
V a o J 

N1 (5.11) 

Including Equation (5.7), (5.8) and (5.11) into Eq. (5.6) and then including Equation 

(5.6) into Equation (5.5) yields: 

z = C:c + A a : o N' 
v °o j 

(o+<g)<T+) 
:o + aA o : o NE 

V a o J (-'••°r 
(5.12) 

For computational purposes, the rate of stress tensor is needed and can be described 

as: 

c = E: e-A Vi.T^fcw}. _ /°+:°+' 
V °o J 

N V^T~a A NE 

V °o j (-+:«T 
(5.13) 
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5.3. Numerical Simulation 

To demonstrate the advantages of the model, the model prediction is 

compared with Hansen's work (1999). Hansen performed static and fatigue tests in a 

servo hydraulic Instron 1333 with hydraulic grips and a 250 KN load cell. The testing 

laminates are made up of plain woven glass/epoxy prepreg fabrics with the lay-up 

sequence [(+45°#-450)/(90°#00)]. The symbol "#" indicates the bi-directional 

reinforcement of each prepreg. The tensile fatigue testing was in load control mode 

with a frequency of 5 Hz. He used a thermal imaging system to estimate the surface 

temperature of the specimen during tests. The records showed that for the first two 

phases of the fatigue process as described in Section 1.3, the thermal effects under the 

testing frequency can be ignored. 

The comparison of model prediction and experimental data of Hansen's work 

of longitudinal stiffness reduction is shown on Figure 5.7. For the numerical 

simulation the following constants were used. A=0.9 x 10"6, B=-0.7, m=1.4, 

o+ =[l55 0 0] MPa, and o0=330 MPa. Parameters A, B, a, and m are estimated 

by comparing predicted results and experimental results over a range of applied 

stresses. As shown on Figure 5.7, the initial damage due to knee effect is captured by 

the proposed theory quite well. The model also shows its usefulness in the prediction 

of Phases II of fatigue damage processes. 

The predicted S-N curve of the barely visible impact damaged (BVID) 

composite is compared with the experimental S-N curve on Figure 5.8. The effect of 

material parameter, m, on the S-N curve is also shown on the same figure. It is seen 
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that the general trends of the S-N curve are replicated satisfactorily by the proposed 

model. 
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Figure. 5.7. Comparison of longitudinal stiffness reduction prediction between 
models and experimental results from Hansen's work (1999). 

The stress-strain cyclical behavior for the composite material is further 

illustrated on Figures 5.9 for perfect brittle behavior and Figure 5.10 for general 

behavior. The first one corresponds to an idealized case whereby crack faces close 

perfectly upon unloading and is achieved in the model by letting M=0. In most 

heterogeneous materials, such as glass-fiber composites, permanent deformations do 

take place. The versatility of the model is shown on Figure 5.10 where the process of 

elastic degradation and permanent deformation is illustrated. 
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Figure 5.8. Comparison between experimental S-N curve with predicted 
S-N curves for different values of m. 
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Figure 5.9. Model prediction of stress strain relation for perfect brittle 
fatigue process with stiffness deduction but no inelastic strain 
accumulation. 
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Figure 5.10. Model prediction of stress strain relation for general behavior of 
fatigue process with stiffness deduction and inelastic strain accumulation. 

5.4. Conclusion 

An anisotropic inelastic damage model for woven fabric composites during a 

low frequency tension-tension fatigue is established. Since the fatigue damage in 

most fatigue life is mainly due to the development of a multitude of matrix cracking 

and interfacial debonding, a class of damage mechanics theories is used for modeling 

fatigue processes. Two response tensors are proposed to capture the strong 

directionality of the multitude of matrix cracking and interfacial debonding in general 

cases. An expression for the evolution of fatigue damage is proposed based on the 

second invariant of the stress tensor. The comparison with experimental data is shown 
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in the chapter to demonstrate the model's capability in capturing the essential features 

of composite material inelasticity subjected to fatigue loading environment. 
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6. ANISOTROPIC FATIGUE DAMAGE MODELING OF 

WOVEN FABRIC COMPOSITE WITH BOUNDING 

SURFACE APPROACH 

6.1. Introduction 

Fatigue life is an important factor in the description of the fatigue process; 

many in the industry are more concerned with fatigue life than with other factors of 

the process. As discussed in Chapter 2, many models have been proposed to calculate 

the fatigue life of materials; these models, such as the famous S-N curve, are widely 

used in industry. Although the model in Chapter 5 captures many aspects of the 

fatigue process of composite materials, it does not provide the failure criterion, which 

determines the fatigue life of the material. 

A large number of scientific papers have been published on the modeling, 

simulation, and/or experimental investigation of quasi-brittle materials under fatigue 

loading. The majority of the published research has addressed various topics 

associated with the uniaxial stress path loading. By comparison, the amount of 

research on the multiaxial modeling has been small. The experimental testing under a 

multiaxial stress state is rather difficult to conduct; it requires special instrumentation 

and apparatus. This lack of research means that only a small amount of experimental 

data are available for developing and validating constitutive and failure models. 

However, the increasing use of woven fabric composites in structures subjected to 
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complex loadings has required engineers to enhance the modeling and predictive 

tools for a more reliable design. Therefore, it is plausible to establish a model that is 

able to predict the fatigue processes under multiaxial fatigue loading paths with the 

experimental testing under uniaxial fatigue loading paths. 

In this chapter, a unified approach to the damage mechanics modeling of 

woven composites is proposed that utilizes the bounding surface theory, which is 

explained in the next section. With this theory, a failure criterion for general biaxial 

or triaxial loading paths can be established. Many complex fatigue loading paths can 

be modeled and addressed conveniently within the framework proposed. In addition, 

the effects of the complex multiaxial fatigue loadings can be predicted easily with this 

theory. 

In most cases, the strength requirements of the woven fabric composites differ 

in different directions. Using same fibers in different directions is a waste of 

materials. This waste can be eliminated by tailoring different fibers or different 

densities of the same fibers in different directions, but this modification causes 

strength anisotropy of the material. Therefore, a successful model should be able to 

capture the strength anisotropy of the woven fabric materials. However, the model 

developed in Chapter 5 is unable to describe the effect of the strength anisotropy. In 

the approach developed in this chapter, a direction function is used to capture the 

strength anisotropic property of the material. The static damage occurring in the first 

loading cycle is predicted with a shape function. Comparisons between results from 
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literature and results of the proposed model show the strong capability of the model to 

predict the behavior of composite materials in fatigue loading environments. 

6.2. Bounding surface theory 

Bounding surface theory is the general designation of a class of theories used 

to describe the change of material properties under some loading paths. This theory 

has several advantages. One advantage is that it can provide a failure criterion for 

materials under general loading paths, such as biaxial or triaxial (Seow and 

Swaddiwudhipong, 2005). In addition, the material behaviors under many complex 

biaxial or triaxial loading paths can be predicted by a simple experimental test, such 

as a uniaxial loading test. Also, many researchers in the mechanics community are 

familiar with the non-linear modeling of materials (plasticity and/or damage 

mechanics), and the extension of this theory to fatigue modeling would be regarded as 

natural. These inherent advantages make the bounding surface theory widely accepted 

and applied in material modeling. 

These theories have some common basic features (Dafalias, 1986; Pandolfi 

and Taliercio, 1998); the theories usually assume that a "bounding surface" exists that 

encloses or contacts the current stress point at any time of the loading process. The 

surface is usually defined in the stress space. It can be fixed or evolve according to 

the loading history and model constitution. The evolution of the material properties is 

related to the position of the surface. The loading path can be quasi-static (Yazdani 

and Schreyer, 1990) or cyclic (Smith and Pascoe, 1989; Al-Gadhib and etc., 2000). 

64 



However, these theories differ in terms of the surface equation, flowing rule of the 

surface, constitutive law, etc. 

Fardis and etc. (1983) propsed a model in the stress space with the horizontal 

axis along the direction of the hydrostatic pressure and the vertical axis on the 

deviatoric plane. They proposed an outer bounding surface which is fixed in the stress 

space and represents the locus of stress points corresponding to ultimate strength 

under monotonic loadings. They also proposed a bounding surface which will shrink 

with the increase of the maximum principal strain, 8max , after emax exceeds the failure 

strain, 8f, which corresponds to the ultimate strength in monotonic, nearly 

proportional loading. The value of smax is determined through a proposed stress-strain 

relation with which the effects of hydrostatic pressure and deviatoric stresses are 

represented separately. This model gives the failure criteria, but the material strength 

and damage development have to be isotropic, and lots of parameters need to be 

determined. 

Fardis and Chen (1986) developed the model described above. Instead of 

using two bounding surfaces, they gave a unified bounding surface. They also 

proposed an expression of the failure strain, Sf, as a function of the peak strain of the 

monotonic uniaxial stress-strain curve. However, the material strength and damage 

development are still isotropic, and lots of parameters need to be determined. 

Yang and etc. (1985) proposed a model in a space similar to the previous two 

models. They proposed one bounding surface and two loading surfaces to determine 

the occurrences of the deviatoric plastic strain and the volumetric plastic strain, and 
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gave the stress strain relation based on the evolutions of the two plastic strains. 

However, this model also has the shortcomings of the previous two models. 

Suaris and etc. (1990) represented the damage by three components along the 

principal stress directions and proposed a damage mechanical model in the space of 

thermodynamic force conjugates, strain energy release rate, of the damage 

components. Then they proposed three surfaces, bounding surface, loading surface, 

and limit fracture surface, and the damage-growth rate to describe the damage 

evolution. The damage-growth rate is determined from the loading surface by an 

associated flow rule. Finally, the authors directly proposed one compliance matrix for 

tensile and one for compression, respectively, based on the experimental 

observations. With the model, the damage anisotropy is predicted. However, strength 

anisotropy is not involved, and the positions of the bounding surface and limit 

fracture surface need to be determined empirically. 

Al-Gadhib and etc. (2000) developed the model of Suaris and etc. (1990) and 

extended into fatigue loadings. They proposed a new form of the size of the limit 

fracture surface. Different from the model of Suaris and etc. (1990), they proposed a 

form of the damage effect tensor which relates the effective Cauchy stress tensor to 

the usual Cauchy stress tensor. With the damage effect tensor, they obtained the 

effective compliance matrix. However, other shortcomings of previous model still 

exist. 

These models are able to predict the stress strain relation of isotropic materials 

in monotonic and in several cycles of cyclic loadings by using lots of parameters. 
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However, the extension of these models in fatigue loadings is restrained, although 

they can be developed into fatigue loadings as mentioned by Pandolfi and Taliercio 

(1998) and fulfilled by Al-Gadhib and etc. (2000). This is because these models use 

lots of parameters to describe the stress strain relation in one or several loading 

cycles, which is not necessary in fatigue loadings where overall behaviors of lots of 

loading cycles are more important and increases the difficulties to calibrate the 

models with experimental data. 

In this chapter a new bounding surface theory with limited parameters is 

developed for fatigue loadings. The concept of this bounding surface theory is 

presented below. If one considers a material element, shown on Figure 6.1, where 

numbers " 1 " and "2" indicate loading directions, and the biaxial strength envelop 

(i.e., the limit surface representation in 2-D) of the material is represented by "LS," 

corresponding to the quasi-static loadings of the material point (Figure 6.2). The LS 

surface represents the limit (ultimate) strength of the material under a variety of 

loading paths in a non-fatigue environment. From another perspective, the LS also 

represents a set of load combinations under which the material will fail statically. 

As understood in the fatigue loading, as the number of loading cycles 

increases, the ultimate strength of the material decreases because of the presence and 

activation of inherent and new flaws and damage in the material. In a two 

dimensional representation scheme, as is used here, it is then plausible to consider 

that the LS would collapse inwardly as represented by the residual strength (RS) 

family of curved surfaces (the terminology used in fatigue literature). In the same 
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manner as the LS, the RS also represents a set of load combinations under which the 

material will fail for the same number of cyclic loadings. As the number of cycles 

increases, the LS surface shrinks further, as shown for n2 > ni. At some point, the 

failure point is reached and the material fails because of the applied stress level at 

cycle "N." In fatigue literature, "N" is also referred to as the life of the material. 

Therefore, the fatigue life can be determined through this theory. 

Figure 6.1. Material element with loading 
directions 1 and 2. 
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OLD 

Figure 6.2. Schematic representation of 
boundary surfaces in two-dimensions. 

For a clearer understanding of the process, the bounding surface theory may 

be explained as a simple loading path, such as a uniaxial loading path. For a given 

loading stress, Co, when the cyclic loading number, n, equals " 1 , " the limit strength is 

designated as ft). With the increase of the cyclic number, the residual strength 

decreases. For example, as shown on Figure 6.3, when n= ni, the residual strength 

equals G\. When the cyclic loading number reaches the fatigue life, which is 

represented by "n=N," the residual strength equals the applied tensile stress ao, and 

material fails. 

The tasks at hand are to develop a realistic and reasonable LS that is based on 

the principles of mechanics and to propose an evolutionary law that would provide 

the position of intermediate RS surfaces loading to the failure surface (FS) when n=N. 

The limit surface and evolutionary law are different for different materials. In the next 
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section, the limit surface and evolutionary law will be established for the woven 

fabric composite material under fatigue loading. 

n=l n=ni n=N n 

Loading cycles 

Figure 6.3. Illustration of the development of residual strength surface in 
uniaxial fatigue loading condition. 

6.3. Formulation 

In this chapter it is still assumed that the fatigue loading is of low frequency 

so that thermal effects could be ignored with the further assumption of small 

deformation. The form of Gibbs Free Energy (GFE) is given as Equation 4.44 and 

shown as follows. 

G = - o : C : o + o :£ i -A ' (k) (6.1) 
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where C represents the compliance tensor, E1 designates the inelastic strain tensor, o is 

the applied stress tensor, A'(k) is a scalar function, and k is the cumulative fatigue 

damage parameter. The symbol ":" denotes the tensor contraction operation. 

Following the standard thermodynamics arguments and assuming that the 

unloading is an elastic process, the dissipation inequality can be stated in terms of the 

GFE as follows: 

f k > 0 (6.2) 
3k 

where, k is the rate of damage. Introducing Eq. (6.1) into Eq. (6.2), and assuming 

that damage is irreversible (i.e., k>o), the dissipation inequality takes the following 

form: 

1 8C dj dAl ^ n .... 
—<s: — : O + <T: > 0 (6.3) 

2 dk dk dk 

To progress further, one can decompose the current compliance tensor into an 

initial undamaged component plus added flexibility caused by damage during fatigue 

loadings as discussed in Chapter 5. 

C(k) = C°+Cc(k) (6.4) 

Where, C° is the initial undamaged fourth-order compliance tensor and Cc (k) denotes 

the added flexibility tensor due to damage. Also, the changes in the fourth-order 

compliance tensor and the inelastic strain tensor are regarded as fluxes in the 

thermodynamic state sense and are expressed below with respect to a set of response 

tensors R and M as discussed in Chapter 5: 

C=kR and e1 =kM (6.5) 

71 



The response tensors determine the directions of the fatigue damage and the inelastic 

deformation processes. Including Equation (6.4) and (6.5) into Equation (6.3) yields 

the following form of the dissipation inequality: 

1 r)A' 
-<T:R:<T + ( T : M - — > 0 (6.6) 

2 dk 

The onset of damage is determined by defining a potential function \\i (a, k) that is 

derived from Equation (6.6) so that 
\|/(a,k) = - o : R : <r + o : M - - t 2 ( o , k ) = 0 (6.7) 

where t(a, k) is interpreted as the damage function given below as 

r) A1 

t 2 ( o , k ) = 2 [ ^ - + g2(o,k)] (6.8) 
ok 

for some scalar-valued function g2 (o, k). We note that as long the function "t" could 

be obtained experimentally, the identification of the components shown on the right 

hand side of the Equation (6.8) is not necessary. 

To progress further, specific forms of the response tensors R and M must be 

provided. Guided by the experimental data from literature (Smith and Pascoe 1989), 

the following response tensors are postulated for R and M: 

R = ^®£ + a(l-i®i) (6.9) 

M = pa (6.10) 
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where the symbol " ® " signifies the tensor product operation, I represents the fourth-

order identity tensor, i represents the second-order identity tensor, and a and P are 

material parameters. 

The response tensor R is composed of two parts as follows. 

R , = ^ (6.11) 

R„=a(l-i®i) (6.12) 

The first part, Ri, indicates that damage occurs in the loading directions. This is in 

concurrence with observed experimental data (Smith and Pascoe 1989). However 

with Ri alone, the limit surface that is predicted by the model cannot match the 

experimental data as shown in Figure 6.4. Also, with Ri alone any change in the 

Poisson's ratio could not be predicted by the proposed theory. Thus, the second part, 

RH, is included. With an experimentally determined value of parameter a, the limit 

surface prediction is shown as the solid curve in Figure 6.4. The role of Rn is thus 

two fold. One, the form enables the model to predict enhancement in strength under 

proportional loading, and two enables the model to address changes in the apparent 

poison's ratio. 

The damage function, t (o, k), is further represented as the product of two 

functions L(o) and q(k) such that 

t(<T,k) = L(o)q(k) (6.13) 

where L(o) and q(k) are interpreted as the strength and the shape functions of the 

damage function, t, with a condition that qmax(k) = 1, that is the maximum value of the 
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function q(k) and is set to be one. Considering a class of woven composites (0-90), 

we identify a strength tensor, S, as, 

S = Ftlq1®q1+Ft2q2®q2 (6.14) 

where Fti and Ft2 are scalar parameters, and qi and q2 are Eigen vectors of fiber 

directions, respectively. It will be shown below that Fti and Fa are related to the 

material strengths fti and ft2 in direction " 1 " and "2", respectively. With these 

backgrounds in place, a particular form for the strength function L(o) of Equation 

(6.13) is proposed as 

L(«) = 
o:S 

Tr(o) 
(6.15) 
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Figure 6.4. Effect of the two parts of response tensor R. 
Experimental data are of the biaxial ultimate strengths of 
specimen of Smith and Pascoe's work (1989). 
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By substituting Equations (6.9), (6.10), (6.13), and (6.15) into Equation (6.7), the 

potential function can be written as 

y(«, k) = I (1 + a + 2P)<r: o - i a[Tr(<r)]2 - 1 [ ^ q(k)]2 =0 (6.16) 
2 2 2 Tr(o) 

To obtain the forms of scalar parameters Fti and Ft2, two uniaxial loading paths in 

fiber direction " 1 " and "2" at the limit state are considered, respectively. In direction 

" 1 " Equation (6.16) is simplified to be as 

I ( l + 2p )a1
2- iF t l

2q2(k) = 0 (6.17) 

Since at the limit state the function q(k)=l, and ai=fti, where fti is the tensile 

strength in direction " 1 , " it follows that 

F t l
2=f„2(l + 2P) (6.18) 

Similarly, in direction "2" Equation (6.16) is simplified to be as 

i ( l + 2P)o2
2-iF t2

2q2(k) = 0 (6.19) 

and since at the limit state the function q(k)=l, and a2=ft2, where fa is the tensile 

strength in direction "2," we get the following relation that 

Ft2
2=ft2

2(l + 2P) (6.20) 

It is observed that if fti and fa are the same, the model will predict strength 

isotropy; with fti and fa being unequal, the model will predict strength anisotropy as 

one expects in most composites. 

An example is provided here to illustrate the capability of the model to predict 

strength isotropy and anisotropy. The predicted limit surfaces of two materials are 
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shown in Figure 6.5. The dashed curve represents a material with strength anisotropic 

with strength f„ = 80 MPa in direction " 1 " and ft2 = 50 MPa in direction "2." The 

solid curve represent a material with a strength isotropy with strength fti = ft2 = 80 

MPa in both directions. 
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Figure 6.5. Schematic illustration of model predicted 
limit surface for strength isotropic and anisotropic 
materials. 

As the number of loading cycles starts to increase, the strength of the material is 

affected and reduced. The limit surface representing the foci of all strength points 

associated with n=l is therefore affected and should be modeled to soften to failure 

surface. To achieve this, the strength function L(o) should be modified to predict 
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lower limit strength of the material with increasing number of cycles. Therefore, we 

propose a new strength function, L(o,n) as 

L(0)n) = ^ j A F ( n ) (6.21) 
Tr(o) 

where F(n) acts as a the softening function. 

Incorporating the damage softening function back into the general formulation 

yields 

V(o, k) = I (1 + a + 2p>: o - 1 a[Tr(<r)]2 - ± [ ^ F(n)q(k)]2 = 0 (6.22) 
2 2 2 Tr(a) 

6.3.1 Interpretation and identification of F(n) 

To interpret the softening function F(n) we consider a uniaxial fatigue loading 

path in the fiber direction " 1 " with qmax
=l as follows. 

vj/(a,k) = I ( l + a + 2P)a2- ia(a,)2-^[F t lF(n)]2 =0 (6.23) 

With the previously obtained result that Ftl = ftl (1 + 20), we obtains the relation 

for F(n) as 

F(n) = - ^ (6.24) 

The relation (6.24) represents the ratio of the residual strength over the ultimate 

strength. This is also referred to the classical S-N curve in fatigue literature 

terminologies. To determine a proper form for F(n), we therefore refer to the 

experimental S-N curve for uniaxial tension in the literature. The two most 

fundamental classical S-N curves are the power function and logarithm function as 
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discussed in Section 2.2.1. Based on the comparison in Appendix 4 between power 

function and logarithm function with experimental work of Smith & Pascoe (1989), 

the power function is used as follows. 

F(n) = nA (6.25) 

where n is the number of cyclic loading, and A is a material parameter. 

For the experimental work of Smith and Pascoe (1989) that is used here, the 

model predictions are shown in Figure 6.6, 6.7, and 6.8 for various stress ratios. 

model prediction A=-0.1 

experimental data 

1 E+00 1 E+01 1 E+02 1 E+03 1 E+04 1 E+05 1 E+06 

cyclic number (n) 

Figure 6.6. Comparison between softening function and experimental 
data (Smith & Pascoe, 1989) with stress ratio 1:0. 
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To obtain the constant material parameter "A", we utilize Equations (6.18) 

and (6.25) to get 

A = ln(-i)/ln(n) (6.26) 

Finally, the rate of the damage parameter, k, must be obtained from the 

constitutive relations used and the strength degradation forms proposed due to fatigue 

cycles. For the simple constitutive relation of the form shown as e=C(k):a+£', the rate 

of damage parameter, dk/dn, for the uniaxial path can be shown to be as 

dk 1 
dn E0(l + p) 

(-A)(n-A-) (6.27) 

where EQ is the initial Young's modulus in the absence of any damage. 

1 2 

model predict ion A=-0 1 

* exper imental data 

1 E+00 1 E+01 1 E+02 1 E+03 1 E+04 

cyclic number (n) 

1 E+05 1 E+06 

Figure 6.7. Comparison between softening function and experimental data 
(Smith & Pascoe, 1989) with stress ratio 1:0.5. 
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model prediction A=-0.1 

experimental data 
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Figure 6.8. Comparison between softening function and experimental 
data (Smith & Pascoe, 1989) with stress ratio 1:1. 

6.4. One-dimensional illustration 

This section illustrates the procedures for the model through a uniaxial cyclic 

loading process. The cyclic load with the maximum loading stress, o"o, is added in 

direction " 1 , " as shown on Figure 6.1. In the two-dimension condition, the load is 

expressed in the matrix form as follows: 

° = k o] ( 628) 

The response tensors, R and M, of Equations 6.9 and 6.10 are expressed in the 

following matrix forms: 

R 
1 a 
a 0 

(6.29) 
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M J P ° 0 1 (6.30) 

[ 0 J 

The strength tensor, S, of Equation 6.14 is also shown in the matrix form as follows: 

S = [f„ViT2p f^V^I (6.31) 

Therefore, the strength function, L (o, n), of Equation 6.21 is as follows: 
L(«,n)=ftlVl + 2pF(n) (6.32) 

And the damage surface in a fatigue environment, is as follows: 

V(o,k) = i ( l + 2P)a1
2-i(f t ,ViT2pnA)2=0 (6.33) 

Then the following relationship is obtained for a uniaxial loading condition: 

a, = ft,n
A (6.34) 

When the residual strength <3\ equals fti, the material fails in the first loading 

cycle, which means that the fatigue life of the material is " 1 . " When the residual 

strength ai equals Go, the fatigue life is "N." With Equations 6.5 and 6.27, the added 

flexibility tensor, Cc(k), and inelastic strain tensor, E1 are obtained. 

6.5. Numerical Simulation 

In this section, the predictions of the proposed model are compared with the 

experimental data of Smith & Pascoe (1989). Smith & Pascoe used a biaxial 

hydraulic servo-controlled rig developed at the Cambridge University Engineering 

Department. Nine biaxial and three uniaxial stress states were tested. All tests were 

load control. Fatigue test frequencies were generally kept in the range 0.1-0.6 Hz to 

prevent excessive cyclic induced heating. The specimens were cruciform for biaxial 
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tests and parallel-sided for uniaxial tests. All specimens were from one batch of 

laminate which was laid up from reinforcement of glass fiber woven roving (0-90) 

and isophthalic polyester resin. Each laminate contains 13 laminas. Warp and weft 

fibers of different lamina are aligned in the same directions, respectively. 

Three material parameters, A, a, and P are used in the model. To determine 

the parameters, the following tests can be used. With one uniaxial fatigue test and 

knowing the uniaxial strength of the material, the residual strength, o\, and cyclic 

number, n, can be obtained. The constant A can then be determined by Equation 6.26. 

The parameter P is a kinematic parameter and is identified by measuring the inelastic 

deformation after unloading. With one biaxial quasi-static test and parameter p, a can 

be determined by Equation 6.16. 

Figure 6.9 shows the prediction results of biaxial limit surface and residual 

strength surface against the experimental work of Smith and Pascoe (1989), for the 

monotonic loading when n=l and the fatigue loading when n=105 cycles. The 

theoretical results for predictions are good considering the simplicity of the forms that 

were used. The following material parameters were used: a=0.46, P=0.1, A=-0.1. 

Figure 6.10 shows the comparison of the model prediction of the increment of 

compliance with the experimental data of Smith and Pascoe (1989). The experimental 

data are of an equal biaxial fatigue test. The values of parameters a, P, and A are the 

same as those of Figure 6.9. Lastly, the predicted stress-strain relations are shown on 

Figure 6.11, 6.12, and 6.13 where the strength and ductility reductions are 

demonstrated due to effect of fatigue loading. Figure 6.11 shows the predicted stress-
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strain relations of uniaxial monotonic and fatigue loadings; Figure 6.12 shows those 

of monotonic and fatigue loadings with stress ratio 1:0.5; Figure 6.13 shows those of 

monotonic and fatigue loadings with stress ratio 1:1. The experimental data are from 

the work of Smith and Pascoe (1989). 
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Figure 6.9. Comparison between experimental data (Smith & Pascoe, 1989) 
and theory predictions of limit surface and residual strength surface of 105 

loading cycles. 
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Figure 6.10. Comparison of increment of compliance of equal 
biaxial fatigue between experimental data (Smith & Pascoe, 1989) 
and model prediction. 
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Figure 6.11. Predictions of the stress strain relationship of uniaxial 
monotonic failure loading and uniaxial fatigue loadings. The 
experimental data are from the work of Smith & Pascoe (1989). 
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Figure 6.12. Predictions of the stress strain relationship of monotonic 
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experimental data are from the work of Smith & Pascoe (1989). 
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Figure 6.13. Predictions of the stress strain relationship of monotonic 
failure loading and fatigue loadings with stress ratio 1:1. The 
experimental data are from the work of Smith & Pascoe (1989). 
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The effects of parameters a, P and A on the model are shown in the following 

figures. The effects of parameters a and P on the limit surface, Equation 6.16, are 

shown in Figures 6.14 and 6.15. The effects of parameter A on the softening function, 

Equation 6.25, are shown in Figures 6.16, 6.17, and 6.18 for stress ratios of 1:0, 1:1, 

and 1:0.5, respectively. Finally, the effects of parameters P and A on the damage 

increment, Equation 6.27, are shown in Figure 6.19, and 6.20. From these figures, it 

can be observed that the predicted results stably change with the changes of the 

parameters. 
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Figure 6.14. Comparison between the experimental data of limit 
surface and predicted limit surfaces for different values of a and 
constant value of P equal to 0.1. 
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Figure 6.15. Comparison between the experimental data of 
limit surface and predicted limit surfaces for different 
values of P and constant value of a equal to 0.46. 
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Figure 6.16. Comparison between the experimental data of softening 
function and predicted results for different values of A for stress ratio 
1:0. 

87 



1 2 

I" 08 

16 
E 0 6 

J= 0 4 -

§• 0 2 

» exper imenta l s t ress rat io 1 1 

A = - 0 1 

• - A = - 0 15 

— A = - 0 05 

1 E+00 1 E+01 1 E+02 1 E+03 

f a t i g u e l i fe 

1 E+04 1 E+05 1 E+06 
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softening function and predicted results for different values of A 
for stress ratio 1:1. 
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Figure 6.18. Comparison between the experimental data of 
softening function and predicted results for different values of A 
for stress ratio 1:0.5. 
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rate function and predicted results for different values of A and constant 
value of P equal to 0.1. 
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6.6. Conclusion 

An anisotropic damage model is established to predict the fatigue behaviors of 

woven composite materials under low frequency fatigue loading. A class of damage 

mechanics is applied since cracking is the main type of damage and dominates most 

of the fatigue life. A bounding surface theory is developed to predict the fatigue 

behavior of material under biaxial loadings. A direction function that is involved in 

the damage function captures the strength anisotropic of materials. The damage rate is 

established and shows good prediction capability of the increment of compliance. By 

comparison with experimental data, the model shows good capability to describe the 

essential properties of woven composite materials under fatigue loading. 
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7. BOUNDING SURFACE DAMAGE MODEL FOR 

FATIGUE RESPONSE OF STEEL FIBER REINFORCED 

CONCRETE 

7.1. Introduction 

Concrete contains several defects, such as microcracks and micro-voids 

(Yazdani and Karnawat, 1996). Under static and fatigue compression loadings, 

damage in plain concrete, primarily in the form of cracks, nucleates at these defects 

and develops rapidly along the loading direction because of the low tensile strength of 

the plain concrete. Therefore, the introduction of closely spaced steel fibers in the 

plain concrete is a reasonable and effective method of increasing the tensile strength 

of the material. These fibers arrest the nucleation and development of the cracks and 

give concrete better resistance to fatigue loading, impact loading, thermal loading, 

and cracking (Xie, 2004; Ochi, 2005; Hou, 2006). 

With these advantages, steel fiber-reinforced concrete is more widely used in 

civil engineering structures, such as highway pavements, bridges, pipes, walls, shell 

roofs, offshore platforms, submerged storage tanks, etc. These structures could be 

subjected to uniaxial or biaxial compression fatigue loadings that are caused by 

vehicles, wind, machine vibrations, and earthquakes (Yin and Hsu, 1995). 

The introduction of the steel fibers changes the failure mode of plain concrete. 

In plain concrete, the failure mode is a splitting type as shown on Figure 7.1. Under 
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uniaxial loading, splitting occurs in the loading direction; under biaxial loading, 

splitting occurs in the plane parallel to the loading plane (Su and Hsu, 1988). 

However, in steel fiber-reinforced concrete, the failure mode is the faulting mode, as 

shown on Figure 7.2. In uniaxial compression, the failure occurs along two planes 

that have an angle with the loading direction; in biaxial compression, the failure 

occurs along one or two planes that have an angle with the loading plane (Yin and 

Hsu, 1995). 

(a) (b) 

Figure 7.1. Failure mode of plain concrete, (a) Uniaxial compression fatigue (front 
view of speciman; loading in vertical direction); (b) Biaxial compression fatigue (side 
view of speciman; loading in vertical and normal to picture directions). (Yin, W. and 
HsuT.C, 1995) 

It has been addressed that steel fiber-reinforced concrete shows different 

mechanical properties from plain concrete. However, most of the research has been 
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focused on the mechanical behavior of fiber-reinforced concrete under monotonic 

loading, and only relatively few studies have addressed the material behavior under 

fatigue loading. Yin and Hsu (1995) compared the fatigue behaviors of plain concrete 

and fiber-reinforced concrete, where they proposed several equations for S-N curves, 

and reported data for the biaxial fatigue strength envelopes. Singh and Kaushik 

(2000) presented a probabilistic analysis of the fatigue life of fiber-reinforced 

concrete. Hou et al. (2006) investigated the change of the elastic modulus of the steel 

fiber-reinforced concrete with different steel fiber contents and under different stress 

levels. Chang et al. (1998) studied the effect of initial crack depth to the fatigue 

strength of steel fiber-reinforced concrete. Extensive experimental data are presented 

in these research papers, but, theoretically, most of these studies focused only on 

proposing new S-N curves for uniaxial stress path, and few of them developed a 

unified approach capable of describing the fatigue behavior of steel fiber-reinforced 

concrete under different loading patterns. 

In this chapter, a unified approach based on bounding surface theory that was 

introduced in the previous chapter, is proposed for the damage mechanics modeling 

of steel fiber-reinforced concrete. The high directionality of the damage development 

is reflected through a new fourth-order response tensor, and the evolution of inelastic 

deformation caused by damage is described by a new second-order response tensor. 

The foundation of the theory is the same as in Chapters 5 and 6 and will therefore be 

presented in a more compact fashion than the previous chapters. 
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(a) (b) (c) 

Figure 7.2. Failure mode of steel fiber reinforced concrete, (a) Uniaxial 
compression fatigue (front view of speciman; loading in vertical direction); (b) 
Biaxial compression fatigue (front view of speciman; loading in vertical and 
horizontal directions); (c) Biaxial compression fatigue (side view of speciman; 
loading in vertical and normal to picture directions). (Yin, W. and Hsu T.C., 1995) 

7.2. Formulation 

It is assumed that the fatigue loading is of low frequency so that thermal 

effects could be ignored with the further assumption of small deformation. The form 

of Gibbs Free Energy (GFE) is Equation 4.44 and shows as follows 

G = -o:C:<T + <T:£i-A'(k) (7.1) 

where C represents the compliance tensor, e, designates the inelastic strain tensor, a is 

the applied compression stress tensor, and the signs for compression components are 

positive, A'(k) is a scalar function, and k is the cumulative fatigue damage parameter. 

The symbol ":" denotes the tensor contraction operation. 

Following the standard thermodynamics arguments and assuming that the 

unloading is an elastic process, the dissipation inequality can be stated in terms of 

GFE as follows: 
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- k * 0 (7.2) 

where, k is the rate of fatigue damage. Introducing Equation (7.1) into Equation 

(7.2), and assuming that damage is irreversible (i.e., k>o), the dissipation inequality 

takes the following form: 

1 dC 5E' 5A1 ^ rt ,n^ 
- < T : — :o + <r: >0 (7.3) 

2 5k 5k 5k 

To progress further, one can decompose the current compliance tensor into an 

initial undamaged component plus added flexibility caused by damage during fatigue 

loadings as discussed in Chapter 5. 

C(k) = C°+Cc(k) (7.4) 

Where, C° is the initial undamaged fourth-order compliance tensor and Cc (k) denotes 

the added flexibility tensor due to damage. Also, the changes in the fourth-order 

compliance tensor and the inelastic strain tensor are regarded as fluxes in the 

thermodynamic state sense and are expressed below with respect to a set of response 

tensors R and M as discussed in Chapter 5: 

Cc = kR and e' =kM (7.5) 

The response tensors determine the directions of the fatigue damage and the 

inelastic deformation processes. Including Equation (7.4) and (7.5) into Equation 

(7.3) yields the following form of the dissipation inequality 

1 5A' 
- a : R : < r + o : M - — > 0 (7.6) 
2 5k 
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The onset of damage is determined by defining a potential function \\i (<r, k) that is 

derived from Equation (7.6) so that 

y(<r,k) = - < r : R : a + 0 :M—t 2 (o ,k ) = 0 (7.7) 

where t(o, k) is interpreted as the damage function given below as 

t 2 ( < r , k ) = 2 [ ^ + g2(<a)] (7.8) 

9k 

for some scalar-valued function g2(o, k). We note that as long as the function "t" 

could be obtained experimentally or specified guided by experimental records, the 

identification of the components shown on the right hand side of the Equation (7.8) is 

not necessary. 

To progress further, forms of the response tensors R and M must be specified. 

To predict anisotropic behavior due to damage, R should be formulated such that 

damage anisotropy is achieved. Not like the composite material in the previous 

chapter, concrete is mainly used in the compression loading conditions as shown on 

Figure 7.3. It is feasible to expand this to other situations and other damage modes 

(Ortiz and Giannakopoulos, 1990 a, b; Yazdani, 1993; Karnawat and Yazdani, 2001). 

To generalize this and with a further assumption of no coupling between orthogonal 

cracks, the following response tensors are postulated for R and M: 

R = ~ r - + aH(^Xl-i®i) + YH(A,)[h(-51)q](E)ql+h(-52)q2(8)q2+h(-53)q3(8)q3] (7.9) 
o : o 

M = S^+pS+ (7.10) 
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where 

a = a-Xi (7.11) 

X is the minimum eigen value of o. X is the maximum eigenvalue of o . 5, are the 

eigenvalues of 5 . a, p and y are material parameters, qi are defined in Chapter 6. H(.) 

and h(.) are Heaviside functions that are defined as follows. 

H(x) = 
[0 x < 0 

1 x > 0 
(7.12) 

h(x) = 
[0 x < 0 

1 x > 0 
(7.13) 

/ 
- 1 / 
\ ^ / : 

\ 

Figure 7.3. Material element with loading 
directions 1 & 2. 
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The response tensor R is composed of three parts, 

R , = ^ * , (7.14) 

a : a 

R„=aH(XXl-i<8>i) and (7.15) 

R.n =YH(Xlh(-51)q1®q1+h(-g2)q2®q2+h(-g3)q3<g>q3] (7.16) 

Ri ensures that damage occurs in the loading directions (Figure 7.4) but does not 

occur in the direction of the minimum stress and ensures that there is no damage in 

the case of hydrostatic pressure. Similar to the discussion in Chapter 6, Rn is used to 

adjust the limit surface so that the model prediction can match the experimental data 

and include the change in the Poisson's ratio. However, only with Ri and Rn the 

model will predict the damage only occurs in the loading directions where a, does not 

equal to zero. This does not match the experimental observation described in section 

7.1 that the damage occurs also in the loading directions where o, equals zero, except 

the hydrostatic loading. Therefore, Rni is introduced to capture this phenomenon, a 

includes the effect of the lateral pressures into the stress strain relation. H(.) implies if 

a is a null tensor, the lateral pressures have no effect to the compliance of the 

material and no damage occurs in the loading directions where 5, equals zero. h(.) 

ensures that the damage occurs also in the loading directions where o, equals zero. I 

is the fourth order identity tensor, and i is the second order identity tensor. S" and S+ 

are the negative cones and positive cones of the deviatory part of o. The symbol " ® " 

signifies the tensor product operation; p is determined from experimental data and 

greater than one so that inelastic volumetric deformation will be predicted. 
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Figure 7.4. Schematic representation of 
crack opening under compression loading. 

The damage function, t(k), is further represented as 

t(k)=Fcq(ks) (7.17) 

where Fc is a scalar parameter and related to the material strength fc. q(ks) is the 

shape function of the damage function, t and used to capture the quasi-static 

damage, ks, occurs in the first loading cycle. At limit state the function q(ks)=l. 

By substituting Equations (7.9), (7.10), and (7.17) into Equation (7.7), the 

potential function can be written as 

v|/(o,k) = - o : 
2 o :o 

1 

1 ° ® ° : o + (s-+pS+):o + -aH(>,)a:o--aH^)p2 

(7.18) 
1 + -yH(x>»:[h(-of1)q1 ®q, +h(-52)q2 ®q2 +h(-53)q3 ® q3]:<T--[Fcq(ks)]

2 =0 

where p is the hydrostatic pressure. 

To obtain the form of parameter Fc, one may consider a state at the limit surface 

and in loading direction " 1 " where Equation (7.18) is simplified to 

vKa,k)4fl4PV4[Fcq(ks)]2=0 (7-19) 

At limit surface, the function q(ks)=l, and a,=fc. Thus, the result is 
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F c = f ^ l + | p (7.20) 

As the number of loading cycles starts to increase, the strength of the material 

is affected and is reduced. The limit surface representing the foci of all strength points 

associated with n=l is therefore affected and should be modeled to soften to failure 

surface. To achieve this, a new softening function F(n) is included into the damage 

function to predict lower limit strength of the material with increasing number of 

cycles. Therefore, the new damage function is 

t(n, k)=FcF(n)q(ks) (7.21) 

Incorporating the new damage function into the general form of the potential 

function yields 

V(0,k) = i 0 : ^ : 0 + (s-+pS+):0 + iaH(l)«T:0-|aH(>:)p2 

z c : a l l \l .2.2.) 

+ iYH(X)0 :[h(-o l)q1 ®q, + h(-a2)q2 ®q2 +h(-c3)q3 ®q 3 ] :o -1[FcF(n)q(ks)]2 = 0 

With the examination in Chapter 6 and the experimental data from Yin and Hsu's 

work (1995) which are shown in Figures 7.5, 7.6, and 7.7, the softening function is 

proposed to be 

F(n) = nA (7.23) 

where n is the number of cyclic loading, and A is a material constant. 

This is regarded as one of the simplest form one could use. The simplicity of 

the form proposed by Equation (7.23) is appealing and will be retained in the sequel. 
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Figure 7.5. Comparison between softening function and 
experimental data (Yin and Hsu, 1995) with stress ratio 1:0. 
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Figure 7.6. Comparison between softening function and 
experimental data (Yin and Hsu, 1995) with stress ratio 1:1. 
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Figure 7.7. Comparison between softening function and experimental 
data (Yin and Hsu, 1995) with stress ratio 1:0.5. 

To determine the value of "A", one may rewrite the potential function at a 

limit state when the fatigue life n=n^l and q(ks)=l and under uniaxial fatigue 

loading 

1 + ̂ p l a M W O r (7-24) 

With Equation (7.20) and (7.23), the value of "A" can be obtained as 

A = In ^ /ln(n) (7.25) 
' t / / 
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The form of q(ks) can be established with the suggestion of Yazdani and 

Schreyer (1988). The static damage, ks, can be interpreted as the added flexibility 

under uniaxial loading as follows 

a, = 7 ^ (7.26) 
(l/E0)+k s 

where G\ is the uniaxial stress, and ei is the corresponding strain. Eo is the initial 

value of Young's modulus. Therefore, the form of q(ks) can be proposed as 

f, (l /E0)+k s 

where fi is the compression strength of the concrete. 

The particular form of the stress strain relation is proposed as 

s ( £ ^ 
a, = f,—Lexp 

where eu is the strain corresponding to f\. 

(7.28) 

Finally, the rate of the damage parameter, k, must be obtained from the 

constitutive relations used and the strength degradation forms proposed due to fatigue 

cycles (Equation 7.23). For the simple constitutive relation of the form shown as 

£=C(k):<r+ E1, the rate of damage parameter, dk/dn, can be shown to be 

dk 1 
iC-Afc-*-1) (7.29) 

dn E,(l + 2p/3) 

where Ei is the material Young's modulus after the first cycle. 
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7.3. Numerical Simulation 

In this section, the predictions of the proposed model are compared with the 

experimental work of Yin and Hsu, 1995. Yin and Hsu used a specially designed 

biaxial test machine. The load was supplied by a 220-kip-capacity hydraulic actuator 

and then resolved into a pair of forces by a load bifurcation mechanism. The 

specimens are 6X6X1.5 inch steel fiber reinforced concrete plates. The fiber size is 

0.01X0.022X1 inch. The volume percentage of steel fiber is 1 percent. Four principal 

compressive stress ratios were included, 1:0, 5:1, 2:1, and 1:1. The loading rate is 1 

cycle per second. 

Four material parameters, A, a, P, and y are used in the model. The first three 

parameters can be determined with the similar methods introduced in Chapter 6. The 

parameter y can be determined with one uniaxial fatigue test. Measuring the ratio 

between the damage accumulated in the loading direction and one other direction, one 

can determine the value of parameter y. 

As shown on Figure 7.8, with experimental data of monotonic loading, the 

values of parameters a and P of the response tensors are determined as 0.7 and 0.01, 

respectively. With the experimental data shown in Figures 7.5, 7.6, and 7.7, the value 

of the parameter A is determined as -0.049. With the value, the residual strength 

surface after 104 cyclic loading is predicted by the model and compared with the 

experimental data (Yin and Hsu, 1995) in the same figure. Here, the "PCS" is the 

uniaxial ultimate compression strength of plain concrete. The comparison shows that 

the surface form of the model matches the experimental data well. 
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• experiment n=1 
——prediction n=1 
• experiment n=1E4 

• prediction n=1E4 

0.5 1 
stress/PCS strength 

1.5 

Figure 7.8. Comparison of strength surfaces between experimental data (Yin 
and Hsu, 1995) and theory predictions of 104 loading cycles and monotonic 
loading. 

Lastly, the stress-strain relations of stress ratio 1:0, 1:1, and 1:0.5 are shown 

on Figure 7.9, 7.10, and 7.11 respectively where the strength and ductility reductions 

due to the effect of fatigue loading are shown. 
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Figure 7.9. Predictions of the stress strain relationship of 
uniaxial monotonic failure loading and uniaxial fatigue loadings. 
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Figure 7.10. Predictions of the stress strain relationship of 
monotonic failure loading and fatigue loadings with stress ratio 
1:0.5. 
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Figure 7.11. Predictions of the stress strain relationship of monotonic 
failure loading and fatigue loadings with stress ratio 1:1. 

The effects of parameters A, a, and p on the model are shown in the following 

figures. The effects of parameters a and P on the limit surface, Equation 7.18, are 

shown in Figures 7.12 and 7.13. The effects of parameter A on the softening function, 

Equation 7.23, are shown in Figures 7.14, 7.15, and 7.16 for stress ratios of 1:0, 1:1, 

and 1:0.5, respectively. From these figures, it can be observed that the predicted 

results stably change with the changes of the parameters. 
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Figure 7.13. Comparison between the experimental data 
of limit surface and predicted limit surfaces for different 
values of p and constant value of a equal to 0.7. 
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Figure 7.14. Comparison between the experimental data of softening 
function and predicted results for different values of A for stress ratio 1:0. 
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Figure 7.15. Comparison between the experimental data of softening 
function and predicted results for different values of A for stress ratio 
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7.4. Conclusion 

A damage model is established to predict the fatigue behaviors of steel fiber 

reinforced concrete under low frequency fatigue loading. A class of damage 

mechanics is applied, because cracking is the main type of damage and dominates 

most of the fatigue life. The relationship between various fatigue loading paths has 

been established through the surface theory. The static damage and fatigue damage 

are both captured. The high directionalities of elastic damage and permanent 

deformation are described through response tensors. By comparison with 
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experimental data, the model shows good capability to describe the essential 

properties of woven composite materials under fatigue loading. 

I l l 



8. CONCLUSIONS AND FUTURE WORK 

8.1. Conclusions 

Material fatigue is one major reason for failure of engineering materials. For 

better understanding of material behaviors under fatigue loadings, many fatigue tests 

have been performed, and many fatigue models have been proposed to direct the 

engineering design. However, these tests and models were mainly for uniaxial fatigue 

loadings. Only a few multi-axial fatigue tests have been conducted and models have 

been developed. 

To model multi-axial fatigue, the approach taken in this thesis was to base the 

foundation on the first principle of mechanics and thermodynamics. The theories of 

thermodynamics provide a solid theoretical framework for the modeling and guide 

the selections of variables used in the approach. Continuum damage mechanics was 

also utilized because it is suitable for describing the behaviors of materials when the 

crack size is smaller than the size of the volume element of a specific material, and it 

remains distributed for a significant range of load history. For brittle or quasi-brittle 

materials, the main part of the fatigue life occurs in the first and second stages of the 

fatigue process as evidenced by experimental work cited in the body of this thesis. 

In the first attempt, Hansen's model (1999) on woven fabric composites was 

improved by using the internal variable theory of thermodynamics. The following 

contributions were obtained. First, the damage anisotropy was captured through 

properly postulated fourth-order and second-order response tensors. Second, the 
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"knee effect" that shows the character of the longitudinal stiffness degradation was 

predicted with the application of a stress invariant instead of the strain invariant. 

Lastly, the permanent deformation was modeled. 

The above approach involved some postulates that were not general enough 

for multi-axial modeling. The main contribution was then brought in by proposing an 

evolution of a bounding surface potential. With this approach a general formulation 

was developed to predict the behaviors of brittle or quasi-brittle materials under 

proportional multi-axial fatigue loadings. This approach was then applied to woven 

fabric composites and steel fiber reinforced concretes to capture the material 

characteristics under proportional multi-axial tensile and compression fatigue 

loadings, respectively. 

The incorporation of the bounding surface theory enabled the present 

approach to predict the fatigue life and the material behaviors under complex 

proportional multi-axial fatigue loading conditions. The form of the limit surface was 

determined by postulating response tensors R and M with the associated strength 

parameters determined from experimental data for ultimate strengths of those 

materials under uniaxial and biaxial monotonic loadings. The positions of the residual 

strength surfaces were then obtained by using a softening function that described the 

decrease of the ultimate tensile strength of woven fabric composites and the ultimate 

compression strength of fiber reinforced concretes. The specific forms of the 

softening function were obtained with reference to classic S-N curves. When the 
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residual strength surface contacted the loading point in the loading condition, the 

fatigue life of the material was determined. 

To capture induced damage and inelastic deformation, two damage flow rules 

were proposed. In postulating tensor R, the micro-mechanics of crack growth was 

considered. In the woven fabric composite the strength enhances under biaxial 

loadings, and damage only occurs in the loading directions. In the steel fiber 

reinforced concrete the strength enhances under biaxial loadings, no damage occurs 

under the hydrostatic loading, and the damage occurs not only in the loading 

directions, but in the non-loading directions as well. 

The model was shown also to predict the "knee effect" showing the 

compliance increase or stiffness decrease. This was achieved by obtaining damage 

evolutionary relation from the constitutive relation and the softening function. 

Another significant contribution presented in this work is the ability to address the 

"strength anisotropy" that is present in some materials such as composites. 

The presented approach, however, has some limitations. First, only small 

strain was considered. Second, the thermal effects occurring during the fatigue 

loadings should be negligible, which is usually the case for low frequency fatigue. 

Also, only proportional loading paths were used in the formulation. Although this is 

restrictive, yet it encompasses a great majority of loading cases. The first limitation is 

valid for the first two stages of the fatigue process. Since most part of the fatigue life 

of brittle or quasi-brittle materials occurs in the first two stages, the predictions of the 

approach are precise enough for engineering design and analysis. The second 
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limitation can be verified with different ways, such as monitoring the surface 

temperature of the specimen during fatigue loadings, or limiting the loading 

frequency. 

In this thesis, the endurance limit is not considered as explained below. The 

endurance limit exists for some engineering materials because below that limit, 

damage is shown not to occur, or if damage occurs and propagates, it will effectively 

be stopped by some arresting mechanism. However, many recent researches (Donald 

and Pradeep, 2003; Ramakrishnan, Malhotra and Langley, 2005) suggested that the 

endurance limit does not actually exist for quasi-brittle solids such as concrete and 

woven fabric composite. If enough stress cycles are performed, materials will 

eventually fail even for very small stresses. On the other hand, many other factors 

may cause the material to fail below the endurance limit, such as corrosion and 

occasional overloads (Donald and Pradeep, 2003), so one should be cautious in 

considering the endurance limit in the engineering design. Therefore, the predictions 

of the proposed approach were conservative without the consideration of the 

endurance limit. 

Finally, the approach predictions were compared with experimental data from 

literatures. Good correlation between the predictions and experimental data showed 

that the approach was able to capture the behaviors of brittle or quasi-brittle materials 

under proportional multi-axial fatigue loadings. 
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8.2. Recommendation for future work 

Although the models developed in this dissertation have several advantages 

over previous models, there are still several aspects that can be improved. First, an 

assumption that the frequency of the fatigue loading is low was given in the theory, so 

that the thermal effect can be ignored. Although this assumption is valid for many 

engineering conditions, there are still some conditions of high frequency fatigue 

loadings where the thermal effect cannot be ignored. Therefore, extending the models 

into the high frequency fatigue loading would greatly improve the capability of the 

model. Second, the current models only considered the damage. However, many 

engineering materials also show plasticity under fatigue loadings. Developing the 

models to capture the behaviors of ductile materials would increase the applicability 

of the models. 
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APPENDIX A 

Three FORTRAN programs were developed to evaluate the model of Chapter 

5 and repeat the results of Hansen's work, respectively. Figures 5.3, 5.4, 5.5, and 5.6 

show the results of the programs. The programs are listed as follows. 

1. Hansen's work: 

! — commons block 
common /stress/ stress,delse 
common /strain/ strain,straine,staref,delsa 
common /modulous/ ee0,eel,eeout(1000) 
common /poisonratio/ vuO,vu 
common /constant/ aa,nn 
common /calculation/ numb(lOOO) 
real kk 

open(unit=4,file-input.dat',status-old') 
open(unit=3,file-output.dat',status-old') 
open(unit=5,file='stress.dat',status='old') 

write(3,*) 'kick' 
read(4,*) numberc,nmax 
read(4,*) eeO,vuO 
read(4,*) staref,stressapp 
read(4,*) delsa 
read(4,*) aa,nn 
read(4,*) kk 
write(3,*)numberc,nmax,ee0,vu0,staref,stressapp,delsa,aa,nn,kk 

eel=eeO 
vu=vuO 
write(3,*)eel,vu 

straine=0 
ii=0 
mm=0 

write(3,*) '0',eeO 
do 10 i=l, numberc 

strain=0 
delse=0 
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stress=0 
do 100 j=l , nmax 

! write(3,*)eel,delsa,aa,ee0,eel,straine,staref,nn,stress 
delse=(ee 1 )* (delsa-aa* (eeO/ee 1 * *2)* (straine/staref)* *nn* stress) 

stress=stress+delse 
strain=strain+delsa 

if (stress+0.2.gt.stressapp) goto 500 
100 continue 
500 continue 
! write(3,*)stress,j 
! pause 

straine=strain 
delkk=aa* (straine/staref)* *nn 
kk=kk+delkk 
if(kk.ge.0.2) goto 2000 
eel=ee0*(l-kk) 
vu=vu0*(l-kk) 
mm=mm+l 

if (mm.eq. 10000) then 
ii=ii+l 
mm=0 
write(3,*)i,eel 
write(5,*)stress 
write(*,*)ii 

! numb(ii)=i 
! eeout(ii)=eel 

else 
continue 

end if 
10 continue 
2000 continue 
! do 3000 i=l,ii 
! write(3,*) numb(i),eeout(i) 
13000 continue 

end 

2. My model (inelastic): 

— commons block — 
common /stress/ stress,ddse 
common /strain/ strain,straine,staref,delsa 
common /modulous/ ee0,eel,eeout(1000) 
common /poisonratio/ vu0,vu 
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common /constant/ aa,nn 
common /calculation/ numb(lOOO) 
real kk,nn,mm,istrain,kkk 

open(unit=4,file='input.dat',status-old') 
open(unit-3,file='output.dat',status='old') 
open(unit=5,file='stress.dat',status='old') 
open(unit=7,file='lingshi.dat',status='old') 

! write(3,*) 'kkk' 
read(4,*) numberc,nmax 
read(4,*) eeO,vuO 
read(4,*) staref,stressapp,strength 
read(4,*) delsa 
read(4,*) aa,nn,dd,cc,raf 
read(4,*) kk 

! write(3,*)numberc,nmax,ee0,vu0,staref,stressapp,delsa,aa,nn 
eel=eeO 

vu=vuO 
! write(3,*)eel,vu 

straine=0 
istrain=0 
ii=0 
mm=0 
write(3,*) '0',eeO 
write(5,*)'0',' ','0' 

do 10 i=l, numberc 
strain=0 
delse=0 
stress-0 
do 100 j=l, nmax 

! write(3,*)eel,delsa,aa,ee0,eel,straine,staref,nn,stress 
delse=(eel)*(delsa-aa*(stressapp/strength) 

# **nn*i**dd*stress-raf|caa*(stressapp/strength)**nn*i**cc) 
stress=stress+delse 
strain=strain+delsa 

if (stress+0.002.gt.stressapp) goto 500 
100 continue 
500 continue 
! write(3,*)stress,j 
! pause 

istrain=istrain+raf* aa* (stressapp/strength) * * nn* i * * cc 
strainm=strain+istrain 
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! straine=(strain**2+(strain*vu)**2)**0.5 
delkk=aa* (stressapp/strength) * * nn* i* * dd 
kk=kk+delkk 
eel=l/(l/eeO+kk) 
kkk=(eeO-eel)/eeO 

! write(*,*)kk 
if(kkk.ge.0.4) goto 2000 

! vu=vu0*(l-kk) 
mm=mm+l 

if (mm.eq. 1000) then 
ii=ii+l 
mm=0 
write(3,*)i,eel 
write(5,*)strainm,stress 
write(5,*)istrain,' ','0' 
write(7,Hc)istrain 
write(*,*)ii 

! numb(ii)=i 
! eeout(ii)=eel 

else 
continue 

end if 
10 continue 
2000 continue 
! do 3000 i=l,ii 
! write(3,*) numb(i),eeout(i) 
!3000 continue 

end 

3. My model (elastic): 

commons block 
common /stress/ stress,delse 
common /strain/ strain,straine,staref,delsa 
common /modulous/ ee0,eel,eeout(1000) 
common /poisonratio/ vu0,vu 
common /constant/ aa,nn 
common /calculation/ numb(lOOO) 
real kk,nn,mm,kkk 

open(unit==4,file='input.dat',status-old') 
open(unit=3,file-output.dat',status='old') 
open(unit=5,file='stress.dat',status='old') 
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open(unit=7,file-lingshi.dat',status='old') 

! write(3,*) 'kkk' 
read(4,*) numberc,nmax 
read(4,*) eeO,vuO 
read(4,*) staref,stressapp,strength 
read(4,*) delsa 
read(4,*) aa,nn,dd 
read(4,*) kk 

! vwite(3,*)numberc,nrnax,eeO,vuO,staref,stressapp,delsa,aa,nn,kk 
eel=eeO 

vu=vuO 
! write(3,*)eel,vu 

kk=0 
straine=0 
ii=0 
mm=0 

write(3,*) 'O'.eeO 
do 10 i=l, numberc 
bb=i* 1.0+1 
strain=0 
delse=0 
stress=0 
do 100 j=l, nmax 

! write(3,*)eel,ddsa,aa,ee0,eel,straine,staref,nn,stress 
delse=(ee 1) * (delsa-aa* 

# (stressapp/strength)* *nn*i**dd*stress) 
stress=stress+delse 
strain=strain+delsa 

if (stress+0.002.gt.stressapp) goto 500 
100 continue 
500 continue 
! write(3,*)stress,j 
! pause 
! straine=(strain**2+(strain*vu)**2)**0.5 

delkk=aa* (stressapp/strength) ** nn* i* * dd 
kk=kk+delkk 
eel=l/(l/ee0+kk) 
kkk=(ee0-eel)/ee0 

! write(*,*)kkk 
if(kkk.ge.0.17) goto 2000 

! vu=vu0-l/kk 
mm=mm+l 
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if (mm.eq. 1000) then 
ii=ii+l 
mm=0 
write(3,*)i,eel 
write(5,*)'0',' ','0' 
write(5,*)strain,stress 
write(7,*)kk 
write(*,*)ii,eel 

! numb(ii)=i 
! eeout(ii)=eel 

else 
continue 

end if 
10 continue 
2000 continue 
! do3000i=l,ii 
! write(3,*) numb(i),eeout(i) 
!3000 continue 

end 



APPENDIX B 

Several EXCEL sheets were developed to evaluate the model of Chapter 6 and 

are shown below. 

1. EXCEL sheet for Figure 6.5 
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2. EXCEL sheet for Figure 6.6 
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3. EXCEL sheet for Figure 6.7 
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4. EXCEL sheet for Figure 6.8 
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5. EXCEL sheet for Figure 6.9 
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Parameters 
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7321 59 

7164 23 

701349 

stress 

0 00 

30 74 

57 22 

8015 

100 06 

117 42 

132 60 

145 90 

157 58 

167 86 

176 92 

184 90 

19195 

19818 

203 68 

208 53 

212 82 

216 59 

219 91 

222 83 

225 38 

227 61 

229 54 

23121 

232 65 

233 87 

234 89 

235 74 

236 43 

K= 
n-

strain 

0 00 

0 00 

0 00 

0 01 

001 
001 
0 01 

0 01 

0 01 

0 01 

0 01 

0 01 

0 01 

0 01 

0 02 

0 02 

0 02 

0 02 

0 02 

0 02 

0 02 

0 02 

0 02 

0 02 

0 02 

0 02 

0 02 

0 02 

0 02 

0 00 

1 00 

250 -I 

200 -

„ 150 • 
Q_ 

wT 
01 

£ 100 • 

50 • 

n , ; 

0 00 

E1 = 17070 00 
stress= 238 00 

theory monotonic 

experimental monotonic 

theory n=10 

theory n=100 

theoryn=1000 

0 01 0 01 0 02 
strain 

U U I £. I I .tU 
0 01 218 80 

0 02 0 03 

stresŝ  

k= 
0 00 

8 03 

15 47 

22 38 

28 79 

34 76 

40 31 

45 48 

50 30 

54 81 

59 01 

62 94 

66 61 

70 05 

73 27 

76 29 

79 11 

8176 

84 25 

86 58 

88 77 

90 82 

9275 

94 57 

96 27 
97 87 

99 37 

100 78 

11900 

0 00 

0 00 

0 00 

0 00 

0 00 

0 00 
0 00 

0 01 

0 01 

0 01 

0 01 

0 01 

0 01 

0 01 

0 01 

0 01 

001 
0 01 

001 
0 01 

001 
0 01 

0 01 

0 01 

0 01 

0 01 

001 
001 
001 

stress= 

k= 
0 00 

12 60 

24 06 

34 50 

44 02 

52 72 

60 69 

67 98 

74 68 

80 83 

86 48 

91 69 

96 48 

100 90 

104 97 

108 73 

11220 

11541 

118 38 

121 11 

123 64 

125 98 

12815 

130 15 

131 99 

133 70 

135 27 

136 73 

150 00 

0 00 

0 00 

0 00 

0 00 

0 00 

0 00 

001 
0 01 

0 01 
001 
0 01 

001 
001 
0 01 
0 01 

001 
001 
001 
001 
0 01 

0 01 

0 01 

0 01 

0 02 

0 02 

0 02 

0 02 

0 02 

0 02 

stress= 

k= 
0 00 

19 72 

37 23 

52 81 

65 72 

7916 

90 31 

100 33 

109 34 

117 46 
124 79 

13140 

137 38 

142 79 

147 68 

15211 

15613 

159 77 

163 06 

166 04 

168 74 

171 18 

173 39 

175 38 

17717 

178 79 

180 23 

18153 

189 00 

0 00 

0 00 

0 00 

0 00 

0 00 

0 01 
0 01 

0 01 

001 
0 01 
0 01 

0 01 

0 01 

0 01 

0 01 
0 01 

0 01 
0 01 

0 01 

0 02 

0 02 

0 02 

0 02 

0 02 

0 02 

0 02 

0 02 

0 02 

0 02 

W 
X 
o 
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re 
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c 
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E delta* ft 
13504 3 00E 06 250 

E1= 18504 
stress= 250 

beta= 
rapha= 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

I. t 

3 00E 06 3 48E+01 
6 00E-06 6 44E+01 
9 00E-06 8 97E+01 
120E-05 1 12E-02 
1 50E-05 1 30E+02 
1 80E-05 1 47E+02 
2 10E-05 161E+02 
2 40E-05 173E+02 
2 70E-05 1 84E+02 
3 OOE-05 1 93E-KI2 
3 30E-05 2 01E<-02 
3 60E-05 2 08E+02 
3 90E05 2 14E+02 
4 20E 05 2 20E-HJ2 
4 50E-05 2 25E+02 
4 80E-05 2 29E*02 
5 10E-05 2 32E+02 
5 40E-05 2 35E+02 
5 70E-05 2 38E+02 
6 OOE-05 2 40E+02 
6 30E-05 2 42E*02 
6 60E-05 2 44E+02 
6 90E05 2 45E-02 
7 20E-05 2 47E+02 

25 7 50E-05 2 48E+02 
26 
27 
28 
29 
30 
31 

7 80E 05 2 48E+02 
8 10E-05 2 49E+02 
8 40E-05 2 49E+02 
8 70E-05 2 50E+02 
9 OOE-05 2 50E+02 
9 30E 05 2 5DE-02 

17530 829 
16654 906 
15862 348 
15141795 

14483 86 
13880 721 
13325 805 
12813 553 
12339 225 

11898 76 
11488 658 
11105 883 
10747 792 
10412 071 
10096 689 
9799 3509 
9519 9681 
9255 6282 
9005 5715 
8768 6709 
8543 9145 
8330 3921 
8127 2817 
7933 8401 
7749 3927 
7573 3267 
7405 0834 
7244 1527 
7090 0681 
6942 4018 

stress 
0 

3 48E+01 
6 44E+01 
8 97E*01 
112E-02 
1 30E+02 
1 47E+02 
1 61E+02 
1 73E+02 
1 84E+02 
1 93E*02 
2 01E*02 
2 08E+02 
214E-02 
2 20E+02 
2 25E+02 
2 29E+02 
2 32E+02 
2 35E+02 
2 38E*02 
2 40E*02 
2 42E+02 
2 44E+02 
2 46E+02 
2 47E+02 
2 48E+02 
2 48E*02 
2 49E+02 
2 49E+02 
2 50E-02 
2 50E+02 

6800 7609 2 50E*02 

strain 
0 

1 98E-03 
3 76E-03 
£ 36E-03 
6 80E 03 
8 09E-03 
9 27E-03 
1 03E 02 
1 13E-02 
1 21E-02 
1 29E-02 
1 36E-02 
1 43E-02 
1 49E 02 
1 54E-02 
1 59E-02 
1 53E-02 
1 67E-02 
1 70E-02 
1 73E-02 
1 76E-02 
1 78E-02 
1 80E-02 
1 82E 02 
1 83E-02 
1 84E-02 
1 85E-02 
1 86E-02 
1 87E-02 
1 87E 02 
1 87E-02 
1 87E-02 

0 0 
0 005 32 

0 01 142 
0 015 200 

0 02 253 

300 

0 0 
0 0012 26 5 
0 0022 49 6 
0 0032 69 9 
0 0041 R7fi 

001 
0 39 

0 0 
0 0025 53 

0 005 89 
0 0075 114 

0 01 140 

theory monotonic 

experimental monotonic 

theoryn=10 

theory n=100 

theory n=1000 

0 005 001 0015 
strain 

0 02 0 025 

stress= 
k= 

0 
9 7035 
18 591 
26 744 
34 235 
41 126 
47 473 
53 327 
58 732 
63 727 
68 348 
72 625 
76 588 
80 263 
83 672 
86 836 
89 775 
92 506 
95 043 
97 403 
99 597 
10164 
103 53 

105 3 
106 94 
108 47 
109 89 
11121 
112 43 
113 57 
114 63 

125 
5E05 

0 
0 001 
0 002 

0 0028 
0 0037 
0 0045 
0 0052 
0 0059 
0 0066 
0 0073 
0 0079 
0 0084 
0 009 

0 0095 
0 01 

0 0104 
0 0109 
00113 
00117 

0 012 
0 0124 
0 0127 

0013 
0 0133 
0 0136 
0 0139 
0 0141 
0 0144 
0 0146 
0 0148 
0 015 

stress= 
k= 

0 
15 

28 463 
40 576 
51497 
61364 
70 293 
78 388 
85 737 
92 417 
98 497 
104 04 
109 09 

1137 
1179 

12175 
125 26 
128 48 
13142 

1341 
136 56 
138 8 

140 86 
142 73 
144 44 

146 
147 42 
148 71 
149 88 
150 94 

1519 

158 
2 8E-05 

0 
0 00127 
0 00244 
0 00354 
0 00456 
0 00551 
0 00639 
0 00722 

0 008 
0 00872 

0 0094 
0 01003 
0 01062 
001118 

00117 
0 01218 
0 01264 
0 01306 
0 01346 
0 01383 
0 01418 

0 0145 
0 01481 
0 01509 
0 01535 
0 01559 
0 01582 
0 01603 
0 01622 

0 0164 
0 01657 

stress= 
k= 

0 
22 842 
42 853 
60 446 
75 962 
89 682 
10185 
11265 
122 27 
130 85 

138 5 
145 34 
15146 
156 94 
16185 
166 25 
17018 
173 71 
176 86 
179 69 

182 2 
184 45 
186 45 
188 22 
189 79 
191 18 
192 39 
193 45 
194 37 
19516 
195 84 

198 
12E-05 

0 
0 00158 
0 00302 
0 00434 
0 00556 
0 00667 
0 00769 
0 00863 

0 0095 
0 0103 

0 01104 
0 01171 
0 01234 
0 01292 
0 01345 
0 01393 
0 01438 

0 0148 
0 01518 
0 01552 
0 01584 
0 01613 

0 0164 
0 01664 
0 01685 
0 01705 
0 01722 
0 01738 
0 01752 
0 01764 
0 01774 

W 

o 
r 
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200 

E deltak ft k= 
20201 3 00E-06 223 n= 

i fc t E" stress strain 
0 0 

1 3.00E-06 3 35E+01 19046 712 3.36E+01 1.77E-03 
2 6 00E-06 6 19E+01 18017 206 6.19E+01 3 33E-03 
3 9.00E-06 8.57E+01 17093 287 8.57E+01 4.73E-03 
4 1.20E-05 1.06E+02 16259 502 1.06E+02 5 97E-03 
5 1.50E-05 1.23E+02 15503 275 1.23E+02 7 08E-03 
6 1.80E-05 1.38E+02 14814 266 1.38E+02 8.08E-03 
7 2.10E-05 1 51E+02 14183 894 1.51E+02 8.97E-03 250 
8 2 40E-05 1.61E+02 13604.979 1.61E+02 9.77E-03 
9 2.70E-05 1 71E+02 13071 468 1.71E+02 1.05E-02 

10 3.00E-05 179E+02 12578221 1.79E+02 1.11E-02 
11 3.30E-05 1.86E+02 12120.845 1.86E+02 1.17E-02 
12 3.60E-05 1.92E+02 11695 564 1.92E+02 1.22E-02 
13 3.90E-05 1.97E+02 11299 116 1.97E+02 1.27E-02 
14 4.20E-05 2.01E+02 10928 663 2.01E+02 1 31E-02 
15 4.50E-05 2.05E+02 10581.731 2.05E+02 1.34E-02 
16 4.80E-05 2.09E+02 10256 147 2.09E+02 1.38E-02 ra150 

17 5 10E-05 2.11E+02 9950 0013 2.11E+02 1.41E-02 1 
18 5.40E-05 2.14E+02 9661 6024 2.14E+02 1 43E-02 g 
19 5.70E-05 2.16E+02 9389 451 2.16E+02 1.45E-02 £ 
20 6.00E-05 2 18E+02 9132.2116 2.18E+02 1 47E-02 100 
21 6 30E-05 2 19E+02 8888 6914 2.19E+02 1 49E-02 
22 6.60E-05 2.20E+02 8657 8213 2.20E+02 1.50E-02 
23 6.90E-05 2.21E+02 8438.6405 2.21E-H32 1.51E-02 
24 7.20E-05 2 22E+02 8230.2833 2.22E-K)2 1 52E-02 50 
25 7.50E-05 2.22E+02 8031.9672 2.22E+02 1.53E-02 
26 7 80E-05 2.23E+02 7842 9835 2.23E+02 1.53E-02 
27 8.10E-05 2.23E+02 7662.6885 2.23E+02 1.53E-02 
28 8.40E-05 2.23E+02 7490.4964 2.23E+02 1.53E-02 0 

29 8.70E-05 2 23E+02 7325 8732 2.23E+02 1.53E-02 
30 9.00E-05 2.23E+02 7168 3303 2.23E+02 1.54E-02 
31 9.30E-05 2.23E.+02 .7017.4208 Z23E+02 1.54E-02 

E1= 20201.2 
stress= 223 

0 
78 

108 
176 
223 

0 
0 0012 
0 0022 
0 0032 
0.0041 

0 
26 5 
49 6 
69.9 
87.6 

beta= 0.01 
alpha= 3.90E-01 

0 
0 0025 
0.005 
0 0075 
0 01 

0 
53 
89 
114 
140 

theory monotonia 

• experimental monotonic 

• - theory n-418 

* experimental n=418 

0 005 0.01 
strain 

0 015 0.02 

P Q 

stress= 
k= 

0 
11.934 
22.609 
32.182 
40.786 
48.536 
55.53 
61.852 
67.575 
72.763 
77.472 
81.751 
85.642 
89.184 
92.409 
95.348 
98.027 
100 47 
102.7 

104.73 
106 58 
108.26 
109.8 
111.2 
112.47 
113.62 
114.67 
115.61 
116.47 
117.24 
117.93 

R 

122 
2.33451E-05 

0 
0 000976425 
0.001881885 
0 0027226 

0.003504075 
0.0042312 

0.004908334 
0.00553938 
0.00612784 
0.006676868 
0.007189314 
0.00766776 
0.008114548 
0.008531813 

0.0089215 
0.009285391 
0.009625116 
0.009942173 
0.010237941 
0.01051369 
0.010770593 
0.011009733 
0.011232115 
0.011438671 
0.011630267 
0.011807707 
0.011971742 
0.012123072 
0 012262348 
0.012390183 
0.012507149 

m 
X 
O 
PI 

a 

& 
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APPENDIX C 

Several EXCEL sheets are developed to evaluate the model of Chapter 7 and 

shown as below. 

1. EXCEL sheet for Figure 7.5 

a Q 

i 
h 
3 
4J 
Q. 

D 

E 

1 

9 
o 

V) 

** 
i 
E 
6 

* 
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stress'streng 
144 
1 33 
1 19 

1 0055 
0 91 
0 82 

n 
1 
10 
100 
1000 
10000 
100000 

1 
0 923611 
0 826389 
0 698264 
0 631944 
0 569444 

A theory 
1 

0 8S3305 
0 049 0 797995 

0 712853 

1 1 

= 09 

0 636796 | 0 8 
0 563853 | 

| 07 

% 
V) 

g 06 

5 05 

04 

K) 

model prediction A—0 04S 

« expenmentalstressratiol 1 

10 100 1000 
cyclical number in logrithem 

10000 100000 

m 
X 
n 
m 
r 
a o 

i-i 
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11 

4^ 

stress'stren 
1 6542 
14986 
129 

1 0222 
0 93 

0 9056 

1 
10 
100 
1000 
10000 
100000 

1 
0 905936 
0 779833 
0 617942 
0 592431 
0 547455 

-0 049 

theory 
1 

0 893305 
0 797995 
0 712853 
0 63679S 
0 568853 

08 

07 

o 
V) 

a 
E o u 
0) 

£ 

•5 
to 
8 06 
i-

•a 
4) 
! 05 
a. 

04 

U) 

model prediction A—0049 

a experimentalstressratiol 0 5 

10 100 1000 

cyclical number in logrrthem 
10000 100000 

Ffl 
X n m 
t - 1 

1/3 

m 
o 

31 
era' 
>-t a 



N=1 
experimental data 

x y 
1 1292 0 
1 0903 0 
1 6976 0 3395 
1 5902 0 318 
1 6542 0 8271 
1 5958 0 7979 
1 5715 0 7858 

144 144 
0 1 1292 
0 1 0903 

0 3395 1 6976 
0 318 1 5902 

0 8271 1 6542 
0 7979 1 5958 
0 7858 15715 

theoritical results 

arfa mu beta 
1 1 1 

x v 
0 1 1292 

0 260036 1 300178 
0 77139 1 542781 

1 493791 1 493791 
1 542781 0 77139 
1 300178 0 260036 

1 1292 0 

UJ 

N=10000 
experimental data 

x y 
0 7014 0 
0 7986 0 
0 9785 0 4893 
0 9007 0 4504 

0 91 0 91 
0 0 7986 
0 0 7014 

0 4893 0 9785 
0 4504 0 9007 

theoritical results 
arfa mu beta 

1 1 1 
X y 

0 0 7Q14 
0 161521 0 807603 
0 479147 0 958295 
0 927865 0 927865 
0 958295 0 479147 
0 807603 0 161521 

0 7014 0 

experiment n=1 

predictionn=1 

experiment n=1E4 

predictionn=1E4 

M 
X 
o 
m r 
tn 
t r a a <-̂  3> 
i-i 

31 
cro' 
C 
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bo 

stress/PCS strength 



E deltak ft 
36000 3 00E-06 

E1 = 
stress= 

36000 
38 95 

t 

1 3 00E-06 
6 OOE-06 
9 00E 06 
1 20E 05 
1 50E-05 
1 80E-05 
2 10E05 

8 2 40E 05 
9 2 70E-05 
10 3 00E-05 
11 3 30E-05 
12 3 60E-05 
13 3 90E-05 
14 4 20E-05 
15 4 50E-05 
16 4 80E-05 
17 5 10E-05 
18 5 40E-05 
19 5 70E-05 
20 6 00E-05 
21 6 30E05 
22 6 60E-05 
23 6 90E-05 
24 7 20E-05 
25 7 50E 05 
26 7 80E 05 
27 8 10E 05 
28 8 40E-05 
29 8 70E-05 
30 9 OOE 05 
31 9 30E05 

9 80E+00 
170E+01 
2 24E+01 
2 65E+01 
2 97E+01 
3 21E+01 
3 39E+01 
3 54E+01 
3 65E+01 
3 73E+01 
3 79E+01 
3 83E+01 
3 86E+01 
3 88E+01 
3 89E+01 
3 89E+01 
3 89E+01 
3 88E+01 
3 87E+01 
3 86E+01 
3 84E+01 
3 82E+01 
3 79E+01 
3 77E+01 
3 74E+01 
3 72E+01 
3 69E+01 
3 66E+01 
3 64E+01 
3 61E+01 
3 58E+01 

32490 975 
29605 263 
27190 332 
25139 665 
23376 623 
21844 66 

20501139 
19313 305 
13255 578 
17307 692 
16453 382 
15679 443 
14975 042 
1433121 
13740 458 
13196 481 
12693 935 
12228 261 
11795 544 
11392 405 
11015912 
10663 507 
10332 951 
10022 272 
9729 7297 
9453 7815 
9193 0541 
8946 3221 
8712 4879 
8490 566 

8279 6688 

stress 
0 

9 80E+00 
170E+01 
2 24E+01 
2 65E+01 
2 97E+01 
3 21E+01 
3 39E+01 
3 54E+01 
3 65E+01 
3 73E+01 
3 79E+01 
3 83E+01 
3 86E+01 
3 88E+01 
3 89E+01 
3 89E+01 
3 89E+01 
3 88E+01 
3 87E+01 
3 86E+01 
3 84E+01 
3 82E+01 
3 79E+01 
3 77E+01 
3 74E+01 
3 72E+01 
3 69E+01 
3 66E+01 
3 64E+01 
3 61E+01 
3 58E+01 

strain 
C 

3 02E-04 
5 46E-04 
7 45E 04 
9 08E-04 
1 04E-0: 
1 15E-0C 
1 24E-03 
1 32E-0C 
1 38E o: 
1 42E-0: 
1 46E-03 
1 49E-0C 
1 51E-0C 
1 52E-0: 
1 53E-03 
1 53E-0: 
1 53E-0: 
1 54E-0: 
1 55E-0: 
1 57E-0: 
1 58E-0: 
1 60E-0: 
1 62E-0: 
1 65E-0: 
1 67E-0: 
1 70E-03 
1 73E 03 
1 76E 03 
1 79E-03 
1 83E-03 
1 86E-03 

43 -

35 • 

30 • 

? 2 5 -
s 

e 20 -

15 • 

10 • 

5 -

0 • / 

/, 
V 

s 

* 

/<'' ' " 

theory monotonsc 

- - theory n=10 

- -theory n=1£H) 

theory n=10i>D 

0 001 
strain 

*.*» /. i J * 

00125 
0 0126 
0 0127 
0 0128 
0 0129 

217 7 
218 8 
219 7 
220 5 
2212 

stress^ 
k= 

0 
52117 
9 3896 
12 769 
15 522 
17 779 
19 638 
21 173 
22 445 
23 499 
24 372 
25 096 
25 693 
26 183 
26 583 
2D 906 
27 164 
27 366 
27 519 
27 631 
27 706 
27 751 
27 769 
27 764 
27 739 
27 696 
27 637 
27 566 
27 483 

27 39 
27 289 

119 
5E-05 

0 
2E04 
4E04 
6E-04 
7E04 
8E04 
9E-04 
0 001 
0 001 
0 001 
0 001 
0 001 
0 001 
0 001 
0 001 
0 001 
0 001 
0 001 
0 001 
0 001 
0 002 
0 002 
0 002 
0 002 
0 002 
0 002 
0 002 
0 002 
0 002 
0 002 
0 002 

stress= 
k= 

0 
6 4456 
11 485 
15 468 
18 643 
21 192 
23 248 
24 911 

26 26 
27 354 
28 238 
28 952 
29 523 
29 976 

30 33 
30 602 
30 803 
30 945 
31037 
31087 

31 1 
31082 
31038 
30 971 
30 885 
30 782 
30 666 
30 537 
30 399 
30 252 
30 097 

150 
3E-05 

0 
2E-04 
4E-04 
6E-04 
8E-04 
9E-04 
0 001 
0 001 
0 001 
0 001 
0 001 
0 001 
0 001 
0 001 
0 001 
0 001 
0 001 
0 002 
0 002 
0 002 
0 002 
0 002 
0 002 
0 002 
0 002 
0 002 
0 002 
0 002 
0 002 
0 002 
0 002 

stress^ 
k= 

0 
7 95E+00 
1 40E+01 
1 87E+01 
2 23E+01 
2 51E+01 
2 74E+01 
2 91E+01 
3 05E+01 
317E+01 
3 25E+01 
3 32E+01 
337E+01 
3 41E+01 
3 44E+01 
3 46E+01 
3 47E+01 
3 48E+01 
3 48E+01 
3 48E+01 
3 47E+01 
3 46E+01 
3 45E+01 
3 44E+01 
3 42E+01 
3 40E+01 
3 38E+01 
3 36E+01 
3 34E+01 

189 
12E-05 

0 
2 71E04 
4 95E-04 
6 82E-04 
8 38E-04 
9 69E-04 
1 08E-03 
1 17E-03 
1 25E-03 
1 31E-03 
1 37E-03 
1 41E-03 
144E03 
1 47E 03 
1 49E-03 
1 51E-03 
1 52E-03 
1 52E-03 
1 52E-03 
1 53E-03 
1 53E-03 
1 54E-03 
1 55E-03 
1 57E-03 
1 58E-03 
1 6OE-03 
1 62E 03 
1 64E-03 
1 67E-03 

w 
X o m r 
o> 
a 
<-+ 

& 
£1 

OQ' c 
>-t 
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E 
45000 0 

, 
1 
2 
3 
4 

5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

deltak ft 
3 0 0 E 0 6 55 7 

Y t 

3 00E-06 1 69E*01 
6 00E-06 2 85E-01 
9 00E-06 3 66E+01 
1 20E-05 4 25E*01 
150E-05 4 66E*01 
1 80E-O5 4 96E-01 
2 10E-05 5 1 8 E * 0 1 
2 4 0 E 0 5 5 33E+01 
2 70E-05 5 44E*01 
3 00E-05 5 50E»01 
3 30E-05 5 55E-KM 
3 60E-05 5 57E-KI1 
3 90E-05 5 57E*01 
4 20E-05 5 56E*01 
4 50E-05 5 54E*01 
4 80E-05 5 51E+01 
510E-05 5 48E-01 
5 40E-05 5 44E*01 
5 70E-05 5 40E-01 
6 00E-05 5 35E-01 
6 30E-05 5 31E«-01 
6 60E05 5 26E*01 
6 90E-05 5 21E+01 
7 20E-05 5 16E»01 
7 50E-05 511E-KI1 
7 80E-05 5 06E*01 
8 10E-05 5 01E-MJ1 
8 40E-05 4 96E+01 
8 70E-05 4 91E*01 
9 00E-05 4 86E-01 
9 30E-05 4 81EHI1 

E stress 
0 

39647 6 169E-M31 
35433 1 2 85E*01 
32028 5 3 66E+01 
29220 8 4 25E+01 
26865 7 4 86E-01 
24861 9 4 96E-01 
23136 2 5 18E*01 
21634 6 5 33E--01 

20316 5 44E+01 
19148 9 5 50E+01 
18108 7 5 55E*01 
17175 6 5 57E+01 
16333 9 5 57E-01 
15570 9 5 56E*01 

14876 5 54E»01 
14240 5 5 51E+01 
136571 5 48E-01 
13119 5 5 44E*01 
12622 7 5 40E-01 
12162 2 5 35E+01 

11734 5 31E*01 
11335 5 26E-01 

10962 2 5 21E»01 
106132 5 1 6 E - 0 1 
10285 7 511E+01 
9977 83 5 06E-01 
9687 84 5 01E*01 
9414 23 4 96E+01 
9155 65 4 91E*01 
8910 89 4 86E*01 
8678 88 4 81E+01 

strain 
0 

4 26E-04 
7 54E-04 
1 01E-03 
1 21E-03 
1 36E-03 
1 48E-03 
1 58E-03 
1 65E-03 
1 70E-03 
1 73E-03 
1 76E-03 
1 77E-03 
1 77E-03 
1 78E-03 
1 79E-03 
1 81E-03 
1 83E-Q3 
1 86E-03 
1 90E-03 
1 93E-03 
1 97E-03 
2 02E 03 
2 06E-03 
2 11E-03 
2 16E-03 
2 21E-03 
2 26E-03 
2 32E-03 
2 37E-03 
2 43E-03 
2 48E-03 

0 E1 = 
1 strsss= 

/ / 
/ // 

/ // 
/// 

A''' 
/// 

/ 
0 0 X 5 0 001 

45000 0 
55 7 

/ «-' 
tS 

00015 

strain 

0 01252 
0 01262 
0 01272 

0 0128 
0 01286 

Seta= 0 0 1 
alpha= 7 00E-01 

""* *•*-. 
'~~~ """* ~-~ 

theory monotomc 

- theory n=10 

— theory n=1&> 

theory n=1000 

0 002 0 0025 0 0C3 

217 7 
218 8 
219 7 
220 5 
2 2 1 2 

0 
9 23652 
15 2231 

21 58 
25 7302 
28 9699 
31 5121 
33 5121 
35 0861 
36 3216 

37 286 
38 0314 
38 5988 
39 0206 
39 3227 

39 526 

39 6475 
39 7009 
39 6978 
39 6473 
39 5575 
39 4347 
39 2844 
391112 
38 9189 
38 7109 
38 4898 

38 258 
38 0176 
37 7703 
37 5174 

0 
0 00031 
0 00056 
0 00077 
0 00095 

0 0011 
0 00122 
0 00132 
0 00141 
0 00148 
0 00154 
0 00159 
0 00162 
0 00165 
0 00167 
0 00169 

0 0017 
0 0017 
0 0017 

0 00171 
0 00172 
0 00173 
0 00174 

0 00176 
0 00178 

0 0018 
0 00183 
000185 
0 00188 
0 00191 
0 00194 

0 
11 4397 

198118 
26 0403 

30 73 
34 2905 
37 0064 

39 081 
40 6616 
418576 

4 2 751 
43 4044 
43 8661 
44 1737 
44 3569 

44 439 

44 4391 
44 3722 
442506 
44 0843 
43 8817 

43 6495 
43 3932 
431175 
42 8264 
42 5229 
42 2099 
41 8896 
41 5639 
4 1 2 3 4 4 
40 9025 

0 
0 00034 
0 00062 
0 00084 
0 00103 
000118 

0 0013 
00014 

0 00148 
0 00155 

0 0016 
0 00164 
0 00166 
0 00168 

0 0017 
0 0017 

0 0017 
0 00171 
0 00172 
0 00173 
0 00175 
0 00177 
0 00179 
0 00182 
0 00185 
0 00188 
0 00191 
0 00195 
0 00198 
0 00202 
0 00206 

stress= 
k= 

0 
13 9873 
23 8974 
31 0558 

36 297 
40 1674 
43 0363 
45 1604 
46 7223 
47 8544 
48 6543 
49 1954 

49 5331 
49 7102 
49 7599 
49 7081 

49 5753 
49 3778 
49 1288 
48 8388 
48 5152 
48 1681 

47 8 
47 4157 
47 0219 
46 6188 

46 21 
45 7975 
45 3834 
44 9687 

44 555 

122 
2 3E05 

0 
0 00038 
0 00068 
0 00092 
000111 
0 00127 
0 00139 
0 00148 
0 00156 
0 00162 
0 00166 
0 00169 
0 00171 
0 00172 
0 00173 
0 00173 

0 00174 
0 00175 
0 00177 

0 0018 
000182 
0 00186 
0 00189 
0 00192 
0 00196 

0 002 
0 00204 
0 00209 
0 00213 
0 00218 
0 00223 
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E deltak ft 
40000 3 00E 06 58 43 

E1 = 
stress= 

40000 
58 43 

Seta= 
rapha= 

0 01 
07 

3 00E 06 
6 00E-06 
9 OOE 06 
1 20E 05 
1 50E 05 
1 80E 05 
210E05 

8 2 40E 05 
9 2 70E 05 
10 3 OOE 05 
11 3 30E-05 
12 3 60E-05 
13 3 90E-05 
14 4 20E-05 
15 4 50E-05 
16 4 80E 05 
17 5 10E-05 
18 5 40E05 
19 5 70E-05 
20 6 OOE 05 
21 6 30E-05 
22 6 60E-05 
23 6 90E-05 
24 7 20E-05 
25 7 50E05 
26 7 80E 05 
27 8 10E 05 
28 8 40E-05 
29 8 70E-05 
30 9 00E-05 
31 9 30E-05 

t 

161E+01 
2 76E+01 
3 59E+Q1 
4 21E+01 
4 67E-01 
5 01E+01 
5 26E+01 
5 45E-K31 
5 59E+01 
5 69E-01 
5 76E+01 
5 81E-01 
5 83E+01 
5 84E+01 
5 84E+01 
5 83E+01 
5 81E-HJ1 
5 78EKI1 
5 75E+01 
5 72E+01 
5 68E-I-01 
5 64E+01 
5 59E+01 
5 55E+01 
5 50E+01 
5 46E-01 
5 41E+01 
5 36E+01 
5 32E+01 
5 27E+01 
522E+01 

35714 286 
32258 065 
29411765 
27027 027 

25000 
23255 814 
21739 13 
20408 163 
19230 769 
18181818 
17241 379 
16393 443 

15625 
14925 373 
14285 714 
13698 63 

13157 895 
12658 228 
12195122 
11764 706 
11363 636 
10989 011 
10638 298 
10309 278 

10000 
9708 7379 
9433 9623 
91743119 
8928 5714 
8695 6522 
8474 5763 

stress 
0 

1 61E-01 
2 76E+01 
3 59E+01 
4 21E-KJ1 
4 6?E«-01 
5 01E*Q1 
5 26EHI1 
5 45E-M31 
5 59E*01 
5 69E-01 
5 76E+01 
5 81E*01 
5 83E+01 
5 84E+01 
5 84E+01 
5 83E*01 
5 81E--01 
5 78E»01 
5 75E-01 
5 72E*01 
5 68E+01 
5 64E+01 
5 59E*01 
5 55E+01 
5 50E--01 
5 46E-M31 
5 41E*01 
5 36E+01 
E 32E*01 
5 27E-01 
5 22E+01 

strain 
0 

4 50E-04 
8 06E-04 
1 09E 03 
1 32E-03 
1 50E-03 
1 65E 03 
1 77E-03 
1 86E-03 
1 93E-03 

1 99E 03 
2 03E-03 
2 05E-03 
2 07E-03 
2 08E03 
2 08E-03 
2 09E-03 
2 10E 03 
2 12E-03 
215E03 
2 18E-03 
2 21E03 
2 25E03 
2 29E03 
2 33E-03 
2 38E 03 
2 43E-03 
2 48E03 
2 53E-03 
2 58E-03 
2 63E-03 
2 69E-03 

-theory monotomc 

theory n=10 

-theory n=1K> 

theory h"=10DO 

0003 

0 0125 
0 0126 
0 0127 
0 0128 
0 0129 

217 7 
218 8 
219 7 
220 5 
2212 

stress= 
k= 

0 
9 2259 
16 307 

2181 
26 127 
29 538 
32 248 
34 407 
36 129 
37 501 
38 59 

39 448 
40 118 
40 632 
41017 

41295 
41483 
41597 
41647 
41645 
41598 
41513 
41397 
41254 
41 088 
40 904 

40 703 
40 49 

40 265 
40 031 
39 79 

125 
5E05 

0 
0 0003 
0 0006 
0 0008 

0 001 
0 0012 
0 0013 
0 0014 
0 0015 
0 0016 
0 0017 
0 0017 
0 0018 
0 0018 
0 0018 
0 0019 
0 0019 
0 0019 
0 0019 
0 0019 
00019 
0 0019 
0 0019 
0 0019 
0 0019 
0 002 
0 002 
0 002 
0 002 
0 0021 
0 0021 

stress= 
k= 

0 
11 134 
19 487 
25 845 
30 735 
34 527 
37 482 
39 79 

41592 
42 995 
44 079 
44 907 
45 528 
45 979 
46 293 
46 492 
46 598 
46 627 

46 591 
46 501 
46 368 
46 198 
45 997 
45 771 
45524 
45 26 

44 982 
44 693 
44 394 

44 089 
43 778 

158 
3E-05 

0 
0 0004 
0 0007 

0 0009 
00011 
0 0013 
0 0014 
0 0015 
0 0016 
0 0017 
0 0018 
0 0018 
0 0019 
0 0019 
0 0019 
0 0019 
00019 
0 0019 

0 0019 
0 002 
0 002 
0 002 
0 002 
0 002 
0 002 
0 0021 
0 0021 
0 0021 
0 0022 
0 0022 
0 0022 

stress= 
k= 

0 
13 397 
23 211 
30 518 
36 025 
40 209 
43 403 
45 845 
47 708 
49 118 
50 174 
50 947 
51495 
51861 
52 082 
52183 
52 187 

52112 
51973 
51782 
51547 
51277 
50 979 
50 658 
50 318 
49 964 

49 598 
49 224 

48 843 
48 458 
48 07 

198 
1E-05 

0 
0 0004 
0 0007 

0 001 
0 0012 
0 0014 

00015 
0 0016 
0 0017 
0 0018 
0 0019 
0 0019 
0 002 
0 002 
0 002 
0 002 
0 002 
0 002 
0 002 
0 002 

0 0021 
0 0021 
0 0021 
0 0021 
0 0022 
0 0022 
0 0023 
0 0023 
0 0023 
0 0024 
0 0024 
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BQ BS BTE BV CA 

12 i 

c 
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• experimental stress ratio 1 0 

ogarithm function 

power fundi on 

4^ 
- J 1.E+00 1.E+01 1.E+02 1.E+03 

fatigue life 

1.E-KM 1.E+05 1.E+06 

itres rati< 
1to0 

Logarithm function: 
A n Sexp 

-0.1 1 257 
29 171 

280 141 
330 131 
1600 121 

4000 101 
24000 88 
48000 81 
390000 71 
800000 61 

Sexp/ft 
1 

0.6654 
0 5486 
0.5097 
0.4708 

0 393 
0.3424 
0.3152 
0.2763 
0.2374 
RMS= 

=nAA 
Sthe 

1 
0.7141 
0 5692 
0.5599 
0 4782 
0 4363 
0.3647 
0 3403 
0.276 

0.2569 
SA2= 

he-Sexpffi}"2 
0 

0 0024 
0.0004 
0.0025 
5E-05 
0.0019 
0.0005 
0.0006 
8E-08 
0.0004 
0 0011 

Power function t= 
B 

-0.064 

RMS= 

Sthe 
1 

0 7846 
0.6396 
0.629 

0.5281 
0 4694 
0.3548 
0.3105 
0.1765 
0.1305 
SA2= 

1+Bln(n) 
exp/ft)*-2 

0 
0 0142 
0.0083 
0.0142 
0 0033 
0 0058 
0 0002 
2E-05 
0.01 

00114 
0 0084 

Regression analysis 
Sexp'lnfn 

0 
2 2405 
3 0915 
2.956 
3 4736 

3 2595 
3 4535 
3 3973 
3 5566 
3 2262 

SUM: 28.655 

ln(n) (ln(n»*2 
0 0 

3.3673 11339 
5.6348 31.751 
5.7991 33.629 
7.3778 54431 
8.294 68.791 

10.086 10172 
10.779 116.19 
12.874 165.74 
13.592 184.75 
77.804 758 34 B= -0 064 
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CO CP CQ CV CY DA 

n 
I 

E 

a 
2 

12 -, 

08 

32 

• experimental stress ratio 1 1 

logarithm function 

power function 

Q 
1 E+00 1 E+01 1 E+02 1 E+03 

fatigue life 

1 E+34 1 E-K>5 1 E+05 

n o 
[2 o 
-» 3 
S- -a 
o T . 
— . i/>' 
. . O 
i— 3 

a* 
ft 
o 
o 

O 

c 
3 o 
5' 
3 
P 
3 
Q. 5" 

0Q 
P 

stres rati! 

1 to 0 5 

Logarithm function t=n''A 
A n 

-0 1 1 
19 
170 
400 
3000 

4000 
23000 
1E+05 
9E-KI5 

Sexp 
223 
146 
131 
113 
90 
86 
77 
65 
53 

Sexpfft Sthe 
1 1 

0 655 0 745 
0 587 0 598 
0 507 0 549 
0 404 0 449 
0 386 0 436 
0 345 0 366 
0 291 0 308 
0 238 0 254 
RMS= S"2= 

Power function t=1+Bln(n) 
the-Sexp/ft̂  B 

0 
0 008143 
0 000119 
0 001811 
0 002066 
0 002566 
0 000441 
0 000274 
0 000262 
0 00224 

-0 065 

RMS= 

Sthe 
1 

0 8072 
0 6638 
0 6078 
0 4758 
0 457 
0 3425 
0 2291 
01024 
SA2= 

tSthe-Sexp/ftf2 
0 

0 023264277 
0 005825962 
0 01020648 
0 005220843 
0 005092076 
7 83033E-06 
0 003891142 
0 018289289 
0 010256843 

Regression analysis 
Sexp*ln(n 

0 
19277 

3 017 
3 036 
3 2313 
3 1986 
3 4678 
3 4323 
3 2585 

SUM 24 569 

Infn) 
0 

2 9444 

5 1358 
5 9915 
8 0064 

8 294 
10 043 
11775 
1371 
65 901 

(lnCn)f2 
0 

8 6697 

26 376 
35 898 
64102 

68 791 
100 87 
138 66 
187 97 
631 33 B= -0 065 
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A exp enmental stress ratio 1 0 5 

logarithm function 

- - - • power function 

^ ^ ^ " J . ' H 

*"*^ ' ' " t 

• " i 1 — ••— i i 

1 E-tOO 1E+01 1 E+02 1 E-»03 

fatigue life 

1 E+04 1 E-K15 1E+06 

stres rati* 

1to1 

Logarithm function t=nAA 
A n Sexp Sexptft sthe {Sthe-Sexp/fty^ 
-0 1 250 1 1 0 

5200 113 0 45 0 425 0000728433 
32000 95 038 0 3544 0000655724 
105000 81 0 32 0 3147 8 67014E-05 
330000, 74 j 03 02806 0000235949 

RMS= SA2= -0 029290162 

Power function t=1 +Bln(n) 
B Sthe (Sthe-Sexpffl)*2 

-0 06 1 0 
0 4988 0 002186732 
0 3923 0 000151721 
0 3227 166164E-06 
0 2556 0 001629839 

RMS= S*2= 0 001984977 

Regression analysis 
Sexp*ln(n ln(n) (lnfn))*2 

0 0 0 
38675 8 5564 73212 
3 9419 10 373 107.61 
3746 11562 133.67 

37612 12.707 16146 
SUM 15317 43198 47596 B= -0 059 


