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ABSTRACT 

 
This study makes an attempt to understand the performance of Apache Spark and the 

MLlib platform. To this end, the cluster computing system of Apache Spark is set up and five 

supervised machine learning algorithms (Naïve-Bayes, Decision Tree, Random Forest, Support 

Vector Machine and Logistic Regression) were investigated. Among the available cluster modes, 

these algorithms were implemented on two cluster modes, Local and GPU Cluster mode. The 

performance metrics such as classification accuracy, area under ROC and area under PR for the 

algorithms were investigated by considering three datasets. It is concluded that the algorithms are 

computed in parallel in both the modes with GPU Cluster mode performing better than the Local 

mode for all algorithms in terms of time taken for completion. However, the mentioned 

performance metrics were not affected in the two modes hinting that the parallel computation 

does not play a major role in determining these metrics.  
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1. INTRODUCTION AND RELATED WORK 

With the rapid growth of the digital age, there has been an explosion in the amount of 

data generated. This data is generated through almost every action, whether it is using GPS-

equipped smartphones or using social media or online shopping or even browsing history. There 

is a trail of digital footprints with everything one does digitally. Some of the areas generating this 

massive amount of data are scientific experiments, industrial processes, healthcare records, 

weather sensors and business transactions. This collection of data, called Big Data, can be 

utilized to our advantage to know reliably about any process, gain new insights and even predict 

future trends. With the increasing amount of data there is an ever-growing demand for faster data 

ingestion and processing. Big Data infrastructures have come up with faster, more reliable and 

scalable computing architectures for efficient mining of such massive datasets [1]. Machine 

learning systems help to manage, analyze and use the data far more successfully than before. The 

insight gained is deeper and faster by automating analytical model building which is far better 

than human analysis. Several machine learning frameworks have contributed to scientific 

applications in healthcare informatics [2], [3], [4], genome data analysis [5], [6], text mining [7], 

[8] and stochastic modelling [9] to name a few. 

The Apache Hadoop project was developed as an open-source, reliable, scalable solution 

for distributed computing [10]. It allows for distributed processing of huge data across clusters of 

computers. It is fault-tolerant and delivers leading services. Apache Spark was developed as a 

faster alternative to Hadoop. Hadoop MapReduce reads and writes from disk, which slows down 

the processing speed. Spark, on the other hand, stores the data in-memory and reduces the 

read/write cycle. This results in running the applications 100x faster in memory and 10x faster on 

disk than Hadoop MapReduce [11].  
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 Apache Spark MLlib has emerged as one of the prominent platform-independent and 

open source libraries for distributed computing. It is provided with Apache Spark [12] and offers 

a variety of machine learning algorithms for classification, regression, clustering, feature 

extraction, etc. [13]. There have been limited studies on Apache Spark MLlib so far, even though 

the machine learning has found many applications in the research community. [14] offers a study 

on Apache Spark MLlib and its capabilities through a series of experiments. This study initiates a 

study of big data machine learning on massive datasets and performs a comparative study with 

the Weka library [15] to evaluate Apache Spark MLlib. It is established that Apache Spark MLlib 

works at par with the mentioned software. 

Apache Spark is developed in the Scala programming language, and offers interfaces for 

Java, Python and most recently the R language. It makes use of the distributed computing 

architecture of Apache Spark to run the machine learning algorithms faster in an iterative manner 

without compromising their performance. The performance can be further leveraged by using 

different mode of operations Spark offers. The present studies presenting the performance of the 

Apache Spark Machine Learning library are focused on measuring the performance through 

Scala and Java implementations. Keeping [14] as the motivation, the current study plans to 

explore the Apache Spark architecture that powers the MLlib and evaluate its performance 

within the different modes of cluster operation it offers using Python as our main language of 

implementation.  

In this paper, we implement five supervised machine learning classification algorithms 

namely Naive-Bayes, Decision Tree, Random Forest, Support Vector Machine and Logistic 

Regression and measure their performance. These performance metrics consists of accuracy, 

execution time, area under ROC and area under PR. These algorithms are implemented in two 
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modes of cluster operation, Local Cluster mode and GPU cluster mode to better compare the 

performance. Since Apache Spark can be evaluated best when it is working in parallel on large 

datasets, we use datasets of considerable size (>5 GB). The objectives of the study can be 

summarized as follows: 

1) To understand the cluster computing system of Apache Spark and implement on large 

datasets. 

2) To understand the MLlib platform and measure performance metrics such as accuracy, 

execution time, area under ROC and area under PR of five supervised machine learning 

classification algorithms. 

3) To evaluate the performance of algorithms on large datasets between different mode of 

cluster operations. 

 The rest of the study is organized as follows: Chapter 2 presents the concepts of Machine 

Learning and Apache Spark used in this study. Chapter 3 presents the methodology followed 

throughout the study. The experiments and results are presented in Chapter 4 and 5, respectively. 

Chapter 6 presents the conclusion and discusses limitations and possible future work.  
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2. MACHINE LEARNING AND APACHE SPARK 

In this chapter, the various architectural and mathematical concepts involved in the 

process for implementation of the current study are presented. The five machine learning 

algorithms (Naive-Bayes, Decision Tree, Random Forest, Support Vector Machine and Logistic 

Regression) for supervised learning are briefly discussed first followed by the explanation of the 

Apache Spark architecture and the various components with the primary focus on the Apache 

Spark Machine Learning library. The concept of Resilient Distributed Dataset (RDD), the 

associated transformations and actions, and the Spark Context is explained thereafter and 

concluding with an explanation of various modes of cluster operation in Spark. 

2.1. Machine Learning Algorithms 

Machine learning is a way to make a computer learn on the basis of hundreds of examples 

and experiences without programming them explicitly [16]. It uses the data given to build the 

logic using different algorithms. Machine learning can be broadly classified into three categories: 

1) Supervised Learning, 2) Unsupervised Learning, and 3) Reinforcement Learning. 

In Supervised Learning, the algorithms can be used to predict the output values 

(Regression) or classify the category (Classification). There are two types of supervised 

algorithms, Parametric and Non-Parametric. Parametric algorithms utilizes fixed number of 

features to predict the unknown class label whereas Non-Parametric is flexible with number of 

features for prediction and parameters can grow as it learns from more data [17]. Examples 

include trying to classify mails as “Spam” or “Not Spam”, predicting the house prices for the 

following years based on current market values, etc. 

In Unsupervised Learning, the system tries to find the hidden pattern or meaningful 

structures in the unlabeled data. There are no pre-declared output class labels to help the system 
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learn. It can be used to discover either association between data points (Association) or to cluster 

them together depending on their inherent properties (Clustering). Examples include market 

basket analysis, identifying fraudulent credit card purchases, recommender systems, etc. 

In Reinforcement Learning, the system must interact with the dynamic environment and 

make decisions to arrive at a goal. It works on collecting feedback to evaluate expected or 

unexpected behavior of the system. Examples include self-driving cars, self-cleaning vacuum 

cleaners, etc. [16] [18]. 

2.2. Supervised Learning Algorithms 

In Supervised Learning, we focus on five algorithms out of a number of supervised 

machine learning algorithms. These are Naive-Bayes, Decision Tree, Random Forest, Support 

Vector Machine and Logistic Regression. A detailed explanation of these algorithms is available 

in [19]. However, a brief description is presented here for completeness. 

2.2.1. Naive-Bayes Classification 

Naive-Bayes Classifier belongs to the family of probabilistic classifiers and is based on 

the Bayes’ Theorem. It assumes strong independence between the features [20]. Bayes’ Theorem 

states that the probability of occurrence of a hypothesis H given an event E has occurred P(H|E) 

is given by: 

 
𝑃(𝐻|𝐸) =

𝑃(𝐸|𝐻) ∗  𝑃(𝐻)

𝑃(𝐸)
 

(1) 

 

where P(E) is probability of the event, P(H) is the probability of the hypothesis H before the 

event E, and P (E|H) is the probability of the event E given the hypothesis H has occurred [21]. 

We extend Bayes’ Theorem to a number of independent variables X={x1, x2,…, xm}. For these 
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given set of variables, we construct the posterior probability for event Ci from a set of possible 

outcomes C={c1, c2,…, cd}. Using Bayes’ rule: 

 𝑝(𝐶𝑖|𝑥1, 𝑥2, . . , 𝑥𝑚) ∝ 𝑝(𝑥1, 𝑥2, . . , 𝑥𝑚|𝐶𝑖) ∗ 𝑝(𝐶𝑖) (2) 

 

where 𝑝(𝐶𝑖|𝑥1, 𝑥2, . . , 𝑥𝑚) is the posterior probability that X belongs to Ci. Now, Bayes assumes 

the conditional probabilities of the independent variables are independent, we can break down 

the likelihood to a product given as: 

 
𝑝(𝑋|𝐶𝑖) ∝  ∏ 𝑝(𝑥𝑘|𝐶𝑖)

𝑚

𝑘=1

 
(3) 

 

The posterior probability can be rewritten as: 

 
𝑝(𝐶𝑖|𝑋) ∝ 𝑝(𝐶𝑖) ∗  ∏ 𝑝(𝑥𝑘|𝐶𝑖)

𝑚

𝑘=1

 
(4) 

 

Now, a data point from a testing set is assigned a class label Ci that achieves the highest posterior 

probability [22]. 

2.2.2. Decision Tree 

 Decision Tree Classifier is a tree-based classifier that consists of hierarchy of decisions to 

predict the unknown class label. A model is created where the class of the target dependent 

variable is predicted based on several input variables. The tree is learned by splitting the input 

features into subsets based on the information gain. This process is repeated on each derived 

subset until all data points have a class label assigned. Information gain is used to determine 

which feature to split in building the tree. The Information gain is given as:  

 𝐼𝐺(𝑇, 𝑎) = 𝐻(𝑇) − 𝐻(𝑇|𝑎) (5) 
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where 𝐼𝐺(𝑇, 𝑎) is the information gain for parent node T and children nodes a, 𝐻(𝑇) is the 

entropy of the parent node and 𝐻(𝑇|𝑎) is the weighted sum of entropy of the children node. 

Entropy measures the amount of disorder or uncertainty in a system [23]. Equation 5 can be 

rewritten as: 

 

𝐼𝐺(𝑇, 𝑎) = − ∑ 𝑝𝑖 log2 𝑝𝑖 − ∑ 𝑝(𝑎)

𝑎

∑ −Pr (𝑖|𝑎) log2 Pr (𝑖|𝑎)

𝐽

𝑖=1

𝐽

𝑖=1

 

(6) 

 

where p1, p2,… are the fractions that add to 1 and represent the percentage of each class 

presented in the child node that results from a split in the tree [24]. 

2.2.3. Random Forest 

 Random Forest is an ensemble learning method used for classification and regression. 

Ensemble learning methods combine more than one algorithm of the same or different type for 

classifying purposes. Random Forest builds an ensemble of decision trees. It creates a set of 

decision trees from a randomly selected subset of the training set. It adds randomness to the 

model while growing the trees. Instead of searching for the most important feature while splitting 

a node, it searches for the best feature among a random subset of features. It then aggregates the 

votes from different decision trees to decide the final class label of the testing data point. The 

data point is assigned a class which gets maximum votes. Random Forest offers to improve the 

problem of overfitting with decision trees [25].  

2.2.4. Support Vector Machine 

 In an SVM model, the data points are represented as points in space and they are 

separated by a clear gap to assign them into class labels. While training the data, this gap is 

created by constructing hyperplanes in high-dimensional space. In 2-D space, this hyperplane is 

represented as a line that divides the plane in two parts. Each class label lies in each of these 
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parts. When a new data point is required to be classified, it is mapped into the space and 

predicted to belong to a class based on which side of the hyperplane they lie [26]. 

2.2.5. Logistic Regression 

 Logistic Regression is the regression method to describe the relationship between a 

dependent variable and one or more nominal, ordinal, interval or ratio-level independent 

predictor variables. When this dependent variable is binary in nature, it is called binary logistic 

regression model, and multinomial logistic regression when there are more than two categories 

[27]. Here, we employ a linear combination of one or more predictor variables to calculate the 

log-odds of the probability of an event. Mathematically, it is represented as: 

 
𝑙𝑜𝑔𝑖𝑡(𝑝𝑖) =

𝑝(𝑦 = 1)

1 − 𝑝(𝑦 = 1)
= 𝛽0 + 𝛽1𝑥1,𝑖+. . . +𝛽𝑚𝑥𝑚,𝑖 

(7) 

 

where pi is the probability outcome, β0, β1,…, βm are the regression coefficients, and x1, x2,…, xm 

are the predictor variables for each data point i. The data point i varies from 1 to the length of the 

training set [28]. 

2.3. Apache Spark 

Apache Spark is an open-source cluster computing framework. It was originally 

developed by Matei Zaharia in 2014 and later donated to the Apache Spark Foundation. The 

framework is built on top of the Hadoop Distributed File System (HDFS). It works on distributed 

processing of data, handing out data to separate worker nodes for processing. The worker nodes 

are managed by a master node which dispatches and schedules the distributed tasks. Hence, 

Spark requires a cluster manager and distributed storage system [29]. Its faster in-memory data 

engine and developer-friendly API makes it the framework of choice [11]. 
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2.3.1. Architecture 

 

Figure 1. Apache Spark Ecosystem [30] 

The architecture of Spark is presented in Figure 1. Spark Core serves as the underlying 

general execution engine and is the foundation of Apache Spark. It supports dispatching of 

distributed tasks, their scheduling and I/O functionalities. This is made possible through an 

application programming interface (API) for Java, R, Python and Scala. With interfaces present 

for many languages, it can support a wide variety of languages. It delivers speed utilizing the in-

memory computing capabilities [29]. The API follows a higher-level programming approach 

with use of a driver program that calls parallel operations on a Resilient Distributed Dataset 

(RDD) by passing a function to Spark. The core schedules the execution in parallel on the 

available clusters. Until Spark 2.1.x, Resilient Distributed Dataset (RDD) was the primary API. It 

is a fault-tolerant, read-only collection of dataset which is distributed over the cluster machines 

for processing. From Spark 2.2.x, the Dataset API is promoted, though RDD is still in use. We 

discuss RDD in a later section. Other than using RDD, Spark also uses Broadcast variables, 

which help in sharing of common read-only data among clusters, and Accumulators, which help 

in program reductions [31]. 
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On top of the Spark Core, there are four components namely Spark SQL, Spark 

Streaming, Machine Learning library and GraphX. Spark SQL is the module of Spark that deals 

with structured data using dataframes. It has a SQL-like interface to query and process data [31]. 

Spark Streaming allows to add real-time processing of data in addition to Spark’s batch 

processing. It breaks down the incoming data stream into micro batches and processes them in 

the same way as batch processes in Spark. Both processes work on the same code in the same 

framework, thus reducing overhead [31]. GraphX is a distributed framework on top of Spark for 

processing graph structures. It allows users to build and process graph structured data 

interactively [30]. The Machine Learning library allows to implement the machine learning 

pipelines in a distributed manner, thereby decreasing the overall processing time significantly. 

There are a growing number of machine learning algorithms for Classification, Clustering, 

Collaborative Filtering, Regression and Dimensionality Reduction. All algorithms are 

implemented in a distributed fashion and allow for easy execution of feature extraction, 

selection, and transformation on structured dataset. It provides tools for constructing, evaluating 

and tuning ML pipelines, along with saving and loading algorithms, models and pipelines [32]. 

2.3.2. Resilient Distributed Dataset (RDD) 

Resilient Distributed Dataset is the primary API in Spark since its deployment. It is an 

immutable collection of elements of data, which is distributed among the different nodes in the 

cluster. These nodes could then be operated in parallel using the operations defined for RDDs 

[30]. The operations are split across the cluster, executed in parallel leading to reduced time in 

processing [31]. RDDs are fault-tolerant since they can be reconstructed in case of loss by 

keeping track of the sequences that produced them [29]. They can be created in two ways: 
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parallelizing an existing dataset in your program or referencing a dataset from an external storage 

program like HDFS, Hbase, etc [33].  

There are two types of operations available with RDDs, “transformations” and “actions”. 

Transformations create a new RDD from an existing one, and Actions return a value to the driver 

program after running computation on a RDD. All transformations are lazy in Spark, which is 

they do not compute the results immediately. Instead, they remember the computation that needs 

to be performed and apply that computation only when an action is applied by driver program. 

This design helps to run Spark efficiently [33]. The most popular transformation is “map” which 

passes each RDD element through a defined function, returning a new RDD, and an action is 

“reduce” which reduces the RDD into a collective value by passing through a defined function. 

As explained, transformations like map is a lazy operation and will only be evaluated when 

reduce or any other action will be called on the RDD. We have used map, filter transformation 

and reduce, count actions in the current study. “Filter” filters the RDD based on a filter function, 

and “Count” returns the number of elements in the RDD passed to it. One of the interesting 

properties of Spark is the ability to cache datasets in memory. When a dataset is persisted, each 

node that has used the dataset to do some computation will store it in partitions and reuse it later 

for other actions. This helps in faster usage of datasets. The datasets can be persisted in a number 

of different ways: only in memory (default level), memory and disk, disk only. These storage 

levels are available for simultaneous replication on two nodes as well [33]. 

2.3.3. Spark Context 

The Spark Context is the main entry point for Spark functionality. It allows the driver 

program to access the clusters through the means of a cluster manager like YARN, Mesos, etc. 

There must only be one active Spark Context per JVM and it should be stopped using stop() 
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before creating a new one [34]. We require Spark Conf to create the Spark Context. It stores 

configuration parameters like cluster size, cores, application name to connect driver program to 

the cluster, etc.  

 

Figure 2. Relationship between driver application, Cluster Manager and executors [35] 

The relationship between the driver application, the cluster resource manager and 

executors is shown in Figure 2. Each cluster has one driver node and one or more worker nodes. 

These worker nodes have executors, which can be accessed by the driver application through the 

Spark Context. As soon as the driver program starts executing, the Spark Context creates a job 

and breaks it into stages. These stages are further broken into tasks which are scheduled by the 

Spark Context on each executor. These executors run the user code, run computations and cache 

the data for the application. They return the result back to driver application [35]. 

2.3.4. Modes of Cluster Operation 

The Spark Context coordinates the Spark applications that are run on a cluster. It can 

connect to different types of cluster managers for allocation of resources across applications, 

send out tasks to executors, and collect the results from them [36]. There are four modes of 
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operations supported by Spark: 1) Local mode, 2) Standalone mode, 3) using Apache Mesos, and 

4) using Hadoop YARN. 

The Local mode or the Pseudo cluster mode is a single JVM deployment mode where the 

driver, executor and master are on the same machine. The default parallelism arises from the 

number of threads specified in the master URL [37]. Standalone mode is the basic cluster 

manager available with Spark. It consists of master and workers with specified memory and 

cores. By default, it takes up all the cores unless otherwise specified. It allows for automatic 

recovery, SSL encryption and web UI for cluster and job status. Apache Mesos is helpful for 

deploying and managing large-scale clusters. It makes use of dynamic resource allocation and 

isolation to handle workload. It authenticates workers’ registration with the master, has 

frameworks that allow for request and allocation of resources to workers. Hadoop YARN 

separates the functionalities of resource manager and job scheduling such that there is a Global 

Resource Manager and per-application Application Manager. It contains security for 

authorization, web UI for managing resources, and supports manual recovery. 

We observe the Local mode and the Standalone mode in this study as the Standalone 

mode provides the same features as high-end cluster managers and is comparable. 



14 

 

3. METHODOLOGY 

The aim of the study is to investigate the performance of machine learning algorithms in 

two cluster modes of the Apache Spark MLlib platform and later compare them. For this 

purpose, five machine learning algorithms are implemented on large datasets with size in tens of 

GBs so that the cluster computing system of Apache Spark can be better studied and the 

performance can be evaluated. The objectives of the study are accomplished by following a 

methodology that is described in detail in this chapter. The methodology adopted in this study 

involves five steps: 1) Data Description, 2) Prerequisite installation, 3) Data splitting and 

Training, 4) Testing the model, and 5) Output metrics. 

3.1. Data Description 

Prior to employing any machine learning algorithm, there are three steps that needs to be 

completed: 1) Data Acquisition from a reliable source, 2) Data Cleaning, and 3) Evaluation of 

descriptive statistics for the cleaned data. Apart from these steps, we also convert the acquired 

data into LabeledPoint format as required by the algorithms. We describe these steps in detail in 

this section. 

3.1.1. Data Acquisition 

Data Acquisition is the process of collecting data from various sources and utilizing it to 

address the problem statement and analyze the results. Data can be collected primarily by two 

methods: 1) Primary Data Collection where the data is first-hand and collected through surveys, 

interviews, site works, etc., and 2) Secondary Data Collection where data is available to use 

through public libraries, books, web information, etc. [38]. In this study, the datasets are 

collected through the Primary Data Collection from the UC Irvine Machine Learning Repository 

[39]. This repository consists of databases, domain theories and domain generators that are useful 
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for the machine learning community [40]. The datasets are selected based on the number of 

instances present, attribute type, and default task. The default task is chosen as “Classification”, 

attribute type as “Real”, and the number of instances to be equal to or more than five million. 

Based on these filters, the three datasets which are finalized are: 1) HIGGS, 2) SUSY, and 3) 

Hepmass. The explanation for them is given below. 

The datasets HIGGS and SUSY are part of a same physics experiment for classification 

where exotic particles are generated by collisions at high-energy particle colliders. The collisions 

that produce these exotic particles are called Signal process and the collisions that produce other 

particles are called Background process [41]. The datasets are produced by Monte Carlo 

simulations and used to solve the classification problem to identify the signal process and 

background process. The HIGGS dataset contains information about collisions that produce the 

HIGGS boson and those which do not. The SUSY dataset contains information about collisions 

that produce supersymmetric particles and those which do not. 

The dataset Hepmass is also part of a physics experiment for search of exotic particles. This 

experiment requires sorting through a large number of collisions to find the signatures of a 

process that produces exotic particles. These signatures are learned from Monte Carlo 

simulations of the collisions that produce the expected particles [42]. There are three datasets 

according to the mass of the particle. We have used the dataset where the mass of the particles 

produced is 1,000. The classification problem is to identify the signal process that produces the 

exotic particles and the background process that does not. 

3.1.2. Data Cleaning 

Data cleaning is the process of correcting the inconsistencies in the data with the aim of 

generating more organized and structured data [43]. Very often, the data acquired from the 
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primary source (called as raw data) consists of missing information, typographic errors and 

inconsistent format, etc. It is almost impossible to perform any kind of statistical analysis on 

such unorganized inconsistent data. Therefore, the data needs to be corrected for any such 

existing errors and inconsistencies using tools such EXCEL®, MATLAB® and SQL® etc. 

There are a total of twenty-eight features in the HIGGS dataset where the first label is the 

class label (1 for signal, 0 for background), followed by 28 features. Among these 28 features, 

the first 21 features are low-level features, which depict the kinematic properties measured by 

the particle detectors in the accelerator, and the next 7 features are high-level features, which are 

functions of the first 21 features, derived by physicists to help discriminate between the two 

classes. The 28 features are as follows: lepton pT, lepton eta, lepton phi, missing energy 

magnitude, missing energy phi, jet 1 pt, jet 1 eta, jet 1 phi, jet 1 b-tag, jet 2 pt, jet 2 eta, jet 2 phi, 

jet 2 b-tag, jet 3 pt, jet 3 eta, jet 3 phi, jet 3 b-tag, jet 4 pt, jet 4 eta, jet 4 phi, jet 4 b-tag, m_jj, 

m_jjj, m_lv, m_jlv, m_bb, m_wbb, m_wwbb. There are 11 million data points in this dataset 

sizing to 8.0 GB. All features are in real number format and there are no missing values [44]. 

Positive examples amount to 53% of the dataset [41]. 

For the SUSY dataset, there are a total of eighteen features where the first label is the 

class label (1 for signal, 0 for background), followed by 18 features. Among these 18 features, 

the first 8 features are low-level features which depict the kinematic properties measured by the 

particle detectors in the accelerator, and the next 10 features are high-level features, which are 

functions of first 8 features, derived by physicists to help discriminate between the two classes. 

The 18 features are as follows: lepton 1 pT, lepton 1 eta, lepton 1 phi, lepton 2 pT, lepton 2 eta, 

lepton 2 phi, missing energy magnitude, missing energy phi, MET_rel, axial MET, M_R, 

M_TR_2, R, MT2, S_R, M_Delta_R, dPhi_r_b, cos(theta_r1). There are 5 million data points 



17 

 

sizing to 2.5 GB. All features are in real number format and there are no missing values [45]. 

Positive examples amount to 46% of the dataset [41]. 

There are total of twenty-seven features in Hepmass dataset where the first label is the 

class label (1 for signal, 0 for background), followed by 27 normalized features [46]. Among 

these 27 features, the first 22 features are low-level features which depict the result of standard 

reconstruction algorithms and are roughly the four-vectors of the reconstructed events: the 

leading lepton momenta lepton pT, the momenta of the four leading jets jet 1 pT, the b-tagging 

information for each jets and the missing transverse momentum magnitude and angle MTM. The 

next 5 features are high-level features strictly to combine the low-level information to form 

approximate values of the invariant masses of the intermediate objects: mlv, mjj, mjjj, mjlv, 

mWWbb [42]. There are 7 million data points for the training purpose sizing to GB and 3.5 

million data points for testing sizing to GB. All features are in the real number format and there 

are no missing values [44]. The dataset has equal positive and negative examples that is 50% 

positive examples [42]. 

There is no inconsistent format as all features are in real number format with class label 

as integer and no missing data [44][45][46]. 

3.1.3. Descriptive Statistics 

Descriptive statistics consists of a set of techniques that are used to summarize and 

characterize the measurements of the given data. Generally, descriptive statistics includes (a) the 

basic statistical measures such as mean, median, range, standard deviation, (b) identifying the 

type of distribution, and (c) recognizing the patterns among variables. The Apache Spark MLlib 

Statistics library is utilized to accomplish this, and the results and patterns are discussed later in 

Chapter 5. 
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3.1.4. Data Conversion 

The supervised machine learning algorithms in Apache Spark MLlib require the input 

data to be in the form of Labeledpoint libsvm format. As defined in the Apache Spark 

documentation, a labeled point is a local vector, either dense or sparse, associated with a label. It 

also supports data stored in the LIBSVM format [47]. It is a text format where each line first 

begins with the class label followed by a labeled sparse feature vector. Figure 3 presents an 

example where there are three features preceded by the label in libsvm format.

 

Figure 3. An example of libsvm format [47] 

Here, the class label can be binary or multiclass and all features are given an index 

starting from index 1. We use sparse training and testing data for this study. The three datasets 

are converted into the required format using a python script to include the class label and the 

corresponding index for their features. From now on, all input datasets used in machine learning 

algorithms are in the libsvm format. 

3.2. Prerequisite Installation 

In order to begin our study, we need to install the required software and fulfill some 

prerequisites. We discuss these in this section. We are using the Ubuntu operating system [48] 

and begin by installing Java 8 [49] and Python 3.6.4 [50] in the system. Next, we install 

Anaconda 5.1.0 [51] to access PySpark. Anaconda is a free and open-source distribution of the 

Python and R programming language. The graphical interface Anaconda Navigator helps to 

launch applications and manage packages, environments without command-line commands [52]. 

Following this installation, we install PySpark [53]. Spark is based on the Scala programming 

Label Index1:Value1 Index2:Value2 Index3:Value3 
0 1:1.532  2:2.251  3:5.652 
1 1:4.521  2:8.521  3:1.564 
0 1:1.245  2:5.215  3:3.584 
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language. Hence, in order to use Spark with Python we need PySpark that exposes the Spark 

programming model to the Python language. We also install Spark 2.3.0 [53] alongside PySpark. 

After successful installation of all required software, we need to set the environment variables 

for the system so that the software can access the path variables. Path variables are environment 

variables in operating systems that specify the directories where executable programs are present 

[54]. We need to set path variables for Spark, PySpark, Java, and Anaconda. This process needs 

to be completed for both the Local cluster and the GPU cluster mode. After completion of this 

step, we can move to begin our implementation. 

3.3. Data Splitting and Training 

To begin the implementation, we first need to define the Spark Context for the program. 

As explained in the earlier section, it is the main entry point for Spark functionality [34] and 

must be specified before beginning to create RDDs. We specify three parameters for the Spark 

Context. They are the application name, cluster URL, and the number of cores. Application name 

should be a meaningful name defining the purpose of the program. Cluster URL is the URL for 

the cluster we want to connect to. For a local cluster, it is specified by the keyword “local”. The 

number of cores specifies the number of worker nodes that will be created. As mentioned in an 

earlier section, worker nodes does the processing work in Spark [35]. We range the core values 

from two to four in this study. This means that the number of worker nodes for each algorithm 

for each dataset will span from 2 to 4. We use the same settings for the Local cluster and the 

GPU cluster mode. Due to technical limitations, the core value could not be extended beyond 4. 

Next, we input the desired dataset in libsvm format into input RDD using the “loadlibSVMFile” 

method of the MLUtils class. The MLUtils class defines helper methods to load, save, and pre-

process data used in MLlib [55]. We now have the dataset loaded into an initial input RDD. 
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Next, we split the input RDD into training and testing RDD with split ratio of 75/25 and a 

random seed value. We now train the model with the training set using the “train” method and 

specifying the various parameters available for the five supervised machine learning algorithms 

(Naive-Bayes, Decision Tree, Random Forest, Support Vector Machine and Logistic Regression). 

The explanation and respective values used in algorithms are presented in Table 1-5. 

Table 1. Parameters used for Naïve-Bayes Classification algorithm [56] 

Parameter Explanation Value used 

lambda the smoothening parameter (default 1.0) 1.0 

 

Table 2. Parameters used for Decision Tree Classification algorithm [57] 

Parameter Explanation Value used 

numClasses number of classes for classification 2 

categoricalFeaturesInfo 
map storing arity of categorical features ({} 

for none) 
{} 

impurity 
criterion used for information gain selection 

(gini or entropy) 
entropy 

maxDepth maximum depth of tree (default 5) 6 

maxBins 
number of bins used for finding splits at 

each node (default 32) 
32 

minInfoGain 
minimum info gain required to create a split 

(default 0.0) 
0.15 
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Table 3. Parameters used for Random Forest Classification algorithm [58] 

Parameter Explanation Value used 

numClasses number of classes for classification 2 

categoricalFeaturesInfo 
map storing arity of categorical features 

({} for none) 
{} 

impurity 
criterion used for information gain selec-

tion (gini or entropy) 
entropy 

featureSubsetStrategy 
number of features to consider for spilts at 

each node 
auto 

maxDepth maximum depth of tree (default 5) 6 

numTrees number of trees in the random forest 5 

maxBins 
number of bins used for finding splits at 

each node (default 32) 
32 

 

Table 4. Parameters used for SVM Classification algorithm [59] 

Parameter Explanation Value used 

iterations number of iterations 1000 

numClasses number of classes (default 2) 2 

validateData algorithm should validate the data before training TRUE 

 

Table 5. Parameters used for Logistic Regression algorithm [60] 

Parameter Explanation Value used 

iterations number of iterations 1000 

numClasses number of classes (default 2) 2 

validateData 
algorithm should validate the data for singularity before 

training 
TRUE 
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The next step is to test the trained model on the testing set. We do so by using the 

“predict” method. The predict method is executed for each row of the test set using the “map” 

transformation of Spark. 

3.4. Performance Metrics 

We now move to evaluate the performance of the model and calculate the results for the 

experiments. For supervised classification problems, the basic comparison is to match the true 

class label with the predicted one to get the accuracy. The result of a data point can be a True 

Positive, TP (label is positive and prediction is positive too), False Positive, FP (label is negative 

but prediction is positive), True Negative, TN (label is negative and prediction is negative too) 

and False Negative, FN (label is positive but prediction is negative). In addition to evaluating 

pure accuracy, area under ROC (Receiver Operating Characteristic) and area under Precision-

Recall (PR) are considered as well. ROC is a plot of the true positive rate (TPR) versus the false 

positive rate (FPR) for every possible classification threshold [61]. The true positive rate is given 

by Equation 8, and the False Positive Rate is given by Equation 9. 

 
𝑇𝑃𝑅 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(8) 

 
𝐹𝑃𝑅 =

𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

(9) 

The accuracy of the curve depends on how well the classifier can distinguish between the binary 

classes and is measured by the area under ROC. Area under ROC is given by Equation 10. 

 
𝐴𝑈𝑅𝑂𝐶 = ∫

𝑇𝑃

𝑃
𝑑(

𝐹𝑃

𝑁
)

1

0

 
(10) 

 

The value for the area ranges from 0 to 1. The more the area under ROC, the better the 

prediction. 
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PR is a plot of Precision against Recall. Precision is given by Equation 11, and Recall is given by 

Equation 12. 

 
𝑃 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(11) 

 
𝑅 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(12) 

 

The accuracy of the curve depends on how well the classifier can distinguish between the 

unbalanced binary classes and is measured by the area under PR. Area under PR is given by 

Equation 13. 

 
𝐴𝑈𝑃𝑅𝐶 = ∫

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
𝑑(

𝑇𝑃

𝑃
)

1

0

 
(13) 

 

Since PR does not take into account TN, it is better for evaluating the performance of the model. 

The value for the area ranges from 0 to 1. The more the area under PR, the better the prediction 

[61][62]. 

We first calculate the accuracy for the predictions on the test set by comparing the true 

class label for the test set with the predicted one. This is accomplished by using the “filter” 

action of Spark. As mentioned in Chapter 3, the transformations in Spark are lazy, that is they are 

not evaluated until an action is performed on them. So, when we apply the “filter” action on the 

test set, it is at this step the actual execution of the “predict” transformation takes place. We 

calculate the accuracy as the number of true positive and negative predicted by the model. We 

then calculate the area under ROC and area under PR for the predicted set using 

“areaUnderROC” and “areaUnderPR” method from the Binary Classification Metrics class. The 

Binary Classification Metrics class is a binary evaluator class available in Spark that evaluates 

performance such as area under ROC, area under PR, f measure etc. For the Python 
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implementation, only the area under ROC and PR are available in Spark. We also report the tree 

structure for Decision Tree and Random Forest algorithms. 
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4. EXPERIMENTS 

The experiments follow the steps as presented under the Methodology and are 

implemented using two modes of cluster operation in Apache Spark. These two modes of 

operation are namely the Local Cluster mode and the GPU cluster mode. The Local cluster mode 

is prepared on a personal laptop and the GPU cluster mode is run on a Nvidia Tesla K40 

available through remote connection. The Local cluster has an Intel Core i7 processor with 12 

GB RAM and 4GB Nvidia GEForce 940MX graphics card. The GPU cluster has 12GB of global 

memory with 2,880 stream processors and a memory bandwidth of 288GB/sec. We have utilized 

an incremental number of cores in both modes, ranging from 2 to 4. Next, we prepared the 

environment by installing the latest versions of Java, Python, Anaconda, PySpark and Spark and 

setting the path variables for the systems. We may point out at this time that these steps were 

followed for the Local Cluster laptop whereas the remote GPU cluster already had the required 

software installed with only the path variables not set. 

After successful installation and completing other prerequisites, we moved to run 

experiments on a IRIS dataset in the Local Cluster mode. The IRIS dataset is a well-known 

dataset “IRIS Flower” which is often used for applying statistical classification techniques in 

machine learning [63]. The dataset is publicly available and is acquired from the UCI Machine 

Learning Repository [64]. The dataset contains 50 instances for each of the 3 classes and 4 

features. These classes are the 3 species of Iris (Iris setosa, Iris virginica and Iris versicolor) and 

the features are length and width of the sepals and petals in cm [58]. For simplicity, we convert 

the categorical names of classes in the IRIS dataset to numerical classes represented as 1 for Iris 

Setosa, 2 for Iris Virginica, and 3 for Iris Versicolor. We plot boxplots and perform initial 

descriptive statistics on the dataset to understand the type of data, its range and various features. 
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We also generate QQplots for the dataset to know the distribution of data. If the data follows the 

normal distribution, we move onto the next steps in the process. If it does not, we apply Box Cox 

transformation to generate a normally distributed dataset. Next, we convert the dataset into the 

LabeledPoint format as required for further processing. 

We implement Naive-Bayes classification on the IRIS dataset for testing purposes. The 

steps are followed according to the process described in Methodology. We start first by setting up 

the Spark Context for the experiment which serves as a connection to the Spark cluster [34]. We 

set up the cluster URL to connect to as “localhost”, number of data nodes to utilize as “2”, and 

application name for our application as “IRIS example”. We load the dataset in libsvm format 

into an input RDD and split the dataset into 75% training, and 25% testing RDD. We set the 

various parameters available with the model. Here, for the Naive-Bayes training model we have 

2 parameters, namely the training RDD and smoothening factor Lambda. We set the 

smoothening factor Lambda to the default value 1.0. After the model is trained, we use it to 

predict the class labels for the testing RDD. We use the “map” transformation for RDD to spread 

the prediction to all rows of the testing RDD. We then calculate the accuracy of the predictions 

by applying “filter” and “count” actions on the predicted RDD. We run other metrics on the 

predicted RDD to calculate Area under ROC and Area under PR using Binary Classification 

Metrics library. Note here, the input and output data is in form of a RDD in every step. Similar to 

Naive-Bayes, there are different parameters available in all algorithms and they vary with 

datasets used as listed in Chapter 3 Table 1-5. 

Following the same approach as with the IRIS example, we move on to implement the 

five machine learning algorithms on all 3 datasets (HIGGS, SUSY and Hepmass) using the two 
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modes of cluster operation. These algorithms follow the same high-level steps as with the above 

example with IRIS dataset. The results and conclusions for the same in next chapter.  
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5. RESULTS 

In this chapter, we present the results of our experiments and discuss the performance 

comparison between the two modes of cluster operations in Spark. 

5.1. Descriptive Statistics 

In descriptive statistics, we first try to understand the data by calculating the various 

summary measures, such as mean, maximum value, minimum value, non-zero values and 

variance, for all features. We begin by reporting the summary measures for the IRIS dataset in 

Table 6.  

Table 6. Summary measures for IRIS dataset 

  Feature 1 Feature 2 Feature 3 Feature 4 

Mean 5.843 3.054 3.759 1.199 

Maximum Value 7.9 4.4 6.9 2.5 

Minimum Value 4.3 2.0 1.0 0.1 

Non-zero Values 150 150 150 150 

 

From Table 6, we can observe that the range for feature 1 of the IRIS dataset is 4.3-7.9, 

feature 2 is 2.0-4.4, feature 3 is 1.0-6.9, and feature 4 is 0.1-2.5. There are no zero values in the 

dataset and the mean for feature 1 is 5.843, feature 2 is 3.054, feature 3 is 3.759, and feature 4 is 

1.199. The mean lies well within the median range of the features indicating a normal 

distribution of the data.  

Figure 4 presents the boxplots for the IRIS dataset to visually understand the summary 

statistics. 
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Figure 4. Boxplots for IRIS dataset 

It is observed from Figure 4 that the mean for feature 1 lies in the median range 

indicating uniform values present in the data. The mean for feature 2 lies in the lower range 

indicating more number of lower values in the data. The mean for feature 3 and 4 lies in the 

upper range indicating there are higher values in the data. There are some outliers in feature 2 

which are removed to gain an uniform distribution. There are no outliers in feature 1, 2 and 4. 

Figure 5 presents the QQplots for the IRIS dataset to understand the distribution of data. 
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Figure 5. QQplots for IRIS dataset 

 It is observed from Figure 2 that all the features of IRIS dataset follow a normal 

distribution. Initially, feature 2 of the IRIS dataset did not have normal distribution. After 

applying Box-Cox transformation to it, we can observe that it now shows a normal pattern. 

We follow the same procedure to report descriptive statistics for our three datasets, 

HIGGS, SUSY and Hepmass. We observed the results for all the datasets but explain the results 

for the SUSY dataset only here for the sake of brevity. The same implications can be extended to 

the other two datasets. The summary measures for the SUSY dataset is presented in Table 7. 
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Table 7. Summary measures for SUSY dataset 

  Feature 1 Feature 2 Feature 3 Feature 4 Feature 5 Feature 6 

Mean 1.003 2.192e-05 -4.994e-05 9.994e-01 -3.713e-05 -1.972e-05 

Maximum Value 20.553 2.101 1.734 33.035 2.059 1.734 

Minimum Value 2.548e-01 -2.102 -1.734 4.285e-01 -2.059 -1.734 

Non-zero Values 5000000  5000000   5000000  5000000  5000000  5000000  

 

  Feature 7 Feature 8 Feature 9 Feature 10 Feature 11 Feature 12 

Mean 9.997e-01 3.542e-05 1.001 -4.878e-05 1.003 9.995e-01 

Maximum Value 21.068 1.746 23.386 20.487 21.075 16.168 

Minimum Value 2.259e-04 -1.727 7.693e-08 -16.718 2.673e-01 1.041e-03 

Non-zero Values 5000000   5000000  5000000  5000000  5000000  5000000  

 

  Feature 13 Feature 14 Feature 15 Feature 16 Feature 17 Feature 18 

Mean 9.991e-01 1.004 1.001 1.001 9.994e-01 2.249e-01 

Maximum Value 6.731 20.686 21.152 15.613 1.596 1.0 

Minimum Value 2.048e-03 0.00 2.734e-02 4.452e-03 3.211e-07 4.172e-08 

Non-zero Values 5000000   3938127  5000000  5000000  5000000  5000000  

 

From Table 7, we can observe that all features except feature 14 have no zero values. 

There are some features like feature 1, 4, 7, 9, 10, 11, 12, 13, 14, 15, 16 and 18 that show a wide 

range in their set of values indicating continuous set of values. Hence, we can expect these 

features to be normally distributed and if not, we can use transformations to convert them to 

normal distribution. The data in features 2, 3, 5, 6, 8 and 17 exhibit discrete behavior implying 
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that most of the data points in these features will lie towards the maximum or minimum value. 

These features will not be normally distributed and we cannot use transformations to convert 

them either. 

Figure 6 presents the boxplots for the SUSY dataset. From the figure we observe the 

mean for all features except 14 and 17 lie in the median range of values indicating uniform 

distribution of values. It lies in the lower range for both the features indicating more number of 

lower values which is evident from the large number of outliers in lower range for feature 14. 

There is a large number of outliers in feature 1, 4, 7, 9, 10, 11, 12, 13, 14, 15, 16 and 18. We 

remove these outliers to gain a uniform distribution. There are many methods available for 

outlier detection like Z-score, Principal Component Analysis, etc. but this process is out of scope 

of this study. 

Figure 7 presents the QQplots for the SUSY dataset. In Figure 7, features 2, 3, 5, 6, 8 and 

17 show slightly skewed-looking step pattern. This is in agreement with the earlier observation 

that the data points in these values lie mostly towards the extreme ends. These features cannot be 

normalized. Features 1, 4, 7, 9, 11, 12, 13, 15, 16 and 18 show a normal distribution. Initially, 

these features were not normalized due to a large number of outliers. We applied the Box-Cox 

transformation to normalize them. Feature 10 exhibits a skewed distribution in extreme ends and 

feature 14 is skewed only in the lower end. There was no effect of transformation on these 

features. 
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Figure 6. Boxplots for SUSY dataset 



34 

 

   

 

Figure 6. Boxplots for SUSY dataset (continued) 
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Figure 6. Boxplots for SUSY dataset (continued) 
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Figure 7. QQplot for SUSY dataset  
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Figure 7. QQplot for SUSY dataset (continued) 
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Figure 7. QQplot for SUSY dataset (continued) 
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5.2. Performance Metrics 

Once we obtain the descriptive statistics, we convert the IRIS dataset into the libsvm 

format. Post the conversion, data is then fed to the Naïve-Bayes Classification algorithm and we 

obtain the performance measures in the Local Cluster mode. These performance measures are 

accuracy, time taken, area under ROC and area under PR. We repeat the process to obtain the 

results in the GPU Cluster mode. Table 8 presents the metrics of the Naïve Bayes algorithm for 

the IRIS dataset in the Local Cluster mode, and Table 9 presents the results for the GPU Cluster 

mode. 

Table 8. Performance metric of Naïve Bayes algorithm in Local Cluster mode for different nodes 

for IRIS dataset 

 

  
Time taken 

(seconds) 

Accuracy  

(%) 

Area under 

ROC 

Area under 

PR 

Node 2 20 87.87 0.857 0.51 

Node 3 17 87.65 0.861 0.62 

Node 4 16 87.69 0.872 0.68  

 

Table 9. Performance metric of Naïve Bayes algorithm in GPU Cluster mode for different nodes 

for IRIS dataset 

 

  
Time taken 

(seconds) 

Accuracy  

(%) 

Area under 

ROC 

Area under 

PR 

Node 2 12 87.89 0.861 0.54 

Node 3 9 87.56 0.863 0.56 

Node 4 7 87.65  0.871 0.61 

 

 We now compare the results from both modes to understand the behavior of the Naïve-

Bayes algorithm in Apache Spark. From Table 8 we observe the time taken by the algorithm in 
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the Local Cluster mode decreases with increasing number of cores though the reduction is not 

significant. This is because the Local cluster mode is essentially a single machine creating 

partitions to give the impression of parallel computing. We can observe from Table 9 that the 

time taken by the GPU mode has halved with increased number of cores. This emphasizes that 

the clusters are working in parallel to reduce the computation time. The accuracy, area under 

ROC and area under PR do not show much improvement in both modes for different cores. This 

can be attributed to the fact that the algorithm is implemented in same fashion in both modes. 

Increasing the number of nodes will affect the computation time but not the manner in which the 

algorithm is implemented. 

We follow the same process as we did with the IRIS dataset to apply the five machine 

learning algorithms on our three datasets (HIGGS, SUSY and Hepmass) and obtain the 

performance measures for all of them in the Local and the GPU Cluster mode. We collect the 

performance of the two modes in terms of time taken, accuracy, area under ROC and area under 

PR for all the three datasets. However, we discuss our findings for the SUSY dataset for brevity 

and the same implications can be extended to other datasets as well. We present the time taken by 

the different machine learning algorithms in the Local Cluster mode for SUSY dataset using 

different number of nodes in Table 10, and in GPU Cluster mode in Table 11.  

First, we begin by explaining the real, sys and user time. Real-time is the time taken by 

the script to run, User time is the time cores are involved in computing and sys time is the time 

required for input/output. We observe that the user time is more than the real time in both modes 

for SVM and Logistic Regression since these are computation intensive algorithms. This 

indicates the computation of algorithms in a parallel fashion. The higher the user time, the more 

cores are involved in the parallel execution. It increases with increasing number of cores for 
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SVM implying the cores are being utilized for execution. We observe the time taken by all 

algorithms decreases with the increase in number of cores in both modes. The time taken by the 

algorithms in Local mode is much more than in GPU mode. This reinforces the fact that the 

Local mode takes more time due to the usage of a single machine. Increasing the number of 

cores in the Local mode is almost equivalent to parallel processes executing on single machine. It 

gives an illusion of parallelism. Although the decrease is more significant in the GPU mode in 

comparison to the Local mode, we observe the average decrease in computation time per node is 

around 20% for all algorithms except for Logistic Regression, which shows a 50% decrease in 

computation time. All the algorithms can inherently be computed in parallel and show significant 

decrease in time with increasing nodes. 

We illustrate the time taken by the algorithms for the SUSY dataset in both modes in 

Figure 8. As pointed out, we can observe the time taken by the algorithms decreases with an 

increase in the number of cores. This is because the algorithms use more parallel computing with 

an increase in the number of cores. It can be observed that the time taken by SVM and Decision 

Tree in both modes show considerable difference for each node added. For Logistic Regression, 

the difference between times taken in both modes to complete becomes more defined as the 

nodes are increased. This behavior is less defined for the Random Forest algorithm where the 

time taken in both modes becomes less pronounced with an increase in the number of nodes. The 

time taken by the Naïve Bayes algorithm is almost comparable in both modes. Overall, the GPU 

Cluster mode shows a significant decrease in time taken by algorithms as compared to the Local 

Cluster mode, further strengthening the claim that parallel computing using Apache Spark has 

involved more cores and reduced the computing time.  
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Table 10. Time taken (in minutes) by machine learning algorithms in Local Cluster mode using 

different nodes for SUSY dataset 

 

    Naïve Bayes 
Decision 

Tree 

Random  

Forest 
SVM 

Logistic        

Regression 

Node 2 

Real 15.36 19.29 18.47 28.52 29.56 

User 2.56 8.56 9.58 35.05 32.15 

Sys 0.56 0.25 0.56 0.56 0.39 

Node 3 

Real 13.59 17.29 15.24 26.52 25.45 

User 2.46 7.69 7.45 36.41 30.15 

Sys 0.55 0.26 0.48 0.39 0.29 

Node 4 

Real 12.10 14.26 12.12 25.14 20.15 

User 2.47 7.69 7.32 36.12 29.85 

Sys 0.55 0.25 0.48 0.35 0.33 
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Table 11. Time taken (in minutes) by machine learning algorithms in GPU Cluster mode using 

different nodes for SUSY dataset 

 

    Naïve Bayes 
Decision 

Tree 

Random  

Forest 
SVM 

Logistic        

Regression 

Node 2 

Real 12.15 13.53 12.39 14.14 26.34 

User 1.35 3.31 4.29 28.56 29.53 

Sys 0.60 0.11 0.15 0.29 0.29 

Node 3 

Real 11.20 11.21 10.47 13.34 15.45 

User 1.47 3.15 4.25 30.02 17.01 

Sys 0.70 0.22 0.5 0.22 0.22 

Node 4 

Real 9.49 9.11 10.8 11.51 13.80 

User 1.51 3.34 4.35 31.20 26.37 

Sys  0.70 0.33  0.26 0.24 0.23 
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Figure 8. Running Time Comparison of algorithms for SUSY dataset 

Table 12, 14 and 16 present the accuracy, area under ROC and area under PR acquired for 

the different machine learning algorithms for the SUSY dataset in the Local Cluster mode using 

different nodes respectively, and Table 13, 15 and 17 presents the results of the same metrics for 

the GPU Cluster mode.  
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Table 12. Accuracy (%) of machine learning algorithms in Local Cluster mode using different 

nodes for SUSY dataset 

 

  Naïve Bayes Decision Tree 
Random  

Forest 
SVM 

Logistic     

Regression 

Node 2 74.89 74.05 77.69 76.54 78.48 

Node 3 75.01 74.09 77.68 76.53 78.53 

Node 4 74.98 74.04 77.71 76.53 78.54  

 

Table 13. Accuracy (%) of machine learning algorithms in GPU Cluster mode using different 

nodes for SUSY dataset 

 

  Naïve Bayes Decision Tree 
Random  

Forest 
SVM 

Logistic     

Regression 

Node 2 75.66 74.43 77.71 76.55 78.63 

Node 3 75.65 74.43 77.95 76.54 78.62 

Node 4 75.66 74.42  77.95 76.55 78.63 

 

Table 14. Area under ROC of machine learning algorithms in Local Cluster mode using different 

nodes for SUSY dataset 

 

  Naïve Bayes Decision Tree 
Random  

Forest 
SVM 

Logistic     

Regression 

Node 2 0.744 0.743 0.785 0.792 0.790 

Node 3 0.741 0.742 0.785 0.792 0.782 

Node 4 0.742 0.743 0.784 0.791  0.781 
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Table 15. Area under ROC of machine learning algorithms in GPU Cluster mode using different 

nodes for SUSY dataset 

 

  Naïve Bayes Decision Tree 
Random  

Forest 
SVM 

Logistic     

Regression 

Node 2 0.752 0.750 0.785 0.800 0.788 

Node 3 0.753 0.755 0.791 0.805 0.792 

Node 4 0.741 0.749  0.792  0.802  0.791  

 

Table 16. Area under PR of machine learning algorithms in Local Cluster mode using different 

nodes for SUSY dataset 

 

  Naïve Bayes Decision Tree 
Random  

Forest 
SVM 

Logistic     

Regression 

Node 2 0.745 0.714 0.645 0.561 0.650 

Node 3 0.752 0.719 0.646 0.562 0.649 

Node 4 0.752 0.720 0.644  0.566  0.647  

 

Table 17. Area under PR of machine learning algorithms in GPU Cluster mode using different 

nodes for SUSY dataset 

 

  Naïve Bayes Decision Tree 
Random  

Forest 
SVM 

Logistic     

Regression 

Node 2 0.750 0.720 0.652 0.570 0.657 

Node 3 0.749 0.724 0.652 0.579 0.657 

Node 4 0.752  0.719  0.658  0.600  0.661  

 

We observe that the results of accuracy, area under ROC and area under PR do not show 

much change in both modes. As explained for the IRIS dataset, this reiterates the fact that an 

increased number of nodes and parallel computation play no major role in improving the 

accuracy and other measures. Accuracy in itself comes out to an average of 80% which can be 
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explained by the presence of some non-normal attributes in the dataset. Area under ROC and PR 

have higher values (more than 0.70), which shows confidence in the classification. 
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6. CONCLUSION AND FUTURE WORK 

In this study, an attempt is made to compare the performance of two modes of clusters 

available in Apache Spark. We made this comparison by implementing five machine learning su-

pervised classification algorithms using the Apache Spark Machine Learning library. We imple-

ment these algorithms on large datasets to ensure the parallel computing abilities of Apache 

Spark are utilized. We compare the performance of the algorithms in terms of time taken, accu-

racy, area under ROC and area under PR. The following are the conclusions from the study: 

1. Both modes use the specified number of cores for distributed and parallel computing. 

This is evident from the increased user time when the actual execution time is much 

less. An increased user time indicates the use of cores for parallel computation. 

2. The use of a larger number of cores in the Local Cluster mode decreases the running 

time of the algorithms but it is not significant. This is attributed to the Local mode us-

ing a single machine creating an impression of parallelism. 

3. The reduction in running time of algorithms with an increased number of cores in the 

GPU Cluster mode is significant. It is faster than the Local Cluster mode which 

strengthens the fact that the use of the varied number of cores in clusters ensures less 

running time than a single machine with the varied number of cores. With more cores 

in a cluster, more parallelism is achieved in computing the predictions and running 

time of the algorithms decreases by 20% on average. 

4. Other results of the performance metrics such as accuracy, area under ROC and area 

under PR show no significant change between the two modes. This indicates increasing 

number of cores do not affect the internal implementation of the machine learning al-

gorithms. Although the predictions are computed faster but the inherent manner to 
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compute them remains the same and yields almost the same result every time. A higher 

accuracy can be achieved with more normally distributed datasets. 

As with regards to future work, Apache Spark is originally developed in the Scala pro-

gramming language and works most efficiently. It has extended APIs for Python, Java, and R 

from which we have used Python. Although the usage of these APIs does not convey degraded 

performance, it is better to point out that these APIs are interpreted into Scala by Spark for fur-

ther computation. So, the overall running time of algorithms in Scala is slightly better than in Py-

thon. In addition, we used the remote connection to connect to the GPU. This limited the study to 

use a maximum of four cores. The connection resulted in a timeout when we tried to use more 

cores.  
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APPENDIX A 
 

Table A.1. Summary measures for HIGGS dataset 

  Feature 1 Feature 2 Feature 3 Feature 4 Feature 5 Feature 6 

Mean 0.991 -8.29e-06 -1.32e-05 0.998 2.61-05 0.990 

Maximum Value 12.098 2.434 1.743 15.396 1.743 9.940 

Minimum Value 0.274 -2.434 -1.742 2.37e-04 -1.734 0.137 

Non-zero Values 11000000 11000000  11000000  11000000  11000000  11000000  

 

  Feature 7 Feature 8 Feature 9 Feature 10 Feature 11 Feature 12 

Mean -2.02e-05 7.71e-06 0.998 0.992 -1.02e-05 -2.07e-05 

Maximum Value 2.969 1.741 2.173 11.647 2.913 1.743 

Minimum Value -2.969 -1.745 0.000 0.188 -2.729 -1.742 

Non-zero Values 11000000  11000000   5605389 11000000  11000000  11000000  

 

  Feature 13 Feature 14 Feature 15 Feature 16 Feature 17 Feature 18 

Mean 1.001 0.992 1.45e-05 3.67e-06 1.000 0.986 

Maximum Value 2.214 14.708 2.730 1.742 2.548 12.882 

Minimum Value 0.000 0.263 -2.496 -1.742 0.000 0.365 

Non-zero Values  5476088  11000000 11000000  11000000   4734760  11000000 
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Table A.1. Summary measures for HIGGS dataset (continued) 

  Feature 19 Feature 20 Feature 21 Feature 22 Feature 23 Feature 24 

Mean -5.75e-06 1.74e-05 1.000 1.034 1.023 1.050 

Maximum Value 2.498 1.743 3.101 40.192 20.372 7.992 

Minimum Value -2.496 -1.742 0.000 0.075 0.199 0.083 

Non-zero Values 11000000  11000000  3869383   11000000 11000000  11000000  

 

  Feature 25 Feature 26 Feature 27 Feature 28 

Mean 1.009 0.927 1.033 0.959 

Maximum Value 14.262 17.762 11.496 8.374 

Minimum Value 0.132 0.047 0.295 0.330 

Non-zero Values 11000000  11000000  11000000  11000000  
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Table A.2. Time taken by machine learning algorithms in Local Cluster mode using different nodes 

for HIGGS dataset 

 

    Naïve Bayes 
Decision 

Tree 

Random  

Forest 
SVM 

Logistic     

Regression 

Node 2 

Real 21.56 35.89 36.30 39.45 38.45 

User 1.46 9.23 12.25 56.46 46.46 

Sys 0.49 2.31 2.45 4.01 2.56 

Node 3 

Real 19.45 33.56 34.25 37.81 35.22 

User 2.01 9.26 11.81 59.54 48.55 

Sys 0.59 1.49 2.25 4.23 2.45 

Node 4 

Real 18.56 31.12 31.12 35.25 33.56 

User 2.31 9.01 11.25 59.25 48.49 

Sys 0.56  1.40  2.45 4.25   2.44 
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Table A.3. Time taken by machine learning algorithms in GPU Cluster mode using different nodes 

for HIGGS dataset 

 

    Naïve Bayes 
Decision 

Tree 

Random  

Forest 
SVM 

Logistic     

Regression 

Node 2 

Real 17.43 32.47 33.30 36.56 24.54 

User 1.57 8.53 11.80 132.05 53.46 

Sys 0.29 2.49 2.11 3.26 2.34 

Node 3 

Real 15.25 29.59 31.18 35.10 23.24 

User 2.13 9.26 10.58 135.45 52.24 

Sys 0.26 0.58 1.20 3.15 2.15 

Node 4 

Real 13.45 25.25 26.34 33.10 19.19 

User 2.36 9.11 11.59 125.02 50.06 

Sys 0.34  1.40   1.19  3.05  2.01 

 

Table A.4. Accuracy of machine learning algorithms in Local Cluster mode using different nodes 

for HIGGS dataset 

 

  Naïve Bayes Decision Tree 
Random  

Forest 
SVM 

Logistic     

Regression 

Node 2 57.32 66.69 67.10 61.25 64.30 

Node 3 57.33 66.71 67.10 61.25 64.31 

Node 4 57.33 66.69  67.13  61.24  64.31  
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Table A.5. Accuracy of machine learning algorithms in GPU Cluster mode using different nodes 

for HIGGS dataset 

 

  Naïve Bayes Decision Tree 
Random  

Forest 
SVM 

Logistic     

Regression 

Node 2 57.53 67.30 67.16 61.23 64.25 

Node 3 57.53 67.30 67.16 61.21 64.25 

Node 4 57.52 67.30 67.15 61.23 64.25 

 

Table A.6. Area under ROC of machine learning algorithms in Local Cluster mode using different 

nodes for HIGGS dataset 

 

  Naïve Bayes Decision Tree 
Random  

Forest 
SVM 

Logistic     

Regression 

Node 2 0.564 0.671 0.665 0.625 0.640 

Node 3 0.564 0.672 0.665 0.624 0.641 

Node 4 0.566  0.672  0.665  0.625  0.642  

 

Table A.7. Area under ROC of machine learning algorithms in GPU Cluster mode using different 

nodes for HIGGS dataset 

 

  Naïve Bayes Decision Tree 
Random  

Forest 
SVM 

Logistic     

Regression 

Node 2 0.566 0.672 0.670 0.630 0.644 

Node 3 0.566 0.672 0.671 0.632 0.644 

Node 4 0.565 0.671  0.670  0.632  0.645  
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Table A.8. Area under PR of machine learning algorithms in Local Cluster mode using different 

nodes for HIGGS dataset 

 

  Naïve Bayes Decision Tree 
Random  

Forest 
SVM 

Logistic     

Regression 

Node 2 0.570 0.674 0.733 0.810 0.720 

Node 3 0.569 0.674 0.732 0.810 0.721 

Node 4 0.571  0.677  0.733  0.813  0.721  

 

Table A.9. Area under PR of machine learning algorithms in GPU Cluster mode using different 

nodes for HIGGS dataset 

 

  Naïve Bayes Decision Tree 
Random  

Forest 
SVM 

Logistic     

Regression 

Node 2 0.571 0.655 0.732 0.859 0.721 

Node 3 0.571 0.655 0.733 0.861 0.721 

Node 4 0.569  0.651 0.735  0.861  0.722  

 

Table A.10. Summary measures for Hepmass dataset 

  Feature 1 Feature 2 Feature 3 Feature 4 Feature 5 Feature 6 

Mean 8.37e-02 2.63e-04 2.51e-04 5.37e-02 2.14e-04 1.14e-02 

Maximum Value 4.093 2.365 1.732 4.265 1.731 4.482 

Minimum Value -1.960 -2.365 -1.732 -9.980 -1.732 -1.054 

Non-zero Values 7000000  7000000  7000000  7000000  7000000  7000000  
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Table A.10. Summary measures for Hepmass dataset (continued) 

  Feature 7 Feature 8 Feature 9 Feature 10 Feature 11 Feature 12 

Mean 8.97e-02 -1.03e-04 -3.69e-05 -3.44e-02 8.50e-02 1.48e-04 

Maximum Value 3.749 2.758 1.731 0.754 4.601 2.602 

Minimum Value -3.034 -2.757 -1.732 -1.325 -2.835 -2.602 

Non-zero Values 7000000 7000000 7000000  7000000  7000000  7000000  

 

  Feature 13 Feature 14 Feature 15 Feature 16 Feature 17 Feature 18 

Mean 3.62e-04 9.97e-03 8.4e-02 2.94e-04 -4.43e-04 2.41e-02 

Maximum Value 1.732 0.860 5.051 2.438 1.732 1.226 

Minimum Value -1.732 -1.161 -2.454 -2.437 -1.732 -0.815 

Non-zero Values 7000000  7000000  7000000  7000000  7000000  7000000  

 

  Feature 19 Feature 20 Feature 21 Feature 22 Feature 23 Feature 24 

Mean 5.56e-02 1.63e-04 5.43e-04 1.68e-03 6.15e-02 4.77e-04 

Maximum Value 5.788 2.282 1.732 1.743 7.419 9.374 

Minimum Value -1.728 -2.281 -1.731 -0.573 -3.590 -4.119 

Non-zero Values 7000000  7000000  7000000  7000000  7000000  7000000  
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Table A.10. Summary measures for Hepmass dataset (continued) 

  Feature 25 Feature 26 Feature 27 

Mean 2.75e-02 -8.34e-03 7.45e-02 

Maximum Value 14.927 4.613 4.729 

Minimum Value -20.622 -3.452 -2.622 

Non-zero Values 6999995 7000000  7000000  

 

 

Table A.11. Time taken by machine learning algorithms in Local Cluster mode using different 

nodes for Hepmass dataset 

 

    Naïve Bayes 
Decision 

Tree 

Random  

Forest 
SVM 

Logistic     

Regression 

Node 2 

Real 15.16 17.45 17.10 30.26 19.15 

User 2.05 4.45 8.45 6.56 10.25 

Sys 0.56 0.55 2.01 0.59 0.45 

Node 3 

Real 13.10 16.14 15.15 27.56 17.45 

User 2.15 4.44 8.46 5.34 10.24 

Sys 0.15 0.56 2.22 0.59 0.56 

Node 4 

Real 12.11 14.45 13.48 25.25 16.35 

User 2.45 5.05 7.56 6.01 14.45 

Sys 0.15  0.44 2.45  0.58 0.45  
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Table A.12. Time taken by machine learning algorithms in GPU Cluster mode using different nodes 

for Hepmass dataset 

 

    Naïve Bayes 
Decision 

Tree 

Random  

Forest 
SVM 

Logistic     

Regression 

Node 2 

Real 12.19 14.24 16.00 24.54 17.11 

User 1.51 4.43 7.16 5.39 9.00 

Sys 1.90 0.59 1.32 0.5 0.46 

Node 3 

Real 13.10 13.14 13.01 21.50 14.60 

User 2.30 5.31 7.26 5.34 11.10 

Sys 0.10 0.5 0.49 0.59 0.32 

Node 4 

Real 9.46 11.56 11.56 18.56 9.32 

User 2.7 5.42 7.56 6.8 11.60 

Sys  0.10 0.34 2.80 0.4 0.26  

 

Table A.13. Accuracy of machine learning algorithms in Local Cluster mode using different nodes 

for Hepmass dataset 

 

  Naïve Bayes Decision Tree 
Random  

Forest 
SVM 

Logistic     

Regression 

Node 2 71.21 89.89 90.60 88.30 90.16 

Node 3 71.22 89.92 90.59 88.26 90.16 

Node 4 71.22 89.92 90.60  88.26  90.15  
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Table A.14. Accuracy of machine learning algorithms in GPU Cluster mode using different nodes 

for Hepmass dataset 

 

  Naïve Bayes Decision Tree 
Random  

Forest 
SVM 

Logistic     

Regression 

Node 2 70.08 90.29 90.30 90.16 90.21 

Node 3 70.08 90.29 90.69 90.16 90.21 

Node 4 70.08 90.29 90.69 90.16 90.21 

 

Table A.15. Area under ROC of machine learning algorithms in Local Cluster mode using different 

nodes for Hepmass dataset 

 

  Naïve Bayes Decision Tree 
Random  

Forest 
SVM 

Logistic     

Regression 

Node 2 0.708 0.904 0.906 0.900 0.910 

Node 3 0.710 0.905 0.906 0.901 0.910 

Node 4 0.710  0.904  0.910  0.900  0.911  

 

Table A.16. Area under ROC of machine learning algorithms in GPU Cluster mode using different 

nodes for Hepmass dataset 

 

  Naïve Bayes Decision Tree 
Random  

Forest 
SVM 

Logistic     

Regression 

Node 2 0.711 0.911 0.910 0.897 0.911 

Node 3 0.712 0.911 0.909 0.900 0.912 

Node 4 0.711  0.912  0.910  0.900  0.912  
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Table A.17. Area under PR of machine learning algorithms in Local Cluster mode using different 

nodes for Hepmass dataset 

 

  Naïve Bayes Decision Tree 
Random  

Forest 
SVM 

Logistic     

Regression 

Node 2 0.687 0.912 0.896 0.920 0.920 

Node 3 0.688 0.912 0.895 0.921 0.920 

Node 4 0.687  0.913  0.895  0.920 0.921  

 

Table A.18. Area under PR of machine learning algorithms in GPU Cluster mode using different 

nodes for Hepmass dataset 

 

  Naïve Bayes Decision Tree 
Random  

Forest 
SVM 

Logistic     

Regression 

Node 2 0.690 0.910 0.896 0.920 0.919 

Node 3 0.691 0.911 0.897 0.921 0.920 

Node 4 0.691  0.911  0.896  0.920 0.920 
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APPENDIX B 
 

 

   

 

Figure B.1. Boxplots for HIGGS dataset 



67 

 

   

 

Figure B.1. Boxplots for HIGGS dataset (continued) 
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Figure B.1. Boxplots for HIGGS dataset (continued) 
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Figure B.1. Boxplots for HIGGS dataset (continued) 
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Figure B.1. Boxplots for HIGGS dataset (continued) 
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Figure B.2. QQplots for HIGGS dataset 
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Figure B.2. QQplots for HIGGS dataset (continued) 
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Figure B.2. QQplot for HIGGS dataset (continued) 
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Figure B.2. QQplot for HIGGS dataset (continued) 
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Figure B.2. QQplot for HIGGS dataset (continued) 
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Figure B.3. Boxplots for Hepmass dataset 
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Figure B.3. Boxplots for Hepmass dataset (continued) 
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Figure B.3. Boxplots for Hepmass dataset (continued) 
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Figure B.3. Boxplots for Hepmass dataset (continued) 
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Figure B.3. Boxplots for Hepmass dataset (continued) 
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Figure B.4. QQplots for Hepmass dataset 
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Figure B.4. QQplots for Hepmass dataset (continued) 
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Figure B.4. QQplots for Hepmass dataset (continued) 
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Figure B.4. QQplots for Hepmass dataset (continued) 
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Figure B.4. QQplots for Hepmass dataset (continued) 

 

 




