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ABSTRACT 

Gene expression technologies allow expression levels to be compared across treatments 

for thousands of genes simultaneously. Asymmetry in the empirical distribution of the test 

statistics from the analysis of a gene expression experiment is often observed. Statistical methods 

exist for identifying differentially expressed (DE) genes while controlling multiple testing error 

while taking into account the asymmetry of the distribution of the effect sizes. This paper 

compares three statistical methods (Modified Q-value, Modified SAM, and Asymmetric Local 

False Discovery Rate) used to identify differentially expressed (DE) genes that take into account 

such patterns while controlling false discovery rate (FDR). The results of the simulation studies 

performed suggest that the Modified Q-values outperforms the other methods most of the time 

and also better controls the FDR.  
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CHAPTER 1: INTRODUCTION 

1.1. Background 

Microarray technology is a popular gene expression platform used in the field of genetic, 

biological and medical research (Macgregor et al., 2002; Petricoin et al., 2002). DNA 

microarrays allow researchers to simultaneously measure the expression levels of thousands of 

genes from a single biological sample (Brown and Botstein, 1999) and provide information on 

each gene. Microarrays help identify genes that are differentially expressed between healthy and 

non-healthy cells and helps understand the evolution of gene regulation in different organisms 

(Baldi and Hatfield, 2002; Passador-Gurgel et al.,2007). Also, gene expression technologies are 

used frequently in molecular biology research to gain a snapshot of transcriptional activity in 

different tissues or population cells. These techniques also help identify new genes, their 

expression levels under many conditions. Results using these technologies can be found in 

pharmaceutical research where it is used to identify drugs candidates, to carry forensic analysis, 

or evaluating germline mutation in individuals or somatic mutation in cancers. Many types of 

microarrays have been proposed, including synthetized microarrays (Fodor et al., 1991), spotted 

microarrays (DeRisi et al., 1996), and oligonucleotide microarrays (Lockhart et al, 1996). 

In many experiments, researchers are interested in comparing the gene expressions of 

multiple treatments to identify genes that are differentially expressed (DE), i.e., genes that 

exhibit different mean levels across treatments. Statistical methods used by researchers to 

analyze data from these types of experiments usually do not account for asymmetry in the test 

statistics (see Storey, J. D. 2002 and Storey, J. D. 2003, for example).  Although many of these 

methods provide good results, methods that takes into account the asymmetry of the effects of 

the distribution gives better results when asymmetry is present (Megan Orr et al., 2014; Kotoka, 
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2017). As demonstrated by the results of Orr et al. (2014) and Kotoka (2017), methods that into 

account such pattern can result in higher power for detecting differential expression while still 

controlling a desired error rate at the nominal level, resulting in a more reliable set of genes for 

making important biological conclusions. Our objective of this research is to compare methods 

that take into account the asymmetry of the test statistics when finding DE genes and ultimately 

make recommendations as to which method to use in different experimental scenarios. This 

comparison will give scientists guidance when carrying out gene expression analysis when test 

statistics are observed to have an asymmetric distribution. To our knowledge, research similar to 

this has never been conducted and, thus, our results can be a meaningful contribution to the 

science of gene expression analysis. 

1.2. Research Objectives and Organization 

In the present research document, we carry out differential expression analysis on gene 

expression data resulting from with two class experiments. The purposes of this research are to: 

(1) Develop a local false discovery rate method for analyzing microarray data that takes 

into account asymmetry in the distribution of the test statistics.  

(2) Evaluate and compare the performances of three methods (modified Q-value, 

Modified SAM and the proposed Asymmetric Local False Discovery Rate) used to 

determine DE genes when the distribution of the test statistics is asymmetric using 

simulation studies and analysis of a real microarray data set. 

The rest of this thesis is organized as follows. In Chapter 2, we review multiple testing 

procedures, and statistical methods used in differential expression analysis. Chapter 3 describes 

the methods used throughout our analysis. Results of the simulation study and real data analysis 



 

3 

are covered in Chapter 4.  Finally, in Chapter 5 we provide a conclusion to our research and 

make recommendations for future work.  
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CHAPTER 2: LITERATURE REVIEW 

2.1. Gene Testing 

A gene consists of a segment of DNA which codes for a particular protein, the ultimate 

expression of the genetic information.  DNA is converted to messenger RNA (mRNA) through 

the process of transcription and microarray technology is used to measure the abundance of 

mRNA, or gene expression, in an organism.  Gene testing, also known as differential expression 

analysis, is a procedure that researchers used to identify genes with differences in expression 

levels between experimental units in different conditions, groups, or treatments. This process can 

help identify how some diseases are transmitted (Guillermo Lay-Son et al., 2014: Agatino 

Battaglia et al., 2013) and to carry out pharmaceuticals research for new drugs. There are two 

main statistical methods use to perform gene testing: parametric and nonparametric methods. 

2.1.1. Parametric methods 

When parametric statistical methods are implemented, the data are assumed to follow a 

specific probability distribution with fixed, but unknown, parameters. The two-sample t-test, 

which assumes that the data are normally distributed, and its variations are a commonly used 

parametric methods for detecting DE genes between experimental units in two conditions. P-

values for each gene are calculated and a gene is declared to be differentially expressed (DDE) if 

the corresponding p-values is less than a significance cutoff. 

Bayesian and empirical Bayesian methods are other types of parametric statistical 

methods used to perform gene testing in which parameters are considered random and also 

follow a probability distribution. P. Baldi and A.D. Long (2001) developed a Bayesian 

framework for the analysis of microarray expression data based on the t-test.  Another 

hierarchical model was proposed by Newton et al. (2001). Which assumed that the variances for 
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all genes follow one distribution, a Gamma distribution, for example. In this case, a gene is DDE 

if the calculated posterior odd of change is either significantly large or significantly small. Smyth 

(2004) proposed an empirical Bayesian method which modified the two-sample t-test called the 

moderated t-test. He also proposed fitting a linear model to the expression level of every gene for 

more complicated study designs. In this method, the gene-wise variances are assumed to have a 

prior Gamma distribution. 

2.1.2. Nonparametric methods 

Contrary to parametric methods, nonparametric methods do not have distributional on the 

data. Several nonparametric methods are used for gene testing. A commonly used method is the 

Wilcoxon rank sum test proposed by Wilcoxon. (1945). The procedure is based on the ranks of 

the data as opposed to the original observed data. Similar to many parametric statistical methods, 

the p-values are calculated based on the test statistics and genes are DDE if their corresponding 

p-value is less than the significance threshold.  

Significance Analysis of Microarrays (SAM) is another famous nonparametric method 

used to test gene from microarray data set developed by Tusher et al. (2001). The SAM method 

measures the strength between gene and the response variable by using repeated permutation of 

the data. The procedure assigns scores to each gene relative to the standard deviation of repeated 

measurements. The procedure continues by permuting the scores and for each permutation, 

calculate the score of each gene in order to create a baseline of scores. The expected null scores 

are calculated from the permuted data sets. Then, a gene is DDE if the absolute difference 

between the original score of the data and the expected null score is larger than a specified 

threshold. Other nonparametric methods have been proposed for gene testing, including the 
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nonparametric t-test and the heuristic method based on high Pearson correlation (Olga G. et al. 

(2002). 

2.2. Multiple Hypothesis Testing  

The field of genomics has revived interested in multiple testing procedures by raising 

new methodological and computational challenges (Yongchao Ge et al., 2003). Microarray 

experiments generate large multiplicity problems in which thousands of hypotheses are tested 

simultaneously. When performing thousands of hypotheses test simultaneously, errors are 

committed, and a major concern is to control the rate of errors made. Statistically, there are two 

types of errors that research can make when performing a hypothesis test: a Type I error which is 

the incorrect rejection of the true null hypothesis (also known as “false positive” finding) and a 

Type II error which is incorrectly retaining a false null hypothesis (also known as “false 

negative” finding) (Peck, Roxy and Jay L. Devore, 2011).  See Table 2.1 below. In genomic 

testing, and in most multiple testing settings in general, researches are more interested in 

controlling the rate at which Type I errors occur than that of Type II errors. 

Table 2.1.  Error Types for multiple testing problem 

 

Table of error types 

 

 

Null Hypothesis (H0) is 

TRUE FALSE 

 

Decision About Null Hypothesis 

(H0) 

Fail to reject Correct inference 

(True positive) 

Type II error 

(False Negative) 

Reject Type I error 

(False Positive) 

Correct inference 

(True Negative) 
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Table 2.2.  Microarray data for two independent class experiments (Bentil, 2017) 

 Treatment1 Treatment2 

Gene Experiment Experiment … Experiment 

1 2 n 

Experiment Experiment … Experiment 

1 2 n 

1 

2 

… 

m 

21.0                      2.5      …               2.6 

4.8        12.6    … 2.86 

…         …      …       2.98 

3.9        29.7    … 5.9 

1.0                        1.5      …               2.6 

23.8        62.6    … 0.86 

…         …      …       1.98 

7.9        9.7    … 2.9 

 

The traditional approach to the multiplicity problem calls for controlling the familywise 

error rate (FWER). The Bonferroni procedure (SIMES, 1986) is the most well-known method for 

controlling the FWER. Other methods, like Holm’s method (Holm, 1979), also control the 

FWER and sometimes result in more power than the Bonferroni procedure. However, when 

testing thousands of hypotheses simultaneously, the FWER generally results in extremely low 

power for identifying DE genes (Benjamini and Hochberg, 1995). The False Discovery rate 

(FDR) was introduced by Benjamini and Hochberg in 1995 to improve the power of detecting 

DE genes while still controlling the Type I error rate when simultaneously performing thousands 

of hypothesis tests. 

2.2.1. False discovery rate 

Consider the problem of testing m null hypotheses, of which 𝑚0 are true (number of true 

null hypotheses). Additionally, R is the number of hypotheses rejected, V is the number of null 

hypotheses rejected from EE genes, and S is the number of null hypotheses rejected from DE 

genes. The following table give a summary of the situation in a simple form. 
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Table 2.3. Random Variables Corresponding to the number of Error Committed when testing m 

hypothesis 

 Declared non-

significant 

Declared  

significant 

Total 

True null  

Hypotheses 

 

U 

 

V 

 

 𝑚0 

Non-True null 

Hypotheses 

 

T 

 

S 

 

 𝑚 − 𝑚0 

  

𝑚 − 𝐑 

 

R 

 

m 

 U: Number of true non-discoveries (“true negatives”) 

 V: Number of false discoveries / Type I errors (“false positives”) 

 T: Number of false non-discoveries / Type II errors (“false negatives”) 

 S: Number of true discoveries (“true positives”) 

 𝒎 − 𝒎𝟎: Number of DE genes or number of False Null Hypotheses 

 𝑚 − 𝐑 : Number of non-discoveries (“negatives”) 

As previously mentioned, Benjamini and Hochberg (1995) introduced the FDR, which 

controls the proportion of false discoveries (Type I errors) among all discoveries (rejected null 

hypotheses).  Formally, FDR is defined as 

 𝐹𝐷𝑅 = 𝐸 (
𝑉

max (𝑅, 1)
) (2.1) 

The procedure proposed by Benjamini and Hochberg for testing m null hypotheses while 

controlling FDR is as follows: 

Consider that we want to test  𝐻01, 𝐻02, …, 𝐻0𝑚  based on the corresponding p-values 𝑃1, 𝑃2, …, 

𝑃𝑚 (one p-value / test for each gene).  Let 𝑃(1) ≤  𝑃(2) ≤ …  ≤ 𝑃(𝑚)  be the ordered p-values and 

denote  𝐻(0𝑖) the null hypothesis corresponding to  𝑃(𝑖) . Let k be the largest i for which  

 𝑃(𝑖) ≤
𝑖

𝑚
𝑞∗ (2.2) 
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Reject all 𝐻(0𝑖) i = 1, 2, …, k. For independent test statistics from genes with true null hypotheses 

and for any configuration of false null hypotheses, the above procedure controls the FDR at q*.  

The limit of controlling the FDR was presented by John D. Storey (2002). Instead of 

controlling the FDR which involves the sequential p-values rejection method based on the 

observed data, he proposed the positive False Discovery rate (pFDR) which involve the q-value 

method. The q-value is analogue to the p-values, but it eliminates the need to set the error rate 

beforehand (Storey, 2002). Storey (2002) proved that the pFDR yields more power than the FDR 

proposed by (BH) when controlling the Type I error rate. The pFDR is defined as follows:  

 pFDR=E (
V

R
|R>0). (2.3) 

                     

The q-value calculation, which estimates the pFDR for each gene, proposed by Storey is as 

follows:  

For each p-value, the corresponding q-value is       

 𝑞(𝑖) = 𝑚𝑖𝑛 {
𝑃(𝑘)𝑚0̂

𝑘
: 𝑘 = 𝑖, … , 𝑚}, (2.4) 

where: 

 𝑃(𝑘)𝑚0̂ : represents the estimate number of false discoveries  

 𝑞(𝑖): denote the q-value that corresponds to the ith smallest p-value 𝑝(𝑖). 

 k: represent the total number of genes declared to be DE if genes with p-values less than 

or equal to  Pk  are declared to be DE 

 𝑚0̂: represents the estimate of the number of EE genes in a data set. An estimate 

proposed by Storey (2003) is as follows: 

 m̂0(λ) =
∑ {Pj >  λ}m

j=1

(1 − λ)
, (2.5) 

where 𝜆 is an element of the interval (0, 1). If (2.5) is used to estimate m0 for any fixed  𝜆 in (0, 

1), then using q-values to generate lists of significant results will strongly control FDR. 
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2.2.2. The local false discovery rate 

Benjamini and Hochberg’s (1995) paper introduced FDR, a particular useful approach to 

multiple testing. A variant approach of FDR, the local false discovery rate, was proposed by 

Efron et al., (2001) and Efron and Tibshirani (2002). The local false discovery rate (lFDR) is an 

empirical Bayes technique used to determine the genes that are DE when controlling the number 

of Type I errors through the FDR. 

 The setup of the Empirical Bayes techniques:  

Suppose we have m null hypotheses to consider simultaneously, each with a corresponding test 

statistic. The test statistics are calculated using the two-sample t-statistics. For convenience of 

the Bayesian approach, we transform the t-values to z-values using the following transformation 

 𝒛𝒊 = 𝝋−𝟏(𝑭𝒔(𝒕𝒊))                                     (2.6) 

where 𝜑−1 is the standard normal cumulative distribution function (cdf), 𝐹𝑠 is the cdf of the 

standard t variable with s degree of freedom, 𝑡𝑖 the ith t-value associate with the 𝐻0𝑖 null 

hypotheses.  

 The Bayesian Approach: 

Lee et al. (2000), Newton et al. (2001), Efron et al. (2001), underlines the theory: we suppose 

that the m hypotheses are divided into two groups: the genes are either null or non-null and occur 

with prior probabilities 𝜋0  or 𝜋1 = 1 − 𝜋0 with z-values having density either  𝑓0(𝑧) (which 

represent the standard normal distribution N (0, 1) or  𝑓1(𝑧) (which can be a longer-tailed density 

yielding z-values further away from 0). The prior probabilities and their associated density of test 

statistic are given bellow. 

𝜋0 = 𝑃𝑟{null}   𝑓0(𝑧) density if null 
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𝜋1 = 𝑃𝑟{non-null}   𝑓1(𝑧) density if non-null 

Then the mixture density is: 

 𝑓(𝑧) = 𝜋0𝑓0(𝑧) +𝜋1𝑓1(𝑧) (2.7) 

By the definition the lFDR is: 

 𝑙𝐹𝐷𝑅 = 𝑃𝑟{null | z}= 𝜋0𝑓0(𝑧) / 𝑓(𝑧), (2.8) 

and the estimated  𝑙𝐹𝐷𝑅 is given by: 

 𝑙𝐹𝐷𝑅̂ =
𝜋̂0𝑓0(𝑧)

𝑓(𝑧)̂
. (2.9) 

Below shows a histogram of z-values for a data set described in Efron (2005).

 

Figure 2.1. Histogram of the 7680 z-values from HIV microarray experiment. Short vertical 

lines are estimated “thinned counts” of non-null genes (Efron 2005). 

 

These z-values are the transformed t-values. The histogram of z-values is shown in 

Figure 2.1. The normal-shaped central peak presumably charts the largest majority of “null” 

genes. The long tails reveal “non-null” genes. The method of the local false discovery describes 

by Efron (2005) is used to provide those thinned counts and estimate the histogram of the non-

null z-values. They key assumption of the lFDR estimation is the smoothness of the z-value 

mixture density 𝑓(𝑧) (Efron, 2005). He assumes that, it is useful that the approximation for the 
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distribution of z-values, null or non-null follow a normal distribution with mean 𝜇 and standard 

deviation 𝜎𝜇
3

 

Figure 2.2. Heavy curve of the local false discovery rate estimated from HIV data (Efron 2005) 

 

The local false discovery rate is a variant of Benjamini and Hochberg’s (1995) false 

discovery rate. The local nature of FDR is an advantage in interpreting results for individual 

cases. Figure 2.2 displays the thinned counts from figure 2.1 it also shows the estimated local 

false discovery rate based on the empirical Bayes method. From figure 2.2 we see that 186 genes 

having lFDR ≤ 0.2. Most of non-null cases lie well within the 0.2 lFDR cutoff limits. Efron 

(2005) prove that the same result is held using Benjamini and Hochberg’s FDR procedure with 

cutoff 𝑞 = 0.1. Large scale testing gives the opportunity of local inference in which gene are 

judged on their own term and not with respect to the hypothetical possibility of more extreme 

results. That is the idea of the lFDR. 
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Efron (2005) established the relationship between lFDR and FDR. The figure bellow 

shows the geometrical relationship between FDR and lFDR  

 

Figure 2.3. Geometrical relationship of FDR (or Fdr on the graph) to lFDR (or fdr); heavy 

curve plots 𝐹0
+(𝑧)  versus F(z) (Efron 2005). 

 

lFDR(z) is the slope of tangent and FDR(z) is the slope of secant. 𝐹0
+(𝑧) 𝑎𝑛𝑑  𝐹(𝑧) are 

the cdf’s corresponding to 𝑓0
+(𝑧) = 𝜋0𝑓0(𝑧) and 𝑓(𝑧). 
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CHAPTER 3: METHODS AND MATERIALS 

3.1. Methods of Gene Testing 

We will consider only the analysis of two group gene expression experiments. For each 

gene, we want to test the null hypothesis 

 𝐻𝑝 : 𝜇1𝑝 = 𝜇2𝑝 (3.1) 

against the two-sided alternative. In equation (3.1) 𝜇𝑖𝑝 represents the population mean 

expression value for the pth gene (p = 1, 2, …, m) in the ith treatment group (i=1, 2).  

Gene p is EE if  𝐻𝑝  is true and if  𝐻𝑝  is false, gene p is DE. If we reject, 𝐻𝑝 , then the 

gene p is declared to be differentially expressed (DDE).  Using the moderated t-test proposed by 

Smith (2004) we calculate the test statistic for each gene and the corresponding p-values. This 

method is used because it borrows information across all genes to more accurately estimate the 

error variance for each individual gene. 

Each gene can be modeled as follows: 

 𝑦𝑖𝑝𝑙 = 𝜇𝑖𝑝 + 𝜀𝑖𝑝𝑘  for 𝑖 = 1,2;   𝑝 = 1, … , 𝑚;   𝑎𝑛𝑑   𝑘 = 1, … , 𝑛𝑖,   

where 𝑦𝑖𝑝𝑘, and   𝜀𝑖𝑝𝑘   are the expression value and random error for the 𝑝𝑡ℎ gene from the 𝑘𝑡ℎ 

experimental unit in the 𝑖𝑡ℎ treatment, respectively. Also, 𝜀𝑖𝑝𝑘 follows a normal distribution with 

mean 0 and standard deviation 𝜎𝑝. The posterior distribution of the population gene-wise 

variances is given as follows: 

 (
1

𝜎 𝑝
2

|𝑠𝑝
2, 𝑑0, 𝑠0

2) ~ 𝐺𝑎𝑚𝑚𝑎 (
𝑑0 + 𝑑

2
 ,

𝑑𝑠 𝑝
2 + 𝑑0𝑠0

2

2
), (3.2) 

where d is the degree of freedom associated with 𝑠 𝑝
2 , the sample pooled variance for gene p.  

Smyth proposed the estimator of 𝜎 𝑝
2  as: 
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 𝑠̃ 𝑝
2 =

𝑑𝑠 𝑝
2 + 𝑑0𝑠0

2

2
, (3.3) 

where 𝑑0 and 𝑠0
2 are the hyper parameters representing prior degrees of freedom and common 

prior variance, respectively, and are estimated using empirical Bayesian methods 

3.1.1. The modified q-values 

The q-value method was proposed by Storey (2002) and recently modified by Orr et al. 

(2014) to take into account the asymmetry of the distribution of the test statistics. Orr et al. 

proposed that, if the distribution of test statistics in a two class gene expression experiments is 

asymmetric, the estimation of FDR using the q-value method is improved if this asymmetry is 

taken into consideration. The method is as follow. For a two class experiment, consider 𝑚 null 

hypotheses to be tested as described in Section 3.1. We then calculate the test statistics for each 

gene with their corresponding two-sided p-value using the moderated t-test. The p-value are then 

partitioned into two subsets based on the signs of the corresponding test statistics: {𝑃  𝑝
1 ∶  𝑝 =

1, … , 𝑚𝑛𝑒𝑔} is the subset of p-values corresponding to the 𝑚𝑛𝑒𝑔 genes with negative test 

statistics and {𝑃 𝑝
2 ∶  𝑝 = 1, … , 𝑚𝑝𝑜𝑠} is the subset of p-values corresponding to the 𝑚𝑝𝑜𝑠 genes 

with positive test statistics. Then the corresponding q-values are calculated separately for each 

gene in each subset as follows: 

 𝑞𝑝
(1)

= 𝑚𝑖𝑛 {
𝑃𝑟

(1) 𝑚0̂
2⁄

𝑟
∶ 𝑟 = 𝑝, … 𝑚𝑛𝑒𝑔} (3.4) 

and  
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 𝑞𝑝
(2)

= 𝑚𝑖𝑛 {
𝑃𝑟

(1) 𝑚0̂
2⁄

𝑟
∶ 𝑟 = 𝑝, … 𝑚𝑝𝑜𝑠}. (3.5) 

Orr et al. showed that this method performs better than the traditional q-value method for 

detecting DE genes while controlling the FDR when the distribution of the test statistics is 

asymmetric. 

3.1.2. The modified SAM 

SAM is one of the common non-parametric methods used to analyze microarray data. 

This method uses a permutation resampling technique. This method was proposed by Tusher et 

al., (2001) for determining whether changes in gene expression between classes are statistically 

significant. Repeated permutations of the data are used to determine if the expression of any gene 

is significantly related to the class. The use of permutation-based analysis accounts for 

correlations between genes and avoids parametric assumption about the distribution of 

expressions of individual genes. SAM estimates FDR for user chosen significance cutoffs to find 

genes that are DE. This method (SAM) does not account for asymmetry in the distribution of the 

test statistics. 

Motivated by the result of Orr et al. (2014) discussed above, Bentil (2017) proposed a 

modified SAM method that takes into account the asymmetry of the test statistics when 

determining DE genes. The method was developed for two class experiment.  

An overview of the SAM method for estimating the FDR for a two-class experiment were 

proposed by Tusher et al. (2001). The modified SAM proposed by Bentil (2017) is outlined by 

the following steps for estimating FDR for a user defined significance cutoff ∆. 

(1) Denote the expression level for the pth gene from the ith experimental unit as 𝑥𝑝𝑗 , 𝑝 =

1,2, … 𝑚 ;  𝑗 = 1,2, … 𝑛. Compute the test statistic for the pth gene as: 
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 𝑑𝑝 =
𝑟𝑝

𝑠𝑝 + 𝑠0
, (3.6) 

where 𝑟𝑝 = 𝑥̅𝑝2 − 𝑥̅𝑝1 , 𝑥̅𝑝 = ∑ 𝑥𝑝𝑗 𝑛⁄𝑗 , 𝑠𝑝 is the standard error from a traditional 

pooled two-sample t-test, 𝑠0 is an exchangeability factor, and 𝑥̅𝑝𝑖 is the sample mean 

for the p gene in treatment i.  

(2) Sort the test statistics from (1) to get the order statistics,  𝑑(1) ≤ 𝑑(2) … ≤ 𝑑(𝑚).  

(3) Permute the data from the n experimental units 𝐵 times. For each permutation 𝑏 

compute statistics 𝑑𝑝
∗𝑏 and corresponding order statistics 𝑑(1)

∗𝑏 ≤ 𝑑(2)
∗𝑏 … ≤ 𝑑(𝑚)

∗𝑏  using 

the procedure described in steps (1) and (2). 

(4) Estimate the expected order statistics by  

 𝑑̅(𝑝) =
1

𝐵
∑ 𝑑(𝑝) 

∗𝑏

𝑏
𝑝 = 1,2, … 𝑚. (3.7) 

(5) Divide the test statistics into two groups based on the sign of the test statistics. For 

genes with positive test statistics, i.e. 𝑑𝑝 ≥ 0, for a given ∆+, genes are said to be 

significant positive if  𝑑(𝑝) − 𝑑̅(𝑝) > ∆+. Define 𝑐𝑢𝑡𝑢𝑝(∆+) as the minimum value of 

the test statistics 𝑑(𝑝) among all significant positive genes. 

(6) Calculate the number of falsely positively called genes for each of the 𝐵 sets of 

permuted and ordered test statistics:  

 𝐹𝐶𝑏(∆+) = ∑ 𝐼{𝑑(𝑝)
∗𝑏 > 𝑐𝑢𝑡𝑢𝑝(∆+)}

𝑚

𝑝=1

 (3.8) 

This is the number of EE genes among significant positive genes. We also estimate 

the median number of falsely positively called genes as 

 𝑚𝑒𝑑{𝐹𝐶𝑏(∆+)} = 𝑚𝑒𝑑𝑖𝑎𝑛{𝐹𝐶𝑏(∆+); 𝑏 = 1,2, … 𝐵}. (3.9) 

(7) Estimate 𝜋0, the proportion of EE genes in the data set as  
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 𝜋̂0 =
∑ 𝐼{𝑑𝑖 ∈ (𝑞25, 𝑞75)}𝑗

0.5𝑚
, (3.10) 

where 𝑞25 and 𝑞75 are the 25th and the 75th percentiles of the permuted 𝑑 values 

(there 𝑚 such values). Note that if 𝜋̂0 > 1 from (3.10), then it is set to 1. The 

proportion of up-regulated genes with 𝑑𝑝 ≥ 0 that are EE is: 

 𝜋̂0
+ = 𝑚

𝜋̂0 2⁄

𝑚𝑝𝑜𝑠
, (3.11) 

      Where 𝑚  and 𝑚𝑝𝑜𝑠  represent the total number of genes and the number of gene with                   

positive test statistics, respectively. 

(8) The estimate of FDR for genes with positive test statistics is 

 𝐹𝐷𝑅(∆+) =
𝑚𝑒𝑑{𝐹𝐶𝑏(∆+)}𝜋̂0

+

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑔𝑒𝑛𝑒𝑠(∆+)
. (3.12) 

Steps (5) through (8) are repeated for genes with negative test statistics, i.e. 𝑑𝑝 < 0. Genes are 

considered significant negative if 𝑑̅(𝑝) − 𝑑(𝑝) > ∆−. The 𝑐𝑢𝑡𝑙𝑜𝑤(∆−) is the maximum value of 

the test statistics 𝑑(𝑝) among all significant negative genes. For each of the 𝐵 sets of permuted 

and ordered test statistics, the number of falsely negative called genes is calculated as 

 𝐹𝐶𝑏(∆−) = ∑ 𝐼{𝑑(𝑝)
∗𝑏 < 𝑐𝑢𝑡𝑙𝑜𝑤(∆−)}

𝑚

𝑝=1

, (3.13) 

and the median number of falsely negative called genes is 

 𝑚𝑒𝑑{𝐹𝐶𝑏(∆−)} = 𝑚𝑒𝑑𝑖𝑎𝑛{𝐹𝐶𝑏(∆−); 𝑏 = 1,2, … 𝐵}. (3.14) 

The estimated proportion of gene with negative test statistics that are EE is 

 𝜋̂0
− = 𝑚

𝜋̂0 2⁄

𝑚𝑛𝑒𝑔
, (3.15) 

where 𝑚𝑛𝑒𝑔 in the number of genes with a negative test statistic. Finally, the estimated FDR in 

this case is 
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 𝐹𝐷𝑅(∆−) =
𝑚𝑒𝑑{𝐹𝐶𝑏(∆−)}𝜋̂0

−

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑔𝑒𝑛𝑒𝑠(∆−)
. (3.16) 

By taking into account the asymmetry in the test statistics, the original SAM method is modified 

by setting two values of ∆: ∆− and ∆+ and estimate the FDR separately for genes with negative 

test statistics and genes with negative test statistics. 

3.1.3. Asymmetric local false discovery rate 

Local false discovery rates, Efron et al. (2001), Efron and Tibshirani (2002), are a variant 

of Benjamini and Hochberg’s (1995) “tail area” false discovery rates. The local false discovery 

rate as discussed in 2.2.2. assumes the distribution of the test statistic follow a mixture of two 

distributions: one is the normal distribution with mean 0 and standard deviation equal to 1, the 

second distribution is also normal but non-null. This method itself does not consider asymmetry 

of the distribution of the test statistic. In this research, we propose the asymmetric local false 

discovery rate which takes into account the asymmetry of the test statistics when determining DE 

genes. We assume the distribution of the test statistic follow a mixture of three normal 

distributions. Down regulated genes (DRG) have negative test statistics and up regulated genes 

(URG) have positive test statistics. We use the Expectation Maximization (EM) (Arthur et al. 

1977) algorithm to find the (local) maximum likelihood parameter of the mixture model. It is an 

iterative method to find maximum likelihood or maximum posteriori estimates of parameters. 

The EM algorithm alternates between performing an expectation (E) step which creates a 

function for the expectation of the log-likelihood, and the maximization (M) step computes 

parameters maximizing the expected log-likelihood found in the E step. The distribution of the 

test statistics can then be expressed as follow:  
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 𝑓(𝑧) = 𝜋0𝑓0(𝑧)  + 𝜋𝑢𝑝𝑓𝑢𝑝(𝑧) +  𝜋𝑑𝑤𝑓𝑑𝑤(𝑧)  (3.17) 

This is simply an extension of the density function proposed by Efron et al. (2001), where 𝜋𝑢𝑝, 

and 𝑓𝑢𝑝 represent the proportion and the density of up regulated genes and 𝜋𝑑𝑤 and 𝑓𝑑𝑤 the 

proportion and density of down regulated genes and 𝑓(𝑧) is the density of the mixture 

distribution. These proportion are also estimated during the EM algorithm process. Good 

estimates of parameters are found when the algorithm converges. The local false discovery rate 

of the pth gene having a z-score is then estimate using the idea proposed by Efron as  

 

 

  

𝑙𝐹𝐷𝑅̂𝑝 =
𝜋̂0𝑓0(𝑧)

𝑓(𝑧)̂
 (3.18) 

From the lFDR we estimate the FDR of the pth gene as 

 𝐹𝐷𝑅̂𝑝 = 𝑀𝑒𝑎𝑛{𝑙𝐹𝐷𝑅̂𝑝(𝑧)}. (3.19) 

where 𝑙𝐹𝐷𝑅̂𝑝(𝑧) is the set of  estimated local false discovery rates less than or equal to 𝑙𝐹𝐷𝑅̂𝑝. 

A gene is then DDE if the corresponding false discovery rate is less than a predetermined cutoff. 

 

Figure 3.1. Density Curves of the mix distribution when n=6,𝑚0=9000 𝜋𝐴=0.5 
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This clearly show the distribution of up regulated gene (blue distribution), down 

regulated genes (green distribution) and the red distribution which represent EE genes. The 

algorithm converges after only 65 iterations in this case. Also, when the mean of up-regulated 

genes and down-regulated genes are close to zero, we consider that normal distribution 

component as part of the distribution of EE genes. 

3.2. Description of Simulation Studies 

Two simulation studies were performed to test and compare the three methods. 

3.2.1. Simulation using independent normal dataset 

To compare the performance of the three methods for identifying DE genes while 

controlling FDR, gene expression data sets will be simulated using independent normally 

distributed data (50 data sets in this study). For each dataset, 10,000 genes expression values will 

be randomly drawn from 𝑛 experimental units in each of two class treatment, with up and down 

regulated expression values. The expression values of the pth gene of the kth experimental unit in 

class i is simulated as 

 𝑦𝑖𝑝𝑘~𝑁(𝜇𝑖𝑝, 𝜎𝑝
2) (3.20) 

 

and  

 𝜎𝑝
2 ~𝐼𝑛𝑣ℾ(𝑎, 𝑏). (3.21) 

 

The variance 𝜎 𝑝
2  for each gene was randomly selected from an inverse gamma 

distribution. The parameters of the inverse gamma distribution were calculated from the dataset 

of an experiment described in Hannenhalli et al. (2006) using the methods proposed by Smyth 

(2004). The expression values from EE genes were generate from a normal distribution with 
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mean 0 and standard deviation 𝜎𝑝
2. Thus, if gene 𝑝 was EE, then  𝜇1𝑝 = 𝜇2𝑝 = 0. Expression 

values from up-regulated genes were randomly generated from 𝑁(𝜇𝛿𝜎𝑝, 𝜎𝑝
2) with probability 

𝜋𝑢𝑝 and down-regulated genes were randomly generated from 𝑁(−𝜇𝛿𝜎𝑝, 𝜎𝑝
2) with probability 

𝜋𝑑𝑤 where 𝜋𝑢𝑝 represents the proportion of genes that are up-regulated and 𝛿 represent the effect 

size. In this first simulation study, 𝜇𝛿 = 2. Simulations will be made under different conditions 

in order to assess the performance of each method. Simulations will be performed with sample 

sizes of n=4, 6, 10, 12, and 20 and a number of EE genes of 𝑚0= 5000, 7000, and 9000 out of 

10000. The proportion of up regulated genes among all DE genes is defined as 𝜋𝐴= 𝜋𝑢𝑝/(𝜋𝑢𝑝 +

𝜋𝑑𝑤).   The proportions used in the simulation study are 𝜋𝐴= 0.5, 0.7, and 0.9. This result in 45 

different simulation settings. 

Note that in this simulation study, it is only necessary to perform simulations when 𝜋𝐴 ≥

0.5 because 𝜋𝑢𝑝 and 𝜋𝑑𝑤 can be switched without changing the results (i.e., which genes are 

declared DE) of the gene expression analysis by switching which group is considered the “first 

group” and which group is considered the “second group”. 

3.2.2. Simulation using microarray genes expression data set 

After simulating data from normal distribution (where each gene values are independent), 

the second simulation study used real microarray data. This microarray data is from heart tissue 

of 108 human subjects suffering from idiopathic dilated cardiomyopathy. This data is described 

by Hannenhalli et al. (2006) and is available at the Gene Expression Omnibus with accession 

number GSE5406 (Hannenhalli et al 2006). From this dataset, which contains data from 22283 

genes, we randomly select 𝑚 = 10000 genes for analysis in the simulation study.  For each 

simulated data set, two n (n=4, 6, 10, 12, and 20) subjects were randomly drawn from the 

microarray dataset. At this point, the population group means are equal for each gene because the 
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data from both treatments were randomly drawn from the same population (𝜇1𝑝 = 𝜇2𝑝).   If gene 

p was EE, the data follow a distribution with a common mean and standard deviation equal 𝑆𝑝
2 

meaning that the data are not altered. If gene p was DE, then the effect size 𝛿𝑝, was randomly 

chosen from the mixture model 𝜋𝐴𝑁(𝛿; 𝜇𝛿𝑠𝑝, 𝑠𝑝
2) + (1 − 𝜋𝐴)𝑁(𝛿; −𝜇𝛿𝑠𝑝, 𝑠𝑝

2) and this effect size 

was added to all gene expressions from gene p in experimental units in the second treatment 

group. In this second simulation study we replace 𝜎𝑝 with 𝑠𝑝 because these values are based on a 

real data set. The data has a complex correlation structure than the first simulation study. The 

idea is to assess the performance of the methods when the assumptions of normality of the data 

are not met and when the data have a complex correlation structure. As in the first simulation, we 

also generate 50 data sets per setting, and perform 45 different simulations for each method. The 

setting parameters remain the same to assess the performance of each method with no bias.  

3.3. Description and analysis of Real data set: Thale cress seedlings 

A real microarray data set analyzed by the three methods. This analyzed data is describe 

in Jang et al. (2014). Data were generated from a gene expression experiment analysis of atsf1-2 

mutant seedlings for pre-mRNA splicing defect. Genes in thale cress seedling were compare 

between two genotypes, wild-type and mutant. A total of 6 samples consisting of two treatments: 

3 samples each genotype. For each sample, a total of 𝑚 = 22810 gene expression values were 

recorded. The data set from this experiment is also available at the Gene Expression Omnibus 

(GEO) with accession number GSE48114. 

3.4. Statistical Analysis 

For each simulated data set, gene testing was performed using each of the three methods 

to identify DE genes. Then, for each method, we calculate the mean of the number of DE genes 

that are DDE (mean of S) and the mean of the proportion of EE genes that are DDE (mean of 
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V/R). If no genes are DDE, then V/R is set to 0. All analyses were performed in the statistical 

software R. In both the simulation studies as well as the real data analysis, FDR was controlled at 

α = 0.10 using each method.  Thus, if the estimated FDR for a gene was ≤ 0.10, it was DDE. 

  



 

25 

CHAPTER 4: RESULTS OF SIMULATIONS AND REAL DATA ANALYSIS 

4.1. Results 

In this chapter we compare the performance of the Modified Q-value, Asymmetric local 

false discovery rate and the Modified SAM. We also analyze a real microarray data set to 

compare the number of DDE genes found for each method. 

4.1.1. Results of simulation study using independent normal data 

Fifty genes expression data sets were randomly generated for each simulation setting. For 

each dataset, the three methods were used to identify DE genes while controlling FDR at 0.1. For 

the Modified SAM method, threshold deltas were found corresponding to an estimated FDR 

closest to but no greater than 0.1 (or 10%). For the other two methods, FDRs were estimated for 

each gene, and genes with estimated values less than or equal to 0.1 were DDE. 

For each simulation setting, for each of the fifty datasets, 𝑆 (the number of DE genes 

DDE) was determined and the mean of all the fifty values of 𝑆 were evaluated when controlling 

the FDR at 0.1. To determine if all the three methods controlled the FDR at the 10% significance 

level, the observed FDR, V/R which is the proportion of EE genes among all DDE genes was 

calculated for each dataset. The mean over the 50 datasets was then taken. This process was 

executed for all methods. 

The table below presents the mean of S and mean of V/R for each simulation setting with 

corresponding standard errors in parentheses. A bolded value of mean S indicates that the 

method has a significant mean S. In other words, a bolded value of mean S indicates that, for all 

the 50 datasets, the method declares a significant amount of DE genes, and if a method 

outperforms both of the other methods, its mean S is underlined. 
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Table 4.1. The mean S for the Modified Q-values, Modified SAM and Asymmetric Local False 

Discovery Rate methods with associated standard errors in parentheses for normal simulations 

data. 

 

 
𝒏 

 

 

 

 

 
 

Mean S 

Modified Q-

value 

Asy. Local FDR Modified SAM 

4 9000 0.5 195.120 (4.583) 95.760 (3.293) 16.160 (1.424) 

 
0.7 250.120 (4.643) 34.980 (10.737) 34.080 (1.839) 

 
0.9 357.90 (3.918) 104.280 (20.671) 79.320 (2.964) 

7000 0.5 1842 (6.53) 971.960 (4.653) 768.940 (23.685) 

 
0.7 1903.200 (7.329) 0.000(0.000) 1049.680(18.746) 

 
0.9 2123.780(5.563) 419.540(102.206) 1700.580(13.552) 

5000 0.5 4083.400 (7.112) 2279.560(3.325) 3017.36(93.169) 

 
0.7 4127.040(7.594) 851.500(205.222) 3385.720(47.165) 

 
0.9 4296.700(5.631) 332.040(142.57) 4191.140(7.423) 

6 9000 0.5 643.300(3.462) 319.380(1.739) 453.160(17.838) 

 
0.7 660.200(3.231) 374.380(29.887) 523.560(17.887) 

 
0.9 715.860(2.663) 456.40 (43.329) 612.280(15.511) 

7000 0.5 2631.200(3.668) 1381.600(2.313) 2340.860(34.001) 

 
0.7 2646.360(3.478) 1818.600(61.343) 2493.900(30.789) 

 
0.9 2703.820(2.811) 2304.880(88.01) 2673.940(16.135) 

Note: For each simulation setting, the higher mean 𝑆 value at 10% significance level is bolded 

and the mean S is underlined indicating this method outperformed the other methods.  

 

 

𝒎𝟎 𝝅𝑨 
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Table 4.1. The mean S for the Modified Q-values, Modified SAM, and Asymmetric Local False 

Discovery Rate methods with associated standard errors in parentheses for normal simulations 

data (continued). 

 

𝒏 
 

 

𝒎𝟎 

 

 

𝝅𝑨 

 

 

Mean S 

Modified Q-value Asy. Local FDR Modified SAM 

6 5000 0.5 4767.680(3.024) 2637.340(3.108) 4553.900(30.384) 

 
0.7 4768.960(3.12) 3515.240(61.243) 4638.880(21.094) 

 
0.9 4796.940(2.561) 4253.860(125.53) 4741.180(10.229) 

10 9000 0.5 947.460(1.158) 479.600 (0.846) 947.600(1.182) 

 
0.7 949.960(1.001) 0.000(0.000) 950.280(1.087) 

 
0.9 956.280(1.035) 163.540(49.866) 958.520(0.949) 

7000 0.5 2966.500(0.93) 1551.600(1.196) 2969.520(0.875) 

 
0.7 2967.240(0.852) 2142.820(1.193) 2971.220(0.839) 

 
0.9 2968.940(0.907) 2711.740(0.967) 2973.160(0.845) 

5000 0.5 4984.880(0.545) 2759.080(2.118) 4985.340(0.557) 

 
0.7 4984.100(0.64) 3580.720(16.475) 4987.080(0.648) 

 
0.9 4981.640(0.641) 4593.740(1.304) 4983.140(0.645) 

 

  



 

28 

Table 4.1. The mean S for the Modified Q-values, Modified SAM, and Asymmetric Local False 

Discovery Rate methods with associated standard errors in parentheses for normal simulations 

data (continued) 

 

𝒏 

 

 

𝒎𝟎 

 

𝝅𝑨 

 

 

Mean S 

Modified Q-value Asy. Local FDR Modified SAM 

12 9000 0.5 982 (0.658) 495.700(0.538) 980.900(0.718) 

 
0.7 981.520(0.712) 0.000(0.00) 980.400(0.677) 

 
0.9 982.820(0.597) 36.300(25.405) 982.440(0.597) 

7000 0.5 2990.40(0.472) 1563.220(0.803) 2991.580(0.42) 

 
0.7 2990.120(0.512) 2153.500(1.057) 2991.340(0.448) 

 
0.9 2989.320(0.459) 2720.860(0.755) 2989.960(0.456) 

5000 0.5 4996.920(0.23) 2766.380(1.307) 4997.240(0.222) 

 
0.7 4996.160(0.272) 3690.240(9.612) 4995.080(0.451) 

 
0.9 4994.780(0.41) 4594.900(1.088) 4994.360(0.335) 

20 9000 0.5 645.700(2.92) 0.000(0.000) 622.240(2.83) 

 
0.7 654.580(2.72) 0.000(0.000) 631.900(2.676) 

 
0.9 704.640 (2.706) 0.000(0.000) 696.600(2.848) 

7000 0.5 4657.300(3.466) 1569.07(0.000) 4653.160(3.263) 

 
0.7 4654.520(3.237) 2158.893(1.102) 4658.600(3.477) 

 
0.9 4715.1(2.452) 2723.786(0.833) 4748.900(2.561) 

5000 0.5 2551.240(3.451) 2774.857(0.835) 2532.440(3.393) 

 
0.7 2569.240(3.826) 3730.179(1.923) 2556.680(3.801) 

 
0.9 2634.940(3.692) 4599.429(1.403) 2674.100(3.179) 
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Table 4.2. The mean V/R for the Modified Q-value, Modified SAM, and Asymmetric Local False 

Discovery Rate methods with associated standard errors in parenthesis for normal simulations 

data. 

 

 
𝒏 

 

 

𝒎𝟎 

 

𝝅𝑨 

 

 

 

Mean V/R 

 

Modified Q-value Asy. Local FDR Modified SAM 

4 9000 0.5 0.105 (0.003) 0.088 (0.004) 0.053 (0.008) 

 
0.7 0.099 (0.003) 0.018 (0.005) 0.037 (0.004) 

 
0.9 0.103 (0.002) 0.033 (0.007) 0.034 (0.003) 

7000 0.5 0.099 (0.001) .058 (0.001) .033 (0.001) 

 
0.7 0.098 (0.001) 0.000 (0.000) 0.044 (0.001) 

 
0.9 0.099 (0.001) 0.014 (0.004) 0.060 (0.001) 

5000 0.5 0.100 (0.001)  0.001 (0.000) 0.049 (0.003) 

 
0.7 0.098 (0.001) 0.010 (0.002) 0.066 (0.002) 

 
0.9 0.098 (0.001) 0.003 (0.001) 0.110 (0.001) 

6 9000 0.5 0.088 (0.002) 0.088 (0.002) 0.058 (0.005) 

 
0.7 0.068 (0.006) 0.060 (0.006) 0.068 (0.005) 

 
0.9 0.098 (0.002) 0.061 (0.006) 0.073 (0.005) 

7000 0.5 0.100 (0.001) 0.057 (0.001) 0.066 (0.004) 

 
0.7 0.099 (0.001) 0.064 (0.003) 0.086 (0.005) 

 
0.9 0.099 (0.001) 0.072 (0.004) 0.116 (0.005) 

5000 0.5 0.101 (0.001) 0.001 (0.000) 0.072 (0.004) 
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Table 4.2. The mean V/R for the Modified Q-value, Modified SAM, and Asymmetric Local False 

Discovery Rate methods with associated standard errors in parentheses for normal simulations 

data (continued). 

 

𝒏 

 

 

𝒎𝟎 

 

 

𝝅𝑨 

 

 

Mean V/R 

Modified Q-value Asy. Local FDR Modified SAM 

6 5000 0.7 0.099 (0.001) 0.037 (0.001) 0.093 (0.004) 

 
0.9 0.100 (0.001) 0.064 (0.003) 0.135 (0.003) 

10 9000 0.5 0.100 (0.001) 0.087 (0.002) 0.103 (0.001) 

 
0.7 0.098 (0.001) 0.000 (0.000) 0.102 (0.001) 

 
0.9 0.099 (0.002) 0.074 (0.022) 0.110 (0.001) 

7000 0.5 0.100 (0.001) 0.055 (0.001) 0.108 (0.001) 

 
0.7 0.100 (0.001) 0.072 (0.001) 0.118 (0.001) 

 
0.9 0.101 (0.001) 0.088(0.001) 0.143 (0.001) 

5000 0.5 0.099 (0.001) 0.001 (0.000) 0.101 (0.001) 

 
0.7 0.100 (0.001) 0.021 (0.002) 0.128 (0.001) 

 
0.9 0.101 (0.001) 0.077 (0.000) 0.164 (0.001) 

12 9000 0.5 0.100 (0.001) 0.087 (0.001) 0.101 (0.001) 

 
0.7 0.099 (0.001) 0.000 (0.000) 0.102 (0.001) 

 
0.9 0.100 (0.002) 0.016 (0.011) 0.109 (0.002) 
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Table 4.2. The mean V/R for the Modified Q-value, Modified SAM, and Asymmetric Local False 

Discovery Rate methods with associated standard errors in parentheses for normal simulations 

data (continued). 

 

𝒏 

 

 

𝒎𝟎 

 

𝝅𝑨 

 

 

Mean V/R 

Modified Q-value Asy. Local FDR Modified SAM 

12 7000 0.5 0.098 (0.001) 0.056 (0.001) 0.107 (0.001) 

 
0.7 0.100 (0.001) 0.073 (0.001) 0.116 (0.001) 

 
0.9 0.099 (0.001) 0.089 (0.00) 0.139 (0.001) 

5000 0.5 0.098 (0.001) 0.000 (0.000) 0.104 (0.001) 

 
0.7 0.100 (0.001) 0.033 (0.002) 0.119 (0.002) 

 
0.9 0.100 (0.001) 0.078 (0.000) 0.159 (0.001) 

20 9000 0.5 0.099 (0.001) 0.000 (0.000) 0.097 (0.002) 

 
0.7 0.099 (0.001) 0.000 (0.000) 0.101 (0.001) 

 
0.9 0.098 (0.001) 0.000 (0.000) 0.107 (0.001) 

7000 0.5 0.101 (0.001) 0.057 (0.001) 0.103 (0.001) 

 
0.7 0.098 (0.001) 0.074 (0.001) 0.113 (0.001) 

 
0.9 0.098 (0.001) 0.091 (0.000) 0.141 (0.001) 

5000 0.5 0.101 (0.001) 0.001(0.000) 0.101 (0.001) 

 
0.7 0.101 (0.001) 0.04 (0.000) 0.108 (0.001) 

 
0.9 0.101 (0.001) 0.0800 (0.000) 0.129 (0.001) 

For these simulations, the FDR was controlled at the 10% significance level. We see that 

as the sample size increased, the power of detecting DE genes increased for each of the three 

methods. Also, the number of DE genes detected increased as the number of EE genes decreased.  



 

32 

From Table 4.1. we see that for 𝑛 = 4 and 𝑛 = 6, the Modified Q-value performed better 

than both the Asymmetric Local False Discovery and the Modified SAM in all 18 simulation 

settings regarding mean S. For 𝑛 = 10 the Modified SAM performed better than both the 

Modified Q-value and the Asymmetric Local False Discovery Rate in all 9 simulation settings 

regarding mean S. However, the results from the Modified Q-value are very similar to those of 

the Modified SAM. Finally, for 𝑛 = 12  and 𝑛 = 12, the Modified Q-value perform better than 

the other two methods in 9 simulations following by the Modified with 5 simulations and the 

Asymmetric Local False Discovery rate with 4 simulations out of 18. In total, out of 45 

simulations, the Modified Q-value perform better than other methods in 27 simulations followed 

by the Modified SAM with 14 simulations and the Asymmetric Local False Discovery Rate with 

4 simulations.  

As shown in Table 4.2. the observed FDR (mean V/R) was comparable among the three 

methods for each simulation. The mean V/R shows that the observed FDR was controlled at or 

close to 10% for all methods. Moreover, the Modified Q-value most closely controlled the FDR 

at 10% in most simulation settings. So, in this first simulation the Modified Q-values perform the 

best in term of controlling the FDR at 10%. Even though the Asymmetric Local False discovery 

generally controlled the FDR at 10%, it is very conservative when 𝑚0 = 5000 for any value of 

sample size. For example when   (𝑛 = 4, 𝑚0 = 5000, 𝜋𝐴 = 0.5 ; 0.7); (𝑛 = 6, 𝑚 = 5000,

𝜋𝐴 = 0.5 ; 0.7); (𝑛 = 10, 𝑚0 = 5000, 𝜋𝐴 = 0.5 ; 0.7); (𝑛 = 20, 𝑚0 = 5000, 𝜋𝐴 = 0.5; 0.7) 

the mean of V/R is ranged between 0.001 and 0.04. This resulted in fewer DDE genes. On the 

other hand, the Modified SAM is anti-conservative with mean V/R exceeding the 0.12 in many 

settings. For example, when 𝑛 = 10, 𝑚0 = 5000, 𝜋𝐴 = 0.9 we have V/R equal to 0.143 also 
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when 𝑛 = 10, 𝑚0 = 7000, 𝜋𝐴 = 0.9 V/R is equal to 0.164. These two cases show how anti-

conservative the Modified SAM is for some setting. 

4.1.2. Results of the simulations using real microarray dataset 

The results of the simulations using microarray data are shown in the following tables. 

Table 4.3. The mean S for the Modified Q-values, Modified SAM, and Asymmetric Local False 

Discovery Rate methods with associated standard errors in parentheses for microarray 

simulations data. 

 

𝒏 

 

𝒎𝟎 

 

𝝅𝑨 

 

Mean S 

Modified Q-value Asy. Local FDR Modified SAM 

4 9000 0.5 251.960(9.593) 57.880 (15.436) 134.780 (15.265) 

 
0.7 277.420(7.862) 147.240 (28.342) 139.500 (11.44) 

 
0.9 332.380(7.264) 241.78 (38.465) 198.300 (11.77) 

7000 0.5 1478.00(24.562) 802.160(21.564) 1071.820 (57.404) 

 
0.7 1515.380(23.575) 780.280(81.253) 1184.660 (58.29) 

 
0.9 1661.100 (21.318) 561.420(105.437) 1479.74 (53.078) 

5000 0.5 3136.06(27.658) 1720.820(30.809) 2924.020(73.618) 

 
0.7 3198.780(26.678) 1811.680(168.06) 3154.3400(64.852) 

 
0.9 3404.440(23.745) 1035.020(215.714) 3719.840(19.454) 
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Table 4.3. The mean S for the Modified Q-values, Modified SAM, and Asymmetric Local False 

Discovery Rate methods with associated standard errors in parentheses for microarray 

simulations data (continued). 

 Note: 𝜋𝐴’s in these Simulation tables represent the proportion of DE genes that are up-regulated. 

So, 𝜋𝐴 = 0.7 mean that 70% of DE genes are up-regulated and the remaining 30% are down-

regulated. In our simulation study we consider three possible value of 𝜋𝐴 for each value of 𝑚0. 

The different possible values of  𝜋𝐴 are 0.5, 0.7, and 0.9. 

  

𝒏 𝒎𝟎 𝝅𝑨 

Mean S 

Modified Q-value Asy. Local FDR Modified SAM 

6 9000 0.5 544.720 (5.328) 134.440(19.827) 562.180 (12.716) 

 
0.7 545.300 (6.747) 132.620 (29.679) 561.660 (14.48) 

 
0.9 581.780 (6.737) 196.000 (41.516) 600.280 (14.468) 

7000 0.5 2050.140 (11.191) 1083.54 (23.053) 2063.480 (32.936) 

 
0.7 2076.960 (11.197) 1103.16 (99.019) 2117.780 (29.297) 

 
0.9 2172.140 (11.086) 1151.480 (140.067) 2248.080 (22.58) 

5000 0.5 3880.680 (12.689) 2097.560 (29.21) 3950.800(13.03) 

 
0.7 3911.660 (13.452) 2016.280 (192.341) 4007.140 (14.551) 

 
0.9 4031.440 (13.855) 2124.100 (258.673) 4231.460 (13.939) 
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Table 4.3. The mean S for the Modified Q-values, Modified SAM, and Asymmetric Local False 

Discovery Rate methods with associated standard errors in parentheses for microarray 

simulations data (continued). 

 

𝒏 

 

𝒎𝟎 

 

𝝅𝑨 

 

Mean S 

Modified Q-value Asy. Local FDR Modified SAM 

6 
 

0.9 4031.440(13.855) 2124.000(258.673) 4231.460(13.939) 

10 9000 0.5 746.540 (2.938) 182.440(26.655) 766.580 (6.079) 

 
0.7 752.900 (2.955) 74.140 (26.692) 764.46 (7.118) 

 
0.9 768.240 (3.095) 118.140(38.695) 781.220 (6.901) 

7000 0.5 2473.040(5.75) 1281.120 (8.981) 2474.740 (15.02) 

 
0.7 2482.600 (5.779) 1141.260(116.159) 2499.880(13.603) 

 
0.9 2530.720(5.887) 1315.400(160.007) 2564.740(11.06) 

5000 0.5 4365.220(7.286) 2330.000 (52.402) 4388.780(5.625) 

 
0.7 4382.400(7.235) 1961.960(209.381) 4420.400(5.07) 

 
0.9 4438.840(6.774) 2387.14(279.161) 4536.12 (6.484) 

12 9000 0.5 787.500(2.76) 103.280(24.934) 793.060(6.43) 

 
0.7 796.280(2.407) 197.060(39.316) 810.360 (4.506) 

 
0.9 807.080(2.115) 270.080(51.51) 840.740(4.008) 

7000 0.5 2563.720(5.529) 1254.200(69.773) 2573.600(7.957) 

 
0.7 2561.960(4.423) 1414.560(108.26) 2570.560(9.281) 

 
0.9 2597.920(4.829) 1887.100(216.568) 2633.920(6.036) 
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Table 4.3. The mean S for the Modified Q-values, Modified SAM, and Asymmetric Local False 

Discovery Rate methods with associated standard errors in parentheses for microarray 

simulations data (continued). 

 

 𝒏 

 

 𝒎𝟎 

 

𝝅𝑨 

 

Mean S 

Modified Q-value Asy. Local FDR Modified SAM 

12 5000 0.5 4446.380(6.834) 2315.540(54.858) 4460.660(5.611) 

 
0.7 4461.16(7.852) 2735.375(288.401) 4494.380(6.221) 

 
0.9 4497.660(5.705) 3200.880(235.598) 4580.400(5.011) 

20 9000 0.5 869.100 (1.611) 78.160(18.887) 876.540(3.207) 

 
0.7 871.120 (1.922) 110.460 (26.811) 880.860(3.121) 

 
0.9 877.820 (1.918) 161.260 (37.332) 887.200 (2.929) 

7000 0.5 2712.920 (3.231) 1036.020 (48.076) 2717.760(5.322) 

 
0.7 2717.940 (3.428) 1354.440 (72.085) 2726.420(5.417) 

 
0.9 2735.140 (3.33) 1575.660(111.805) 2751.760(5.424) 

5000 0.5 4632.460(4.869) 2088.740(31.296) 4642.860(4.386) 

 
0.7 4638.740(4.42) 2800.420(74.754) 4657.980(4.118) 

 
0.9 4658.880(4.367) 3308.660(160.713) 4711.78(4.155) 
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Table 4.4. The mean V/R for the Modified Q-value, Modified SAM, and Asymmetric Local False 

Discovery Rate methods with associated standard errors in parentheses for microarray 

simulation data. 

  

𝒏 

  

𝒎𝟎 

  

𝝅𝑨 

 

Mean V/R 

Modified Q-value Asy. Local FDR Modified SAM 

4 9000 0.5 0.084 (0.018) 0.054 (0.022) 0.068 (0.017) 

 
0.7 0.062 (0.011) 0.137 (0.031) 0.035 (0.009) 

 
0.9 0.067 (0.011) 0.116 (0.025) 0.035 (0.009) 

7000 0.5 0.094 (0.010) 0.061 (0.007) 0.062 (0.011) 

 
0.7 0.095 (0.010) 0.044 (0.008) 0.071 (0.012) 

 
0.9 0.097 (0.009) 0.028 (0.007) 0.09 (0.012) 

5000 0.5 0.082 (0.008) 0.001 (0.000) 0.074 (0.008) 

 
0.7 0.082 (0.007) 0.022 (0.003) 0.090 (0.008) 

 
0.9 0.082 (0.006) 0.015 (0.003) 0.136 (0.007) 

6 9000 0.5 0.095 (0.016) 0.043 (0.011) 0.115 (0.018) 

 
0.7 0.0988 (0.020) 0.084 (0.021) 0.130 (0.023) 

 
0.9 0.100 (0.019) 0.080 (0.023) 0.138 (0.023) 

7000 0.5 0.077 (0.10) 0.053 (0.011) 0.095 (0.012) 

 
0.7 0.080 (0.01) 0.036 (0.007) 0.101 (.012) 

 
0.9 0.082 (0.009) 0.024 (0.004) 0.112 (0.011) 

5000 0.5 0.088 (0.008) 0.003 (0.001) 0.098 (0.008) 

 
0.7 0.089 (0.008) 0.018 (0.003) 0.105 (0.008) 

 
0.9 0.090 (0.007) 0.022 (0.003) 0.135 (0.008) 
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Table 4.4. The mean V/R for the Modified Q-value, Modified SAM, and Asymmetric Local False 

Discovery Rate methods with associated standard errors in parentheses for microarray 

simulation data (continued). 

  

𝒏 

  

𝒎𝟎 

  

𝝅𝑨 

 

Mean V/R 

Modified Q-value Asy. Local FDR Modified SAM 

10 9000 0.5 0.116 (0.019) 0.067 (0.018) 0.158 (0.021) 

 
0.7 0.120 (0.02) 0.051 (0.019) 0.152 (0.021) 

 
0.9 0.123 (0.020) 0.054 (0.019) 0.156 (0.021) 

7000 0.5 0.096 (0.011) 0.047 (0.005) 0.109 (0.012) 

 
0.7 0.094 (0.011) 0.024 (0.004) 0.125 (0.013) 

 
0.9 0.108 (0.010) 0.026 (0.004) 0.139 (0.012) 

5000 0.5 0.116 (0.008) 0.003 (0.001) 0.123 (0.008) 

 
0.7 0.116(0.008) 0.014 (0.002) 0.131 (0.008) 

 
0.9 0.115 (0.007) 0.026 (0.004) 0.162 (0.008) 

12 9000 0.5 0.087 (0.015) 0.048 (0.017) 0.133 (0.019) 

 
0.7 0.113 (0.019) 0.142 (0.029) 0.156 (0.021) 

 
0.9 0.114 (0.018) 0.093 (0.019) 0.153 (0.019) 

7000 0.5 0.119 (0.015) 0.049 (0.023) 0.131 (0.015) 

 
0.7 0.090 (0.01) 0.030 (0.003) 0.106 (0.011) 

 
0.9 0.115 (0.013) 0.035 (0.005) 0.148 (0.014) 

5000 0.5 0.094 (0.009) 0.002 (0.001) 0.099 (0.008) 

 
0.7 0.095 (0.010) 0.016 (0.002) 0.11 (0.01) 

 
0.9 0.093 (0.007) 0.032 (0.003) 0.137 (0.008) 
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Table 4.4. The mean V/R for the Modified Q-value, Modified SAM, and Asymmetric Local False 

Discovery Rate methods with associated standard errors in parentheses for microarray 

simulation data (continued). 

  

𝒏 

  

𝒎𝟎 

  

𝝅𝑨 

 

Mean V/R 

Modified Q-value Asy. Local FDR Modified SAM 

20 9000 0.5 0.150 (0.021) 0.053 (0.016) 0.136 (0.018) 

 
0.7 0.085 (0.017) 0.093 (0.023) 0.127 (0.018) 

 
0.9 0.087 (0.017) 0.057 (0.015) 0.132 (0.018) 

7000 0.5 0.111 (0.013) 0.059 (0.016) 0.126 (0.014) 

 
0.7 0.112 (0.013) 0.046 (0.006) 0.129 (0.014) 

 
0.9 0.112 (0.012) 0.038 (0.004) 0.143 (0.014) 

5000 0.5 0.102 (0.010) 0.003 (0.001) 0.109 (0.009) 

 
0.7 0.100 (0.009) 0.027 (0.002) 0.115 (0.009) 

 
0.9 0.099 (0.008) 0.044 (0.004) 0.144 (0.008) 

The Modified Q-value and Modified SAM have high mean S for all 45 simulation 

settings. Moreover, the Modified SAM outperformed the Modified Q-value in 36 simulations out 

of 45 settings when 𝑛 = 6, 10, 12, 𝑎𝑛𝑑 20. For 𝑛 = 4, the Modified Q-value outperformed the 

Modified SAM. The Asymmetric Local False Discovery Rate poorly performed in all simulation 

settings compared to the other two methods.  The inability of the Asymmetrical Local Discovery 

Rate to detect DE gene is due to the fact that the method is parameter sensitive, meaning that if 

the effect size is high, the normalEM algorithm will not converge regularly even though the E 

and M steps of the algorithm are executed, thus will not detect DE genes.    

 As shown in Table 4.4. the observed FDR (mean V/R) was comparable among the three 

methods for each simulation. The mean V/R shows that the observed FDR was controlled at or 
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close to 10% for all methods. As in the first simulation study, we see that the Modified Q-values 

control the FDR better than the other methods, and the Asymmetric Local False Discovery Rate 

remains very conservative and the Modified SAM anti-conservative with values of V/R close to 

0.001 and higher than 0.12, respectively.  

The results from both simulations shows that the Modified Q-value and the Modified 

SAM have higher mean S when controlling the FDR at 10% compared to the Asymmetric Local 

False Discovery Rate. For sample size 𝑛 = 4, the Modified Q-value performed better in both 

simulation studies. Moreover, the Modified Q-value performed better than the other two methods 

when the data were simulated from independent normal distributions. But in the case of 

microarray dataset, the Modified SAM outperformed the other two methods in terms of mean S 

when the sample size is greater than 4 but did not adequately control FDR.  

4.2. Real Data 

4.2.1. Results of real data analysis 

In this section we analyze the data described in Section 3.3 using the Modified Q-value, 

the Modified SAM and the Asymmetric Local False Discovery Rate. The data set is divided into 

two classes (Wild-type and Mutant); with a total of 3 samples for each class. The first class has 3 

samples and the second has 3 as well. The dataset contains 𝑚 = 22810 genes. Figure 4.1 shows 

the empirical distribution of the test statistics values for the 22810 genes. 



 

41 

  

 Figure 4.1. Histogram of the test statistics from an experiment describe in Jang et al. (2014) in 

which microarray genes where used to examine the transcriptome profile in the atsf1-2 mutant 

and identified genes of which transcript levels were changed significantly. 

 

The Histogram of these test statistics does not clearly indicate an asymmetry in the 

distribution of test statistics. But when calculating the number of positive and negative test 

statistics, it is visible that there are more genes with negative test statistics than genes with 

positive test statistics, more precisely, there are 𝑚𝑛𝑒𝑔 = 12355 genes with negative test statistics 

and 𝑚𝑝𝑜𝑠 = 10455 genes with positive test statistics. 

For Modified Q-value method, when using Storey and Tibshirani’s (2003) natural cubic 

spline method, the estimated number of EE genes in this experiment is 𝑚̂0 = 17968.98. We 

expect the EE genes to have the same number of positive and negative test statistics. Thus, the 

estimate number of EE genes with positive test statistics is 𝑚̂0/2 = 8984.49 and the estimate 

number of EE genes with negative test statistics in also 𝑚̂0/2 = 8984.49. We then estimate the 

number of DE genes with positive effect size as 10455 − 8984 = 1471 genes and the number 

of DE genes with negative effect size as 12355 − 8984 = 3371 genes. This result to 

1471/(1471 + 3371) ≃ 30.38% of DE genes with positive effect sizes and 69.61 % of DE 
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genes with negative effect sizes. So, to find genes that are declared to be DE, we partition the q-

values in two subsets as follow: 

 𝑝 = 1, … , 12355 

 𝑞𝑝
(1)

= 𝑚𝑖𝑛 {
𝑃𝑟

(1)
(8984.49)

𝑟
∶ 𝑟 = 𝑝, … 12355} (4.1) 

for genes with negative effect size and  

 𝑝 = 1, … , 10455 

 𝑞𝑝
(2)

= 𝑚𝑖𝑛 {
𝑃𝑟

(2)
(8984.49)

𝑟
∶ 𝑟 = 𝑝, … 10455} 4.2) 

for genes with positive effect size.   

                                  

Figure 4.2. Distribution of p-values. 
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              (a)                                                                   (b) 

Figure 4.3. Distribution of p-value for up-regulated genes (a) and down-regulated genes (b) 

 

Finally, the number of gene declared to be DE by the Modified Q-value is: 1684 genes at 

10% significance level. Figure 4.3 shows the distribution of subset of p-value when the gene are 

up-regulated and down-regulate. In the Modified SAM method, when using the method describe 

in section 3.1.2, we found that 1919 gene are DDE. The Asymmetric local False discovery rate 

uses the test statistics calculated by the Storey method and we consider the one side p-value to 

get z-values. Below is the distribution of the mix distribution. 

  

Figure 4.4. Density Curves of the mix distribution for the real microarray dataset. 
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The number of gene declared to be DE using Modified q-value, Asymmetric Local False 

Discovery Rate and the Modified SAM at 10% significant level are summarized in Figure 4.5.  

For all three methods combine there were 908 genes that were declared DE. Additionally, 153 

genes were DDE by the Modified Q-values method and Asymmetric Local False Discovery rate. 

Also, there are 1807 genes DDE by Asymmetric Local False Discovery Rate. Finally, there are 

70 genes DDE by the Modified SAM and the Modified Q-values. 

 

Figure 4.5. Venn diagram of genes declared to be DE for the Modified SAM, Modified Q-values 

and The Asymmetric Local False Discovery Rate method. 

The analysis was performed on real gene expression data and not on simulated data set, 

which make it impossible to determine which genes are EE and which genes are DE. Which 

make it difficult to evaluate the FDR associate with each method. But from the results of both 

simulation study, the FDR is being adequately controlled at 10%.   
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CHAPTER 5: CONCLUSION RECOMMENDATION AND FUTURE WORK 

5.1. Conclusion 

The primary focus of this paper was to compare the performance of the Modified q-value 

(Orr et al. 2014), Modified SAM (Bentil 2017), and the proposed Asymmetric Local False 

Discovery rate in terms of detecting DE genes and controlling the FDR. The performance of 

these methods was evaluated using simulated and real microarray datasets with two independent 

treatments. All three methods consider the asymmetry in the distribution of the test statistics. 

The Modified q-value method outperformed the Modified SAM and the Asymmetric 

local False discovery rate in terms of mean S in the first simulation study for 𝑛 = 4, 6.  When the 

sample size increased, the Modified SAM outperformed the Modified q-value in a few 

simulation settings. The Asymmetric Local false discovery rate exhibited a lower power for 

detecting DE genes in general but outperformed the Modified q-value when the sample size was 

equal to 20. Overall, the Modified q-value declare more genes DE than other methods in the first 

simulation study.  

When simulating data sets from real microarray data, we saw that for sample size 𝑛 = 4, 

the Modified q-value outperformed the other two methods. However, as the sample size 

increased, the Modified SAM outperformed the Asymmetric Local False discovery rate and the 

Modified q-value in terms of power, but not FDR control. As in the first simulation study, the 

Asymmetric Local False discovery rate showed a low power of detecting genes that are DE and 

conservative control of FDR.   

In the case of real gene expression data analysis (in this study the sample size is 3) the 

Modified SAM declared more gene to be DE than the Modified Q-value and the Asymmetric 

Local False Discovery Rate at 10% significance level. 
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5.2. Recommendations 

After the analysis of simulated data sets and data from a real microarray gene expression 

experiment, the following recommendations are hereby made. 

(1) The Modified q-value is recommended for analysis in gene expression experiment 

with small sample sizes, say 𝑛 ≤ 10 because it had comparable power compared to 

modified SAM, Asymmetric Local False Discovery Rate and better FDR control. 

(2) Except in the cases where the sample size in less than 10, and regarding the results of 

our simulation, it is recommended to use the Modified SAM to analyze gene 

expression, also when there is a noticeable high correlation among the measurements 

of each gene.  

5.3. Future Work 

(1) Given that the Asymmetric Local false discovery had generally low power, and 

regarding the fact that it is sensitive to parameter values when generating data, investigation into 

the properties of this method are recommended. 

(2) Develop other methods for identifying DE genes that take into account asymmetry. 

(3) RNAseq is a new technology used in gene expression analysis. Comparing methods 

that takes into account asymmetry of the distribution of the test statistics for RNAseq 

experiments.  
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APPENDIX. R CODE 

source("https://bioconductor.org/biocLite.R") 

biocLite("limma") 

biocLite("samr") 

library(limma) 

library(qvalue) 

library(pscl) 

library(mixtools) 

library(samr) 

library(impute) 

ni       ### number of samples per treatment 

m0      ## number of EE genes 

m      ## total number of genes 

m1     ## number of DE genes 

piup  ### proportion of up regulated genes 

pi0   #proportion of EE gene 

### Defining the variance 

d0=3.658156 

s20=0.04039051 

Sds <- sqrt(rigamma(n = m, alpha = d0/2, beta = (d0*s20)/2)) 

nup <- round(m1*piup) ##number of up-regulated DE genes 

ndn <- m1 - nup ##number of down-regulated DE genes 

###################################################################### 
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##############      Simulating the data sets         ################# 

###################################################################### 

 

Patern <- function(x){ 

dat <- matrix(NA, nrow = m0, ncol = 2*ni) #matrix of EE genes 

for(i in 1 : m0) { 

sdi <- Sds[i] 

dati <- rnorm(n =2*ni, mean = 0, sd = sdi) 

dat[i,] <- dati 

} 

dat1 <- matrix(NA, nrow = m1, ncol = 2*ni)   ### matrix of DE genes 

means <- c(rep(2,nup),rep(-2,ndn))                   ### defining means for up 

and down regulated genes. 

for(i in 1 : m1) { 

sdi <- Sds[m0 + i] 

dat1i <- rnorm(n = ni, mean = 0, sd = sdi)  # data for 

dat2i <- rnorm(n = ni, mean = means[i]*sdi, sd = sdi)  # data for down 

regulated genes 

datai <- c(dat1i, dat2i) 

dat1[i,] <- datai 

} 

Data <- rbind(dat,dat1)#### THis contains the first 9000 EE genes data and the 

second 1000 (up and down regulated gene) 

} 

dataset <- lapply(1:50,patern)### Number of simulated data sets 
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##################################################################### 

#############    MODIFIED Q-VALUE METHOD       ###################### 

##################################################################### 

RVSVR1 <- data.frame() 

for(i in 1 : length(dataset[i])) { 

dataset = dat77 

TS <- as.data.frame(dataset) 

trt <- as.factor(c(rep(1,ni), rep(2,ni))) ### User define (depending on the 

number of treatments per group) 

 

design <- model.matrix(~trt+0)           ##design matrix 

colnames(design)=c("t1","t2")             ## Name the colums of the design 

matrix 

contr.mat <- makeContrasts(t2-t1, levels=design) ##contrasts of interest 

##Perform moderated t-test (Smyth, 2004) 

fit1 <- lmFit(TS,design) 

fit2 <- contrasts.fit(fit1,contr.mat) 

fit3 <- eBayes(fit2) 

ts <- fit3$t                     ### test statistics ( these are positiv and 

negetives) 

ps <- fit3$p.value[,1]           ### p-values 

Zvalue <- scale(ps, center = TRUE, scale = TRUE) ### getting the z-value from 

the p-values 

source("estimate_qvalues_asymmetric.R") 

qvsnew <- qval_asymm(ts, ps) 
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R1 <-sum(qvsnew <= 0.1)                  ### Number of genes DDE 

V1 <- sum(qvsnew[1:m0] <= 0.1)          ### Number of EE genes DDE 

S1 <- sum(qvsnew[(m0 + 1) : m] <= 0.1) ### Number of DE genes DDE 

VR1 <- V1 / max(R1,1) 

RVSVR1 <- rbind(RVSVR1,c(S1, VR1))      ### S and VR using ... (2 subsets of 

p-values) 

colnames(RVSVR1) <- c("S", "VR") 

} 

## The mean and standard errors of S and V/R 

MStd1 <- round(apply(RVSVR1, 2, function(x) c(mean(x), sqrt(var(x) / 

length(x)))),digits = 3) 

MStd1 

##################################################################### 

############## Asymmtric local false discovery rate method ########## 

##################################################################### 

RVSVR2 <- data.frame() 

#for(i in 1 :length(dataset)) { 

TS <- as.data.frame(dataset) 

trt <- as.factor(c(rep(1,ni), rep(2,ni))) ### User define (depending on the 

number of treatments per group) 

design <- model.matrix(~trt+0)           ##design matrix 

colnames(design)=c("t1","t2")             ## Name the colums of the design 

matrix 

contr.mat <- makeContrasts(t2-t1, levels=design) ##contrasts of interest 

##Perform moderated t-test (Smyth, 2004) 
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fit1 <- lmFit(TS,design) 

fit2 <- contrasts.fit(fit1,contr.mat) 

fit3 <- eBayes(fit2) 

ts <- fit3$t                      ### test statistics ( these are positiv and 

negetives) 

ps <- fit3$p.value[,1]           ### p-values 

#### spliting the p-values for one side p-values 

pNeg <- ps[ts <= 0]/2 

pPos <- 1-ps[ts > 0]/2 

Pvalue <- c(pNeg,pPos) 

Z1.znorm <- qnorm(Pvalue)  ### transforming the p-values to z-scores 

hist(Z1.znorm) 

#### Check at the mixdristribution and estimating the parameters or the 

proportion. 

set.seed(104)                                          # Settint the seed at 

104 

mixmdl = normalmixEM(Z1.znorm, k=3, arbvar=TRUE, mean.constr = c(0,"a", "-c"), 

sigma = 1, 

sd.constr = c(1, "b","d"),  arbmean = TRUE, maxit = 30000)   ## Looking at the 

distribut 

plot(mixmdl, which=2) 

mixmdl[c("lambda","mu","sigma")]                      ## Estimating the 

proportion and the parameters of Mix model 

#print(TAT) 

summary(mixmdl)                                     ## Summary of normalmixEM 
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P_pi <- mixmdl$lambda                               ## vector containing the 

proportions estimate 

Means <- mixmdl$mu                                  ## Vector containing the 

means of the mixed distribution 

Sigmas <- mixmdl$sigma                              ## Vector containing the 

standard deviations 

## Estimate of fo and f 

f0est1 <- P_pi[1]*dnorm(Z1.znorm) 

f1est1 <- P_pi[2]*dnorm(Z1.znorm, Means[2], Sigmas[2]) 

f2est1 <- P_pi[3]*dnorm(Z1.znorm, Means[3], Sigmas[3]) 

if (abs(Means[2])<=0.1 |abs(Means[3]<= 0.1)) { 

f0est = f0est1 + f1est1 + f2est1 

} else if (abs(Means[2])<=0.1 | abs(Means[3])> 0.1) { 

f0est = f0est1 + f1est1 

 

} else if (abs(Means[3]<= 0.1) | abs(Means[2]> 0.1)){ 

f0est = f0est1 + f2est1 

 

} else { 

f0est = f0est1 

} 

Fest  <- f0est1 + f1est1 + f2est1 

lcfdr <- f0est/Fest 

func1 <- function(v){ 

FDR1 <- c() 
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for(i in 1:length(v)){ 

FDR1[i] <- mean(v[v<=v[i]]) 

} 

FDR1 

} 

FDR = func1(lcfdr) 

#FDR 

R2 <-sum(FDR <= 0.1)                  ### Number of genes DDE 

V2 <- sum(FDR[1:m0half] <= 0.1)          ### Number of EE genes DDE 

S2 <- sum(FDR[(m0half + 1) : m] <= 0.1) ### Number of DE genes DDE 

VR2 <- V2 / max(R2,1) 

RVSVR2 <- rbind(RVSVR2,c(S2, VR2))      ### S and VR using ... (2 subsets of 

p-values) 

colnames(RVSVR2) <- c("S", "VR") 

} 

# The mean and standard errors of S and V/R 

MStd1 <- round(apply(RVSVR1, 2, function(x) c(mean(x), sqrt(var(x) / 

length(x)))),digits = 3) 

MStd1 

########################################################## 

#############   SAMseq Method   ########################## 

########################################################## 

# Estimation of s0 and calculation of the test statistics di 

Sam.fdr = function(dataset){ 
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Cut.lw.f = c() 

Cut.up.f = c() 

delta.neg = c() 

delta.pos = c() 

for(i in 1 :length(dataset)) { 

dat= dataset[[i]] 

test.func <- function(dat, ni){ 

dat1 <- dat[,1:ni]       # data for the first grroup 

dat2 <- dat[,(ni+1):(2*ni)]  # data for the secomd group 

# Sample means for each group 

X1bar <- apply(dat1, 1, mean)   # mean of each gene from the first group 

X2bar <- apply(dat2, 1, mean) 

ri = X1bar - X2bar 

S21 = apply(dat1, 1, var)        # Sample variances for each group ( down and 

up regulated) 

S22 = apply(dat2, 1, var) 

Si = sqrt(((ni-1)*S21 + (ni-1)*S22)/(2*ni-2))*sqrt(2/ni)   # Pooled standard 

errors 

# Computation of S0 

# 1) Let Sa be alpha percentile of the Si values. Let dia = ri/(Si + Sa) 

S0s = quantile(Si, probs = seq(0, 1, by = 0.05))  ### this is the 100 

quantiles of the Si(i denote q1,...q100) 

Siord = order(Si) 

lowcut = seq(1, 9901, 100) 

hicut = seq(100, 10000, 100) 
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CVs = rep(NA, 21) 

for (p in 1:21) { 

S0p = S0s[p] 

dip = ri/(Si+S0p) 

madp = rep(NA, 100) 

for(b in 1:100){ 

inds = Siord[lowcut[b]:hicut[b]] 

dipb = dip[inds] 

medpb = median(dipb) 

madp[b] = median(abs(dipb-medpb))/ 0.64 

} 

CVs[p] = sd(madp)/mean(madp) 

minCVind = order(CVs) 

S0 = S0s[order(CVs)[1]] 

di = ri/(Si + S0) # test statistic 

or.di <- sort(di,decreasing=FALSE) 

rk.di <- rank(di) 

return(list(di = di, ordered.di = or.di, rank.di= rk.di, S0 = S0)) 

} 

} 

testS = test.func(dat, ni) 

S0 = testS$S0 

di = testS$di 
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or.di = testS$ordered.di 

rank.di=testS$rank.di 

######### Step 2 Compute the order statistics ####################### 

y <- c(rep(1,ni),rep(2,ni)) 

#############permuted test statistics#################### 

insert.value <- function(vec, newval, pos) {    # this function is used to 

insert a new value in the vector if necessary 

if (pos == 1)                             # if the position of the new value 

is the lowest then it will be placed at the bigining 

return(c(newval, vec)) 

lvec <- length(vec) 

if (pos > lvec) 

return(c(vec, newval)) 

return(c(vec[1:pos - 1], newval, vec[pos:lvec])) 

} 

# Compute the matrix of permutations 

permutes <- function(elem) { 

# generates all perms of the vector elem 

if (!missing(elem)) { 

if (length(elem) == 2) 

return(matrix(c(elem, elem[2], elem[1]), nrow = 2)) 

last.matrix <- permute(elem[-1])                       # function permute ( 

need to know what package has it) 

dim.last <- dim(last.matrix) 

new.matrix <- matrix(0, nrow = dim.last[1] * (dim.last[2] + 
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1), ncol = dim.last[2] + 1) 

for (row in 1:(dim.last[1])) { 

for (col in 1:(dim.last[2] + 1)) new.matrix[row + 

(col - 1) * dim.last[1], ] <- insert.value(last.matrix[row, 

], elem[1], col) 

} 

return(new.matrix) 

} 

else cat("Usage: permute(elem)\n\twhere elem is a vector\n") 

} 

getperms <- function(y, B) {              # nperms or B is the number of 

permutations requested to estimate the false discovery rate 

total.perms = factorial(length(y)) 

if (total.perms <= B) { 

perms = permutes(1:length(y)) 

all.perms.flag = 1                         # Where all possible permutation 

are used 

B.act = total.perms                   # Number of permutation actually used. 

Will be < nperms  : nperms.act 

} 

if (total.perms > B) { 

perms = matrix(NA, nrow = B, ncol = length(y))   # 

for (i in 1:B) { 

perms[i, ] = sample(1:length(y), size = length(y))  # 

} 
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all.perms.flag = 0 

B.act = B 

} 

return(list(perms = perms, all.perms.flag = all.perms.flag, 

B.act = B.act)) 

} 

perm = getperms(y,100) 

perms=perm[['perms']] 

nperms = dim(perms)[1] 

di.mat = matrix(NA, nrow = nperms, ncol = m) 

test.p.func <- function(dat, ni) { 

for (p in 1:100) { 

datp = dat[, perm[['perms']][p, ]]  # permuted data 

dat1p <- datp[, 1:ni]       # data for the first grroup 

dat2p <- datp[, (ni + 1):(2 * ni)]  # data for the secomd group 

#dat2 

# Sample means for each group 

X11bar <- apply(dat1p, 1, mean)   # mean of each gene from the first group 

X22bar <- apply(dat2p, 1, mean) 

rip = X11bar - X22bar 

# Sample variances for each group ( down and up regulated) 

S21p = apply(dat1p, 1, var) 

S22p = apply(dat2p, 1, var) 
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# Pooled standard errors 

Sip = sqrt(((ni - 1) * S21p + (ni - 1) * S22p) / (2 * ni - 2)) * sqrt(2 / ni) 

## test statistics is di 

dips = rip / (Sip + S0) # test statistic 

#print(length(dip)) 

di.mat[p,] = sort(dips, decreasing = FALSE) 

} 

return(di.mat = di.mat) 

} 

##################  ordered permuted test statistis ################ 

testS.p.ord = di.mat =test.p.func(dat, ni) 

####################### Step 3 continue ########################## 

# From the B permutations ,estimate the expected order statistics 

# expected ordered statistics 

#di.bar1 <- apply(or.testS.p, 1, mean) 

#di.bar1 <- di.bar1[length(di.bar1):1] 

di.bar1 <- apply(testS.p.ord, 2, mean) 

################## step5 ################ 

# plot di versus di.bar 

plot(di, di.bar1) 

############### step 6  find the possible deltas value  #################### 

di.ord = sort(di) 

res.mat <- data.frame(di.ord = di.ord, evo = di.bar1, dif1 = di.ord - di.bar1, 

dif2 = di.bar1-di.ord) # this is a data frame with di, dibar and dif 
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res.pos <- res.mat[res.mat$di.ord > 0, ] # this is a data frame with positiv 

di and the corresponding dif 

res.neg <- res.mat[res.mat$di.ord < 0, ] # this is a data frame with negative 

di and the corresponding dif 

################ Up regulated genes ############################### 

################ estimate pi0s   ###################################### 

pis <- function(di.mat, di, m){ 

qq <- quantile(di.mat, c(0.25, 0.75)) 

pi0h <- sum((di >= qq[1]) & (di <= qq[2]))/(0.5 * length(di)) 

npos.di <- sum(di >= 0)  ##number of genes with positive test statistic (up 

regulated) 

nneg.di <- sum(di < 0)  ##number of genes with negative test statistic (down 

regulated) 

pi0hpos <- (pi0h*m/2)/npos.di  ##estimate of proportion of EE genes with 

positive test statistics 

pi0hneg <- (pi0h*m/2)/nneg.di  ##estimate of proportion of EE genes with 

negative test statistics 

return(list(pi0h = pi0h, pi0hpos = pi0hpos, pi0hneg = pi0hneg)) 

} 

# Estimated pis 

pis <- pis(di.mat, di, m) 

print(pis) 

pi0h = pis$pi0h 

m0hat = m*pi0h 

print(m0hat) 
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del.pos = matrix(seq(0.5, 2, by=0.01), nrow=1, ncol = 151)     ## the best 

value of delta so far is 0.8 

#del.pos 

FDR.fun = function(del.pos){ 

fdr1 = c() 

for (l in 1:151){ 

sig.pos = res.pos$dif1 > del.pos[,l]      # Significan positive genes 

Nsig.pos = sum(sig.pos)                   # number of significan possitive up 

regulated genes 

Cut.up = min(res.pos$di.ord[sig.pos == TRUE])     #Cut up 

nfc.pos = rep(NA, nperms)             # number of false called  positive gene 

for (k in 1:nperms) { 

dips.pos = di.mat[k,] 

nfc.pos[k] = sum(dips.pos >= Cut.up) 

} 

nfc.pos 

med.nfc.up = median(nfc.pos) 

fdr.pos = (pis$pi0hpos)*med.nfc.up / Nsig.pos 

fdr1[l] = fdr.pos 

} 

return(fdr1) 

} 

########### Down regulated genes ####################### 
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del.neg = matrix(seq(0.5, 2, by=0.01), nrow=1, ncol = 151)     ## the best 

value of delta so far is 0.8 

#del.neg 

FDR.fun.1 = function(del.neg){ 

fdr2 = c() 

for (t in 1:151){ 

sig.neg = res.neg$dif2 > del.neg[,t]         # Significan positive genes 

Nsig.neg = sum(sig.neg)                   # number of significan negative or 

down  regulated genes 

Cut.lw = max(res.neg$di.ord[sig.neg == TRUE])     #Cut low 

nfc.neg = rep(NA, nperms)             # number of false called  negative gene 

for (k in 1:nperms) { 

dips.neg = di.mat[k,] 

nfc.neg[k] = sum(dips.neg <= Cut.lw) 

} 

nfc.neg 

med.nfc.lw = median(nfc.neg) 

fdr.neg = (pis$pi0hneg)*med.nfc.lw / Nsig.neg 

fdr2[t] = fdr.neg 

} 

return(fdr2) 

} 

fdr.pos = FDR.fun(del.pos) 

delta.pos[i] <- min(del.pos[fdr.pos <= 0.1 & is.na(fdr.pos)== FALSE]) 
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#delta.pos 

sig.pos.f = res.pos$dif1 > delta.pos[i]      # final Significan positive genes 

#Nsig.pos.f = sum(sig.pos.f)                   # number of significan 

possitive up regulated genes 

Cut.up.f[i] = min(res.pos$di.ord[sig.pos.f == TRUE])     #Cut up 

fdr.neg = FDR.fun.1(del.neg) 

delta.neg[i] <- min(del.neg[fdr.neg <= 0.1 & is.na(fdr.neg)== FALSE]) 

#delta.neg 

sig.neg.f = res.neg$dif2 > delta.neg[i]         # Significan positive genes 

#Nsig.neg.f = sum(sig.neg.f)                   # number of significan negative 

or down  regulated genes 

Cut.lw.f[i] = max(res.neg$di.ord[sig.neg.f == TRUE]) #Cut low 

Delta.c = cbind(delta.pos, delta.neg, Cut.lw.f, Cut.up.f) 

} 

return(Delta.c) 

Delta = Sam.fdr(dataset) 

Delta 

###################################################################### 

##############   Calculation of S, V, V/max(R,1)   ################### 

###################################################################### 

#### Calculating the test statistics and put them in a list ########### 

S.VR.fun = function(dataset){ 

DSi <- list(c()) 

for(i in 1 :length(dataset)) { 
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dat= dataset[[i]] 

test.func <- function(dat, ni){ 

dat1 <- dat[,1:ni]       # data for the first grroup 

dat2 <- dat[,(ni+1):(2*ni)]  # data for the secomd group 

# Sample means for each group 

X1bar <- apply(dat1, 1, mean)   # mean of each gene from the first group 

X2bar <- apply(dat2, 1, mean) 

ri = X1bar - X2bar 

# Sample variances for each group ( down and up regulated) 

S21 = apply(dat1, 1, var) 

S22 = apply(dat2, 1, var) 

# pooled standard errors 

Si = sqrt(((ni-1)*S21 + (ni-1)*S22)/(2*ni-2))*sqrt(2/ni) 

# Computation of S0 

# 1) Let Sa be alpha percentile of the Si values. Let dia = ri/(Si + Sa) 

S0s = quantile(Si, probs = seq(0, 1, by = 0.05))  ### this is the 100 

quantiles of the Si(i denote q1,...q100) 

Siord = order(Si) 

lowcut = seq(1, 9901, 100) 

hicut = seq(100, 10000, 100) 

CVs = rep(NA, 21) 

for (p in 1:21) { 

S0p = S0s[p] 

dip = ri/(Si+S0p) 
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madp = rep(NA, 100) 

for(b in 1:100){ 

inds = Siord[lowcut[b]:hicut[b]] 

dipb = dip[inds] 

medpb = median(dipb) 

madp[b] = median(abs(dipb-medpb))/ 0.64 

} 

CVs[p] = sd(madp)/mean(madp) 

minCVind = order(CVs) 

S0 = S0s[order(CVs)[1]] 

## test statistics is di 

di = ri/(Si + S0) # test statistic 

or.di <- sort(di,decreasing=FALSE) 

rk.di <- rank(di) 

} 

return(di) 

} 

testS = test.func(dat, ni) 

di = testS 

DSi[[i]] <- di 

} 

return(DSi) 

} 
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DS = S.VR.fun(dataset) 

sam <- function(di, Cut.lw.f, Cut.up.f){ 

 

di1 <- di[1:m0] 

di2 <- di[(m0+1):10000] 

DDE1 <- di1 <= Cut.lw.f | di1 >= Cut.up.f 

DDE2 <- di2 <= Cut.lw.f | di2 >= Cut.up.f 

V1 <- sum(DDE1) 

S1 <- sum(DDE2) 

R1 = S1 + V1 

VR1 = V1 / max(R1, 1) 

return(cbind(S1, VR1)) 

} 

RVS = t(sapply(c(1:dim(Delta)[1]), function(i){ 

return(sam(DS[[i]], Delta[i,]["Cut.lw.f"], Delta[i,]["Cut.up.f"]))})) 

colnames(RVS) = c("S","VR") 

RVS 

#S = mean(RVS[,1])     # Number of DE gene DDE 

#VR = mean(RVS[,2]) 

MStd3 <- round(apply(RVS, 2, function(x) c(mean(x), sqrt(var(x) / 

length(x)))),digits = 3) 

MStd3 

 


